ath9k: Disable autosleep feature for AR9285 based chipsets.
[safe/jmp/linux-2.6] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
19
20 #include "ath9k.h"
21 #include "initvals.h"
22
23 static int btcoex_enable;
24 module_param(btcoex_enable, bool, 0);
25 MODULE_PARM_DESC(btcoex_enable, "Enable Bluetooth coexistence support");
26
27 #define ATH9K_CLOCK_RATE_CCK            22
28 #define ATH9K_CLOCK_RATE_5GHZ_OFDM      40
29 #define ATH9K_CLOCK_RATE_2GHZ_OFDM      44
30
31 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
32 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
33                               enum ath9k_ht_macmode macmode);
34 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
35                               struct ar5416_eeprom_def *pEepData,
36                               u32 reg, u32 value);
37 static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
38 static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
39
40 /********************/
41 /* Helper Functions */
42 /********************/
43
44 static u32 ath9k_hw_mac_usec(struct ath_hw *ah, u32 clks)
45 {
46         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
47
48         if (!ah->curchan) /* should really check for CCK instead */
49                 return clks / ATH9K_CLOCK_RATE_CCK;
50         if (conf->channel->band == IEEE80211_BAND_2GHZ)
51                 return clks / ATH9K_CLOCK_RATE_2GHZ_OFDM;
52
53         return clks / ATH9K_CLOCK_RATE_5GHZ_OFDM;
54 }
55
56 static u32 ath9k_hw_mac_to_usec(struct ath_hw *ah, u32 clks)
57 {
58         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
59
60         if (conf_is_ht40(conf))
61                 return ath9k_hw_mac_usec(ah, clks) / 2;
62         else
63                 return ath9k_hw_mac_usec(ah, clks);
64 }
65
66 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
67 {
68         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
69
70         if (!ah->curchan) /* should really check for CCK instead */
71                 return usecs *ATH9K_CLOCK_RATE_CCK;
72         if (conf->channel->band == IEEE80211_BAND_2GHZ)
73                 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
74         return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
75 }
76
77 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
78 {
79         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
80
81         if (conf_is_ht40(conf))
82                 return ath9k_hw_mac_clks(ah, usecs) * 2;
83         else
84                 return ath9k_hw_mac_clks(ah, usecs);
85 }
86
87 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
88 {
89         int i;
90
91         BUG_ON(timeout < AH_TIME_QUANTUM);
92
93         for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
94                 if ((REG_READ(ah, reg) & mask) == val)
95                         return true;
96
97                 udelay(AH_TIME_QUANTUM);
98         }
99
100         DPRINTF(ah->ah_sc, ATH_DBG_ANY,
101                 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
102                 timeout, reg, REG_READ(ah, reg), mask, val);
103
104         return false;
105 }
106
107 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
108 {
109         u32 retval;
110         int i;
111
112         for (i = 0, retval = 0; i < n; i++) {
113                 retval = (retval << 1) | (val & 1);
114                 val >>= 1;
115         }
116         return retval;
117 }
118
119 bool ath9k_get_channel_edges(struct ath_hw *ah,
120                              u16 flags, u16 *low,
121                              u16 *high)
122 {
123         struct ath9k_hw_capabilities *pCap = &ah->caps;
124
125         if (flags & CHANNEL_5GHZ) {
126                 *low = pCap->low_5ghz_chan;
127                 *high = pCap->high_5ghz_chan;
128                 return true;
129         }
130         if ((flags & CHANNEL_2GHZ)) {
131                 *low = pCap->low_2ghz_chan;
132                 *high = pCap->high_2ghz_chan;
133                 return true;
134         }
135         return false;
136 }
137
138 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
139                            struct ath_rate_table *rates,
140                            u32 frameLen, u16 rateix,
141                            bool shortPreamble)
142 {
143         u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
144         u32 kbps;
145
146         kbps = rates->info[rateix].ratekbps;
147
148         if (kbps == 0)
149                 return 0;
150
151         switch (rates->info[rateix].phy) {
152         case WLAN_RC_PHY_CCK:
153                 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
154                 if (shortPreamble && rates->info[rateix].short_preamble)
155                         phyTime >>= 1;
156                 numBits = frameLen << 3;
157                 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
158                 break;
159         case WLAN_RC_PHY_OFDM:
160                 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
161                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
162                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
163                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
164                         txTime = OFDM_SIFS_TIME_QUARTER
165                                 + OFDM_PREAMBLE_TIME_QUARTER
166                                 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
167                 } else if (ah->curchan &&
168                            IS_CHAN_HALF_RATE(ah->curchan)) {
169                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
170                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
171                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
172                         txTime = OFDM_SIFS_TIME_HALF +
173                                 OFDM_PREAMBLE_TIME_HALF
174                                 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
175                 } else {
176                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
177                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
178                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
179                         txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
180                                 + (numSymbols * OFDM_SYMBOL_TIME);
181                 }
182                 break;
183         default:
184                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
185                         "Unknown phy %u (rate ix %u)\n",
186                         rates->info[rateix].phy, rateix);
187                 txTime = 0;
188                 break;
189         }
190
191         return txTime;
192 }
193
194 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
195                                   struct ath9k_channel *chan,
196                                   struct chan_centers *centers)
197 {
198         int8_t extoff;
199
200         if (!IS_CHAN_HT40(chan)) {
201                 centers->ctl_center = centers->ext_center =
202                         centers->synth_center = chan->channel;
203                 return;
204         }
205
206         if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
207             (chan->chanmode == CHANNEL_G_HT40PLUS)) {
208                 centers->synth_center =
209                         chan->channel + HT40_CHANNEL_CENTER_SHIFT;
210                 extoff = 1;
211         } else {
212                 centers->synth_center =
213                         chan->channel - HT40_CHANNEL_CENTER_SHIFT;
214                 extoff = -1;
215         }
216
217         centers->ctl_center =
218                 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
219         centers->ext_center =
220                 centers->synth_center + (extoff *
221                          ((ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_20) ?
222                           HT40_CHANNEL_CENTER_SHIFT : 15));
223 }
224
225 /******************/
226 /* Chip Revisions */
227 /******************/
228
229 static void ath9k_hw_read_revisions(struct ath_hw *ah)
230 {
231         u32 val;
232
233         val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
234
235         if (val == 0xFF) {
236                 val = REG_READ(ah, AR_SREV);
237                 ah->hw_version.macVersion =
238                         (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
239                 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
240                 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
241         } else {
242                 if (!AR_SREV_9100(ah))
243                         ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
244
245                 ah->hw_version.macRev = val & AR_SREV_REVISION;
246
247                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
248                         ah->is_pciexpress = true;
249         }
250 }
251
252 static int ath9k_hw_get_radiorev(struct ath_hw *ah)
253 {
254         u32 val;
255         int i;
256
257         REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
258
259         for (i = 0; i < 8; i++)
260                 REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
261         val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
262         val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
263
264         return ath9k_hw_reverse_bits(val, 8);
265 }
266
267 /************************************/
268 /* HW Attach, Detach, Init Routines */
269 /************************************/
270
271 static void ath9k_hw_disablepcie(struct ath_hw *ah)
272 {
273         if (AR_SREV_9100(ah))
274                 return;
275
276         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
277         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
278         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
279         REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
280         REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
281         REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
282         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
283         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
284         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
285
286         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
287 }
288
289 static bool ath9k_hw_chip_test(struct ath_hw *ah)
290 {
291         u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
292         u32 regHold[2];
293         u32 patternData[4] = { 0x55555555,
294                                0xaaaaaaaa,
295                                0x66666666,
296                                0x99999999 };
297         int i, j;
298
299         for (i = 0; i < 2; i++) {
300                 u32 addr = regAddr[i];
301                 u32 wrData, rdData;
302
303                 regHold[i] = REG_READ(ah, addr);
304                 for (j = 0; j < 0x100; j++) {
305                         wrData = (j << 16) | j;
306                         REG_WRITE(ah, addr, wrData);
307                         rdData = REG_READ(ah, addr);
308                         if (rdData != wrData) {
309                                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
310                                         "address test failed "
311                                         "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
312                                         addr, wrData, rdData);
313                                 return false;
314                         }
315                 }
316                 for (j = 0; j < 4; j++) {
317                         wrData = patternData[j];
318                         REG_WRITE(ah, addr, wrData);
319                         rdData = REG_READ(ah, addr);
320                         if (wrData != rdData) {
321                                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
322                                         "address test failed "
323                                         "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
324                                         addr, wrData, rdData);
325                                 return false;
326                         }
327                 }
328                 REG_WRITE(ah, regAddr[i], regHold[i]);
329         }
330         udelay(100);
331
332         return true;
333 }
334
335 static const char *ath9k_hw_devname(u16 devid)
336 {
337         switch (devid) {
338         case AR5416_DEVID_PCI:
339                 return "Atheros 5416";
340         case AR5416_DEVID_PCIE:
341                 return "Atheros 5418";
342         case AR9160_DEVID_PCI:
343                 return "Atheros 9160";
344         case AR5416_AR9100_DEVID:
345                 return "Atheros 9100";
346         case AR9280_DEVID_PCI:
347         case AR9280_DEVID_PCIE:
348                 return "Atheros 9280";
349         case AR9285_DEVID_PCIE:
350                 return "Atheros 9285";
351         }
352
353         return NULL;
354 }
355
356 static void ath9k_hw_set_defaults(struct ath_hw *ah)
357 {
358         int i;
359
360         ah->config.dma_beacon_response_time = 2;
361         ah->config.sw_beacon_response_time = 10;
362         ah->config.additional_swba_backoff = 0;
363         ah->config.ack_6mb = 0x0;
364         ah->config.cwm_ignore_extcca = 0;
365         ah->config.pcie_powersave_enable = 0;
366         ah->config.pcie_clock_req = 0;
367         ah->config.pcie_waen = 0;
368         ah->config.analog_shiftreg = 1;
369         ah->config.ht_enable = 1;
370         ah->config.ofdm_trig_low = 200;
371         ah->config.ofdm_trig_high = 500;
372         ah->config.cck_trig_high = 200;
373         ah->config.cck_trig_low = 100;
374         ah->config.enable_ani = 1;
375         ah->config.diversity_control = 0;
376         ah->config.antenna_switch_swap = 0;
377
378         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
379                 ah->config.spurchans[i][0] = AR_NO_SPUR;
380                 ah->config.spurchans[i][1] = AR_NO_SPUR;
381         }
382
383         ah->config.intr_mitigation = true;
384
385         /*
386          * We need this for PCI devices only (Cardbus, PCI, miniPCI)
387          * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
388          * This means we use it for all AR5416 devices, and the few
389          * minor PCI AR9280 devices out there.
390          *
391          * Serialization is required because these devices do not handle
392          * well the case of two concurrent reads/writes due to the latency
393          * involved. During one read/write another read/write can be issued
394          * on another CPU while the previous read/write may still be working
395          * on our hardware, if we hit this case the hardware poops in a loop.
396          * We prevent this by serializing reads and writes.
397          *
398          * This issue is not present on PCI-Express devices or pre-AR5416
399          * devices (legacy, 802.11abg).
