ath9k_hw: skip chip tests for AR9271
[safe/jmp/linux-2.6] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
19
20 #include "hw.h"
21 #include "rc.h"
22 #include "initvals.h"
23
24 #define ATH9K_CLOCK_RATE_CCK            22
25 #define ATH9K_CLOCK_RATE_5GHZ_OFDM      40
26 #define ATH9K_CLOCK_RATE_2GHZ_OFDM      44
27
28 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
29 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan);
30 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
31                               struct ar5416_eeprom_def *pEepData,
32                               u32 reg, u32 value);
33
34 MODULE_AUTHOR("Atheros Communications");
35 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
36 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
37 MODULE_LICENSE("Dual BSD/GPL");
38
39 static int __init ath9k_init(void)
40 {
41         return 0;
42 }
43 module_init(ath9k_init);
44
45 static void __exit ath9k_exit(void)
46 {
47         return;
48 }
49 module_exit(ath9k_exit);
50
51 /********************/
52 /* Helper Functions */
53 /********************/
54
55 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
56 {
57         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
58
59         if (!ah->curchan) /* should really check for CCK instead */
60                 return usecs *ATH9K_CLOCK_RATE_CCK;
61         if (conf->channel->band == IEEE80211_BAND_2GHZ)
62                 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
63         return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
64 }
65
66 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
67 {
68         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
69
70         if (conf_is_ht40(conf))
71                 return ath9k_hw_mac_clks(ah, usecs) * 2;
72         else
73                 return ath9k_hw_mac_clks(ah, usecs);
74 }
75
76 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
77 {
78         int i;
79
80         BUG_ON(timeout < AH_TIME_QUANTUM);
81
82         for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
83                 if ((REG_READ(ah, reg) & mask) == val)
84                         return true;
85
86                 udelay(AH_TIME_QUANTUM);
87         }
88
89         ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
90                   "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
91                   timeout, reg, REG_READ(ah, reg), mask, val);
92
93         return false;
94 }
95 EXPORT_SYMBOL(ath9k_hw_wait);
96
97 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
98 {
99         u32 retval;
100         int i;
101
102         for (i = 0, retval = 0; i < n; i++) {
103                 retval = (retval << 1) | (val & 1);
104                 val >>= 1;
105         }
106         return retval;
107 }
108
109 bool ath9k_get_channel_edges(struct ath_hw *ah,
110                              u16 flags, u16 *low,
111                              u16 *high)
112 {
113         struct ath9k_hw_capabilities *pCap = &ah->caps;
114
115         if (flags & CHANNEL_5GHZ) {
116                 *low = pCap->low_5ghz_chan;
117                 *high = pCap->high_5ghz_chan;
118                 return true;
119         }
120         if ((flags & CHANNEL_2GHZ)) {
121                 *low = pCap->low_2ghz_chan;
122                 *high = pCap->high_2ghz_chan;
123                 return true;
124         }
125         return false;
126 }
127
128 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
129                            u8 phy, int kbps,
130                            u32 frameLen, u16 rateix,
131                            bool shortPreamble)
132 {
133         u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
134
135         if (kbps == 0)
136                 return 0;
137
138         switch (phy) {
139         case WLAN_RC_PHY_CCK:
140                 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
141                 if (shortPreamble)
142                         phyTime >>= 1;
143                 numBits = frameLen << 3;
144                 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
145                 break;
146         case WLAN_RC_PHY_OFDM:
147                 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
148                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
149                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
150                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
151                         txTime = OFDM_SIFS_TIME_QUARTER
152                                 + OFDM_PREAMBLE_TIME_QUARTER
153                                 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
154                 } else if (ah->curchan &&
155                            IS_CHAN_HALF_RATE(ah->curchan)) {
156                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
157                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
158                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
159                         txTime = OFDM_SIFS_TIME_HALF +
160                                 OFDM_PREAMBLE_TIME_HALF
161                                 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
162                 } else {
163                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
164                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
165                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
166                         txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
167                                 + (numSymbols * OFDM_SYMBOL_TIME);
168                 }
169                 break;
170         default:
171                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
172                           "Unknown phy %u (rate ix %u)\n", phy, rateix);
173                 txTime = 0;
174                 break;
175         }
176
177         return txTime;
178 }
179 EXPORT_SYMBOL(ath9k_hw_computetxtime);
180
181 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
182                                   struct ath9k_channel *chan,
183                                   struct chan_centers *centers)
184 {
185         int8_t extoff;
186
187         if (!IS_CHAN_HT40(chan)) {
188                 centers->ctl_center = centers->ext_center =
189                         centers->synth_center = chan->channel;
190                 return;
191         }
192
193         if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
194             (chan->chanmode == CHANNEL_G_HT40PLUS)) {
195                 centers->synth_center =
196                         chan->channel + HT40_CHANNEL_CENTER_SHIFT;
197                 extoff = 1;
198         } else {
199                 centers->synth_center =
200                         chan->channel - HT40_CHANNEL_CENTER_SHIFT;
201                 extoff = -1;
202         }
203
204         centers->ctl_center =
205                 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
206         /* 25 MHz spacing is supported by hw but not on upper layers */
207         centers->ext_center =
208                 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
209 }
210
211 /******************/
212 /* Chip Revisions */
213 /******************/
214
215 static void ath9k_hw_read_revisions(struct ath_hw *ah)
216 {
217         u32 val;
218
219         val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
220
221         if (val == 0xFF) {
222                 val = REG_READ(ah, AR_SREV);
223                 ah->hw_version.macVersion =
224                         (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
225                 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
226                 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
227         } else {
228                 if (!AR_SREV_9100(ah))
229                         ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
230
231                 ah->hw_version.macRev = val & AR_SREV_REVISION;
232
233                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
234                         ah->is_pciexpress = true;
235         }
236 }
237
238 static int ath9k_hw_get_radiorev(struct ath_hw *ah)
239 {
240         u32 val;
241         int i;
242
243         REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
244
245         for (i = 0; i < 8; i++)
246                 REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
247         val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
248         val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
249
250         return ath9k_hw_reverse_bits(val, 8);
251 }
252
253 /************************************/
254 /* HW Attach, Detach, Init Routines */
255 /************************************/
256
257 static void ath9k_hw_disablepcie(struct ath_hw *ah)
258 {
259         if (AR_SREV_9100(ah))
260                 return;
261
262         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
263         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
264         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
265         REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
266         REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
267         REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
268         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
269         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
270         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
271
272         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
273 }
274
275 static bool ath9k_hw_chip_test(struct ath_hw *ah)
276 {
277         struct ath_common *common = ath9k_hw_common(ah);
278         u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
279         u32 regHold[2];
280         u32 patternData[4] = { 0x55555555,
281                                0xaaaaaaaa,
282                                0x66666666,
283                                0x99999999 };
284         int i, j;
285
286         for (i = 0; i < 2; i++) {
287                 u32 addr = regAddr[i];
288                 u32 wrData, rdData;
289
290                 regHold[i] = REG_READ(ah, addr);
291                 for (j = 0; j < 0x100; j++) {
292                         wrData = (j << 16) | j;
293                         REG_WRITE(ah, addr, wrData);
294                         rdData = REG_READ(ah, addr);
295                         if (rdData != wrData) {
296                                 ath_print(common, ATH_DBG_FATAL,
297                                           "address test failed "
298                                           "addr: 0x%08x - wr:0x%08x != "
299                                           "rd:0x%08x\n",
300                                           addr, wrData, rdData);
301                                 return false;
302                         }
303                 }
304                 for (j = 0; j < 4; j++) {
305                         wrData = patternData[j];
306                         REG_WRITE(ah, addr, wrData);
307                         rdData = REG_READ(ah, addr);
308                         if (wrData != rdData) {
309                                 ath_print(common, ATH_DBG_FATAL,
310                                           "address test failed "
311                                           "addr: 0x%08x - wr:0x%08x != "
312                                           "rd:0x%08x\n",
313                                           addr, wrData, rdData);
314                                 return false;
315                         }
316                 }
317                 REG_WRITE(ah, regAddr[i], regHold[i]);
318         }
319         udelay(100);
320
321         return true;
322 }
323
324 static void ath9k_hw_init_config(struct ath_hw *ah)
325 {
326         int i;
327
328         ah->config.dma_beacon_response_time = 2;
329         ah->config.sw_beacon_response_time = 10;
330         ah->config.additional_swba_backoff = 0;
331         ah->config.ack_6mb = 0x0;
332         ah->config.cwm_ignore_extcca = 0;
333         ah->config.pcie_powersave_enable = 0;
334         ah->config.pcie_clock_req = 0;
335         ah->config.pcie_waen = 0;
336         ah->config.analog_shiftreg = 1;
337         ah->config.ofdm_trig_low = 200;
338         ah->config.ofdm_trig_high = 500;
339         ah->config.cck_trig_high = 200;
340         ah->config.cck_trig_low = 100;
341         ah->config.enable_ani = 1;
342
343         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
344                 ah->config.spurchans[i][0] = AR_NO_SPUR;
345                 ah->config.spurchans[i][1] = AR_NO_SPUR;
346         }
347
348         if (ah->hw_version.devid != AR2427_DEVID_PCIE)
349                 ah->config.ht_enable = 1;
350         else
351                 ah->config.ht_enable = 0;
352
353         ah->config.rx_intr_mitigation = true;
354
355         /*
356          * We need this for PCI devices only (Cardbus, PCI, miniPCI)
357          * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
358          * This means we use it for all AR5416 devices, and the few
359          * minor PCI AR9280 devices out there.
360          *
361          * Serialization is required because these devices do not handle
362          * well the case of two concurrent reads/writes due to the latency
363          * involved. During one read/write another read/write can be issued
364          * on another CPU while the previous read/write may still be working
365          * on our hardware, if we hit this case the hardware poops in a loop.
366          * We prevent this by serializing reads and writes.
367          *
368          * This issue is not present on PCI-Express devices or pre-AR5416
369          * devices (legacy, 802.11abg).
370          */
371         if (num_possible_cpus() > 1)
372                 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
373 }
374 EXPORT_SYMBOL(ath9k_hw_init);
375
376 static void ath9k_hw_init_defaults(struct ath_hw *ah)
377 {
378         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
379
380         regulatory->country_code = CTRY_DEFAULT;
381         regulatory->power_limit = MAX_RATE_POWER;
382         regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
383
384         ah->hw_version.magic = AR5416_MAGIC;
385         ah->hw_version.subvendorid = 0;
386
387         ah->ah_flags = 0;
388         if (ah->hw_version.devid == AR5416_AR9100_DEVID)
389                 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
390         if (!AR_SREV_9100(ah))
391                 ah->ah_flags = AH_USE_EEPROM;
392
393         ah->atim_window = 0;
394         ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
395         ah->beacon_interval = 100;
396         ah->enable_32kHz_clock = DONT_USE_32KHZ;
397         ah->slottime = (u32) -1;
398         ah->globaltxtimeout = (u32) -1;
399         ah->power_mode = ATH9K_PM_UNDEFINED;
400 }
401
402 static int ath9k_hw_rf_claim(struct ath_hw *ah)
403 {
404         u32 val;
405
406         REG_WRITE(ah, AR_PHY(0), 0x00000007);
407
408         val = ath9k_hw_get_radiorev(ah);
409         switch (val & AR_RADIO_SREV_MAJOR) {
410         case 0:
411                 val = AR_RAD5133_SREV_MAJOR;
412                 break;
413         case AR_RAD5133_SREV_MAJOR:
414         case AR_RAD5122_SREV_MAJOR:
415         case AR_RAD2133_SREV_MAJOR:
416         case AR_RAD2122_SREV_MAJOR:
417                 break;
418         default:
419                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
420                           "Radio Chip Rev 0x%02X not supported\n",
421                           val & AR_RADIO_SREV_MAJOR);
422                 return -EOPNOTSUPP;
423         }
424
425         ah->hw_version.analog5GhzRev = val;
426
427         return 0;
428 }
429
430 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
431 {
432         struct ath_common *common = ath9k_hw_common(ah);
433         u32 sum;
434         int i;
435         u16 eeval;
436
437         sum = 0;
438         for (i = 0; i < 3; i++) {
439                 eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
440                 sum += eeval;
441                 common->macaddr[2 * i] = eeval >> 8;
442                 common->macaddr[2 * i + 1] = eeval & 0xff;
443         }
444         if (sum == 0 || sum == 0xffff * 3)
445                 return -EADDRNOTAVAIL;
446
447         return 0;
448 }
449
450 static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
451 {
452         u32 rxgain_type;
453
454         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
455                 rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
456
457                 if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
458                         INIT_INI_ARRAY(&ah->iniModesRxGain,
459                         ar9280Modes_backoff_13db_rxgain_9280_2,
460                         ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
461                 else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
462                         INIT_INI_ARRAY(&ah->iniModesRxGain,
463                         ar9280Modes_backoff_23db_rxgain_9280_2,
464                         ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
465                 else
466                         INIT_INI_ARRAY(&ah->iniModesRxGain,
467                         ar9280Modes_original_rxgain_9280_2,
468                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
469         } else {
470                 INIT_INI_ARRAY(&ah->iniModesRxGain,
471                         ar9280Modes_original_rxgain_9280_2,
472                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
473         }
474 }
475
476 static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
477 {
478         u32 txgain_type;
479
480         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
481                 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
482
483                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
484                         INIT_INI_ARRAY(&ah->iniModesTxGain,
485                         ar9280Modes_high_power_tx_gain_9280_2,
486                         ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
487                 else
488                         INIT_INI_ARRAY(&ah->iniModesTxGain,
489                         ar9280Modes_original_tx_gain_9280_2,
490                         ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
491         } else {
