sparc: Move SBUS DMA attribute interfaces out of asm/sbus.h
[safe/jmp/linux-2.6] / drivers / net / sunhme.c
1 /* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
2  *           auto carrier detecting ethernet driver.  Also known as the
3  *           "Happy Meal Ethernet" found on SunSwift SBUS cards.
4  *
5  * Copyright (C) 1996, 1998, 1999, 2002, 2003,
6                  2006 David S. Miller (davem@davemloft.net)
7  *
8  * Changes :
9  * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
10  *   - port to non-sparc architectures. Tested only on x86 and
11  *     only currently works with QFE PCI cards.
12  *   - ability to specify the MAC address at module load time by passing this
13  *     argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
14  */
15
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/fcntl.h>
20 #include <linux/interrupt.h>
21 #include <linux/ioport.h>
22 #include <linux/in.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/delay.h>
26 #include <linux/init.h>
27 #include <linux/ethtool.h>
28 #include <linux/mii.h>
29 #include <linux/crc32.h>
30 #include <linux/random.h>
31 #include <linux/errno.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/mm.h>
36 #include <linux/bitops.h>
37 #include <linux/dma-mapping.h>
38
39 #include <asm/system.h>
40 #include <asm/io.h>
41 #include <asm/dma.h>
42 #include <asm/byteorder.h>
43
44 #ifdef CONFIG_SPARC
45 #include <asm/idprom.h>
46 #include <asm/sbus.h>
47 #include <asm/openprom.h>
48 #include <asm/oplib.h>
49 #include <asm/prom.h>
50 #include <asm/auxio.h>
51 #endif
52 #include <asm/uaccess.h>
53
54 #include <asm/pgtable.h>
55 #include <asm/irq.h>
56
57 #ifdef CONFIG_PCI
58 #include <linux/pci.h>
59 #endif
60
61 #include "sunhme.h"
62
63 #define DRV_NAME        "sunhme"
64 #define DRV_VERSION     "3.00"
65 #define DRV_RELDATE     "June 23, 2006"
66 #define DRV_AUTHOR      "David S. Miller (davem@davemloft.net)"
67
68 static char version[] =
69         DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
70
71 MODULE_VERSION(DRV_VERSION);
72 MODULE_AUTHOR(DRV_AUTHOR);
73 MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
74 MODULE_LICENSE("GPL");
75
76 static int macaddr[6];
77
78 /* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
79 module_param_array(macaddr, int, NULL, 0);
80 MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set");
81
82 #ifdef CONFIG_SBUS
83 static struct quattro *qfe_sbus_list;
84 #endif
85
86 #ifdef CONFIG_PCI
87 static struct quattro *qfe_pci_list;
88 #endif
89
90 #undef HMEDEBUG
91 #undef SXDEBUG
92 #undef RXDEBUG
93 #undef TXDEBUG
94 #undef TXLOGGING
95
96 #ifdef TXLOGGING
97 struct hme_tx_logent {
98         unsigned int tstamp;
99         int tx_new, tx_old;
100         unsigned int action;
101 #define TXLOG_ACTION_IRQ        0x01
102 #define TXLOG_ACTION_TXMIT      0x02
103 #define TXLOG_ACTION_TBUSY      0x04
104 #define TXLOG_ACTION_NBUFS      0x08
105         unsigned int status;
106 };
107 #define TX_LOG_LEN      128
108 static struct hme_tx_logent tx_log[TX_LOG_LEN];
109 static int txlog_cur_entry;
110 static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s)
111 {
112         struct hme_tx_logent *tlp;
113         unsigned long flags;
114
115         local_irq_save(flags);
116         tlp = &tx_log[txlog_cur_entry];
117         tlp->tstamp = (unsigned int)jiffies;
118         tlp->tx_new = hp->tx_new;
119         tlp->tx_old = hp->tx_old;
120         tlp->action = a;
121         tlp->status = s;
122         txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1);
123         local_irq_restore(flags);
124 }
125 static __inline__ void tx_dump_log(void)
126 {
127         int i, this;
128
129         this = txlog_cur_entry;
130         for (i = 0; i < TX_LOG_LEN; i++) {
131                 printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i,
132                        tx_log[this].tstamp,
133                        tx_log[this].tx_new, tx_log[this].tx_old,
134                        tx_log[this].action, tx_log[this].status);
135                 this = (this + 1) & (TX_LOG_LEN - 1);
136         }
137 }
138 static __inline__ void tx_dump_ring(struct happy_meal *hp)
139 {
140         struct hmeal_init_block *hb = hp->happy_block;
141         struct happy_meal_txd *tp = &hb->happy_meal_txd[0];
142         int i;
143
144         for (i = 0; i < TX_RING_SIZE; i+=4) {
145                 printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n",
146                        i, i + 4,
147                        le32_to_cpu(tp[i].tx_flags), le32_to_cpu(tp[i].tx_addr),
148                        le32_to_cpu(tp[i + 1].tx_flags), le32_to_cpu(tp[i + 1].tx_addr),
149                        le32_to_cpu(tp[i + 2].tx_flags), le32_to_cpu(tp[i + 2].tx_addr),
150                        le32_to_cpu(tp[i + 3].tx_flags), le32_to_cpu(tp[i + 3].tx_addr));
151         }
152 }
153 #else
154 #define tx_add_log(hp, a, s)            do { } while(0)
155 #define tx_dump_log()                   do { } while(0)
156 #define tx_dump_ring(hp)                do { } while(0)
157 #endif
158
159 #ifdef HMEDEBUG
160 #define HMD(x)  printk x
161 #else
162 #define HMD(x)
163 #endif
164
165 /* #define AUTO_SWITCH_DEBUG */
166
167 #ifdef AUTO_SWITCH_DEBUG
168 #define ASD(x)  printk x
169 #else
170 #define ASD(x)
171 #endif
172
173 #define DEFAULT_IPG0      16 /* For lance-mode only */
174 #define DEFAULT_IPG1       8 /* For all modes */
175 #define DEFAULT_IPG2       4 /* For all modes */
176 #define DEFAULT_JAMSIZE    4 /* Toe jam */
177
178 /* NOTE: In the descriptor writes one _must_ write the address
179  *       member _first_.  The card must not be allowed to see
180  *       the updated descriptor flags until the address is
181  *       correct.  I've added a write memory barrier between
182  *       the two stores so that I can sleep well at night... -DaveM
183  */
184
185 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
186 static void sbus_hme_write32(void __iomem *reg, u32 val)
187 {
188         sbus_writel(val, reg);
189 }
190
191 static u32 sbus_hme_read32(void __iomem *reg)
192 {
193         return sbus_readl(reg);
194 }
195
196 static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
197 {
198         rxd->rx_addr = (__force hme32)addr;
199         wmb();
200         rxd->rx_flags = (__force hme32)flags;
201 }
202
203 static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
204 {
205         txd->tx_addr = (__force hme32)addr;
206         wmb();
207         txd->tx_flags = (__force hme32)flags;
208 }
209
210 static u32 sbus_hme_read_desc32(hme32 *p)
211 {
212         return (__force u32)*p;
213 }
214
215 static void pci_hme_write32(void __iomem *reg, u32 val)
216 {
217         writel(val, reg);
218 }
219
220 static u32 pci_hme_read32(void __iomem *reg)
221 {
222         return readl(reg);
223 }
224
225 static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
226 {
227         rxd->rx_addr = (__force hme32)cpu_to_le32(addr);
228         wmb();
229         rxd->rx_flags = (__force hme32)cpu_to_le32(flags);
230 }
231
232 static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
233 {
234         txd->tx_addr = (__force hme32)cpu_to_le32(addr);
235         wmb();
236         txd->tx_flags = (__force hme32)cpu_to_le32(flags);
237 }
238
239 static u32 pci_hme_read_desc32(hme32 *p)
240 {
241         return le32_to_cpup((__le32 *)p);
242 }
243
244 #define hme_write32(__hp, __reg, __val) \
245         ((__hp)->write32((__reg), (__val)))
246 #define hme_read32(__hp, __reg) \
247         ((__hp)->read32(__reg))
248 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
249         ((__hp)->write_rxd((__rxd), (__flags), (__addr)))
250 #define hme_write_txd(__hp, __txd, __flags, __addr) \
251         ((__hp)->write_txd((__txd), (__flags), (__addr)))
252 #define hme_read_desc32(__hp, __p) \
253         ((__hp)->read_desc32(__p))
254 #define hme_dma_map(__hp, __ptr, __size, __dir) \
255         ((__hp)->dma_map((__hp)->dma_dev, (__ptr), (__size), (__dir)))
256 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
257         ((__hp)->dma_unmap((__hp)->dma_dev, (__addr), (__size), (__dir)))
258 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
259         ((__hp)->dma_sync_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir)))
260 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
261         ((__hp)->dma_sync_for_device((__hp)->dma_dev, (__addr), (__size), (__dir)))
262 #else
263 #ifdef CONFIG_SBUS
264 /* SBUS only compilation */
265 #define hme_write32(__hp, __reg, __val) \
266         sbus_writel((__val), (__reg))
267 #define hme_read32(__hp, __reg) \
268         sbus_readl(__reg)
269 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
270 do {    (__rxd)->rx_addr = (__force hme32)(u32)(__addr); \
271         wmb(); \
272         (__rxd)->rx_flags = (__force hme32)(u32)(__flags); \
273 } while(0)
274 #define hme_write_txd(__hp, __txd, __flags, __addr) \
275 do {    (__txd)->tx_addr = (__force hme32)(u32)(__addr); \
276         wmb(); \
277         (__txd)->tx_flags = (__force hme32)(u32)(__flags); \
278 } while(0)
279 #define hme_read_desc32(__hp, __p)      ((__force u32)(hme32)*(__p))
280 #define hme_dma_map(__hp, __ptr, __size, __dir) \
281         dma_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
282 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
283         dma_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
284 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
285         dma_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
286 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
287         dma_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
288 #else
289 /* PCI only compilation */
290 #define hme_write32(__hp, __reg, __val) \
291         writel((__val), (__reg))
292 #define hme_read32(__hp, __reg) \
293         readl(__reg)
294 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
295 do {    (__rxd)->rx_addr = (__force hme32)cpu_to_le32(__addr); \
296         wmb(); \
297         (__rxd)->rx_flags = (__force hme32)cpu_to_le32(__flags); \
298 } while(0)
299 #define hme_write_txd(__hp, __txd, __flags, __addr) \
300 do {    (__txd)->tx_addr = (__force hme32)cpu_to_le32(__addr); \
301         wmb(); \
302         (__txd)->tx_flags = (__force hme32)cpu_to_le32(__flags); \
303 } while(0)
304 static inline u32 hme_read_desc32(struct happy_meal *hp, hme32 *p)
305 {
306         return le32_to_cpup((__le32 *)p);
307 }
308 #define hme_dma_map(__hp, __ptr, __size, __dir) \
309         pci_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
310 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
311         pci_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
312 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
313         pci_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
314 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
315         pci_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
316 #endif
317 #endif
318
319
320 /* Oh yes, the MIF BitBang is mighty fun to program.  BitBucket is more like it. */
321 static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit)
322 {
323         hme_write32(hp, tregs + TCVR_BBDATA, bit);
324         hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
325         hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
326 }
327
328 #if 0
329 static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal)
330 {
331         u32 ret;
332
333         hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
334         hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
335         ret = hme_read32(hp, tregs + TCVR_CFG);
336         if (internal)
337                 ret &= TCV_CFG_MDIO0;
338         else
339                 ret &= TCV_CFG_MDIO1;
340
341         return ret;
342 }
343 #endif
344
345 static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal)
346 {
347         u32 retval;
348
349         hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
350         udelay(1);
351         retval = hme_read32(hp, tregs + TCVR_CFG);
352         if (internal)
353                 retval &= TCV_CFG_MDIO0;
354         else
355                 retval &= TCV_CFG_MDIO1;
356         hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
357
358         return retval;
359 }
360
361 #define TCVR_FAILURE      0x80000000     /* Impossible MIF read value */
362
363 static int happy_meal_bb_read(struct happy_meal *hp,
364                               void __iomem *tregs, int reg)
365 {
366         u32 tmp;
367         int retval = 0;
368         int i;
369
370         ASD(("happy_meal_bb_read: reg=%d ", reg));
371
372         /* Enable the MIF BitBang outputs. */
373         hme_write32(hp, tregs + TCVR_BBOENAB, 1);
374
375         /* Force BitBang into the idle state. */
376         for (i = 0; i < 32; i++)
377                 BB_PUT_BIT(hp, tregs, 1);
378
379         /* Give it the read sequence. */
380         BB_PUT_BIT(hp, tregs, 0);
381         BB_PUT_BIT(hp, tregs, 1);
382         BB_PUT_BIT(hp, tregs, 1);
383         BB_PUT_BIT(hp, tregs, 0);
384
385         /* Give it the PHY address. */
386         tmp = hp->paddr & 0xff;
387         for (i = 4; i >= 0; i--)
388                 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
389
390         /* Tell it what register we want to read. */
391         tmp = (reg & 0xff);
392         for (i = 4; i >= 0; i--)
393                 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
394
395         /* Close down the MIF BitBang outputs. */
396         hme_write32(hp, tregs + TCVR_BBOENAB, 0);
397
398         /* Now read in the value. */
399         (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
400         for (i = 15; i >= 0; i--)
401                 retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
402         (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
403         (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
404         (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
405         ASD(("value=%x\n", retval));
406         return retval;
407 }
408
409 static void happy_meal_bb_write(struct happy_meal *hp,
410                                 void __iomem *tregs, int reg,
411                                 unsigned short value)
412 {
413         u32 tmp;
414         int i;
415
416         ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg, value));
417
418         /* Enable the MIF BitBang outputs. */
419         hme_write32(hp, tregs + TCVR_BBOENAB, 1);
420
421         /* Force BitBang into the idle state. */
422         for (i = 0; i < 32; i++)
423                 BB_PUT_BIT(hp, tregs, 1);
424
425         /* Give it write sequence. */
426         BB_PUT_BIT(hp, tregs, 0);
427         BB_PUT_BIT(hp, tregs, 1);
428         BB_PUT_BIT(hp, tregs, 0);
429         BB_PUT_BIT(hp, tregs, 1);
430
431         /* Give it the PHY address. */
432         tmp = (hp->paddr & 0xff);
433         for (i = 4; i >= 0; i--)
434                 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
435
436         /* Tell it what register we will be writing. */
437         tmp = (reg & 0xff);
438         for (i = 4; i >= 0; i--)
439                 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
440
441         /* Tell it to become ready for the bits. */
442         BB_PUT_BIT(hp, tregs, 1);
443         BB_PUT_BIT(hp, tregs, 0);
444
445         for (i = 15; i >= 0; i--)
446                 BB_PUT_BIT(hp, tregs, ((value >> i) & 1));
447
448         /* Close down the MIF BitBang outputs. */
449         hme_write32(hp, tregs + TCVR_BBOENAB, 0);
450 }
451
452 #define TCVR_READ_TRIES   16
453
454 static int happy_meal_tcvr_read(struct happy_meal *hp,
455                                 void __iomem *tregs, int reg)
456 {
457         int tries = TCVR_READ_TRIES;
458         int retval;
459
460         ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg));
461         if (hp->tcvr_type == none) {
462                 ASD(("no transceiver, value=TCVR_FAILURE\n"));
463                 return TCVR_FAILURE;
464         }
465
466         if (!(hp->happy_flags & HFLAG_FENABLE)) {
467                 ASD(("doing bit bang\n"));
468                 return happy_meal_bb_read(hp, tregs, reg);
469         }
470
471         hme_write32(hp, tregs + TCVR_FRAME,
472                     (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18)));
473         while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
474                 udelay(20);
475         if (!tries) {
476                 printk(KERN_ERR "happy meal: Aieee, transceiver MIF read bolixed\n");
477                 return TCVR_FAILURE;
478         }
479         retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff;
480         ASD(("value=%04x\n", retval));
481         return retval;
482 }
483
484 #define TCVR_WRITE_TRIES  16
485
486 static void happy_meal_tcvr_write(struct happy_meal *hp,
487                                   void __iomem *tregs, int reg,
488                                   unsigned short value)
489 {
490         int tries = TCVR_WRITE_TRIES;
491
492         ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg, value));
493
494         /* Welcome to Sun Microsystems, can I take your order please? */
495         if (!(hp->happy_flags & HFLAG_FENABLE)) {
496                 happy_meal_bb_write(hp, tregs, reg, value);
497                 return;
498         }
499
500         /* Would you like fries with that? */
501         hme_write32(hp, tregs + TCVR_FRAME,
502                     (FRAME_WRITE | (hp->paddr << 23) |
503                      ((reg & 0xff) << 18) | (value & 0xffff)));
504         while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
505                 udelay(20);
506
507         /* Anything else? */
508         if (!tries)
509                 printk(KERN_ERR "happy meal: Aieee, transceiver MIF write bolixed\n");
510
511         /* Fifty-two cents is your change, have a nice day. */
512 }
513
514 /* Auto negotiation.  The scheme is very simple.  We have a timer routine
515  * that keeps watching the auto negotiation process as it progresses.