400          */
401         if (num_possible_cpus() > 1)
402                 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
403 }
404
405 static struct ath_hw *ath9k_hw_newstate(u16 devid, struct ath_softc *sc,
406                                         int *status)
407 {
408         struct ath_hw *ah;
409
410         ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL);
411         if (ah == NULL) {
412                 DPRINTF(sc, ATH_DBG_FATAL,
413                         "Cannot allocate memory for state block\n");
414                 *status = -ENOMEM;
415                 return NULL;
416         }
417
418         ah->ah_sc = sc;
419         ah->hw_version.magic = AR5416_MAGIC;
420         ah->regulatory.country_code = CTRY_DEFAULT;
421         ah->hw_version.devid = devid;
422         ah->hw_version.subvendorid = 0;
423
424         ah->ah_flags = 0;
425         if ((devid == AR5416_AR9100_DEVID))
426                 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
427         if (!AR_SREV_9100(ah))
428                 ah->ah_flags = AH_USE_EEPROM;
429
430         ah->regulatory.power_limit = MAX_RATE_POWER;
431         ah->regulatory.tp_scale = ATH9K_TP_SCALE_MAX;
432         ah->atim_window = 0;
433         ah->diversity_control = ah->config.diversity_control;
434         ah->antenna_switch_swap =
435                 ah->config.antenna_switch_swap;
436         ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
437         ah->beacon_interval = 100;
438         ah->enable_32kHz_clock = DONT_USE_32KHZ;
439         ah->slottime = (u32) -1;
440         ah->acktimeout = (u32) -1;
441         ah->ctstimeout = (u32) -1;
442         ah->globaltxtimeout = (u32) -1;
443
444         ah->gbeacon_rate = 0;
445
446         return ah;
447 }
448
449 static int ath9k_hw_rfattach(struct ath_hw *ah)
450 {
451         bool rfStatus = false;
452         int ecode = 0;
453
454         rfStatus = ath9k_hw_init_rf(ah, &ecode);
455         if (!rfStatus) {
456                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
457                         "RF setup failed, status: %u\n", ecode);
458                 return ecode;
459         }
460
461         return 0;
462 }
463
464 static int ath9k_hw_rf_claim(struct ath_hw *ah)
465 {
466         u32 val;
467
468         REG_WRITE(ah, AR_PHY(0), 0x00000007);
469
470         val = ath9k_hw_get_radiorev(ah);
471         switch (val & AR_RADIO_SREV_MAJOR) {
472         case 0:
473                 val = AR_RAD5133_SREV_MAJOR;
474                 break;
475         case AR_RAD5133_SREV_MAJOR:
476         case AR_RAD5122_SREV_MAJOR:
477         case AR_RAD2133_SREV_MAJOR:
478         case AR_RAD2122_SREV_MAJOR:
479                 break;
480         default:
481                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
482                         "Radio Chip Rev 0x%02X not supported\n",
483                         val & AR_RADIO_SREV_MAJOR);
484                 return -EOPNOTSUPP;
485         }
486
487         ah->hw_version.analog5GhzRev = val;
488
489         return 0;
490 }
491
492 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
493 {
494         u32 sum;
495         int i;
496         u16 eeval;
497
498         sum = 0;
499         for (i = 0; i < 3; i++) {
500                 eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
501                 sum += eeval;
502                 ah->macaddr[2 * i] = eeval >> 8;
503                 ah->macaddr[2 * i + 1] = eeval & 0xff;
504         }
505         if (sum == 0 || sum == 0xffff * 3)
506                 return -EADDRNOTAVAIL;
507
508         return 0;
509 }
510
511 static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
512 {
513         u32 rxgain_type;
514
515         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
516                 rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
517
518                 if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
519                         INIT_INI_ARRAY(&ah->iniModesRxGain,
520                         ar9280Modes_backoff_13db_rxgain_9280_2,
521                         ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
522                 else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
523                         INIT_INI_ARRAY(&ah->iniModesRxGain,
524                         ar9280Modes_backoff_23db_rxgain_9280_2,
525                         ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
526                 else
527                         INIT_INI_ARRAY(&ah->iniModesRxGain,
528                         ar9280Modes_original_rxgain_9280_2,
529                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
530         } else {
531                 INIT_INI_ARRAY(&ah->iniModesRxGain,
532                         ar9280Modes_original_rxgain_9280_2,
533                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
534         }
535 }
536
537 static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
538 {
539         u32 txgain_type;
540
541         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
542                 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
543
544                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
545                         INIT_INI_ARRAY(&ah->iniModesTxGain,
546                         ar9280Modes_high_power_tx_gain_9280_2,
547                         ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
548                 else
549                         INIT_INI_ARRAY(&ah->iniModesTxGain,
550                         ar9280Modes_original_tx_gain_9280_2,
551                         ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
552         } else {
553                 INIT_INI_ARRAY(&ah->iniModesTxGain,
554                 ar9280Modes_original_tx_gain_9280_2,
555                 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
556         }
557 }
558
559 static int ath9k_hw_post_attach(struct ath_hw *ah)
560 {
561         int ecode;
562
563         if (!ath9k_hw_chip_test(ah))
564                 return -ENODEV;
565
566         ecode = ath9k_hw_rf_claim(ah);
567         if (ecode != 0)
568                 return ecode;
569
570         ecode = ath9k_hw_eeprom_attach(ah);
571         if (ecode != 0)
572                 return ecode;
573
574         DPRINTF(ah->ah_sc, ATH_DBG_CONFIG, "Eeprom VER: %d, REV: %d\n",
575                 ah->eep_ops->get_eeprom_ver(ah), ah->eep_ops->get_eeprom_rev(ah));
576
577         ecode = ath9k_hw_rfattach(ah);
578         if (ecode != 0)
579                 return ecode;
580
581         if (!AR_SREV_9100(ah)) {
582                 ath9k_hw_ani_setup(ah);
583                 ath9k_hw_ani_attach(ah);
584         }
585
586         return 0;
587 }
588
589 static struct ath_hw *ath9k_hw_do_attach(u16 devid, struct ath_softc *sc,
590                                          int *status)
591 {
592         struct ath_hw *ah;
593         int ecode;
594         u32 i, j;
595
596         ah = ath9k_hw_newstate(devid, sc, status);
597         if (ah == NULL)
598                 return NULL;
599
600         ath9k_hw_set_defaults(ah);
601
602         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
603                 DPRINTF(sc, ATH_DBG_FATAL, "Couldn't reset chip\n");
604                 ecode = -EIO;
605                 goto bad;
606         }
607
608         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
609                 DPRINTF(sc, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
610                 ecode = -EIO;
611                 goto bad;
612         }
613
614         if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
615                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
616                     (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
617                         ah->config.serialize_regmode =
618                                 SER_REG_MODE_ON;
619                 } else {
620                         ah->config.serialize_regmode =
621                                 SER_REG_MODE_OFF;
622                 }
623         }
624
625         DPRINTF(sc, ATH_DBG_RESET, "serialize_regmode is %d\n",
626                 ah->config.serialize_regmode);
627
628         if ((ah->hw_version.macVersion != AR_SREV_VERSION_5416_PCI) &&
629             (ah->hw_version.macVersion != AR_SREV_VERSION_5416_PCIE) &&
630             (ah->hw_version.macVersion != AR_SREV_VERSION_9160) &&
631             (!AR_SREV_9100(ah)) && (!AR_SREV_9280(ah)) && (!AR_SREV_9285(ah))) {
632                 DPRINTF(sc, ATH_DBG_FATAL,
633                         "Mac Chip Rev 0x%02x.%x is not supported by "
634                         "this driver\n", ah->hw_version.macVersion,
635                         ah->hw_version.macRev);
636                 ecode = -EOPNOTSUPP;
637                 goto bad;
638         }
639
640         if (AR_SREV_9100(ah)) {
641                 ah->iq_caldata.calData = &iq_cal_multi_sample;
642                 ah->supp_cals = IQ_MISMATCH_CAL;
643                 ah->is_pciexpress = false;
644         }
645         ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
646
647         if (AR_SREV_9160_10_OR_LATER(ah)) {
648                 if (AR_SREV_9280_10_OR_LATER(ah)) {
649                         ah->iq_caldata.calData = &iq_cal_single_sample;
650                         ah->adcgain_caldata.calData =
651                                 &adc_gain_cal_single_sample;
652                         ah->adcdc_caldata.calData =
653                                 &adc_dc_cal_single_sample;
654                         ah->adcdc_calinitdata.calData =
655                                 &adc_init_dc_cal;
656                 } else {
657                         ah->iq_caldata.calData = &iq_cal_multi_sample;
658                         ah->adcgain_caldata.calData =
659                                 &adc_gain_cal_multi_sample;
660                         ah->adcdc_caldata.calData =
661                                 &adc_dc_cal_multi_sample;
662                         ah->adcdc_calinitdata.calData =
663                                 &adc_init_dc_cal;
664                 }
665                 ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
666         }
667
668         ah->ani_function = ATH9K_ANI_ALL;
669         if (AR_SREV_9280_10_OR_LATER(ah))
670                 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
671
672         if (AR_SREV_9285_12_OR_LATER(ah)) {
673
674                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
675                                ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
676                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
677                                ARRAY_SIZE(ar9285Common_9285_1_2), 2);
678
679                 if (ah->config.pcie_clock_req) {
680                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
681                         ar9285PciePhy_clkreq_off_L1_9285_1_2,
682                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
683                 } else {
684                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
685                         ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
686                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
687                                   2);
688                 }
689         } else if (AR_SREV_9285_10_OR_LATER(ah)) {
690                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
691                                ARRAY_SIZE(ar9285Modes_9285), 6);
692                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
693                                ARRAY_SIZE(ar9285Common_9285), 2);
694
695                 if (ah->config.pcie_clock_req) {
696                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
697                         ar9285PciePhy_clkreq_off_L1_9285,
698                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
699                 } else {
700                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
701                         ar9285PciePhy_clkreq_always_on_L1_9285,
702                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
703                 }
704         } else if (AR_SREV_9280_20_OR_LATER(ah)) {
705                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
706                                ARRAY_SIZE(ar9280Modes_9280_2), 6);
707                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
708                                ARRAY_SIZE(ar9280Common_9280_2), 2);
709
710                 if (ah->config.pcie_clock_req) {
711                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
712                                ar9280PciePhy_clkreq_off_L1_9280,
713                                ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
714                 } else {
715                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
716                                ar9280PciePhy_clkreq_always_on_L1_9280,
717                                ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
718                 }
719                 INIT_INI_ARRAY(&ah->iniModesAdditional,
720                                ar9280Modes_fast_clock_9280_2,
721                                ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
722         } else if (AR_SREV_9280_10_OR_LATER(ah)) {
723                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
724                                ARRAY_SIZE(ar9280Modes_9280), 6);
725                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
726                                ARRAY_SIZE(ar9280Common_9280), 2);
727         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
728                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
729                                ARRAY_SIZE(ar5416Modes_9160), 6);
730                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
731                                ARRAY_SIZE(ar5416Common_9160), 2);
732                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
733                                ARRAY_SIZE(ar5416Bank0_9160), 2);
734                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
735                                ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
736                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
737                                ARRAY_SIZE(ar5416Bank1_9160), 2);
738                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
739                                ARRAY_SIZE(ar5416Bank2_9160), 2);
740                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
741                                ARRAY_SIZE(ar5416Bank3_9160), 3);
742                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
743                                ARRAY_SIZE(ar5416Bank6_9160), 3);
744                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
745                                ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
746                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
747                                ARRAY_SIZE(ar5416Bank7_9160), 2);
748                 if (AR_SREV_9160_11(ah)) {
749                         INIT_INI_ARRAY(&ah->iniAddac,
750                                        ar5416Addac_91601_1,
751                                        ARRAY_SIZE(ar5416Addac_91601_1), 2);
752                 } else {
753                         INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
754                                        ARRAY_SIZE(ar5416Addac_9160), 2);
755                 }
756         } else if (AR_SREV_9100_OR_LATER(ah)) {
757                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
758                                ARRAY_SIZE(ar5416Modes_9100), 6);
759                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
760                                ARRAY_SIZE(ar5416Common_9100), 2);
761                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
762                                ARRAY_SIZE(ar5416Bank0_9100), 2);
763                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
764                                ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
765                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
766                                ARRAY_SIZE(ar5416Bank1_9100), 2);
767                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
768                                ARRAY_SIZE(ar5416Bank2_9100), 2);
769                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
770                                ARRAY_SIZE(ar5416Bank3_9100), 3);
771                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
772                                ARRAY_SIZE(ar5416Bank6_9100), 3);
773                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
774                                ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
775                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
776                                ARRAY_SIZE(ar5416Bank7_9100), 2);
777                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
778                                ARRAY_SIZE(ar5416Addac_9100), 2);
779         } else {
780                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
781                                ARRAY_SIZE(ar5416Modes), 6);
782                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
783                                ARRAY_SIZE(ar5416Common), 2);
784                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
785                                ARRAY_SIZE(ar5416Bank0), 2);
786                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
787                                ARRAY_SIZE(ar5416BB_RfGain), 3);
788                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
789                                ARRAY_SIZE(ar5416Bank1), 2);
790                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
791                                ARRAY_SIZE(ar5416Bank2), 2);
792                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
793                                ARRAY_SIZE(ar5416Bank3), 3);
794                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
795                                ARRAY_SIZE(ar5416Bank6), 3);
796                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
797                                ARRAY_SIZE(ar5416Bank6TPC), 3);
798                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
799                                ARRAY_SIZE(ar5416Bank7), 2);
800                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
801                                ARRAY_SIZE(ar5416Addac), 2);
802         }
803
804         if (ah->is_pciexpress)
805                 ath9k_hw_configpcipowersave(ah, 0);
806         else
807                 ath9k_hw_disablepcie(ah);
808
809         ecode = ath9k_hw_post_attach(ah);
810         if (ecode != 0)
811                 goto bad;
812
813         if (AR_SREV_9285_12_OR_LATER(ah)) {
814                 u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
815
816                 /* txgain table */
817                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
818                         INIT_INI_ARRAY(&ah->iniModesTxGain,
819                         ar9285Modes_high_power_tx_gain_9285_1_2,
820                         ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
821                 } else {
822                         INIT_INI_ARRAY(&ah->iniModesTxGain,
823                         ar9285Modes_original_tx_gain_9285_1_2,
824                         ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
825                 }
826
827         }
828
829         /* rxgain table */
830         if (AR_SREV_9280_20(ah))
831                 ath9k_hw_init_rxgain_ini(ah);
832
833         /* txgain table */
834         if (AR_SREV_9280_20(ah))
835                 ath9k_hw_init_txgain_ini(ah);
836
837         ath9k_hw_fill_cap_info(ah);
838
839         if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
840             test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes)) {
841
842                 /* EEPROM Fixup */
843                 for (i = 0; i < ah->iniModes.ia_rows; i++) {
844                         u32 reg = INI_RA(&ah->iniModes, i, 0);
845
846                         for (j = 1; j < ah->iniModes.ia_columns; j++) {
847                                 u32 val = INI_RA(&ah->iniModes, i, j);
848
849                                 INI_RA(&ah->iniModes, i, j) =
850                                         ath9k_hw_ini_fixup(ah,
851                                                            &ah->eeprom.def,
852                                                            reg, val);
853                         }
854                 }
855         }
856
857         ecode = ath9k_hw_init_macaddr(ah);
858         if (ecode != 0) {
859                 DPRINTF(sc, ATH_DBG_FATAL,
860                         "Failed to initialize MAC address\n");
861                 goto bad;
862         }
863
864         if (AR_SREV_9285(ah))
865                 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
866         else
867                 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
868
869         ath9k_init_nfcal_hist_buffer(ah);
870
871         return ah;
872 bad:
873         if (ah)
874                 ath9k_hw_detach(ah);
875         if (status)
876                 *status = ecode;
877
878         return NULL;
879 }
880
881 static void ath9k_hw_init_bb(struct ath_hw *ah,
882                              struct ath9k_channel *chan)
883 {
884         u32 synthDelay;
885
886         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
887         if (IS_CHAN_B(chan))
888                 synthDelay = (4 * synthDelay) / 22;
889         else
890                 synthDelay /= 10;
891
892         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
893
894         udelay(synthDelay + BASE_ACTIVATE_DELAY);
895 }
896
897 static void ath9k_hw_init_qos(struct ath_hw *ah)
898 {
899         REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
900         REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
901
902         REG_WRITE(ah, AR_QOS_NO_ACK,
903                   SM(2, AR_QOS_NO_ACK_TWO_BIT) |
904                   SM(5, AR_QOS_NO_ACK_BIT_OFF) |
905                   SM(0, AR_QOS_NO_ACK_BYTE_OFF));
906
907         REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
908         REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
909         REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
910         REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
911         REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
912 }
913
914 static void ath9k_hw_init_pll(struct ath_hw *ah,
915                               struct ath9k_channel *chan)
916 {
917         u32 pll;
918
919         if (AR_SREV_9100(ah)) {
920                 if (chan && IS_CHAN_5GHZ(chan))
921                         pll = 0x1450;
922                 else
923                         pll = 0x1458;
924         } else {
925                 if (AR_SREV_9280_10_OR_LATER(ah)) {
926                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
927
928                         if (chan && IS_CHAN_HALF_RATE(chan))
929                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
930                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
931                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
932
933                         if (chan && IS_CHAN_5GHZ(chan)) {
934                                 pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
935
936
937                                 if (AR_SREV_9280_20(ah)) {
938                                         if (((chan->channel % 20) == 0)
939                                             || ((chan->channel % 10) == 0))
940                                                 pll = 0x2850;
941                                         else
942                                                 pll = 0x142c;
943                                 }
944                         } else {
945                                 pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
946                         }
947
948                 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
949
950                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
951
952                         if (chan && IS_CHAN_HALF_RATE(chan))
953                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
954                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
955                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
956
957                         if (chan && IS_CHAN_5GHZ(chan))
958                                 pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
959                         else
960                                 pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
961                 } else {
962                         pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
963
964                         if (chan && IS_CHAN_HALF_RATE(chan))
965                                 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
966                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
967                                 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
968
969                         if (chan && IS_CHAN_5GHZ(chan))
970                                 pll |= SM(0xa, AR_RTC_PLL_DIV);
971                         else
972                                 pll |= SM(0xb, AR_RTC_PLL_DIV);
973                 }
974         }
975         REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
976
977         udelay(RTC_PLL_SETTLE_DELAY);
978
979         REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
980 }
981
982 static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
983 {
984         int rx_chainmask, tx_chainmask;
985
986         rx_chainmask = ah->rxchainmask;
987         tx_chainmask = ah->txchainmask;
988
989         switch (rx_chainmask) {
990         case 0x5:
991                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
992                             AR_PHY_SWAP_ALT_CHAIN);
993         case 0x3:
994                 if (((ah)->hw_version.macVersion <= AR_SREV_VERSION_9160)) {
995                         REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
996                         REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
997                         break;
998                 }
999         case 0x1:
1000         case 0x2:
1001         case 0x7:
1002                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1003                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1004                 break;
1005         default:
1006                 break;
1007         }
1008
1009         REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1010         if (tx_chainmask == 0x5) {
1011                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1012                             AR_PHY_SWAP_ALT_CHAIN);
1013         }
1014         if (AR_SREV_9100(ah))
1015                 REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1016                           REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1017 }
1018
1019 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1020                                           enum nl80211_iftype opmode)
1021 {
1022         ah->mask_reg = AR_IMR_TXERR |
1023                 AR_IMR_TXURN |
1024                 AR_IMR_RXERR |
1025                 AR_IMR_RXORN |
1026                 AR_IMR_BCNMISC;
1027
1028         if (ah->config.intr_mitigation)
1029                 ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1030         else
1031                 ah->mask_reg |= AR_IMR_RXOK;
1032
1033         ah->mask_reg |= AR_IMR_TXOK;
1034
1035         if (opmode == NL80211_IFTYPE_AP)
1036                 ah->mask_reg |= AR_IMR_MIB;
1037
1038         REG_WRITE(ah, AR_IMR, ah->mask_reg);
1039         REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
1040
1041         if (!AR_SREV_9100(ah)) {
1042                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1043                 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1044                 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1045         }
1046 }
1047
1048 static bool ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1049 {
1050         if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
1051                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad ack timeout %u\n", us);
1052                 ah->acktimeout = (u32) -1;
1053                 return false;
1054         } else {
1055                 REG_RMW_FIELD(ah, AR_TIME_OUT,
1056                               AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
1057                 ah->acktimeout = us;
1058                 return true;
1059         }
1060 }
1061
1062 static bool ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1063 {
1064         if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
1065                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad cts timeout %u\n", us);
1066                 ah->ctstimeout = (u32) -1;
1067                 return false;
1068         } else {
1069                 REG_RMW_FIELD(ah, AR_TIME_OUT,
1070                               AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
1071                 ah->ctstimeout = us;
1072                 return true;
1073         }
1074 }
1075
1076 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1077 {
1078         if (tu > 0xFFFF) {
1079                 DPRINTF(ah->ah_sc, ATH_DBG_XMIT,
1080                         "bad global tx timeout %u\n", tu);
1081                 ah->globaltxtimeout = (u32) -1;
1082                 return false;
1083         } else {
1084                 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1085                 ah->globaltxtimeout = tu;
1086                 return true;
1087         }
1088 }
1089
1090 static void ath9k_hw_init_user_settings(struct ath_hw *ah)
1091 {
1092         DPRINTF(ah->ah_sc, ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1093                 ah->misc_mode);
1094
1095         if (ah->misc_mode != 0)
1096                 REG_WRITE(ah, AR_PCU_MISC,
1097                           REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1098         if (ah->slottime != (u32) -1)
1099                 ath9k_hw_setslottime(ah, ah->slottime);
1100         if (ah->acktimeout != (u32) -1)
1101                 ath9k_hw_set_ack_timeout(ah, ah->acktimeout);
1102         if (ah->ctstimeout != (u32) -1)
1103                 ath9k_hw_set_cts_timeout(ah, ah->ctstimeout);
1104         if (ah->globaltxtimeout != (u32) -1)
1105                 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1106 }
1107
1108 const char *ath9k_hw_probe(u16 vendorid, u16 devid)
1109 {
1110         return vendorid == ATHEROS_VENDOR_ID ?