492                 INIT_INI_ARRAY(&ah->iniModesTxGain,
493                 ar9280Modes_original_tx_gain_9280_2,
494                 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
495         }
496 }
497
498 static int ath9k_hw_post_init(struct ath_hw *ah)
499 {
500         int ecode;
501
502         if (!AR_SREV_9271(ah)) {
503                 if (!ath9k_hw_chip_test(ah))
504                         return -ENODEV;
505         }
506
507         ecode = ath9k_hw_rf_claim(ah);
508         if (ecode != 0)
509                 return ecode;
510
511         ecode = ath9k_hw_eeprom_init(ah);
512         if (ecode != 0)
513                 return ecode;
514
515         ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
516                   "Eeprom VER: %d, REV: %d\n",
517                   ah->eep_ops->get_eeprom_ver(ah),
518                   ah->eep_ops->get_eeprom_rev(ah));
519
520         if (!AR_SREV_9280_10_OR_LATER(ah)) {
521                 ecode = ath9k_hw_rf_alloc_ext_banks(ah);
522                 if (ecode) {
523                         ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
524                                   "Failed allocating banks for "
525                                   "external radio\n");
526                         return ecode;
527                 }
528         }
529
530         if (!AR_SREV_9100(ah)) {
531                 ath9k_hw_ani_setup(ah);
532                 ath9k_hw_ani_init(ah);
533         }
534
535         return 0;
536 }
537
538 static bool ath9k_hw_devid_supported(u16 devid)
539 {
540         switch (devid) {
541         case AR5416_DEVID_PCI:
542         case AR5416_DEVID_PCIE:
543         case AR5416_AR9100_DEVID:
544         case AR9160_DEVID_PCI:
545         case AR9280_DEVID_PCI:
546         case AR9280_DEVID_PCIE:
547         case AR9285_DEVID_PCIE:
548         case AR5416_DEVID_AR9287_PCI:
549         case AR5416_DEVID_AR9287_PCIE:
550         case AR9271_USB:
551         case AR2427_DEVID_PCIE:
552                 return true;
553         default:
554                 break;
555         }
556         return false;
557 }
558
559 static bool ath9k_hw_macversion_supported(u32 macversion)
560 {
561         switch (macversion) {
562         case AR_SREV_VERSION_5416_PCI:
563         case AR_SREV_VERSION_5416_PCIE:
564         case AR_SREV_VERSION_9160:
565         case AR_SREV_VERSION_9100:
566         case AR_SREV_VERSION_9280:
567         case AR_SREV_VERSION_9285:
568         case AR_SREV_VERSION_9287:
569         case AR_SREV_VERSION_9271:
570                 return true;
571         default:
572                 break;
573         }
574         return false;
575 }
576
577 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
578 {
579         if (AR_SREV_9160_10_OR_LATER(ah)) {
580                 if (AR_SREV_9280_10_OR_LATER(ah)) {
581                         ah->iq_caldata.calData = &iq_cal_single_sample;
582                         ah->adcgain_caldata.calData =
583                                 &adc_gain_cal_single_sample;
584                         ah->adcdc_caldata.calData =
585                                 &adc_dc_cal_single_sample;
586                         ah->adcdc_calinitdata.calData =
587                                 &adc_init_dc_cal;
588                 } else {
589                         ah->iq_caldata.calData = &iq_cal_multi_sample;
590                         ah->adcgain_caldata.calData =
591                                 &adc_gain_cal_multi_sample;
592                         ah->adcdc_caldata.calData =
593                                 &adc_dc_cal_multi_sample;
594                         ah->adcdc_calinitdata.calData =
595                                 &adc_init_dc_cal;
596                 }
597                 ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
598         }
599 }
600
601 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
602 {
603         if (AR_SREV_9271(ah)) {
604                 INIT_INI_ARRAY(&ah->iniModes, ar9271Modes_9271,
605                                ARRAY_SIZE(ar9271Modes_9271), 6);
606                 INIT_INI_ARRAY(&ah->iniCommon, ar9271Common_9271,
607                                ARRAY_SIZE(ar9271Common_9271), 2);
608                 INIT_INI_ARRAY(&ah->iniCommon_normal_cck_fir_coeff_9271,
609                                ar9271Common_normal_cck_fir_coeff_9271,
610                                ARRAY_SIZE(ar9271Common_normal_cck_fir_coeff_9271), 2);
611                 INIT_INI_ARRAY(&ah->iniCommon_japan_2484_cck_fir_coeff_9271,
612                                ar9271Common_japan_2484_cck_fir_coeff_9271,
613                                ARRAY_SIZE(ar9271Common_japan_2484_cck_fir_coeff_9271), 2);
614                 INIT_INI_ARRAY(&ah->iniModes_9271_1_0_only,
615                                ar9271Modes_9271_1_0_only,
616                                ARRAY_SIZE(ar9271Modes_9271_1_0_only), 6);
617                 INIT_INI_ARRAY(&ah->iniModes_9271_ANI_reg, ar9271Modes_9271_ANI_reg,
618                                ARRAY_SIZE(ar9271Modes_9271_ANI_reg), 6);
619                 INIT_INI_ARRAY(&ah->iniModes_high_power_tx_gain_9271,
620                                ar9271Modes_high_power_tx_gain_9271,
621                                ARRAY_SIZE(ar9271Modes_high_power_tx_gain_9271), 6);
622                 INIT_INI_ARRAY(&ah->iniModes_normal_power_tx_gain_9271,
623                                ar9271Modes_normal_power_tx_gain_9271,
624                                ARRAY_SIZE(ar9271Modes_normal_power_tx_gain_9271), 6);
625                 return;
626         }
627
628         if (AR_SREV_9287_11_OR_LATER(ah)) {
629                 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
630                                 ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
631                 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
632                                 ARRAY_SIZE(ar9287Common_9287_1_1), 2);
633                 if (ah->config.pcie_clock_req)
634                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
635                         ar9287PciePhy_clkreq_off_L1_9287_1_1,
636                         ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
637                 else
638                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
639                         ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
640                         ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
641                                         2);
642         } else if (AR_SREV_9287_10_OR_LATER(ah)) {
643                 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
644                                 ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
645                 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
646                                 ARRAY_SIZE(ar9287Common_9287_1_0), 2);
647
648                 if (ah->config.pcie_clock_req)
649                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
650                         ar9287PciePhy_clkreq_off_L1_9287_1_0,
651                         ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
652                 else
653                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
654                         ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
655                         ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
656                                   2);
657         } else if (AR_SREV_9285_12_OR_LATER(ah)) {
658
659
660                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
661                                ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
662                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
663                                ARRAY_SIZE(ar9285Common_9285_1_2), 2);
664
665                 if (ah->config.pcie_clock_req) {
666                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
667                         ar9285PciePhy_clkreq_off_L1_9285_1_2,
668                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
669                 } else {
670                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
671                         ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
672                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
673                                   2);
674                 }
675         } else if (AR_SREV_9285_10_OR_LATER(ah)) {
676                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
677                                ARRAY_SIZE(ar9285Modes_9285), 6);
678                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
679                                ARRAY_SIZE(ar9285Common_9285), 2);
680
681                 if (ah->config.pcie_clock_req) {
682                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
683                         ar9285PciePhy_clkreq_off_L1_9285,
684                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
685                 } else {
686                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
687                         ar9285PciePhy_clkreq_always_on_L1_9285,
688                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
689                 }
690         } else if (AR_SREV_9280_20_OR_LATER(ah)) {
691                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
692                                ARRAY_SIZE(ar9280Modes_9280_2), 6);
693                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
694                                ARRAY_SIZE(ar9280Common_9280_2), 2);
695
696                 if (ah->config.pcie_clock_req) {
697                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
698                                ar9280PciePhy_clkreq_off_L1_9280,
699                                ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
700                 } else {
701                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
702                                ar9280PciePhy_clkreq_always_on_L1_9280,
703                                ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
704                 }
705                 INIT_INI_ARRAY(&ah->iniModesAdditional,
706                                ar9280Modes_fast_clock_9280_2,
707                                ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
708         } else if (AR_SREV_9280_10_OR_LATER(ah)) {
709                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
710                                ARRAY_SIZE(ar9280Modes_9280), 6);
711                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
712                                ARRAY_SIZE(ar9280Common_9280), 2);
713         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
714                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
715                                ARRAY_SIZE(ar5416Modes_9160), 6);
716                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
717                                ARRAY_SIZE(ar5416Common_9160), 2);
718                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
719                                ARRAY_SIZE(ar5416Bank0_9160), 2);
720                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
721                                ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
722                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
723                                ARRAY_SIZE(ar5416Bank1_9160), 2);
724                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
725                                ARRAY_SIZE(ar5416Bank2_9160), 2);
726                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
727                                ARRAY_SIZE(ar5416Bank3_9160), 3);
728                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
729                                ARRAY_SIZE(ar5416Bank6_9160), 3);
730                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
731                                ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
732                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
733                                ARRAY_SIZE(ar5416Bank7_9160), 2);
734                 if (AR_SREV_9160_11(ah)) {
735                         INIT_INI_ARRAY(&ah->iniAddac,
736                                        ar5416Addac_91601_1,
737                                        ARRAY_SIZE(ar5416Addac_91601_1), 2);
738                 } else {
739                         INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
740                                        ARRAY_SIZE(ar5416Addac_9160), 2);
741                 }
742         } else if (AR_SREV_9100_OR_LATER(ah)) {
743                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
744                                ARRAY_SIZE(ar5416Modes_9100), 6);
745                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
746                                ARRAY_SIZE(ar5416Common_9100), 2);
747                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
748                                ARRAY_SIZE(ar5416Bank0_9100), 2);
749                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
750                                ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
751                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
752                                ARRAY_SIZE(ar5416Bank1_9100), 2);
753                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
754                                ARRAY_SIZE(ar5416Bank2_9100), 2);
755                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
756                                ARRAY_SIZE(ar5416Bank3_9100), 3);
757                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
758                                ARRAY_SIZE(ar5416Bank6_9100), 3);
759                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
760                                ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
761                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
762                                ARRAY_SIZE(ar5416Bank7_9100), 2);
763                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
764                                ARRAY_SIZE(ar5416Addac_9100), 2);
765         } else {
766                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
767                                ARRAY_SIZE(ar5416Modes), 6);
768                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
769                                ARRAY_SIZE(ar5416Common), 2);
770                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
771                                ARRAY_SIZE(ar5416Bank0), 2);
772                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
773                                ARRAY_SIZE(ar5416BB_RfGain), 3);
774                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
775                                ARRAY_SIZE(ar5416Bank1), 2);
776                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
777                                ARRAY_SIZE(ar5416Bank2), 2);
778                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
779                                ARRAY_SIZE(ar5416Bank3), 3);
780                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
781                                ARRAY_SIZE(ar5416Bank6), 3);
782                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
783                                ARRAY_SIZE(ar5416Bank6TPC), 3);
784                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
785                                ARRAY_SIZE(ar5416Bank7), 2);
786                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
787                                ARRAY_SIZE(ar5416Addac), 2);
788         }
789 }
790
791 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
792 {
793         if (AR_SREV_9287_11_OR_LATER(ah))
794                 INIT_INI_ARRAY(&ah->iniModesRxGain,
795                 ar9287Modes_rx_gain_9287_1_1,
796                 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
797         else if (AR_SREV_9287_10(ah))
798                 INIT_INI_ARRAY(&ah->iniModesRxGain,
799                 ar9287Modes_rx_gain_9287_1_0,
800                 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
801         else if (AR_SREV_9280_20(ah))
802                 ath9k_hw_init_rxgain_ini(ah);
803
804         if (AR_SREV_9287_11_OR_LATER(ah)) {
805                 INIT_INI_ARRAY(&ah->iniModesTxGain,
806                 ar9287Modes_tx_gain_9287_1_1,
807                 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
808         } else if (AR_SREV_9287_10(ah)) {
809                 INIT_INI_ARRAY(&ah->iniModesTxGain,
810                 ar9287Modes_tx_gain_9287_1_0,
811                 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
812         } else if (AR_SREV_9280_20(ah)) {
813                 ath9k_hw_init_txgain_ini(ah);
814         } else if (AR_SREV_9285_12_OR_LATER(ah)) {
815                 u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
816
817                 /* txgain table */
818                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
819                         INIT_INI_ARRAY(&ah->iniModesTxGain,
820                         ar9285Modes_high_power_tx_gain_9285_1_2,
821                         ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
822                 } else {
823                         INIT_INI_ARRAY(&ah->iniModesTxGain,
824                         ar9285Modes_original_tx_gain_9285_1_2,
825                         ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
826                 }
827
828         }
829 }
830
831 static void ath9k_hw_init_eeprom_fix(struct ath_hw *ah)
832 {
833         u32 i, j;
834
835         if (ah->hw_version.devid == AR9280_DEVID_PCI) {
836
837                 /* EEPROM Fixup */
838                 for (i = 0; i < ah->iniModes.ia_rows; i++) {
839                         u32 reg = INI_RA(&ah->iniModes, i, 0);
840
841                         for (j = 1; j < ah->iniModes.ia_columns; j++) {
842                                 u32 val = INI_RA(&ah->iniModes, i, j);
843
844                                 INI_RA(&ah->iniModes, i, j) =
845                                         ath9k_hw_ini_fixup(ah,
846                                                            &ah->eeprom.def,
