[NET]: Introduce and use print_mac() and DECLARE_MAC_BUF()
[safe/jmp/linux-2.6] / drivers / net / tsi108_eth.c
1 /*******************************************************************************
2
3   Copyright(c) 2006 Tundra Semiconductor Corporation.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of the GNU General Public License as published by the Free
7   Software Foundation; either version 2 of the License, or (at your option)
8   any later version.
9
10   This program is distributed in the hope that it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc., 59
17   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 *******************************************************************************/
20
21 /* This driver is based on the driver code originally developed
22  * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
23  * scott.wood@timesys.com  * Copyright (C) 2003 TimeSys Corporation
24  *
25  * Currently changes from original version are:
26  * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
27  * - modifications to handle two ports independently and support for
28  *   additional PHY devices (alexandre.bounine@tundra.com)
29  * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
30  *
31  */
32
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/init.h>
36 #include <linux/net.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/delay.h>
43 #include <linux/crc32.h>
44 #include <linux/mii.h>
45 #include <linux/device.h>
46 #include <linux/pci.h>
47 #include <linux/rtnetlink.h>
48 #include <linux/timer.h>
49 #include <linux/platform_device.h>
50
51 #include <asm/system.h>
52 #include <asm/io.h>
53 #include <asm/tsi108.h>
54
55 #include "tsi108_eth.h"
56
57 #define MII_READ_DELAY 10000    /* max link wait time in msec */
58
59 #define TSI108_RXRING_LEN     256
60
61 /* NOTE: The driver currently does not support receiving packets
62  * larger than the buffer size, so don't decrease this (unless you
63  * want to add such support).
64  */
65 #define TSI108_RXBUF_SIZE     1536
66
67 #define TSI108_TXRING_LEN     256
68
69 #define TSI108_TX_INT_FREQ    64
70
71 /* Check the phy status every half a second. */
72 #define CHECK_PHY_INTERVAL (HZ/2)
73
74 static int tsi108_init_one(struct platform_device *pdev);
75 static int tsi108_ether_remove(struct platform_device *pdev);
76
77 struct tsi108_prv_data {
78         void  __iomem *regs;    /* Base of normal regs */
79         void  __iomem *phyregs; /* Base of register bank used for PHY access */
80
81         struct net_device *dev;
82         struct napi_struct napi;
83
84         unsigned int phy;               /* Index of PHY for this interface */
85         unsigned int irq_num;
86         unsigned int id;
87         unsigned int phy_type;
88
89         struct timer_list timer;/* Timer that triggers the check phy function */
90         unsigned int rxtail;    /* Next entry in rxring to read */
91         unsigned int rxhead;    /* Next entry in rxring to give a new buffer */
92         unsigned int rxfree;    /* Number of free, allocated RX buffers */
93
94         unsigned int rxpending; /* Non-zero if there are still descriptors
95                                  * to be processed from a previous descriptor
96                                  * interrupt condition that has been cleared */
97
98         unsigned int txtail;    /* Next TX descriptor to check status on */
99         unsigned int txhead;    /* Next TX descriptor to use */
100
101         /* Number of free TX descriptors.  This could be calculated from
102          * rxhead and rxtail if one descriptor were left unused to disambiguate
103          * full and empty conditions, but it's simpler to just keep track
104          * explicitly. */
105
106         unsigned int txfree;
107
108         unsigned int phy_ok;            /* The PHY is currently powered on. */
109
110         /* PHY status (duplex is 1 for half, 2 for full,
111          * so that the default 0 indicates that neither has
112          * yet been configured). */
113
114         unsigned int link_up;
115         unsigned int speed;
116         unsigned int duplex;
117
118         tx_desc *txring;
119         rx_desc *rxring;
120         struct sk_buff *txskbs[TSI108_TXRING_LEN];
121         struct sk_buff *rxskbs[TSI108_RXRING_LEN];
122
123         dma_addr_t txdma, rxdma;
124
125         /* txlock nests in misclock and phy_lock */
126
127         spinlock_t txlock, misclock;
128
129         /* stats is used to hold the upper bits of each hardware counter,
130          * and tmpstats is used to hold the full values for returning
131          * to the caller of get_stats().  They must be separate in case
132          * an overflow interrupt occurs before the stats are consumed.
133          */
134
135         struct net_device_stats stats;
136         struct net_device_stats tmpstats;
137
138         /* These stats are kept separate in hardware, thus require individual
139          * fields for handling carry.  They are combined in get_stats.
140          */
141
142         unsigned long rx_fcs;   /* Add to rx_frame_errors */
143         unsigned long rx_short_fcs;     /* Add to rx_frame_errors */
144         unsigned long rx_long_fcs;      /* Add to rx_frame_errors */
145         unsigned long rx_underruns;     /* Add to rx_length_errors */
146         unsigned long rx_overruns;      /* Add to rx_length_errors */
147
148         unsigned long tx_coll_abort;    /* Add to tx_aborted_errors/collisions */
149         unsigned long tx_pause_drop;    /* Add to tx_aborted_errors */
150
151         unsigned long mc_hash[16];
152         u32 msg_enable;                 /* debug message level */
153         struct mii_if_info mii_if;
154         unsigned int init_media;
155 };
156
157 /* Structure for a device driver */
158
159 static struct platform_driver tsi_eth_driver = {
160         .probe = tsi108_init_one,
161         .remove = tsi108_ether_remove,
162         .driver = {
163                 .name = "tsi-ethernet",
164         },
165 };
166
167 static void tsi108_timed_checker(unsigned long dev_ptr);
168
169 static void dump_eth_one(struct net_device *dev)
170 {
171         struct tsi108_prv_data *data = netdev_priv(dev);
172
173         printk("Dumping %s...\n", dev->name);
174         printk("intstat %x intmask %x phy_ok %d"
175                " link %d speed %d duplex %d\n",
176                TSI_READ(TSI108_EC_INTSTAT),
177                TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
178                data->link_up, data->speed, data->duplex);
179
180         printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
181                data->txhead, data->txtail, data->txfree,
182                TSI_READ(TSI108_EC_TXSTAT),
183                TSI_READ(TSI108_EC_TXESTAT),
184                TSI_READ(TSI108_EC_TXERR));
185
186         printk("RX: head %d, tail %d, free %d, stat %x,"
187                " estat %x, err %x, pending %d\n\n",
188                data->rxhead, data->rxtail, data->rxfree,
189                TSI_READ(TSI108_EC_RXSTAT),
190                TSI_READ(TSI108_EC_RXESTAT),
191                TSI_READ(TSI108_EC_RXERR), data->rxpending);
192 }
193
194 /* Synchronization is needed between the thread and up/down events.
195  * Note that the PHY is accessed through the same registers for both
196  * interfaces, so this can't be made interface-specific.