516  * The DP83840 is first told to start doing it's thing, we set up the time
517  * and place the timer state machine in it's initial state.
518  *
519  * Here the timer peeks at the DP83840 status registers at each click to see
520  * if the auto negotiation has completed, we assume here that the DP83840 PHY
521  * will time out at some point and just tell us what (didn't) happen.  For
522  * complete coverage we only allow so many of the ticks at this level to run,
523  * when this has expired we print a warning message and try another strategy.
524  * This "other" strategy is to force the interface into various speed/duplex
525  * configurations and we stop when we see a link-up condition before the
526  * maximum number of "peek" ticks have occurred.
527  *
528  * Once a valid link status has been detected we configure the BigMAC and
529  * the rest of the Happy Meal to speak the most efficient protocol we could
530  * get a clean link for.  The priority for link configurations, highest first
531  * is:
532  *                 100 Base-T Full Duplex
533  *                 100 Base-T Half Duplex
534  *                 10 Base-T Full Duplex
535  *                 10 Base-T Half Duplex
536  *
537  * We start a new timer now, after a successful auto negotiation status has
538  * been detected.  This timer just waits for the link-up bit to get set in
539  * the BMCR of the DP83840.  When this occurs we print a kernel log message
540  * describing the link type in use and the fact that it is up.
541  *
542  * If a fatal error of some sort is signalled and detected in the interrupt
543  * service routine, and the chip is reset, or the link is ifconfig'd down
544  * and then back up, this entire process repeats itself all over again.
545  */
546 static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs)
547 {
548         hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
549
550         /* Downgrade from full to half duplex.  Only possible
551          * via ethtool.
552          */
553         if (hp->sw_bmcr & BMCR_FULLDPLX) {
554                 hp->sw_bmcr &= ~(BMCR_FULLDPLX);
555                 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
556                 return 0;
557         }
558
559         /* Downgrade from 100 to 10. */
560         if (hp->sw_bmcr & BMCR_SPEED100) {
561                 hp->sw_bmcr &= ~(BMCR_SPEED100);
562                 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
563                 return 0;
564         }
565
566         /* We've tried everything. */
567         return -1;
568 }
569
570 static void display_link_mode(struct happy_meal *hp, void __iomem *tregs)
571 {
572         printk(KERN_INFO "%s: Link is up using ", hp->dev->name);
573         if (hp->tcvr_type == external)
574                 printk("external ");
575         else
576                 printk("internal ");
577         printk("transceiver at ");
578         hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
579         if (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) {
580                 if (hp->sw_lpa & LPA_100FULL)
581                         printk("100Mb/s, Full Duplex.\n");
582                 else
583                         printk("100Mb/s, Half Duplex.\n");
584         } else {
585                 if (hp->sw_lpa & LPA_10FULL)
586                         printk("10Mb/s, Full Duplex.\n");
587                 else
588                         printk("10Mb/s, Half Duplex.\n");
589         }
590 }
591
592 static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs)
593 {
594         printk(KERN_INFO "%s: Link has been forced up using ", hp->dev->name);
595         if (hp->tcvr_type == external)
596                 printk("external ");
597         else
598                 printk("internal ");
599         printk("transceiver at ");
600         hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
601         if (hp->sw_bmcr & BMCR_SPEED100)
602                 printk("100Mb/s, ");
603         else
604                 printk("10Mb/s, ");
605         if (hp->sw_bmcr & BMCR_FULLDPLX)
606                 printk("Full Duplex.\n");
607         else
608                 printk("Half Duplex.\n");
609 }
610
611 static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs)
612 {
613         int full;
614
615         /* All we care about is making sure the bigmac tx_cfg has a
616          * proper duplex setting.
617          */
618         if (hp->timer_state == arbwait) {
619                 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
620                 if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL)))
621                         goto no_response;
622                 if (hp->sw_lpa & LPA_100FULL)
623                         full = 1;
624                 else if (hp->sw_lpa & LPA_100HALF)
625                         full = 0;
626                 else if (hp->sw_lpa & LPA_10FULL)
627                         full = 1;
628                 else
629                         full = 0;
630         } else {
631                 /* Forcing a link mode. */
632                 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
633                 if (hp->sw_bmcr & BMCR_FULLDPLX)
634                         full = 1;
635                 else
636                         full = 0;
637         }
638
639         /* Before changing other bits in the tx_cfg register, and in
640          * general any of other the TX config registers too, you
641          * must:
642          * 1) Clear Enable
643          * 2) Poll with reads until that bit reads back as zero
644          * 3) Make TX configuration changes
645          * 4) Set Enable once more
646          */
647         hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
648                     hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
649                     ~(BIGMAC_TXCFG_ENABLE));
650         while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE)
651                 barrier();
652         if (full) {
653                 hp->happy_flags |= HFLAG_FULL;
654                 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
655                             hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
656                             BIGMAC_TXCFG_FULLDPLX);
657         } else {
658                 hp->happy_flags &= ~(HFLAG_FULL);
659                 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
660                             hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
661                             ~(BIGMAC_TXCFG_FULLDPLX));
662         }
663         hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
664                     hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
665                     BIGMAC_TXCFG_ENABLE);
666         return 0;
667 no_response:
668         return 1;
669 }
670
671 static int happy_meal_init(struct happy_meal *hp);
672
673 static int is_lucent_phy(struct happy_meal *hp)
674 {
675         void __iomem *tregs = hp->tcvregs;
676         unsigned short mr2, mr3;
677         int ret = 0;
678
679         mr2 = happy_meal_tcvr_read(hp, tregs, 2);
680         mr3 = happy_meal_tcvr_read(hp, tregs, 3);
681         if ((mr2 & 0xffff) == 0x0180 &&
682             ((mr3 & 0xffff) >> 10) == 0x1d)
683                 ret = 1;
684
685         return ret;
686 }
687
688 static void happy_meal_timer(unsigned long data)
689 {
690         struct happy_meal *hp = (struct happy_meal *) data;
691         void __iomem *tregs = hp->tcvregs;
692         int restart_timer = 0;
693
694         spin_lock_irq(&hp->happy_lock);
695
696         hp->timer_ticks++;
697         switch(hp->timer_state) {
698         case arbwait:
699                 /* Only allow for 5 ticks, thats 10 seconds and much too
700                  * long to wait for arbitration to complete.
701                  */
702                 if (hp->timer_ticks >= 10) {
703                         /* Enter force mode. */
704         do_force_mode:
705                         hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
706                         printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful, trying force link mode\n",
707                                hp->dev->name);
708                         hp->sw_bmcr = BMCR_SPEED100;
709                         happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
710
711                         if (!is_lucent_phy(hp)) {
712                                 /* OK, seems we need do disable the transceiver for the first
713                                  * tick to make sure we get an accurate link state at the
714                                  * second tick.
715                                  */
716                                 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
717                                 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
718                                 happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig);
719                         }
720                         hp->timer_state = ltrywait;
721                         hp->timer_ticks = 0;
722                         restart_timer = 1;
723                 } else {
724                         /* Anything interesting happen? */
725                         hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
726                         if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) {
727                                 int ret;
728
729                                 /* Just what we've been waiting for... */
730                                 ret = set_happy_link_modes(hp, tregs);
731                                 if (ret) {
732                                         /* Ooops, something bad happened, go to force
733                                          * mode.
734                                          *
735                                          * XXX Broken hubs which don't support 802.3u
736                                          * XXX auto-negotiation make this happen as well.
737                                          */
738                                         goto do_force_mode;
739                                 }
740
741                                 /* Success, at least so far, advance our state engine. */
742                                 hp->timer_state = lupwait;
743                                 restart_timer = 1;
744                         } else {
745                                 restart_timer = 1;
746                         }
747                 }
748                 break;
749
750         case lupwait:
751                 /* Auto negotiation was successful and we are awaiting a
752                  * link up status.  I have decided to let this timer run
753                  * forever until some sort of error is signalled, reporting
754                  * a message to the user at 10 second intervals.
755                  */
756                 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
757                 if (hp->sw_bmsr & BMSR_LSTATUS) {
758                         /* Wheee, it's up, display the link mode in use and put
759                          * the timer to sleep.
760                          */
761                         display_link_mode(hp, tregs);
762                         hp->timer_state = asleep;
763                         restart_timer = 0;
764                 } else {
765                         if (hp->timer_ticks >= 10) {
766                                 printk(KERN_NOTICE "%s: Auto negotiation successful, link still "
767                                        "not completely up.\n", hp->dev->name);
768                                 hp->timer_ticks = 0;
769                                 restart_timer = 1;
770                         } else {
771                                 restart_timer = 1;
772                         }
773                 }
774                 break;
775
776         case ltrywait:
777                 /* Making the timeout here too long can make it take
778                  * annoyingly long to attempt all of the link mode
779                  * permutations, but then again this is essentially
780                  * error recovery code for the most part.
781                  */
782                 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
783                 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
784                 if (hp->timer_ticks == 1) {
785                         if (!is_lucent_phy(hp)) {
786                                 /* Re-enable transceiver, we'll re-enable the transceiver next
787                                  * tick, then check link state on the following tick.
788                                  */
789                                 hp->sw_csconfig |= CSCONFIG_TCVDISAB;
790                                 happy_meal_tcvr_write(hp, tregs,
791                                                       DP83840_CSCONFIG, hp->sw_csconfig);
792                         }
793                         restart_timer = 1;
794                         break;
795                 }
796                 if (hp->timer_ticks == 2) {
797                         if (!is_lucent_phy(hp)) {
798                                 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
799                                 happy_meal_tcvr_write(hp, tregs,
800                                                       DP83840_CSCONFIG, hp->sw_csconfig);
801                         }
802                         restart_timer = 1;
803                         break;
804                 }
805                 if (hp->sw_bmsr & BMSR_LSTATUS) {
806                         /* Force mode selection success. */
807                         display_forced_link_mode(hp, tregs);
808                         set_happy_link_modes(hp, tregs); /* XXX error? then what? */
809                         hp->timer_state = asleep;
810                         restart_timer = 0;
811                 } else {
812                         if (hp->timer_ticks >= 4) { /* 6 seconds or so... */
813                                 int ret;
814
815                                 ret = try_next_permutation(hp, tregs);
816                                 if (ret == -1) {
817                                         /* Aieee, tried them all, reset the
818                                          * chip and try all over again.