847                                                            reg, val);
848                         }
849                 }
850         }
851 }
852
853 int ath9k_hw_init(struct ath_hw *ah)
854 {
855         struct ath_common *common = ath9k_hw_common(ah);
856         int r = 0;
857
858         if (!ath9k_hw_devid_supported(ah->hw_version.devid)) {
859                 ath_print(common, ATH_DBG_FATAL,
860                           "Unsupported device ID: 0x%0x\n",
861                           ah->hw_version.devid);
862                 return -EOPNOTSUPP;
863         }
864
865         ath9k_hw_init_defaults(ah);
866         ath9k_hw_init_config(ah);
867
868         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
869                 ath_print(common, ATH_DBG_FATAL,
870                           "Couldn't reset chip\n");
871                 return -EIO;
872         }
873
874         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
875                 ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
876                 return -EIO;
877         }
878
879         if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
880                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
881                     (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
882                         ah->config.serialize_regmode =
883                                 SER_REG_MODE_ON;
884                 } else {
885                         ah->config.serialize_regmode =
886                                 SER_REG_MODE_OFF;
887                 }
888         }
889
890         ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
891                 ah->config.serialize_regmode);
892
893         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
894                 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
895         else
896                 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
897
898         if (!ath9k_hw_macversion_supported(ah->hw_version.macVersion)) {
899                 ath_print(common, ATH_DBG_FATAL,
900                           "Mac Chip Rev 0x%02x.%x is not supported by "
901                           "this driver\n", ah->hw_version.macVersion,
902                           ah->hw_version.macRev);
903                 return -EOPNOTSUPP;
904         }
905
906         if (AR_SREV_9100(ah)) {
907                 ah->iq_caldata.calData = &iq_cal_multi_sample;
908                 ah->supp_cals = IQ_MISMATCH_CAL;
909                 ah->is_pciexpress = false;
910         }
911
912         if (AR_SREV_9271(ah))
913                 ah->is_pciexpress = false;
914
915         ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
916
917         ath9k_hw_init_cal_settings(ah);
918
919         ah->ani_function = ATH9K_ANI_ALL;
920         if (AR_SREV_9280_10_OR_LATER(ah)) {
921                 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
922                 ah->ath9k_hw_rf_set_freq = &ath9k_hw_ar9280_set_channel;
923                 ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_9280_spur_mitigate;
924         } else {
925                 ah->ath9k_hw_rf_set_freq = &ath9k_hw_set_channel;
926                 ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_spur_mitigate;
927         }
928
929         ath9k_hw_init_mode_regs(ah);
930
931         if (ah->is_pciexpress)
932                 ath9k_hw_configpcipowersave(ah, 0, 0);
933         else
934                 ath9k_hw_disablepcie(ah);
935
936         /* Support for Japan ch.14 (2484) spread */
937         if (AR_SREV_9287_11_OR_LATER(ah)) {
938                 INIT_INI_ARRAY(&ah->iniCckfirNormal,
939                        ar9287Common_normal_cck_fir_coeff_92871_1,
940                        ARRAY_SIZE(ar9287Common_normal_cck_fir_coeff_92871_1), 2);
941                 INIT_INI_ARRAY(&ah->iniCckfirJapan2484,
942                        ar9287Common_japan_2484_cck_fir_coeff_92871_1,
943                        ARRAY_SIZE(ar9287Common_japan_2484_cck_fir_coeff_92871_1), 2);
944         }
945
946         r = ath9k_hw_post_init(ah);
947         if (r)
948                 return r;
949
950         ath9k_hw_init_mode_gain_regs(ah);
951         r = ath9k_hw_fill_cap_info(ah);
952         if (r)
953                 return r;
954
955         ath9k_hw_init_eeprom_fix(ah);
956
957         r = ath9k_hw_init_macaddr(ah);
958         if (r) {
959                 ath_print(common, ATH_DBG_FATAL,
960                           "Failed to initialize MAC address\n");
961                 return r;
962         }
963
964         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
965                 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
966         else
967                 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
968
969         ath9k_init_nfcal_hist_buffer(ah);
970
971         common->state = ATH_HW_INITIALIZED;
972
973         return 0;
974 }
975
976 static void ath9k_hw_init_bb(struct ath_hw *ah,
977                              struct ath9k_channel *chan)
978 {
979         u32 synthDelay;
980
981         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
982         if (IS_CHAN_B(chan))
983                 synthDelay = (4 * synthDelay) / 22;
984         else
985                 synthDelay /= 10;
986
987         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
988
989         udelay(synthDelay + BASE_ACTIVATE_DELAY);
990 }
991
992 static void ath9k_hw_init_qos(struct ath_hw *ah)
993 {
994         REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
995         REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
996
997         REG_WRITE(ah, AR_QOS_NO_ACK,
998                   SM(2, AR_QOS_NO_ACK_TWO_BIT) |
999                   SM(5, AR_QOS_NO_ACK_BIT_OFF) |
1000                   SM(0, AR_QOS_NO_ACK_BYTE_OFF));
1001
1002         REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
1003         REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
1004         REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
1005         REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
1006         REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
1007 }
1008
1009 static void ath9k_hw_change_target_baud(struct ath_hw *ah, u32 freq, u32 baud)
1010 {
1011         u32 lcr;
1012         u32 baud_divider = freq * 1000 * 1000 / 16 / baud;
1013
1014         lcr = REG_READ(ah , 0x5100c);
1015         lcr |= 0x80;
1016
1017         REG_WRITE(ah, 0x5100c, lcr);
1018         REG_WRITE(ah, 0x51004, (baud_divider >> 8));
1019         REG_WRITE(ah, 0x51000, (baud_divider & 0xff));
1020
1021         lcr &= ~0x80;
1022         REG_WRITE(ah, 0x5100c, lcr);
1023 }
1024
1025 static void ath9k_hw_init_pll(struct ath_hw *ah,
1026                               struct ath9k_channel *chan)
1027 {
1028         u32 pll;
1029
1030         if (AR_SREV_9100(ah)) {
1031                 if (chan && IS_CHAN_5GHZ(chan))
1032                         pll = 0x1450;
1033                 else
1034                         pll = 0x1458;
1035         } else {
1036                 if (AR_SREV_9280_10_OR_LATER(ah)) {
1037                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1038
1039                         if (chan && IS_CHAN_HALF_RATE(chan))
1040                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1041                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1042                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1043
1044                         if (chan && IS_CHAN_5GHZ(chan)) {
1045                                 pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
1046
1047
1048                                 if (AR_SREV_9280_20(ah)) {
1049                                         if (((chan->channel % 20) == 0)
1050                                             || ((chan->channel % 10) == 0))
1051                                                 pll = 0x2850;
1052                                         else
1053                                                 pll = 0x142c;
1054                                 }
1055                         } else {
1056                                 pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
1057                         }
1058
1059                 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1060
1061                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1062
1063                         if (chan && IS_CHAN_HALF_RATE(chan))
1064                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1065                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1066                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1067
1068                         if (chan && IS_CHAN_5GHZ(chan))
1069                                 pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
1070                         else
1071                                 pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
1072                 } else {
1073                         pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1074
1075                         if (chan && IS_CHAN_HALF_RATE(chan))
1076                                 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1077                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1078                                 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1079
1080                         if (chan && IS_CHAN_5GHZ(chan))
1081                                 pll |= SM(0xa, AR_RTC_PLL_DIV);
1082                         else
1083                                 pll |= SM(0xb, AR_RTC_PLL_DIV);
1084                 }
1085         }
1086         REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1087
1088         /* Switch the core clock for ar9271 to 117Mhz */
1089         if (AR_SREV_9271(ah)) {
1090                 if ((pll == 0x142c) || (pll == 0x2850) ) {
1091                         udelay(500);
1092                         /* set CLKOBS to output AHB clock */
1093                         REG_WRITE(ah, 0x7020, 0xe);
1094                         /*
1095                          * 0x304: 117Mhz, ahb_ratio: 1x1
1096                          * 0x306: 40Mhz, ahb_ratio: 1x1
1097                          */
1098                         REG_WRITE(ah, 0x50040, 0x304);
1099                         /*
1100                          * makes adjustments for the baud dividor to keep the
1101                          * targetted baud rate based on the used core clock.
1102                          */
1103                         ath9k_hw_change_target_baud(ah, AR9271_CORE_CLOCK,
1104                                                     AR9271_TARGET_BAUD_RATE);
1105                 }
1106         }
1107
1108         udelay(RTC_PLL_SETTLE_DELAY);
1109
1110         REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1111 }
1112
1113 static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
1114 {
1115         int rx_chainmask, tx_chainmask;
1116
1117         rx_chainmask = ah->rxchainmask;
1118         tx_chainmask = ah->txchainmask;
1119
1120         switch (rx_chainmask) {
1121         case 0x5:
1122                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1123                             AR_PHY_SWAP_ALT_CHAIN);
1124         case 0x3:
1125                 if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) {
1126                         REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1127                         REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1128                         break;
1129                 }
1130         case 0x1:
1131         case 0x2:
1132         case 0x7:
1133                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1134                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1135                 break;
1136         default:
1137                 break;
1138         }
1139
1140         REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1141         if (tx_chainmask == 0x5) {
1142                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1143                             AR_PHY_SWAP_ALT_CHAIN);
1144         }
1145         if (AR_SREV_9100(ah))
1146                 REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1147                           REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1148 }
1149
1150 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1151                                           enum nl80211_iftype opmode)
1152 {
1153         ah->mask_reg = AR_IMR_TXERR |
1154                 AR_IMR_TXURN |
1155                 AR_IMR_RXERR |
1156                 AR_IMR_RXORN |
1157                 AR_IMR_BCNMISC;
1158
1159         if (ah->config.rx_intr_mitigation)
1160                 ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1161         else
1162                 ah->mask_reg |= AR_IMR_RXOK;
1163
1164         ah->mask_reg |= AR_IMR_TXOK;
1165
1166         if (opmode == NL80211_IFTYPE_AP)
1167                 ah->mask_reg |= AR_IMR_MIB;
1168
1169         REG_WRITE(ah, AR_IMR, ah->mask_reg);
1170         ah->imrs2_reg |= AR_IMR_S2_GTT;
1171         REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
1172
1173         if (!AR_SREV_9100(ah)) {
1174                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1175                 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1176                 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1177         }
1178 }
1179
1180 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1181 {
1182         u32 val = ath9k_hw_mac_to_clks(ah, us);
1183         val = min(val, (u32) 0xFFFF);
1184         REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1185 }
1186
1187 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1188 {
1189         u32 val = ath9k_hw_mac_to_clks(ah, us);
1190         val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1191         REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1192 }
1193
1194 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1195 {
1196         u32 val = ath9k_hw_mac_to_clks(ah, us);
1197         val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1198         REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1199 }
1200
1201 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1202 {
1203         if (tu > 0xFFFF) {
1204                 ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
1205                           "bad global tx timeout %u\n", tu);
1206                 ah->globaltxtimeout = (u32) -1;
1207                 return false;
1208         } else {
1209                 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1210                 ah->globaltxtimeout = tu;
1211                 return true;
1212         }
1213 }
1214
1215 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1216 {
1217         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
1218         int acktimeout;
1219         int slottime;
1220         int sifstime;
1221
1222         ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1223                   ah->misc_mode);
1224
1225         if (ah->misc_mode != 0)
1226                 REG_WRITE(ah, AR_PCU_MISC,
1227                           REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1228
1229         if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
1230                 sifstime = 16;
1231         else
1232                 sifstime = 10;
1233
1234         /* As defined by IEEE 802.11-2007 17.3.8.6 */
1235         slottime = ah->slottime + 3 * ah->coverage_class;
1236         acktimeout = slottime + sifstime;
1237
1238         /*
1239          * Workaround for early ACK timeouts, add an offset to match the
1240          * initval's 64us ack timeout value.
1241          * This was initially only meant to work around an issue with delayed
1242          * BA frames in some implementations, but it has been found to fix ACK
1243          * timeout issues in other cases as well.
1244          */
1245         if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
1246                 acktimeout += 64 - sifstime - ah->slottime;
1247
1248         ath9k_hw_setslottime(ah, slottime);
1249         ath9k_hw_set_ack_timeout(ah, acktimeout);
1250         ath9k_hw_set_cts_timeout(ah, acktimeout);
1251         if (ah->globaltxtimeout != (u32) -1)
1252                 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1253 }
1254 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1255
1256 void ath9k_hw_deinit(struct ath_hw *ah)
1257 {
1258         struct ath_common *common = ath9k_hw_common(ah);
1259
1260         if (common->state <= ATH_HW_INITIALIZED)
1261                 goto free_hw;
1262
1263         if (!AR_SREV_9100(ah))
1264                 ath9k_hw_ani_disable(ah);
1265
1266         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1267
1268 free_hw:
1269         if (!AR_SREV_9280_10_OR_LATER(ah))
1270                 ath9k_hw_rf_free_ext_banks(ah);
1271         kfree(ah);
1272         ah = NULL;
1273 }
1274 EXPORT_SYMBOL(ath9k_hw_deinit);
1275
1276 /*******/
1277 /* INI */
1278 /*******/
1279
1280 static void ath9k_hw_override_ini(struct ath_hw *ah,
1281                                   struct ath9k_channel *chan)
1282 {
1283         u32 val;
1284
1285         /*
1286          * Set the RX_ABORT and RX_DIS and clear if off only after
1287          * RXE is set for MAC. This prevents frames with corrupted
1288          * descriptor status.
1289          */
1290         REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1291
1292         if (AR_SREV_9280_10_OR_LATER(ah)) {
1293                 val = REG_READ(ah, AR_PCU_MISC_MODE2);
1294
1295                 if (!AR_SREV_9271(ah))
1296                         val &= ~AR_PCU_MISC_MODE2_HWWAR1;
1297
1298                 if (AR_SREV_9287_10_OR_LATER(ah))
1299                         val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
1300
1301                 REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
1302         }
1303
1304         if (!AR_SREV_5416_20_OR_LATER(ah) ||
1305             AR_SREV_9280_10_OR_LATER(ah))
1306                 return;
1307         /*
1308          * Disable BB clock gating
1309          * Necessary to avoid issues on AR5416 2.0
1310          */
1311         REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1312
1313         /*
1314          * Disable RIFS search on some chips to avoid baseband
1315          * hang issues.
