[SUNHME]: VLAN support for sunhme
[safe/jmp/linux-2.6] / drivers / net / sunhme.c
1 /* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
2  *           auto carrier detecting ethernet driver.  Also known as the
3  *           "Happy Meal Ethernet" found on SunSwift SBUS cards.
4  *
5  * Copyright (C) 1996, 1998, 1999, 2002, 2003,
6                  2006 David S. Miller (davem@davemloft.net)
7  *
8  * Changes :
9  * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
10  *   - port to non-sparc architectures. Tested only on x86 and
11  *     only currently works with QFE PCI cards.
12  *   - ability to specify the MAC address at module load time by passing this
13  *     argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
14  */
15
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/fcntl.h>
20 #include <linux/interrupt.h>
21 #include <linux/ioport.h>
22 #include <linux/in.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/delay.h>
26 #include <linux/init.h>
27 #include <linux/ethtool.h>
28 #include <linux/mii.h>
29 #include <linux/crc32.h>
30 #include <linux/random.h>
31 #include <linux/errno.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/mm.h>
36 #include <linux/bitops.h>
37
38 #include <asm/system.h>
39 #include <asm/io.h>
40 #include <asm/dma.h>
41 #include <asm/byteorder.h>
42
43 #ifdef CONFIG_SPARC
44 #include <asm/idprom.h>
45 #include <asm/sbus.h>
46 #include <asm/openprom.h>
47 #include <asm/oplib.h>
48 #include <asm/prom.h>
49 #include <asm/auxio.h>
50 #endif
51 #include <asm/uaccess.h>
52
53 #include <asm/pgtable.h>
54 #include <asm/irq.h>
55
56 #ifdef CONFIG_PCI
57 #include <linux/pci.h>
58 #endif
59
60 #include "sunhme.h"
61
62 #define DRV_NAME        "sunhme"
63 #define DRV_VERSION     "3.00"
64 #define DRV_RELDATE     "June 23, 2006"
65 #define DRV_AUTHOR      "David S. Miller (davem@davemloft.net)"
66
67 static char version[] =
68         DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
69
70 MODULE_VERSION(DRV_VERSION);
71 MODULE_AUTHOR(DRV_AUTHOR);
72 MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
73 MODULE_LICENSE("GPL");
74
75 static int macaddr[6];
76
77 /* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
78 module_param_array(macaddr, int, NULL, 0);
79 MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set");
80
81 #ifdef CONFIG_SBUS
82 static struct quattro *qfe_sbus_list;
83 #endif
84
85 #ifdef CONFIG_PCI
86 static struct quattro *qfe_pci_list;
87 #endif
88
89 #undef HMEDEBUG
90 #undef SXDEBUG
91 #undef RXDEBUG
92 #undef TXDEBUG
93 #undef TXLOGGING
94
95 #ifdef TXLOGGING
96 struct hme_tx_logent {
97         unsigned int tstamp;
98         int tx_new, tx_old;
99         unsigned int action;
100 #define TXLOG_ACTION_IRQ        0x01
101 #define TXLOG_ACTION_TXMIT      0x02
102 #define TXLOG_ACTION_TBUSY      0x04
103 #define TXLOG_ACTION_NBUFS      0x08
104         unsigned int status;
105 };
106 #define TX_LOG_LEN      128
107 static struct hme_tx_logent tx_log[TX_LOG_LEN];
108 static int txlog_cur_entry;
109 static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s)
110 {
111         struct hme_tx_logent *tlp;
112         unsigned long flags;
113
114         save_and_cli(flags);
115         tlp = &tx_log[txlog_cur_entry];
116         tlp->tstamp = (unsigned int)jiffies;
117         tlp->tx_new = hp->tx_new;
118         tlp->tx_old = hp->tx_old;
119         tlp->action = a;
120         tlp->status = s;
121         txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1);
122         restore_flags(flags);
123 }
124 static __inline__ void tx_dump_log(void)
125 {
126         int i, this;
127
128         this = txlog_cur_entry;
129         for (i = 0; i < TX_LOG_LEN; i++) {
130                 printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i,
131                        tx_log[this].tstamp,
132                        tx_log[this].tx_new, tx_log[this].tx_old,
133                        tx_log[this].action, tx_log[this].status);
134                 this = (this + 1) & (TX_LOG_LEN - 1);
135         }
136 }
137 static __inline__ void tx_dump_ring(struct happy_meal *hp)
138 {
139         struct hmeal_init_block *hb = hp->happy_block;
140         struct happy_meal_txd *tp = &hb->happy_meal_txd[0];
141         int i;
142
143         for (i = 0; i < TX_RING_SIZE; i+=4) {
144                 printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n",
145                        i, i + 4,
146                        le32_to_cpu(tp[i].tx_flags), le32_to_cpu(tp[i].tx_addr),
147                        le32_to_cpu(tp[i + 1].tx_flags), le32_to_cpu(tp[i + 1].tx_addr),
148                        le32_to_cpu(tp[i + 2].tx_flags), le32_to_cpu(tp[i + 2].tx_addr),
149                        le32_to_cpu(tp[i + 3].tx_flags), le32_to_cpu(tp[i + 3].tx_addr));
150         }
151 }
152 #else
153 #define tx_add_log(hp, a, s)            do { } while(0)
154 #define tx_dump_log()                   do { } while(0)
155 #define tx_dump_ring(hp)                do { } while(0)
156 #endif
157
158 #ifdef HMEDEBUG
159 #define HMD(x)  printk x
160 #else
161 #define HMD(x)
162 #endif
163
164 /* #define AUTO_SWITCH_DEBUG */
165
166 #ifdef AUTO_SWITCH_DEBUG
167 #define ASD(x)  printk x
168 #else
169 #define ASD(x)
170 #endif
171
172 #define DEFAULT_IPG0      16 /* For lance-mode only */
173 #define DEFAULT_IPG1       8 /* For all modes */
174 #define DEFAULT_IPG2       4 /* For all modes */
175 #define DEFAULT_JAMSIZE    4 /* Toe jam */
176
177 /* NOTE: In the descriptor writes one _must_ write the address
178  *       member _first_.  The card must not be allowed to see
179  *       the updated descriptor flags until the address is
180  *       correct.  I've added a write memory barrier between
181  *       the two stores so that I can sleep well at night... -DaveM
182  */
183
184 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
185 static void sbus_hme_write32(void __iomem *reg, u32 val)
186 {
187         sbus_writel(val, reg);
188 }
189
190 static u32 sbus_hme_read32(void __iomem *reg)
191 {
192         return sbus_readl(reg);
193 }
194
195 static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
196 {
197         rxd->rx_addr = addr;
198         wmb();
199         rxd->rx_flags = flags;
200 }
201
202 static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
203 {
204         txd->tx_addr = addr;
205         wmb();
206         txd->tx_flags = flags;
207 }
208
209 static u32 sbus_hme_read_desc32(u32 *p)
210 {
211         return *p;
212 }
213
214 static void pci_hme_write32(void __iomem *reg, u32 val)
215 {
216         writel(val, reg);
217 }
218
219 static u32 pci_hme_read32(void __iomem *reg)
220 {
221         return readl(reg);
222 }
223
224 static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
225 {
226         rxd->rx_addr = cpu_to_le32(addr);
227         wmb();
228         rxd->rx_flags = cpu_to_le32(flags);
229 }
230
231 static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
232 {
233         txd->tx_addr = cpu_to_le32(addr);
234         wmb();
235         txd->tx_flags = cpu_to_le32(flags);
236 }
237
238 static u32 pci_hme_read_desc32(u32 *p)
239 {
240         return cpu_to_le32p(p);
241 }
242
243 #define hme_write32(__hp, __reg, __val) \
244         ((__hp)->write32((__reg), (__val)))
245 #define hme_read32(__hp, __reg) \
246         ((__hp)->read32(__reg))
247 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
248         ((__hp)->write_rxd((__rxd), (__flags), (__addr)))
249 #define hme_write_txd(__hp, __txd, __flags, __addr) \
250         ((__hp)->write_txd((__txd), (__flags), (__addr)))
251 #define hme_read_desc32(__hp, __p) \
252         ((__hp)->read_desc32(__p))
253 #define hme_dma_map(__hp, __ptr, __size, __dir) \
254         ((__hp)->dma_map((__hp)->happy_dev, (__ptr), (__size), (__dir)))
255 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
256         ((__hp)->dma_unmap((__hp)->happy_dev, (__addr), (__size), (__dir)))
257 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
258         ((__hp)->dma_sync_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir)))
259 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
260         ((__hp)->dma_sync_for_device((__hp)->happy_dev, (__addr), (__size), (__dir)))
261 #else
262 #ifdef CONFIG_SBUS
263 /* SBUS only compilation */
264 #define hme_write32(__hp, __reg, __val) \
265         sbus_writel((__val), (__reg))
266 #define hme_read32(__hp, __reg) \
267         sbus_readl(__reg)
268 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
269 do {    (__rxd)->rx_addr = (__addr); \
270         wmb(); \
271         (__rxd)->rx_flags = (__flags); \
272 } while(0)
273 #define hme_write_txd(__hp, __txd, __flags, __addr) \
274 do {    (__txd)->tx_addr = (__addr); \
275         wmb(); \
276         (__txd)->tx_flags = (__flags); \
277 } while(0)
278 #define hme_read_desc32(__hp, __p)      (*(__p))
279 #define hme_dma_map(__hp, __ptr, __size, __dir) \
280         sbus_map_single((__hp)->happy_dev, (__ptr), (__size), (__dir))
281 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
282         sbus_unmap_single((__hp)->happy_dev, (__addr), (__size), (__dir))
283 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
284         sbus_dma_sync_single_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir))
285 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
286         sbus_dma_sync_single_for_device((__hp)->happy_dev, (__addr), (__size), (__dir))
287 #else
288 /* PCI only compilation */
289 #define hme_write32(__hp, __reg, __val) \
290         writel((__val), (__reg))
291 #define hme_read32(__hp, __reg) \
292         readl(__reg)
293 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
294 do {    (__rxd)->rx_addr = cpu_to_le32(__addr); \
295         wmb(); \
296         (__rxd)->rx_flags = cpu_to_le32(__flags); \
297 } while(0)
298 #define hme_write_txd(__hp, __txd, __flags, __addr) \
299 do {    (__txd)->tx_addr = cpu_to_le32(__addr); \
300         wmb(); \
301         (__txd)->tx_flags = cpu_to_le32(__flags); \
302 } while(0)
303 #define hme_read_desc32(__hp, __p)      cpu_to_le32p(__p)
304 #define hme_dma_map(__hp, __ptr, __size, __dir) \
305         pci_map_single((__hp)->happy_dev, (__ptr), (__size), (__dir))
306 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
307         pci_unmap_single((__hp)->happy_dev, (__addr), (__size), (__dir))
308 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
309         pci_dma_sync_single_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir))
310 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
311         pci_dma_sync_single_for_device((__hp)->happy_dev, (__addr), (__size), (__dir))
312 #endif
313 #endif
314
315
316 #ifdef SBUS_DMA_BIDIRECTIONAL
317 #       define DMA_BIDIRECTIONAL        SBUS_DMA_BIDIRECTIONAL
318 #else
319 #       define DMA_BIDIRECTIONAL        0
320 #endif
321
322 #ifdef SBUS_DMA_FROMDEVICE
323 #       define DMA_FROMDEVICE           SBUS_DMA_FROMDEVICE
324 #else
325 #       define DMA_TODEVICE             1
326 #endif
327
328 #ifdef SBUS_DMA_TODEVICE
329 #       define DMA_TODEVICE             SBUS_DMA_TODEVICE
330 #else
331 #       define DMA_FROMDEVICE           2
332 #endif
333
334
335 /* Oh yes, the MIF BitBang is mighty fun to program.  BitBucket is more like it. */
336 static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit)
337 {
338         hme_write32(hp, tregs + TCVR_BBDATA, bit);
339         hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
340         hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
341 }
342
343 #if 0
344 static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal)
345 {
346         u32 ret;
347
348         hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
349         hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
350         ret = hme_read32(hp, tregs + TCVR_CFG);
351         if (internal)
352                 ret &= TCV_CFG_MDIO0;
353         else
354                 ret &= TCV_CFG_MDIO1;
355
356         return ret;
357 }
358 #endif
359
360 static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal)
361 {
362         u32 retval;
363
364         hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
365         udelay(1);
366         retval = hme_read32(hp, tregs + TCVR_CFG);
367         if (internal)
368                 retval &= TCV_CFG_MDIO0;
369         else
370                 retval &= TCV_CFG_MDIO1;
371         hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
372
373         return retval;
374 }
375
376 #define TCVR_FAILURE      0x80000000     /* Impossible MIF read value */
377
378 static int happy_meal_bb_read(struct happy_meal *hp,
379                               void __iomem *tregs, int reg)
380 {
381         u32 tmp;
382         int retval = 0;
383         int i;
384
385         ASD(("happy_meal_bb_read: reg=%d ", reg));
386
387         /* Enable the MIF BitBang outputs. */
388         hme_write32(hp, tregs + TCVR_BBOENAB, 1);
389
390         /* Force BitBang into the idle state. */
391         for (i = 0; i < 32; i++)
392                 BB_PUT_BIT(hp, tregs, 1);
393
394         /* Give it the read sequence. */
395         BB_PUT_BIT(hp, tregs, 0);
396         BB_PUT_BIT(hp, tregs, 1);
397         BB_PUT_BIT(hp, tregs, 1);
398         BB_PUT_BIT(hp, tregs, 0);
399
400         /* Give it the PHY address. */
401         tmp = hp->paddr & 0xff;
402         for (i = 4; i >= 0; i--)
403                 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
404
405         /* Tell it what register we want to read. */
406         tmp = (reg & 0xff);
407         for (i = 4; i >= 0; i--)
408                 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
409
410         /* Close down the MIF BitBang outputs. */
411         hme_write32(hp, tregs + TCVR_BBOENAB, 0);
412
413         /* Now read in the value. */
414         (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
415         for (i = 15; i >= 0; i--)
416                 retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
417         (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
418         (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
419         (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
420         ASD(("value=%x\n", retval));
421         return retval;
422 }
423
424 static void happy_meal_bb_write(struct happy_meal *hp,
425                                 void __iomem *tregs, int reg,
426                                 unsigned short value)
427 {
428         u32 tmp;
429         int i;
430
431         ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg, value));
432
433         /* Enable the MIF BitBang outputs. */
434         hme_write32(hp, tregs + TCVR_BBOENAB, 1);
435
436         /* Force BitBang into the idle state. */
437         for (i = 0; i < 32; i++)
438                 BB_PUT_BIT(hp, tregs, 1);
439
440         /* Give it write sequence. */
441         BB_PUT_BIT(hp, tregs, 0);
442         BB_PUT_BIT(hp, tregs, 1);
443         BB_PUT_BIT(hp, tregs, 0);
444         BB_PUT_BIT(hp, tregs, 1);
445
446         /* Give it the PHY address. */
447         tmp = (hp->paddr & 0xff);
448         for (i = 4; i >= 0; i--)
449                 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
450
451         /* Tell it what register we will be writing. */
452         tmp = (reg & 0xff);
453         for (i = 4; i >= 0; i--)
454                 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
455
456         /* Tell it to become ready for the bits. */
457         BB_PUT_BIT(hp, tregs, 1);
458         BB_PUT_BIT(hp, tregs, 0);
459
460         for (i = 15; i >= 0; i--)
461                 BB_PUT_BIT(hp, tregs, ((value >> i) & 1));
462
463         /* Close down the MIF BitBang outputs. */
464         hme_write32(hp, tregs + TCVR_BBOENAB, 0);
465 }
466
467 #define TCVR_READ_TRIES   16
468
469 static int happy_meal_tcvr_read(struct happy_meal *hp,
470                                 void __iomem *tregs, int reg)
471 {
472         int tries = TCVR_READ_TRIES;
473         int retval;
474
475         ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg));
476         if (hp->tcvr_type == none) {
477                 ASD(("no transceiver, value=TCVR_FAILURE\n"));
478                 return TCVR_FAILURE;
479         }
480
481         if (!(hp->happy_flags & HFLAG_FENABLE)) {
482                 ASD(("doing bit bang\n"));
483                 return happy_meal_bb_read(hp, tregs, reg);
484         }
485
486         hme_write32(hp, tregs + TCVR_FRAME,
487                     (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18)));
488         while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
489                 udelay(20);
490         if (!tries) {
491                 printk(KERN_ERR "happy meal: Aieee, transceiver MIF read bolixed\n");
492                 return TCVR_FAILURE;
493         }
494         retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff;
495         ASD(("value=%04x\n", retval));
496         return retval;
497 }
498
499 #define TCVR_WRITE_TRIES  16
500
501 static void happy_meal_tcvr_write(struct happy_meal *hp,
502                                   void __iomem *tregs, int reg,
503                                   unsigned short value)
504 {
505         int tries = TCVR_WRITE_TRIES;
506
507         ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg, value));
508
509         /* Welcome to Sun Microsystems, can I take your order please? */
510         if (!(hp->happy_flags & HFLAG_FENABLE)) {
511                 happy_meal_bb_write(hp, tregs, reg, value);
512                 return;
513         }
514
515         /* Would you like fries with that? */
516         hme_write32(hp, tregs + TCVR_FRAME,
517                     (FRAME_WRITE | (hp->paddr << 23) |
518                      ((reg & 0xff) << 18) | (value & 0xffff)));
519         while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
520                 udelay(20);
521
522         /* Anything else? */
523         if (!tries)
524                 printk(KERN_ERR "happy meal: Aieee, transceiver MIF write bolixed\n");
525
526         /* Fifty-two cents is your change, have a nice day. */
527 }
528
529 /* Auto negotiation.  The scheme is very simple.  We have a timer routine
530  * that keeps watching the auto negotiation process as it progresses.