819                                          */
820
821                                         /* Let the user know... */
822                                         printk(KERN_NOTICE "%s: Link down, cable problem?\n",
823                                                hp->dev->name);
824
825                                         ret = happy_meal_init(hp);
826                                         if (ret) {
827                                                 /* ho hum... */
828                                                 printk(KERN_ERR "%s: Error, cannot re-init the "
829                                                        "Happy Meal.\n", hp->dev->name);
830                                         }
831                                         goto out;
832                                 }
833                                 if (!is_lucent_phy(hp)) {
834                                         hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
835                                                                                DP83840_CSCONFIG);
836                                         hp->sw_csconfig |= CSCONFIG_TCVDISAB;
837                                         happy_meal_tcvr_write(hp, tregs,
838                                                               DP83840_CSCONFIG, hp->sw_csconfig);
839                                 }
840                                 hp->timer_ticks = 0;
841                                 restart_timer = 1;
842                         } else {
843                                 restart_timer = 1;
844                         }
845                 }
846                 break;
847
848         case asleep:
849         default:
850                 /* Can't happens.... */
851                 printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n",
852                        hp->dev->name);
853                 restart_timer = 0;
854                 hp->timer_ticks = 0;
855                 hp->timer_state = asleep; /* foo on you */
856                 break;
857         };
858
859         if (restart_timer) {
860                 hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */
861                 add_timer(&hp->happy_timer);
862         }
863
864 out:
865         spin_unlock_irq(&hp->happy_lock);
866 }
867
868 #define TX_RESET_TRIES     32
869 #define RX_RESET_TRIES     32
870
871 /* hp->happy_lock must be held */
872 static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs)
873 {
874         int tries = TX_RESET_TRIES;
875
876         HMD(("happy_meal_tx_reset: reset, "));
877
878         /* Would you like to try our SMCC Delux? */
879         hme_write32(hp, bregs + BMAC_TXSWRESET, 0);
880         while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries)
881                 udelay(20);
882
883         /* Lettuce, tomato, buggy hardware (no extra charge)? */
884         if (!tries)
885                 printk(KERN_ERR "happy meal: Transceiver BigMac ATTACK!");
886
887         /* Take care. */
888         HMD(("done\n"));
889 }
890
891 /* hp->happy_lock must be held */
892 static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs)
893 {
894         int tries = RX_RESET_TRIES;
895
896         HMD(("happy_meal_rx_reset: reset, "));
897
898         /* We have a special on GNU/Viking hardware bugs today. */
899         hme_write32(hp, bregs + BMAC_RXSWRESET, 0);
900         while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries)
901                 udelay(20);
902
903         /* Will that be all? */
904         if (!tries)
905                 printk(KERN_ERR "happy meal: Receiver BigMac ATTACK!");
906
907         /* Don't forget your vik_1137125_wa.  Have a nice day. */
908         HMD(("done\n"));
909 }
910
911 #define STOP_TRIES         16
912
913 /* hp->happy_lock must be held */
914 static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs)
915 {
916         int tries = STOP_TRIES;
917
918         HMD(("happy_meal_stop: reset, "));
919
920         /* We're consolidating our STB products, it's your lucky day. */
921         hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL);
922         while (hme_read32(hp, gregs + GREG_SWRESET) && --tries)
923                 udelay(20);
924
925         /* Come back next week when we are "Sun Microelectronics". */
926         if (!tries)
927                 printk(KERN_ERR "happy meal: Fry guys.");
928
929         /* Remember: "Different name, same old buggy as shit hardware." */
930         HMD(("done\n"));
931 }
932
933 /* hp->happy_lock must be held */
934 static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs)
935 {
936         struct net_device_stats *stats = &hp->net_stats;
937
938         stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR);
939         hme_write32(hp, bregs + BMAC_RCRCECTR, 0);
940
941         stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR);
942         hme_write32(hp, bregs + BMAC_UNALECTR, 0);
943
944         stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR);
945         hme_write32(hp, bregs + BMAC_GLECTR, 0);
946
947         stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR);
948
949         stats->collisions +=
950                 (hme_read32(hp, bregs + BMAC_EXCTR) +
951                  hme_read32(hp, bregs + BMAC_LTCTR));
952         hme_write32(hp, bregs + BMAC_EXCTR, 0);
953         hme_write32(hp, bregs + BMAC_LTCTR, 0);
954 }
955
956 /* hp->happy_lock must be held */
957 static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs)
958 {
959         ASD(("happy_meal_poll_stop: "));
960
961         /* If polling disabled or not polling already, nothing to do. */
962         if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) !=
963            (HFLAG_POLLENABLE | HFLAG_POLL)) {
964                 HMD(("not polling, return\n"));
965                 return;
966         }
967
968         /* Shut up the MIF. */
969         ASD(("were polling, mif ints off, "));
970         hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
971
972         /* Turn off polling. */
973         ASD(("polling off, "));
974         hme_write32(hp, tregs + TCVR_CFG,
975                     hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE));
976
977         /* We are no longer polling. */
978         hp->happy_flags &= ~(HFLAG_POLL);
979
980         /* Let the bits set. */
981         udelay(200);
982         ASD(("done\n"));
983 }
984
985 /* Only Sun can take such nice parts and fuck up the programming interface
986  * like this.  Good job guys...
987  */
988 #define TCVR_RESET_TRIES       16 /* It should reset quickly        */
989 #define TCVR_UNISOLATE_TRIES   32 /* Dis-isolation can take longer. */
990
991 /* hp->happy_lock must be held */
992 static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs)
993 {
994         u32 tconfig;
995         int result, tries = TCVR_RESET_TRIES;
996
997         tconfig = hme_read32(hp, tregs + TCVR_CFG);
998         ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig));
999         if (hp->tcvr_type == external) {
1000                 ASD(("external<"));
1001                 hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT));
1002                 hp->tcvr_type = internal;
1003                 hp->paddr = TCV_PADDR_ITX;
1004                 ASD(("ISOLATE,"));
1005                 happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1006                                       (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1007                 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1008                 if (result == TCVR_FAILURE) {
1009                         ASD(("phyread_fail>\n"));
1010                         return -1;
1011                 }
1012                 ASD(("phyread_ok,PSELECT>"));
1013                 hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1014                 hp->tcvr_type = external;
1015                 hp->paddr = TCV_PADDR_ETX;
1016         } else {
1017                 if (tconfig & TCV_CFG_MDIO1) {
1018                         ASD(("internal<PSELECT,"));
1019                         hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT));
1020                         ASD(("ISOLATE,"));
1021                         happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1022                                               (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1023                         result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1024                         if (result == TCVR_FAILURE) {
1025                                 ASD(("phyread_fail>\n"));
1026                                 return -1;
1027                         }
1028                         ASD(("phyread_ok,~PSELECT>"));
1029                         hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT)));
1030                         hp->tcvr_type = internal;
1031                         hp->paddr = TCV_PADDR_ITX;
1032                 }
1033         }
1034
1035         ASD(("BMCR_RESET "));
1036         happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET);
1037
1038         while (--tries) {
1039                 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1040                 if (result == TCVR_FAILURE)
1041                         return -1;
1042                 hp->sw_bmcr = result;
1043                 if (!(result & BMCR_RESET))
1044                         break;
1045                 udelay(20);
1046         }
1047         if (!tries) {
1048                 ASD(("BMCR RESET FAILED!\n"));
1049                 return -1;
1050         }
1051         ASD(("RESET_OK\n"));
1052
1053         /* Get fresh copies of the PHY registers. */
1054         hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1055         hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1056         hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1057         hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1058
1059         ASD(("UNISOLATE"));
1060         hp->sw_bmcr &= ~(BMCR_ISOLATE);
1061         happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1062
1063         tries = TCVR_UNISOLATE_TRIES;
1064         while (--tries) {
1065                 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1066                 if (result == TCVR_FAILURE)
1067                         return -1;
1068                 if (!(result & BMCR_ISOLATE))
1069                         break;
1070                 udelay(20);
1071         }
1072         if (!tries) {
1073                 ASD((" FAILED!\n"));
1074                 return -1;
1075         }
1076         ASD((" SUCCESS and CSCONFIG_DFBYPASS\n"));
1077         if (!is_lucent_phy(hp)) {
1078                 result = happy_meal_tcvr_read(hp, tregs,
1079                                               DP83840_CSCONFIG);
1080                 happy_meal_tcvr_write(hp, tregs,
1081                                       DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS));
1082         }
1083         return 0;
1084 }
1085
1086 /* Figure out whether we have an internal or external transceiver.
1087  *
1088  * hp->happy_lock must be held
1089  */
1090 static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs)
1091 {
1092         unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG);
1093
1094         ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig));
1095         if (hp->happy_flags & HFLAG_POLL) {
1096                 /* If we are polling, we must stop to get the transceiver type. */
1097                 ASD(("<polling> "));
1098                 if (hp->tcvr_type == internal) {
1099                         if (tconfig & TCV_CFG_MDIO1) {
1100                                 ASD(("<internal> <poll stop> "));
1101                                 happy_meal_poll_stop(hp, tregs);
1102                                 hp->paddr = TCV_PADDR_ETX;
1103                                 hp->tcvr_type = external;
1104                                 ASD(("<external>\n"));
1105                                 tconfig &= ~(TCV_CFG_PENABLE);
1106                                 tconfig |= TCV_CFG_PSELECT;
1107                                 hme_write32(hp, tregs + TCVR_CFG, tconfig);
1108                         }
1109                 } else {
1110                         if (hp->tcvr_type == external) {
1111                                 ASD(("<external> "));
1112                                 if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) {
1113                                         ASD(("<poll stop> "));
1114                                         happy_meal_poll_stop(hp, tregs);
1115                                         hp->paddr = TCV_PADDR_ITX;
1116                                         hp->tcvr_type = internal;
1117                                         ASD(("<internal>\n"));
1118                                         hme_write32(hp, tregs + TCVR_CFG,
1119                                                     hme_read32(hp, tregs + TCVR_CFG) &
1120                                                     ~(TCV_CFG_PSELECT));
1121                                 }
1122                                 ASD(("\n"));
1123                         } else {
1124                                 ASD(("<none>\n"));
1125                         }
1126                 }
1127         } else {
1128                 u32 reread = hme_read32(hp, tregs + TCVR_CFG);
1129
1130                 /* Else we can just work off of the MDIO bits. */
1131                 ASD(("<not polling> "));
1132                 if (reread & TCV_CFG_MDIO1) {
1133                         hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1134                         hp->paddr = TCV_PADDR_ETX;
1135                         hp->tcvr_type = external;
1136                         ASD(("<external>\n"));
1137                 } else {
1138                         if (reread & TCV_CFG_MDIO0) {
1139                                 hme_write32(hp, tregs + TCVR_CFG,
1140                                             tconfig & ~(TCV_CFG_PSELECT));
1141                                 hp->paddr = TCV_PADDR_ITX;
1142                                 hp->tcvr_type = internal;
1143                                 ASD(("<internal>\n"));
1144                         } else {
1145                                 printk(KERN_ERR "happy meal: Transceiver and a coke please.");
1146                                 hp->tcvr_type = none; /* Grrr... */
1147                                 ASD(("<none>\n"));
1148                         }
1149                 }
1150         }
1151 }
1152
1153 /* The receive ring buffers are a bit tricky to get right.  Here goes...
1154  *
1155  * The buffers we dma into must be 64 byte aligned.  So we use a special
1156  * alloc_skb() routine for the happy meal to allocate 64 bytes more than
1157  * we really need.
1158  *
1159  * We use skb_reserve() to align the data block we get in the skb.  We
1160  * also program the etxregs->cfg register to use an offset of 2.  This
1161  * imperical constant plus the ethernet header size will always leave
1162  * us with a nicely aligned ip header once we pass things up to the
1163  * protocol layers.
1164  *
1165  * The numbers work out to:
1166  *
1167  *         Max ethernet frame size         1518
1168  *         Ethernet header size              14
1169  *         Happy Meal base offset             2
1170  *
1171  * Say a skb data area is at 0xf001b010, and its size alloced is
1172  * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
1173  *
1174  * First our alloc_skb() routine aligns the data base to a 64 byte
1175  * boundary.  We now have 0xf001b040 as our skb data address.  We
1176  * plug this into the receive descriptor address.
1177  *
1178  * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
1179  * So now the data we will end up looking at starts at 0xf001b042.  When
1180  * the packet arrives, we will check out the size received and subtract
1181  * this from the skb->length.  Then we just pass the packet up to the
1182  * protocols as is, and allocate a new skb to replace this slot we have
1183  * just received from.
1184  *
1185  * The ethernet layer will strip the ether header from the front of the
1186  * skb we just sent to it, this leaves us with the ip header sitting
1187  * nicely aligned at 0xf001b050.  Also, for tcp and udp packets the
1188  * Happy Meal has even checksummed the tcp/udp data for us.  The 16
1189  * bit checksum is obtained from the low bits of the receive descriptor
1190  * flags, thus:
1191  *
1192  *      skb->csum = rxd->rx_flags & 0xffff;
1193  *      skb->ip_summed = CHECKSUM_COMPLETE;
1194  *
1195  * before sending off the skb to the protocols, and we are good as gold.