1316          */
1317         if (AR_SREV_9100(ah) || AR_SREV_9160(ah)) {
1318                 val = REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS);
1319                 val &= ~AR_PHY_RIFS_INIT_DELAY;
1320                 REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val);
1321         }
1322 }
1323
1324 static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
1325                               struct ar5416_eeprom_def *pEepData,
1326                               u32 reg, u32 value)
1327 {
1328         struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1329         struct ath_common *common = ath9k_hw_common(ah);
1330
1331         switch (ah->hw_version.devid) {
1332         case AR9280_DEVID_PCI:
1333                 if (reg == 0x7894) {
1334                         ath_print(common, ATH_DBG_EEPROM,
1335                                 "ini VAL: %x  EEPROM: %x\n", value,
1336                                 (pBase->version & 0xff));
1337
1338                         if ((pBase->version & 0xff) > 0x0a) {
1339                                 ath_print(common, ATH_DBG_EEPROM,
1340                                           "PWDCLKIND: %d\n",
1341                                           pBase->pwdclkind);
1342                                 value &= ~AR_AN_TOP2_PWDCLKIND;
1343                                 value |= AR_AN_TOP2_PWDCLKIND &
1344                                         (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
1345                         } else {
1346                                 ath_print(common, ATH_DBG_EEPROM,
1347                                           "PWDCLKIND Earlier Rev\n");
1348                         }
1349
1350                         ath_print(common, ATH_DBG_EEPROM,
1351                                   "final ini VAL: %x\n", value);
1352                 }
1353                 break;
1354         }
1355
1356         return value;
1357 }
1358
1359 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
1360                               struct ar5416_eeprom_def *pEepData,
1361                               u32 reg, u32 value)
1362 {
1363         if (ah->eep_map == EEP_MAP_4KBITS)
1364                 return value;
1365         else
1366                 return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
1367 }
1368
1369 static void ath9k_olc_init(struct ath_hw *ah)
1370 {
1371         u32 i;
1372
1373         if (OLC_FOR_AR9287_10_LATER) {
1374                 REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
1375                                 AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
1376                 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
1377                                 AR9287_AN_TXPC0_TXPCMODE,
1378                                 AR9287_AN_TXPC0_TXPCMODE_S,
1379                                 AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
1380                 udelay(100);
1381         } else {
1382                 for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1383                         ah->originalGain[i] =
1384                                 MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1385                                                 AR_PHY_TX_GAIN);
1386                 ah->PDADCdelta = 0;
1387         }
1388 }
1389
1390 static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
1391                               struct ath9k_channel *chan)
1392 {
1393         u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1394
1395         if (IS_CHAN_B(chan))
1396                 ctl |= CTL_11B;
1397         else if (IS_CHAN_G(chan))
1398                 ctl |= CTL_11G;
1399         else
1400                 ctl |= CTL_11A;
1401
1402         return ctl;
1403 }
1404
1405 static int ath9k_hw_process_ini(struct ath_hw *ah,
1406                                 struct ath9k_channel *chan)
1407 {
1408         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1409         int i, regWrites = 0;
1410         struct ieee80211_channel *channel = chan->chan;
1411         u32 modesIndex, freqIndex;
1412
1413         switch (chan->chanmode) {
1414         case CHANNEL_A:
1415         case CHANNEL_A_HT20:
1416                 modesIndex = 1;
1417                 freqIndex = 1;
1418                 break;
1419         case CHANNEL_A_HT40PLUS:
1420         case CHANNEL_A_HT40MINUS:
1421                 modesIndex = 2;
1422                 freqIndex = 1;
1423                 break;
1424         case CHANNEL_G:
1425         case CHANNEL_G_HT20:
1426         case CHANNEL_B:
1427                 modesIndex = 4;
1428                 freqIndex = 2;
1429                 break;
1430         case CHANNEL_G_HT40PLUS:
1431         case CHANNEL_G_HT40MINUS:
1432                 modesIndex = 3;
1433                 freqIndex = 2;
1434                 break;
1435
1436         default:
1437                 return -EINVAL;
1438         }
1439
1440         /* Set correct baseband to analog shift setting to access analog chips */
1441         REG_WRITE(ah, AR_PHY(0), 0x00000007);
1442
1443         /* Write ADDAC shifts */
1444         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1445         ah->eep_ops->set_addac(ah, chan);
1446
1447         if (AR_SREV_5416_22_OR_LATER(ah)) {
1448                 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1449         } else {
1450                 struct ar5416IniArray temp;
1451                 u32 addacSize =
1452                         sizeof(u32) * ah->iniAddac.ia_rows *
1453                         ah->iniAddac.ia_columns;
1454
1455                 /* For AR5416 2.0/2.1 */
1456                 memcpy(ah->addac5416_21,
1457                        ah->iniAddac.ia_array, addacSize);
1458
1459                 /* override CLKDRV value at [row, column] = [31, 1] */
1460                 (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1461
1462                 temp.ia_array = ah->addac5416_21;
1463                 temp.ia_columns = ah->iniAddac.ia_columns;
1464                 temp.ia_rows = ah->iniAddac.ia_rows;
1465                 REG_WRITE_ARRAY(&temp, 1, regWrites);
1466         }
1467
1468         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1469
1470         for (i = 0; i < ah->iniModes.ia_rows; i++) {
1471                 u32 reg = INI_RA(&ah->iniModes, i, 0);
1472                 u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1473
1474                 REG_WRITE(ah, reg, val);
1475
1476                 if (reg >= 0x7800 && reg < 0x78a0
1477                     && ah->config.analog_shiftreg) {
1478                         udelay(100);
1479                 }
1480
1481                 DO_DELAY(regWrites);
1482         }
1483
1484         if (AR_SREV_9280(ah) || AR_SREV_9287_10_OR_LATER(ah))
1485                 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1486
1487         if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
1488             AR_SREV_9287_10_OR_LATER(ah))
1489                 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1490
1491         if (AR_SREV_9271_10(ah))
1492                 REG_WRITE_ARRAY(&ah->iniModes_9271_1_0_only,
1493                                 modesIndex, regWrites);
1494
1495         /* Write common array parameters */
1496         for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1497                 u32 reg = INI_RA(&ah->iniCommon, i, 0);
1498                 u32 val = INI_RA(&ah->iniCommon, i, 1);
1499
1500                 REG_WRITE(ah, reg, val);
1501
1502                 if (reg >= 0x7800 && reg < 0x78a0
1503                     && ah->config.analog_shiftreg) {
1504                         udelay(100);
1505                 }
1506
1507                 DO_DELAY(regWrites);
1508         }
1509
1510         if (AR_SREV_9271(ah)) {
1511                 if (ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE) == 1)
1512                         REG_WRITE_ARRAY(&ah->iniModes_high_power_tx_gain_9271,
1513                                         modesIndex, regWrites);
1514                 else
1515                         REG_WRITE_ARRAY(&ah->iniModes_normal_power_tx_gain_9271,
1516                                         modesIndex, regWrites);
1517         }
1518
1519         ath9k_hw_write_regs(ah, freqIndex, regWrites);
1520
1521         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1522                 REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1523                                 regWrites);
1524         }
1525
1526         ath9k_hw_override_ini(ah, chan);
1527         ath9k_hw_set_regs(ah, chan);
1528         ath9k_hw_init_chain_masks(ah);
1529
1530         if (OLC_FOR_AR9280_20_LATER)
1531                 ath9k_olc_init(ah);
1532
1533         /* Set TX power */
1534         ah->eep_ops->set_txpower(ah, chan,
1535                                  ath9k_regd_get_ctl(regulatory, chan),
1536                                  channel->max_antenna_gain * 2,
1537                                  channel->max_power * 2,
1538                                  min((u32) MAX_RATE_POWER,
1539                                  (u32) regulatory->power_limit));
1540
1541         /* Write analog registers */
1542         if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1543                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1544                           "ar5416SetRfRegs failed\n");
1545                 return -EIO;
1546         }
1547
1548         return 0;
1549 }
1550
1551 /****************************************/
1552 /* Reset and Channel Switching Routines */
1553 /****************************************/
1554
1555 static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1556 {
1557         u32 rfMode = 0;
1558
1559         if (chan == NULL)
1560                 return;
1561
1562         rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1563                 ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1564
1565         if (!AR_SREV_9280_10_OR_LATER(ah))
1566                 rfMode |= (IS_CHAN_5GHZ(chan)) ?
1567                         AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1568
1569         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1570                 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1571
1572         REG_WRITE(ah, AR_PHY_MODE, rfMode);
1573 }
1574
1575 static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1576 {
1577         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1578 }
1579
1580 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1581 {
1582         u32 regval;
1583
1584         /*
1585          * set AHB_MODE not to do cacheline prefetches
1586         */
1587         regval = REG_READ(ah, AR_AHB_MODE);
1588         REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1589
1590         /*
1591          * let mac dma reads be in 128 byte chunks
1592          */
1593         regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1594         REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1595
1596         /*
1597          * Restore TX Trigger Level to its pre-reset value.
1598          * The initial value depends on whether aggregation is enabled, and is
1599          * adjusted whenever underruns are detected.
1600          */
1601         REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1602
1603         /*
1604          * let mac dma writes be in 128 byte chunks
1605          */
1606         regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1607         REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1608
1609         /*
1610          * Setup receive FIFO threshold to hold off TX activities
1611          */
1612         REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1613
1614         /*
1615          * reduce the number of usable entries in PCU TXBUF to avoid
1616          * wrap around issues.
1617          */
1618         if (AR_SREV_9285(ah)) {
1619                 /* For AR9285 the number of Fifos are reduced to half.
1620                  * So set the usable tx buf size also to half to
1621                  * avoid data/delimiter underruns
1622                  */
1623                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1624                           AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1625         } else if (!AR_SREV_9271(ah)) {
1626                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1627                           AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1628         }
1629 }
1630
1631 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1632 {
1633         u32 val;
1634
1635         val = REG_READ(ah, AR_STA_ID1);
1636         val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1637         switch (opmode) {
1638         case NL80211_IFTYPE_AP:
1639                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1640                           | AR_STA_ID1_KSRCH_MODE);
1641                 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1642                 break;
1643         case NL80211_IFTYPE_ADHOC:
1644         case NL80211_IFTYPE_MESH_POINT:
1645                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1646                           | AR_STA_ID1_KSRCH_MODE);
1647                 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1648                 break;
1649         case NL80211_IFTYPE_STATION:
1650         case NL80211_IFTYPE_MONITOR:
1651                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1652                 break;
1653         }
1654 }
1655
1656 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1657                                                  u32 coef_scaled,
1658                                                  u32 *coef_mantissa,
1659                                                  u32 *coef_exponent)
1660 {
1661         u32 coef_exp, coef_man;
1662
1663         for (coef_exp = 31; coef_exp > 0; coef_exp--)
1664                 if ((coef_scaled >> coef_exp) & 0x1)
1665                         break;
1666
1667         coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1668
1669         coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1670
1671         *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1672         *coef_exponent = coef_exp - 16;
1673 }
1674
1675 static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1676                                      struct ath9k_channel *chan)
1677 {
1678         u32 coef_scaled, ds_coef_exp, ds_coef_man;
1679         u32 clockMhzScaled = 0x64000000;
1680         struct chan_centers centers;
1681
1682         if (IS_CHAN_HALF_RATE(chan))
1683                 clockMhzScaled = clockMhzScaled >> 1;
1684         else if (IS_CHAN_QUARTER_RATE(chan))
1685                 clockMhzScaled = clockMhzScaled >> 2;
1686
1687         ath9k_hw_get_channel_centers(ah, chan, &centers);
1688         coef_scaled = clockMhzScaled / centers.synth_center;
1689
1690         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1691                                       &ds_coef_exp);
1692
1693         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1694                       AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1695         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1696                       AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1697
1698         coef_scaled = (9 * coef_scaled) / 10;
1699
1700         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1701                                       &ds_coef_exp);
1702
1703         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1704                       AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1705         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1706                       AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1707 }
1708
1709 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1710 {
1711         u32 rst_flags;
1712         u32 tmpReg;
1713
1714         if (AR_SREV_9100(ah)) {
1715                 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1716                 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1717                 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1718                 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1719                 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1720         }
1721
1722         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1723                   AR_RTC_FORCE_WAKE_ON_INT);
1724
1725         if (AR_SREV_9100(ah)) {
1726                 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1727                         AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1728         } else {
1729                 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1730                 if (tmpReg &
1731                     (AR_INTR_SYNC_LOCAL_TIMEOUT |
1732                      AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1733                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1734                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1735                 } else {
1736                         REG_WRITE(ah, AR_RC, AR_RC_AHB);
1737                 }
1738
1739                 rst_flags = AR_RTC_RC_MAC_WARM;
1740                 if (type == ATH9K_RESET_COLD)
1741                         rst_flags |= AR_RTC_RC_MAC_COLD;
1742         }
1743
1744         REG_WRITE(ah, AR_RTC_RC, rst_flags);
1745         udelay(50);
1746
1747         REG_WRITE(ah, AR_RTC_RC, 0);
1748         if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1749                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1750                           "RTC stuck in MAC reset\n");
1751                 return false;
1752         }
1753
1754         if (!AR_SREV_9100(ah))
1755                 REG_WRITE(ah, AR_RC, 0);
1756
1757         if (AR_SREV_9100(ah))
1758                 udelay(50);
1759
1760         return true;
1761 }
1762
1763 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1764 {
1765         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1766                   AR_RTC_FORCE_WAKE_ON_INT);
1767
1768         if (!AR_SREV_9100(ah))
1769                 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1770
1771         REG_WRITE(ah, AR_RTC_RESET, 0);
1772         udelay(2);
1773
1774         if (!AR_SREV_9100(ah))
1775                 REG_WRITE(ah, AR_RC, 0);
1776
1777         REG_WRITE(ah, AR_RTC_RESET, 1);
1778
1779         if (!ath9k_hw_wait(ah,
1780                            AR_RTC_STATUS,
1781                            AR_RTC_STATUS_M,
1782                            AR_RTC_STATUS_ON,
1783                            AH_WAIT_TIMEOUT)) {
1784                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1785                           "RTC not waking up\n");
1786                 return false;
1787         }
1788
1789         ath9k_hw_read_revisions(ah);
1790
1791         return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1792 }
1793
1794 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1795 {
1796         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1797                   AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1798
1799         switch (type) {
1800         case ATH9K_RESET_POWER_ON:
1801                 return ath9k_hw_set_reset_power_on(ah);
1802         case ATH9K_RESET_WARM:
1803         case ATH9K_RESET_COLD:
1804                 return ath9k_hw_set_reset(ah, type);
1805         default:
1806                 return false;
1807         }
1808 }
1809
1810 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan)
1811 {
1812         u32 phymode;
1813         u32 enableDacFifo = 0;
1814
1815         if (AR_SREV_9285_10_OR_LATER(ah))
1816                 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1817                                          AR_PHY_FC_ENABLE_DAC_FIFO);
1818
1819         phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1820                 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1821
1822         if (IS_CHAN_HT40(chan)) {
1823                 phymode |= AR_PHY_FC_DYN2040_EN;
1824
1825                 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1826                     (chan->chanmode == CHANNEL_G_HT40PLUS))
1827                         phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1828
1829         }
1830         REG_WRITE(ah, AR_PHY_TURBO, phymode);
1831
1832         ath9k_hw_set11nmac2040(ah);
1833
1834         REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1835         REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1836 }
1837
1838 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1839                                 struct ath9k_channel *chan)
1840 {
1841         if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1842                 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1843                         return false;
1844         } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1845                 return false;
1846
1847         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1848                 return false;
1849
1850         ah->chip_fullsleep = false;
1851         ath9k_hw_init_pll(ah, chan);
1852         ath9k_hw_set_rfmode(ah, chan);
1853
1854         return true;
1855 }
1856
1857 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1858                                     struct ath9k_channel *chan)
1859 {
1860         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1861         struct ath_common *common = ath9k_hw_common(ah);
1862         struct ieee80211_channel *channel = chan->chan;
1863         u32 synthDelay, qnum;
1864         int r;
1865
1866         for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1867                 if (ath9k_hw_numtxpending(ah, qnum)) {
1868                         ath_print(common, ATH_DBG_QUEUE,
1869                                   "Transmit frames pending on "
1870                                   "queue %d\n", qnum);
1871                         return false;
1872                 }
1873         }
1874
1875         REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1876         if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1877                            AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1878                 ath_print(common, ATH_DBG_FATAL,
1879                           "Could not kill baseband RX\n");
1880                 return false;
1881         }
1882
1883         ath9k_hw_set_regs(ah, chan);
1884
1885         r = ah->ath9k_hw_rf_set_freq(ah, chan);
1886         if (r) {
1887                 ath_print(common, ATH_DBG_FATAL,
1888                           "Failed to set channel\n");
1889                 return false;
1890         }
1891
1892         ah->eep_ops->set_txpower(ah, chan,
1893                              ath9k_regd_get_ctl(regulatory, chan),
1894                              channel->max_antenna_gain * 2,
1895                              channel->max_power * 2,
1896                              min((u32) MAX_RATE_POWER,
1897                              (u32) regulatory->power_limit));
1898
1899         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1900         if (IS_CHAN_B(chan))
1901                 synthDelay = (4 * synthDelay) / 22;
1902         else
1903                 synthDelay /= 10;
1904
1905         udelay(synthDelay + BASE_ACTIVATE_DELAY);
1906
1907         REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1908
1909         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1910                 ath9k_hw_set_delta_slope(ah, chan);
1911
1912         ah->ath9k_hw_spur_mitigate_freq(ah, chan);
1913
1914         if (!chan->oneTimeCalsDone)
1915                 chan->oneTimeCalsDone = true;
1916
1917         return true;
1918 }
1919
1920 static void ath9k_enable_rfkill(struct ath_hw *ah)
1921 {
1922         REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
1923                     AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
1924
1925         REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
1926                     AR_GPIO_INPUT_MUX2_RFSILENT);
1927
1928         ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1929         REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
1930 }
1931
1932 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1933                     bool bChannelChange)
1934 {
1935         struct ath_common *common = ath9k_hw_common(ah);
1936         u32 saveLedState;
1937         struct ath9k_channel *curchan = ah->curchan;
1938         u32 saveDefAntenna;
1939         u32 macStaId1;
1940         u64 tsf = 0;
1941         int i, rx_chainmask, r;
1942
1943         ah->txchainmask = common->tx_chainmask;
1944         ah->rxchainmask = common->rx_chainmask;
1945
1946         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1947                 return -EIO;
1948
1949         if (curchan && !ah->chip_fullsleep)
1950                 ath9k_hw_getnf(ah, curchan);
1951
1952         if (bChannelChange &&
1953             (ah->chip_fullsleep != true) &&
1954             (ah->curchan != NULL) &&
1955             (chan->channel != ah->curchan->channel) &&
1956             ((chan->channelFlags & CHANNEL_ALL) ==
1957              (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1958              !(AR_SREV_9280(ah) || IS_CHAN_A_5MHZ_SPACED(chan) ||
1959              IS_CHAN_A_5MHZ_SPACED(ah->curchan))) {
1960
1961                 if (ath9k_hw_channel_change(ah, chan)) {
1962                         ath9k_hw_loadnf(ah, ah->curchan);
1963                         ath9k_hw_start_nfcal(ah);
1964                         return 0;
1965                 }
1966         }
1967
1968         saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1969         if (saveDefAntenna == 0)
1970                 saveDefAntenna = 1;
1971
1972         macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1973
1974         /* For chips on which RTC reset is done, save TSF before it gets cleared */
1975         if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1976                 tsf = ath9k_hw_gettsf64(ah);
1977
1978         saveLedState = REG_READ(ah, AR_CFG_LED) &
1979                 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1980                  AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1981
1982         ath9k_hw_mark_phy_inactive(ah);
1983
1984         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1985                 REG_WRITE(ah,
1986                           AR9271_RESET_POWER_DOWN_CONTROL,
1987                           AR9271_RADIO_RF_RST);
1988                 udelay(50);
1989         }
1990
1991         if (!ath9k_hw_chip_reset(ah, chan)) {
1992                 ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
1993                 return -EINVAL;
1994         }
1995
1996         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1997                 ah->htc_reset_init = false;
1998                 REG_WRITE(ah,
1999                           AR9271_RESET_POWER_DOWN_CONTROL,
2000                           AR9271_GATE_MAC_CTL);
2001                 udelay(50);
2002         }
2003
2004         /* Restore TSF */
2005         if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
2006                 ath9k_hw_settsf64(ah, tsf);
2007
2008         if (AR_SREV_9280_10_OR_LATER(ah))
2009                 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
2010
2011         if (AR_SREV_9287_12_OR_LATER(ah)) {
2012                 /* Enable ASYNC FIFO */
2013                 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2014                                 AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
2015                 REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
2016                 REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2017                                 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2018                 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2019                                 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2020         }
2021         r = ath9k_hw_process_ini(ah, chan);
2022         if (r)
2023                 return r;
2024
2025         /* Setup MFP options for CCMP */
2026         if (AR_SREV_9280_20_OR_LATER(ah)) {
2027                 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2028                  * frames when constructing CCMP AAD. */
2029                 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
2030                               0xc7ff);
2031                 ah->sw_mgmt_crypto = false;
2032         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
2033                 /* Disable hardware crypto for management frames */
2034                 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
2035                             AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2036                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2037                             AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2038                 ah->sw_mgmt_crypto = true;
2039         } else
2040                 ah->sw_mgmt_crypto = true;
2041
2042         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2043                 ath9k_hw_set_delta_slope(ah, chan);
2044
2045         ah->ath9k_hw_spur_mitigate_freq(ah, chan);
2046         ah->eep_ops->set_board_values(ah, chan);
2047
2048         REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
2049         REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
2050                   | macStaId1
2051                   | AR_STA_ID1_RTS_USE_DEF
2052                   | (ah->config.