531  * The DP83840 is first told to start doing it's thing, we set up the time
532  * and place the timer state machine in it's initial state.
533  *
534  * Here the timer peeks at the DP83840 status registers at each click to see
535  * if the auto negotiation has completed, we assume here that the DP83840 PHY
536  * will time out at some point and just tell us what (didn't) happen.  For
537  * complete coverage we only allow so many of the ticks at this level to run,
538  * when this has expired we print a warning message and try another strategy.
539  * This "other" strategy is to force the interface into various speed/duplex
540  * configurations and we stop when we see a link-up condition before the
541  * maximum number of "peek" ticks have occurred.
542  *
543  * Once a valid link status has been detected we configure the BigMAC and
544  * the rest of the Happy Meal to speak the most efficient protocol we could
545  * get a clean link for.  The priority for link configurations, highest first
546  * is:
547  *                 100 Base-T Full Duplex
548  *                 100 Base-T Half Duplex
549  *                 10 Base-T Full Duplex
550  *                 10 Base-T Half Duplex
551  *
552  * We start a new timer now, after a successful auto negotiation status has
553  * been detected.  This timer just waits for the link-up bit to get set in
554  * the BMCR of the DP83840.  When this occurs we print a kernel log message
555  * describing the link type in use and the fact that it is up.
556  *
557  * If a fatal error of some sort is signalled and detected in the interrupt
558  * service routine, and the chip is reset, or the link is ifconfig'd down
559  * and then back up, this entire process repeats itself all over again.
560  */
561 static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs)
562 {
563         hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
564
565         /* Downgrade from full to half duplex.  Only possible
566          * via ethtool.
567          */
568         if (hp->sw_bmcr & BMCR_FULLDPLX) {
569                 hp->sw_bmcr &= ~(BMCR_FULLDPLX);
570                 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
571                 return 0;
572         }
573
574         /* Downgrade from 100 to 10. */
575         if (hp->sw_bmcr & BMCR_SPEED100) {
576                 hp->sw_bmcr &= ~(BMCR_SPEED100);
577                 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
578                 return 0;
579         }
580
581         /* We've tried everything. */
582         return -1;
583 }
584
585 static void display_link_mode(struct happy_meal *hp, void __iomem *tregs)
586 {
587         printk(KERN_INFO "%s: Link is up using ", hp->dev->name);
588         if (hp->tcvr_type == external)
589                 printk("external ");
590         else
591                 printk("internal ");
592         printk("transceiver at ");
593         hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
594         if (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) {
595                 if (hp->sw_lpa & LPA_100FULL)
596                         printk("100Mb/s, Full Duplex.\n");
597                 else
598                         printk("100Mb/s, Half Duplex.\n");
599         } else {
600                 if (hp->sw_lpa & LPA_10FULL)
601                         printk("10Mb/s, Full Duplex.\n");
602                 else
603                         printk("10Mb/s, Half Duplex.\n");
604         }
605 }
606
607 static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs)
608 {
609         printk(KERN_INFO "%s: Link has been forced up using ", hp->dev->name);
610         if (hp->tcvr_type == external)
611                 printk("external ");
612         else
613                 printk("internal ");
614         printk("transceiver at ");
615         hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
616         if (hp->sw_bmcr & BMCR_SPEED100)
617                 printk("100Mb/s, ");
618         else
619                 printk("10Mb/s, ");
620         if (hp->sw_bmcr & BMCR_FULLDPLX)
621                 printk("Full Duplex.\n");
622         else
623                 printk("Half Duplex.\n");
624 }
625
626 static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs)
627 {
628         int full;
629
630         /* All we care about is making sure the bigmac tx_cfg has a
631          * proper duplex setting.
632          */
633         if (hp->timer_state == arbwait) {
634                 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
635                 if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL)))
636                         goto no_response;
637                 if (hp->sw_lpa & LPA_100FULL)
638                         full = 1;
639                 else if (hp->sw_lpa & LPA_100HALF)
640                         full = 0;
641                 else if (hp->sw_lpa & LPA_10FULL)
642                         full = 1;
643                 else
644                         full = 0;
645         } else {
646                 /* Forcing a link mode. */
647                 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
648                 if (hp->sw_bmcr & BMCR_FULLDPLX)
649                         full = 1;
650                 else
651                         full = 0;
652         }
653
654         /* Before changing other bits in the tx_cfg register, and in
655          * general any of other the TX config registers too, you
656          * must:
657          * 1) Clear Enable
658          * 2) Poll with reads until that bit reads back as zero
659          * 3) Make TX configuration changes
660          * 4) Set Enable once more
661          */
662         hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
663                     hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
664                     ~(BIGMAC_TXCFG_ENABLE));
665         while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE)
666                 barrier();
667         if (full) {
668                 hp->happy_flags |= HFLAG_FULL;
669                 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
670                             hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
671                             BIGMAC_TXCFG_FULLDPLX);
672         } else {
673                 hp->happy_flags &= ~(HFLAG_FULL);
674                 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
675                             hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
676                             ~(BIGMAC_TXCFG_FULLDPLX));
677         }
678         hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
679                     hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
680                     BIGMAC_TXCFG_ENABLE);
681         return 0;
682 no_response:
683         return 1;
684 }
685
686 static int happy_meal_init(struct happy_meal *hp);
687
688 static int is_lucent_phy(struct happy_meal *hp)
689 {
690         void __iomem *tregs = hp->tcvregs;
691         unsigned short mr2, mr3;
692         int ret = 0;
693
694         mr2 = happy_meal_tcvr_read(hp, tregs, 2);
695         mr3 = happy_meal_tcvr_read(hp, tregs, 3);
696         if ((mr2 & 0xffff) == 0x0180 &&
697             ((mr3 & 0xffff) >> 10) == 0x1d)
698                 ret = 1;
699
700         return ret;
701 }
702
703 static void happy_meal_timer(unsigned long data)
704 {
705         struct happy_meal *hp = (struct happy_meal *) data;
706         void __iomem *tregs = hp->tcvregs;
707         int restart_timer = 0;
708
709         spin_lock_irq(&hp->happy_lock);
710
711         hp->timer_ticks++;
712         switch(hp->timer_state) {
713         case arbwait:
714                 /* Only allow for 5 ticks, thats 10 seconds and much too
715                  * long to wait for arbitration to complete.
716                  */
717                 if (hp->timer_ticks >= 10) {
718                         /* Enter force mode. */
719         do_force_mode:
720                         hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
721                         printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful, trying force link mode\n",
722                                hp->dev->name);
723                         hp->sw_bmcr = BMCR_SPEED100;
724                         happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
725
726                         if (!is_lucent_phy(hp)) {
727                                 /* OK, seems we need do disable the transceiver for the first
728                                  * tick to make sure we get an accurate link state at the
729                                  * second tick.
730                                  */
731                                 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
732                                 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
733                                 happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig);
734                         }
735                         hp->timer_state = ltrywait;
736                         hp->timer_ticks = 0;
737                         restart_timer = 1;
738                 } else {
739                         /* Anything interesting happen? */
740                         hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
741                         if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) {
742                                 int ret;
743
744                                 /* Just what we've been waiting for... */
745                                 ret = set_happy_link_modes(hp, tregs);
746                                 if (ret) {
747                                         /* Ooops, something bad happened, go to force
748                                          * mode.
749                                          *
750                                          * XXX Broken hubs which don't support 802.3u
751                                          * XXX auto-negotiation make this happen as well.
752                                          */
753                                         goto do_force_mode;
754                                 }
755
756                                 /* Success, at least so far, advance our state engine. */
757                                 hp->timer_state = lupwait;
758                                 restart_timer = 1;
759                         } else {
760                                 restart_timer = 1;
761                         }
762                 }
763                 break;
764
765         case lupwait:
766                 /* Auto negotiation was successful and we are awaiting a
767                  * link up status.  I have decided to let this timer run
768                  * forever until some sort of error is signalled, reporting
769                  * a message to the user at 10 second intervals.
770                  */
771                 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
772                 if (hp->sw_bmsr & BMSR_LSTATUS) {
773                         /* Wheee, it's up, display the link mode in use and put
774                          * the timer to sleep.
775                          */
776                         display_link_mode(hp, tregs);
777                         hp->timer_state = asleep;
778                         restart_timer = 0;
779                 } else {
780                         if (hp->timer_ticks >= 10) {
781                                 printk(KERN_NOTICE "%s: Auto negotiation successful, link still "
782                                        "not completely up.\n", hp->dev->name);
783                                 hp->timer_ticks = 0;
784                                 restart_timer = 1;
785                         } else {
786                                 restart_timer = 1;
787                         }
788                 }
789                 break;
790
791         case ltrywait:
792                 /* Making the timeout here too long can make it take
793                  * annoyingly long to attempt all of the link mode
794                  * permutations, but then again this is essentially
795                  * error recovery code for the most part.
796                  */
797                 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
798                 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
799                 if (hp->timer_ticks == 1) {
800                         if (!is_lucent_phy(hp)) {
801                                 /* Re-enable transceiver, we'll re-enable the transceiver next
802                                  * tick, then check link state on the following tick.
803                                  */
804                                 hp->sw_csconfig |= CSCONFIG_TCVDISAB;
805                                 happy_meal_tcvr_write(hp, tregs,
806                                                       DP83840_CSCONFIG, hp->sw_csconfig);
807                         }
808                         restart_timer = 1;
809                         break;
810                 }
811                 if (hp->timer_ticks == 2) {
812                         if (!is_lucent_phy(hp)) {
813                                 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
814                                 happy_meal_tcvr_write(hp, tregs,
815                                                       DP83840_CSCONFIG, hp->sw_csconfig);
816                         }
817                         restart_timer = 1;
818                         break;
819                 }
820                 if (hp->sw_bmsr & BMSR_LSTATUS) {
821                         /* Force mode selection success. */
822                         display_forced_link_mode(hp, tregs);
823                         set_happy_link_modes(hp, tregs); /* XXX error? then what? */
824                         hp->timer_state = asleep;
825                         restart_timer = 0;
826                 } else {
827                         if (hp->timer_ticks >= 4) { /* 6 seconds or so... */
828                                 int ret;
829
830                                 ret = try_next_permutation(hp, tregs);
831                                 if (ret == -1) {
832                                         /* Aieee, tried them all, reset the
833                                          * chip and try all over again.