197  */
198
199 static DEFINE_SPINLOCK(phy_lock);
200
201 static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
202 {
203         unsigned i;
204
205         TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
206                                 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
207                                 (reg << TSI108_MAC_MII_ADDR_REG));
208         TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
209         TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
210         for (i = 0; i < 100; i++) {
211                 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
212                       (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
213                         break;
214                 udelay(10);
215         }
216
217         if (i == 100)
218                 return 0xffff;
219         else
220                 return (TSI_READ_PHY(TSI108_MAC_MII_DATAIN));
221 }
222
223 static void tsi108_write_mii(struct tsi108_prv_data *data,
224                                 int reg, u16 val)
225 {
226         unsigned i = 100;
227         TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
228                                 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
229                                 (reg << TSI108_MAC_MII_ADDR_REG));
230         TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
231         while (i--) {
232                 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
233                         TSI108_MAC_MII_IND_BUSY))
234                         break;
235                 udelay(10);
236         }
237 }
238
239 static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
240 {
241         struct tsi108_prv_data *data = netdev_priv(dev);
242         return tsi108_read_mii(data, reg);
243 }
244
245 static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
246 {
247         struct tsi108_prv_data *data = netdev_priv(dev);
248         tsi108_write_mii(data, reg, val);
249 }
250
251 static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
252                                         int reg, u16 val)
253 {
254         unsigned i = 1000;
255         TSI_WRITE(TSI108_MAC_MII_ADDR,
256                              (0x1e << TSI108_MAC_MII_ADDR_PHY)
257                              | (reg << TSI108_MAC_MII_ADDR_REG));
258         TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
259         while(i--) {
260                 if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
261                         return;
262                 udelay(10);
263         }
264         printk(KERN_ERR "%s function time out \n", __FUNCTION__);
265 }
266
267 static int mii_speed(struct mii_if_info *mii)
268 {
269         int advert, lpa, val, media;
270         int lpa2 = 0;
271         int speed;
272
273         if (!mii_link_ok(mii))
274                 return 0;
275
276         val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
277         if ((val & BMSR_ANEGCOMPLETE) == 0)
278                 return 0;
279
280         advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
281         lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
282         media = mii_nway_result(advert & lpa);
283
284         if (mii->supports_gmii)
285                 lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
286
287         speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
288                         (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
289         return speed;
290 }
291
292 static void tsi108_check_phy(struct net_device *dev)
293 {
294         struct tsi108_prv_data *data = netdev_priv(dev);
295         u32 mac_cfg2_reg, portctrl_reg;
296         u32 duplex;
297         u32 speed;
298         unsigned long flags;
299
300         /* Do a dummy read, as for some reason the first read
301          * after a link becomes up returns link down, even if
302          * it's been a while since the link came up.
303          */
304
305         spin_lock_irqsave(&phy_lock, flags);
306
307         if (!data->phy_ok)
308                 goto out;
309
310         tsi108_read_mii(data, MII_BMSR);
311
312         duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
313         data->init_media = 0;
314
315         if (netif_carrier_ok(dev)) {
316
317                 speed = mii_speed(&data->mii_if);
318
319                 if ((speed != data->speed) || duplex) {
320
321                         mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
322                         portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
323
324                         mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
325
326                         if (speed == 1000) {
327                                 mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
328                                 portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
329                         } else {
330                                 mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
331                                 portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
332                         }
333
334                         data->speed = speed;
335
336                         if (data->mii_if.full_duplex) {
337                                 mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
338                                 portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
339                                 data->duplex = 2;
340                         } else {
341                                 mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
342                                 portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
343                                 data->duplex = 1;
344                         }
345
346                         TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
347                         TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
348
349                         if (data->link_up == 0) {
350                                 /* The manual says it can take 3-4 usecs for the speed change
351                                  * to take effect.
352                                  */
353                                 udelay(5);
354
355                                 spin_lock(&data->txlock);
356                                 if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
357                                         netif_wake_queue(dev);
358
359                                 data->link_up = 1;
360                                 spin_unlock(&data->txlock);
361                         }
362                 }
363
364         } else {
365                 if (data->link_up == 1) {
366                         netif_stop_queue(dev);
367                         data->link_up = 0;
368                         printk(KERN_NOTICE "%s : link is down\n", dev->name);
369                 }
370
371                 goto out;
372         }
373
374
375 out:
376         spin_unlock_irqrestore(&phy_lock, flags);
377 }
378
379 static inline void
380 tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
381                       unsigned long *upper)
382 {
383         if (carry & carry_bit)
384                 *upper += carry_shift;
385 }
386
387 static void tsi108_stat_carry(struct net_device *dev)
388 {
389         struct tsi108_prv_data *data = netdev_priv(dev);
390         u32 carry1, carry2;
391
392         spin_lock_irq(&data->misclock);
393
394         carry1 = TSI_READ(TSI108_STAT_CARRY1);
395         carry2 = TSI_READ(TSI108_STAT_CARRY2);
396
397         TSI_WRITE(TSI108_STAT_CARRY1, carry1);
398         TSI_WRITE(TSI108_STAT_CARRY2, carry2);
399
400         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
401                               TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
402
403         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
404                               TSI108_STAT_RXPKTS_CARRY,
405                               &data->stats.rx_packets);
406
407         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
408                               TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
409
410         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
411                               TSI108_STAT_RXMCAST_CARRY,
412                               &data->stats.multicast);
413
414         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
415                               TSI108_STAT_RXALIGN_CARRY,
416                               &data->stats.rx_frame_errors);
417
418         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
419                               TSI108_STAT_RXLENGTH_CARRY,
420                               &data->stats.rx_length_errors);
421
422         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
423                               TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
424
425         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
426                               TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
427
428         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
429                               TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
430
431         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
432                               TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
433
434         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
435                               TSI108_STAT_RXDROP_CARRY,
436                               &data->stats.rx_missed_errors);
437
438         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
439                               TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
440
441         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
442                               TSI108_STAT_TXPKTS_CARRY,
443                               &data->stats.tx_packets);
444
445         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
446                               TSI108_STAT_TXEXDEF_CARRY,
447                               &data->stats.tx_aborted_errors);
448
449         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
450                               TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
451
452         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
453                               TSI108_STAT_TXTCOL_CARRY,
454                               &data->stats.collisions);
455
456         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
457                               TSI108_STAT_TXPAUSEDROP_CARRY,
458                               &data->tx_pause_drop);
459
460         spin_unlock_irq(&data->misclock);
461 }
462
463 /* Read a stat counter atomically with respect to carries.
464  * data->misclock must be held.
465  */
466 static inline unsigned long
467 tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
468                  int carry_shift, unsigned long *upper)
469 {
470         int carryreg;
471         unsigned long val;
472
473         if (reg < 0xb0)
474                 carryreg = TSI108_STAT_CARRY1;
475         else
476                 carryreg = TSI108_STAT_CARRY2;
477
478       again:
479         val = TSI_READ(reg) | *upper;
480
481         /* Check to see if it overflowed, but the interrupt hasn't
482          * been serviced yet.  If so, handle the carry here, and
483          * try again.