2053                      ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2054                   | ah->sta_id1_defaults);
2055         ath9k_hw_set_operating_mode(ah, ah->opmode);
2056
2057         ath_hw_setbssidmask(common);
2058
2059         REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2060
2061         ath9k_hw_write_associd(ah);
2062
2063         REG_WRITE(ah, AR_ISR, ~0);
2064
2065         REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2066
2067         r = ah->ath9k_hw_rf_set_freq(ah, chan);
2068         if (r)
2069                 return r;
2070
2071         for (i = 0; i < AR_NUM_DCU; i++)
2072                 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2073
2074         ah->intr_txqs = 0;
2075         for (i = 0; i < ah->caps.total_queues; i++)
2076                 ath9k_hw_resettxqueue(ah, i);
2077
2078         ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2079         ath9k_hw_init_qos(ah);
2080
2081         if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2082                 ath9k_enable_rfkill(ah);
2083
2084         ath9k_hw_init_global_settings(ah);
2085
2086         if (AR_SREV_9287_12_OR_LATER(ah)) {
2087                 REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
2088                           AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
2089                 REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
2090                           AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
2091                 REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
2092                           AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
2093
2094                 REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
2095                 REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
2096
2097                 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2098                             AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2099                 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2100                               AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2101         }
2102         if (AR_SREV_9287_12_OR_LATER(ah)) {
2103                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2104                                 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2105         }
2106
2107         REG_WRITE(ah, AR_STA_ID1,
2108                   REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2109
2110         ath9k_hw_set_dma(ah);
2111
2112         REG_WRITE(ah, AR_OBS, 8);
2113
2114         if (ah->config.rx_intr_mitigation) {
2115                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2116                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2117         }
2118
2119         ath9k_hw_init_bb(ah, chan);
2120
2121         if (!ath9k_hw_init_cal(ah, chan))
2122                 return -EIO;
2123
2124         rx_chainmask = ah->rxchainmask;
2125         if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2126                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2127                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2128         }
2129
2130         REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2131
2132         /*
2133          * For big endian systems turn on swapping for descriptors
2134          */
2135         if (AR_SREV_9100(ah)) {
2136                 u32 mask;
2137                 mask = REG_READ(ah, AR_CFG);
2138                 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2139                         ath_print(common, ATH_DBG_RESET,
2140                                 "CFG Byte Swap Set 0x%x\n", mask);
2141                 } else {
2142                         mask =
2143                                 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2144                         REG_WRITE(ah, AR_CFG, mask);
2145                         ath_print(common, ATH_DBG_RESET,
2146                                 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2147                 }
2148         } else {
2149                 /* Configure AR9271 target WLAN */
2150                 if (AR_SREV_9271(ah))
2151                         REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2152 #ifdef __BIG_ENDIAN
2153                 else
2154                         REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2155 #endif
2156         }
2157
2158         if (ah->btcoex_hw.enabled)
2159                 ath9k_hw_btcoex_enable(ah);
2160
2161         return 0;
2162 }
2163 EXPORT_SYMBOL(ath9k_hw_reset);
2164
2165 /************************/
2166 /* Key Cache Management */
2167 /************************/
2168
2169 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2170 {
2171         u32 keyType;
2172
2173         if (entry >= ah->caps.keycache_size) {
2174                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2175                           "keychache entry %u out of range\n", entry);
2176                 return false;
2177         }
2178
2179         keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2180
2181         REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2182         REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2183         REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2184         REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2185         REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2186         REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2187         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2188         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2189
2190         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2191                 u16 micentry = entry + 64;
2192
2193                 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2194                 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2195                 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2196                 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2197
2198         }
2199
2200         return true;
2201 }
2202 EXPORT_SYMBOL(ath9k_hw_keyreset);
2203
2204 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2205 {
2206         u32 macHi, macLo;
2207
2208         if (entry >= ah->caps.keycache_size) {
2209                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2210                           "keychache entry %u out of range\n", entry);
2211                 return false;
2212         }
2213
2214         if (mac != NULL) {
2215                 macHi = (mac[5] << 8) | mac[4];
2216                 macLo = (mac[3] << 24) |
2217                         (mac[2] << 16) |
2218                         (mac[1] << 8) |
2219                         mac[0];
2220                 macLo >>= 1;
2221                 macLo |= (macHi & 1) << 31;
2222                 macHi >>= 1;
2223         } else {
2224                 macLo = macHi = 0;
2225         }
2226         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2227         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2228
2229         return true;
2230 }
2231 EXPORT_SYMBOL(ath9k_hw_keysetmac);
2232
2233 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2234                                  const struct ath9k_keyval *k,
2235                                  const u8 *mac)
2236 {
2237         const struct ath9k_hw_capabilities *pCap = &ah->caps;
2238         struct ath_common *common = ath9k_hw_common(ah);
2239         u32 key0, key1, key2, key3, key4;
2240         u32 keyType;
2241
2242         if (entry >= pCap->keycache_size) {
2243                 ath_print(common, ATH_DBG_FATAL,
2244                           "keycache entry %u out of range\n", entry);
2245                 return false;
2246         }
2247
2248         switch (k->kv_type) {
2249         case ATH9K_CIPHER_AES_OCB:
2250                 keyType = AR_KEYTABLE_TYPE_AES;
2251                 break;
2252         case ATH9K_CIPHER_AES_CCM:
2253                 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2254                         ath_print(common, ATH_DBG_ANY,
2255                                   "AES-CCM not supported by mac rev 0x%x\n",
2256                                   ah->hw_version.macRev);
2257                         return false;
2258                 }
2259                 keyType = AR_KEYTABLE_TYPE_CCM;
2260                 break;
2261         case ATH9K_CIPHER_TKIP:
2262                 keyType = AR_KEYTABLE_TYPE_TKIP;
2263                 if (ATH9K_IS_MIC_ENABLED(ah)
2264                     && entry + 64 >= pCap->keycache_size) {
2265                         ath_print(common, ATH_DBG_ANY,
2266                                   "entry %u inappropriate for TKIP\n", entry);
2267                         return false;
2268                 }
2269                 break;
2270         case ATH9K_CIPHER_WEP:
2271                 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
2272                         ath_print(common, ATH_DBG_ANY,
2273                                   "WEP key length %u too small\n", k->kv_len);
2274                         return false;
2275                 }
2276                 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
2277                         keyType = AR_KEYTABLE_TYPE_40;
2278                 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2279                         keyType = AR_KEYTABLE_TYPE_104;
2280                 else
2281                         keyType = AR_KEYTABLE_TYPE_128;
2282                 break;
2283         case ATH9K_CIPHER_CLR:
2284                 keyType = AR_KEYTABLE_TYPE_CLR;
2285                 break;
2286         default:
2287                 ath_print(common, ATH_DBG_FATAL,
2288                           "cipher %u not supported\n", k->kv_type);
2289                 return false;
2290         }
2291
2292         key0 = get_unaligned_le32(k->kv_val + 0);
2293         key1 = get_unaligned_le16(k->kv_val + 4);
2294         key2 = get_unaligned_le32(k->kv_val + 6);
2295         key3 = get_unaligned_le16(k->kv_val + 10);
2296         key4 = get_unaligned_le32(k->kv_val + 12);
2297         if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2298                 key4 &= 0xff;
2299
2300         /*
2301          * Note: Key cache registers access special memory area that requires
2302          * two 32-bit writes to actually update the values in the internal
2303          * memory. Consequently, the exact order and pairs used here must be
2304          * maintained.
2305          */
2306
2307         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2308                 u16 micentry = entry + 64;
2309
2310                 /*
2311                  * Write inverted key[47:0] first to avoid Michael MIC errors
2312                  * on frames that could be sent or received at the same time.
2313                  * The correct key will be written in the end once everything
2314                  * else is ready.
2315                  */
2316                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2317                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2318
2319                 /* Write key[95:48] */
2320                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2321                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2322
2323                 /* Write key[127:96] and key type */
2324                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2325                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2326
2327                 /* Write MAC address for the entry */
2328                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2329
2330                 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2331                         /*
2332                          * TKIP uses two key cache entries:
2333                          * Michael MIC TX/RX keys in the same key cache entry
2334                          * (idx = main index + 64):
2335                          * key0 [31:0] = RX key [31:0]
2336                          * key1 [15:0] = TX key [31:16]
2337                          * key1 [31:16] = reserved
2338                          * key2 [31:0] = RX key [63:32]
2339                          * key3 [15:0] = TX key [15:0]
2340                          * key3 [31:16] = reserved
2341                          * key4 [31:0] = TX key [63:32]
2342                          */
2343                         u32 mic0, mic1, mic2, mic3, mic4;
2344
2345                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2346                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2347                         mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2348                         mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2349                         mic4 = get_unaligned_le32(k->kv_txmic + 4);
2350
2351                         /* Write RX[31:0] and TX[31:16] */
2352                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2353                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2354
2355                         /* Write RX[63:32] and TX[15:0] */
2356                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2357                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2358
2359                         /* Write TX[63:32] and keyType(reserved) */
2360                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2361                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2362                                   AR_KEYTABLE_TYPE_CLR);
2363
2364                 } else {
2365                         /*
2366                          * TKIP uses four key cache entries (two for group
2367                          * keys):
2368                          * Michael MIC TX/RX keys are in different key cache
2369                          * entries (idx = main index + 64 for TX and
2370                          * main index + 32 + 96 for RX):
2371                          * key0 [31:0] = TX/RX MIC key [31:0]
2372                          * key1 [31:0] = reserved
2373                          * key2 [31:0] = TX/RX MIC key [63:32]
2374                          * key3 [31:0] = reserved
2375                          * key4 [31:0] = reserved
2376                          *
2377                          * Upper layer code will call this function separately
2378                          * for TX and RX keys when these registers offsets are
2379                          * used.
2380                          */
2381                         u32 mic0, mic2;
2382
2383                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2384                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2385
2386                         /* Write MIC key[31:0] */
2387                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2388                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2389
2390                         /* Write MIC key[63:32] */
2391                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2392                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2393
2394                         /* Write TX[63:32] and keyType(reserved) */
2395                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2396                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2397                                   AR_KEYTABLE_TYPE_CLR);
2398                 }
2399
2400                 /* MAC address registers are reserved for the MIC entry */
2401                 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2402                 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2403
2404                 /*
2405                  * Write the correct (un-inverted) key[47:0] last to enable
2406                  * TKIP now that all other registers are set with correct
2407                  * values.