834                                          */
835
836                                         /* Let the user know... */
837                                         printk(KERN_NOTICE "%s: Link down, cable problem?\n",
838                                                hp->dev->name);
839
840                                         ret = happy_meal_init(hp);
841                                         if (ret) {
842                                                 /* ho hum... */
843                                                 printk(KERN_ERR "%s: Error, cannot re-init the "
844                                                        "Happy Meal.\n", hp->dev->name);
845                                         }
846                                         goto out;
847                                 }
848                                 if (!is_lucent_phy(hp)) {
849                                         hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
850                                                                                DP83840_CSCONFIG);
851                                         hp->sw_csconfig |= CSCONFIG_TCVDISAB;
852                                         happy_meal_tcvr_write(hp, tregs,
853                                                               DP83840_CSCONFIG, hp->sw_csconfig);
854                                 }
855                                 hp->timer_ticks = 0;
856                                 restart_timer = 1;
857                         } else {
858                                 restart_timer = 1;
859                         }
860                 }
861                 break;
862
863         case asleep:
864         default:
865                 /* Can't happens.... */
866                 printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n",
867                        hp->dev->name);
868                 restart_timer = 0;
869                 hp->timer_ticks = 0;
870                 hp->timer_state = asleep; /* foo on you */
871                 break;
872         };
873
874         if (restart_timer) {
875                 hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */
876                 add_timer(&hp->happy_timer);
877         }
878
879 out:
880         spin_unlock_irq(&hp->happy_lock);
881 }
882
883 #define TX_RESET_TRIES     32
884 #define RX_RESET_TRIES     32
885
886 /* hp->happy_lock must be held */
887 static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs)
888 {
889         int tries = TX_RESET_TRIES;
890
891         HMD(("happy_meal_tx_reset: reset, "));
892
893         /* Would you like to try our SMCC Delux? */
894         hme_write32(hp, bregs + BMAC_TXSWRESET, 0);
895         while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries)
896                 udelay(20);
897
898         /* Lettuce, tomato, buggy hardware (no extra charge)? */
899         if (!tries)
900                 printk(KERN_ERR "happy meal: Transceiver BigMac ATTACK!");
901
902         /* Take care. */
903         HMD(("done\n"));
904 }
905
906 /* hp->happy_lock must be held */
907 static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs)
908 {
909         int tries = RX_RESET_TRIES;
910
911         HMD(("happy_meal_rx_reset: reset, "));
912
913         /* We have a special on GNU/Viking hardware bugs today. */
914         hme_write32(hp, bregs + BMAC_RXSWRESET, 0);
915         while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries)
916                 udelay(20);
917
918         /* Will that be all? */
919         if (!tries)
920                 printk(KERN_ERR "happy meal: Receiver BigMac ATTACK!");
921
922         /* Don't forget your vik_1137125_wa.  Have a nice day. */
923         HMD(("done\n"));
924 }
925
926 #define STOP_TRIES         16
927
928 /* hp->happy_lock must be held */
929 static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs)
930 {
931         int tries = STOP_TRIES;
932
933         HMD(("happy_meal_stop: reset, "));
934
935         /* We're consolidating our STB products, it's your lucky day. */
936         hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL);
937         while (hme_read32(hp, gregs + GREG_SWRESET) && --tries)
938                 udelay(20);
939
940         /* Come back next week when we are "Sun Microelectronics". */
941         if (!tries)
942                 printk(KERN_ERR "happy meal: Fry guys.");
943
944         /* Remember: "Different name, same old buggy as shit hardware." */
945         HMD(("done\n"));
946 }
947
948 /* hp->happy_lock must be held */
949 static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs)
950 {
951         struct net_device_stats *stats = &hp->net_stats;
952
953         stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR);
954         hme_write32(hp, bregs + BMAC_RCRCECTR, 0);
955
956         stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR);
957         hme_write32(hp, bregs + BMAC_UNALECTR, 0);
958
959         stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR);
960         hme_write32(hp, bregs + BMAC_GLECTR, 0);
961
962         stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR);
963
964         stats->collisions +=
965                 (hme_read32(hp, bregs + BMAC_EXCTR) +
966                  hme_read32(hp, bregs + BMAC_LTCTR));
967         hme_write32(hp, bregs + BMAC_EXCTR, 0);
968         hme_write32(hp, bregs + BMAC_LTCTR, 0);
969 }
970
971 /* hp->happy_lock must be held */
972 static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs)
973 {
974         ASD(("happy_meal_poll_stop: "));
975
976         /* If polling disabled or not polling already, nothing to do. */
977         if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) !=
978            (HFLAG_POLLENABLE | HFLAG_POLL)) {
979                 HMD(("not polling, return\n"));
980                 return;
981         }
982
983         /* Shut up the MIF. */
984         ASD(("were polling, mif ints off, "));
985         hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
986
987         /* Turn off polling. */
988         ASD(("polling off, "));
989         hme_write32(hp, tregs + TCVR_CFG,
990                     hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE));
991
992         /* We are no longer polling. */
993         hp->happy_flags &= ~(HFLAG_POLL);
994
995         /* Let the bits set. */
996         udelay(200);
997         ASD(("done\n"));
998 }
999
1000 /* Only Sun can take such nice parts and fuck up the programming interface
1001  * like this.  Good job guys...
1002  */
1003 #define TCVR_RESET_TRIES       16 /* It should reset quickly        */
1004 #define TCVR_UNISOLATE_TRIES   32 /* Dis-isolation can take longer. */
1005
1006 /* hp->happy_lock must be held */
1007 static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs)
1008 {
1009         u32 tconfig;
1010         int result, tries = TCVR_RESET_TRIES;
1011
1012         tconfig = hme_read32(hp, tregs + TCVR_CFG);
1013         ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig));
1014         if (hp->tcvr_type == external) {
1015                 ASD(("external<"));
1016                 hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT));
1017                 hp->tcvr_type = internal;
1018                 hp->paddr = TCV_PADDR_ITX;
1019                 ASD(("ISOLATE,"));
1020                 happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1021                                       (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1022                 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1023                 if (result == TCVR_FAILURE) {
1024                         ASD(("phyread_fail>\n"));
1025                         return -1;
1026                 }
1027                 ASD(("phyread_ok,PSELECT>"));
1028                 hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1029                 hp->tcvr_type = external;
1030                 hp->paddr = TCV_PADDR_ETX;
1031         } else {
1032                 if (tconfig & TCV_CFG_MDIO1) {
1033                         ASD(("internal<PSELECT,"));
1034                         hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT));
1035                         ASD(("ISOLATE,"));
1036                         happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1037                                               (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1038                         result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1039                         if (result == TCVR_FAILURE) {
1040                                 ASD(("phyread_fail>\n"));
1041                                 return -1;
1042                         }
1043                         ASD(("phyread_ok,~PSELECT>"));
1044                         hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT)));
1045                         hp->tcvr_type = internal;
1046                         hp->paddr = TCV_PADDR_ITX;
1047                 }
1048         }
1049
1050         ASD(("BMCR_RESET "));
1051         happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET);
1052
1053         while (--tries) {
1054                 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1055                 if (result == TCVR_FAILURE)
1056                         return -1;
1057                 hp->sw_bmcr = result;
1058                 if (!(result & BMCR_RESET))
1059                         break;
1060                 udelay(20);
1061         }
1062         if (!tries) {
1063                 ASD(("BMCR RESET FAILED!\n"));
1064                 return -1;
1065         }
1066         ASD(("RESET_OK\n"));
1067
1068         /* Get fresh copies of the PHY registers. */
1069         hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1070         hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1071         hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1072         hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1073
1074         ASD(("UNISOLATE"));
1075         hp->sw_bmcr &= ~(BMCR_ISOLATE);
1076         happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1077
1078         tries = TCVR_UNISOLATE_TRIES;
1079         while (--tries) {
1080                 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1081                 if (result == TCVR_FAILURE)
1082                         return -1;
1083                 if (!(result & BMCR_ISOLATE))
1084                         break;
1085                 udelay(20);
1086         }
1087         if (!tries) {
1088                 ASD((" FAILED!\n"));
1089                 return -1;
1090         }
1091         ASD((" SUCCESS and CSCONFIG_DFBYPASS\n"));
1092         if (!is_lucent_phy(hp)) {
1093                 result = happy_meal_tcvr_read(hp, tregs,
1094                                               DP83840_CSCONFIG);
1095                 happy_meal_tcvr_write(hp, tregs,
1096                                       DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS));
1097         }
1098         return 0;
1099 }
1100
1101 /* Figure out whether we have an internal or external transceiver.
1102  *
1103  * hp->happy_lock must be held
1104  */
1105 static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs)
1106 {
1107         unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG);
1108
1109         ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig));
1110         if (hp->happy_flags & HFLAG_POLL) {
1111                 /* If we are polling, we must stop to get the transceiver type. */
1112                 ASD(("<polling> "));
1113                 if (hp->tcvr_type == internal) {
1114                         if (tconfig & TCV_CFG_MDIO1) {
1115                                 ASD(("<internal> <poll stop> "));
1116                                 happy_meal_poll_stop(hp, tregs);
1117                                 hp->paddr = TCV_PADDR_ETX;
1118                                 hp->tcvr_type = external;
1119                                 ASD(("<external>\n"));
1120                                 tconfig &= ~(TCV_CFG_PENABLE);
1121                                 tconfig |= TCV_CFG_PSELECT;
1122                                 hme_write32(hp, tregs + TCVR_CFG, tconfig);
1123                         }
1124                 } else {
1125                         if (hp->tcvr_type == external) {
1126                                 ASD(("<external> "));
1127                                 if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) {
1128                                         ASD(("<poll stop> "));
1129                                         happy_meal_poll_stop(hp, tregs);
1130                                         hp->paddr = TCV_PADDR_ITX;
1131                                         hp->tcvr_type = internal;
1132                                         ASD(("<internal>\n"));
1133                                         hme_write32(hp, tregs + TCVR_CFG,
1134                                                     hme_read32(hp, tregs + TCVR_CFG) &
1135                                                     ~(TCV_CFG_PSELECT));
1136                                 }
1137                                 ASD(("\n"));
1138                         } else {
1139                                 ASD(("<none>\n"));
1140                         }
1141                 }
1142         } else {
1143                 u32 reread = hme_read32(hp, tregs + TCVR_CFG);
1144
1145                 /* Else we can just work off of the MDIO bits. */
1146                 ASD(("<not polling> "));
1147                 if (reread & TCV_CFG_MDIO1) {
1148                         hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1149                         hp->paddr = TCV_PADDR_ETX;
1150                         hp->tcvr_type = external;
1151                         ASD(("<external>\n"));
1152                 } else {
1153                         if (reread & TCV_CFG_MDIO0) {
1154                                 hme_write32(hp, tregs + TCVR_CFG,
1155                                             tconfig & ~(TCV_CFG_PSELECT));
1156                                 hp->paddr = TCV_PADDR_ITX;
1157                                 hp->tcvr_type = internal;
1158                                 ASD(("<internal>\n"));
1159                         } else {
1160                                 printk(KERN_ERR "happy meal: Transceiver and a coke please.");
1161                                 hp->tcvr_type = none; /* Grrr... */
1162                                 ASD(("<none>\n"));
1163                         }
1164                 }
1165         }
1166 }
1167
1168 /* The receive ring buffers are a bit tricky to get right.  Here goes...
1169  *
1170  * The buffers we dma into must be 64 byte aligned.  So we use a special
1171  * alloc_skb() routine for the happy meal to allocate 64 bytes more than
1172  * we really need.
1173  *
1174  * We use skb_reserve() to align the data block we get in the skb.  We
1175  * also program the etxregs->cfg register to use an offset of 2.  This
1176  * imperical constant plus the ethernet header size will always leave
1177  * us with a nicely aligned ip header once we pass things up to the
1178  * protocol layers.
1179  *
1180  * The numbers work out to:
1181  *
1182  *         Max ethernet frame size         1518
1183  *         Ethernet header size              14
1184  *         Happy Meal base offset             2
1185  *
1186  * Say a skb data area is at 0xf001b010, and its size alloced is
1187  * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
1188  *
1189  * First our alloc_skb() routine aligns the data base to a 64 byte
1190  * boundary.  We now have 0xf001b040 as our skb data address.  We
1191  * plug this into the receive descriptor address.
1192  *
1193  * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
1194  * So now the data we will end up looking at starts at 0xf001b042.  When
1195  * the packet arrives, we will check out the size received and subtract
1196  * this from the skb->length.  Then we just pass the packet up to the
1197  * protocols as is, and allocate a new skb to replace this slot we have
1198  * just received from.
1199  *
1200  * The ethernet layer will strip the ether header from the front of the
1201  * skb we just sent to it, this leaves us with the ip header sitting
1202  * nicely aligned at 0xf001b050.  Also, for tcp and udp packets the
1203  * Happy Meal has even checksummed the tcp/udp data for us.  The 16
1204  * bit checksum is obtained from the low bits of the receive descriptor
1205  * flags, thus:
1206  *
1207  *      skb->csum = rxd->rx_flags & 0xffff;
1208  *      skb->ip_summed = CHECKSUM_COMPLETE;
1209  *
1210  * before sending off the skb to the protocols, and we are good as gold.
1211  */
1212 static void happy_meal_clean_rings(struct happy_meal *hp)
1213 {
1214         int i;
1215
1216         for (i = 0; i < RX_RING_SIZE; i++) {
1217                 if (hp->rx_skbs[i] != NULL) {
1218                         struct sk_buff *skb = hp->rx_skbs[i];
1219                         struct happy_meal_rxd *rxd;
1220                         u32 dma_addr;
1221
1222                         rxd = &hp->happy_block->happy_meal_rxd[i];
1223                         dma_addr = hme_read_desc32(hp, &rxd->rx_addr);
1224                         hme_dma_unmap(hp, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE);
1225                         dev_kfree_skb_any(skb);
1226                         hp->rx_skbs[i] = NULL;
1227                 }
1228         }
1229
1230         for (i = 0; i < TX_RING_SIZE; i++) {
1231                 if (hp->tx_skbs[i] != NULL) {
1232                         struct sk_buff *skb = hp->tx_skbs[i];
1233                         struct happy_meal_txd *txd;
1234                         u32 dma_addr;
1235                         int frag;
1236
1237                         hp->tx_skbs[i] = NULL;
1238
1239                         for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1240                                 txd = &hp->happy_block->happy_meal_txd[i];
1241                                 dma_addr = hme_read_desc32(hp, &txd->tx_addr);
1242                                 hme_dma_unmap(hp, dma_addr,
1243                                               (hme_read_desc32(hp, &txd->tx_flags)
1244                                                & TXFLAG_SIZE),
1245                                               DMA_TODEVICE);
1246
1247                                 if (frag != skb_shinfo(skb)->nr_frags)
1248                                         i++;
1249                         }
1250
1251                         dev_kfree_skb_any(skb);
1252                 }
1253         }
1254 }
1255
1256 /* hp->happy_lock must be held */
1257 static void happy_meal_init_rings(struct happy_meal *hp)
1258 {
1259         struct hmeal_init_block *hb = hp->happy_block;
1260         struct net_device *dev = hp->dev;
1261         int i;
1262
1263         HMD(("happy_meal_init_rings: counters to zero, "));
1264         hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0;
1265
1266         /* Free any skippy bufs left around in the rings. */
1267         HMD(("clean, "));
1268         happy_meal_clean_rings(hp);
1269
1270         /* Now get new skippy bufs for the receive ring. */
1271         HMD(("init rxring, "));
1272         for (i = 0; i < RX_RING_SIZE; i++) {
1273                 struct sk_buff *skb;
1274
1275                 skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
1276                 if (!skb) {
1277                         hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1278                         continue;
1279                 }
1280                 hp->rx_skbs[i] = skb;
1281                 skb->dev = dev;
1282
1283                 /* Because we reserve afterwards. */
1284                 skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
1285                 hme_write_rxd(hp, &hb->happy_meal_rxd[i],
1286                               (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)),
1287                               hme_dma_map(hp, skb->data, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE));
1288                 skb_reserve(skb, RX_OFFSET);
1289         }
1290
1291         HMD(("init txring, "));
1292         for (i = 0; i < TX_RING_SIZE; i++)
1293                 hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0);
1294
1295         HMD(("done\n"));
1296 }
1297
1298 /* hp->happy_lock must be held */
1299 static void happy_meal_begin_auto_negotiation(struct happy_meal *hp,
1300                                               void __iomem *tregs,
1301                                               struct ethtool_cmd *ep)
1302 {
1303         int timeout;
1304
1305         /* Read all of the registers we are interested in now. */
1306         hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1307         hp->sw_bmcr      = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1308         hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1309         hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1310
1311         /* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
1312
1313         hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1314         if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
1315                 /* Advertise everything we can support. */
1316                 if (hp->sw_bmsr & BMSR_10HALF)
1317                         hp->sw_advertise |= (ADVERTISE_10HALF);
1318                 else
1319                         hp->sw_advertise &= ~(ADVERTISE_10HALF);
1320
1321                 if (hp->sw_bmsr & BMSR_10FULL)
1322                         hp->sw_advertise |= (ADVERTISE_10FULL);
1323                 else
1324                         hp->sw_advertise &= ~(ADVERTISE_10FULL);
1325                 if (hp->sw_bmsr & BMSR_100HALF)
1326                         hp->sw_advertise |= (ADVERTISE_100HALF);
1327                 else
1328                         hp->sw_advertise &= ~(ADVERTISE_100HALF);
1329                 if (hp->sw_bmsr & BMSR_100FULL)
1330                         hp->sw_advertise |= (ADVERTISE_100FULL);
1331                 else
1332                         hp->sw_advertise &= ~(ADVERTISE_100FULL);
1333                 happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1334
1335                 /* XXX Currently no Happy Meal cards I know off support 100BaseT4,
1336                  * XXX and this is because the DP83840 does not support it, changes
1337                  * XXX would need to be made to the tx/rx logic in the driver as well
1338                  * XXX so I completely skip checking for it in the BMSR for now.