484          */
485
486         if (unlikely(TSI_READ(carryreg) & carry_bit)) {
487                 *upper += carry_shift;
488                 TSI_WRITE(carryreg, carry_bit);
489                 goto again;
490         }
491
492         return val;
493 }
494
495 static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
496 {
497         unsigned long excol;
498
499         struct tsi108_prv_data *data = netdev_priv(dev);
500         spin_lock_irq(&data->misclock);
501
502         data->tmpstats.rx_packets =
503             tsi108_read_stat(data, TSI108_STAT_RXPKTS,
504                              TSI108_STAT_CARRY1_RXPKTS,
505                              TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
506
507         data->tmpstats.tx_packets =
508             tsi108_read_stat(data, TSI108_STAT_TXPKTS,
509                              TSI108_STAT_CARRY2_TXPKTS,
510                              TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
511
512         data->tmpstats.rx_bytes =
513             tsi108_read_stat(data, TSI108_STAT_RXBYTES,
514                              TSI108_STAT_CARRY1_RXBYTES,
515                              TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
516
517         data->tmpstats.tx_bytes =
518             tsi108_read_stat(data, TSI108_STAT_TXBYTES,
519                              TSI108_STAT_CARRY2_TXBYTES,
520                              TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
521
522         data->tmpstats.multicast =
523             tsi108_read_stat(data, TSI108_STAT_RXMCAST,
524                              TSI108_STAT_CARRY1_RXMCAST,
525                              TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
526
527         excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
528                                  TSI108_STAT_CARRY2_TXEXCOL,
529                                  TSI108_STAT_TXEXCOL_CARRY,
530                                  &data->tx_coll_abort);
531
532         data->tmpstats.collisions =
533             tsi108_read_stat(data, TSI108_STAT_TXTCOL,
534                              TSI108_STAT_CARRY2_TXTCOL,
535                              TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
536
537         data->tmpstats.collisions += excol;
538
539         data->tmpstats.rx_length_errors =
540             tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
541                              TSI108_STAT_CARRY1_RXLENGTH,
542                              TSI108_STAT_RXLENGTH_CARRY,
543                              &data->stats.rx_length_errors);
544
545         data->tmpstats.rx_length_errors +=
546             tsi108_read_stat(data, TSI108_STAT_RXRUNT,
547                              TSI108_STAT_CARRY1_RXRUNT,
548                              TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
549
550         data->tmpstats.rx_length_errors +=
551             tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
552                              TSI108_STAT_CARRY1_RXJUMBO,
553                              TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
554
555         data->tmpstats.rx_frame_errors =
556             tsi108_read_stat(data, TSI108_STAT_RXALIGN,
557                              TSI108_STAT_CARRY1_RXALIGN,
558                              TSI108_STAT_RXALIGN_CARRY,
559                              &data->stats.rx_frame_errors);
560
561         data->tmpstats.rx_frame_errors +=
562             tsi108_read_stat(data, TSI108_STAT_RXFCS,
563                              TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
564                              &data->rx_fcs);
565
566         data->tmpstats.rx_frame_errors +=
567             tsi108_read_stat(data, TSI108_STAT_RXFRAG,
568                              TSI108_STAT_CARRY1_RXFRAG,
569                              TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
570
571         data->tmpstats.rx_missed_errors =
572             tsi108_read_stat(data, TSI108_STAT_RXDROP,
573                              TSI108_STAT_CARRY1_RXDROP,
574                              TSI108_STAT_RXDROP_CARRY,
575                              &data->stats.rx_missed_errors);
576
577         /* These three are maintained by software. */
578         data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
579         data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
580
581         data->tmpstats.tx_aborted_errors =
582             tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
583                              TSI108_STAT_CARRY2_TXEXDEF,
584                              TSI108_STAT_TXEXDEF_CARRY,
585                              &data->stats.tx_aborted_errors);
586
587         data->tmpstats.tx_aborted_errors +=
588             tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
589                              TSI108_STAT_CARRY2_TXPAUSE,
590                              TSI108_STAT_TXPAUSEDROP_CARRY,
591                              &data->tx_pause_drop);
592
593         data->tmpstats.tx_aborted_errors += excol;
594
595         data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
596         data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
597             data->tmpstats.rx_crc_errors +
598             data->tmpstats.rx_frame_errors +
599             data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
600
601         spin_unlock_irq(&data->misclock);
602         return &data->tmpstats;
603 }
604
605 static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
606 {
607         TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
608                              TSI108_EC_RXQ_PTRHIGH_VALID);
609
610         TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
611                              | TSI108_EC_RXCTRL_QUEUE0);
612 }
613
614 static void tsi108_restart_tx(struct tsi108_prv_data * data)
615 {
616         TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
617                              TSI108_EC_TXQ_PTRHIGH_VALID);
618
619         TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
620                              TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
621 }
622
623 /* txlock must be held by caller, with IRQs disabled, and
624  * with permission to re-enable them when the lock is dropped.
625  */
626 static void tsi108_complete_tx(struct net_device *dev)
627 {
628         struct tsi108_prv_data *data = netdev_priv(dev);
629         int tx;
630         struct sk_buff *skb;
631         int release = 0;
632
633         while (!data->txfree || data->txhead != data->txtail) {
634                 tx = data->txtail;
635
636                 if (data->txring[tx].misc & TSI108_TX_OWN)
637                         break;
638
639                 skb = data->txskbs[tx];
640
641                 if (!(data->txring[tx].misc & TSI108_TX_OK))
642                         printk("%s: bad tx packet, misc %x\n",
643                                dev->name, data->txring[tx].misc);
644
645                 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
646                 data->txfree++;
647
648                 if (data->txring[tx].misc & TSI108_TX_EOF) {
649                         dev_kfree_skb_any(skb);
650                         release++;
651                 }
652         }
653
654         if (release) {
655                 if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
656                         netif_wake_queue(dev);
657         }
658 }
659
660 static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
661 {
662         struct tsi108_prv_data *data = netdev_priv(dev);
663         int frags = skb_shinfo(skb)->nr_frags + 1;
664         int i;
665
666         if (!data->phy_ok && net_ratelimit())
667                 printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
668
669         if (!data->link_up) {
670                 printk(KERN_ERR "%s: Transmit while link is down!\n",
671                        dev->name);
672                 netif_stop_queue(dev);
673                 return NETDEV_TX_BUSY;
674         }
675
676         if (data->txfree < MAX_SKB_FRAGS + 1) {
677                 netif_stop_queue(dev);
678
679                 if (net_ratelimit())
680                         printk(KERN_ERR "%s: Transmit with full tx ring!\n",
681                                dev->name);
682                 return NETDEV_TX_BUSY;
683         }
684
685         if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
686                 netif_stop_queue(dev);
687         }
688
689         spin_lock_irq(&data->txlock);
690
691         for (i = 0; i < frags; i++) {
692                 int misc = 0;
693                 int tx = data->txhead;
694
695                 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
696                  * the interrupt bit.  TX descriptor-complete interrupts are
697                  * enabled when the queue fills up, and masked when there is
698                  * still free space.  This way, when saturating the outbound
699                  * link, the tx interrupts are kept to a reasonable level.