2408                  */
2409                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2410                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2411         } else {
2412                 /* Write key[47:0] */
2413                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2414                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2415
2416                 /* Write key[95:48] */
2417                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2418                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2419
2420                 /* Write key[127:96] and key type */
2421                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2422                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2423
2424                 /* Write MAC address for the entry */
2425                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2426         }
2427
2428         return true;
2429 }
2430 EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
2431
2432 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2433 {
2434         if (entry < ah->caps.keycache_size) {
2435                 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2436                 if (val & AR_KEYTABLE_VALID)
2437                         return true;
2438         }
2439         return false;
2440 }
2441 EXPORT_SYMBOL(ath9k_hw_keyisvalid);
2442
2443 /******************************/
2444 /* Power Management (Chipset) */
2445 /******************************/
2446
2447 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2448 {
2449         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2450         if (setChip) {
2451                 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2452                             AR_RTC_FORCE_WAKE_EN);
2453                 if (!AR_SREV_9100(ah))
2454                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2455
2456                 if(!AR_SREV_5416(ah))
2457                         REG_CLR_BIT(ah, (AR_RTC_RESET),
2458                                     AR_RTC_RESET_EN);
2459         }
2460 }
2461
2462 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2463 {
2464         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2465         if (setChip) {
2466                 struct ath9k_hw_capabilities *pCap = &ah->caps;
2467
2468                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2469                         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2470                                   AR_RTC_FORCE_WAKE_ON_INT);
2471                 } else {
2472                         REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2473                                     AR_RTC_FORCE_WAKE_EN);
2474                 }
2475         }
2476 }
2477
2478 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2479 {
2480         u32 val;
2481         int i;
2482
2483         if (setChip) {
2484                 if ((REG_READ(ah, AR_RTC_STATUS) &
2485                      AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2486                         if (ath9k_hw_set_reset_reg(ah,
2487                                            ATH9K_RESET_POWER_ON) != true) {
2488                                 return false;
2489                         }
2490                         ath9k_hw_init_pll(ah, NULL);
2491                 }
2492                 if (AR_SREV_9100(ah))
2493                         REG_SET_BIT(ah, AR_RTC_RESET,
2494                                     AR_RTC_RESET_EN);
2495
2496                 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2497                             AR_RTC_FORCE_WAKE_EN);
2498                 udelay(50);
2499
2500                 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2501                         val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2502                         if (val == AR_RTC_STATUS_ON)
2503                                 break;
2504                         udelay(50);
2505                         REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2506                                     AR_RTC_FORCE_WAKE_EN);
2507                 }
2508                 if (i == 0) {
2509                         ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2510                                   "Failed to wakeup in %uus\n",
2511                                   POWER_UP_TIME / 20);
2512                         return false;
2513                 }
2514         }
2515
2516         REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2517
2518         return true;
2519 }
2520
2521 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2522 {
2523         struct ath_common *common = ath9k_hw_common(ah);
2524         int status = true, setChip = true;
2525         static const char *modes[] = {
2526                 "AWAKE",
2527                 "FULL-SLEEP",
2528                 "NETWORK SLEEP",
2529                 "UNDEFINED"
2530         };
2531
2532         if (ah->power_mode == mode)
2533                 return status;
2534
2535         ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
2536                   modes[ah->power_mode], modes[mode]);
2537
2538         switch (mode) {
2539         case ATH9K_PM_AWAKE:
2540                 status = ath9k_hw_set_power_awake(ah, setChip);
2541                 break;
2542         case ATH9K_PM_FULL_SLEEP:
2543                 ath9k_set_power_sleep(ah, setChip);
2544                 ah->chip_fullsleep = true;
2545                 break;
2546         case ATH9K_PM_NETWORK_SLEEP:
2547                 ath9k_set_power_network_sleep(ah, setChip);
2548                 break;
2549         default:
2550                 ath_print(common, ATH_DBG_FATAL,
2551                           "Unknown power mode %u\n", mode);
2552                 return false;
2553         }
2554         ah->power_mode = mode;
2555
2556         return status;
2557 }
2558 EXPORT_SYMBOL(ath9k_hw_setpower);
2559
2560 /*
2561  * Helper for ASPM support.
2562  *
2563  * Disable PLL when in L0s as well as receiver clock when in L1.
2564  * This power saving option must be enabled through the SerDes.
2565  *
2566  * Programming the SerDes must go through the same 288 bit serial shift
2567  * register as the other analog registers.  Hence the 9 writes.
2568  */
2569 void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore, int power_off)
2570 {
2571         u8 i;
2572         u32 val;
2573
2574         if (ah->is_pciexpress != true)
2575                 return;
2576
2577         /* Do not touch SerDes registers */
2578         if (ah->config.pcie_powersave_enable == 2)
2579                 return;
2580
2581         /* Nothing to do on restore for 11N */
2582         if (!restore) {
2583                 if (AR_SREV_9280_20_OR_LATER(ah)) {
2584                         /*
2585                          * AR9280 2.0 or later chips use SerDes values from the
2586                          * initvals.h initialized depending on chipset during
2587                          * ath9k_hw_init()
2588                          */
2589                         for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
2590                                 REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
2591                                           INI_RA(&ah->iniPcieSerdes, i, 1));
2592                         }
2593                 } else if (AR_SREV_9280(ah) &&
2594                            (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
2595                         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
2596                         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2597
2598                         /* RX shut off when elecidle is asserted */
2599                         REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
2600                         REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
2601                         REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
2602
2603                         /* Shut off CLKREQ active in L1 */
2604                         if (ah->config.pcie_clock_req)
2605                                 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
2606                         else
2607                                 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
2608
2609                         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2610                         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2611                         REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
2612
2613                         /* Load the new settings */
2614                         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2615
2616                 } else {
2617                         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
2618                         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2619
2620                         /* RX shut off when elecidle is asserted */
2621                         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
2622                         REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
2623                         REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
2624
2625                         /*
2626                          * Ignore ah->ah_config.pcie_clock_req setting for
2627                          * pre-AR9280 11n
2628                          */
2629                         REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
2630
2631                         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2632                         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2633                         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
2634
2635                         /* Load the new settings */
2636                         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2637                 }
2638
2639                 udelay(1000);
2640
2641                 /* set bit 19 to allow forcing of pcie core into L1 state */
2642                 REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
2643
2644                 /* Several PCIe massages to ensure proper behaviour */
2645                 if (ah->config.pcie_waen) {
2646                         val = ah->config.pcie_waen;
2647                         if (!power_off)
2648                                 val &= (~AR_WA_D3_L1_DISABLE);
2649                 } else {
2650                         if (AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2651                             AR_SREV_9287(ah)) {
2652                                 val = AR9285_WA_DEFAULT;
2653                                 if (!power_off)
2654                                         val &= (~AR_WA_D3_L1_DISABLE);
2655                         } else if (AR_SREV_9280(ah)) {
2656                                 /*
2657                                  * On AR9280 chips bit 22 of 0x4004 needs to be
2658                                  * set otherwise card may disappear.
2659                                  */
2660                                 val = AR9280_WA_DEFAULT;
2661                                 if (!power_off)
2662                                         val &= (~AR_WA_D3_L1_DISABLE);
2663                         } else
2664                                 val = AR_WA_DEFAULT;
2665                 }
2666
2667                 REG_WRITE(ah, AR_WA, val);
2668         }
2669
2670         if (power_off) {
2671                 /*
2672                  * Set PCIe workaround bits
2673                  * bit 14 in WA register (disable L1) should only
2674                  * be set when device enters D3 and be cleared
2675                  * when device comes back to D0.
2676                  */
2677                 if (ah->config.pcie_waen) {
2678                         if (ah->config.pcie_waen & AR_WA_D3_L1_DISABLE)
2679                                 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2680                 } else {
2681                         if (((AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2682                               AR_SREV_9287(ah)) &&
2683                              (AR9285_WA_DEFAULT & AR_WA_D3_L1_DISABLE)) ||
2684                             (AR_SREV_9280(ah) &&
2685                              (AR9280_WA_DEFAULT & AR_WA_D3_L1_DISABLE))) {
2686                                 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2687                         }
2688                 }
2689         }
2690 }
2691 EXPORT_SYMBOL(ath9k_hw_configpcipowersave);
2692
2693 /**********************/
2694 /* Interrupt Handling */
2695 /**********************/
2696
2697 bool ath9k_hw_intrpend(struct ath_hw *ah)
2698 {
2699         u32 host_isr;
2700
2701         if (AR_SREV_9100(ah))
2702                 return true;
2703
2704         host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
2705         if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
2706                 return true;
2707
2708         host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
2709         if ((host_isr & AR_INTR_SYNC_DEFAULT)
2710             && (host_isr != AR_INTR_SPURIOUS))
2711                 return true;
2712
2713         return false;
2714 }
2715 EXPORT_SYMBOL(ath9k_hw_intrpend);
2716
2717 bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
2718 {
2719         u32 isr = 0;
2720         u32 mask2 = 0;
2721         struct ath9k_hw_capabilities *pCap = &ah->caps;
2722         u32 sync_cause = 0;
2723         bool fatal_int = false;
2724         struct ath_common *common = ath9k_hw_common(ah);
2725
2726         if (!AR_SREV_9100(ah)) {
2727                 if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
2728                         if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
2729                             == AR_RTC_STATUS_ON) {
2730                                 isr = REG_READ(ah, AR_ISR);
2731                         }
2732                 }
2733
2734                 sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
2735                         AR_INTR_SYNC_DEFAULT;
2736
2737                 *masked = 0;
2738
2739                 if (!isr && !sync_cause)
2740                         return false;
2741         } else {
2742                 *masked = 0;
2743                 isr = REG_READ(ah, AR_ISR);
2744         }
2745
2746         if (isr) {
2747                 if (isr & AR_ISR_BCNMISC) {
2748                         u32 isr2;
2749                         isr2 = REG_READ(ah, AR_ISR_S2);
2750                         if (isr2 & AR_ISR_S2_TIM)
2751                                 mask2 |= ATH9K_INT_TIM;
2752                         if (isr2 & AR_ISR_S2_DTIM)
2753                                 mask2 |= ATH9K_INT_DTIM;
2754                         if (isr2 & AR_ISR_S2_DTIMSYNC)
2755                                 mask2 |= ATH9K_INT_DTIMSYNC;
2756                         if (isr2 & (AR_ISR_S2_CABEND))
2757                                 mask2 |= ATH9K_INT_CABEND;
2758                         if (isr2 & AR_ISR_S2_GTT)
2759                                 mask2 |= ATH9K_INT_GTT;
2760                         if (isr2 & AR_ISR_S2_CST)
2761                                 mask2 |= ATH9K_INT_CST;
2762                         if (isr2 & AR_ISR_S2_TSFOOR)
2763                                 mask2 |= ATH9K_INT_TSFOOR;
2764                 }
2765
2766                 isr = REG_READ(ah, AR_ISR_RAC);
2767                 if (isr == 0xffffffff) {
2768                         *masked = 0;
2769                         return false;
2770                 }
2771
2772                 *masked = isr & ATH9K_INT_COMMON;
2773
2774                 if (ah->config.rx_intr_mitigation) {
2775                         if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
2776                                 *masked |= ATH9K_INT_RX;
2777                 }
2778
2779                 if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
2780                         *masked |= ATH9K_INT_RX;
2781                 if (isr &
2782                     (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
2783                      AR_ISR_TXEOL)) {
2784                         u32 s0_s, s1_s;
2785
2786                         *masked |= ATH9K_INT_TX;
2787
2788                         s0_s = REG_READ(ah, AR_ISR_S0_S);
2789                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
2790                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
2791
2792                         s1_s = REG_READ(ah, AR_ISR_S1_S);
2793                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
2794                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
2795                 }
2796
2797                 if (isr & AR_ISR_RXORN) {
2798                         ath_print(common, ATH_DBG_INTERRUPT,
2799                                   "receive FIFO overrun interrupt\n");
2800                 }
2801
2802                 if (!AR_SREV_9100(ah)) {
2803                         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2804                                 u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
2805                                 if (isr5 & AR_ISR_S5_TIM_TIMER)
2806                                         *masked |= ATH9K_INT_TIM_TIMER;
2807                         }
2808                 }
2809
2810                 *masked |= mask2;
2811         }
2812
2813         if (AR_SREV_9100(ah))
2814                 return true;
2815
2816         if (isr & AR_ISR_GENTMR) {
2817                 u32 s5_s;
2818
2819                 s5_s = REG_READ(ah, AR_ISR_S5_S);
2820                 if (isr & AR_ISR_GENTMR) {
2821                         ah->intr_gen_timer_trigger =
2822                                 MS(s5_s, AR_ISR_S5_GENTIMER_TRIG);
2823
2824                         ah->intr_gen_timer_thresh =
2825                                 MS(s5_s, AR_ISR_S5_GENTIMER_THRESH);
2826
2827                         if (ah->intr_gen_timer_trigger)
2828                                 *masked |= ATH9K_INT_GENTIMER;
2829
2830                 }
2831         }
2832
2833         if (sync_cause) {
2834                 fatal_int =
2835                         (sync_cause &
2836                          (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
2837                         ? true : false;
2838
2839                 if (fatal_int) {
2840                         if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
2841                                 ath_print(common, ATH_DBG_ANY,
2842                                           "received PCI FATAL interrupt\n");
2843                         }
2844                         if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
2845                                 ath_print(common, ATH_DBG_ANY,
2846                                           "received PCI PERR interrupt\n");
2847                         }
2848                         *masked |= ATH9K_INT_FATAL;
2849                 }
2850                 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
2851                         ath_print(common, ATH_DBG_INTERRUPT,
2852                                   "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
2853                         REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
2854                         REG_WRITE(ah, AR_RC, 0);
2855                         *masked |= ATH9K_INT_FATAL;
2856                 }
2857                 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
2858                         ath_print(common, ATH_DBG_INTERRUPT,
2859                                   "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
2860                 }
2861
2862                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
2863                 (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
2864         }
2865
2866         return true;
2867 }
2868 EXPORT_SYMBOL(ath9k_hw_getisr);
2869
2870 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
2871 {
2872         u32 omask = ah->mask_reg;
2873         u32 mask, mask2;
2874         struct ath9k_hw_capabilities *pCap = &ah->caps;
2875         struct ath_common *common = ath9k_hw_common(ah);
2876
2877         ath_print(common, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
2878
2879         if (omask & ATH9K_INT_GLOBAL) {
2880                 ath_print(common, ATH_DBG_INTERRUPT, "disable IER\n");
2881                 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
2882                 (void) REG_READ(ah, AR_IER);
2883                 if (!AR_SREV_9100(ah)) {
2884                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
2885                         (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
2886
2887                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
2888                         (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
2889                 }
2890         }
2891
2892         mask = ints & ATH9K_INT_COMMON;
2893         mask2 = 0;
2894
2895         if (ints & ATH9K_INT_TX) {
2896                 if (ah->txok_interrupt_mask)
2897                         mask |= AR_IMR_TXOK;
2898                 if (ah->txdesc_interrupt_mask)
2899                         mask |= AR_IMR_TXDESC;
2900                 if (ah->txerr_interrupt_mask)
2901                         mask |= AR_IMR_TXERR;
2902                 if (ah->txeol_interrupt_mask)
2903                         mask |= AR_IMR_TXEOL;
2904         }
2905         if (ints & ATH9K_INT_RX) {
2906                 mask |= AR_IMR_RXERR;
2907                 if (ah->config.rx_intr_mitigation)
2908                         mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
2909                 else
2910                         mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
2911                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
2912                         mask |= AR_IMR_GENTMR;
2913         }
2914
2915         if (ints & (ATH9K_INT_BMISC)) {
2916                 mask |= AR_IMR_BCNMISC;
2917                 if (ints & ATH9K_INT_TIM)
2918                         mask2 |= AR_IMR_S2_TIM;
2919                 if (ints & ATH9K_INT_DTIM)
2920                         mask2 |= AR_IMR_S2_DTIM;
2921                 if (ints & ATH9K_INT_DTIMSYNC)
2922                         mask2 |= AR_IMR_S2_DTIMSYNC;
2923                 if (ints & ATH9K_INT_CABEND)
2924                         mask2 |= AR_IMR_S2_CABEND;
2925                 if (ints & ATH9K_INT_TSFOOR)
2926                         mask2 |= AR_IMR_S2_TSFOOR;
2927         }
2928
2929         if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
2930                 mask |= AR_IMR_BCNMISC;
2931                 if (ints & ATH9K_INT_GTT)
2932                         mask2 |= AR_IMR_S2_GTT;
2933                 if (ints & ATH9K_INT_CST)
2934                         mask2 |= AR_IMR_S2_CST;
2935         }
2936
2937         ath_print(common, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
2938         REG_WRITE(ah, AR_IMR, mask);
2939         ah->imrs2_reg &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
2940                            AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
2941                            AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
2942         ah->imrs2_reg |= mask2;
2943         REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
2944         ah->mask_reg = ints;
2945
2946         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2947                 if (ints & ATH9K_INT_TIM_TIMER)
2948                         REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2949                 else
2950                         REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2951         }
2952
2953         if (ints & ATH9K_INT_GLOBAL) {
2954                 ath_print(common, ATH_DBG_INTERRUPT, "enable IER\n");
2955                 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
2956                 if (!AR_SREV_9100(ah)) {
2957                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
2958                                   AR_INTR_MAC_IRQ);
2959                         REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
2960
2961
2962                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
2963                                   AR_INTR_SYNC_DEFAULT);
2964                         REG_WRITE(ah, AR_INTR_SYNC_MASK,
2965                                   AR_INTR_SYNC_DEFAULT);
2966                 }
2967                 ath_print(common, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
2968                           REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
2969         }
2970
2971         return omask;
2972 }
2973 EXPORT_SYMBOL(ath9k_hw_set_interrupts);
2974
2975 /*******************/
2976 /* Beacon Handling */
2977 /*******************/
2978
2979 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2980 {
2981         int flags = 0;
2982
2983         ah->beacon_interval = beacon_period;
2984
2985         switch (ah->opmode) {
2986         case NL80211_IFTYPE_STATION:
2987         case NL80211_IFTYPE_MONITOR:
2988                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
2989                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
2990                 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
2991                 flags |= AR_TBTT_TIMER_EN;
2992                 break;
2993         case NL80211_IFTYPE_ADHOC:
2994         case NL80211_IFTYPE_MESH_POINT:
2995                 REG_SET_BIT(ah, AR_TXCFG,
2996                             AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2997                 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
2998                           TU_TO_USEC(next_beacon +
2999                                      (ah->atim_window ? ah->
3000                                       atim_window : 1)));
3001                 flags |= AR_NDP_TIMER_EN;
3002         case NL80211_IFTYPE_AP:
3003                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3004                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
3005                           TU_TO_USEC(next_beacon -
3006                                      ah->config.