1339                  */
1340
1341 #ifdef AUTO_SWITCH_DEBUG
1342                 ASD(("%s: Advertising [ ", hp->dev->name));
1343                 if (hp->sw_advertise & ADVERTISE_10HALF)
1344                         ASD(("10H "));
1345                 if (hp->sw_advertise & ADVERTISE_10FULL)
1346                         ASD(("10F "));
1347                 if (hp->sw_advertise & ADVERTISE_100HALF)
1348                         ASD(("100H "));
1349                 if (hp->sw_advertise & ADVERTISE_100FULL)
1350                         ASD(("100F "));
1351 #endif
1352
1353                 /* Enable Auto-Negotiation, this is usually on already... */
1354                 hp->sw_bmcr |= BMCR_ANENABLE;
1355                 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1356
1357                 /* Restart it to make sure it is going. */
1358                 hp->sw_bmcr |= BMCR_ANRESTART;
1359                 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1360
1361                 /* BMCR_ANRESTART self clears when the process has begun. */
1362
1363                 timeout = 64;  /* More than enough. */
1364                 while (--timeout) {
1365                         hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1366                         if (!(hp->sw_bmcr & BMCR_ANRESTART))
1367                                 break; /* got it. */
1368                         udelay(10);
1369                 }
1370                 if (!timeout) {
1371                         printk(KERN_ERR "%s: Happy Meal would not start auto negotiation "
1372                                "BMCR=0x%04x\n", hp->dev->name, hp->sw_bmcr);
1373                         printk(KERN_NOTICE "%s: Performing force link detection.\n",
1374                                hp->dev->name);
1375                         goto force_link;
1376                 } else {
1377                         hp->timer_state = arbwait;
1378                 }
1379         } else {
1380 force_link:
1381                 /* Force the link up, trying first a particular mode.
1382                  * Either we are here at the request of ethtool or
1383                  * because the Happy Meal would not start to autoneg.
1384                  */
1385
1386                 /* Disable auto-negotiation in BMCR, enable the duplex and
1387                  * speed setting, init the timer state machine, and fire it off.
1388                  */
1389                 if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
1390                         hp->sw_bmcr = BMCR_SPEED100;
1391                 } else {
1392                         if (ep->speed == SPEED_100)
1393                                 hp->sw_bmcr = BMCR_SPEED100;
1394                         else
1395                                 hp->sw_bmcr = 0;
1396                         if (ep->duplex == DUPLEX_FULL)
1397                                 hp->sw_bmcr |= BMCR_FULLDPLX;
1398                 }
1399                 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1400
1401                 if (!is_lucent_phy(hp)) {
1402                         /* OK, seems we need do disable the transceiver for the first
1403                          * tick to make sure we get an accurate link state at the
1404                          * second tick.
1405                          */
1406                         hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
1407                                                                DP83840_CSCONFIG);
1408                         hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
1409                         happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG,
1410                                               hp->sw_csconfig);
1411                 }
1412                 hp->timer_state = ltrywait;
1413         }
1414
1415         hp->timer_ticks = 0;
1416         hp->happy_timer.expires = jiffies + (12 * HZ)/10;  /* 1.2 sec. */
1417         hp->happy_timer.data = (unsigned long) hp;
1418         hp->happy_timer.function = &happy_meal_timer;
1419         add_timer(&hp->happy_timer);
1420 }
1421
1422 /* hp->happy_lock must be held */
1423 static int happy_meal_init(struct happy_meal *hp)
1424 {
1425         void __iomem *gregs        = hp->gregs;
1426         void __iomem *etxregs      = hp->etxregs;
1427         void __iomem *erxregs      = hp->erxregs;
1428         void __iomem *bregs        = hp->bigmacregs;
1429         void __iomem *tregs        = hp->tcvregs;
1430         u32 regtmp, rxcfg;
1431         unsigned char *e = &hp->dev->dev_addr[0];
1432
1433         /* If auto-negotiation timer is running, kill it. */
1434         del_timer(&hp->happy_timer);
1435
1436         HMD(("happy_meal_init: happy_flags[%08x] ",
1437              hp->happy_flags));
1438         if (!(hp->happy_flags & HFLAG_INIT)) {
1439                 HMD(("set HFLAG_INIT, "));
1440                 hp->happy_flags |= HFLAG_INIT;
1441                 happy_meal_get_counters(hp, bregs);
1442         }
1443
1444         /* Stop polling. */
1445         HMD(("to happy_meal_poll_stop\n"));
1446         happy_meal_poll_stop(hp, tregs);
1447
1448         /* Stop transmitter and receiver. */
1449         HMD(("happy_meal_init: to happy_meal_stop\n"));
1450         happy_meal_stop(hp, gregs);
1451
1452         /* Alloc and reset the tx/rx descriptor chains. */
1453         HMD(("happy_meal_init: to happy_meal_init_rings\n"));
1454         happy_meal_init_rings(hp);
1455
1456         /* Shut up the MIF. */
1457         HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ",
1458              hme_read32(hp, tregs + TCVR_IMASK)));
1459         hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1460
1461         /* See if we can enable the MIF frame on this card to speak to the DP83840. */
1462         if (hp->happy_flags & HFLAG_FENABLE) {
1463                 HMD(("use frame old[%08x], ",
1464                      hme_read32(hp, tregs + TCVR_CFG)));
1465                 hme_write32(hp, tregs + TCVR_CFG,
1466                             hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1467         } else {
1468                 HMD(("use bitbang old[%08x], ",
1469                      hme_read32(hp, tregs + TCVR_CFG)));
1470                 hme_write32(hp, tregs + TCVR_CFG,
1471                             hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1472         }
1473
1474         /* Check the state of the transceiver. */
1475         HMD(("to happy_meal_transceiver_check\n"));
1476         happy_meal_transceiver_check(hp, tregs);
1477
1478         /* Put the Big Mac into a sane state. */
1479         HMD(("happy_meal_init: "));
1480         switch(hp->tcvr_type) {
1481         case none:
1482                 /* Cannot operate if we don't know the transceiver type! */
1483                 HMD(("AAIEEE no transceiver type, EAGAIN"));
1484                 return -EAGAIN;
1485
1486         case internal:
1487                 /* Using the MII buffers. */
1488                 HMD(("internal, using MII, "));
1489                 hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1490                 break;
1491
1492         case external:
1493                 /* Not using the MII, disable it. */
1494                 HMD(("external, disable MII, "));
1495                 hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1496                 break;
1497         };
1498
1499         if (happy_meal_tcvr_reset(hp, tregs))
1500                 return -EAGAIN;
1501
1502         /* Reset the Happy Meal Big Mac transceiver and the receiver. */
1503         HMD(("tx/rx reset, "));
1504         happy_meal_tx_reset(hp, bregs);
1505         happy_meal_rx_reset(hp, bregs);
1506
1507         /* Set jam size and inter-packet gaps to reasonable defaults. */
1508         HMD(("jsize/ipg1/ipg2, "));
1509         hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE);
1510         hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1);
1511         hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2);
1512
1513         /* Load up the MAC address and random seed. */
1514         HMD(("rseed/macaddr, "));
1515
1516         /* The docs recommend to use the 10LSB of our MAC here. */
1517         hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff));
1518
1519         hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5]));
1520         hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3]));
1521         hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1]));
1522
1523         HMD(("htable, "));
1524         if ((hp->dev->flags & IFF_ALLMULTI) ||
1525             (hp->dev->mc_count > 64)) {
1526                 hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
1527                 hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
1528                 hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
1529                 hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
1530         } else if ((hp->dev->flags & IFF_PROMISC) == 0) {
1531                 u16 hash_table[4];
1532                 struct dev_mc_list *dmi = hp->dev->mc_list;
1533                 char *addrs;
1534                 int i;
1535                 u32 crc;
1536
1537                 for (i = 0; i < 4; i++)
1538                         hash_table[i] = 0;
1539
1540                 for (i = 0; i < hp->dev->mc_count; i++) {
1541                         addrs = dmi->dmi_addr;
1542                         dmi = dmi->next;
1543
1544                         if (!(*addrs & 1))
1545                                 continue;
1546
1547                         crc = ether_crc_le(6, addrs);
1548                         crc >>= 26;
1549                         hash_table[crc >> 4] |= 1 << (crc & 0xf);
1550                 }
1551                 hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
1552                 hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
1553                 hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
1554                 hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
1555         } else {
1556                 hme_write32(hp, bregs + BMAC_HTABLE3, 0);
1557                 hme_write32(hp, bregs + BMAC_HTABLE2, 0);
1558                 hme_write32(hp, bregs + BMAC_HTABLE1, 0);
1559                 hme_write32(hp, bregs + BMAC_HTABLE0, 0);
1560         }
1561
1562         /* Set the RX and TX ring ptrs. */
1563         HMD(("ring ptrs rxr[%08x] txr[%08x]\n",
1564              ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)),
1565              ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))));
1566         hme_write32(hp, erxregs + ERX_RING,
1567                     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)));
1568         hme_write32(hp, etxregs + ETX_RING,
1569                     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
1570
1571         /* Parity issues in the ERX unit of some HME revisions can cause some
1572          * registers to not be written unless their parity is even.  Detect such
1573          * lost writes and simply rewrite with a low bit set (which will be ignored
1574          * since the rxring needs to be 2K aligned).
1575          */
1576         if (hme_read32(hp, erxregs + ERX_RING) !=
1577             ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)))
1578                 hme_write32(hp, erxregs + ERX_RING,
1579                             ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))
1580                             | 0x4);
1581
1582         /* Set the supported burst sizes. */
1583         HMD(("happy_meal_init: old[%08x] bursts<",
1584              hme_read32(hp, gregs + GREG_CFG)));
1585
1586 #ifndef CONFIG_SPARC
1587         /* It is always PCI and can handle 64byte bursts. */
1588         hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64);
1589 #else
1590         if ((hp->happy_bursts & DMA_BURST64) &&
1591             ((hp->happy_flags & HFLAG_PCI) != 0
1592 #ifdef CONFIG_SBUS
1593              || sbus_can_burst64(hp->happy_dev)
1594 #endif
1595              || 0)) {
1596                 u32 gcfg = GREG_CFG_BURST64;
1597
1598                 /* I have no idea if I should set the extended
1599                  * transfer mode bit for Cheerio, so for now I
1600                  * do not.  -DaveM
1601                  */
1602 #ifdef CONFIG_SBUS
1603                 if ((hp->happy_flags & HFLAG_PCI) == 0 &&
1604                     sbus_can_dma_64bit(hp->happy_dev)) {
1605                         sbus_set_sbus64(hp->happy_dev,
1606                                         hp->happy_bursts);
1607                         gcfg |= GREG_CFG_64BIT;
1608                 }
1609 #endif
1610
1611                 HMD(("64>"));
1612                 hme_write32(hp, gregs + GREG_CFG, gcfg);
1613         } else if (hp->happy_bursts & DMA_BURST32) {
1614                 HMD(("32>"));
1615                 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32);
1616         } else if (hp->happy_bursts & DMA_BURST16) {
1617                 HMD(("16>"));
1618                 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16);
1619         } else {
1620                 HMD(("XXX>"));
1621                 hme_write32(hp, gregs + GREG_CFG, 0);
1622         }
1623 #endif /* CONFIG_SPARC */
1624
1625         /* Turn off interrupts we do not want to hear. */
1626         HMD((", enable global interrupts, "));
1627         hme_write32(hp, gregs + GREG_IMASK,
1628                     (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP |
1629                      GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR));
1630
1631         /* Set the transmit ring buffer size. */
1632         HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE,
1633              hme_read32(hp, etxregs + ETX_RSIZE)));
1634         hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1);
1635
1636         /* Enable transmitter DVMA. */
1637         HMD(("tx dma enable old[%08x], ",
1638              hme_read32(hp, etxregs + ETX_CFG)));
1639         hme_write32(hp, etxregs + ETX_CFG,
1640                     hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE);
1641
1642         /* This chip really rots, for the receiver sometimes when you
1643          * write to its control registers not all the bits get there
1644          * properly.  I cannot think of a sane way to provide complete
1645          * coverage for this hardware bug yet.
1646          */
1647         HMD(("erx regs bug old[%08x]\n",
1648              hme_read32(hp, erxregs + ERX_CFG)));
1649         hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1650         regtmp = hme_read32(hp, erxregs + ERX_CFG);
1651         hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1652         if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) {
1653                 printk(KERN_ERR "happy meal: Eieee, rx config register gets greasy fries.\n");
1654                 printk(KERN_ERR "happy meal: Trying to set %08x, reread gives %08x\n",
1655                        ERX_CFG_DEFAULT(RX_OFFSET), regtmp);
1656                 /* XXX Should return failure here... */
1657         }
1658
1659         /* Enable Big Mac hash table filter. */
1660         HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ",
1661              hme_read32(hp, bregs + BMAC_RXCFG)));
1662         rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME;
1663         if (hp->dev->flags & IFF_PROMISC)
1664                 rxcfg |= BIGMAC_RXCFG_PMISC;
1665         hme_write32(hp, bregs + BMAC_RXCFG, rxcfg);
1666
1667         /* Let the bits settle in the chip. */
1668         udelay(10);
1669
1670         /* Ok, configure the Big Mac transmitter. */
1671         HMD(("BIGMAC init, "));
1672         regtmp = 0;
1673         if (hp->happy_flags & HFLAG_FULL)
1674                 regtmp |= BIGMAC_TXCFG_FULLDPLX;
1675
1676         /* Don't turn on the "don't give up" bit for now.  It could cause hme
1677          * to deadlock with the PHY if a Jabber occurs.