700                  * When the queue is not full, reclamation of skbs still occurs
701                  * as new packets are transmitted, or on a queue-empty
702                  * interrupt.
703                  */
704
705                 if ((tx % TSI108_TX_INT_FREQ == 0) &&
706                     ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
707                         misc = TSI108_TX_INT;
708
709                 data->txskbs[tx] = skb;
710
711                 if (i == 0) {
712                         data->txring[tx].buf0 = dma_map_single(NULL, skb->data,
713                                         skb->len - skb->data_len, DMA_TO_DEVICE);
714                         data->txring[tx].len = skb->len - skb->data_len;
715                         misc |= TSI108_TX_SOF;
716                 } else {
717                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
718
719                         data->txring[tx].buf0 =
720                             dma_map_page(NULL, frag->page, frag->page_offset,
721                                             frag->size, DMA_TO_DEVICE);
722                         data->txring[tx].len = frag->size;
723                 }
724
725                 if (i == frags - 1)
726                         misc |= TSI108_TX_EOF;
727
728                 if (netif_msg_pktdata(data)) {
729                         int i;
730                         printk("%s: Tx Frame contents (%d)\n", dev->name,
731                                skb->len);
732                         for (i = 0; i < skb->len; i++)
733                                 printk(" %2.2x", skb->data[i]);
734                         printk(".\n");
735                 }
736                 data->txring[tx].misc = misc | TSI108_TX_OWN;
737
738                 data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
739                 data->txfree--;
740         }
741
742         tsi108_complete_tx(dev);
743
744         /* This must be done after the check for completed tx descriptors,
745          * so that the tail pointer is correct.
746          */
747
748         if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
749                 tsi108_restart_tx(data);
750
751         spin_unlock_irq(&data->txlock);
752         return NETDEV_TX_OK;
753 }
754
755 static int tsi108_complete_rx(struct net_device *dev, int budget)
756 {
757         struct tsi108_prv_data *data = netdev_priv(dev);
758         int done = 0;
759
760         while (data->rxfree && done != budget) {
761                 int rx = data->rxtail;
762                 struct sk_buff *skb;
763
764                 if (data->rxring[rx].misc & TSI108_RX_OWN)
765                         break;
766
767                 skb = data->rxskbs[rx];
768                 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
769                 data->rxfree--;
770                 done++;
771
772                 if (data->rxring[rx].misc & TSI108_RX_BAD) {
773                         spin_lock_irq(&data->misclock);
774
775                         if (data->rxring[rx].misc & TSI108_RX_CRC)
776                                 data->stats.rx_crc_errors++;
777                         if (data->rxring[rx].misc & TSI108_RX_OVER)
778                                 data->stats.rx_fifo_errors++;
779
780                         spin_unlock_irq(&data->misclock);
781
782                         dev_kfree_skb_any(skb);
783                         continue;
784                 }
785                 if (netif_msg_pktdata(data)) {
786                         int i;
787                         printk("%s: Rx Frame contents (%d)\n",
788                                dev->name, data->rxring[rx].len);
789                         for (i = 0; i < data->rxring[rx].len; i++)
790                                 printk(" %2.2x", skb->data[i]);
791                         printk(".\n");
792                 }
793
794                 skb_put(skb, data->rxring[rx].len);
795                 skb->protocol = eth_type_trans(skb, dev);
796                 netif_receive_skb(skb);
797                 dev->last_rx = jiffies;
798         }
799
800         return done;
801 }
802
803 static int tsi108_refill_rx(struct net_device *dev, int budget)
804 {
805         struct tsi108_prv_data *data = netdev_priv(dev);
806         int done = 0;
807
808         while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
809                 int rx = data->rxhead;
810                 struct sk_buff *skb;
811
812                 data->rxskbs[rx] = skb = dev_alloc_skb(TSI108_RXBUF_SIZE + 2);
813                 if (!skb)
814                         break;
815
816                 skb_reserve(skb, 2); /* Align the data on a 4-byte boundary. */
817
818                 data->rxring[rx].buf0 = dma_map_single(NULL, skb->data,
819                                                         TSI108_RX_SKB_SIZE,
820                                                         DMA_FROM_DEVICE);
821
822                 /* Sometimes the hardware sets blen to zero after packet
823                  * reception, even though the manual says that it's only ever
824                  * modified by the driver.
825                  */
826
827                 data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
828                 data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
829
830                 data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
831                 data->rxfree++;
832                 done++;
833         }
834
835         if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
836                            TSI108_EC_RXSTAT_QUEUE0))
837                 tsi108_restart_rx(data, dev);
838
839         return done;
840 }
841
842 static int tsi108_poll(struct napi_struct *napi, int budget)
843 {
844         struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
845         struct net_device *dev = data->dev;
846         u32 estat = TSI_READ(TSI108_EC_RXESTAT);
847         u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
848         int num_received = 0, num_filled = 0;
849
850         intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
851             TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
852
853         TSI_WRITE(TSI108_EC_RXESTAT, estat);
854         TSI_WRITE(TSI108_EC_INTSTAT, intstat);
855
856         if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
857                 num_received = tsi108_complete_rx(dev, budget);
858
859         /* This should normally fill no more slots than the number of
860          * packets received in tsi108_complete_rx().  The exception
861          * is when we previously ran out of memory for RX SKBs.  In that
862          * case, it's helpful to obey the budget, not only so that the
863          * CPU isn't hogged, but so that memory (which may still be low)
864          * is not hogged by one device.
865          *
866          * A work unit is considered to be two SKBs to allow us to catch
867          * up when the ring has shrunk due to out-of-memory but we're
868          * still removing the full budget's worth of packets each time.
869          */
870
871         if (data->rxfree < TSI108_RXRING_LEN)
872                 num_filled = tsi108_refill_rx(dev, budget * 2);
873
874         if (intstat & TSI108_INT_RXERROR) {
875                 u32 err = TSI_READ(TSI108_EC_RXERR);
876                 TSI_WRITE(TSI108_EC_RXERR, err);
877
878                 if (err) {
879                         if (net_ratelimit())
880                                 printk(KERN_DEBUG "%s: RX error %x\n",
881                                        dev->name, err);
882
883                         if (!(TSI_READ(TSI108_EC_RXSTAT) &
884                               TSI108_EC_RXSTAT_QUEUE0))
885                                 tsi108_restart_rx(data, dev);
886                 }
887         }
888
889         if (intstat & TSI108_INT_RXOVERRUN) {
890                 spin_lock_irq(&data->misclock);
891                 data->stats.rx_fifo_errors++;
892                 spin_unlock_irq(&data->misclock);
893         }
894
895         if (num_received < budget) {
896                 data->rxpending = 0;
897                 netif_rx_complete(dev, napi);
898
899                 TSI_WRITE(TSI108_EC_INTMASK,
900                                      TSI_READ(TSI108_EC_INTMASK)
901                                      & ~(TSI108_INT_RXQUEUE0
902                                          | TSI108_INT_RXTHRESH |
903                                          TSI108_INT_RXOVERRUN |
904                                          TSI108_INT_RXERROR |
905                                          TSI108_INT_RXWAIT));
906         } else {
907                 data->rxpending = 1;
908         }
909
910         return num_received;
911 }
912
913 static void tsi108_rx_int(struct net_device *dev)
914 {
915         struct tsi108_prv_data *data = netdev_priv(dev);
916
917         /* A race could cause dev to already be scheduled, so it's not an
918          * error if that happens (and interrupts shouldn't be re-masked,
919          * because that can cause harmful races, if poll has already
920          * unmasked them but not cleared LINK_STATE_SCHED).