3007                                      dma_beacon_response_time));
3008                 REG_WRITE(ah, AR_NEXT_SWBA,
3009                           TU_TO_USEC(next_beacon -
3010                                      ah->config.
3011                                      sw_beacon_response_time));
3012                 flags |=
3013                         AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
3014                 break;
3015         default:
3016                 ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
3017                           "%s: unsupported opmode: %d\n",
3018                           __func__, ah->opmode);
3019                 return;
3020                 break;
3021         }
3022
3023         REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3024         REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3025         REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
3026         REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
3027
3028         beacon_period &= ~ATH9K_BEACON_ENA;
3029         if (beacon_period & ATH9K_BEACON_RESET_TSF) {
3030                 ath9k_hw_reset_tsf(ah);
3031         }
3032
3033         REG_SET_BIT(ah, AR_TIMER_MODE, flags);
3034 }
3035 EXPORT_SYMBOL(ath9k_hw_beaconinit);
3036
3037 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
3038                                     const struct ath9k_beacon_state *bs)
3039 {
3040         u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
3041         struct ath9k_hw_capabilities *pCap = &ah->caps;
3042         struct ath_common *common = ath9k_hw_common(ah);
3043
3044         REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3045
3046         REG_WRITE(ah, AR_BEACON_PERIOD,
3047                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3048         REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3049                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3050
3051         REG_RMW_FIELD(ah, AR_RSSI_THR,
3052                       AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3053
3054         beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3055
3056         if (bs->bs_sleepduration > beaconintval)
3057                 beaconintval = bs->bs_sleepduration;
3058
3059         dtimperiod = bs->bs_dtimperiod;
3060         if (bs->bs_sleepduration > dtimperiod)
3061                 dtimperiod = bs->bs_sleepduration;
3062
3063         if (beaconintval == dtimperiod)
3064                 nextTbtt = bs->bs_nextdtim;
3065         else
3066                 nextTbtt = bs->bs_nexttbtt;
3067
3068         ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
3069         ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
3070         ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
3071         ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
3072
3073         REG_WRITE(ah, AR_NEXT_DTIM,
3074                   TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3075         REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3076
3077         REG_WRITE(ah, AR_SLEEP1,
3078                   SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
3079                   | AR_SLEEP1_ASSUME_DTIM);
3080
3081         if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3082                 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3083         else
3084                 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3085
3086         REG_WRITE(ah, AR_SLEEP2,
3087                   SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3088
3089         REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3090         REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3091
3092         REG_SET_BIT(ah, AR_TIMER_MODE,
3093                     AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
3094                     AR_DTIM_TIMER_EN);
3095
3096         /* TSF Out of Range Threshold */
3097         REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3098 }
3099 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
3100
3101 /*******************/
3102 /* HW Capabilities */
3103 /*******************/
3104
3105 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
3106 {
3107         struct ath9k_hw_capabilities *pCap = &ah->caps;
3108         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3109         struct ath_common *common = ath9k_hw_common(ah);
3110         struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
3111
3112         u16 capField = 0, eeval;
3113
3114         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
3115         regulatory->current_rd = eeval;
3116
3117         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
3118         if (AR_SREV_9285_10_OR_LATER(ah))
3119                 eeval |= AR9285_RDEXT_DEFAULT;
3120         regulatory->current_rd_ext = eeval;
3121
3122         capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
3123
3124         if (ah->opmode != NL80211_IFTYPE_AP &&
3125             ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3126                 if (regulatory->current_rd == 0x64 ||
3127                     regulatory->current_rd == 0x65)
3128                         regulatory->current_rd += 5;
3129                 else if (regulatory->current_rd == 0x41)
3130                         regulatory->current_rd = 0x43;
3131                 ath_print(common, ATH_DBG_REGULATORY,
3132                           "regdomain mapped to 0x%x\n", regulatory->current_rd);
3133         }
3134
3135         eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
3136         if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
3137                 ath_print(common, ATH_DBG_FATAL,
3138                           "no band has been marked as supported in EEPROM.\n");
3139                 return -EINVAL;
3140         }
3141
3142         bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
3143
3144         if (eeval & AR5416_OPFLAGS_11A) {
3145                 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3146                 if (ah->config.ht_enable) {
3147                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3148                                 set_bit(ATH9K_MODE_11NA_HT20,
3149                                         pCap->wireless_modes);
3150                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3151                                 set_bit(ATH9K_MODE_11NA_HT40PLUS,
3152                                         pCap->wireless_modes);
3153                                 set_bit(ATH9K_MODE_11NA_HT40MINUS,
3154                                         pCap->wireless_modes);
3155                         }
3156                 }
3157         }
3158
3159         if (eeval & AR5416_OPFLAGS_11G) {
3160                 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3161                 if (ah->config.ht_enable) {
3162                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3163                                 set_bit(ATH9K_MODE_11NG_HT20,
3164                                         pCap->wireless_modes);
3165                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3166                                 set_bit(ATH9K_MODE_11NG_HT40PLUS,
3167                                         pCap->wireless_modes);
3168                                 set_bit(ATH9K_MODE_11NG_HT40MINUS,
3169                                         pCap->wireless_modes);
3170                         }
3171                 }
3172         }
3173
3174         pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
3175         /*
3176          * For AR9271 we will temporarilly uses the rx chainmax as read from
3177          * the EEPROM.
3178          */
3179         if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
3180             !(eeval & AR5416_OPFLAGS_11A) &&
3181             !(AR_SREV_9271(ah)))
3182                 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
3183                 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
3184         else
3185                 /* Use rx_chainmask from EEPROM. */
3186                 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
3187
3188         if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
3189                 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
3190
3191         pCap->low_2ghz_chan = 2312;
3192         pCap->high_2ghz_chan = 2732;
3193
3194         pCap->low_5ghz_chan = 4920;
3195         pCap->high_5ghz_chan = 6100;
3196
3197         pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3198         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3199         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3200
3201         pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3202         pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3203         pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3204
3205         if (ah->config.ht_enable)
3206                 pCap->hw_caps |= ATH9K_HW_CAP_HT;
3207         else
3208                 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3209
3210         pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3211         pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3212         pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3213         pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3214
3215         if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3216                 pCap->total_queues =
3217                         MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3218         else
3219                 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3220
3221         if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3222                 pCap->keycache_size =
3223                         1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3224         else
3225                 pCap->keycache_size = AR_KEYTABLE_SIZE;
3226
3227         pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3228
3229         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
3230                 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
3231         else
3232                 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3233
3234         if (AR_SREV_9271(ah))
3235                 pCap->num_gpio_pins = AR9271_NUM_GPIO;
3236         else if (AR_SREV_9285_10_OR_LATER(ah))
3237                 pCap->num_gpio_pins = AR9285_NUM_GPIO;
3238         else if (AR_SREV_9280_10_OR_LATER(ah))
3239                 pCap->num_gpio_pins = AR928X_NUM_GPIO;
3240         else
3241                 pCap->num_gpio_pins = AR_NUM_GPIO;
3242
3243         if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3244                 pCap->hw_caps |= ATH9K_HW_CAP_CST;
3245                 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3246         } else {
3247                 pCap->rts_aggr_limit = (8 * 1024);
3248         }
3249
3250         pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3251
3252 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3253         ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
3254         if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
3255                 ah->rfkill_gpio =
3256                         MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
3257                 ah->rfkill_polarity =
3258                         MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
3259
3260                 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3261         }
3262 #endif
3263
3264         pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3265
3266         if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3267                 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3268         else
3269                 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3270
3271         if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
3272                 pCap->reg_cap =
3273                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3274                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3275                         AR_EEPROM_EEREGCAP_EN_KK_U2 |
3276                         AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3277         } else {
3278                 pCap->reg_cap =
3279                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3280                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3281         }
3282
3283         /* Advertise midband for AR5416 with FCC midband set in eeprom */
3284         if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
3285             AR_SREV_5416(ah))
3286                 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3287
3288         pCap->num_antcfg_5ghz =
3289                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
3290         pCap->num_antcfg_2ghz =
3291                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
3292
3293         if (AR_SREV_9280_10_OR_LATER(ah) &&
3294             ath9k_hw_btcoex_supported(ah)) {
3295                 btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
3296                 btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
3297
3298                 if (AR_SREV_9285(ah)) {
3299                         btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
3300                         btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
3301                 } else {
3302                         btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
3303                 }
3304         } else {
3305                 btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
3306         }
3307
3308         return 0;
3309 }
3310
3311 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3312                             u32 capability, u32 *result)
3313 {
3314         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3315         switch (type) {
3316         case ATH9K_CAP_CIPHER:
3317                 switch (capability) {
3318                 case ATH9K_CIPHER_AES_CCM:
3319                 case ATH9K_CIPHER_AES_OCB:
3320                 case ATH9K_CIPHER_TKIP:
3321                 case ATH9K_CIPHER_WEP:
3322                 case ATH9K_CIPHER_MIC:
3323                 case ATH9K_CIPHER_CLR:
3324                         return true;
3325                 default:
3326                         return false;
3327                 }
3328         case ATH9K_CAP_TKIP_MIC:
3329                 switch (capability) {
3330                 case 0:
3331                         return true;
3332                 case 1:
3333                         return (ah->sta_id1_defaults &
3334                                 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
3335                         false;
3336                 }
3337         case ATH9K_CAP_TKIP_SPLIT:
3338                 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
3339                         false : true;
3340         case ATH9K_CAP_DIVERSITY:
3341                 return (REG_READ(ah, AR_PHY_CCK_DETECT) &
3342                         AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3343                         true : false;
3344         case ATH9K_CAP_MCAST_KEYSRCH:
3345                 switch (capability) {
3346                 case 0:
3347                         return true;
3348                 case 1:
3349                         if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3350                                 return false;
3351                         } else {
3352                                 return (ah->sta_id1_defaults &
3353                                         AR_STA_ID1_MCAST_KSRCH) ? true :
3354                                         false;
3355                         }
3356                 }
3357                 return false;
3358         case ATH9K_CAP_TXPOW:
3359                 switch (capability) {
3360                 case 0:
3361                         return 0;
3362                 case 1:
3363                         *result = regulatory->power_limit;
3364                         return 0;
3365                 case 2:
3366                         *result = regulatory->max_power_level;
3367                         return 0;
3368                 case 3:
3369                         *result = regulatory->tp_scale;
3370                         return 0;
3371                 }
3372                 return false;
3373         case ATH9K_CAP_DS:
3374                 return (AR_SREV_9280_20_OR_LATER(ah) &&
3375                         (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
3376                         ? false : true;
3377         default:
3378                 return false;
3379         }
3380 }
3381 EXPORT_SYMBOL(ath9k_hw_getcapability);
3382
3383 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3384                             u32 capability, u32 setting, int *status)
3385 {
3386         u32 v;
3387
3388         switch (type) {
3389         case ATH9K_CAP_TKIP_MIC:
3390                 if (setting)
3391                         ah->sta_id1_defaults |=
3392                                 AR_STA_ID1_CRPT_MIC_ENABLE;
3393                 else
3394                         ah->sta_id1_defaults &=
3395                                 ~AR_STA_ID1_CRPT_MIC_ENABLE;
3396                 return true;
3397         case ATH9K_CAP_DIVERSITY:
3398                 v = REG_READ(ah, AR_PHY_CCK_DETECT);
3399                 if (setting)
3400                         v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3401                 else
3402                         v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3403                 REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3404                 return true;
3405         case ATH9K_CAP_MCAST_KEYSRCH:
3406                 if (setting)
3407                         ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
3408                 else
3409                         ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3410                 return true;
3411         default:
3412                 return false;
3413         }
3414 }
3415 EXPORT_SYMBOL(ath9k_hw_setcapability);
3416
3417 /****************************/
3418 /* GPIO / RFKILL / Antennae */
3419 /****************************/
3420
3421 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
3422                                          u32 gpio, u32 type)
3423 {
3424         int addr;
3425         u32 gpio_shift, tmp;
3426
3427         if (gpio > 11)
3428                 addr = AR_GPIO_OUTPUT_MUX3;
3429         else if (gpio > 5)
3430                 addr = AR_GPIO_OUTPUT_MUX2;
3431         else
3432                 addr = AR_GPIO_OUTPUT_MUX1;
3433
3434         gpio_shift = (gpio % 6) * 5;
3435
3436         if (AR_SREV_9280_20_OR_LATER(ah)
3437             || (addr != AR_GPIO_OUTPUT_MUX1)) {
3438                 REG_RMW(ah, addr, (type << gpio_shift),
3439                         (0x1f << gpio_shift));
3440         } else {
3441                 tmp = REG_READ(ah, addr);
3442                 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3443                 tmp &= ~(0x1f << gpio_shift);
3444                 tmp |= (type << gpio_shift);
3445                 REG_WRITE(ah, addr, tmp);
3446         }
3447 }
3448
3449 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3450 {