1678          */
1679         hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/);
1680
1681         /* Give up after 16 TX attempts. */
1682         hme_write32(hp, bregs + BMAC_ALIMIT, 16);
1683
1684         /* Enable the output drivers no matter what. */
1685         regtmp = BIGMAC_XCFG_ODENABLE;
1686
1687         /* If card can do lance mode, enable it. */
1688         if (hp->happy_flags & HFLAG_LANCE)
1689                 regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE;
1690
1691         /* Disable the MII buffers if using external transceiver. */
1692         if (hp->tcvr_type == external)
1693                 regtmp |= BIGMAC_XCFG_MIIDISAB;
1694
1695         HMD(("XIF config old[%08x], ",
1696              hme_read32(hp, bregs + BMAC_XIFCFG)));
1697         hme_write32(hp, bregs + BMAC_XIFCFG, regtmp);
1698
1699         /* Start things up. */
1700         HMD(("tx old[%08x] and rx [%08x] ON!\n",
1701              hme_read32(hp, bregs + BMAC_TXCFG),
1702              hme_read32(hp, bregs + BMAC_RXCFG)));
1703
1704         /* Set larger TX/RX size to allow for 802.1q */
1705         hme_write32(hp, bregs + BMAC_TXMAX, ETH_FRAME_LEN + 8);
1706         hme_write32(hp, bregs + BMAC_RXMAX, ETH_FRAME_LEN + 8);
1707
1708         hme_write32(hp, bregs + BMAC_TXCFG,
1709                     hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE);
1710         hme_write32(hp, bregs + BMAC_RXCFG,
1711                     hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE);
1712
1713         /* Get the autonegotiation started, and the watch timer ticking. */
1714         happy_meal_begin_auto_negotiation(hp, tregs, NULL);
1715
1716         /* Success. */
1717         return 0;
1718 }
1719
1720 /* hp->happy_lock must be held */
1721 static void happy_meal_set_initial_advertisement(struct happy_meal *hp)
1722 {
1723         void __iomem *tregs     = hp->tcvregs;
1724         void __iomem *bregs     = hp->bigmacregs;
1725         void __iomem *gregs     = hp->gregs;
1726
1727         happy_meal_stop(hp, gregs);
1728         hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1729         if (hp->happy_flags & HFLAG_FENABLE)
1730                 hme_write32(hp, tregs + TCVR_CFG,
1731                             hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1732         else
1733                 hme_write32(hp, tregs + TCVR_CFG,
1734                             hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1735         happy_meal_transceiver_check(hp, tregs);
1736         switch(hp->tcvr_type) {
1737         case none:
1738                 return;
1739         case internal:
1740                 hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1741                 break;
1742         case external:
1743                 hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1744                 break;
1745         };
1746         if (happy_meal_tcvr_reset(hp, tregs))
1747                 return;
1748
1749         /* Latch PHY registers as of now. */
1750         hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1751         hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1752
1753         /* Advertise everything we can support. */
1754         if (hp->sw_bmsr & BMSR_10HALF)
1755                 hp->sw_advertise |= (ADVERTISE_10HALF);
1756         else
1757                 hp->sw_advertise &= ~(ADVERTISE_10HALF);
1758
1759         if (hp->sw_bmsr & BMSR_10FULL)
1760                 hp->sw_advertise |= (ADVERTISE_10FULL);
1761         else
1762                 hp->sw_advertise &= ~(ADVERTISE_10FULL);
1763         if (hp->sw_bmsr & BMSR_100HALF)
1764                 hp->sw_advertise |= (ADVERTISE_100HALF);
1765         else
1766                 hp->sw_advertise &= ~(ADVERTISE_100HALF);
1767         if (hp->sw_bmsr & BMSR_100FULL)
1768                 hp->sw_advertise |= (ADVERTISE_100FULL);
1769         else
1770                 hp->sw_advertise &= ~(ADVERTISE_100FULL);
1771
1772         /* Update the PHY advertisement register. */
1773         happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1774 }
1775
1776 /* Once status is latched (by happy_meal_interrupt) it is cleared by
1777  * the hardware, so we cannot re-read it and get a correct value.
1778  *
1779  * hp->happy_lock must be held
1780  */
1781 static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status)
1782 {
1783         int reset = 0;
1784
1785         /* Only print messages for non-counter related interrupts. */
1786         if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND |
1787                       GREG_STAT_MAXPKTERR | GREG_STAT_RXERR |
1788                       GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR |
1789                       GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR |
1790                       GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR |
1791                       GREG_STAT_SLVPERR))
1792                 printk(KERN_ERR "%s: Error interrupt for happy meal, status = %08x\n",
1793                        hp->dev->name, status);
1794
1795         if (status & GREG_STAT_RFIFOVF) {
1796                 /* Receive FIFO overflow is harmless and the hardware will take
1797                    care of it, just some packets are lost. Who cares. */
1798                 printk(KERN_DEBUG "%s: Happy Meal receive FIFO overflow.\n", hp->dev->name);
1799         }
1800
1801         if (status & GREG_STAT_STSTERR) {
1802                 /* BigMAC SQE link test failed. */
1803                 printk(KERN_ERR "%s: Happy Meal BigMAC SQE test failed.\n", hp->dev->name);
1804                 reset = 1;
1805         }
1806
1807         if (status & GREG_STAT_TFIFO_UND) {
1808                 /* Transmit FIFO underrun, again DMA error likely. */
1809                 printk(KERN_ERR "%s: Happy Meal transmitter FIFO underrun, DMA error.\n",
1810                        hp->dev->name);
1811                 reset = 1;
1812         }
1813
1814         if (status & GREG_STAT_MAXPKTERR) {
1815                 /* Driver error, tried to transmit something larger
1816                  * than ethernet max mtu.
1817                  */
1818                 printk(KERN_ERR "%s: Happy Meal MAX Packet size error.\n", hp->dev->name);
1819                 reset = 1;
1820         }
1821
1822         if (status & GREG_STAT_NORXD) {
1823                 /* This is harmless, it just means the system is
1824                  * quite loaded and the incoming packet rate was
1825                  * faster than the interrupt handler could keep up
1826                  * with.
1827                  */
1828                 printk(KERN_INFO "%s: Happy Meal out of receive "
1829                        "descriptors, packet dropped.\n",
1830                        hp->dev->name);
1831         }
1832
1833         if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) {
1834                 /* All sorts of DMA receive errors. */
1835                 printk(KERN_ERR "%s: Happy Meal rx DMA errors [ ", hp->dev->name);
1836                 if (status & GREG_STAT_RXERR)
1837                         printk("GenericError ");
1838                 if (status & GREG_STAT_RXPERR)
1839                         printk("ParityError ");
1840                 if (status & GREG_STAT_RXTERR)
1841                         printk("RxTagBotch ");
1842                 printk("]\n");
1843                 reset = 1;
1844         }
1845
1846         if (status & GREG_STAT_EOPERR) {
1847                 /* Driver bug, didn't set EOP bit in tx descriptor given
1848                  * to the happy meal.
1849                  */
1850                 printk(KERN_ERR "%s: EOP not set in happy meal transmit descriptor!\n",
1851                        hp->dev->name);
1852                 reset = 1;
1853         }
1854
1855         if (status & GREG_STAT_MIFIRQ) {
1856                 /* MIF signalled an interrupt, were we polling it? */
1857                 printk(KERN_ERR "%s: Happy Meal MIF interrupt.\n", hp->dev->name);
1858         }
1859
1860         if (status &
1861             (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) {
1862                 /* All sorts of transmit DMA errors. */
1863                 printk(KERN_ERR "%s: Happy Meal tx DMA errors [ ", hp->dev->name);
1864                 if (status & GREG_STAT_TXEACK)
1865                         printk("GenericError ");
1866                 if (status & GREG_STAT_TXLERR)
1867                         printk("LateError ");
1868                 if (status & GREG_STAT_TXPERR)
1869                         printk("ParityErro ");
1870                 if (status & GREG_STAT_TXTERR)
1871                         printk("TagBotch ");
1872                 printk("]\n");
1873                 reset = 1;
1874         }
1875
1876         if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) {
1877                 /* Bus or parity error when cpu accessed happy meal registers
1878                  * or it's internal FIFO's.  Should never see this.
1879                  */
1880                 printk(KERN_ERR "%s: Happy Meal register access SBUS slave (%s) error.\n",
1881                        hp->dev->name,
1882                        (status & GREG_STAT_SLVPERR) ? "parity" : "generic");
1883                 reset = 1;
1884         }
1885
1886         if (reset) {
1887                 printk(KERN_NOTICE "%s: Resetting...\n", hp->dev->name);
1888                 happy_meal_init(hp);
1889                 return 1;
1890         }
1891         return 0;
1892 }
1893
1894 /* hp->happy_lock must be held */
1895 static void happy_meal_mif_interrupt(struct happy_meal *hp)
1896 {
1897         void __iomem *tregs = hp->tcvregs;
1898
1899         printk(KERN_INFO "%s: Link status change.\n", hp->dev->name);
1900         hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1901         hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
1902
1903         /* Use the fastest transmission protocol possible. */
1904         if (hp->sw_lpa & LPA_100FULL) {
1905                 printk(KERN_INFO "%s: Switching to 100Mbps at full duplex.", hp->dev->name);
1906                 hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100);
1907         } else if (hp->sw_lpa & LPA_100HALF) {
1908                 printk(KERN_INFO "%s: Switching to 100MBps at half duplex.", hp->dev->name);
1909                 hp->sw_bmcr |= BMCR_SPEED100;
1910         } else if (hp->sw_lpa & LPA_10FULL) {
1911                 printk(KERN_INFO "%s: Switching to 10MBps at full duplex.", hp->dev->name);
1912                 hp->sw_bmcr |= BMCR_FULLDPLX;
1913         } else {
1914                 printk(KERN_INFO "%s: Using 10Mbps at half duplex.", hp->dev->name);
1915         }
1916         happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1917
1918         /* Finally stop polling and shut up the MIF. */
1919         happy_meal_poll_stop(hp, tregs);
1920 }
1921
1922 #ifdef TXDEBUG
1923 #define TXD(x) printk x
1924 #else
1925 #define TXD(x)
1926 #endif
1927
1928 /* hp->happy_lock must be held */
1929 static void happy_meal_tx(struct happy_meal *hp)
1930 {
1931         struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
1932         struct happy_meal_txd *this;
1933         struct net_device *dev = hp->dev;
1934         int elem;
1935
1936         elem = hp->tx_old;
1937         TXD(("TX<"));
1938         while (elem != hp->tx_new) {
1939                 struct sk_buff *skb;
1940                 u32 flags, dma_addr, dma_len;
1941                 int frag;
1942
1943                 TXD(("[%d]", elem));
1944                 this = &txbase[elem];
1945                 flags = hme_read_desc32(hp, &this->tx_flags);
1946                 if (flags & TXFLAG_OWN)
1947                         break;
1948                 skb = hp->tx_skbs[elem];
1949                 if (skb_shinfo(skb)->nr_frags) {
1950                         int last;
1951
1952                         last = elem + skb_shinfo(skb)->nr_frags;
1953                         last &= (TX_RING_SIZE - 1);
1954                         flags = hme_read_desc32(hp, &txbase[last].tx_flags);
1955                         if (flags & TXFLAG_OWN)
1956                                 break;
1957                 }
1958                 hp->tx_skbs[elem] = NULL;
1959                 hp->net_stats.tx_bytes += skb->len;
1960
1961                 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1962                         dma_addr = hme_read_desc32(hp, &this->tx_addr);
1963                         dma_len = hme_read_desc32(hp, &this->tx_flags);
1964
1965                         dma_len &= TXFLAG_SIZE;
1966                         hme_dma_unmap(hp, dma_addr, dma_len, DMA_TODEVICE);
1967
1968                         elem = NEXT_TX(elem);
1969                         this = &txbase[elem];
1970                 }
1971
1972                 dev_kfree_skb_irq(skb);
1973                 hp->net_stats.tx_packets++;
1974         }
1975         hp->tx_old = elem;
1976         TXD((">"));
1977
1978         if (netif_queue_stopped(dev) &&
1979             TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1))
1980                 netif_wake_queue(dev);
1981 }
1982
1983 #ifdef RXDEBUG
1984 #define RXD(x) printk x
1985 #else
1986 #define RXD(x)
1987 #endif
1988
1989 /* Originally I used to handle the allocation failure by just giving back just
1990  * that one ring buffer to the happy meal.  Problem is that usually when that
1991  * condition is triggered, the happy meal expects you to do something reasonable
1992  * with all of the packets it has DMA'd in.  So now I just drop the entire
1993  * ring when we cannot get a new skb and give them all back to the happy meal,
1994  * maybe things will be "happier" now.
1995  *
1996  * hp->happy_lock must be held
1997  */
1998 static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev)
1999 {
2000         struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0];
2001         struct happy_meal_rxd *this;
2002         int elem = hp->rx_new, drops = 0;
2003         u32 flags;
2004
2005         RXD(("RX<"));
2006         this = &rxbase[elem];
2007         while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) {
2008                 struct sk_buff *skb;
2009                 int len = flags >> 16;
2010                 u16 csum = flags & RXFLAG_CSUM;
2011                 u32 dma_addr = hme_read_desc32(hp, &this->rx_addr);
2012
2013                 RXD(("[%d ", elem));
2014
2015                 /* Check for errors. */
2016                 if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) {
2017                         RXD(("ERR(%08x)]", flags));
2018                         hp->net_stats.rx_errors++;
2019                         if (len < ETH_ZLEN)
2020                                 hp->net_stats.rx_length_errors++;
2021                         if (len & (RXFLAG_OVERFLOW >> 16)) {
2022                                 hp->net_stats.rx_over_errors++;
2023                                 hp->net_stats.rx_fifo_errors++;
2024                         }
2025
2026                         /* Return it to the Happy meal. */
2027         drop_it:
2028                         hp->net_stats.rx_dropped++;
2029                         hme_write_rxd(hp, this,
2030                                       (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2031                                       dma_addr);
2032                         goto next;
2033                 }
2034                 skb = hp->rx_skbs[elem];
2035                 if (len > RX_COPY_THRESHOLD) {
2036                         struct sk_buff *new_skb;
2037
2038                         /* Now refill the entry, if we can. */
2039                         new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
2040                         if (new_skb == NULL) {
2041                                 drops++;
2042                                 goto drop_it;
2043                         }
2044                         hme_dma_unmap(hp, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE);
2045                         hp->rx_skbs[elem] = new_skb;
2046                         new_skb->dev = dev;
2047                         skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
2048                         hme_write_rxd(hp, this,
2049                                       (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2050                                       hme_dma_map(hp, new_skb->data, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE));
2051                         skb_reserve(new_skb, RX_OFFSET);
2052
2053                         /* Trim the original skb for the netif. */
2054                         skb_trim(skb, len);
2055                 } else {
2056                         struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
2057
2058                         if (copy_skb == NULL) {
2059                                 drops++;
2060                                 goto drop_it;
2061                         }
2062
2063                         skb_reserve(copy_skb, 2);
2064                         skb_put(copy_skb, len);
2065                         hme_dma_sync_for_cpu(hp, dma_addr, len, DMA_FROMDEVICE);
2066                         skb_copy_from_linear_data(skb, copy_skb->data, len);
2067                         hme_dma_sync_for_device(hp, dma_addr, len, DMA_FROMDEVICE);
2068
2069                         /* Reuse original ring buffer. */
2070                         hme_write_rxd(hp, this,
2071                                       (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2072                                       dma_addr);
2073
2074                         skb = copy_skb;
2075                 }
2076
2077                 /* This card is _fucking_ hot... */
2078                 skb->csum = ntohs(csum ^ 0xffff);
2079                 skb->ip_summed = CHECKSUM_COMPLETE;
2080
2081                 RXD(("len=%d csum=%4x]", len, csum));
2082                 skb->protocol = eth_type_trans(skb, dev);
2083                 netif_rx(skb);
2084
2085                 dev->last_rx = jiffies;
2086                 hp->net_stats.rx_packets++;
2087                 hp->net_stats.rx_bytes += len;
2088         next:
2089                 elem = NEXT_RX(elem);
2090                 this = &rxbase[elem];
2091         }
2092         hp->rx_new = elem;
2093         if (drops)
2094                 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name);
2095         RXD((">"));
2096 }
2097
2098 static irqreturn_t happy_meal_interrupt(int irq, void *dev_id)
2099 {
2100         struct net_device *dev = dev_id;
2101         struct happy_meal *hp  = netdev_priv(dev);
2102         u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2103
2104         HMD(("happy_meal_interrupt: status=%08x ", happy_status));
2105
2106         spin_lock(&hp->happy_lock);
2107
2108         if (happy_status & GREG_STAT_ERRORS) {
2109                 HMD(("ERRORS "));
2110                 if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status))
2111                         goto out;
2112         }
2113
2114         if (happy_status & GREG_STAT_MIFIRQ) {
2115                 HMD(("MIFIRQ "));
2116                 happy_meal_mif_interrupt(hp);
2117         }
2118
2119         if (happy_status & GREG_STAT_TXALL) {
2120                 HMD(("TXALL "));
2121                 happy_meal_tx(hp);
2122         }
2123
2124         if (happy_status & GREG_STAT_RXTOHOST) {
2125                 HMD(("RXTOHOST "));
2126                 happy_meal_rx(hp, dev);
2127         }
2128
2129         HMD(("done\n"));
2130 out:
2131         spin_unlock(&hp->happy_lock);
2132
2133         return IRQ_HANDLED;
2134 }
2135
2136 #ifdef CONFIG_SBUS
2137 static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie)
2138 {
2139         struct quattro *qp = (struct quattro *) cookie;
2140         int i;
2141
2142         for (i = 0; i < 4; i++) {
2143                 struct net_device *dev = qp->happy_meals[i];
2144                 struct happy_meal *hp  = dev->priv;
2145                 u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2146
2147                 HMD(("quattro_interrupt: status=%08x ", happy_status));
2148
2149                 if (!(happy_status & (GREG_STAT_ERRORS |
2150                                       GREG_STAT_MIFIRQ |
2151                                       GREG_STAT_TXALL |
2152                                       GREG_STAT_RXTOHOST)))
2153                         continue;
2154
2155                 spin_lock(&hp->happy_lock);
2156
2157                 if (happy_status & GREG_STAT_ERRORS) {
2158                         HMD(("ERRORS "));
2159                         if (happy_meal_is_not_so_happy(hp, happy_status))
2160                                 goto next;
2161                 }
2162
2163                 if (happy_status & GREG_STAT_MIFIRQ) {
2164                         HMD(("MIFIRQ "));
2165                         happy_meal_mif_interrupt(hp);
2166                 }
2167
2168                 if (happy_status & GREG_STAT_TXALL) {
2169                         HMD(("TXALL "));
2170                         happy_meal_tx(hp);
2171                 }
2172
2173                 if (happy_status & GREG_STAT_RXTOHOST) {
2174                         HMD(("RXTOHOST "));
2175                         happy_meal_rx(hp, dev);
2176                 }
2177
2178         next:
2179                 spin_unlock(&hp->happy_lock);
2180         }
2181         HMD(("done\n"));
2182
2183         return IRQ_HANDLED;
2184 }
2185 #endif
2186
2187 static int happy_meal_open(struct net_device *dev)
2188 {
2189         struct happy_meal *hp = dev->priv;
2190         int res;
2191
2192         HMD(("happy_meal_open: "));
2193
2194         /* On SBUS Quattro QFE cards, all hme interrupts are concentrated
2195          * into a single source which we register handling at probe time.