1111                 ath9k_hw_devname(devid) : NULL;
1112 }
1113
1114 void ath9k_hw_detach(struct ath_hw *ah)
1115 {
1116         if (!AR_SREV_9100(ah))
1117                 ath9k_hw_ani_detach(ah);
1118
1119         ath9k_hw_rfdetach(ah);
1120         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1121         kfree(ah);
1122 }
1123
1124 struct ath_hw *ath9k_hw_attach(u16 devid, struct ath_softc *sc, int *error)
1125 {
1126         struct ath_hw *ah = NULL;
1127
1128         switch (devid) {
1129         case AR5416_DEVID_PCI:
1130         case AR5416_DEVID_PCIE:
1131         case AR5416_AR9100_DEVID:
1132         case AR9160_DEVID_PCI:
1133         case AR9280_DEVID_PCI:
1134         case AR9280_DEVID_PCIE:
1135         case AR9285_DEVID_PCIE:
1136                 ah = ath9k_hw_do_attach(devid, sc, error);
1137                 break;
1138         default:
1139                 *error = -ENXIO;
1140                 break;
1141         }
1142
1143         return ah;
1144 }
1145
1146 /*******/
1147 /* INI */
1148 /*******/
1149
1150 static void ath9k_hw_override_ini(struct ath_hw *ah,
1151                                   struct ath9k_channel *chan)
1152 {
1153         /*
1154          * Set the RX_ABORT and RX_DIS and clear if off only after
1155          * RXE is set for MAC. This prevents frames with corrupted
1156          * descriptor status.
1157          */
1158         REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1159
1160
1161         if (!AR_SREV_5416_20_OR_LATER(ah) ||
1162             AR_SREV_9280_10_OR_LATER(ah))
1163                 return;
1164
1165         REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1166 }
1167
1168 static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
1169                               struct ar5416_eeprom_def *pEepData,
1170                               u32 reg, u32 value)
1171 {
1172         struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1173
1174         switch (ah->hw_version.devid) {
1175         case AR9280_DEVID_PCI:
1176                 if (reg == 0x7894) {
1177                         DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1178                                 "ini VAL: %x  EEPROM: %x\n", value,
1179                                 (pBase->version & 0xff));
1180
1181                         if ((pBase->version & 0xff) > 0x0a) {
1182                                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1183                                         "PWDCLKIND: %d\n",
1184                                         pBase->pwdclkind);
1185                                 value &= ~AR_AN_TOP2_PWDCLKIND;
1186                                 value |= AR_AN_TOP2_PWDCLKIND &
1187                                         (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
1188                         } else {
1189                                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1190                                         "PWDCLKIND Earlier Rev\n");
1191                         }
1192
1193                         DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1194                                 "final ini VAL: %x\n", value);
1195                 }
1196                 break;
1197         }
1198
1199         return value;
1200 }
1201
1202 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
1203                               struct ar5416_eeprom_def *pEepData,
1204                               u32 reg, u32 value)
1205 {
1206         if (ah->eep_map == EEP_MAP_4KBITS)
1207                 return value;
1208         else
1209                 return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
1210 }
1211
1212 static void ath9k_olc_init(struct ath_hw *ah)
1213 {
1214         u32 i;
1215
1216         for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1217                 ah->originalGain[i] =
1218                         MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1219                                         AR_PHY_TX_GAIN);
1220         ah->PDADCdelta = 0;
1221 }
1222
1223 static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
1224                               struct ath9k_channel *chan)
1225 {
1226         u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1227
1228         if (IS_CHAN_B(chan))
1229                 ctl |= CTL_11B;
1230         else if (IS_CHAN_G(chan))
1231                 ctl |= CTL_11G;
1232         else
1233                 ctl |= CTL_11A;
1234
1235         return ctl;
1236 }
1237
1238 static int ath9k_hw_process_ini(struct ath_hw *ah,
1239                                 struct ath9k_channel *chan,
1240                                 enum ath9k_ht_macmode macmode)
1241 {
1242         int i, regWrites = 0;
1243         struct ieee80211_channel *channel = chan->chan;
1244         u32 modesIndex, freqIndex;
1245         int status;
1246
1247         switch (chan->chanmode) {
1248         case CHANNEL_A:
1249         case CHANNEL_A_HT20:
1250                 modesIndex = 1;
1251                 freqIndex = 1;
1252                 break;
1253         case CHANNEL_A_HT40PLUS:
1254         case CHANNEL_A_HT40MINUS:
1255                 modesIndex = 2;
1256                 freqIndex = 1;
1257                 break;
1258         case CHANNEL_G:
1259         case CHANNEL_G_HT20:
1260         case CHANNEL_B:
1261                 modesIndex = 4;
1262                 freqIndex = 2;
1263                 break;
1264         case CHANNEL_G_HT40PLUS:
1265         case CHANNEL_G_HT40MINUS:
1266                 modesIndex = 3;
1267                 freqIndex = 2;
1268                 break;
1269
1270         default:
1271                 return -EINVAL;
1272         }
1273
1274         REG_WRITE(ah, AR_PHY(0), 0x00000007);
1275         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1276         ah->eep_ops->set_addac(ah, chan);
1277
1278         if (AR_SREV_5416_22_OR_LATER(ah)) {
1279                 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1280         } else {
1281                 struct ar5416IniArray temp;
1282                 u32 addacSize =
1283                         sizeof(u32) * ah->iniAddac.ia_rows *
1284                         ah->iniAddac.ia_columns;
1285
1286                 memcpy(ah->addac5416_21,
1287                        ah->iniAddac.ia_array, addacSize);
1288
1289                 (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1290
1291                 temp.ia_array = ah->addac5416_21;
1292                 temp.ia_columns = ah->iniAddac.ia_columns;
1293                 temp.ia_rows = ah->iniAddac.ia_rows;
1294                 REG_WRITE_ARRAY(&temp, 1, regWrites);
1295         }
1296
1297         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1298
1299         for (i = 0; i < ah->iniModes.ia_rows; i++) {
1300                 u32 reg = INI_RA(&ah->iniModes, i, 0);
1301                 u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1302
1303                 REG_WRITE(ah, reg, val);
1304
1305                 if (reg >= 0x7800 && reg < 0x78a0
1306                     && ah->config.analog_shiftreg) {
1307                         udelay(100);
1308                 }
1309
1310                 DO_DELAY(regWrites);
1311         }
1312
1313         if (AR_SREV_9280(ah))
1314                 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1315
1316         if (AR_SREV_9280(ah) || (AR_SREV_9285(ah) &&
1317             AR_SREV_9285_12_OR_LATER(ah)))
1318                 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1319
1320         for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1321                 u32 reg = INI_RA(&ah->iniCommon, i, 0);
1322                 u32 val = INI_RA(&ah->iniCommon, i, 1);
1323
1324                 REG_WRITE(ah, reg, val);
1325
1326                 if (reg >= 0x7800 && reg < 0x78a0
1327                     && ah->config.analog_shiftreg) {
1328                         udelay(100);
1329                 }
1330
1331                 DO_DELAY(regWrites);
1332         }
1333
1334         ath9k_hw_write_regs(ah, modesIndex, freqIndex, regWrites);
1335
1336         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1337                 REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1338                                 regWrites);
1339         }
1340
1341         ath9k_hw_override_ini(ah, chan);
1342         ath9k_hw_set_regs(ah, chan, macmode);
1343         ath9k_hw_init_chain_masks(ah);
1344
1345         if (OLC_FOR_AR9280_20_LATER)
1346                 ath9k_olc_init(ah);
1347
1348         status = ah->eep_ops->set_txpower(ah, chan,
1349                                   ath9k_regd_get_ctl(&ah->regulatory, chan),
1350                                   channel->max_antenna_gain * 2,
1351                                   channel->max_power * 2,
1352                                   min((u32) MAX_RATE_POWER,
1353                                       (u32) ah->regulatory.power_limit));
1354         if (status != 0) {
1355                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1356                         "Error initializing transmit power\n");
1357                 return -EIO;
1358         }
1359
1360         if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1361                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1362                         "ar5416SetRfRegs failed\n");
1363                 return -EIO;
1364         }
1365
1366         return 0;
1367 }
1368
1369 /****************************************/
1370 /* Reset and Channel Switching Routines */
1371 /****************************************/
1372
1373 static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1374 {
1375         u32 rfMode = 0;
1376
1377         if (chan == NULL)
1378                 return;
1379
1380         rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1381                 ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1382
1383         if (!AR_SREV_9280_10_OR_LATER(ah))
1384                 rfMode |= (IS_CHAN_5GHZ(chan)) ?