3451         u32 gpio_shift;
3452
3453         BUG_ON(gpio >= ah->caps.num_gpio_pins);
3454
3455         gpio_shift = gpio << 1;
3456
3457         REG_RMW(ah,
3458                 AR_GPIO_OE_OUT,
3459                 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3460                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3461 }
3462 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
3463
3464 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3465 {
3466 #define MS_REG_READ(x, y) \
3467         (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3468
3469         if (gpio >= ah->caps.num_gpio_pins)
3470                 return 0xffffffff;
3471
3472         if (AR_SREV_9271(ah))
3473                 return MS_REG_READ(AR9271, gpio) != 0;
3474         else if (AR_SREV_9287_10_OR_LATER(ah))
3475                 return MS_REG_READ(AR9287, gpio) != 0;
3476         else if (AR_SREV_9285_10_OR_LATER(ah))
3477                 return MS_REG_READ(AR9285, gpio) != 0;
3478         else if (AR_SREV_9280_10_OR_LATER(ah))
3479                 return MS_REG_READ(AR928X, gpio) != 0;
3480         else
3481                 return MS_REG_READ(AR, gpio) != 0;
3482 }
3483 EXPORT_SYMBOL(ath9k_hw_gpio_get);
3484
3485 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3486                          u32 ah_signal_type)
3487 {
3488         u32 gpio_shift;
3489
3490         ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3491
3492         gpio_shift = 2 * gpio;
3493
3494         REG_RMW(ah,
3495                 AR_GPIO_OE_OUT,
3496                 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3497                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3498 }
3499 EXPORT_SYMBOL(ath9k_hw_cfg_output);
3500
3501 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3502 {
3503         if (AR_SREV_9271(ah))
3504                 val = ~val;
3505
3506         REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3507                 AR_GPIO_BIT(gpio));
3508 }
3509 EXPORT_SYMBOL(ath9k_hw_set_gpio);
3510
3511 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3512 {
3513         return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3514 }
3515 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
3516
3517 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3518 {
3519         REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3520 }
3521 EXPORT_SYMBOL(ath9k_hw_setantenna);
3522
3523 /*********************/
3524 /* General Operation */
3525 /*********************/
3526
3527 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3528 {
3529         u32 bits = REG_READ(ah, AR_RX_FILTER);
3530         u32 phybits = REG_READ(ah, AR_PHY_ERR);
3531
3532         if (phybits & AR_PHY_ERR_RADAR)
3533                 bits |= ATH9K_RX_FILTER_PHYRADAR;
3534         if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3535                 bits |= ATH9K_RX_FILTER_PHYERR;
3536
3537         return bits;
3538 }
3539 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
3540
3541 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
3542 {
3543         u32 phybits;
3544
3545         REG_WRITE(ah, AR_RX_FILTER, bits);
3546
3547         phybits = 0;
3548         if (bits & ATH9K_RX_FILTER_PHYRADAR)
3549                 phybits |= AR_PHY_ERR_RADAR;
3550         if (bits & ATH9K_RX_FILTER_PHYERR)
3551                 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
3552         REG_WRITE(ah, AR_PHY_ERR, phybits);
3553
3554         if (phybits)
3555                 REG_WRITE(ah, AR_RXCFG,
3556                           REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
3557         else
3558                 REG_WRITE(ah, AR_RXCFG,
3559                           REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
3560 }
3561 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
3562
3563 bool ath9k_hw_phy_disable(struct ath_hw *ah)
3564 {
3565         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
3566                 return false;
3567
3568         ath9k_hw_init_pll(ah, NULL);
3569         return true;
3570 }
3571 EXPORT_SYMBOL(ath9k_hw_phy_disable);
3572
3573 bool ath9k_hw_disable(struct ath_hw *ah)
3574 {
3575         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
3576                 return false;
3577
3578         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
3579                 return false;
3580
3581         ath9k_hw_init_pll(ah, NULL);
3582         return true;
3583 }
3584 EXPORT_SYMBOL(ath9k_hw_disable);
3585
3586 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
3587 {
3588         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3589         struct ath9k_channel *chan = ah->curchan;
3590         struct ieee80211_channel *channel = chan->chan;
3591
3592         regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
3593
3594         ah->eep_ops->set_txpower(ah, chan,
3595                                  ath9k_regd_get_ctl(regulatory, chan),
3596                                  channel->max_antenna_gain * 2,
3597                                  channel->max_power * 2,
3598                                  min((u32) MAX_RATE_POWER,
3599                                  (u32) regulatory->power_limit));
3600 }
3601 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
3602
3603 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
3604 {
3605         memcpy(ath9k_hw_common(ah)->macaddr, mac, ETH_ALEN);
3606 }
3607 EXPORT_SYMBOL(ath9k_hw_setmac);
3608
3609 void ath9k_hw_setopmode(struct ath_hw *ah)
3610 {
3611         ath9k_hw_set_operating_mode(ah, ah->opmode);
3612 }
3613 EXPORT_SYMBOL(ath9k_hw_setopmode);
3614
3615 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3616 {
3617         REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3618         REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3619 }
3620 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
3621
3622 void ath9k_hw_write_associd(struct ath_hw *ah)
3623 {
3624         struct ath_common *common = ath9k_hw_common(ah);
3625
3626         REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
3627         REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
3628                   ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3629 }
3630 EXPORT_SYMBOL(ath9k_hw_write_associd);
3631
3632 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3633 {
3634         u64 tsf;
3635
3636         tsf = REG_READ(ah, AR_TSF_U32);
3637         tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
3638
3639         return tsf;
3640 }
3641 EXPORT_SYMBOL(ath9k_hw_gettsf64);
3642
3643 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3644 {
3645         REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3646         REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3647 }
3648 EXPORT_SYMBOL(ath9k_hw_settsf64);
3649
3650 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3651 {
3652         if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3653                            AH_TSF_WRITE_TIMEOUT))
3654                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
3655                           "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3656
3657         REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3658 }
3659 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3660
3661 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
3662 {
3663         if (setting)
3664                 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3665         else
3666                 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3667 }
3668 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3669
3670 /*
3671  *  Extend 15-bit time stamp from rx descriptor to
3672  *  a full 64-bit TSF using the current h/w TSF.
3673 */
3674 u64 ath9k_hw_extend_tsf(struct ath_hw *ah, u32 rstamp)
3675 {
3676         u64 tsf;
3677
3678         tsf = ath9k_hw_gettsf64(ah);
3679         if ((tsf & 0x7fff) < rstamp)
3680                 tsf -= 0x8000;
3681         return (tsf & ~0x7fff) | rstamp;
3682 }
3683 EXPORT_SYMBOL(ath9k_hw_extend_tsf);
3684
3685 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
3686 {
3687         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
3688         u32 macmode;
3689
3690         if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
3691                 macmode = AR_2040_JOINED_RX_CLEAR;
3692         else
3693                 macmode = 0;
3694
3695         REG_WRITE(ah, AR_2040_MODE, macmode);
3696 }
3697
3698 /* HW Generic timers configuration */
3699
3700 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3701 {
3702         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3703         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3704         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3705         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3706         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3707         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3708         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3709         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3710         {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3711         {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3712                                 AR_NDP2_TIMER_MODE, 0x0002},
3713         {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3714                                 AR_NDP2_TIMER_MODE, 0x0004},
3715         {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3716                                 AR_NDP2_TIMER_MODE, 0x0008},
3717         {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3718                                 AR_NDP2_TIMER_MODE, 0x0010},
3719         {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3720                                 AR_NDP2_TIMER_MODE, 0x0020},
3721         {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3722                                 AR_NDP2_TIMER_MODE, 0x0040},
3723         {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3724                                 AR_NDP2_TIMER_MODE, 0x0080}
3725 };
3726
3727 /* HW generic timer primitives */
3728
3729 /* compute and clear index of rightmost 1 */
3730 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
3731 {
3732         u32 b;
3733
3734         b = *mask;
3735         b &= (0-b);
3736         *mask &= ~b;
3737         b *= debruijn32;
3738         b >>= 27;
3739
3740         return timer_table->gen_timer_index[b];
3741 }
3742
3743 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3744 {
3745         return REG_READ(ah, AR_TSF_L32);
3746 }
3747 EXPORT_SYMBOL(ath9k_hw_gettsf32);
3748
3749 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3750                                           void (*trigger)(void *),
3751                                           void (*overflow)(void *),
3752                                           void *arg,
3753                                           u8 timer_index)
3754 {
3755         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3756         struct ath_gen_timer *timer;
3757
3758         timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3759
3760         if (timer == NULL) {
3761                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
3762                           "Failed to allocate memory"
3763                           "for hw timer[%d]\n", timer_index);
3764                 return NULL;
3765         }
3766
3767         /* allocate a hardware generic timer slot */
3768         timer_table->timers[timer_index] = timer;
3769         timer->index = timer_index;
3770         timer->trigger = trigger;
3771         timer->overflow = overflow;
3772         timer->arg = arg;
3773
3774         return timer;
3775 }
3776 EXPORT_SYMBOL(ath_gen_timer_alloc);
3777
3778 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3779                               struct ath_gen_timer *timer,
3780                               u32 timer_next,
3781                               u32 timer_period)
3782 {
3783         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3784         u32 tsf;
3785
3786         BUG_ON(!timer_period);
3787
3788         set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3789
3790         tsf = ath9k_hw_gettsf32(ah);
3791
3792         ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
3793                   "curent tsf %x period %x"
3794                   "timer_next %x\n", tsf, timer_period, timer_next);
3795
3796         /*
3797          * Pull timer_next forward if the current TSF already passed it
3798          * because of software latency
3799          */
3800         if (timer_next < tsf)
3801                 timer_next = tsf + timer_period;
3802
3803         /*
3804          * Program generic timer registers
3805          */
3806         REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3807                  timer_next);
3808         REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3809                   timer_period);
3810         REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3811                     gen_tmr_configuration[timer->index].mode_mask);
3812
3813         /* Enable both trigger and thresh interrupt masks */
3814         REG_SET_BIT(ah, AR_IMR_S5,
3815                 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3816                 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3817 }
3818 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3819
3820 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3821 {
3822         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3823
3824         if ((timer->index < AR_FIRST_NDP_TIMER) ||
3825                 (timer->index >= ATH_MAX_GEN_TIMER)) {
3826                 return;
3827         }
3828
3829         /* Clear generic timer enable bits. */
3830         REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3831                         gen_tmr_configuration[timer->index].mode_mask);
3832
3833         /* Disable both trigger and thresh interrupt masks */
3834         REG_CLR_BIT(ah, AR_IMR_S5,
3835                 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3836                 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3837
3838         clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3839 }
3840 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3841
3842 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3843 {
3844         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3845
3846         /* free the hardware generic timer slot */
3847         timer_table->timers[timer->index] = NULL;
3848         kfree(timer);
3849 }
3850 EXPORT_SYMBOL(ath_gen_timer_free);
3851
3852 /*
3853  * Generic Timer Interrupts handling
3854  */
3855 void ath_gen_timer_isr(struct ath_hw *ah)
3856 {
3857         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3858         struct ath_gen_timer *timer;
3859         struct ath_common *common = ath9k_hw_common(ah);
3860         u32 trigger_mask, thresh_mask, index;
3861
3862         /* get hardware generic timer interrupt status */
3863         trigger_mask = ah->intr_gen_timer_trigger;
3864         thresh_mask = ah->intr_gen_timer_thresh;
3865         trigger_mask &= timer_table->timer_mask.val;
3866         thresh_mask &= timer_table->timer_mask.val;
3867
3868         trigger_mask &= ~thresh_mask;
3869
3870         while (thresh_mask) {
3871                 index = rightmost_index(timer_table, &thresh_mask);
3872                 timer = timer_table->timers[index];
3873                 BUG_ON(!timer);
3874                 ath_print(common, ATH_DBG_HWTIMER,
3875                           "TSF overflow for Gen timer %d\n", index);
3876                 timer->overflow(timer->arg);
3877         }
3878
3879         while (trigger_mask) {
3880                 index = rightmost_index(timer_table, &trigger_mask);
3881                 timer = timer_table->timers[index];
3882                 BUG_ON(!timer);
3883                 ath_print(common, ATH_DBG_HWTIMER,
3884                           "Gen timer[%d] trigger\n", index);
3885                 timer->trigger(timer->arg);
3886         }
3887 }
3888 EXPORT_SYMBOL(ath_gen_timer_isr);
3889
3890 static struct {
3891         u32 version;
3892         const char * name;
3893 } ath_mac_bb_names[] = {
3894         /* Devices with external radios */
3895         { AR_SREV_VERSION_5416_PCI,     "5416" },
3896         { AR_SREV_VERSION_5416_PCIE,    "5418" },
3897         { AR_SREV_VERSION_9100,         "9100" },
3898         { AR_SREV_VERSION_9160,         "9160" },
3899         /* Single-chip solutions */
3900         { AR_SREV_VERSION_9280,         "9280" },
3901         { AR_SREV_VERSION_9285,         "9285" },
3902         { AR_SREV_VERSION_9287,         "9287" },
3903         { AR_SREV_VERSION_9271,         "9271" },
3904 };
3905
3906 /* For devices with external radios */
3907 static struct {
3908         u16 version;
3909         const char * name;
3910 } ath_rf_names[] = {
3911         { 0,                            "5133" },
3912         { AR_RAD5133_SREV_MAJOR,        "5133" },
3913         { AR_RAD5122_SREV_MAJOR,        "5122" },
3914         { AR_RAD2133_SREV_MAJOR,        "2133" },
3915         { AR_RAD2122_SREV_MAJOR,        "2122" }
3916 };
3917
3918 /*
3919  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3920  */
3921 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3922 {
3923         int i;
3924
3925         for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3926                 if (ath_mac_bb_names[i].version == mac_bb_version) {
3927                         return ath_mac_bb_names[i].name;
3928                 }
3929         }
3930
3931         return "????";
3932 }
3933
3934 /*
3935  * Return the RF name. "????" is returned if the RF is unknown.
3936  * Used for devices with external radios.
3937  */
3938 static const char *ath9k_hw_rf_name(u16 rf_version)
3939 {
3940         int i;
3941
3942         for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3943                 if (ath_rf_names[i].version == rf_version) {
3944                         return ath_rf_names[i].name;
3945                 }
3946         }
3947
3948         return "????";
3949 }
3950
3951 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3952 {
3953         int used;
3954
3955         /* chipsets >= AR9280 are single-chip */
3956         if (AR_SREV_9280_10_OR_LATER(ah)) {
3957                 used = snprintf(hw_name, len,
3958                                "Atheros AR%s Rev:%x",
3959                                ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3960                                ah->hw_version.macRev);
3961         }
3962         else {
3963                 used = snprintf(hw_name, len,
3964                                "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3965                                ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3966                                ah->hw_version.macRev,
3967                                ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3968                                                 AR_RADIO_SREV_MAJOR)),
3969                                ah->hw_version.phyRev);
3970         }
3971
3972         hw_name[used] = '\0';
3973 }
3974 EXPORT_SYMBOL(ath9k_hw_name);