2196          */
2197         if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) {
2198                 if (request_irq(dev->irq, &happy_meal_interrupt,
2199                                 IRQF_SHARED, dev->name, (void *)dev)) {
2200                         HMD(("EAGAIN\n"));
2201                         printk(KERN_ERR "happy_meal(SBUS): Can't order irq %d to go.\n",
2202                                dev->irq);
2203
2204                         return -EAGAIN;
2205                 }
2206         }
2207
2208         HMD(("to happy_meal_init\n"));
2209
2210         spin_lock_irq(&hp->happy_lock);
2211         res = happy_meal_init(hp);
2212         spin_unlock_irq(&hp->happy_lock);
2213
2214         if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO))
2215                 free_irq(dev->irq, dev);
2216         return res;
2217 }
2218
2219 static int happy_meal_close(struct net_device *dev)
2220 {
2221         struct happy_meal *hp = dev->priv;
2222
2223         spin_lock_irq(&hp->happy_lock);
2224         happy_meal_stop(hp, hp->gregs);
2225         happy_meal_clean_rings(hp);
2226
2227         /* If auto-negotiation timer is running, kill it. */
2228         del_timer(&hp->happy_timer);
2229
2230         spin_unlock_irq(&hp->happy_lock);
2231
2232         /* On Quattro QFE cards, all hme interrupts are concentrated
2233          * into a single source which we register handling at probe
2234          * time and never unregister.
2235          */
2236         if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO)
2237                 free_irq(dev->irq, dev);
2238
2239         return 0;
2240 }
2241
2242 #ifdef SXDEBUG
2243 #define SXD(x) printk x
2244 #else
2245 #define SXD(x)
2246 #endif
2247
2248 static void happy_meal_tx_timeout(struct net_device *dev)
2249 {
2250         struct happy_meal *hp = dev->priv;
2251
2252         printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2253         tx_dump_log();
2254         printk (KERN_ERR "%s: Happy Status %08x TX[%08x:%08x]\n", dev->name,
2255                 hme_read32(hp, hp->gregs + GREG_STAT),
2256                 hme_read32(hp, hp->etxregs + ETX_CFG),
2257                 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG));
2258
2259         spin_lock_irq(&hp->happy_lock);
2260         happy_meal_init(hp);
2261         spin_unlock_irq(&hp->happy_lock);
2262
2263         netif_wake_queue(dev);
2264 }
2265
2266 static int happy_meal_start_xmit(struct sk_buff *skb, struct net_device *dev)
2267 {
2268         struct happy_meal *hp = dev->priv;
2269         int entry;
2270         u32 tx_flags;
2271
2272         tx_flags = TXFLAG_OWN;
2273         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2274                 const u32 csum_start_off = skb_transport_offset(skb);
2275                 const u32 csum_stuff_off = csum_start_off + skb->csum_offset;
2276
2277                 tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE |
2278                             ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) |
2279                             ((csum_stuff_off << 20) & TXFLAG_CSLOCATION));
2280         }
2281
2282         spin_lock_irq(&hp->happy_lock);
2283
2284         if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) {
2285                 netif_stop_queue(dev);
2286                 spin_unlock_irq(&hp->happy_lock);
2287                 printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n",
2288                        dev->name);
2289                 return 1;
2290         }
2291
2292         entry = hp->tx_new;
2293         SXD(("SX<l[%d]e[%d]>", len, entry));
2294         hp->tx_skbs[entry] = skb;
2295
2296         if (skb_shinfo(skb)->nr_frags == 0) {
2297                 u32 mapping, len;
2298
2299                 len = skb->len;
2300                 mapping = hme_dma_map(hp, skb->data, len, DMA_TODEVICE);
2301                 tx_flags |= (TXFLAG_SOP | TXFLAG_EOP);
2302                 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2303                               (tx_flags | (len & TXFLAG_SIZE)),
2304                               mapping);
2305                 entry = NEXT_TX(entry);
2306         } else {
2307                 u32 first_len, first_mapping;
2308                 int frag, first_entry = entry;
2309
2310                 /* We must give this initial chunk to the device last.
2311                  * Otherwise we could race with the device.
2312                  */
2313                 first_len = skb_headlen(skb);
2314                 first_mapping = hme_dma_map(hp, skb->data, first_len, DMA_TODEVICE);
2315                 entry = NEXT_TX(entry);
2316
2317                 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
2318                         skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
2319                         u32 len, mapping, this_txflags;
2320
2321                         len = this_frag->size;
2322                         mapping = hme_dma_map(hp,
2323                                               ((void *) page_address(this_frag->page) +
2324                                                this_frag->page_offset),
2325                                               len, DMA_TODEVICE);
2326                         this_txflags = tx_flags;
2327                         if (frag == skb_shinfo(skb)->nr_frags - 1)
2328                                 this_txflags |= TXFLAG_EOP;
2329                         hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2330                                       (this_txflags | (len & TXFLAG_SIZE)),
2331                                       mapping);
2332                         entry = NEXT_TX(entry);
2333                 }
2334                 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry],
2335                               (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)),
2336                               first_mapping);
2337         }
2338
2339         hp->tx_new = entry;
2340
2341         if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1))
2342                 netif_stop_queue(dev);
2343
2344         /* Get it going. */
2345         hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP);
2346
2347         spin_unlock_irq(&hp->happy_lock);
2348
2349         dev->trans_start = jiffies;
2350
2351         tx_add_log(hp, TXLOG_ACTION_TXMIT, 0);
2352         return 0;
2353 }
2354
2355 static struct net_device_stats *happy_meal_get_stats(struct net_device *dev)
2356 {
2357         struct happy_meal *hp = dev->priv;
2358
2359         spin_lock_irq(&hp->happy_lock);
2360         happy_meal_get_counters(hp, hp->bigmacregs);
2361         spin_unlock_irq(&hp->happy_lock);
2362
2363         return &hp->net_stats;
2364 }
2365
2366 static void happy_meal_set_multicast(struct net_device *dev)
2367 {
2368         struct happy_meal *hp = dev->priv;
2369         void __iomem *bregs = hp->bigmacregs;
2370         struct dev_mc_list *dmi = dev->mc_list;
2371         char *addrs;
2372         int i;
2373         u32 crc;
2374
2375         spin_lock_irq(&hp->happy_lock);
2376
2377         netif_stop_queue(dev);
2378
2379         if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) {
2380                 hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
2381                 hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
2382                 hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
2383                 hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
2384         } else if (dev->flags & IFF_PROMISC) {
2385                 hme_write32(hp, bregs + BMAC_RXCFG,
2386                             hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC);
2387         } else {
2388                 u16 hash_table[4];
2389
2390                 for (i = 0; i < 4; i++)
2391                         hash_table[i] = 0;
2392
2393                 for (i = 0; i < dev->mc_count; i++) {
2394                         addrs = dmi->dmi_addr;
2395                         dmi = dmi->next;
2396
2397                         if (!(*addrs & 1))
2398                                 continue;
2399
2400                         crc = ether_crc_le(6, addrs);
2401                         crc >>= 26;
2402                         hash_table[crc >> 4] |= 1 << (crc & 0xf);
2403                 }
2404                 hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
2405                 hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
2406                 hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
2407                 hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
2408         }
2409
2410         netif_wake_queue(dev);
2411
2412         spin_unlock_irq(&hp->happy_lock);
2413 }
2414
2415 /* Ethtool support... */
2416 static int hme_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2417 {
2418         struct happy_meal *hp = dev->priv;
2419
2420         cmd->supported =
2421                 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2422                  SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2423                  SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII);
2424
2425         /* XXX hardcoded stuff for now */
2426         cmd->port = PORT_TP; /* XXX no MII support */
2427         cmd->transceiver = XCVR_INTERNAL; /* XXX no external xcvr support */
2428         cmd->phy_address = 0; /* XXX fixed PHYAD */
2429
2430         /* Record PHY settings. */
2431         spin_lock_irq(&hp->happy_lock);
2432         hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2433         hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA);
2434         spin_unlock_irq(&hp->happy_lock);
2435
2436         if (hp->sw_bmcr & BMCR_ANENABLE) {
2437                 cmd->autoneg = AUTONEG_ENABLE;
2438                 cmd->speed =
2439                         (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ?
2440                         SPEED_100 : SPEED_10;
2441                 if (cmd->speed == SPEED_100)
2442                         cmd->duplex =
2443                                 (hp->sw_lpa & (LPA_100FULL)) ?
2444                                 DUPLEX_FULL : DUPLEX_HALF;
2445                 else
2446                         cmd->duplex =
2447                                 (hp->sw_lpa & (LPA_10FULL)) ?
2448                                 DUPLEX_FULL : DUPLEX_HALF;
2449         } else {
2450                 cmd->autoneg = AUTONEG_DISABLE;
2451                 cmd->speed =
2452                         (hp->sw_bmcr & BMCR_SPEED100) ?
2453                         SPEED_100 : SPEED_10;
2454                 cmd->duplex =
2455                         (hp->sw_bmcr & BMCR_FULLDPLX) ?
2456                         DUPLEX_FULL : DUPLEX_HALF;
2457         }
2458         return 0;
2459 }
2460
2461 static int hme_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2462 {
2463         struct happy_meal *hp = dev->priv;
2464
2465         /* Verify the settings we care about. */
2466         if (cmd->autoneg != AUTONEG_ENABLE &&
2467             cmd->autoneg != AUTONEG_DISABLE)
2468                 return -EINVAL;
2469         if (cmd->autoneg == AUTONEG_DISABLE &&
2470             ((cmd->speed != SPEED_100 &&
2471               cmd->speed != SPEED_10) ||
2472              (cmd->duplex != DUPLEX_HALF &&
2473               cmd->duplex != DUPLEX_FULL)))
2474                 return -EINVAL;
2475
2476         /* Ok, do it to it. */
2477         spin_lock_irq(&hp->happy_lock);
2478         del_timer(&hp->happy_timer);
2479         happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd);
2480         spin_unlock_irq(&hp->happy_lock);
2481
2482         return 0;
2483 }
2484
2485 static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2486 {
2487         struct happy_meal *hp = dev->priv;
2488
2489         strcpy(info->driver, "sunhme");
2490         strcpy(info->version, "2.02");
2491         if (hp->happy_flags & HFLAG_PCI) {
2492                 struct pci_dev *pdev = hp->happy_dev;
2493                 strcpy(info->bus_info, pci_name(pdev));
2494         }
2495 #ifdef CONFIG_SBUS
2496         else {
2497                 struct sbus_dev *sdev = hp->happy_dev;
2498                 sprintf(info->bus_info, "SBUS:%d",
2499                         sdev->slot);
2500         }
2501 #endif
2502 }
2503
2504 static u32 hme_get_link(struct net_device *dev)
2505 {
2506         struct happy_meal *hp = dev->priv;
2507
2508         spin_lock_irq(&hp->happy_lock);
2509         hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2510         spin_unlock_irq(&hp->happy_lock);
2511
2512         return (hp->sw_bmsr & BMSR_LSTATUS);
2513 }
2514
2515 static const struct ethtool_ops hme_ethtool_ops = {
2516         .get_settings           = hme_get_settings,
2517         .set_settings           = hme_set_settings,
2518         .get_drvinfo            = hme_get_drvinfo,
2519         .get_link               = hme_get_link,
2520 };
2521
2522 static int hme_version_printed;
2523
2524 #ifdef CONFIG_SBUS
2525 void __devinit quattro_get_ranges(struct quattro *qp)
2526 {
2527         struct sbus_dev *sdev = qp->quattro_dev;
2528         int err;
2529
2530         err = prom_getproperty(sdev->prom_node,
2531                                "ranges",
2532                                (char *)&qp->ranges[0],
2533                                sizeof(qp->ranges));
2534         if (err == 0 || err == -1) {
2535                 qp->nranges = 0;
2536                 return;
2537         }
2538         qp->nranges = (err / sizeof(struct linux_prom_ranges));
2539 }
2540
2541 static void __devinit quattro_apply_ranges(struct quattro *qp, struct happy_meal *hp)
2542 {
2543         struct sbus_dev *sdev = hp->happy_dev;
2544         int rng;
2545
2546         for (rng = 0; rng < qp->nranges; rng++) {
2547                 struct linux_prom_ranges *rngp = &qp->ranges[rng];
2548                 int reg;
2549
2550                 for (reg = 0; reg < 5; reg++) {
2551                         if (sdev->reg_addrs[reg].which_io ==
2552                             rngp->ot_child_space)
2553                                 break;
2554                 }
2555                 if (reg == 5)
2556                         continue;
2557
2558                 sdev->reg_addrs[reg].which_io = rngp->ot_parent_space;
2559                 sdev->reg_addrs[reg].phys_addr += rngp->ot_parent_base;
2560         }
2561 }
2562
2563 /* Given a happy meal sbus device, find it's quattro parent.