1385                         AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1386
1387         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1388                 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1389
1390         REG_WRITE(ah, AR_PHY_MODE, rfMode);
1391 }
1392
1393 static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1394 {
1395         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1396 }
1397
1398 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1399 {
1400         u32 regval;
1401
1402         regval = REG_READ(ah, AR_AHB_MODE);
1403         REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1404
1405         regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1406         REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1407
1408         REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1409
1410         regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1411         REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1412
1413         REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1414
1415         if (AR_SREV_9285(ah)) {
1416                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1417                           AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1418         } else {
1419                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1420                           AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1421         }
1422 }
1423
1424 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1425 {
1426         u32 val;
1427
1428         val = REG_READ(ah, AR_STA_ID1);
1429         val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1430         switch (opmode) {
1431         case NL80211_IFTYPE_AP:
1432                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1433                           | AR_STA_ID1_KSRCH_MODE);
1434                 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1435                 break;
1436         case NL80211_IFTYPE_ADHOC:
1437         case NL80211_IFTYPE_MESH_POINT:
1438                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1439                           | AR_STA_ID1_KSRCH_MODE);
1440                 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1441                 break;
1442         case NL80211_IFTYPE_STATION:
1443         case NL80211_IFTYPE_MONITOR:
1444                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1445                 break;
1446         }
1447 }
1448
1449 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1450                                                  u32 coef_scaled,
1451                                                  u32 *coef_mantissa,
1452                                                  u32 *coef_exponent)
1453 {
1454         u32 coef_exp, coef_man;
1455
1456         for (coef_exp = 31; coef_exp > 0; coef_exp--)
1457                 if ((coef_scaled >> coef_exp) & 0x1)
1458                         break;
1459
1460         coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1461
1462         coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1463
1464         *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1465         *coef_exponent = coef_exp - 16;
1466 }
1467
1468 static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1469                                      struct ath9k_channel *chan)
1470 {
1471         u32 coef_scaled, ds_coef_exp, ds_coef_man;
1472         u32 clockMhzScaled = 0x64000000;
1473         struct chan_centers centers;
1474
1475         if (IS_CHAN_HALF_RATE(chan))
1476                 clockMhzScaled = clockMhzScaled >> 1;
1477         else if (IS_CHAN_QUARTER_RATE(chan))
1478                 clockMhzScaled = clockMhzScaled >> 2;
1479
1480         ath9k_hw_get_channel_centers(ah, chan, &centers);
1481         coef_scaled = clockMhzScaled / centers.synth_center;
1482
1483         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1484                                       &ds_coef_exp);
1485
1486         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1487                       AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1488         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1489                       AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1490
1491         coef_scaled = (9 * coef_scaled) / 10;
1492
1493         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1494                                       &ds_coef_exp);
1495
1496         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1497                       AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1498         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1499                       AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1500 }
1501
1502 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1503 {
1504         u32 rst_flags;
1505         u32 tmpReg;
1506
1507         if (AR_SREV_9100(ah)) {
1508                 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1509                 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1510                 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1511                 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1512                 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1513         }
1514
1515         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1516                   AR_RTC_FORCE_WAKE_ON_INT);
1517
1518         if (AR_SREV_9100(ah)) {
1519                 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1520                         AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1521         } else {
1522                 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1523                 if (tmpReg &
1524                     (AR_INTR_SYNC_LOCAL_TIMEOUT |
1525                      AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1526                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1527                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1528                 } else {
1529                         REG_WRITE(ah, AR_RC, AR_RC_AHB);
1530                 }
1531
1532                 rst_flags = AR_RTC_RC_MAC_WARM;
1533                 if (type == ATH9K_RESET_COLD)
1534                         rst_flags |= AR_RTC_RC_MAC_COLD;
1535         }
1536
1537         REG_WRITE(ah, AR_RTC_RC, rst_flags);
1538         udelay(50);
1539
1540         REG_WRITE(ah, AR_RTC_RC, 0);
1541         if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1542                 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
1543                         "RTC stuck in MAC reset\n");
1544                 return false;
1545         }
1546
1547         if (!AR_SREV_9100(ah))
1548                 REG_WRITE(ah, AR_RC, 0);
1549
1550         ath9k_hw_init_pll(ah, NULL);
1551
1552         if (AR_SREV_9100(ah))
1553                 udelay(50);
1554
1555         return true;
1556 }
1557
1558 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1559 {
1560         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1561                   AR_RTC_FORCE_WAKE_ON_INT);
1562
1563         REG_WRITE(ah, AR_RTC_RESET, 0);
1564         udelay(2);
1565         REG_WRITE(ah, AR_RTC_RESET, 1);
1566
1567         if (!ath9k_hw_wait(ah,
1568                            AR_RTC_STATUS,
1569                            AR_RTC_STATUS_M,
1570                            AR_RTC_STATUS_ON,
1571                            AH_WAIT_TIMEOUT)) {
1572                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "RTC not waking up\n");
1573                 return false;
1574         }
1575
1576         ath9k_hw_read_revisions(ah);
1577
1578         return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1579 }
1580
1581 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1582 {
1583         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1584                   AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1585
1586         switch (type) {
1587         case ATH9K_RESET_POWER_ON:
1588                 return ath9k_hw_set_reset_power_on(ah);
1589                 break;
1590         case ATH9K_RESET_WARM:
1591         case ATH9K_RESET_COLD:
1592                 return ath9k_hw_set_reset(ah, type);
1593                 break;
1594         default:
1595                 return false;
1596         }
1597 }
1598
1599 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
1600                               enum ath9k_ht_macmode macmode)
1601 {
1602         u32 phymode;
1603         u32 enableDacFifo = 0;
1604
1605         if (AR_SREV_9285_10_OR_LATER(ah))
1606                 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1607                                          AR_PHY_FC_ENABLE_DAC_FIFO);
1608
1609         phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1610                 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1611
1612         if (IS_CHAN_HT40(chan)) {
1613                 phymode |= AR_PHY_FC_DYN2040_EN;
1614
1615                 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1616                     (chan->chanmode == CHANNEL_G_HT40PLUS))
1617                         phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1618
1619                 if (ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_25)
1620                         phymode |= AR_PHY_FC_DYN2040_EXT_CH;
1621         }
1622         REG_WRITE(ah, AR_PHY_TURBO, phymode);
1623
1624         ath9k_hw_set11nmac2040(ah, macmode);
1625
1626         REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1627         REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1628 }
1629
1630 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1631                                 struct ath9k_channel *chan)
1632 {
1633         if (OLC_FOR_AR9280_20_LATER) {
1634                 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1635                         return false;
1636         } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1637                 return false;
1638
1639         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1640                 return false;
1641
1642         ah->chip_fullsleep = false;
1643         ath9k_hw_init_pll(ah, chan);
1644         ath9k_hw_set_rfmode(ah, chan);
1645
1646         return true;
1647 }
1648
1649 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1650                                     struct ath9k_channel *chan,
1651                                     enum ath9k_ht_macmode macmode)
1652 {
1653         struct ieee80211_channel *channel = chan->chan;
1654         u32 synthDelay, qnum;
1655
1656         for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1657                 if (ath9k_hw_numtxpending(ah, qnum)) {
1658                         DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
1659                                 "Transmit frames pending on queue %d\n", qnum);
1660                         return false;
1661                 }
1662         }
1663
1664         REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1665         if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1666                            AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1667                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1668                         "Could not kill baseband RX\n");
1669                 return false;
1670         }
1671
1672         ath9k_hw_set_regs(ah, chan, macmode);
1673
1674         if (AR_SREV_9280_10_OR_LATER(ah)) {
1675                 if (!(ath9k_hw_ar9280_set_channel(ah, chan))) {
1676                         DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1677                                 "Failed to set channel\n");
1678                         return false;
1679                 }
1680         } else {
1681                 if (!(ath9k_hw_set_channel(ah, chan))) {
1682                         DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1683                                 "Failed to set channel\n");
1684                         return false;
1685                 }
1686         }
1687
1688         if (ah->eep_ops->set_txpower(ah, chan,
1689                              ath9k_regd_get_ctl(&ah->regulatory, chan),
1690                              channel->max_antenna_gain * 2,
1691                              channel->max_power * 2,
1692                              min((u32) MAX_RATE_POWER,
1693                                  (u32) ah->regulatory.power_limit)) != 0) {
1694                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1695                         "Error initializing transmit power\n");
1696                 return false;
1697         }
1698
1699         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1700         if (IS_CHAN_B(chan))
1701                 synthDelay = (4 * synthDelay) / 22;
1702         else
1703                 synthDelay /= 10;
1704
1705         udelay(synthDelay + BASE_ACTIVATE_DELAY);
1706
1707         REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1708
1709         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1710                 ath9k_hw_set_delta_slope(ah, chan);
1711
1712         if (AR_SREV_9280_10_OR_LATER(ah))
1713                 ath9k_hw_9280_spur_mitigate(ah, chan);
1714         else
1715                 ath9k_hw_spur_mitigate(ah, chan);
1716
1717         if (!chan->oneTimeCalsDone)
1718                 chan->oneTimeCalsDone = true;
1719
1720         return true;
1721 }
1722
1723 static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
1724 {
1725         int bb_spur = AR_NO_SPUR;
1726         int freq;
1727         int bin, cur_bin;
1728         int bb_spur_off, spur_subchannel_sd;
1729         int spur_freq_sd;
1730         int spur_delta_phase;
1731         int denominator;
1732         int upper, lower, cur_vit_mask;
1733         int tmp, newVal;
1734         int i;
1735         int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
1736                           AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
1737         };
1738         int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
1739                          AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
1740         };
1741         int inc[4] = { 0, 100, 0, 0 };
1742         struct chan_centers centers;
1743
1744         int8_t mask_m[123];
1745         int8_t mask_p[123];
1746         int8_t mask_amt;
1747         int tmp_mask;
1748         int cur_bb_spur;
1749         bool is2GHz = IS_CHAN_2GHZ(chan);
1750
1751         memset(&mask_m, 0, sizeof(int8_t) * 123);
1752         memset(&mask_p, 0, sizeof(int8_t) * 123);
1753
1754         ath9k_hw_get_channel_centers(ah, chan, &centers);
1755         freq = centers.synth_center;
1756
1757         ah->config.spurmode = SPUR_ENABLE_EEPROM;
1758         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
1759                 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
1760
1761                 if (is2GHz)
1762                         cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
1763                 else
1764                         cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
1765
1766                 if (AR_NO_SPUR == cur_bb_spur)
1767                         break;
1768                 cur_bb_spur = cur_bb_spur - freq;
1769
1770                 if (IS_CHAN_HT40(chan)) {
1771                         if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
1772                             (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
1773                                 bb_spur = cur_bb_spur;
1774                                 break;
1775                         }
1776                 } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
1777                            (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
1778                         bb_spur = cur_bb_spur;
1779                         break;
1780                 }
1781         }
1782
1783         if (AR_NO_SPUR == bb_spur) {
1784                 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1785                             AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1786                 return;
1787         } else {
1788                 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1789                             AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1790         }
1791
1792         bin = bb_spur * 320;
1793
1794         tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
1795
1796         newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
1797                         AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1798                         AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1799                         AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1800         REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
1801
1802         newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
1803                   AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
1804                   AR_PHY_SPUR_REG_MASK_RATE_SELECT |
1805                   AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
1806                   SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
1807         REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
1808
1809         if (IS_CHAN_HT40(chan)) {
1810                 if (bb_spur < 0) {
1811                         spur_subchannel_sd = 1;
1812                         bb_spur_off = bb_spur + 10;
1813                 } else {
1814                         spur_subchannel_sd = 0;
1815                         bb_spur_off = bb_spur - 10;
1816                 }
1817         } else {
1818                 spur_subchannel_sd = 0;
1819                 bb_spur_off = bb_spur;
1820         }
1821
1822         if (IS_CHAN_HT40(chan))
1823                 spur_delta_phase =
1824                         ((bb_spur * 262144) /
1825                          10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1826         else
1827                 spur_delta_phase =
1828                         ((bb_spur * 524288) /
1829                          10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1830
1831         denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
1832         spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
1833
1834         newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
1835                   SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
1836                   SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
1837         REG_WRITE(ah, AR_PHY_TIMING11, newVal);
1838
1839         newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
1840         REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
1841
1842         cur_bin = -6000;
1843         upper = bin + 100;
1844         lower = bin - 100;
1845
1846         for (i = 0; i < 4; i++) {
1847                 int pilot_mask = 0;
1848                 int chan_mask = 0;
1849                 int bp = 0;
1850                 for (bp = 0; bp < 30; bp++) {
1851                         if ((cur_bin > lower) && (cur_bin < upper)) {
1852                                 pilot_mask = pilot_mask | 0x1 << bp;
1853                                 chan_mask = chan_mask | 0x1 << bp;
1854                         }
1855                         cur_bin += 100;
1856                 }
1857                 cur_bin += inc[i];
1858                 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
1859                 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
1860         }
1861
1862         cur_vit_mask = 6100;