921          *
922          * This can happen if this code races with tsi108_poll(), which masks
923          * the interrupts after tsi108_irq_one() read the mask, but before
924          * netif_rx_schedule is called.  It could also happen due to calls
925          * from tsi108_check_rxring().
926          */
927
928         if (netif_rx_schedule_prep(dev, &data->napi)) {
929                 /* Mask, rather than ack, the receive interrupts.  The ack
930                  * will happen in tsi108_poll().
931                  */
932
933                 TSI_WRITE(TSI108_EC_INTMASK,
934                                      TSI_READ(TSI108_EC_INTMASK) |
935                                      TSI108_INT_RXQUEUE0
936                                      | TSI108_INT_RXTHRESH |
937                                      TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
938                                      TSI108_INT_RXWAIT);
939                 __netif_rx_schedule(dev, &data->napi);
940         } else {
941                 if (!netif_running(dev)) {
942                         /* This can happen if an interrupt occurs while the
943                          * interface is being brought down, as the START
944                          * bit is cleared before the stop function is called.
945                          *
946                          * In this case, the interrupts must be masked, or
947                          * they will continue indefinitely.
948                          *
949                          * There's a race here if the interface is brought down
950                          * and then up in rapid succession, as the device could
951                          * be made running after the above check and before
952                          * the masking below.  This will only happen if the IRQ
953                          * thread has a lower priority than the task brining
954                          * up the interface.  Fixing this race would likely
955                          * require changes in generic code.
956                          */
957
958                         TSI_WRITE(TSI108_EC_INTMASK,
959                                              TSI_READ
960                                              (TSI108_EC_INTMASK) |
961                                              TSI108_INT_RXQUEUE0 |
962                                              TSI108_INT_RXTHRESH |
963                                              TSI108_INT_RXOVERRUN |
964                                              TSI108_INT_RXERROR |
965                                              TSI108_INT_RXWAIT);
966                 }
967         }
968 }
969
970 /* If the RX ring has run out of memory, try periodically
971  * to allocate some more, as otherwise poll would never
972  * get called (apart from the initial end-of-queue condition).
973  *
974  * This is called once per second (by default) from the thread.
975  */
976
977 static void tsi108_check_rxring(struct net_device *dev)
978 {
979         struct tsi108_prv_data *data = netdev_priv(dev);
980
981         /* A poll is scheduled, as opposed to caling tsi108_refill_rx
982          * directly, so as to keep the receive path single-threaded
983          * (and thus not needing a lock).
984          */
985
986         if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
987                 tsi108_rx_int(dev);
988 }
989
990 static void tsi108_tx_int(struct net_device *dev)
991 {
992         struct tsi108_prv_data *data = netdev_priv(dev);
993         u32 estat = TSI_READ(TSI108_EC_TXESTAT);
994
995         TSI_WRITE(TSI108_EC_TXESTAT, estat);
996         TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
997                              TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
998         if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
999                 u32 err = TSI_READ(TSI108_EC_TXERR);
1000                 TSI_WRITE(TSI108_EC_TXERR, err);
1001
1002                 if (err && net_ratelimit())
1003                         printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
1004         }
1005
1006         if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
1007                 spin_lock(&data->txlock);
1008                 tsi108_complete_tx(dev);
1009                 spin_unlock(&data->txlock);
1010         }
1011 }
1012
1013
1014 static irqreturn_t tsi108_irq(int irq, void *dev_id)
1015 {
1016         struct net_device *dev = dev_id;
1017         struct tsi108_prv_data *data = netdev_priv(dev);
1018         u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1019
1020         if (!(stat & TSI108_INT_ANY))
1021                 return IRQ_NONE;        /* Not our interrupt */
1022
1023         stat &= ~TSI_READ(TSI108_EC_INTMASK);
1024
1025         if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1026                     TSI108_INT_TXERROR))
1027                 tsi108_tx_int(dev);
1028         if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1029                     TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1030                     TSI108_INT_RXERROR))
1031                 tsi108_rx_int(dev);
1032
1033         if (stat & TSI108_INT_SFN) {
1034                 if (net_ratelimit())
1035                         printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1036                 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1037         }
1038
1039         if (stat & TSI108_INT_STATCARRY) {
1040                 tsi108_stat_carry(dev);
1041                 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1042         }
1043
1044         return IRQ_HANDLED;
1045 }
1046
1047 static void tsi108_stop_ethernet(struct net_device *dev)
1048 {
1049         struct tsi108_prv_data *data = netdev_priv(dev);
1050         int i = 1000;
1051         /* Disable all TX and RX queues ... */
1052         TSI_WRITE(TSI108_EC_TXCTRL, 0);
1053         TSI_WRITE(TSI108_EC_RXCTRL, 0);
1054
1055         /* ...and wait for them to become idle */
1056         while(i--) {
1057                 if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1058                         break;
1059                 udelay(10);
1060         }
1061         i = 1000;
1062         while(i--){
1063                 if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1064                         return;
1065                 udelay(10);
1066         }
1067         printk(KERN_ERR "%s function time out \n", __FUNCTION__);
1068 }
1069
1070 static void tsi108_reset_ether(struct tsi108_prv_data * data)
1071 {
1072         TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1073         udelay(100);
1074         TSI_WRITE(TSI108_MAC_CFG1, 0);
1075
1076         TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1077         udelay(100);
1078         TSI_WRITE(TSI108_EC_PORTCTRL,
1079                              TSI_READ(TSI108_EC_PORTCTRL) &
1080                              ~TSI108_EC_PORTCTRL_STATRST);
1081
1082         TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1083         udelay(100);
1084         TSI_WRITE(TSI108_EC_TXCFG,
1085                              TSI_READ(TSI108_EC_TXCFG) &
1086                              ~TSI108_EC_TXCFG_RST);
1087
1088         TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1089         udelay(100);
1090         TSI_WRITE(TSI108_EC_RXCFG,
1091                              TSI_READ(TSI108_EC_RXCFG) &
1092                              ~TSI108_EC_RXCFG_RST);
1093
1094         TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1095                              TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1096                              TSI108_MAC_MII_MGMT_RST);
1097         udelay(100);
1098         TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1099                              (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1100                              ~(TSI108_MAC_MII_MGMT_RST |
1101                                TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1102 }
1103
1104 static int tsi108_get_mac(struct net_device *dev)
1105 {
1106         struct tsi108_prv_data *data = netdev_priv(dev);
1107         u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1108         u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1109
1110         /* Note that the octets are reversed from what the manual says,
1111          * producing an even weirder ordering...