1196  */
1197 static void happy_meal_clean_rings(struct happy_meal *hp)
1198 {
1199         int i;
1200
1201         for (i = 0; i < RX_RING_SIZE; i++) {
1202                 if (hp->rx_skbs[i] != NULL) {
1203                         struct sk_buff *skb = hp->rx_skbs[i];
1204                         struct happy_meal_rxd *rxd;
1205                         u32 dma_addr;
1206
1207                         rxd = &hp->happy_block->happy_meal_rxd[i];
1208                         dma_addr = hme_read_desc32(hp, &rxd->rx_addr);
1209                         hme_dma_unmap(hp, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
1210                         dev_kfree_skb_any(skb);
1211                         hp->rx_skbs[i] = NULL;
1212                 }
1213         }
1214
1215         for (i = 0; i < TX_RING_SIZE; i++) {
1216                 if (hp->tx_skbs[i] != NULL) {
1217                         struct sk_buff *skb = hp->tx_skbs[i];
1218                         struct happy_meal_txd *txd;
1219                         u32 dma_addr;
1220                         int frag;
1221
1222                         hp->tx_skbs[i] = NULL;
1223
1224                         for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1225                                 txd = &hp->happy_block->happy_meal_txd[i];
1226                                 dma_addr = hme_read_desc32(hp, &txd->tx_addr);
1227                                 hme_dma_unmap(hp, dma_addr,
1228                                               (hme_read_desc32(hp, &txd->tx_flags)
1229                                                & TXFLAG_SIZE),
1230                                               DMA_TO_DEVICE);
1231
1232                                 if (frag != skb_shinfo(skb)->nr_frags)
1233                                         i++;
1234                         }
1235
1236                         dev_kfree_skb_any(skb);
1237                 }
1238         }
1239 }
1240
1241 /* hp->happy_lock must be held */
1242 static void happy_meal_init_rings(struct happy_meal *hp)
1243 {
1244         struct hmeal_init_block *hb = hp->happy_block;
1245         struct net_device *dev = hp->dev;
1246         int i;
1247
1248         HMD(("happy_meal_init_rings: counters to zero, "));
1249         hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0;
1250
1251         /* Free any skippy bufs left around in the rings. */
1252         HMD(("clean, "));
1253         happy_meal_clean_rings(hp);
1254
1255         /* Now get new skippy bufs for the receive ring. */
1256         HMD(("init rxring, "));
1257         for (i = 0; i < RX_RING_SIZE; i++) {
1258                 struct sk_buff *skb;
1259
1260                 skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
1261                 if (!skb) {
1262                         hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1263                         continue;
1264                 }
1265                 hp->rx_skbs[i] = skb;
1266                 skb->dev = dev;
1267
1268                 /* Because we reserve afterwards. */
1269                 skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
1270                 hme_write_rxd(hp, &hb->happy_meal_rxd[i],
1271                               (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)),
1272                               hme_dma_map(hp, skb->data, RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE));
1273                 skb_reserve(skb, RX_OFFSET);
1274         }
1275
1276         HMD(("init txring, "));
1277         for (i = 0; i < TX_RING_SIZE; i++)
1278                 hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0);
1279
1280         HMD(("done\n"));
1281 }
1282
1283 /* hp->happy_lock must be held */
1284 static void happy_meal_begin_auto_negotiation(struct happy_meal *hp,
1285                                               void __iomem *tregs,
1286                                               struct ethtool_cmd *ep)
1287 {
1288         int timeout;
1289
1290         /* Read all of the registers we are interested in now. */
1291         hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1292         hp->sw_bmcr      = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1293         hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1294         hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1295
1296         /* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
1297
1298         hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1299         if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
1300                 /* Advertise everything we can support. */
1301                 if (hp->sw_bmsr & BMSR_10HALF)
1302                         hp->sw_advertise |= (ADVERTISE_10HALF);
1303                 else
1304                         hp->sw_advertise &= ~(ADVERTISE_10HALF);
1305
1306                 if (hp->sw_bmsr & BMSR_10FULL)
1307                         hp->sw_advertise |= (ADVERTISE_10FULL);
1308                 else
1309                         hp->sw_advertise &= ~(ADVERTISE_10FULL);
1310                 if (hp->sw_bmsr & BMSR_100HALF)
1311                         hp->sw_advertise |= (ADVERTISE_100HALF);
1312                 else
1313                         hp->sw_advertise &= ~(ADVERTISE_100HALF);
1314                 if (hp->sw_bmsr & BMSR_100FULL)
1315                         hp->sw_advertise |= (ADVERTISE_100FULL);
1316                 else
1317                         hp->sw_advertise &= ~(ADVERTISE_100FULL);
1318                 happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1319
1320                 /* XXX Currently no Happy Meal cards I know off support 100BaseT4,
1321                  * XXX and this is because the DP83840 does not support it, changes
1322                  * XXX would need to be made to the tx/rx logic in the driver as well
1323                  * XXX so I completely skip checking for it in the BMSR for now.
1324                  */
1325
1326 #ifdef AUTO_SWITCH_DEBUG
1327                 ASD(("%s: Advertising [ ", hp->dev->name));
1328                 if (hp->sw_advertise & ADVERTISE_10HALF)
1329                         ASD(("10H "));
1330                 if (hp->sw_advertise & ADVERTISE_10FULL)
1331                         ASD(("10F "));
1332                 if (hp->sw_advertise & ADVERTISE_100HALF)
1333                         ASD(("100H "));
1334                 if (hp->sw_advertise & ADVERTISE_100FULL)
1335                         ASD(("100F "));
1336 #endif
1337
1338                 /* Enable Auto-Negotiation, this is usually on already... */
1339                 hp->sw_bmcr |= BMCR_ANENABLE;
1340                 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1341
1342                 /* Restart it to make sure it is going. */
1343                 hp->sw_bmcr |= BMCR_ANRESTART;
1344                 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1345
1346                 /* BMCR_ANRESTART self clears when the process has begun. */
1347
1348                 timeout = 64;  /* More than enough. */
1349                 while (--timeout) {
1350                         hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1351                         if (!(hp->sw_bmcr & BMCR_ANRESTART))
1352                                 break; /* got it. */
1353                         udelay(10);
1354                 }
1355                 if (!timeout) {
1356                         printk(KERN_ERR "%s: Happy Meal would not start auto negotiation "
1357                                "BMCR=0x%04x\n", hp->dev->name, hp->sw_bmcr);
1358                         printk(KERN_NOTICE "%s: Performing force link detection.\n",
1359                                hp->dev->name);
1360                         goto force_link;
1361                 } else {
1362                         hp->timer_state = arbwait;
1363                 }
1364         } else {
1365 force_link:
1366                 /* Force the link up, trying first a particular mode.
1367                  * Either we are here at the request of ethtool or
1368                  * because the Happy Meal would not start to autoneg.
1369                  */
1370
1371                 /* Disable auto-negotiation in BMCR, enable the duplex and
1372                  * speed setting, init the timer state machine, and fire it off.
1373                  */
1374                 if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
1375                         hp->sw_bmcr = BMCR_SPEED100;
1376                 } else {
1377                         if (ep->speed == SPEED_100)
1378                                 hp->sw_bmcr = BMCR_SPEED100;
1379                         else
1380                                 hp->sw_bmcr = 0;
1381                         if (ep->duplex == DUPLEX_FULL)
1382                                 hp->sw_bmcr |= BMCR_FULLDPLX;
1383                 }
1384                 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1385
1386                 if (!is_lucent_phy(hp)) {
1387                         /* OK, seems we need do disable the transceiver for the first
1388                          * tick to make sure we get an accurate link state at the
1389                          * second tick.
1390                          */
1391                         hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
1392                                                                DP83840_CSCONFIG);
1393                         hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
1394                         happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG,
1395                                               hp->sw_csconfig);
1396                 }
1397                 hp->timer_state = ltrywait;
1398         }
1399
1400         hp->timer_ticks = 0;
1401         hp->happy_timer.expires = jiffies + (12 * HZ)/10;  /* 1.2 sec. */
1402         hp->happy_timer.data = (unsigned long) hp;
1403         hp->happy_timer.function = &happy_meal_timer;
1404         add_timer(&hp->happy_timer);
1405 }
1406
1407 /* hp->happy_lock must be held */
1408 static int happy_meal_init(struct happy_meal *hp)
1409 {
1410         void __iomem *gregs        = hp->gregs;
1411         void __iomem *etxregs      = hp->etxregs;
1412         void __iomem *erxregs      = hp->erxregs;
1413         void __iomem *bregs        = hp->bigmacregs;
1414         void __iomem *tregs        = hp->tcvregs;
1415         u32 regtmp, rxcfg;
1416         unsigned char *e = &hp->dev->dev_addr[0];
1417
1418         /* If auto-negotiation timer is running, kill it. */
1419         del_timer(&hp->happy_timer);
1420
1421         HMD(("happy_meal_init: happy_flags[%08x] ",
1422              hp->happy_flags));
1423         if (!(hp->happy_flags & HFLAG_INIT)) {
1424                 HMD(("set HFLAG_INIT, "));
1425                 hp->happy_flags |= HFLAG_INIT;
1426                 happy_meal_get_counters(hp, bregs);
1427         }
1428
1429         /* Stop polling. */
1430         HMD(("to happy_meal_poll_stop\n"));
1431         happy_meal_poll_stop(hp, tregs);
1432
1433         /* Stop transmitter and receiver. */
1434         HMD(("happy_meal_init: to happy_meal_stop\n"));
1435         happy_meal_stop(hp, gregs);
1436
1437         /* Alloc and reset the tx/rx descriptor chains. */
1438         HMD(("happy_meal_init: to happy_meal_init_rings\n"));
1439         happy_meal_init_rings(hp);
1440
1441         /* Shut up the MIF. */
1442         HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ",
1443              hme_read32(hp, tregs + TCVR_IMASK)));
1444         hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1445
1446         /* See if we can enable the MIF frame on this card to speak to the DP83840. */
1447         if (hp->happy_flags & HFLAG_FENABLE) {
1448                 HMD(("use frame old[%08x], ",
1449                      hme_read32(hp, tregs + TCVR_CFG)));
1450                 hme_write32(hp, tregs + TCVR_CFG,
1451                             hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1452         } else {
1453                 HMD(("use bitbang old[%08x], ",
1454                      hme_read32(hp, tregs + TCVR_CFG)));
1455                 hme_write32(hp, tregs + TCVR_CFG,
1456                             hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1457         }
1458
1459         /* Check the state of the transceiver. */
1460         HMD(("to happy_meal_transceiver_check\n"));
1461         happy_meal_transceiver_check(hp, tregs);
1462
1463         /* Put the Big Mac into a sane state. */
1464         HMD(("happy_meal_init: "));
1465         switch(hp->tcvr_type) {
1466         case none:
1467                 /* Cannot operate if we don't know the transceiver type! */
1468                 HMD(("AAIEEE no transceiver type, EAGAIN"));
1469                 return -EAGAIN;
1470
1471         case internal:
1472                 /* Using the MII buffers. */
1473                 HMD(("internal, using MII, "));
1474                 hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1475                 break;
1476
1477         case external:
1478                 /* Not using the MII, disable it. */
1479                 HMD(("external, disable MII, "));
1480                 hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1481                 break;
1482         };
1483
1484         if (happy_meal_tcvr_reset(hp, tregs))
1485                 return -EAGAIN;
1486
1487         /* Reset the Happy Meal Big Mac transceiver and the receiver. */
1488         HMD(("tx/rx reset, "));
1489         happy_meal_tx_reset(hp, bregs);
1490         happy_meal_rx_reset(hp, bregs);
1491
1492         /* Set jam size and inter-packet gaps to reasonable defaults. */
1493         HMD(("jsize/ipg1/ipg2, "));
1494         hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE);
1495         hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1);
1496         hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2);
1497
1498         /* Load up the MAC address and random seed. */
1499         HMD(("rseed/macaddr, "));
1500
1501         /* The docs recommend to use the 10LSB of our MAC here. */
1502         hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff));
1503
1504         hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5]));
1505         hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3]));
1506         hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1]));
1507
1508         HMD(("htable, "));
1509         if ((hp->dev->flags & IFF_ALLMULTI) ||
1510             (hp->dev->mc_count > 64)) {
1511                 hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
1512                 hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
1513                 hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
1514                 hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
1515         } else if ((hp->dev->flags & IFF_PROMISC) == 0) {
1516                 u16 hash_table[4];
1517                 struct dev_mc_list *dmi = hp->dev->mc_list;
1518                 char *addrs;
1519                 int i;
1520                 u32 crc;
1521
1522                 for (i = 0; i < 4; i++)
1523                         hash_table[i] = 0;
1524
1525                 for (i = 0; i < hp->dev->mc_count; i++) {
1526                         addrs = dmi->dmi_addr;
1527                         dmi = dmi->next;
1528
1529                         if (!(*addrs & 1))
1530                                 continue;
1531
1532                         crc = ether_crc_le(6, addrs);
1533                         crc >>= 26;
1534                         hash_table[crc >> 4] |= 1 << (crc & 0xf);
1535                 }
1536                 hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
1537                 hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
1538                 hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
1539                 hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
1540         } else {
1541                 hme_write32(hp, bregs + BMAC_HTABLE3, 0);
1542                 hme_write32(hp, bregs + BMAC_HTABLE2, 0);
1543                 hme_write32(hp, bregs + BMAC_HTABLE1, 0);
1544                 hme_write32(hp, bregs + BMAC_HTABLE0, 0);
1545         }
1546
1547         /* Set the RX and TX ring ptrs. */
1548         HMD(("ring ptrs rxr[%08x] txr[%08x]\n",
1549              ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)),
1550              ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))));
1551         hme_write32(hp, erxregs + ERX_RING,
1552                     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)));
1553         hme_write32(hp, etxregs + ETX_RING,
1554                     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
1555
1556         /* Parity issues in the ERX unit of some HME revisions can cause some
1557          * registers to not be written unless their parity is even.  Detect such
1558          * lost writes and simply rewrite with a low bit set (which will be ignored
1559          * since the rxring needs to be 2K aligned).
1560          */
1561         if (hme_read32(hp, erxregs + ERX_RING) !=
1562             ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)))
1563                 hme_write32(hp, erxregs + ERX_RING,
1564                             ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))
1565                             | 0x4);
1566
1567         /* Set the supported burst sizes. */
1568         HMD(("happy_meal_init: old[%08x] bursts<",
1569              hme_read32(hp, gregs + GREG_CFG)));
1570
1571 #ifndef CONFIG_SPARC
1572         /* It is always PCI and can handle 64byte bursts. */
1573         hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64);
1574 #else
1575         if ((hp->happy_bursts & DMA_BURST64) &&
1576             ((hp->happy_flags & HFLAG_PCI) != 0
1577 #ifdef CONFIG_SBUS
1578              || sbus_can_burst64()
1579 #endif
1580              || 0)) {
1581                 u32 gcfg = GREG_CFG_BURST64;
1582
1583                 /* I have no idea if I should set the extended
1584                  * transfer mode bit for Cheerio, so for now I
1585                  * do not.  -DaveM
1586                  */
1587 #ifdef CONFIG_SBUS
1588                 if ((hp->happy_flags & HFLAG_PCI) == 0) {
1589                         struct sbus_dev *sdev = hp->happy_dev;
1590                         if (sbus_can_dma_64bit()) {
1591                                 sbus_set_sbus64(&sdev->ofdev.dev,
1592                                                 hp->happy_bursts);
1593                                 gcfg |= GREG_CFG_64BIT;
1594                         }
1595                 }
1596 #endif
1597
1598                 HMD(("64>"));
1599                 hme_write32(hp, gregs + GREG_CFG, gcfg);
1600         } else if (hp->happy_bursts & DMA_BURST32) {
1601                 HMD(("32>"));
1602                 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32);
1603         } else if (hp->happy_bursts & DMA_BURST16) {
1604                 HMD(("16>"));
1605                 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16);
1606         } else {
1607                 HMD(("XXX>"));
1608                 hme_write32(hp, gregs + GREG_CFG, 0);
1609         }
1610 #endif /* CONFIG_SPARC */
1611
1612         /* Turn off interrupts we do not want to hear. */
1613         HMD((", enable global interrupts, "));
1614         hme_write32(hp, gregs + GREG_IMASK,
1615                     (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP |
1616                      GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR));
1617
1618         /* Set the transmit ring buffer size. */
1619         HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE,
1620              hme_read32(hp, etxregs + ETX_RSIZE)));
1621         hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1);
1622
1623         /* Enable transmitter DVMA. */
1624         HMD(("tx dma enable old[%08x], ",
1625              hme_read32(hp, etxregs + ETX_CFG)));
1626         hme_write32(hp, etxregs + ETX_CFG,
1627                     hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE);
1628
1629         /* This chip really rots, for the receiver sometimes when you
1630          * write to its control registers not all the bits get there
1631          * properly.  I cannot think of a sane way to provide complete
1632          * coverage for this hardware bug yet.