1863         upper = bin + 120;
1864         lower = bin - 120;
1865
1866         for (i = 0; i < 123; i++) {
1867                 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
1868
1869                         /* workaround for gcc bug #37014 */
1870                         volatile int tmp_v = abs(cur_vit_mask - bin);
1871
1872                         if (tmp_v < 75)
1873                                 mask_amt = 1;
1874                         else
1875                                 mask_amt = 0;
1876                         if (cur_vit_mask < 0)
1877                                 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
1878                         else
1879                                 mask_p[cur_vit_mask / 100] = mask_amt;
1880                 }
1881                 cur_vit_mask -= 100;
1882         }
1883
1884         tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
1885                 | (mask_m[48] << 26) | (mask_m[49] << 24)
1886                 | (mask_m[50] << 22) | (mask_m[51] << 20)
1887                 | (mask_m[52] << 18) | (mask_m[53] << 16)
1888                 | (mask_m[54] << 14) | (mask_m[55] << 12)
1889                 | (mask_m[56] << 10) | (mask_m[57] << 8)
1890                 | (mask_m[58] << 6) | (mask_m[59] << 4)
1891                 | (mask_m[60] << 2) | (mask_m[61] << 0);
1892         REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
1893         REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
1894
1895         tmp_mask = (mask_m[31] << 28)
1896                 | (mask_m[32] << 26) | (mask_m[33] << 24)
1897                 | (mask_m[34] << 22) | (mask_m[35] << 20)
1898                 | (mask_m[36] << 18) | (mask_m[37] << 16)
1899                 | (mask_m[48] << 14) | (mask_m[39] << 12)
1900                 | (mask_m[40] << 10) | (mask_m[41] << 8)
1901                 | (mask_m[42] << 6) | (mask_m[43] << 4)
1902                 | (mask_m[44] << 2) | (mask_m[45] << 0);
1903         REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
1904         REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
1905
1906         tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
1907                 | (mask_m[18] << 26) | (mask_m[18] << 24)
1908                 | (mask_m[20] << 22) | (mask_m[20] << 20)
1909                 | (mask_m[22] << 18) | (mask_m[22] << 16)
1910                 | (mask_m[24] << 14) | (mask_m[24] << 12)
1911                 | (mask_m[25] << 10) | (mask_m[26] << 8)
1912                 | (mask_m[27] << 6) | (mask_m[28] << 4)
1913                 | (mask_m[29] << 2) | (mask_m[30] << 0);
1914         REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
1915         REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
1916
1917         tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
1918                 | (mask_m[2] << 26) | (mask_m[3] << 24)
1919                 | (mask_m[4] << 22) | (mask_m[5] << 20)
1920                 | (mask_m[6] << 18) | (mask_m[7] << 16)
1921                 | (mask_m[8] << 14) | (mask_m[9] << 12)
1922                 | (mask_m[10] << 10) | (mask_m[11] << 8)
1923                 | (mask_m[12] << 6) | (mask_m[13] << 4)
1924                 | (mask_m[14] << 2) | (mask_m[15] << 0);
1925         REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
1926         REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
1927
1928         tmp_mask = (mask_p[15] << 28)
1929                 | (mask_p[14] << 26) | (mask_p[13] << 24)
1930                 | (mask_p[12] << 22) | (mask_p[11] << 20)
1931                 | (mask_p[10] << 18) | (mask_p[9] << 16)
1932                 | (mask_p[8] << 14) | (mask_p[7] << 12)
1933                 | (mask_p[6] << 10) | (mask_p[5] << 8)
1934                 | (mask_p[4] << 6) | (mask_p[3] << 4)
1935                 | (mask_p[2] << 2) | (mask_p[1] << 0);
1936         REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
1937         REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
1938
1939         tmp_mask = (mask_p[30] << 28)
1940                 | (mask_p[29] << 26) | (mask_p[28] << 24)
1941                 | (mask_p[27] << 22) | (mask_p[26] << 20)
1942                 | (mask_p[25] << 18) | (mask_p[24] << 16)
1943                 | (mask_p[23] << 14) | (mask_p[22] << 12)
1944                 | (mask_p[21] << 10) | (mask_p[20] << 8)
1945                 | (mask_p[19] << 6) | (mask_p[18] << 4)
1946                 | (mask_p[17] << 2) | (mask_p[16] << 0);
1947         REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
1948         REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
1949
1950         tmp_mask = (mask_p[45] << 28)
1951                 | (mask_p[44] << 26) | (mask_p[43] << 24)
1952                 | (mask_p[42] << 22) | (mask_p[41] << 20)
1953                 | (mask_p[40] << 18) | (mask_p[39] << 16)
1954                 | (mask_p[38] << 14) | (mask_p[37] << 12)
1955                 | (mask_p[36] << 10) | (mask_p[35] << 8)
1956                 | (mask_p[34] << 6) | (mask_p[33] << 4)
1957                 | (mask_p[32] << 2) | (mask_p[31] << 0);
1958         REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
1959         REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
1960
1961         tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
1962                 | (mask_p[59] << 26) | (mask_p[58] << 24)
1963                 | (mask_p[57] << 22) | (mask_p[56] << 20)
1964                 | (mask_p[55] << 18) | (mask_p[54] << 16)
1965                 | (mask_p[53] << 14) | (mask_p[52] << 12)
1966                 | (mask_p[51] << 10) | (mask_p[50] << 8)
1967                 | (mask_p[49] << 6) | (mask_p[48] << 4)
1968                 | (mask_p[47] << 2) | (mask_p[46] << 0);
1969         REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
1970         REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
1971 }
1972
1973 static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
1974 {
1975         int bb_spur = AR_NO_SPUR;
1976         int bin, cur_bin;
1977         int spur_freq_sd;
1978         int spur_delta_phase;
1979         int denominator;
1980         int upper, lower, cur_vit_mask;
1981         int tmp, new;
1982         int i;
1983         int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
1984                           AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
1985         };
1986         int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
1987                          AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
1988         };
1989         int inc[4] = { 0, 100, 0, 0 };
1990
1991         int8_t mask_m[123];
1992         int8_t mask_p[123];
1993         int8_t mask_amt;
1994         int tmp_mask;
1995         int cur_bb_spur;
1996         bool is2GHz = IS_CHAN_2GHZ(chan);
1997
1998         memset(&mask_m, 0, sizeof(int8_t) * 123);
1999         memset(&mask_p, 0, sizeof(int8_t) * 123);
2000
2001         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
2002                 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
2003                 if (AR_NO_SPUR == cur_bb_spur)
2004                         break;
2005                 cur_bb_spur = cur_bb_spur - (chan->channel * 10);
2006                 if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
2007                         bb_spur = cur_bb_spur;
2008                         break;
2009                 }
2010         }
2011
2012         if (AR_NO_SPUR == bb_spur)
2013                 return;
2014
2015         bin = bb_spur * 32;
2016
2017         tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
2018         new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
2019                      AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
2020                      AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
2021                      AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
2022
2023         REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
2024
2025         new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
2026                AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
2027                AR_PHY_SPUR_REG_MASK_RATE_SELECT |
2028                AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
2029                SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
2030         REG_WRITE(ah, AR_PHY_SPUR_REG, new);
2031
2032         spur_delta_phase = ((bb_spur * 524288) / 100) &
2033                 AR_PHY_TIMING11_SPUR_DELTA_PHASE;
2034
2035         denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
2036         spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
2037
2038         new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
2039                SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
2040                SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
2041         REG_WRITE(ah, AR_PHY_TIMING11, new);
2042
2043         cur_bin = -6000;
2044         upper = bin + 100;
2045         lower = bin - 100;
2046
2047         for (i = 0; i < 4; i++) {
2048                 int pilot_mask = 0;
2049                 int chan_mask = 0;
2050                 int bp = 0;
2051                 for (bp = 0; bp < 30; bp++) {
2052                         if ((cur_bin > lower) && (cur_bin < upper)) {
2053                                 pilot_mask = pilot_mask | 0x1 << bp;
2054                                 chan_mask = chan_mask | 0x1 << bp;
2055                         }
2056                         cur_bin += 100;
2057                 }
2058                 cur_bin += inc[i];
2059                 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
2060                 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
2061         }
2062
2063         cur_vit_mask = 6100;
2064         upper = bin + 120;
2065         lower = bin - 120;
2066
2067         for (i = 0; i < 123; i++) {
2068                 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
2069
2070                         /* workaround for gcc bug #37014 */
2071                         volatile int tmp_v = abs(cur_vit_mask - bin);
2072
2073                         if (tmp_v < 75)
2074                                 mask_amt = 1;
2075                         else
2076                                 mask_amt = 0;
2077                         if (cur_vit_mask < 0)
2078                                 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
2079                         else
2080                                 mask_p[cur_vit_mask / 100] = mask_amt;
2081                 }
2082                 cur_vit_mask -= 100;
2083         }
2084
2085         tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
2086                 | (mask_m[48] << 26) | (mask_m[49] << 24)
2087                 | (mask_m[50] << 22) | (mask_m[51] << 20)
2088                 | (mask_m[52] << 18) | (mask_m[53] << 16)
2089                 | (mask_m[54] << 14) | (mask_m[55] << 12)
2090                 | (mask_m[56] << 10) | (mask_m[57] << 8)
2091                 | (mask_m[58] << 6) | (mask_m[59] << 4)
2092                 | (mask_m[60] << 2) | (mask_m[61] << 0);
2093         REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
2094         REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
2095
2096         tmp_mask = (mask_m[31] << 28)
2097                 | (mask_m[32] << 26) | (mask_m[33] << 24)
2098                 | (mask_m[34] << 22) | (mask_m[35] << 20)
2099                 | (mask_m[36] << 18) | (mask_m[37] << 16)
2100                 | (mask_m[48] << 14) | (mask_m[39] << 12)
2101                 | (mask_m[40] << 10) | (mask_m[41] << 8)
2102                 | (mask_m[42] << 6) | (mask_m[43] << 4)
2103                 | (mask_m[44] << 2) | (mask_m[45] << 0);
2104         REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
2105         REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
2106
2107         tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
2108                 | (mask_m[18] << 26) | (mask_m[18] << 24)
2109                 | (mask_m[20] << 22) | (mask_m[20] << 20)
2110                 | (mask_m[22] << 18) | (mask_m[22] << 16)
2111                 | (mask_m[24] << 14) | (mask_m[24] << 12)
2112                 | (mask_m[25] << 10) | (mask_m[26] << 8)
2113                 | (mask_m[27] << 6) | (mask_m[28] << 4)
2114                 | (mask_m[29] << 2) | (mask_m[30] << 0);
2115         REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
2116         REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
2117
2118         tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
2119                 | (mask_m[2] << 26) | (mask_m[3] << 24)
2120                 | (mask_m[4] << 22) | (mask_m[5] << 20)
2121                 | (mask_m[6] << 18) | (mask_m[7] << 16)
2122                 | (mask_m[8] << 14) | (mask_m[9] << 12)
2123                 | (mask_m[10] << 10) | (mask_m[11] << 8)
2124                 | (mask_m[12] << 6) | (mask_m[13] << 4)
2125                 | (mask_m[14] << 2) | (mask_m[15] << 0);
2126         REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
2127         REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
2128
2129         tmp_mask = (mask_p[15] << 28)
2130                 | (mask_p[14] << 26) | (mask_p[13] << 24)
2131                 | (mask_p[12] << 22) | (mask_p[11] << 20)
2132                 | (mask_p[10] << 18) | (mask_p[9] << 16)
2133                 | (mask_p[8] << 14) | (mask_p[7] << 12)
2134                 | (mask_p[6] << 10) | (mask_p[5] << 8)
2135                 | (mask_p[4] << 6) | (mask_p[3] << 4)
2136                 | (mask_p[2] << 2) | (mask_p[1] << 0);
2137         REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
2138         REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
2139
2140         tmp_mask = (mask_p[30] << 28)
2141                 | (mask_p[29] << 26) | (mask_p[28] << 24)
2142                 | (mask_p[27] << 22) | (mask_p[26] << 20)
2143                 | (mask_p[25] << 18) | (mask_p[24] << 16)
2144                 | (mask_p[23] << 14) | (mask_p[22] << 12)
2145                 | (mask_p[21] << 10) | (mask_p[20] << 8)
2146                 | (mask_p[19] << 6) | (mask_p[18] << 4)
2147                 | (mask_p[17] << 2) | (mask_p[16] << 0);
2148         REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
2149         REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
2150
2151         tmp_mask = (mask_p[45] << 28)
2152                 | (mask_p[44] << 26) | (mask_p[43] << 24)
2153                 | (mask_p[42] << 22) | (mask_p[41] << 20)
2154                 | (mask_p[40] << 18) | (mask_p[39] << 16)
2155                 | (mask_p[38] << 14) | (mask_p[37] << 12)
2156                 | (mask_p[36] << 10) | (mask_p[35] << 8)
2157                 | (mask_p[34] << 6) | (mask_p[33] << 4)
2158                 | (mask_p[32] << 2) | (mask_p[31] << 0);
2159         REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
2160         REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
2161
2162         tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
2163                 | (mask_p[59] << 26) | (mask_p[58] << 24)
2164                 | (mask_p[57] << 22) | (mask_p[56] << 20)
2165                 | (mask_p[55] << 18) | (mask_p[54] << 16)
2166                 | (mask_p[53] << 14) | (mask_p[52] << 12)
2167                 | (mask_p[51] << 10) | (mask_p[50] << 8)
2168                 | (mask_p[49] << 6) | (mask_p[48] << 4)
2169                 | (mask_p[47] << 2) | (mask_p[46] << 0);
2170         REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
2171         REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
2172 }
2173
2174 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
2175                     bool bChannelChange)
2176 {
2177         u32 saveLedState;
2178         struct ath_softc *sc = ah->ah_sc;
2179         struct ath9k_channel *curchan = ah->curchan;
2180         u32 saveDefAntenna;
2181         u32 macStaId1;
2182         int i, rx_chainmask, r;
2183
2184         ah->extprotspacing = sc->ht_extprotspacing;
2185         ah->txchainmask = sc->tx_chainmask;
2186         ah->rxchainmask = sc->rx_chainmask;
2187
2188         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2189                 return -EIO;
2190
2191         if (curchan)
2192                 ath9k_hw_getnf(ah, curchan);
2193
2194         if (bChannelChange &&
2195             (ah->chip_fullsleep != true) &&
2196             (ah->curchan != NULL) &&
2197             (chan->channel != ah->curchan->channel) &&
2198             ((chan->channelFlags & CHANNEL_ALL) ==
2199              (ah->curchan->channelFlags & CHANNEL_ALL)) &&
2200             (!AR_SREV_9280(ah) || (!IS_CHAN_A_5MHZ_SPACED(chan) &&
2201                                    !IS_CHAN_A_5MHZ_SPACED(ah->curchan)))) {
2202
2203                 if (ath9k_hw_channel_change(ah, chan, sc->tx_chan_width)) {
2204                         ath9k_hw_loadnf(ah, ah->curchan);
2205                         ath9k_hw_start_nfcal(ah);
2206                         return 0;
2207                 }
2208         }
2209
2210         saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
2211         if (saveDefAntenna == 0)
2212                 saveDefAntenna = 1;
2213
2214         macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
2215
2216         saveLedState = REG_READ(ah, AR_CFG_LED) &
2217                 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
2218                  AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
2219
2220         ath9k_hw_mark_phy_inactive(ah);
2221
2222         if (!ath9k_hw_chip_reset(ah, chan)) {
2223                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Chip reset failed\n");
2224                 return -EINVAL;
2225         }
2226
2227         if (AR_SREV_9280_10_OR_LATER(ah))
2228                 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
2229
2230         r = ath9k_hw_process_ini(ah, chan, sc->tx_chan_width);
2231         if (r)
2232                 return r;
2233
2234         /* Setup MFP options for CCMP */
2235         if (AR_SREV_9280_20_OR_LATER(ah)) {
2236                 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2237                  * frames when constructing CCMP AAD. */
2238                 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
2239                               0xc7ff);
2240                 ah->sw_mgmt_crypto = false;
2241         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
2242                 /* Disable hardware crypto for management frames */
2243                 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
2244                             AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2245                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2246                             AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2247                 ah->sw_mgmt_crypto = true;
2248         } else
2249                 ah->sw_mgmt_crypto = true;
2250
2251         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2252                 ath9k_hw_set_delta_slope(ah, chan);
2253
2254         if (AR_SREV_9280_10_OR_LATER(ah))
2255                 ath9k_hw_9280_spur_mitigate(ah, chan);
2256         else
2257                 ath9k_hw_spur_mitigate(ah, chan);
2258
2259         ah->eep_ops->set_board_values(ah, chan);
2260
2261         ath9k_hw_decrease_chain_power(ah, chan);
2262
2263         REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(ah->macaddr));
2264         REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(ah->macaddr + 4)
2265                   | macStaId1
2266                   | AR_STA_ID1_RTS_USE_DEF
2267                   | (ah->config.