2564  * If none exist, allocate and return a new one.
2565  *
2566  * Return NULL on failure.
2567  */
2568 static struct quattro * __devinit quattro_sbus_find(struct sbus_dev *goal_sdev)
2569 {
2570         struct sbus_dev *sdev;
2571         struct quattro *qp;
2572         int i;
2573
2574         for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2575                 for (i = 0, sdev = qp->quattro_dev;
2576                      (sdev != NULL) && (i < 4);
2577                      sdev = sdev->next, i++) {
2578                         if (sdev == goal_sdev)
2579                                 return qp;
2580                 }
2581         }
2582
2583         qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2584         if (qp != NULL) {
2585                 int i;
2586
2587                 for (i = 0; i < 4; i++)
2588                         qp->happy_meals[i] = NULL;
2589
2590                 qp->quattro_dev = goal_sdev;
2591                 qp->next = qfe_sbus_list;
2592                 qfe_sbus_list = qp;
2593                 quattro_get_ranges(qp);
2594         }
2595         return qp;
2596 }
2597
2598 /* After all quattro cards have been probed, we call these functions
2599  * to register the IRQ handlers.
2600  */
2601 static void __init quattro_sbus_register_irqs(void)
2602 {
2603         struct quattro *qp;
2604
2605         for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2606                 struct sbus_dev *sdev = qp->quattro_dev;
2607                 int err;
2608
2609                 err = request_irq(sdev->irqs[0],
2610                                   quattro_sbus_interrupt,
2611                                   IRQF_SHARED, "Quattro",
2612                                   qp);
2613                 if (err != 0) {
2614                         printk(KERN_ERR "Quattro: Fatal IRQ registery error %d.\n", err);
2615                         panic("QFE request irq");
2616                 }
2617         }
2618 }
2619
2620 static void quattro_sbus_free_irqs(void)
2621 {
2622         struct quattro *qp;
2623
2624         for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2625                 struct sbus_dev *sdev = qp->quattro_dev;
2626
2627                 free_irq(sdev->irqs[0], qp);
2628         }
2629 }
2630 #endif /* CONFIG_SBUS */
2631
2632 #ifdef CONFIG_PCI
2633 static struct quattro * __devinit quattro_pci_find(struct pci_dev *pdev)
2634 {
2635         struct pci_dev *bdev = pdev->bus->self;
2636         struct quattro *qp;
2637
2638         if (!bdev) return NULL;
2639         for (qp = qfe_pci_list; qp != NULL; qp = qp->next) {
2640                 struct pci_dev *qpdev = qp->quattro_dev;
2641
2642                 if (qpdev == bdev)
2643                         return qp;
2644         }
2645         qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2646         if (qp != NULL) {
2647                 int i;
2648
2649                 for (i = 0; i < 4; i++)
2650                         qp->happy_meals[i] = NULL;
2651
2652                 qp->quattro_dev = bdev;
2653                 qp->next = qfe_pci_list;
2654                 qfe_pci_list = qp;
2655
2656                 /* No range tricks necessary on PCI. */
2657                 qp->nranges = 0;
2658         }
2659         return qp;
2660 }
2661 #endif /* CONFIG_PCI */
2662
2663 #ifdef CONFIG_SBUS
2664 static int __devinit happy_meal_sbus_probe_one(struct sbus_dev *sdev, int is_qfe)
2665 {
2666         struct device_node *dp = sdev->ofdev.node;
2667         struct quattro *qp = NULL;
2668         struct happy_meal *hp;
2669         struct net_device *dev;
2670         int i, qfe_slot = -1;
2671         int err = -ENODEV;
2672         DECLARE_MAC_BUF(mac);
2673
2674         if (is_qfe) {
2675                 qp = quattro_sbus_find(sdev);
2676                 if (qp == NULL)
2677                         goto err_out;
2678                 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2679                         if (qp->happy_meals[qfe_slot] == NULL)
2680                                 break;
2681                 if (qfe_slot == 4)
2682                         goto err_out;
2683         }
2684
2685         err = -ENOMEM;
2686         dev = alloc_etherdev(sizeof(struct happy_meal));
2687         if (!dev)
2688                 goto err_out;
2689         SET_NETDEV_DEV(dev, &sdev->ofdev.dev);
2690
2691         if (hme_version_printed++ == 0)
2692                 printk(KERN_INFO "%s", version);
2693
2694         /* If user did not specify a MAC address specifically, use
2695          * the Quattro local-mac-address property...
2696          */
2697         for (i = 0; i < 6; i++) {
2698                 if (macaddr[i] != 0)
2699                         break;
2700         }
2701         if (i < 6) { /* a mac address was given */
2702                 for (i = 0; i < 6; i++)
2703                         dev->dev_addr[i] = macaddr[i];
2704                 macaddr[5]++;
2705         } else {
2706                 const unsigned char *addr;
2707                 int len;
2708
2709                 addr = of_get_property(dp, "local-mac-address", &len);
2710
2711                 if (qfe_slot != -1 && addr && len == 6)
2712                         memcpy(dev->dev_addr, addr, 6);
2713                 else
2714                         memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
2715         }
2716
2717         hp = dev->priv;
2718
2719         hp->happy_dev = sdev;
2720
2721         spin_lock_init(&hp->happy_lock);
2722
2723         err = -ENODEV;
2724         if (sdev->num_registers != 5) {
2725                 printk(KERN_ERR "happymeal: Device needs 5 regs, has %d.\n",
2726                        sdev->num_registers);
2727                 goto err_out_free_netdev;
2728         }
2729
2730         if (qp != NULL) {
2731                 hp->qfe_parent = qp;
2732                 hp->qfe_ent = qfe_slot;
2733                 qp->happy_meals[qfe_slot] = dev;
2734                 quattro_apply_ranges(qp, hp);
2735         }
2736
2737         hp->gregs = sbus_ioremap(&sdev->resource[0], 0,
2738                                  GREG_REG_SIZE, "HME Global Regs");
2739         if (!hp->gregs) {
2740                 printk(KERN_ERR "happymeal: Cannot map global registers.\n");
2741                 goto err_out_free_netdev;
2742         }
2743
2744         hp->etxregs = sbus_ioremap(&sdev->resource[1], 0,
2745                                    ETX_REG_SIZE, "HME TX Regs");
2746         if (!hp->etxregs) {
2747                 printk(KERN_ERR "happymeal: Cannot map MAC TX registers.\n");
2748                 goto err_out_iounmap;
2749         }
2750
2751         hp->erxregs = sbus_ioremap(&sdev->resource[2], 0,
2752                                    ERX_REG_SIZE, "HME RX Regs");
2753         if (!hp->erxregs) {
2754                 printk(KERN_ERR "happymeal: Cannot map MAC RX registers.\n");
2755                 goto err_out_iounmap;
2756         }
2757
2758         hp->bigmacregs = sbus_ioremap(&sdev->resource[3], 0,
2759                                       BMAC_REG_SIZE, "HME BIGMAC Regs");
2760         if (!hp->bigmacregs) {
2761                 printk(KERN_ERR "happymeal: Cannot map BIGMAC registers.\n");
2762                 goto err_out_iounmap;
2763         }
2764
2765         hp->tcvregs = sbus_ioremap(&sdev->resource[4], 0,
2766                                    TCVR_REG_SIZE, "HME Tranceiver Regs");
2767         if (!hp->tcvregs) {
2768                 printk(KERN_ERR "happymeal: Cannot map TCVR registers.\n");
2769                 goto err_out_iounmap;
2770         }
2771
2772         hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
2773         if (hp->hm_revision == 0xff)
2774                 hp->hm_revision = 0xa0;
2775
2776         /* Now enable the feature flags we can. */
2777         if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
2778                 hp->happy_flags = HFLAG_20_21;
2779         else if (hp->hm_revision != 0xa0)
2780                 hp->happy_flags = HFLAG_NOT_A0;
2781
2782         if (qp != NULL)
2783                 hp->happy_flags |= HFLAG_QUATTRO;
2784
2785         /* Get the supported DVMA burst sizes from our Happy SBUS. */
2786         hp->happy_bursts = of_getintprop_default(sdev->bus->ofdev.node,
2787                                                  "burst-sizes", 0x00);
2788
2789         hp->happy_block = sbus_alloc_consistent(hp->happy_dev,
2790                                                 PAGE_SIZE,
2791                                                 &hp->hblock_dvma);
2792         err = -ENOMEM;
2793         if (!hp->happy_block) {
2794                 printk(KERN_ERR "happymeal: Cannot allocate descriptors.\n");
2795                 goto err_out_iounmap;
2796         }
2797
2798         /* Force check of the link first time we are brought up. */
2799         hp->linkcheck = 0;
2800
2801         /* Force timer state to 'asleep' with count of zero. */
2802         hp->timer_state = asleep;
2803         hp->timer_ticks = 0;
2804
2805         init_timer(&hp->happy_timer);
2806
2807         hp->dev = dev;
2808         dev->open = &happy_meal_open;
2809         dev->stop = &happy_meal_close;
2810         dev->hard_start_xmit = &happy_meal_start_xmit;
2811         dev->get_stats = &happy_meal_get_stats;
2812         dev->set_multicast_list = &happy_meal_set_multicast;
2813         dev->tx_timeout = &happy_meal_tx_timeout;
2814         dev->watchdog_timeo = 5*HZ;
2815         dev->ethtool_ops = &hme_ethtool_ops;
2816
2817         /* Happy Meal can do it all... */
2818         dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM;
2819
2820         dev->irq = sdev->irqs[0];
2821
2822 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2823         /* Hook up PCI register/dma accessors. */
2824         hp->read_desc32 = sbus_hme_read_desc32;
2825         hp->write_txd = sbus_hme_write_txd;
2826         hp->write_rxd = sbus_hme_write_rxd;
2827         hp->dma_map = (u32 (*)(void *, void *, long, int))sbus_map_single;
2828         hp->dma_unmap = (void (*)(void *, u32, long, int))sbus_unmap_single;
2829         hp->dma_sync_for_cpu = (void (*)(void *, u32, long, int))
2830                 sbus_dma_sync_single_for_cpu;
2831         hp->dma_sync_for_device = (void (*)(void *, u32, long, int))
2832                 sbus_dma_sync_single_for_device;
2833         hp->read32 = sbus_hme_read32;
2834         hp->write32 = sbus_hme_write32;
2835 #endif
2836
2837         /* Grrr, Happy Meal comes up by default not advertising
2838          * full duplex 100baseT capabilities, fix this.