1633          */
1634         HMD(("erx regs bug old[%08x]\n",
1635              hme_read32(hp, erxregs + ERX_CFG)));
1636         hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1637         regtmp = hme_read32(hp, erxregs + ERX_CFG);
1638         hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1639         if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) {
1640                 printk(KERN_ERR "happy meal: Eieee, rx config register gets greasy fries.\n");
1641                 printk(KERN_ERR "happy meal: Trying to set %08x, reread gives %08x\n",
1642                        ERX_CFG_DEFAULT(RX_OFFSET), regtmp);
1643                 /* XXX Should return failure here... */
1644         }
1645
1646         /* Enable Big Mac hash table filter. */
1647         HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ",
1648              hme_read32(hp, bregs + BMAC_RXCFG)));
1649         rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME;
1650         if (hp->dev->flags & IFF_PROMISC)
1651                 rxcfg |= BIGMAC_RXCFG_PMISC;
1652         hme_write32(hp, bregs + BMAC_RXCFG, rxcfg);
1653
1654         /* Let the bits settle in the chip. */
1655         udelay(10);
1656
1657         /* Ok, configure the Big Mac transmitter. */
1658         HMD(("BIGMAC init, "));
1659         regtmp = 0;
1660         if (hp->happy_flags & HFLAG_FULL)
1661                 regtmp |= BIGMAC_TXCFG_FULLDPLX;
1662
1663         /* Don't turn on the "don't give up" bit for now.  It could cause hme
1664          * to deadlock with the PHY if a Jabber occurs.
1665          */
1666         hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/);
1667
1668         /* Give up after 16 TX attempts. */
1669         hme_write32(hp, bregs + BMAC_ALIMIT, 16);
1670
1671         /* Enable the output drivers no matter what. */
1672         regtmp = BIGMAC_XCFG_ODENABLE;
1673
1674         /* If card can do lance mode, enable it. */
1675         if (hp->happy_flags & HFLAG_LANCE)
1676                 regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE;
1677
1678         /* Disable the MII buffers if using external transceiver. */
1679         if (hp->tcvr_type == external)
1680                 regtmp |= BIGMAC_XCFG_MIIDISAB;
1681
1682         HMD(("XIF config old[%08x], ",
1683              hme_read32(hp, bregs + BMAC_XIFCFG)));
1684         hme_write32(hp, bregs + BMAC_XIFCFG, regtmp);
1685
1686         /* Start things up. */
1687         HMD(("tx old[%08x] and rx [%08x] ON!\n",
1688              hme_read32(hp, bregs + BMAC_TXCFG),
1689              hme_read32(hp, bregs + BMAC_RXCFG)));
1690
1691         /* Set larger TX/RX size to allow for 802.1q */
1692         hme_write32(hp, bregs + BMAC_TXMAX, ETH_FRAME_LEN + 8);
1693         hme_write32(hp, bregs + BMAC_RXMAX, ETH_FRAME_LEN + 8);
1694
1695         hme_write32(hp, bregs + BMAC_TXCFG,
1696                     hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE);
1697         hme_write32(hp, bregs + BMAC_RXCFG,
1698                     hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE);
1699
1700         /* Get the autonegotiation started, and the watch timer ticking. */
1701         happy_meal_begin_auto_negotiation(hp, tregs, NULL);
1702
1703         /* Success. */
1704         return 0;
1705 }
1706
1707 /* hp->happy_lock must be held */
1708 static void happy_meal_set_initial_advertisement(struct happy_meal *hp)
1709 {
1710         void __iomem *tregs     = hp->tcvregs;
1711         void __iomem *bregs     = hp->bigmacregs;
1712         void __iomem *gregs     = hp->gregs;
1713
1714         happy_meal_stop(hp, gregs);
1715         hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1716         if (hp->happy_flags & HFLAG_FENABLE)
1717                 hme_write32(hp, tregs + TCVR_CFG,
1718                             hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1719         else
1720                 hme_write32(hp, tregs + TCVR_CFG,
1721                             hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1722         happy_meal_transceiver_check(hp, tregs);
1723         switch(hp->tcvr_type) {
1724         case none:
1725                 return;
1726         case internal:
1727                 hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1728                 break;
1729         case external:
1730                 hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1731                 break;
1732         };
1733         if (happy_meal_tcvr_reset(hp, tregs))
1734                 return;
1735
1736         /* Latch PHY registers as of now. */
1737         hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1738         hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1739
1740         /* Advertise everything we can support. */
1741         if (hp->sw_bmsr & BMSR_10HALF)
1742                 hp->sw_advertise |= (ADVERTISE_10HALF);
1743         else
1744                 hp->sw_advertise &= ~(ADVERTISE_10HALF);
1745
1746         if (hp->sw_bmsr & BMSR_10FULL)
1747                 hp->sw_advertise |= (ADVERTISE_10FULL);
1748         else
1749                 hp->sw_advertise &= ~(ADVERTISE_10FULL);
1750         if (hp->sw_bmsr & BMSR_100HALF)
1751                 hp->sw_advertise |= (ADVERTISE_100HALF);
1752         else
1753                 hp->sw_advertise &= ~(ADVERTISE_100HALF);
1754         if (hp->sw_bmsr & BMSR_100FULL)
1755                 hp->sw_advertise |= (ADVERTISE_100FULL);
1756         else
1757                 hp->sw_advertise &= ~(ADVERTISE_100FULL);
1758
1759         /* Update the PHY advertisement register. */
1760         happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1761 }
1762
1763 /* Once status is latched (by happy_meal_interrupt) it is cleared by
1764  * the hardware, so we cannot re-read it and get a correct value.
1765  *
1766  * hp->happy_lock must be held
1767  */
1768 static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status)
1769 {
1770         int reset = 0;
1771
1772         /* Only print messages for non-counter related interrupts. */
1773         if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND |
1774                       GREG_STAT_MAXPKTERR | GREG_STAT_RXERR |
1775                       GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR |
1776                       GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR |
1777                       GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR |
1778                       GREG_STAT_SLVPERR))
1779                 printk(KERN_ERR "%s: Error interrupt for happy meal, status = %08x\n",
1780                        hp->dev->name, status);
1781
1782         if (status & GREG_STAT_RFIFOVF) {
1783                 /* Receive FIFO overflow is harmless and the hardware will take
1784                    care of it, just some packets are lost. Who cares. */
1785                 printk(KERN_DEBUG "%s: Happy Meal receive FIFO overflow.\n", hp->dev->name);
1786         }
1787
1788         if (status & GREG_STAT_STSTERR) {
1789                 /* BigMAC SQE link test failed. */
1790                 printk(KERN_ERR "%s: Happy Meal BigMAC SQE test failed.\n", hp->dev->name);
1791                 reset = 1;
1792         }
1793
1794         if (status & GREG_STAT_TFIFO_UND) {
1795                 /* Transmit FIFO underrun, again DMA error likely. */
1796                 printk(KERN_ERR "%s: Happy Meal transmitter FIFO underrun, DMA error.\n",
1797                        hp->dev->name);
1798                 reset = 1;
1799         }
1800
1801         if (status & GREG_STAT_MAXPKTERR) {
1802                 /* Driver error, tried to transmit something larger
1803                  * than ethernet max mtu.
1804                  */
1805                 printk(KERN_ERR "%s: Happy Meal MAX Packet size error.\n", hp->dev->name);
1806                 reset = 1;
1807         }
1808
1809         if (status & GREG_STAT_NORXD) {
1810                 /* This is harmless, it just means the system is
1811                  * quite loaded and the incoming packet rate was
1812                  * faster than the interrupt handler could keep up
1813                  * with.
1814                  */
1815                 printk(KERN_INFO "%s: Happy Meal out of receive "
1816                        "descriptors, packet dropped.\n",
1817                        hp->dev->name);
1818         }
1819
1820         if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) {
1821                 /* All sorts of DMA receive errors. */
1822                 printk(KERN_ERR "%s: Happy Meal rx DMA errors [ ", hp->dev->name);
1823                 if (status & GREG_STAT_RXERR)
1824                         printk("GenericError ");
1825                 if (status & GREG_STAT_RXPERR)
1826                         printk("ParityError ");
1827                 if (status & GREG_STAT_RXTERR)
1828                         printk("RxTagBotch ");
1829                 printk("]\n");
1830                 reset = 1;
1831         }
1832
1833         if (status & GREG_STAT_EOPERR) {
1834                 /* Driver bug, didn't set EOP bit in tx descriptor given
1835                  * to the happy meal.
1836                  */
1837                 printk(KERN_ERR "%s: EOP not set in happy meal transmit descriptor!\n",
1838                        hp->dev->name);
1839                 reset = 1;
1840         }
1841
1842         if (status & GREG_STAT_MIFIRQ) {
1843                 /* MIF signalled an interrupt, were we polling it? */
1844                 printk(KERN_ERR "%s: Happy Meal MIF interrupt.\n", hp->dev->name);
1845         }
1846
1847         if (status &
1848             (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) {
1849                 /* All sorts of transmit DMA errors. */
1850                 printk(KERN_ERR "%s: Happy Meal tx DMA errors [ ", hp->dev->name);
1851                 if (status & GREG_STAT_TXEACK)
1852                         printk("GenericError ");
1853                 if (status & GREG_STAT_TXLERR)
1854                         printk("LateError ");
1855                 if (status & GREG_STAT_TXPERR)
1856                         printk("ParityErro ");
1857                 if (status & GREG_STAT_TXTERR)
1858                         printk("TagBotch ");
1859                 printk("]\n");
1860                 reset = 1;
1861         }
1862
1863         if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) {
1864                 /* Bus or parity error when cpu accessed happy meal registers
1865                  * or it's internal FIFO's.  Should never see this.
1866                  */
1867                 printk(KERN_ERR "%s: Happy Meal register access SBUS slave (%s) error.\n",
1868                        hp->dev->name,
1869                        (status & GREG_STAT_SLVPERR) ? "parity" : "generic");
1870                 reset = 1;
1871         }
1872
1873         if (reset) {
1874                 printk(KERN_NOTICE "%s: Resetting...\n", hp->dev->name);
1875                 happy_meal_init(hp);
1876                 return 1;
1877         }
1878         return 0;
1879 }
1880
1881 /* hp->happy_lock must be held */
1882 static void happy_meal_mif_interrupt(struct happy_meal *hp)
1883 {
1884         void __iomem *tregs = hp->tcvregs;
1885
1886         printk(KERN_INFO "%s: Link status change.\n", hp->dev->name);
1887         hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1888         hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
1889
1890         /* Use the fastest transmission protocol possible. */
1891         if (hp->sw_lpa & LPA_100FULL) {
1892                 printk(KERN_INFO "%s: Switching to 100Mbps at full duplex.", hp->dev->name);
1893                 hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100);
1894         } else if (hp->sw_lpa & LPA_100HALF) {
1895                 printk(KERN_INFO "%s: Switching to 100MBps at half duplex.", hp->dev->name);
1896                 hp->sw_bmcr |= BMCR_SPEED100;
1897         } else if (hp->sw_lpa & LPA_10FULL) {
1898                 printk(KERN_INFO "%s: Switching to 10MBps at full duplex.", hp->dev->name);
1899                 hp->sw_bmcr |= BMCR_FULLDPLX;
1900         } else {
1901                 printk(KERN_INFO "%s: Using 10Mbps at half duplex.", hp->dev->name);
1902         }
1903         happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1904
1905         /* Finally stop polling and shut up the MIF. */
1906         happy_meal_poll_stop(hp, tregs);
1907 }
1908
1909 #ifdef TXDEBUG
1910 #define TXD(x) printk x
1911 #else
1912 #define TXD(x)
1913 #endif
1914
1915 /* hp->happy_lock must be held */
1916 static void happy_meal_tx(struct happy_meal *hp)
1917 {
1918         struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
1919         struct happy_meal_txd *this;
1920         struct net_device *dev = hp->dev;
1921         int elem;
1922
1923         elem = hp->tx_old;
1924         TXD(("TX<"));
1925         while (elem != hp->tx_new) {
1926                 struct sk_buff *skb;
1927                 u32 flags, dma_addr, dma_len;
1928                 int frag;
1929
1930                 TXD(("[%d]", elem));
1931                 this = &txbase[elem];
1932                 flags = hme_read_desc32(hp, &this->tx_flags);
1933                 if (flags & TXFLAG_OWN)
1934                         break;
1935                 skb = hp->tx_skbs[elem];
1936                 if (skb_shinfo(skb)->nr_frags) {
1937                         int last;
1938
1939                         last = elem + skb_shinfo(skb)->nr_frags;
1940                         last &= (TX_RING_SIZE - 1);
1941                         flags = hme_read_desc32(hp, &txbase[last].tx_flags);
1942                         if (flags & TXFLAG_OWN)
1943                                 break;
1944                 }
1945                 hp->tx_skbs[elem] = NULL;
1946                 hp->net_stats.tx_bytes += skb->len;
1947
1948                 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1949                         dma_addr = hme_read_desc32(hp, &this->tx_addr);
1950                         dma_len = hme_read_desc32(hp, &this->tx_flags);
1951
1952                         dma_len &= TXFLAG_SIZE;
1953                         hme_dma_unmap(hp, dma_addr, dma_len, DMA_TO_DEVICE);
1954
1955                         elem = NEXT_TX(elem);
1956                         this = &txbase[elem];
1957                 }
1958
1959                 dev_kfree_skb_irq(skb);
1960                 hp->net_stats.tx_packets++;
1961         }
1962         hp->tx_old = elem;
1963         TXD((">"));
1964
1965         if (netif_queue_stopped(dev) &&
1966             TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1))
1967                 netif_wake_queue(dev);
1968 }
1969
1970 #ifdef RXDEBUG
1971 #define RXD(x) printk x
1972 #else
1973 #define RXD(x)
1974 #endif
1975
1976 /* Originally I used to handle the allocation failure by just giving back just
1977  * that one ring buffer to the happy meal.  Problem is that usually when that
1978  * condition is triggered, the happy meal expects you to do something reasonable
1979  * with all of the packets it has DMA'd in.  So now I just drop the entire
1980  * ring when we cannot get a new skb and give them all back to the happy meal,
1981  * maybe things will be "happier" now.