2268                      ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2269                   | ah->sta_id1_defaults);
2270         ath9k_hw_set_operating_mode(ah, ah->opmode);
2271
2272         REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask));
2273         REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4));
2274
2275         REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2276
2277         REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid));
2278         REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) |
2279                   ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2280
2281         REG_WRITE(ah, AR_ISR, ~0);
2282
2283         REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2284
2285         if (AR_SREV_9280_10_OR_LATER(ah)) {
2286                 if (!(ath9k_hw_ar9280_set_channel(ah, chan)))
2287                         return -EIO;
2288         } else {
2289                 if (!(ath9k_hw_set_channel(ah, chan)))
2290                         return -EIO;
2291         }
2292
2293         for (i = 0; i < AR_NUM_DCU; i++)
2294                 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2295
2296         ah->intr_txqs = 0;
2297         for (i = 0; i < ah->caps.total_queues; i++)
2298                 ath9k_hw_resettxqueue(ah, i);
2299
2300         ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2301         ath9k_hw_init_qos(ah);
2302
2303 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2304         if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2305                 ath9k_enable_rfkill(ah);
2306 #endif
2307         ath9k_hw_init_user_settings(ah);
2308
2309         REG_WRITE(ah, AR_STA_ID1,
2310                   REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2311
2312         ath9k_hw_set_dma(ah);
2313
2314         REG_WRITE(ah, AR_OBS, 8);
2315
2316         if (ah->config.intr_mitigation) {
2317                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2318                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2319         }
2320
2321         ath9k_hw_init_bb(ah, chan);
2322
2323         if (!ath9k_hw_init_cal(ah, chan))
2324                 return -EIO;;
2325
2326         rx_chainmask = ah->rxchainmask;
2327         if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2328                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2329                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2330         }
2331
2332         REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2333
2334         if (AR_SREV_9100(ah)) {
2335                 u32 mask;
2336                 mask = REG_READ(ah, AR_CFG);
2337                 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2338                         DPRINTF(ah->ah_sc, ATH_DBG_RESET,
2339                                 "CFG Byte Swap Set 0x%x\n", mask);
2340                 } else {
2341                         mask =
2342                                 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2343                         REG_WRITE(ah, AR_CFG, mask);
2344                         DPRINTF(ah->ah_sc, ATH_DBG_RESET,
2345                                 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2346                 }
2347         } else {
2348 #ifdef __BIG_ENDIAN
2349                 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2350 #endif
2351         }
2352
2353         return 0;
2354 }
2355
2356 /************************/
2357 /* Key Cache Management */
2358 /************************/
2359
2360 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2361 {
2362         u32 keyType;
2363
2364         if (entry >= ah->caps.keycache_size) {
2365                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2366                         "keychache entry %u out of range\n", entry);
2367                 return false;
2368         }
2369
2370         keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2371
2372         REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2373         REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2374         REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2375         REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2376         REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2377         REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2378         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2379         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2380
2381         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2382                 u16 micentry = entry + 64;
2383
2384                 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2385                 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2386                 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2387                 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2388
2389         }
2390
2391         if (ah->curchan == NULL)
2392                 return true;
2393
2394         return true;
2395 }
2396
2397 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2398 {
2399         u32 macHi, macLo;
2400
2401         if (entry >= ah->caps.keycache_size) {
2402                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2403                         "keychache entry %u out of range\n", entry);
2404                 return false;
2405         }
2406
2407         if (mac != NULL) {
2408                 macHi = (mac[5] << 8) | mac[4];
2409                 macLo = (mac[3] << 24) |
2410                         (mac[2] << 16) |
2411                         (mac[1] << 8) |
2412                         mac[0];
2413                 macLo >>= 1;
2414                 macLo |= (macHi & 1) << 31;
2415                 macHi >>= 1;
2416         } else {
2417                 macLo = macHi = 0;
2418         }
2419         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2420         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2421
2422         return true;
2423 }
2424
2425 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2426                                  const struct ath9k_keyval *k,
2427                                  const u8 *mac)
2428 {
2429         const struct ath9k_hw_capabilities *pCap = &ah->caps;
2430         u32 key0, key1, key2, key3, key4;
2431         u32 keyType;
2432
2433         if (entry >= pCap->keycache_size) {
2434                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2435                         "keycache entry %u out of range\n", entry);
2436                 return false;
2437         }
2438
2439         switch (k->kv_type) {
2440         case ATH9K_CIPHER_AES_OCB:
2441                 keyType = AR_KEYTABLE_TYPE_AES;
2442                 break;
2443         case ATH9K_CIPHER_AES_CCM:
2444                 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2445                         DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2446                                 "AES-CCM not supported by mac rev 0x%x\n",
2447                                 ah->hw_version.macRev);
2448                         return false;
2449                 }
2450                 keyType = AR_KEYTABLE_TYPE_CCM;
2451                 break;
2452         case ATH9K_CIPHER_TKIP:
2453                 keyType = AR_KEYTABLE_TYPE_TKIP;
2454                 if (ATH9K_IS_MIC_ENABLED(ah)
2455                     && entry + 64 >= pCap->keycache_size) {
2456                         DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2457                                 "entry %u inappropriate for TKIP\n", entry);
2458                         return false;
2459                 }
2460                 break;
2461         case ATH9K_CIPHER_WEP:
2462                 if (k->kv_len < LEN_WEP40) {
2463                         DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2464                                 "WEP key length %u too small\n", k->kv_len);
2465                         return false;
2466                 }
2467                 if (k->kv_len <= LEN_WEP40)
2468                         keyType = AR_KEYTABLE_TYPE_40;
2469                 else if (k->kv_len <= LEN_WEP104)
2470                         keyType = AR_KEYTABLE_TYPE_104;
2471                 else
2472                         keyType = AR_KEYTABLE_TYPE_128;
2473                 break;
2474         case ATH9K_CIPHER_CLR:
2475                 keyType = AR_KEYTABLE_TYPE_CLR;
2476                 break;
2477         default:
2478                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2479                         "cipher %u not supported\n", k->kv_type);
2480                 return false;
2481         }
2482
2483         key0 = get_unaligned_le32(k->kv_val + 0);
2484         key1 = get_unaligned_le16(k->kv_val + 4);
2485         key2 = get_unaligned_le32(k->kv_val + 6);
2486         key3 = get_unaligned_le16(k->kv_val + 10);
2487         key4 = get_unaligned_le32(k->kv_val + 12);
2488         if (k->kv_len <= LEN_WEP104)
2489                 key4 &= 0xff;
2490
2491         /*
2492          * Note: Key cache registers access special memory area that requires
2493          * two 32-bit writes to actually update the values in the internal
2494          * memory. Consequently, the exact order and pairs used here must be
2495          * maintained.
2496          */
2497
2498         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2499                 u16 micentry = entry + 64;
2500
2501                 /*
2502                  * Write inverted key[47:0] first to avoid Michael MIC errors
2503                  * on frames that could be sent or received at the same time.
2504                  * The correct key will be written in the end once everything
2505                  * else is ready.
2506                  */
2507                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2508                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2509
2510                 /* Write key[95:48] */
2511                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2512                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2513
2514                 /* Write key[127:96] and key type */
2515                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2516                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2517
2518                 /* Write MAC address for the entry */
2519                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2520
2521                 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2522                         /*
2523                          * TKIP uses two key cache entries:
2524                          * Michael MIC TX/RX keys in the same key cache entry
2525                          * (idx = main index + 64):
2526                          * key0 [31:0] = RX key [31:0]
2527                          * key1 [15:0] = TX key [31:16]
2528                          * key1 [31:16] = reserved
2529                          * key2 [31:0] = RX key [63:32]
2530                          * key3 [15:0] = TX key [15:0]
2531                          * key3 [31:16] = reserved
2532                          * key4 [31:0] = TX key [63:32]
2533                          */
2534                         u32 mic0, mic1, mic2, mic3, mic4;
2535
2536                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2537                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2538                         mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2539                         mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2540                         mic4 = get_unaligned_le32(k->kv_txmic + 4);
2541
2542                         /* Write RX[31:0] and TX[31:16] */
2543                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2544                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2545
2546                         /* Write RX[63:32] and TX[15:0] */
2547                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2548                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2549
2550                         /* Write TX[63:32] and keyType(reserved) */
2551                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2552                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2553                                   AR_KEYTABLE_TYPE_CLR);
2554
2555                 } else {
2556                         /*
2557                          * TKIP uses four key cache entries (two for group
2558                          * keys):
2559                          * Michael MIC TX/RX keys are in different key cache
2560                          * entries (idx = main index + 64 for TX and
2561                          * main index + 32 + 96 for RX):
2562                          * key0 [31:0] = TX/RX MIC key [31:0]
2563                          * key1 [31:0] = reserved
2564                          * key2 [31:0] = TX/RX MIC key [63:32]
2565                          * key3 [31:0] = reserved
2566                          * key4 [31:0] = reserved
2567                          *
2568                          * Upper layer code will call this function separately
2569                          * for TX and RX keys when these registers offsets are
2570                          * used.
2571                          */
2572                         u32 mic0, mic2;
2573
2574                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2575                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2576
2577                         /* Write MIC key[31:0] */
2578                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2579                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2580
2581                         /* Write MIC key[63:32] */
2582                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2583                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2584
2585                         /* Write TX[63:32] and keyType(reserved) */
2586                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2587                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2588                                   AR_KEYTABLE_TYPE_CLR);
2589                 }
2590
2591                 /* MAC address registers are reserved for the MIC entry */
2592                 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2593                 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2594
2595                 /*
2596                  * Write the correct (un-inverted) key[47:0] last to enable
2597                  * TKIP now that all other registers are set with correct
2598                  * values.
2599                  */
2600                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2601                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2602         } else {
2603                 /* Write key[47:0] */
2604                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2605                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2606
2607                 /* Write key[95:48] */
2608                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2609                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2610
2611                 /* Write key[127:96] and key type */
2612                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2613                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2614
2615                 /* Write MAC address for the entry */
2616                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2617         }
2618
2619         return true;
2620 }
2621
2622 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2623 {
2624         if (entry < ah->caps.keycache_size) {
2625                 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2626                 if (val & AR_KEYTABLE_VALID)
2627                         return true;
2628         }
2629         return false;
2630 }
2631
2632 /******************************/
2633 /* Power Management (Chipset) */
2634 /******************************/
2635
2636 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2637 {
2638         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2639         if (setChip) {
2640                 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2641                             AR_RTC_FORCE_WAKE_EN);
2642                 if (!AR_SREV_9100(ah))
2643                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2644
2645                 REG_CLR_BIT(ah, (AR_RTC_RESET),
2646                             AR_RTC_RESET_EN);
2647         }
2648 }
2649
2650 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2651 {
2652         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2653         if (setChip) {
2654                 struct ath9k_hw_capabilities *pCap = &ah->caps;
2655
2656                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2657                         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2658                                   AR_RTC_FORCE_WAKE_ON_INT);
2659                 } else {
2660                         REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2661                                     AR_RTC_FORCE_WAKE_EN);
2662                 }
2663         }
2664 }
2665
2666 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2667 {
2668         u32 val;
2669         int i;
2670
2671         if (setChip) {
2672                 if ((REG_READ(ah, AR_RTC_STATUS) &
2673                      AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2674                         if (ath9k_hw_set_reset_reg(ah,
2675                                            ATH9K_RESET_POWER_ON) != true) {
2676                                 return false;
2677                         }
2678                 }
2679                 if (AR_SREV_9100(ah))
2680                         REG_SET_BIT(ah, AR_RTC_RESET,
2681                                     AR_RTC_RESET_EN);
2682
2683                 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2684                             AR_RTC_FORCE_WAKE_EN);
2685                 udelay(50);
2686
2687                 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2688                         val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2689                         if (val == AR_RTC_STATUS_ON)
2690                                 break;
2691                         udelay(50);
2692                         REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2693                                     AR_RTC_FORCE_WAKE_EN);
2694                 }
2695                 if (i == 0) {
2696                         DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2697                                 "Failed to wakeup in %uus\n", POWER_UP_TIME / 20);
2698                         return false;
2699                 }
2700         }
2701
2702         REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2703
2704         return true;
2705 }
2706
2707 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2708 {
2709         int status = true, setChip = true;
2710         static const char *modes[] = {
2711                 "AWAKE",
2712                 "FULL-SLEEP",
2713                 "NETWORK SLEEP",
2714                 "UNDEFINED"
2715         };
2716
2717         DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s -> %s\n",
2718                 modes[ah->power_mode], modes[mode]);
2719
2720         switch (mode) {
2721         case ATH9K_PM_AWAKE:
2722                 status = ath9k_hw_set_power_awake(ah, setChip);
2723                 break;
2724         case ATH9K_PM_FULL_SLEEP:
2725                 ath9k_set_power_sleep(ah, setChip);
2726                 ah->chip_fullsleep = true;
2727                 break;
2728         case ATH9K_PM_NETWORK_SLEEP:
2729                 ath9k_set_power_network_sleep(ah, setChip);
2730                 break;
2731         default:
2732                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2733                         "Unknown power mode %u\n", mode);
2734                 return false;
2735         }
2736         ah->power_mode = mode;
2737
2738         return status;
2739 }
2740
2741 /*
2742  * Helper for ASPM support.
2743  *
2744  * Disable PLL when in L0s as well as receiver clock when in L1.
2745  * This power saving option must be enabled through the SerDes.
2746  *
2747  * Programming the SerDes must go through the same 288 bit serial shift
2748  * register as the other analog registers.  Hence the 9 writes.
2749  */
2750 void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore)
2751 {
2752         u8 i;
2753
2754         if (ah->is_pciexpress != true)
2755                 return;
2756
2757         /* Do not touch SerDes registers */
2758         if (ah->config.pcie_powersave_enable == 2)
2759                 return;
2760
2761         /* Nothing to do on restore for 11N */
2762         if (restore)
2763                 return;
2764
2765         if (AR_SREV_9280_20_OR_LATER(ah)) {
2766                 /*
2767                  * AR9280 2.0 or later chips use SerDes values from the
2768                  * initvals.h initialized depending on chipset during
2769                  * ath9k_hw_do_attach()
2770                  */
2771                 for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
2772                         REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
2773                                   INI_RA(&ah->iniPcieSerdes, i, 1));
2774                 }
2775         } else if (AR_SREV_9280(ah) &&
2776                    (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
2777                 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
2778                 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2779
2780                 /* RX shut off when elecidle is asserted */
2781                 REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
2782                 REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
2783                 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
2784
2785                 /* Shut off CLKREQ active in L1 */
2786                 if (ah->config.pcie_clock_req)
2787                         REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
2788                 else
2789                         REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
2790
2791                 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2792                 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2793                 REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
2794
2795                 /* Load the new settings */
2796                 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2797
2798         } else {
2799                 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
2800                 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2801
2802                 /* RX shut off when elecidle is asserted */
2803                 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
2804                 REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
2805                 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
2806
2807                 /*
2808                  * Ignore ah->ah_config.pcie_clock_req setting for
2809                  * pre-AR9280 11n
2810                  */
2811                 REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
2812
2813                 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2814                 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2815                 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
2816
2817                 /* Load the new settings */
2818                 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2819         }
2820
2821         udelay(1000);
2822
2823         /* set bit 19 to allow forcing of pcie core into L1 state */
2824         REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
2825
2826         /* Several PCIe massages to ensure proper behaviour */
2827         if (ah->config.pcie_waen) {
2828                 REG_WRITE(ah, AR_WA, ah->config.pcie_waen);
2829         } else {
2830                 if (AR_SREV_9285(ah))
2831                         REG_WRITE(ah, AR_WA, AR9285_WA_DEFAULT);
2832                 /*
2833                  * On AR9280 chips bit 22 of 0x4004 needs to be set to
2834                  * otherwise card may disappear.