1112          */
1113         if (word2 == 0 && word1 == 0) {
1114                 dev->dev_addr[0] = 0x00;
1115                 dev->dev_addr[1] = 0x06;
1116                 dev->dev_addr[2] = 0xd2;
1117                 dev->dev_addr[3] = 0x00;
1118                 dev->dev_addr[4] = 0x00;
1119                 if (0x8 == data->phy)
1120                         dev->dev_addr[5] = 0x01;
1121                 else
1122                         dev->dev_addr[5] = 0x02;
1123
1124                 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1125
1126                 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1127                     (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1128
1129                 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1130                 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1131         } else {
1132                 dev->dev_addr[0] = (word2 >> 16) & 0xff;
1133                 dev->dev_addr[1] = (word2 >> 24) & 0xff;
1134                 dev->dev_addr[2] = (word1 >> 0) & 0xff;
1135                 dev->dev_addr[3] = (word1 >> 8) & 0xff;
1136                 dev->dev_addr[4] = (word1 >> 16) & 0xff;
1137                 dev->dev_addr[5] = (word1 >> 24) & 0xff;
1138         }
1139
1140         if (!is_valid_ether_addr(dev->dev_addr)) {
1141                 printk("KERN_ERR: word1: %08x, word2: %08x\n", word1, word2);
1142                 return -EINVAL;
1143         }
1144
1145         return 0;
1146 }
1147
1148 static int tsi108_set_mac(struct net_device *dev, void *addr)
1149 {
1150         struct tsi108_prv_data *data = netdev_priv(dev);
1151         u32 word1, word2;
1152         int i;
1153
1154         if (!is_valid_ether_addr(addr))
1155                 return -EINVAL;
1156
1157         for (i = 0; i < 6; i++)
1158                 /* +2 is for the offset of the HW addr type */
1159                 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
1160
1161         word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1162
1163         word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1164             (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1165
1166         spin_lock_irq(&data->misclock);
1167         TSI_WRITE(TSI108_MAC_ADDR1, word1);
1168         TSI_WRITE(TSI108_MAC_ADDR2, word2);
1169         spin_lock(&data->txlock);
1170
1171         if (data->txfree && data->link_up)
1172                 netif_wake_queue(dev);
1173
1174         spin_unlock(&data->txlock);
1175         spin_unlock_irq(&data->misclock);
1176         return 0;
1177 }
1178
1179 /* Protected by dev->xmit_lock. */
1180 static void tsi108_set_rx_mode(struct net_device *dev)
1181 {
1182         struct tsi108_prv_data *data = netdev_priv(dev);
1183         u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1184
1185         if (dev->flags & IFF_PROMISC) {
1186                 rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1187                 rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1188                 goto out;
1189         }
1190
1191         rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1192
1193         if (dev->flags & IFF_ALLMULTI || dev->mc_count) {
1194                 int i;
1195                 struct dev_mc_list *mc = dev->mc_list;
1196                 rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1197
1198                 memset(data->mc_hash, 0, sizeof(data->mc_hash));
1199
1200                 while (mc) {
1201                         u32 hash, crc;
1202
1203                         if (mc->dmi_addrlen == 6) {
1204                                 crc = ether_crc(6, mc->dmi_addr);
1205                                 hash = crc >> 23;
1206
1207                                 __set_bit(hash, &data->mc_hash[0]);
1208                         } else {
1209                                 printk(KERN_ERR
1210                                        "%s: got multicast address of length %d "
1211                                        "instead of 6.\n", dev->name,
1212                                        mc->dmi_addrlen);
1213                         }
1214
1215                         mc = mc->next;
1216                 }
1217
1218                 TSI_WRITE(TSI108_EC_HASHADDR,
1219                                      TSI108_EC_HASHADDR_AUTOINC |
1220                                      TSI108_EC_HASHADDR_MCAST);
1221
1222                 for (i = 0; i < 16; i++) {
1223                         /* The manual says that the hardware may drop
1224                          * back-to-back writes to the data register.
1225                          */
1226                         udelay(1);
1227                         TSI_WRITE(TSI108_EC_HASHDATA,
1228                                              data->mc_hash[i]);
1229                 }
1230         }
1231
1232       out:
1233         TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1234 }
1235
1236 static void tsi108_init_phy(struct net_device *dev)
1237 {
1238         struct tsi108_prv_data *data = netdev_priv(dev);
1239         u32 i = 0;
1240         u16 phyval = 0;
1241         unsigned long flags;
1242
1243         spin_lock_irqsave(&phy_lock, flags);
1244
1245         tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1246         while (i--){
1247                 if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1248                         break;
1249                 udelay(10);
1250         }
1251         if (i == 0)
1252                 printk(KERN_ERR "%s function time out \n", __FUNCTION__);
1253
1254         if (data->phy_type == TSI108_PHY_BCM54XX) {
1255                 tsi108_write_mii(data, 0x09, 0x0300);
1256                 tsi108_write_mii(data, 0x10, 0x1020);
1257                 tsi108_write_mii(data, 0x1c, 0x8c00);
1258         }
1259
1260         tsi108_write_mii(data,
1261                          MII_BMCR,
1262                          BMCR_ANENABLE | BMCR_ANRESTART);
1263         while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1264                 cpu_relax();
1265
1266         /* Set G/MII mode and receive clock select in TBI control #2.  The
1267          * second port won't work if this isn't done, even though we don't
1268          * use TBI mode.
1269          */
1270
1271         tsi108_write_tbi(data, 0x11, 0x30);
1272
1273         /* FIXME: It seems to take more than 2 back-to-back reads to the
1274          * PHY_STAT register before the link up status bit is set.