1982  *
1983  * hp->happy_lock must be held
1984  */
1985 static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev)
1986 {
1987         struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0];
1988         struct happy_meal_rxd *this;
1989         int elem = hp->rx_new, drops = 0;
1990         u32 flags;
1991
1992         RXD(("RX<"));
1993         this = &rxbase[elem];
1994         while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) {
1995                 struct sk_buff *skb;
1996                 int len = flags >> 16;
1997                 u16 csum = flags & RXFLAG_CSUM;
1998                 u32 dma_addr = hme_read_desc32(hp, &this->rx_addr);
1999
2000                 RXD(("[%d ", elem));
2001
2002                 /* Check for errors. */
2003                 if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) {
2004                         RXD(("ERR(%08x)]", flags));
2005                         hp->net_stats.rx_errors++;
2006                         if (len < ETH_ZLEN)
2007                                 hp->net_stats.rx_length_errors++;
2008                         if (len & (RXFLAG_OVERFLOW >> 16)) {
2009                                 hp->net_stats.rx_over_errors++;
2010                                 hp->net_stats.rx_fifo_errors++;
2011                         }
2012
2013                         /* Return it to the Happy meal. */
2014         drop_it:
2015                         hp->net_stats.rx_dropped++;
2016                         hme_write_rxd(hp, this,
2017                                       (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2018                                       dma_addr);
2019                         goto next;
2020                 }
2021                 skb = hp->rx_skbs[elem];
2022                 if (len > RX_COPY_THRESHOLD) {
2023                         struct sk_buff *new_skb;
2024
2025                         /* Now refill the entry, if we can. */
2026                         new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
2027                         if (new_skb == NULL) {
2028                                 drops++;
2029                                 goto drop_it;
2030                         }
2031                         hme_dma_unmap(hp, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
2032                         hp->rx_skbs[elem] = new_skb;
2033                         new_skb->dev = dev;
2034                         skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
2035                         hme_write_rxd(hp, this,
2036                                       (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2037                                       hme_dma_map(hp, new_skb->data, RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE));
2038                         skb_reserve(new_skb, RX_OFFSET);
2039
2040                         /* Trim the original skb for the netif. */
2041                         skb_trim(skb, len);
2042                 } else {
2043                         struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
2044
2045                         if (copy_skb == NULL) {
2046                                 drops++;
2047                                 goto drop_it;
2048                         }
2049
2050                         skb_reserve(copy_skb, 2);
2051                         skb_put(copy_skb, len);
2052                         hme_dma_sync_for_cpu(hp, dma_addr, len, DMA_FROM_DEVICE);
2053                         skb_copy_from_linear_data(skb, copy_skb->data, len);
2054                         hme_dma_sync_for_device(hp, dma_addr, len, DMA_FROM_DEVICE);
2055
2056                         /* Reuse original ring buffer. */
2057                         hme_write_rxd(hp, this,
2058                                       (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2059                                       dma_addr);
2060
2061                         skb = copy_skb;
2062                 }
2063
2064                 /* This card is _fucking_ hot... */
2065                 skb->csum = csum_unfold(~(__force __sum16)htons(csum));
2066                 skb->ip_summed = CHECKSUM_COMPLETE;
2067
2068                 RXD(("len=%d csum=%4x]", len, csum));
2069                 skb->protocol = eth_type_trans(skb, dev);
2070                 netif_rx(skb);
2071
2072                 dev->last_rx = jiffies;
2073                 hp->net_stats.rx_packets++;
2074                 hp->net_stats.rx_bytes += len;
2075         next:
2076                 elem = NEXT_RX(elem);
2077                 this = &rxbase[elem];
2078         }
2079         hp->rx_new = elem;
2080         if (drops)
2081                 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name);
2082         RXD((">"));
2083 }
2084
2085 static irqreturn_t happy_meal_interrupt(int irq, void *dev_id)
2086 {
2087         struct net_device *dev = dev_id;
2088         struct happy_meal *hp  = netdev_priv(dev);
2089         u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2090
2091         HMD(("happy_meal_interrupt: status=%08x ", happy_status));
2092
2093         spin_lock(&hp->happy_lock);
2094
2095         if (happy_status & GREG_STAT_ERRORS) {
2096                 HMD(("ERRORS "));
2097                 if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status))
2098                         goto out;
2099         }
2100
2101         if (happy_status & GREG_STAT_MIFIRQ) {
2102                 HMD(("MIFIRQ "));
2103                 happy_meal_mif_interrupt(hp);
2104         }
2105
2106         if (happy_status & GREG_STAT_TXALL) {
2107                 HMD(("TXALL "));
2108                 happy_meal_tx(hp);
2109         }
2110
2111         if (happy_status & GREG_STAT_RXTOHOST) {
2112                 HMD(("RXTOHOST "));
2113                 happy_meal_rx(hp, dev);
2114         }
2115
2116         HMD(("done\n"));
2117 out:
2118         spin_unlock(&hp->happy_lock);
2119
2120         return IRQ_HANDLED;
2121 }
2122
2123 #ifdef CONFIG_SBUS
2124 static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie)
2125 {
2126         struct quattro *qp = (struct quattro *) cookie;
2127         int i;
2128
2129         for (i = 0; i < 4; i++) {
2130                 struct net_device *dev = qp->happy_meals[i];
2131                 struct happy_meal *hp  = dev->priv;
2132                 u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2133
2134                 HMD(("quattro_interrupt: status=%08x ", happy_status));
2135
2136                 if (!(happy_status & (GREG_STAT_ERRORS |
2137                                       GREG_STAT_MIFIRQ |
2138                                       GREG_STAT_TXALL |
2139                                       GREG_STAT_RXTOHOST)))
2140                         continue;
2141
2142                 spin_lock(&hp->happy_lock);
2143
2144                 if (happy_status & GREG_STAT_ERRORS) {
2145                         HMD(("ERRORS "));
2146                         if (happy_meal_is_not_so_happy(hp, happy_status))
2147                                 goto next;
2148                 }
2149
2150                 if (happy_status & GREG_STAT_MIFIRQ) {
2151                         HMD(("MIFIRQ "));
2152                         happy_meal_mif_interrupt(hp);
2153                 }
2154
2155                 if (happy_status & GREG_STAT_TXALL) {
2156                         HMD(("TXALL "));
2157                         happy_meal_tx(hp);
2158                 }
2159
2160                 if (happy_status & GREG_STAT_RXTOHOST) {
2161                         HMD(("RXTOHOST "));
2162                         happy_meal_rx(hp, dev);
2163                 }
2164
2165         next:
2166                 spin_unlock(&hp->happy_lock);
2167         }
2168         HMD(("done\n"));
2169
2170         return IRQ_HANDLED;
2171 }
2172 #endif
2173
2174 static int happy_meal_open(struct net_device *dev)
2175 {
2176         struct happy_meal *hp = dev->priv;
2177         int res;
2178
2179         HMD(("happy_meal_open: "));
2180
2181         /* On SBUS Quattro QFE cards, all hme interrupts are concentrated
2182          * into a single source which we register handling at probe time.
2183          */
2184         if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) {
2185                 if (request_irq(dev->irq, &happy_meal_interrupt,
2186                                 IRQF_SHARED, dev->name, (void *)dev)) {
2187                         HMD(("EAGAIN\n"));
2188                         printk(KERN_ERR "happy_meal(SBUS): Can't order irq %d to go.\n",
2189                                dev->irq);
2190
2191                         return -EAGAIN;
2192                 }
2193         }
2194
2195         HMD(("to happy_meal_init\n"));
2196
2197         spin_lock_irq(&hp->happy_lock);
2198         res = happy_meal_init(hp);
2199         spin_unlock_irq(&hp->happy_lock);
2200
2201         if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO))
2202                 free_irq(dev->irq, dev);
2203         return res;
2204 }
2205
2206 static int happy_meal_close(struct net_device *dev)
2207 {
2208         struct happy_meal *hp = dev->priv;
2209
2210         spin_lock_irq(&hp->happy_lock);
2211         happy_meal_stop(hp, hp->gregs);
2212         happy_meal_clean_rings(hp);
2213
2214         /* If auto-negotiation timer is running, kill it. */
2215         del_timer(&hp->happy_timer);
2216
2217         spin_unlock_irq(&hp->happy_lock);
2218
2219         /* On Quattro QFE cards, all hme interrupts are concentrated
2220          * into a single source which we register handling at probe
2221          * time and never unregister.
2222          */
2223         if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO)
2224                 free_irq(dev->irq, dev);
2225
2226         return 0;
2227 }
2228
2229 #ifdef SXDEBUG
2230 #define SXD(x) printk x
2231 #else
2232 #define SXD(x)
2233 #endif
2234
2235 static void happy_meal_tx_timeout(struct net_device *dev)
2236 {
2237         struct happy_meal *hp = dev->priv;
2238
2239         printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2240         tx_dump_log();
2241         printk (KERN_ERR "%s: Happy Status %08x TX[%08x:%08x]\n", dev->name,
2242                 hme_read32(hp, hp->gregs + GREG_STAT),
2243                 hme_read32(hp, hp->etxregs + ETX_CFG),
2244                 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG));
2245
2246         spin_lock_irq(&hp->happy_lock);
2247         happy_meal_init(hp);
2248         spin_unlock_irq(&hp->happy_lock);
2249
2250         netif_wake_queue(dev);
2251 }
2252
2253 static int happy_meal_start_xmit(struct sk_buff *skb, struct net_device *dev)
2254 {
2255         struct happy_meal *hp = dev->priv;
2256         int entry;
2257         u32 tx_flags;
2258
2259         tx_flags = TXFLAG_OWN;
2260         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2261                 const u32 csum_start_off = skb_transport_offset(skb);
2262                 const u32 csum_stuff_off = csum_start_off + skb->csum_offset;
2263
2264                 tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE |
2265                             ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) |
2266                             ((csum_stuff_off << 20) & TXFLAG_CSLOCATION));
2267         }
2268
2269         spin_lock_irq(&hp->happy_lock);
2270
2271         if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) {
2272                 netif_stop_queue(dev);
2273                 spin_unlock_irq(&hp->happy_lock);
2274                 printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n",
2275                        dev->name);
2276                 return 1;
2277         }
2278
2279         entry = hp->tx_new;
2280         SXD(("SX<l[%d]e[%d]>", len, entry));
2281         hp->tx_skbs[entry] = skb;
2282
2283         if (skb_shinfo(skb)->nr_frags == 0) {
2284                 u32 mapping, len;
2285
2286                 len = skb->len;
2287                 mapping = hme_dma_map(hp, skb->data, len, DMA_TO_DEVICE);
2288                 tx_flags |= (TXFLAG_SOP | TXFLAG_EOP);
2289                 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2290                               (tx_flags | (len & TXFLAG_SIZE)),
2291                               mapping);
2292                 entry = NEXT_TX(entry);
2293         } else {
2294                 u32 first_len, first_mapping;
2295                 int frag, first_entry = entry;
2296
2297                 /* We must give this initial chunk to the device last.
2298                  * Otherwise we could race with the device.