2835                  */
2836                 else if (AR_SREV_9280(ah))
2837                         REG_WRITE(ah, AR_WA, AR9280_WA_DEFAULT);
2838                 else
2839                         REG_WRITE(ah, AR_WA, AR_WA_DEFAULT);
2840         }
2841 }
2842
2843 /**********************/
2844 /* Interrupt Handling */
2845 /**********************/
2846
2847 bool ath9k_hw_intrpend(struct ath_hw *ah)
2848 {
2849         u32 host_isr;
2850
2851         if (AR_SREV_9100(ah))
2852                 return true;
2853
2854         host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
2855         if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
2856                 return true;
2857
2858         host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
2859         if ((host_isr & AR_INTR_SYNC_DEFAULT)
2860             && (host_isr != AR_INTR_SPURIOUS))
2861                 return true;
2862
2863         return false;
2864 }
2865
2866 bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
2867 {
2868         u32 isr = 0;
2869         u32 mask2 = 0;
2870         struct ath9k_hw_capabilities *pCap = &ah->caps;
2871         u32 sync_cause = 0;
2872         bool fatal_int = false;
2873
2874         if (!AR_SREV_9100(ah)) {
2875                 if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
2876                         if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
2877                             == AR_RTC_STATUS_ON) {
2878                                 isr = REG_READ(ah, AR_ISR);
2879                         }
2880                 }
2881
2882                 sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
2883                         AR_INTR_SYNC_DEFAULT;
2884
2885                 *masked = 0;
2886
2887                 if (!isr && !sync_cause)
2888                         return false;
2889         } else {
2890                 *masked = 0;
2891                 isr = REG_READ(ah, AR_ISR);
2892         }
2893
2894         if (isr) {
2895                 if (isr & AR_ISR_BCNMISC) {
2896                         u32 isr2;
2897                         isr2 = REG_READ(ah, AR_ISR_S2);
2898                         if (isr2 & AR_ISR_S2_TIM)
2899                                 mask2 |= ATH9K_INT_TIM;
2900                         if (isr2 & AR_ISR_S2_DTIM)
2901                                 mask2 |= ATH9K_INT_DTIM;
2902                         if (isr2 & AR_ISR_S2_DTIMSYNC)
2903                                 mask2 |= ATH9K_INT_DTIMSYNC;
2904                         if (isr2 & (AR_ISR_S2_CABEND))
2905                                 mask2 |= ATH9K_INT_CABEND;
2906                         if (isr2 & AR_ISR_S2_GTT)
2907                                 mask2 |= ATH9K_INT_GTT;
2908                         if (isr2 & AR_ISR_S2_CST)
2909                                 mask2 |= ATH9K_INT_CST;
2910                         if (isr2 & AR_ISR_S2_TSFOOR)
2911                                 mask2 |= ATH9K_INT_TSFOOR;
2912                 }
2913
2914                 isr = REG_READ(ah, AR_ISR_RAC);
2915                 if (isr == 0xffffffff) {
2916                         *masked = 0;
2917                         return false;
2918                 }
2919
2920                 *masked = isr & ATH9K_INT_COMMON;
2921
2922                 if (ah->config.intr_mitigation) {
2923                         if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
2924                                 *masked |= ATH9K_INT_RX;
2925                 }
2926
2927                 if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
2928                         *masked |= ATH9K_INT_RX;
2929                 if (isr &
2930                     (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
2931                      AR_ISR_TXEOL)) {
2932                         u32 s0_s, s1_s;
2933
2934                         *masked |= ATH9K_INT_TX;
2935
2936                         s0_s = REG_READ(ah, AR_ISR_S0_S);
2937                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
2938                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
2939
2940                         s1_s = REG_READ(ah, AR_ISR_S1_S);
2941                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
2942                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
2943                 }
2944
2945                 if (isr & AR_ISR_RXORN) {
2946                         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
2947                                 "receive FIFO overrun interrupt\n");
2948                 }
2949
2950                 if (!AR_SREV_9100(ah)) {
2951                         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2952                                 u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
2953                                 if (isr5 & AR_ISR_S5_TIM_TIMER)
2954                                         *masked |= ATH9K_INT_TIM_TIMER;
2955                         }
2956                 }
2957
2958                 *masked |= mask2;
2959         }
2960
2961         if (AR_SREV_9100(ah))
2962                 return true;
2963
2964         if (sync_cause) {
2965                 fatal_int =
2966                         (sync_cause &
2967                          (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
2968                         ? true : false;
2969
2970                 if (fatal_int) {
2971                         if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
2972                                 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2973                                         "received PCI FATAL interrupt\n");
2974                         }
2975                         if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
2976                                 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2977                                         "received PCI PERR interrupt\n");
2978                         }
2979                         *masked |= ATH9K_INT_FATAL;
2980                 }
2981                 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
2982                         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
2983                                 "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
2984                         REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
2985                         REG_WRITE(ah, AR_RC, 0);
2986                         *masked |= ATH9K_INT_FATAL;
2987                 }
2988                 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
2989                         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
2990                                 "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
2991                 }
2992
2993                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
2994                 (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
2995         }
2996
2997         return true;
2998 }
2999
3000 enum ath9k_int ath9k_hw_intrget(struct ath_hw *ah)
3001 {
3002         return ah->mask_reg;
3003 }
3004
3005 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
3006 {
3007         u32 omask = ah->mask_reg;
3008         u32 mask, mask2;
3009         struct ath9k_hw_capabilities *pCap = &ah->caps;
3010
3011         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
3012
3013         if (omask & ATH9K_INT_GLOBAL) {
3014                 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "disable IER\n");
3015                 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
3016                 (void) REG_READ(ah, AR_IER);
3017                 if (!AR_SREV_9100(ah)) {
3018                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
3019                         (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
3020
3021                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
3022                         (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
3023                 }
3024         }
3025
3026         mask = ints & ATH9K_INT_COMMON;
3027         mask2 = 0;
3028
3029         if (ints & ATH9K_INT_TX) {
3030                 if (ah->txok_interrupt_mask)
3031                         mask |= AR_IMR_TXOK;
3032                 if (ah->txdesc_interrupt_mask)
3033                         mask |= AR_IMR_TXDESC;
3034                 if (ah->txerr_interrupt_mask)
3035                         mask |= AR_IMR_TXERR;
3036                 if (ah->txeol_interrupt_mask)
3037                         mask |= AR_IMR_TXEOL;
3038         }
3039         if (ints & ATH9K_INT_RX) {
3040                 mask |= AR_IMR_RXERR;
3041                 if (ah->config.intr_mitigation)
3042                         mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
3043                 else
3044                         mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
3045                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
3046                         mask |= AR_IMR_GENTMR;
3047         }
3048
3049         if (ints & (ATH9K_INT_BMISC)) {
3050                 mask |= AR_IMR_BCNMISC;
3051                 if (ints & ATH9K_INT_TIM)
3052                         mask2 |= AR_IMR_S2_TIM;
3053                 if (ints & ATH9K_INT_DTIM)
3054                         mask2 |= AR_IMR_S2_DTIM;
3055                 if (ints & ATH9K_INT_DTIMSYNC)
3056                         mask2 |= AR_IMR_S2_DTIMSYNC;
3057                 if (ints & ATH9K_INT_CABEND)
3058                         mask2 |= AR_IMR_S2_CABEND;
3059                 if (ints & ATH9K_INT_TSFOOR)
3060                         mask2 |= AR_IMR_S2_TSFOOR;
3061         }
3062
3063         if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
3064                 mask |= AR_IMR_BCNMISC;
3065                 if (ints & ATH9K_INT_GTT)
3066                         mask2 |= AR_IMR_S2_GTT;
3067                 if (ints & ATH9K_INT_CST)
3068                         mask2 |= AR_IMR_S2_CST;
3069         }
3070
3071         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
3072         REG_WRITE(ah, AR_IMR, mask);
3073         mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
3074                                            AR_IMR_S2_DTIM |
3075                                            AR_IMR_S2_DTIMSYNC |
3076                                            AR_IMR_S2_CABEND |
3077                                            AR_IMR_S2_CABTO |
3078                                            AR_IMR_S2_TSFOOR |
3079                                            AR_IMR_S2_GTT | AR_IMR_S2_CST);
3080         REG_WRITE(ah, AR_IMR_S2, mask | mask2);
3081         ah->mask_reg = ints;
3082
3083         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
3084                 if (ints & ATH9K_INT_TIM_TIMER)
3085                         REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3086                 else
3087                         REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3088         }
3089
3090         if (ints & ATH9K_INT_GLOBAL) {
3091                 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "enable IER\n");
3092                 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
3093                 if (!AR_SREV_9100(ah)) {
3094                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
3095                                   AR_INTR_MAC_IRQ);
3096                         REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
3097
3098
3099                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
3100                                   AR_INTR_SYNC_DEFAULT);
3101                         REG_WRITE(ah, AR_INTR_SYNC_MASK,
3102                                   AR_INTR_SYNC_DEFAULT);
3103                 }
3104                 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
3105                          REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
3106         }
3107
3108         return omask;
3109 }
3110
3111 /*******************/
3112 /* Beacon Handling */
3113 /*******************/
3114
3115 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
3116 {
3117         int flags = 0;
3118
3119         ah->beacon_interval = beacon_period;
3120
3121         switch (ah->opmode) {
3122         case NL80211_IFTYPE_STATION:
3123         case NL80211_IFTYPE_MONITOR:
3124                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3125                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
3126                 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
3127                 flags |= AR_TBTT_TIMER_EN;
3128                 break;
3129         case NL80211_IFTYPE_ADHOC:
3130         case NL80211_IFTYPE_MESH_POINT:
3131                 REG_SET_BIT(ah, AR_TXCFG,
3132                             AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
3133                 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
3134                           TU_TO_USEC(next_beacon +
3135                                      (ah->atim_window ? ah->
3136                                       atim_window : 1)));
3137                 flags |= AR_NDP_TIMER_EN;
3138         case NL80211_IFTYPE_AP:
3139                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3140                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
3141                           TU_TO_USEC(next_beacon -
3142                                      ah->config.
3143                                      dma_beacon_response_time));
3144                 REG_WRITE(ah, AR_NEXT_SWBA,
3145                           TU_TO_USEC(next_beacon -
3146                                      ah->config.
3147                                      sw_beacon_response_time));
3148                 flags |=
3149                         AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
3150                 break;
3151         default:
3152                 DPRINTF(ah->ah_sc, ATH_DBG_BEACON,
3153                         "%s: unsupported opmode: %d\n",
3154                         __func__, ah->opmode);
3155                 return;
3156                 break;
3157         }
3158
3159         REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3160         REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3161         REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
3162         REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
3163
3164         beacon_period &= ~ATH9K_BEACON_ENA;
3165         if (beacon_period & ATH9K_BEACON_RESET_TSF) {
3166                 beacon_period &= ~ATH9K_BEACON_RESET_TSF;
3167                 ath9k_hw_reset_tsf(ah);
3168         }
3169
3170         REG_SET_BIT(ah, AR_TIMER_MODE, flags);
3171 }
3172
3173 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
3174                                     const struct ath9k_beacon_state *bs)
3175 {
3176         u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
3177         struct ath9k_hw_capabilities *pCap = &ah->caps;
3178
3179         REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3180
3181         REG_WRITE(ah, AR_BEACON_PERIOD,
3182                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3183         REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3184                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3185
3186         REG_RMW_FIELD(ah, AR_RSSI_THR,
3187                       AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3188
3189         beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3190
3191         if (bs->bs_sleepduration > beaconintval)
3192                 beaconintval = bs->bs_sleepduration;
3193
3194         dtimperiod = bs->bs_dtimperiod;
3195         if (bs->bs_sleepduration > dtimperiod)
3196                 dtimperiod = bs->bs_sleepduration;
3197
3198         if (beaconintval == dtimperiod)
3199                 nextTbtt = bs->bs_nextdtim;
3200         else
3201                 nextTbtt = bs->bs_nexttbtt;
3202
3203         DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
3204         DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
3205         DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
3206         DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
3207
3208         REG_WRITE(ah, AR_NEXT_DTIM,
3209                   TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3210         REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3211
3212         REG_WRITE(ah, AR_SLEEP1,
3213                   SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
3214                   | AR_SLEEP1_ASSUME_DTIM);
3215
3216         if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3217                 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3218         else
3219                 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3220
3221         REG_WRITE(ah, AR_SLEEP2,
3222                   SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3223
3224         REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3225         REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3226
3227         REG_SET_BIT(ah, AR_TIMER_MODE,
3228                     AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
3229                     AR_DTIM_TIMER_EN);
3230
3231         /* TSF Out of Range Threshold */
3232         REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3233 }
3234
3235 /*******************/
3236 /* HW Capabilities */
3237 /*******************/
3238
3239 void ath9k_hw_fill_cap_info(struct ath_hw *ah)
3240 {
3241         struct ath9k_hw_capabilities *pCap = &ah->caps;
3242         u16 capField = 0, eeval;
3243
3244         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
3245         ah->regulatory.current_rd = eeval;
3246
3247         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
3248         if (AR_SREV_9285_10_OR_LATER(ah))
3249                 eeval |= AR9285_RDEXT_DEFAULT;
3250         ah->regulatory.current_rd_ext = eeval;
3251
3252         capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
3253
3254         if (ah->opmode != NL80211_IFTYPE_AP &&
3255             ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3256                 if (ah->regulatory.current_rd == 0x64 ||
3257                     ah->regulatory.current_rd == 0x65)
3258                         ah->regulatory.current_rd += 5;
3259                 else if (ah->regulatory.current_rd == 0x41)
3260                         ah->regulatory.current_rd = 0x43;
3261                 DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY,
3262                         "regdomain mapped to 0x%x\n", ah->regulatory.current_rd);
3263         }
3264
3265         eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
3266         bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
3267
3268         if (eeval & AR5416_OPFLAGS_11A) {
3269                 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3270                 if (ah->config.ht_enable) {
3271                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3272                                 set_bit(ATH9K_MODE_11NA_HT20,
3273                                         pCap->wireless_modes);
3274                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3275                                 set_bit(ATH9K_MODE_11NA_HT40PLUS,
3276                                         pCap->wireless_modes);
3277                                 set_bit(ATH9K_MODE_11NA_HT40MINUS,
3278                                         pCap->wireless_modes);
3279                         }
3280                 }
3281         }
3282
3283         if (eeval & AR5416_OPFLAGS_11G) {
3284                 set_bit(ATH9K_MODE_11B, pCap->wireless_modes);
3285                 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3286                 if (ah->config.ht_enable) {
3287                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3288                                 set_bit(ATH9K_MODE_11NG_HT20,
3289                                         pCap->wireless_modes);
3290                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3291                                 set_bit(ATH9K_MODE_11NG_HT40PLUS,
3292                                         pCap->wireless_modes);
3293                                 set_bit(ATH9K_MODE_11NG_HT40MINUS,
3294                                         pCap->wireless_modes);
3295                         }
3296                 }
3297         }
3298
3299         pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
3300         if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
3301             !(eeval & AR5416_OPFLAGS_11A))
3302                 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
3303         else
3304                 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
3305
3306         if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
3307                 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
3308
3309         pCap->low_2ghz_chan = 2312;
3310         pCap->high_2ghz_chan = 2732;
3311
3312         pCap->low_5ghz_chan = 4920;
3313         pCap->high_5ghz_chan = 6100;
3314
3315         pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3316         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3317         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3318