1275          */
1276
1277         data->link_up = 1;
1278
1279         while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1280                  BMSR_LSTATUS)) {
1281                 if (i++ > (MII_READ_DELAY / 10)) {
1282                         data->link_up = 0;
1283                         break;
1284                 }
1285                 spin_unlock_irqrestore(&phy_lock, flags);
1286                 msleep(10);
1287                 spin_lock_irqsave(&phy_lock, flags);
1288         }
1289
1290         printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1291         data->phy_ok = 1;
1292         data->init_media = 1;
1293         spin_unlock_irqrestore(&phy_lock, flags);
1294 }
1295
1296 static void tsi108_kill_phy(struct net_device *dev)
1297 {
1298         struct tsi108_prv_data *data = netdev_priv(dev);
1299         unsigned long flags;
1300
1301         spin_lock_irqsave(&phy_lock, flags);
1302         tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1303         data->phy_ok = 0;
1304         spin_unlock_irqrestore(&phy_lock, flags);
1305 }
1306
1307 static int tsi108_open(struct net_device *dev)
1308 {
1309         int i;
1310         struct tsi108_prv_data *data = netdev_priv(dev);
1311         unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1312         unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1313
1314         i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1315         if (i != 0) {
1316                 printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1317                        data->id, data->irq_num);
1318                 return i;
1319         } else {
1320                 dev->irq = data->irq_num;
1321                 printk(KERN_NOTICE
1322                        "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1323                        data->id, dev->irq, dev->name);
1324         }
1325
1326         data->rxring = dma_alloc_coherent(NULL, rxring_size,
1327                         &data->rxdma, GFP_KERNEL);
1328
1329         if (!data->rxring) {
1330                 printk(KERN_DEBUG
1331                        "TSI108_ETH: failed to allocate memory for rxring!\n");
1332                 return -ENOMEM;
1333         } else {
1334                 memset(data->rxring, 0, rxring_size);
1335         }
1336
1337         data->txring = dma_alloc_coherent(NULL, txring_size,
1338                         &data->txdma, GFP_KERNEL);
1339
1340         if (!data->txring) {
1341                 printk(KERN_DEBUG
1342                        "TSI108_ETH: failed to allocate memory for txring!\n");
1343                 pci_free_consistent(0, rxring_size, data->rxring, data->rxdma);
1344                 return -ENOMEM;
1345         } else {
1346                 memset(data->txring, 0, txring_size);
1347         }
1348
1349         for (i = 0; i < TSI108_RXRING_LEN; i++) {
1350                 data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1351                 data->rxring[i].blen = TSI108_RXBUF_SIZE;
1352                 data->rxring[i].vlan = 0;
1353         }
1354
1355         data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1356
1357         data->rxtail = 0;
1358         data->rxhead = 0;
1359
1360         for (i = 0; i < TSI108_RXRING_LEN; i++) {
1361                 struct sk_buff *skb = dev_alloc_skb(TSI108_RXBUF_SIZE + NET_IP_ALIGN);
1362
1363                 if (!skb) {
1364                         /* Bah.  No memory for now, but maybe we'll get
1365                          * some more later.
1366                          * For now, we'll live with the smaller ring.
1367                          */
1368                         printk(KERN_WARNING
1369                                "%s: Could only allocate %d receive skb(s).\n",
1370                                dev->name, i);
1371                         data->rxhead = i;
1372                         break;
1373                 }
1374
1375                 data->rxskbs[i] = skb;
1376                 /* Align the payload on a 4-byte boundary */
1377                 skb_reserve(skb, 2);
1378                 data->rxskbs[i] = skb;
1379                 data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1380                 data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1381         }
1382
1383         data->rxfree = i;
1384         TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1385
1386         for (i = 0; i < TSI108_TXRING_LEN; i++) {
1387                 data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1388                 data->txring[i].misc = 0;
1389         }
1390
1391         data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1392         data->txtail = 0;
1393         data->txhead = 0;
1394         data->txfree = TSI108_TXRING_LEN;
1395         TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1396         tsi108_init_phy(dev);
1397
1398         napi_enable(&data->napi);
1399
1400         setup_timer(&data->timer, tsi108_timed_checker, (unsigned long)dev);
1401         mod_timer(&data->timer, jiffies + 1);
1402
1403         tsi108_restart_rx(data, dev);
1404
1405         TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1406
1407         TSI_WRITE(TSI108_EC_INTMASK,
1408                              ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1409                                TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1410                                TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1411                                TSI108_INT_SFN | TSI108_INT_STATCARRY));
1412
1413         TSI_WRITE(TSI108_MAC_CFG1,
1414                              TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1415         netif_start_queue(dev);
1416         return 0;
1417 }
1418
1419 static int tsi108_close(struct net_device *dev)
1420 {
1421         struct tsi108_prv_data *data = netdev_priv(dev);
1422
1423         netif_stop_queue(dev);
1424         napi_disable(&data->napi);
1425
1426         del_timer_sync(&data->timer);
1427
1428         tsi108_stop_ethernet(dev);
1429         tsi108_kill_phy(dev);
1430         TSI_WRITE(TSI108_EC_INTMASK, ~0);
1431         TSI_WRITE(TSI108_MAC_CFG1, 0);
1432
1433         /* Check for any pending TX packets, and drop them. */
1434
1435         while (!data->txfree || data->txhead != data->txtail) {
1436                 int tx = data->txtail;
1437                 struct sk_buff *skb;
1438                 skb = data->txskbs[tx];
1439                 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1440                 data->txfree++;
1441                 dev_kfree_skb(skb);
1442         }
1443
1444         synchronize_irq(data->irq_num);
1445         free_irq(data->irq_num, dev);
1446
1447         /* Discard the RX ring. */
1448
1449         while (data->rxfree) {
1450                 int rx = data->rxtail;
1451                 struct sk_buff *skb;
1452
1453                 skb = data->rxskbs[rx];
1454                 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1455                 data->rxfree--;
1456                 dev_kfree_skb(skb);
1457         }
1458
1459         dma_free_coherent(0,
1460                             TSI108_RXRING_LEN * sizeof(rx_desc),
1461                             data->rxring, data->rxdma);
1462         dma_free_coherent(0,
1463                             TSI108_TXRING_LEN * sizeof(tx_desc),
1464                             data->txring, data->txdma);
1465
1466         return 0;
1467 }
1468
1469 static void tsi108_init_mac(struct net_device *dev)
1470 {
1471         struct tsi108_prv_data *data = netdev_priv(dev);
1472
1473         TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1474                              TSI108_MAC_CFG2_PADCRC);
1475
1476         TSI_WRITE(TSI108_EC_TXTHRESH,
1477                              (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1478                              (192 << TSI108_EC_TXTHRESH_STOPFILL));
1479
1480         TSI_WRITE(TSI108_STAT_CARRYMASK1,
1481                              ~(TSI108_STAT_CARRY1_RXBYTES |
1482                                TSI108_STAT_CARRY1_RXPKTS |
1483                                TSI108_STAT_CARRY1_RXFCS |
1484                                TSI108_STAT_CARRY1_RXMCAST |
1485                                TSI108_STAT_CARRY1_RXALIGN |
1486                                TSI108_STAT_CARRY1_RXLENGTH |
1487                                TSI108_STAT_CARRY1_RXRUNT |