2299                  */
2300                 first_len = skb_headlen(skb);
2301                 first_mapping = hme_dma_map(hp, skb->data, first_len, DMA_TO_DEVICE);
2302                 entry = NEXT_TX(entry);
2303
2304                 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
2305                         skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
2306                         u32 len, mapping, this_txflags;
2307
2308                         len = this_frag->size;
2309                         mapping = hme_dma_map(hp,
2310                                               ((void *) page_address(this_frag->page) +
2311                                                this_frag->page_offset),
2312                                               len, DMA_TO_DEVICE);
2313                         this_txflags = tx_flags;
2314                         if (frag == skb_shinfo(skb)->nr_frags - 1)
2315                                 this_txflags |= TXFLAG_EOP;
2316                         hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2317                                       (this_txflags | (len & TXFLAG_SIZE)),
2318                                       mapping);
2319                         entry = NEXT_TX(entry);
2320                 }
2321                 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry],
2322                               (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)),
2323                               first_mapping);
2324         }
2325
2326         hp->tx_new = entry;
2327
2328         if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1))
2329                 netif_stop_queue(dev);
2330
2331         /* Get it going. */
2332         hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP);
2333
2334         spin_unlock_irq(&hp->happy_lock);
2335
2336         dev->trans_start = jiffies;
2337
2338         tx_add_log(hp, TXLOG_ACTION_TXMIT, 0);
2339         return 0;
2340 }
2341
2342 static struct net_device_stats *happy_meal_get_stats(struct net_device *dev)
2343 {
2344         struct happy_meal *hp = dev->priv;
2345
2346         spin_lock_irq(&hp->happy_lock);
2347         happy_meal_get_counters(hp, hp->bigmacregs);
2348         spin_unlock_irq(&hp->happy_lock);
2349
2350         return &hp->net_stats;
2351 }
2352
2353 static void happy_meal_set_multicast(struct net_device *dev)
2354 {
2355         struct happy_meal *hp = dev->priv;
2356         void __iomem *bregs = hp->bigmacregs;
2357         struct dev_mc_list *dmi = dev->mc_list;
2358         char *addrs;
2359         int i;
2360         u32 crc;
2361
2362         spin_lock_irq(&hp->happy_lock);
2363
2364         if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) {
2365                 hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
2366                 hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
2367                 hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
2368                 hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
2369         } else if (dev->flags & IFF_PROMISC) {
2370                 hme_write32(hp, bregs + BMAC_RXCFG,
2371                             hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC);
2372         } else {
2373                 u16 hash_table[4];
2374
2375                 for (i = 0; i < 4; i++)
2376                         hash_table[i] = 0;
2377
2378                 for (i = 0; i < dev->mc_count; i++) {
2379                         addrs = dmi->dmi_addr;
2380                         dmi = dmi->next;
2381
2382                         if (!(*addrs & 1))
2383                                 continue;
2384
2385                         crc = ether_crc_le(6, addrs);
2386                         crc >>= 26;
2387                         hash_table[crc >> 4] |= 1 << (crc & 0xf);
2388                 }
2389                 hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
2390                 hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
2391                 hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
2392                 hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
2393         }
2394
2395         spin_unlock_irq(&hp->happy_lock);
2396 }
2397
2398 /* Ethtool support... */
2399 static int hme_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2400 {
2401         struct happy_meal *hp = dev->priv;
2402
2403         cmd->supported =
2404                 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2405                  SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2406                  SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII);
2407
2408         /* XXX hardcoded stuff for now */
2409         cmd->port = PORT_TP; /* XXX no MII support */
2410         cmd->transceiver = XCVR_INTERNAL; /* XXX no external xcvr support */
2411         cmd->phy_address = 0; /* XXX fixed PHYAD */
2412
2413         /* Record PHY settings. */
2414         spin_lock_irq(&hp->happy_lock);
2415         hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2416         hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA);
2417         spin_unlock_irq(&hp->happy_lock);
2418
2419         if (hp->sw_bmcr & BMCR_ANENABLE) {
2420                 cmd->autoneg = AUTONEG_ENABLE;
2421                 cmd->speed =
2422                         (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ?
2423                         SPEED_100 : SPEED_10;
2424                 if (cmd->speed == SPEED_100)
2425                         cmd->duplex =
2426                                 (hp->sw_lpa & (LPA_100FULL)) ?
2427                                 DUPLEX_FULL : DUPLEX_HALF;
2428                 else
2429                         cmd->duplex =
2430                                 (hp->sw_lpa & (LPA_10FULL)) ?
2431                                 DUPLEX_FULL : DUPLEX_HALF;
2432         } else {
2433                 cmd->autoneg = AUTONEG_DISABLE;
2434                 cmd->speed =
2435                         (hp->sw_bmcr & BMCR_SPEED100) ?
2436                         SPEED_100 : SPEED_10;
2437                 cmd->duplex =
2438                         (hp->sw_bmcr & BMCR_FULLDPLX) ?
2439                         DUPLEX_FULL : DUPLEX_HALF;
2440         }
2441         return 0;
2442 }
2443
2444 static int hme_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2445 {
2446         struct happy_meal *hp = dev->priv;
2447
2448         /* Verify the settings we care about. */
2449         if (cmd->autoneg != AUTONEG_ENABLE &&
2450             cmd->autoneg != AUTONEG_DISABLE)
2451                 return -EINVAL;
2452         if (cmd->autoneg == AUTONEG_DISABLE &&
2453             ((cmd->speed != SPEED_100 &&
2454               cmd->speed != SPEED_10) ||
2455              (cmd->duplex != DUPLEX_HALF &&
2456               cmd->duplex != DUPLEX_FULL)))
2457                 return -EINVAL;
2458
2459         /* Ok, do it to it. */
2460         spin_lock_irq(&hp->happy_lock);
2461         del_timer(&hp->happy_timer);
2462         happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd);
2463         spin_unlock_irq(&hp->happy_lock);
2464
2465         return 0;
2466 }
2467
2468 static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2469 {
2470         struct happy_meal *hp = dev->priv;
2471
2472         strcpy(info->driver, "sunhme");
2473         strcpy(info->version, "2.02");
2474         if (hp->happy_flags & HFLAG_PCI) {
2475                 struct pci_dev *pdev = hp->happy_dev;
2476                 strcpy(info->bus_info, pci_name(pdev));
2477         }
2478 #ifdef CONFIG_SBUS
2479         else {
2480                 struct sbus_dev *sdev = hp->happy_dev;
2481                 sprintf(info->bus_info, "SBUS:%d",
2482                         sdev->slot);
2483         }
2484 #endif
2485 }
2486
2487 static u32 hme_get_link(struct net_device *dev)
2488 {
2489         struct happy_meal *hp = dev->priv;
2490
2491         spin_lock_irq(&hp->happy_lock);
2492         hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2493         spin_unlock_irq(&hp->happy_lock);
2494
2495         return (hp->sw_bmsr & BMSR_LSTATUS);
2496 }
2497
2498 static const struct ethtool_ops hme_ethtool_ops = {
2499         .get_settings           = hme_get_settings,
2500         .set_settings           = hme_set_settings,
2501         .get_drvinfo            = hme_get_drvinfo,
2502         .get_link               = hme_get_link,
2503 };
2504
2505 static int hme_version_printed;
2506
2507 #ifdef CONFIG_SBUS
2508 void __devinit quattro_get_ranges(struct quattro *qp)
2509 {
2510         struct sbus_dev *sdev = qp->quattro_dev;
2511         int err;
2512
2513         err = prom_getproperty(sdev->prom_node,
2514                                "ranges",
2515                                (char *)&qp->ranges[0],
2516                                sizeof(qp->ranges));
2517         if (err == 0 || err == -1) {
2518                 qp->nranges = 0;
2519                 return;
2520         }
2521         qp->nranges = (err / sizeof(struct linux_prom_ranges));
2522 }
2523
2524 static void __devinit quattro_apply_ranges(struct quattro *qp, struct happy_meal *hp)
2525 {
2526         struct sbus_dev *sdev = hp->happy_dev;
2527         int rng;
2528
2529         for (rng = 0; rng < qp->nranges; rng++) {
2530                 struct linux_prom_ranges *rngp = &qp->ranges[rng];
2531                 int reg;
2532
2533                 for (reg = 0; reg < 5; reg++) {
2534                         if (sdev->reg_addrs[reg].which_io ==
2535                             rngp->ot_child_space)
2536                                 break;
2537                 }
2538                 if (reg == 5)
2539                         continue;
2540
2541                 sdev->reg_addrs[reg].which_io = rngp->ot_parent_space;
2542                 sdev->reg_addrs[reg].phys_addr += rngp->ot_parent_base;
2543         }
2544 }
2545
2546 /* Given a happy meal sbus device, find it's quattro parent.
2547  * If none exist, allocate and return a new one.
2548  *
2549  * Return NULL on failure.
2550  */
2551 static struct quattro * __devinit quattro_sbus_find(struct sbus_dev *goal_sdev)
2552 {
2553         struct sbus_dev *sdev;
2554         struct quattro *qp;
2555         int i;
2556
2557         for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2558                 for (i = 0, sdev = qp->quattro_dev;
2559                      (sdev != NULL) && (i < 4);
2560                      sdev = sdev->next, i++) {
2561                         if (sdev == goal_sdev)
2562                                 return qp;
2563                 }
2564         }
2565
2566         qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2567         if (qp != NULL) {
2568                 int i;
2569
2570                 for (i = 0; i < 4; i++)
2571                         qp->happy_meals[i] = NULL;
2572
2573                 qp->quattro_dev = goal_sdev;
2574                 qp->next = qfe_sbus_list;
2575                 qfe_sbus_list = qp;
2576                 quattro_get_ranges(qp);
2577         }
2578         return qp;
2579 }
2580
2581 /* After all quattro cards have been probed, we call these functions
2582  * to register the IRQ handlers.
2583  */
2584 static void __init quattro_sbus_register_irqs(void)
2585 {
2586         struct quattro *qp;
2587
2588         for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2589                 struct sbus_dev *sdev = qp->quattro_dev;
2590                 int err;
2591
2592                 err = request_irq(sdev->irqs[0],
2593                                   quattro_sbus_interrupt,
2594                                   IRQF_SHARED, "Quattro",
2595                                   qp);
2596                 if (err != 0) {
2597                         printk(KERN_ERR "Quattro: Fatal IRQ registery error %d.\n", err);
2598                         panic("QFE request irq");
2599                 }
2600         }
2601 }
2602
2603 static void quattro_sbus_free_irqs(void)
2604 {
2605         struct quattro *qp;
2606
2607         for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2608                 struct sbus_dev *sdev = qp->quattro_dev;
2609
2610                 free_irq(sdev->irqs[0], qp);
2611         }
2612 }
2613 #endif /* CONFIG_SBUS */
2614
2615 #ifdef CONFIG_PCI
2616 static struct quattro * __devinit quattro_pci_find(struct pci_dev *pdev)
2617 {
2618         struct pci_dev *bdev = pdev->bus->self;
2619         struct quattro *qp;
2620
2621         if (!bdev) return NULL;
2622         for (qp = qfe_pci_list; qp != NULL; qp = qp->next) {
2623                 struct pci_dev *qpdev = qp->quattro_dev;
2624
2625                 if (qpdev == bdev)
2626                         return qp;
2627         }
2628         qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2629         if (qp != NULL) {
2630                 int i;
2631
2632                 for (i = 0; i < 4; i++)
2633                         qp->happy_meals[i] = NULL;
2634
2635                 qp->quattro_dev = bdev;
2636                 qp->next = qfe_pci_list;
2637                 qfe_pci_list = qp;
2638
2639                 /* No range tricks necessary on PCI. */
2640                 qp->nranges = 0;
2641         }
2642         return qp;
2643 }
2644 #endif /* CONFIG_PCI */
2645
2646 #ifdef CONFIG_SBUS
2647 static int __devinit happy_meal_sbus_probe_one(struct sbus_dev *sdev, int is_qfe)
2648 {
2649         struct device_node *dp = sdev->ofdev.node;
2650         struct quattro *qp = NULL;
2651         struct happy_meal *hp;
2652         struct net_device *dev;
2653         int i, qfe_slot = -1;
2654         int err = -ENODEV;
2655         DECLARE_MAC_BUF(mac);
2656
2657         if (is_qfe) {
2658                 qp = quattro_sbus_find(sdev);
2659                 if (qp == NULL)
2660                         goto err_out;
2661                 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2662                         if (qp->happy_meals[qfe_slot] == NULL)
2663                                 break;
2664                 if (qfe_slot == 4)
2665                         goto err_out;
2666         }
2667
2668         err = -ENOMEM;
2669         dev = alloc_etherdev(sizeof(struct happy_meal));
2670         if (!dev)
2671                 goto err_out;
2672         SET_NETDEV_DEV(dev, &sdev->ofdev.dev);
2673
2674         if (hme_version_printed++ == 0)
2675                 printk(KERN_INFO "%s", version);
2676
2677         /* If user did not specify a MAC address specifically, use
2678          * the Quattro local-mac-address property...