3319         pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3320         pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3321         pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3322
3323         if (ah->config.ht_enable)
3324                 pCap->hw_caps |= ATH9K_HW_CAP_HT;
3325         else
3326                 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3327
3328         pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3329         pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3330         pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3331         pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3332
3333         if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3334                 pCap->total_queues =
3335                         MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3336         else
3337                 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3338
3339         if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3340                 pCap->keycache_size =
3341                         1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3342         else
3343                 pCap->keycache_size = AR_KEYTABLE_SIZE;
3344
3345         pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3346         pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3347
3348         if (AR_SREV_9285_10_OR_LATER(ah))
3349                 pCap->num_gpio_pins = AR9285_NUM_GPIO;
3350         else if (AR_SREV_9280_10_OR_LATER(ah))
3351                 pCap->num_gpio_pins = AR928X_NUM_GPIO;
3352         else
3353                 pCap->num_gpio_pins = AR_NUM_GPIO;
3354
3355         if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3356                 pCap->hw_caps |= ATH9K_HW_CAP_CST;
3357                 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3358         } else {
3359                 pCap->rts_aggr_limit = (8 * 1024);
3360         }
3361
3362         pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3363
3364 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3365         ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
3366         if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
3367                 ah->rfkill_gpio =
3368                         MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
3369                 ah->rfkill_polarity =
3370                         MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
3371
3372                 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3373         }
3374 #endif
3375
3376         if ((ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI) ||
3377             (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE) ||
3378             (ah->hw_version.macVersion == AR_SREV_VERSION_9160) ||
3379             (ah->hw_version.macVersion == AR_SREV_VERSION_9100) ||
3380             (ah->hw_version.macVersion == AR_SREV_VERSION_9280) ||
3381             (ah->hw_version.macVersion == AR_SREV_VERSION_9285))
3382                 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3383         else
3384                 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
3385
3386         if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3387                 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3388         else
3389                 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3390
3391         if (ah->regulatory.current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
3392                 pCap->reg_cap =
3393                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3394                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3395                         AR_EEPROM_EEREGCAP_EN_KK_U2 |
3396                         AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3397         } else {
3398                 pCap->reg_cap =
3399                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3400                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3401         }
3402
3403         pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3404
3405         pCap->num_antcfg_5ghz =
3406                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
3407         pCap->num_antcfg_2ghz =
3408                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
3409
3410         if (AR_SREV_9280_10_OR_LATER(ah) && btcoex_enable) {
3411                 pCap->hw_caps |= ATH9K_HW_CAP_BT_COEX;
3412                 ah->btactive_gpio = 6;
3413                 ah->wlanactive_gpio = 5;
3414         }
3415 }
3416
3417 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3418                             u32 capability, u32 *result)
3419 {
3420         switch (type) {
3421         case ATH9K_CAP_CIPHER:
3422                 switch (capability) {
3423                 case ATH9K_CIPHER_AES_CCM:
3424                 case ATH9K_CIPHER_AES_OCB:
3425                 case ATH9K_CIPHER_TKIP:
3426                 case ATH9K_CIPHER_WEP:
3427                 case ATH9K_CIPHER_MIC:
3428                 case ATH9K_CIPHER_CLR:
3429                         return true;
3430                 default:
3431                         return false;
3432                 }
3433         case ATH9K_CAP_TKIP_MIC:
3434                 switch (capability) {
3435                 case 0:
3436                         return true;
3437                 case 1:
3438                         return (ah->sta_id1_defaults &
3439                                 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
3440                         false;
3441                 }
3442         case ATH9K_CAP_TKIP_SPLIT:
3443                 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
3444                         false : true;
3445         case ATH9K_CAP_DIVERSITY:
3446                 return (REG_READ(ah, AR_PHY_CCK_DETECT) &
3447                         AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3448                         true : false;
3449         case ATH9K_CAP_MCAST_KEYSRCH:
3450                 switch (capability) {
3451                 case 0:
3452                         return true;
3453                 case 1:
3454                         if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3455                                 return false;
3456                         } else {
3457                                 return (ah->sta_id1_defaults &
3458                                         AR_STA_ID1_MCAST_KSRCH) ? true :
3459                                         false;
3460                         }
3461                 }
3462                 return false;
3463         case ATH9K_CAP_TXPOW:
3464                 switch (capability) {
3465                 case 0:
3466                         return 0;
3467                 case 1:
3468                         *result = ah->regulatory.power_limit;
3469                         return 0;
3470                 case 2:
3471                         *result = ah->regulatory.max_power_level;
3472                         return 0;
3473                 case 3:
3474                         *result = ah->regulatory.tp_scale;
3475                         return 0;
3476                 }
3477                 return false;
3478         case ATH9K_CAP_DS:
3479                 return (AR_SREV_9280_20_OR_LATER(ah) &&
3480                         (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
3481                         ? false : true;
3482         default:
3483                 return false;
3484         }
3485 }
3486
3487 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3488                             u32 capability, u32 setting, int *status)
3489 {
3490         u32 v;
3491
3492         switch (type) {
3493         case ATH9K_CAP_TKIP_MIC:
3494                 if (setting)
3495                         ah->sta_id1_defaults |=
3496                                 AR_STA_ID1_CRPT_MIC_ENABLE;
3497                 else
3498                         ah->sta_id1_defaults &=
3499                                 ~AR_STA_ID1_CRPT_MIC_ENABLE;
3500                 return true;
3501         case ATH9K_CAP_DIVERSITY:
3502                 v = REG_READ(ah, AR_PHY_CCK_DETECT);
3503                 if (setting)
3504                         v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3505                 else
3506                         v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3507                 REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3508                 return true;
3509         case ATH9K_CAP_MCAST_KEYSRCH:
3510                 if (setting)
3511                         ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
3512                 else
3513                         ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3514                 return true;
3515         default:
3516                 return false;
3517         }
3518 }
3519
3520 /****************************/
3521 /* GPIO / RFKILL / Antennae */
3522 /****************************/
3523
3524 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
3525                                          u32 gpio, u32 type)
3526 {
3527         int addr;
3528         u32 gpio_shift, tmp;
3529
3530         if (gpio > 11)
3531                 addr = AR_GPIO_OUTPUT_MUX3;
3532         else if (gpio > 5)
3533                 addr = AR_GPIO_OUTPUT_MUX2;
3534         else
3535                 addr = AR_GPIO_OUTPUT_MUX1;
3536
3537         gpio_shift = (gpio % 6) * 5;
3538
3539         if (AR_SREV_9280_20_OR_LATER(ah)
3540             || (addr != AR_GPIO_OUTPUT_MUX1)) {
3541                 REG_RMW(ah, addr, (type << gpio_shift),
3542                         (0x1f << gpio_shift));
3543         } else {
3544                 tmp = REG_READ(ah, addr);
3545                 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3546                 tmp &= ~(0x1f << gpio_shift);
3547                 tmp |= (type << gpio_shift);
3548                 REG_WRITE(ah, addr, tmp);
3549         }
3550 }
3551
3552 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3553 {
3554         u32 gpio_shift;
3555
3556         ASSERT(gpio < ah->caps.num_gpio_pins);
3557
3558         gpio_shift = gpio << 1;
3559
3560         REG_RMW(ah,
3561                 AR_GPIO_OE_OUT,
3562                 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3563                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3564 }
3565
3566 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3567 {
3568 #define MS_REG_READ(x, y) \
3569         (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3570
3571         if (gpio >= ah->caps.num_gpio_pins)
3572                 return 0xffffffff;
3573
3574         if (AR_SREV_9285_10_OR_LATER(ah))
3575                 return MS_REG_READ(AR9285, gpio) != 0;
3576         else if (AR_SREV_9280_10_OR_LATER(ah))
3577                 return MS_REG_READ(AR928X, gpio) != 0;
3578         else
3579                 return MS_REG_READ(AR, gpio) != 0;
3580 }
3581
3582 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3583                          u32 ah_signal_type)
3584 {
3585         u32 gpio_shift;
3586
3587         ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3588
3589         gpio_shift = 2 * gpio;
3590
3591         REG_RMW(ah,
3592                 AR_GPIO_OE_OUT,
3593                 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3594                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3595 }
3596
3597 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3598 {
3599         REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3600                 AR_GPIO_BIT(gpio));
3601 }
3602
3603 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3604 void ath9k_enable_rfkill(struct ath_hw *ah)
3605 {
3606         REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
3607                     AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
3608
3609         REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
3610                     AR_GPIO_INPUT_MUX2_RFSILENT);
3611
3612         ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
3613         REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
3614 }
3615 #endif
3616
3617 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3618 {
3619         return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3620 }
3621
3622 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3623 {
3624         REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3625 }
3626
3627 bool ath9k_hw_setantennaswitch(struct ath_hw *ah,
3628                                enum ath9k_ant_setting settings,
3629                                struct ath9k_channel *chan,
3630                                u8 *tx_chainmask,
3631                                u8 *rx_chainmask,
3632                                u8 *antenna_cfgd)
3633 {
3634         static u8 tx_chainmask_cfg, rx_chainmask_cfg;
3635
3636         if (AR_SREV_9280(ah)) {
3637                 if (!tx_chainmask_cfg) {
3638
3639                         tx_chainmask_cfg = *tx_chainmask;
3640                         rx_chainmask_cfg = *rx_chainmask;
3641                 }
3642
3643                 switch (settings) {
3644                 case ATH9K_ANT_FIXED_A:
3645                         *tx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3646                         *rx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3647                         *antenna_cfgd = true;
3648                         break;
3649                 case ATH9K_ANT_FIXED_B:
3650                         if (ah->caps.tx_chainmask >
3651                             ATH9K_ANTENNA1_CHAINMASK) {
3652                                 *tx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3653                         }
3654                         *rx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3655                         *antenna_cfgd = true;
3656                         break;
3657                 case ATH9K_ANT_VARIABLE:
3658                         *tx_chainmask = tx_chainmask_cfg;
3659                         *rx_chainmask = rx_chainmask_cfg;
3660                         *antenna_cfgd = true;
3661                         break;
3662                 default:
3663                         break;
3664                 }
3665         } else {
3666                 ah->diversity_control = settings;
3667         }
3668
3669         return true;
3670 }
3671
3672 /*********************/
3673 /* General Operation */
3674 /*********************/
3675
3676 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3677 {
3678         u32 bits = REG_READ(ah, AR_RX_FILTER);
3679         u32 phybits = REG_READ(ah, AR_PHY_ERR);
3680
3681         if (phybits & AR_PHY_ERR_RADAR)
3682                 bits |= ATH9K_RX_FILTER_PHYRADAR;
3683         if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3684                 bits |= ATH9K_RX_FILTER_PHYERR;
3685
3686         return bits;
3687 }
3688
3689 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
3690 {
3691         u32 phybits;
3692
3693         REG_WRITE(ah, AR_RX_FILTER, (bits & 0xffff) | AR_RX_COMPR_BAR);
3694         phybits = 0;
3695         if (bits & ATH9K_RX_FILTER_PHYRADAR)
3696                 phybits |= AR_PHY_ERR_RADAR;
3697         if (bits & ATH9K_RX_FILTER_PHYERR)
3698                 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
3699         REG_WRITE(ah, AR_PHY_ERR, phybits);
3700
3701         if (phybits)
3702                 REG_WRITE(ah, AR_RXCFG,
3703                           REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
3704         else
3705                 REG_WRITE(ah, AR_RXCFG,
3706                           REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
3707 }
3708
3709 bool ath9k_hw_phy_disable(struct ath_hw *ah)
3710 {
3711         return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM);
3712 }
3713
3714 bool ath9k_hw_disable(struct ath_hw *ah)
3715 {
3716         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
3717                 return false;
3718
3719         return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD);
3720 }
3721
3722 bool ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
3723 {
3724         struct ath9k_channel *chan = ah->curchan;
3725         struct ieee80211_channel *channel = chan->chan;
3726
3727         ah->regulatory.power_limit = min(limit, (u32) MAX_RATE_POWER);
3728
3729         if (ah->eep_ops->set_txpower(ah, chan,
3730                              ath9k_regd_get_ctl(&ah->regulatory, chan),
3731                              channel->max_antenna_gain * 2,
3732                              channel->max_power * 2,
3733                              min((u32) MAX_RATE_POWER,
3734                                  (u32) ah->regulatory.power_limit)) != 0)
3735                 return false;
3736
3737         return true;
3738 }
3739
3740 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
3741 {
3742         memcpy(ah->macaddr, mac, ETH_ALEN);
3743 }
3744
3745 void ath9k_hw_setopmode(struct ath_hw *ah)
3746 {
3747         ath9k_hw_set_operating_mode(ah, ah->opmode);
3748 }
3749
3750 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3751 {
3752         REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3753         REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3754 }
3755
3756 void ath9k_hw_setbssidmask(struct ath_softc *sc)
3757 {
3758         REG_WRITE(sc->sc_ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask));
3759         REG_WRITE(sc->sc_ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4));
3760 }
3761
3762 void ath9k_hw_write_associd(struct ath_softc *sc)
3763 {
3764         REG_WRITE(sc->sc_ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid));
3765         REG_WRITE(sc->sc_ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) |
3766                   ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3767 }
3768
3769 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3770 {
3771         u64 tsf;
3772
3773         tsf = REG_READ(ah, AR_TSF_U32);
3774         tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
3775
3776         return tsf;
3777 }
3778
3779 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3780 {
3781         REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3782         REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3783 }
3784
3785 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3786 {
3787         int count;
3788
3789         count = 0;
3790         while (REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) {
3791                 count++;
3792                 if (count > 10) {
3793                         DPRINTF(ah->ah_sc, ATH_DBG_RESET,
3794                                 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3795                         break;
3796                 }
3797                 udelay(10);
3798         }
3799         REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3800 }
3801
3802 bool ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
3803 {
3804         if (setting)
3805                 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3806         else
3807                 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3808
3809         return true;
3810 }
3811
3812 bool ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
3813 {
3814         if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
3815                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad slot time %u\n", us);
3816                 ah->slottime = (u32) -1;
3817                 return false;
3818         } else {
3819                 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
3820                 ah->slottime = us;
3821                 return true;
3822         }
3823 }
3824
3825 void ath9k_hw_set11nmac2040(struct ath_hw *ah, enum ath9k_ht_macmode mode)
3826 {
3827         u32 macmode;
3828
3829         if (mode == ATH9K_HT_MACMODE_2040 &&
3830             !ah->config.cwm_ignore_extcca)
3831                 macmode = AR_2040_JOINED_RX_CLEAR;
3832         else
3833                 macmode = 0;
3834
3835         REG_WRITE(ah, AR_2040_MODE, macmode);
3836 }
3837
3838 /***************************/
3839 /*  Bluetooth Coexistence  */
3840 /***************************/
3841
3842 void ath9k_hw_btcoex_enable(struct ath_hw *ah)
3843 {
3844         /* connect bt_active to baseband */
3845         REG_CLR_BIT(ah, AR_GPIO_INPUT_EN_VAL,
3846                         (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
3847                          AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF));
3848
3849         REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
3850                         AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
3851
3852         /* Set input mux for bt_active to gpio pin */
3853         REG_RMW_FIELD(ah, AR_GPIO_INPUT_MUX1,
3854                         AR_GPIO_INPUT_MUX1_BT_ACTIVE,
3855                         ah->btactive_gpio);
3856
3857         /* Configure the desired gpio port for input */
3858         ath9k_hw_cfg_gpio_input(ah, ah->btactive_gpio);
3859
3860         /* Configure the desired GPIO port for TX_FRAME output */
3861         ath9k_hw_cfg_output(ah, ah->wlanactive_gpio,
3862                             AR_GPIO_OUTPUT_MUX_AS_TX_FRAME);
3863 }