2839          */
2840         spin_lock_irq(&hp->happy_lock);
2841         happy_meal_set_initial_advertisement(hp);
2842         spin_unlock_irq(&hp->happy_lock);
2843
2844         if (register_netdev(hp->dev)) {
2845                 printk(KERN_ERR "happymeal: Cannot register net device, "
2846                        "aborting.\n");
2847                 goto err_out_free_consistent;
2848         }
2849
2850         dev_set_drvdata(&sdev->ofdev.dev, hp);
2851
2852         if (qfe_slot != -1)
2853                 printk(KERN_INFO "%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ",
2854                        dev->name, qfe_slot);
2855         else
2856                 printk(KERN_INFO "%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ",
2857                        dev->name);
2858
2859         printk("%s\n", print_mac(mac, dev->dev_addr));
2860
2861         return 0;
2862
2863 err_out_free_consistent:
2864         sbus_free_consistent(hp->happy_dev,
2865                              PAGE_SIZE,
2866                              hp->happy_block,
2867                              hp->hblock_dvma);
2868
2869 err_out_iounmap:
2870         if (hp->gregs)
2871                 sbus_iounmap(hp->gregs, GREG_REG_SIZE);
2872         if (hp->etxregs)
2873                 sbus_iounmap(hp->etxregs, ETX_REG_SIZE);
2874         if (hp->erxregs)
2875                 sbus_iounmap(hp->erxregs, ERX_REG_SIZE);
2876         if (hp->bigmacregs)
2877                 sbus_iounmap(hp->bigmacregs, BMAC_REG_SIZE);
2878         if (hp->tcvregs)
2879                 sbus_iounmap(hp->tcvregs, TCVR_REG_SIZE);
2880
2881 err_out_free_netdev:
2882         free_netdev(dev);
2883
2884 err_out:
2885         return err;
2886 }
2887 #endif
2888
2889 #ifdef CONFIG_PCI
2890 #ifndef CONFIG_SPARC
2891 static int is_quattro_p(struct pci_dev *pdev)
2892 {
2893         struct pci_dev *busdev = pdev->bus->self;
2894         struct list_head *tmp;
2895         int n_hmes;
2896
2897         if (busdev == NULL ||
2898             busdev->vendor != PCI_VENDOR_ID_DEC ||
2899             busdev->device != PCI_DEVICE_ID_DEC_21153)
2900                 return 0;
2901
2902         n_hmes = 0;
2903         tmp = pdev->bus->devices.next;
2904         while (tmp != &pdev->bus->devices) {
2905                 struct pci_dev *this_pdev = pci_dev_b(tmp);
2906
2907                 if (this_pdev->vendor == PCI_VENDOR_ID_SUN &&
2908                     this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL)
2909                         n_hmes++;
2910
2911                 tmp = tmp->next;
2912         }
2913
2914         if (n_hmes != 4)
2915                 return 0;
2916
2917         return 1;
2918 }
2919
2920 /* Fetch MAC address from vital product data of PCI ROM. */
2921 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr)
2922 {
2923         int this_offset;
2924
2925         for (this_offset = 0x20; this_offset < len; this_offset++) {
2926                 void __iomem *p = rom_base + this_offset;
2927
2928                 if (readb(p + 0) != 0x90 ||
2929                     readb(p + 1) != 0x00 ||
2930                     readb(p + 2) != 0x09 ||
2931                     readb(p + 3) != 0x4e ||
2932                     readb(p + 4) != 0x41 ||
2933                     readb(p + 5) != 0x06)
2934                         continue;
2935
2936                 this_offset += 6;
2937                 p += 6;
2938
2939                 if (index == 0) {
2940                         int i;
2941
2942                         for (i = 0; i < 6; i++)
2943                                 dev_addr[i] = readb(p + i);
2944                         return 1;
2945                 }
2946                 index--;
2947         }
2948         return 0;
2949 }
2950
2951 static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr)
2952 {
2953         size_t size;
2954         void __iomem *p = pci_map_rom(pdev, &size);
2955
2956         if (p) {
2957                 int index = 0;
2958                 int found;
2959
2960                 if (is_quattro_p(pdev))
2961                         index = PCI_SLOT(pdev->devfn);
2962
2963                 found = readb(p) == 0x55 &&
2964                         readb(p + 1) == 0xaa &&
2965                         find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr);
2966                 pci_unmap_rom(pdev, p);
2967                 if (found)
2968                         return;
2969         }
2970
2971         /* Sun MAC prefix then 3 random bytes. */
2972         dev_addr[0] = 0x08;
2973         dev_addr[1] = 0x00;
2974         dev_addr[2] = 0x20;
2975         get_random_bytes(&dev_addr[3], 3);
2976         return;
2977 }
2978 #endif /* !(CONFIG_SPARC) */
2979
2980 static int __devinit happy_meal_pci_probe(struct pci_dev *pdev,
2981                                           const struct pci_device_id *ent)
2982 {
2983         struct quattro *qp = NULL;
2984 #ifdef CONFIG_SPARC
2985         struct device_node *dp;
2986 #endif
2987         struct happy_meal *hp;
2988         struct net_device *dev;
2989         void __iomem *hpreg_base;
2990         unsigned long hpreg_res;
2991         int i, qfe_slot = -1;
2992         char prom_name[64];
2993         int err;
2994         DECLARE_MAC_BUF(mac);
2995
2996         /* Now make sure pci_dev cookie is there. */
2997 #ifdef CONFIG_SPARC
2998         dp = pci_device_to_OF_node(pdev);
2999         strcpy(prom_name, dp->name);
3000 #else
3001         if (is_quattro_p(pdev))
3002                 strcpy(prom_name, "SUNW,qfe");
3003         else
3004                 strcpy(prom_name, "SUNW,hme");
3005 #endif
3006
3007         err = -ENODEV;
3008
3009         if (pci_enable_device(pdev))
3010                 goto err_out;
3011         pci_set_master(pdev);
3012
3013         if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) {
3014                 qp = quattro_pci_find(pdev);
3015                 if (qp == NULL)
3016                         goto err_out;
3017                 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
3018                         if (qp->happy_meals[qfe_slot] == NULL)
3019                                 break;
3020                 if (qfe_slot == 4)
3021                         goto err_out;
3022         }
3023
3024         dev = alloc_etherdev(sizeof(struct happy_meal));
3025         err = -ENOMEM;
3026         if (!dev)
3027                 goto err_out;
3028         SET_NETDEV_DEV(dev, &pdev->dev);
3029
3030         if (hme_version_printed++ == 0)
3031                 printk(KERN_INFO "%s", version);
3032
3033         dev->base_addr = (long) pdev;
3034
3035         hp = (struct happy_meal *)dev->priv;
3036         memset(hp, 0, sizeof(*hp));
3037
3038         hp->happy_dev = pdev;
3039
3040         spin_lock_init(&hp->happy_lock);
3041
3042         if (qp != NULL) {
3043                 hp->qfe_parent = qp;
3044                 hp->qfe_ent = qfe_slot;
3045                 qp->happy_meals[qfe_slot] = dev;
3046         }
3047
3048         hpreg_res = pci_resource_start(pdev, 0);
3049         err = -ENODEV;
3050         if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3051                 printk(KERN_ERR "happymeal(PCI): Cannot find proper PCI device base address.\n");
3052                 goto err_out_clear_quattro;
3053         }
3054         if (pci_request_regions(pdev, DRV_NAME)) {
3055                 printk(KERN_ERR "happymeal(PCI): Cannot obtain PCI resources, "
3056                        "aborting.\n");
3057                 goto err_out_clear_quattro;
3058         }
3059
3060         if ((hpreg_base = ioremap(hpreg_res, 0x8000)) == 0) {
3061                 printk(KERN_ERR "happymeal(PCI): Unable to remap card memory.\n");
3062                 goto err_out_free_res;
3063         }
3064
3065         for (i = 0; i < 6; i++) {
3066                 if (macaddr[i] != 0)
3067                         break;
3068         }
3069         if (i < 6) { /* a mac address was given */
3070                 for (i = 0; i < 6; i++)
3071                         dev->dev_addr[i] = macaddr[i];
3072                 macaddr[5]++;
3073         } else {
3074 #ifdef CONFIG_SPARC
3075                 const unsigned char *addr;
3076                 int len;
3077
3078                 if (qfe_slot != -1 &&
3079                     (addr = of_get_property(dp,
3080                                             "local-mac-address", &len)) != NULL
3081                     && len == 6) {
3082                         memcpy(dev->dev_addr, addr, 6);
3083                 } else {
3084                         memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
3085                 }
3086 #else
3087                 get_hme_mac_nonsparc(pdev, &dev->dev_addr[0]);
3088 #endif
3089         }
3090
3091         /* Layout registers. */
3092         hp->gregs      = (hpreg_base + 0x0000UL);
3093         hp->etxregs    = (hpreg_base + 0x2000UL);
3094         hp->erxregs    = (hpreg_base + 0x4000UL);
3095         hp->bigmacregs = (hpreg_base + 0x6000UL);
3096         hp->tcvregs    = (hpreg_base + 0x7000UL);
3097
3098 #ifdef CONFIG_SPARC
3099         hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
3100         if (hp->hm_revision == 0xff)
3101                 hp->hm_revision = 0xc0 | (pdev->revision & 0x0f);
3102 #else
3103         /* works with this on non-sparc hosts */
3104         hp->hm_revision = 0x20;
3105 #endif
3106
3107         /* Now enable the feature flags we can. */
3108         if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
3109                 hp->happy_flags = HFLAG_20_21;
3110         else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0)
3111                 hp->happy_flags = HFLAG_NOT_A0;
3112
3113         if (qp != NULL)
3114                 hp->happy_flags |= HFLAG_QUATTRO;
3115
3116         /* And of course, indicate this is PCI. */
3117         hp->happy_flags |= HFLAG_PCI;
3118
3119 #ifdef CONFIG_SPARC
3120         /* Assume PCI happy meals can handle all burst sizes. */
3121         hp->happy_bursts = DMA_BURSTBITS;
3122 #endif
3123
3124         hp->happy_block = (struct hmeal_init_block *)
3125                 pci_alloc_consistent(pdev, PAGE_SIZE, &hp->hblock_dvma);
3126
3127         err = -ENODEV;
3128         if (!hp->happy_block) {
3129                 printk(KERN_ERR "happymeal(PCI): Cannot get hme init block.\n");
3130                 goto err_out_iounmap;
3131         }
3132
3133         hp->linkcheck = 0;
3134         hp->timer_state = asleep;
3135         hp->timer_ticks = 0;
3136
3137         init_timer(&hp->happy_timer);
3138
3139         hp->dev = dev;
3140         dev->open = &happy_meal_open;
3141         dev->stop = &happy_meal_close;
3142         dev->hard_start_xmit = &happy_meal_start_xmit;
3143         dev->get_stats = &happy_meal_get_stats;
3144         dev->set_multicast_list = &happy_meal_set_multicast;
3145         dev->tx_timeout = &happy_meal_tx_timeout;
3146         dev->watchdog_timeo = 5*HZ;
3147         dev->ethtool_ops = &hme_ethtool_ops;
3148         dev->irq = pdev->irq;
3149         dev->dma = 0;
3150
3151         /* Happy Meal can do it all... */
3152         dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM;
3153
3154 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
3155         /* Hook up PCI register/dma accessors. */
3156         hp->read_desc32 = pci_hme_read_desc32;
3157         hp->write_txd = pci_hme_write_txd;
3158         hp->write_rxd = pci_hme_write_rxd;
3159         hp->dma_map = (u32 (*)(void *, void *, long, int))pci_map_single;
3160         hp->dma_unmap = (void (*)(void *, u32, long, int))pci_unmap_single;
3161         hp->dma_sync_for_cpu = (void (*)(void *, u32, long, int))
3162                 pci_dma_sync_single_for_cpu;
3163         hp->dma_sync_for_device = (void (*)(void *, u32, long, int))
3164                 pci_dma_sync_single_for_device;
3165         hp->read32 = pci_hme_read32;
3166         hp->write32 = pci_hme_write32;
3167 #endif
3168
3169         /* Grrr, Happy Meal comes up by default not advertising
3170          * full duplex 100baseT capabilities, fix this.
3171          */
3172         spin_lock_irq(&hp->happy_lock);
3173         happy_meal_set_initial_advertisement(hp);
3174         spin_unlock_irq(&hp->happy_lock);
3175
3176         if (register_netdev(hp->dev)) {
3177                 printk(KERN_ERR "happymeal(PCI): Cannot register net device, "
3178                        "aborting.\n");
3179                 goto err_out_iounmap;
3180         }
3181
3182         dev_set_drvdata(&pdev->dev, hp);
3183
3184         if (!qfe_slot) {
3185                 struct pci_dev *qpdev = qp->quattro_dev;
3186
3187                 prom_name[0] = 0;
3188                 if (!strncmp(dev->name, "eth", 3)) {
3189                         int i = simple_strtoul(dev->name + 3, NULL, 10);
3190                         sprintf(prom_name, "-%d", i + 3);
3191                 }
3192                 printk(KERN_INFO "%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, prom_name);
3193                 if (qpdev->vendor == PCI_VENDOR_ID_DEC &&
3194                     qpdev->device == PCI_DEVICE_ID_DEC_21153)
3195                         printk("DEC 21153 PCI Bridge\n");
3196                 else
3197                         printk("unknown bridge %04x.%04x\n",
3198                                 qpdev->vendor, qpdev->device);
3199         }
3200
3201         if (qfe_slot != -1)
3202                 printk(KERN_INFO "%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ",
3203                        dev->name, qfe_slot);
3204         else
3205                 printk(KERN_INFO "%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ",
3206                        dev->name);
3207
3208         printk("%s\n", print_mac(mac, dev->dev_addr));
3209
3210         return 0;
3211
3212 err_out_iounmap:
3213         iounmap(hp->gregs);
3214
3215 err_out_free_res:
3216         pci_release_regions(pdev);
3217
3218 err_out_clear_quattro:
3219         if (qp != NULL)
3220                 qp->happy_meals[qfe_slot] = NULL;
3221
3222         free_netdev(dev);
3223
3224 err_out:
3225         return err;
3226 }
3227
3228 static void __devexit happy_meal_pci_remove(struct pci_dev *pdev)
3229 {
3230         struct happy_meal *hp = dev_get_drvdata(&pdev->dev);
3231         struct net_device *net_dev = hp->dev;
3232
3233         unregister_netdev(net_dev);
3234
3235         pci_free_consistent(hp->happy_dev,
3236                             PAGE_SIZE,
3237                             hp->happy_block,
3238                             hp->hblock_dvma);
3239         iounmap(hp->gregs);
3240         pci_release_regions(hp->happy_dev);
3241
3242         free_netdev(net_dev);
3243
3244         dev_set_drvdata(&pdev->dev, NULL);
3245 }
3246
3247 static struct pci_device_id happymeal_pci_ids[] = {
3248         { PCI_DEVICE(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL) },
3249         { }                     /* Terminating entry */
3250 };
3251
3252 MODULE_DEVICE_TABLE(pci, happymeal_pci_ids);
3253
3254 static struct pci_driver hme_pci_driver = {
3255         .name           = "hme",
3256         .id_table       = happymeal_pci_ids,
3257         .probe          = happy_meal_pci_probe,
3258         .remove         = __devexit_p(happy_meal_pci_remove),
3259 };
3260
3261 static int __init happy_meal_pci_init(void)
3262 {
3263         return pci_register_driver(&hme_pci_driver);
3264 }
3265
3266 static void happy_meal_pci_exit(void)
3267 {
3268         pci_unregister_driver(&hme_pci_driver);
3269
3270         while (qfe_pci_list) {
3271                 struct quattro *qfe = qfe_pci_list;
3272                 struct quattro *next = qfe->next;
3273
3274                 kfree(qfe);
3275
3276                 qfe_pci_list = next;
3277         }
3278 }
3279
3280 #endif
3281
3282 #ifdef CONFIG_SBUS
3283 static int __devinit hme_sbus_probe(struct of_device *dev, const struct of_device_id *match)
3284 {
3285         struct sbus_dev *sdev = to_sbus_device(&dev->dev);
3286         struct device_node *dp = dev->node;
3287         const char *model = of_get_property(dp, "model", NULL);
3288         int is_qfe = (match->data != NULL);
3289
3290         if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe"))
3291                 is_qfe = 1;
3292
3293         return happy_meal_sbus_probe_one(sdev, is_qfe);
3294 }
3295
3296 static int __devexit hme_sbus_remove(struct of_device *dev)
3297 {
3298         struct happy_meal *hp = dev_get_drvdata(&dev->dev);
3299         struct net_device *net_dev = hp->dev;
3300
3301         unregister_netdev(net_dev);
3302
3303         /* XXX qfe parent interrupt... */
3304
3305         sbus_iounmap(hp->gregs, GREG_REG_SIZE);
3306         sbus_iounmap(hp->etxregs, ETX_REG_SIZE);
3307         sbus_iounmap(hp->erxregs, ERX_REG_SIZE);
3308         sbus_iounmap(hp->bigmacregs, BMAC_REG_SIZE);
3309         sbus_iounmap(hp->tcvregs, TCVR_REG_SIZE);
3310         sbus_free_consistent(hp->happy_dev,
3311                              PAGE_SIZE,
3312                              hp->happy_block,
3313                              hp->hblock_dvma);
3314
3315         free_netdev(net_dev);
3316
3317         dev_set_drvdata(&dev->dev, NULL);
3318
3319         return 0;
3320 }
3321
3322 static struct of_device_id hme_sbus_match[] = {
3323         {
3324                 .name = "SUNW,hme",
3325         },
3326         {
3327                 .name = "SUNW,qfe",
3328                 .data = (void *) 1,
3329         },
3330         {
3331                 .name = "qfe",
3332                 .data = (void *) 1,
3333         },
3334         {},
3335 };
3336
3337 MODULE_DEVICE_TABLE(of, hme_sbus_match);
3338
3339 static struct of_platform_driver hme_sbus_driver = {
3340         .name           = "hme",
3341         .match_table    = hme_sbus_match,
3342         .probe          = hme_sbus_probe,
3343         .remove         = __devexit_p(hme_sbus_remove),
3344 };
3345
3346 static int __init happy_meal_sbus_init(void)
3347 {
3348         int err;
3349
3350         err = of_register_driver(&hme_sbus_driver, &sbus_bus_type);
3351         if (!err)
3352                 quattro_sbus_register_irqs();
3353
3354         return err;
3355 }
3356
3357 static void happy_meal_sbus_exit(void)
3358 {
3359         of_unregister_driver(&hme_sbus_driver);
3360         quattro_sbus_free_irqs();
3361
3362         while (qfe_sbus_list) {
3363                 struct quattro *qfe = qfe_sbus_list;
3364                 struct quattro *next = qfe->next;
3365
3366                 kfree(qfe);
3367
3368                 qfe_sbus_list = next;
3369         }
3370 }
3371 #endif
3372
3373 static int __init happy_meal_probe(void)
3374 {
3375         int err = 0;
3376
3377 #ifdef CONFIG_SBUS
3378         err = happy_meal_sbus_init();
3379 #endif
3380 #ifdef CONFIG_PCI
3381         if (!err) {
3382                 err = happy_meal_pci_init();
3383 #ifdef CONFIG_SBUS
3384                 if (err)
3385                         happy_meal_sbus_exit();
3386 #endif
3387         }
3388 #endif
3389
3390         return err;
3391 }
3392
3393
3394 static void __exit happy_meal_exit(void)
3395 {
3396 #ifdef CONFIG_SBUS
3397         happy_meal_sbus_exit();
3398 #endif
3399 #ifdef CONFIG_PCI
3400         happy_meal_pci_exit();
3401 #endif
3402 }
3403
3404 module_init(happy_meal_probe);
3405 module_exit(happy_meal_exit);