1488                                TSI108_STAT_CARRY1_RXJUMBO |
1489                                TSI108_STAT_CARRY1_RXFRAG |
1490                                TSI108_STAT_CARRY1_RXJABBER |
1491                                TSI108_STAT_CARRY1_RXDROP));
1492
1493         TSI_WRITE(TSI108_STAT_CARRYMASK2,
1494                              ~(TSI108_STAT_CARRY2_TXBYTES |
1495                                TSI108_STAT_CARRY2_TXPKTS |
1496                                TSI108_STAT_CARRY2_TXEXDEF |
1497                                TSI108_STAT_CARRY2_TXEXCOL |
1498                                TSI108_STAT_CARRY2_TXTCOL |
1499                                TSI108_STAT_CARRY2_TXPAUSE));
1500
1501         TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1502         TSI_WRITE(TSI108_MAC_CFG1, 0);
1503
1504         TSI_WRITE(TSI108_EC_RXCFG,
1505                              TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1506
1507         TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1508                              TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1509                              TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1510                                                 TSI108_EC_TXQ_CFG_SFNPORT));
1511
1512         TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1513                              TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1514                              TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1515                                                 TSI108_EC_RXQ_CFG_SFNPORT));
1516
1517         TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1518                              TSI108_EC_TXQ_BUFCFG_BURST256 |
1519                              TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1520                                                 TSI108_EC_TXQ_BUFCFG_SFNPORT));
1521
1522         TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1523                              TSI108_EC_RXQ_BUFCFG_BURST256 |
1524                              TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1525                                                 TSI108_EC_RXQ_BUFCFG_SFNPORT));
1526
1527         TSI_WRITE(TSI108_EC_INTMASK, ~0);
1528 }
1529
1530 static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1531 {
1532         struct tsi108_prv_data *data = netdev_priv(dev);
1533         return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1534 }
1535
1536 static int
1537 tsi108_init_one(struct platform_device *pdev)
1538 {
1539         struct net_device *dev = NULL;
1540         struct tsi108_prv_data *data = NULL;
1541         hw_info *einfo;
1542         int err = 0;
1543         DECLARE_MAC_BUF(mac);
1544
1545         einfo = pdev->dev.platform_data;
1546
1547         if (NULL == einfo) {
1548                 printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1549                        pdev->id);
1550                 return -ENODEV;
1551         }
1552
1553         /* Create an ethernet device instance */
1554
1555         dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1556         if (!dev) {
1557                 printk("tsi108_eth: Could not allocate a device structure\n");
1558                 return -ENOMEM;
1559         }
1560
1561         printk("tsi108_eth%d: probe...\n", pdev->id);
1562         data = netdev_priv(dev);
1563         data->dev = dev;
1564
1565         pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1566                         pdev->id, einfo->regs, einfo->phyregs,
1567                         einfo->phy, einfo->irq_num);
1568
1569         data->regs = ioremap(einfo->regs, 0x400);
1570         if (NULL == data->regs) {
1571                 err = -ENOMEM;
1572                 goto regs_fail;
1573         }
1574
1575         data->phyregs = ioremap(einfo->phyregs, 0x400);
1576         if (NULL == data->phyregs) {
1577                 err = -ENOMEM;
1578                 goto regs_fail;
1579         }
1580 /* MII setup */
1581         data->mii_if.dev = dev;
1582         data->mii_if.mdio_read = tsi108_mdio_read;
1583         data->mii_if.mdio_write = tsi108_mdio_write;
1584         data->mii_if.phy_id = einfo->phy;
1585         data->mii_if.phy_id_mask = 0x1f;
1586         data->mii_if.reg_num_mask = 0x1f;
1587         data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1588
1589         data->phy = einfo->phy;
1590         data->phy_type = einfo->phy_type;
1591         data->irq_num = einfo->irq_num;
1592         data->id = pdev->id;
1593         dev->open = tsi108_open;
1594         dev->stop = tsi108_close;
1595         dev->hard_start_xmit = tsi108_send_packet;
1596         dev->set_mac_address = tsi108_set_mac;
1597         dev->set_multicast_list = tsi108_set_rx_mode;
1598         dev->get_stats = tsi108_get_stats;
1599         netif_napi_add(dev, &data->napi, tsi108_poll, 64);
1600         dev->do_ioctl = tsi108_do_ioctl;
1601
1602         /* Apparently, the Linux networking code won't use scatter-gather
1603          * if the hardware doesn't do checksums.  However, it's faster
1604          * to checksum in place and use SG, as (among other reasons)
1605          * the cache won't be dirtied (which then has to be flushed
1606          * before DMA).  The checksumming is done by the driver (via
1607          * a new function skb_csum_dev() in net/core/skbuff.c).
1608          */
1609
1610         dev->features = NETIF_F_HIGHDMA;
1611
1612         spin_lock_init(&data->txlock);
1613         spin_lock_init(&data->misclock);
1614
1615         tsi108_reset_ether(data);
1616         tsi108_kill_phy(dev);
1617
1618         if ((err = tsi108_get_mac(dev)) != 0) {
1619                 printk(KERN_ERR "%s: Invalid MAC address.  Please correct.\n",
1620                        dev->name);
1621                 goto register_fail;
1622         }
1623
1624         tsi108_init_mac(dev);
1625         err = register_netdev(dev);
1626         if (err) {
1627                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1628                                 dev->name);
1629                 goto register_fail;
1630         }
1631
1632         printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %s\n"
1633                dev->name, print_mac(mac, dev->dev_addr));
1634 #ifdef DEBUG
1635         data->msg_enable = DEBUG;
1636         dump_eth_one(dev);
1637 #endif
1638
1639         return 0;
1640
1641 register_fail:
1642         iounmap(data->regs);
1643         iounmap(data->phyregs);
1644
1645 regs_fail:
1646         free_netdev(dev);
1647         return err;
1648 }
1649
1650 /* There's no way to either get interrupts from the PHY when
1651  * something changes, or to have the Tsi108 automatically communicate
1652  * with the PHY to reconfigure itself.
1653  *
1654  * Thus, we have to do it using a timer.
1655  */
1656
1657 static void tsi108_timed_checker(unsigned long dev_ptr)
1658 {
1659         struct net_device *dev = (struct net_device *)dev_ptr;
1660         struct tsi108_prv_data *data = netdev_priv(dev);
1661
1662         tsi108_check_phy(dev);
1663         tsi108_check_rxring(dev);
1664         mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1665 }
1666
1667 static int tsi108_ether_init(void)
1668 {
1669         int ret;
1670         ret = platform_driver_register (&tsi_eth_driver);
1671         if (ret < 0){
1672                 printk("tsi108_ether_init: error initializing ethernet "
1673                        "device\n");
1674                 return ret;
1675         }
1676         return 0;
1677 }
1678
1679 static int tsi108_ether_remove(struct platform_device *pdev)
1680 {
1681         struct net_device *dev = platform_get_drvdata(pdev);
1682         struct tsi108_prv_data *priv = netdev_priv(dev);
1683
1684         unregister_netdev(dev);
1685         tsi108_stop_ethernet(dev);
1686         platform_set_drvdata(pdev, NULL);
1687         iounmap(priv->regs);
1688         iounmap(priv->phyregs);
1689         free_netdev(dev);
1690
1691         return 0;
1692 }
1693 static void tsi108_ether_exit(void)
1694 {
1695         platform_driver_unregister(&tsi_eth_driver);
1696 }
1697
1698 module_init(tsi108_ether_init);
1699 module_exit(tsi108_ether_exit);
1700
1701 MODULE_AUTHOR("Tundra Semiconductor Corporation");
1702 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1703 MODULE_LICENSE("GPL");