2679          */
2680         for (i = 0; i < 6; i++) {
2681                 if (macaddr[i] != 0)
2682                         break;
2683         }
2684         if (i < 6) { /* a mac address was given */
2685                 for (i = 0; i < 6; i++)
2686                         dev->dev_addr[i] = macaddr[i];
2687                 macaddr[5]++;
2688         } else {
2689                 const unsigned char *addr;
2690                 int len;
2691
2692                 addr = of_get_property(dp, "local-mac-address", &len);
2693
2694                 if (qfe_slot != -1 && addr && len == 6)
2695                         memcpy(dev->dev_addr, addr, 6);
2696                 else
2697                         memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
2698         }
2699
2700         hp = dev->priv;
2701
2702         hp->happy_dev = sdev;
2703         hp->dma_dev = &sdev->ofdev.dev;
2704
2705         spin_lock_init(&hp->happy_lock);
2706
2707         err = -ENODEV;
2708         if (sdev->num_registers != 5) {
2709                 printk(KERN_ERR "happymeal: Device needs 5 regs, has %d.\n",
2710                        sdev->num_registers);
2711                 goto err_out_free_netdev;
2712         }
2713
2714         if (qp != NULL) {
2715                 hp->qfe_parent = qp;
2716                 hp->qfe_ent = qfe_slot;
2717                 qp->happy_meals[qfe_slot] = dev;
2718                 quattro_apply_ranges(qp, hp);
2719         }
2720
2721         hp->gregs = sbus_ioremap(&sdev->resource[0], 0,
2722                                  GREG_REG_SIZE, "HME Global Regs");
2723         if (!hp->gregs) {
2724                 printk(KERN_ERR "happymeal: Cannot map global registers.\n");
2725                 goto err_out_free_netdev;
2726         }
2727
2728         hp->etxregs = sbus_ioremap(&sdev->resource[1], 0,
2729                                    ETX_REG_SIZE, "HME TX Regs");
2730         if (!hp->etxregs) {
2731                 printk(KERN_ERR "happymeal: Cannot map MAC TX registers.\n");
2732                 goto err_out_iounmap;
2733         }
2734
2735         hp->erxregs = sbus_ioremap(&sdev->resource[2], 0,
2736                                    ERX_REG_SIZE, "HME RX Regs");
2737         if (!hp->erxregs) {
2738                 printk(KERN_ERR "happymeal: Cannot map MAC RX registers.\n");
2739                 goto err_out_iounmap;
2740         }
2741
2742         hp->bigmacregs = sbus_ioremap(&sdev->resource[3], 0,
2743                                       BMAC_REG_SIZE, "HME BIGMAC Regs");
2744         if (!hp->bigmacregs) {
2745                 printk(KERN_ERR "happymeal: Cannot map BIGMAC registers.\n");
2746                 goto err_out_iounmap;
2747         }
2748
2749         hp->tcvregs = sbus_ioremap(&sdev->resource[4], 0,
2750                                    TCVR_REG_SIZE, "HME Tranceiver Regs");
2751         if (!hp->tcvregs) {
2752                 printk(KERN_ERR "happymeal: Cannot map TCVR registers.\n");
2753                 goto err_out_iounmap;
2754         }
2755
2756         hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
2757         if (hp->hm_revision == 0xff)
2758                 hp->hm_revision = 0xa0;
2759
2760         /* Now enable the feature flags we can. */
2761         if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
2762                 hp->happy_flags = HFLAG_20_21;
2763         else if (hp->hm_revision != 0xa0)
2764                 hp->happy_flags = HFLAG_NOT_A0;
2765
2766         if (qp != NULL)
2767                 hp->happy_flags |= HFLAG_QUATTRO;
2768
2769         /* Get the supported DVMA burst sizes from our Happy SBUS. */
2770         hp->happy_bursts = of_getintprop_default(sdev->bus->ofdev.node,
2771                                                  "burst-sizes", 0x00);
2772
2773         hp->happy_block = dma_alloc_coherent(hp->dma_dev,
2774                                              PAGE_SIZE,
2775                                              &hp->hblock_dvma,
2776                                              GFP_ATOMIC);
2777         err = -ENOMEM;
2778         if (!hp->happy_block) {
2779                 printk(KERN_ERR "happymeal: Cannot allocate descriptors.\n");
2780                 goto err_out_iounmap;
2781         }
2782
2783         /* Force check of the link first time we are brought up. */
2784         hp->linkcheck = 0;
2785
2786         /* Force timer state to 'asleep' with count of zero. */
2787         hp->timer_state = asleep;
2788         hp->timer_ticks = 0;
2789
2790         init_timer(&hp->happy_timer);
2791
2792         hp->dev = dev;
2793         dev->open = &happy_meal_open;
2794         dev->stop = &happy_meal_close;
2795         dev->hard_start_xmit = &happy_meal_start_xmit;
2796         dev->get_stats = &happy_meal_get_stats;
2797         dev->set_multicast_list = &happy_meal_set_multicast;
2798         dev->tx_timeout = &happy_meal_tx_timeout;
2799         dev->watchdog_timeo = 5*HZ;
2800         dev->ethtool_ops = &hme_ethtool_ops;
2801
2802         /* Happy Meal can do it all... */
2803         dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM;
2804
2805         dev->irq = sdev->irqs[0];
2806
2807 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2808         /* Hook up PCI register/dma accessors. */
2809         hp->read_desc32 = sbus_hme_read_desc32;
2810         hp->write_txd = sbus_hme_write_txd;
2811         hp->write_rxd = sbus_hme_write_rxd;
2812         hp->dma_map = (u32 (*)(void *, void *, long, int))dma_map_single;
2813         hp->dma_unmap = (void (*)(void *, u32, long, int))dma_unmap_single;
2814         hp->dma_sync_for_cpu = (void (*)(void *, u32, long, int))
2815                 dma_sync_single_for_cpu;
2816         hp->dma_sync_for_device = (void (*)(void *, u32, long, int))
2817                 dma_sync_single_for_device;
2818         hp->read32 = sbus_hme_read32;
2819         hp->write32 = sbus_hme_write32;
2820 #endif
2821
2822         /* Grrr, Happy Meal comes up by default not advertising
2823          * full duplex 100baseT capabilities, fix this.
2824          */
2825         spin_lock_irq(&hp->happy_lock);
2826         happy_meal_set_initial_advertisement(hp);
2827         spin_unlock_irq(&hp->happy_lock);
2828
2829         if (register_netdev(hp->dev)) {
2830                 printk(KERN_ERR "happymeal: Cannot register net device, "
2831                        "aborting.\n");
2832                 goto err_out_free_coherent;
2833         }
2834
2835         dev_set_drvdata(&sdev->ofdev.dev, hp);
2836
2837         if (qfe_slot != -1)
2838                 printk(KERN_INFO "%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ",
2839                        dev->name, qfe_slot);
2840         else
2841                 printk(KERN_INFO "%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ",
2842                        dev->name);
2843
2844         printk("%s\n", print_mac(mac, dev->dev_addr));
2845
2846         return 0;
2847
2848 err_out_free_coherent:
2849         dma_free_coherent(hp->dma_dev,
2850                           PAGE_SIZE,
2851                           hp->happy_block,
2852                           hp->hblock_dvma);
2853
2854 err_out_iounmap:
2855         if (hp->gregs)
2856                 sbus_iounmap(hp->gregs, GREG_REG_SIZE);
2857         if (hp->etxregs)
2858                 sbus_iounmap(hp->etxregs, ETX_REG_SIZE);
2859         if (hp->erxregs)
2860                 sbus_iounmap(hp->erxregs, ERX_REG_SIZE);
2861         if (hp->bigmacregs)
2862                 sbus_iounmap(hp->bigmacregs, BMAC_REG_SIZE);
2863         if (hp->tcvregs)
2864                 sbus_iounmap(hp->tcvregs, TCVR_REG_SIZE);
2865
2866 err_out_free_netdev:
2867         free_netdev(dev);
2868
2869 err_out:
2870         return err;
2871 }
2872 #endif
2873
2874 #ifdef CONFIG_PCI
2875 #ifndef CONFIG_SPARC
2876 static int is_quattro_p(struct pci_dev *pdev)
2877 {
2878         struct pci_dev *busdev = pdev->bus->self;
2879         struct list_head *tmp;
2880         int n_hmes;
2881
2882         if (busdev == NULL ||
2883             busdev->vendor != PCI_VENDOR_ID_DEC ||
2884             busdev->device != PCI_DEVICE_ID_DEC_21153)
2885                 return 0;
2886
2887         n_hmes = 0;
2888         tmp = pdev->bus->devices.next;
2889         while (tmp != &pdev->bus->devices) {
2890                 struct pci_dev *this_pdev = pci_dev_b(tmp);
2891
2892                 if (this_pdev->vendor == PCI_VENDOR_ID_SUN &&
2893                     this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL)
2894                         n_hmes++;
2895
2896                 tmp = tmp->next;
2897         }
2898
2899         if (n_hmes != 4)
2900                 return 0;
2901
2902         return 1;
2903 }
2904
2905 /* Fetch MAC address from vital product data of PCI ROM. */
2906 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr)
2907 {
2908         int this_offset;
2909
2910         for (this_offset = 0x20; this_offset < len; this_offset++) {
2911                 void __iomem *p = rom_base + this_offset;
2912
2913                 if (readb(p + 0) != 0x90 ||
2914                     readb(p + 1) != 0x00 ||
2915                     readb(p + 2) != 0x09 ||
2916                     readb(p + 3) != 0x4e ||
2917                     readb(p + 4) != 0x41 ||
2918                     readb(p + 5) != 0x06)
2919                         continue;
2920
2921                 this_offset += 6;
2922                 p += 6;
2923
2924                 if (index == 0) {
2925                         int i;
2926
2927                         for (i = 0; i < 6; i++)
2928                                 dev_addr[i] = readb(p + i);
2929                         return 1;
2930                 }
2931                 index--;
2932         }
2933         return 0;
2934 }
2935
2936 static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr)
2937 {
2938         size_t size;
2939         void __iomem *p = pci_map_rom(pdev, &size);
2940
2941         if (p) {
2942                 int index = 0;
2943                 int found;
2944
2945                 if (is_quattro_p(pdev))
2946                         index = PCI_SLOT(pdev->devfn);
2947
2948                 found = readb(p) == 0x55 &&
2949                         readb(p + 1) == 0xaa &&
2950                         find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr);
2951                 pci_unmap_rom(pdev, p);
2952                 if (found)
2953                         return;
2954         }
2955
2956         /* Sun MAC prefix then 3 random bytes. */
2957         dev_addr[0] = 0x08;
2958         dev_addr[1] = 0x00;
2959         dev_addr[2] = 0x20;
2960         get_random_bytes(&dev_addr[3], 3);
2961         return;
2962 }
2963 #endif /* !(CONFIG_SPARC) */
2964
2965 static int __devinit happy_meal_pci_probe(struct pci_dev *pdev,
2966                                           const struct pci_device_id *ent)
2967 {
2968         struct quattro *qp = NULL;
2969 #ifdef CONFIG_SPARC
2970         struct device_node *dp;
2971 #endif
2972         struct happy_meal *hp;
2973         struct net_device *dev;
2974         void __iomem *hpreg_base;
2975         unsigned long hpreg_res;
2976         int i, qfe_slot = -1;
2977         char prom_name[64];
2978         int err;
2979         DECLARE_MAC_BUF(mac);
2980
2981         /* Now make sure pci_dev cookie is there. */
2982 #ifdef CONFIG_SPARC
2983         dp = pci_device_to_OF_node(pdev);
2984         strcpy(prom_name, dp->name);
2985 #else
2986         if (is_quattro_p(pdev))
2987                 strcpy(prom_name, "SUNW,qfe");
2988         else
2989                 strcpy(prom_name, "SUNW,hme");
2990 #endif
2991
2992         err = -ENODEV;
2993
2994         if (pci_enable_device(pdev))
2995                 goto err_out;
2996         pci_set_master(pdev);
2997
2998         if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) {
2999                 qp = quattro_pci_find(pdev);
3000                 if (qp == NULL)
3001                         goto err_out;
3002                 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
3003                         if (qp->happy_meals[qfe_slot] == NULL)
3004                                 break;
3005                 if (qfe_slot == 4)
3006                         goto err_out;
3007         }
3008
3009         dev = alloc_etherdev(sizeof(struct happy_meal));
3010         err = -ENOMEM;
3011         if (!dev)
3012                 goto err_out;
3013         SET_NETDEV_DEV(dev, &pdev->dev);
3014
3015         if (hme_version_printed++ == 0)
3016                 printk(KERN_INFO "%s", version);
3017
3018         dev->base_addr = (long) pdev;
3019
3020         hp = (struct happy_meal *)dev->priv;
3021         memset(hp, 0, sizeof(*hp));
3022
3023         hp->happy_dev = pdev;
3024         hp->dma_dev = pdev;
3025
3026         spin_lock_init(&hp->happy_lock);
3027
3028         if (qp != NULL) {
3029                 hp->qfe_parent = qp;
3030                 hp->qfe_ent = qfe_slot;
3031                 qp->happy_meals[qfe_slot] = dev;
3032         }
3033
3034         hpreg_res = pci_resource_start(pdev, 0);
3035         err = -ENODEV;
3036         if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3037                 printk(KERN_ERR "happymeal(PCI): Cannot find proper PCI device base address.\n");
3038                 goto err_out_clear_quattro;
3039         }
3040         if (pci_request_regions(pdev, DRV_NAME)) {
3041                 printk(KERN_ERR "happymeal(PCI): Cannot obtain PCI resources, "
3042                        "aborting.\n");
3043                 goto err_out_clear_quattro;
3044         }
3045
3046         if ((hpreg_base = ioremap(hpreg_res, 0x8000)) == NULL) {
3047                 printk(KERN_ERR "happymeal(PCI): Unable to remap card memory.\n");
3048                 goto err_out_free_res;
3049         }
3050
3051         for (i = 0; i < 6; i++) {
3052                 if (macaddr[i] != 0)
3053                         break;
3054         }
3055         if (i < 6) { /* a mac address was given */
3056                 for (i = 0; i < 6; i++)
3057                         dev->dev_addr[i] = macaddr[i];
3058                 macaddr[5]++;
3059         } else {
3060 #ifdef CONFIG_SPARC
3061                 const unsigned char *addr;
3062                 int len;
3063
3064                 if (qfe_slot != -1 &&
3065                     (addr = of_get_property(dp,
3066                                             "local-mac-address", &len)) != NULL
3067                     && len == 6) {
3068                         memcpy(dev->dev_addr, addr, 6);
3069                 } else {
3070                         memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
3071                 }
3072 #else
3073                 get_hme_mac_nonsparc(pdev, &dev->dev_addr[0]);
3074 #endif
3075         }
3076
3077         /* Layout registers. */
3078         hp->gregs      = (hpreg_base + 0x0000UL);
3079         hp->etxregs    = (hpreg_base + 0x2000UL);
3080         hp->erxregs    = (hpreg_base + 0x4000UL);
3081         hp->bigmacregs = (hpreg_base + 0x6000UL);
3082         hp->tcvregs    = (hpreg_base + 0x7000UL);
3083
3084 #ifdef CONFIG_SPARC
3085         hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
3086         if (hp->hm_revision == 0xff)
3087                 hp->hm_revision = 0xc0 | (pdev->revision & 0x0f);
3088 #else
3089         /* works with this on non-sparc hosts */
3090         hp->hm_revision = 0x20;
3091 #endif
3092
3093         /* Now enable the feature flags we can. */
3094         if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
3095                 hp->happy_flags = HFLAG_20_21;
3096         else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0)
3097                 hp->happy_flags = HFLAG_NOT_A0;
3098
3099         if (qp != NULL)
3100                 hp->happy_flags |= HFLAG_QUATTRO;
3101
3102         /* And of course, indicate this is PCI. */
3103         hp->happy_flags |= HFLAG_PCI;
3104
3105 #ifdef CONFIG_SPARC
3106         /* Assume PCI happy meals can handle all burst sizes. */
3107         hp->happy_bursts = DMA_BURSTBITS;
3108 #endif
3109
3110         hp->happy_block = (struct hmeal_init_block *)
3111                 pci_alloc_consistent(pdev, PAGE_SIZE, &hp->hblock_dvma);
3112
3113         err = -ENODEV;
3114         if (!hp->happy_block) {
3115                 printk(KERN_ERR "happymeal(PCI): Cannot get hme init block.\n");
3116                 goto err_out_iounmap;
3117         }
3118
3119         hp->linkcheck = 0;
3120         hp->timer_state = asleep;
3121         hp->timer_ticks = 0;
3122
3123         init_timer(&hp->happy_timer);
3124
3125         hp->dev = dev;
3126         dev->open = &happy_meal_open;
3127         dev->stop = &happy_meal_close;
3128         dev->hard_start_xmit = &happy_meal_start_xmit;
3129         dev->get_stats = &happy_meal_get_stats;
3130         dev->set_multicast_list = &happy_meal_set_multicast;
3131         dev->tx_timeout = &happy_meal_tx_timeout;
3132         dev->watchdog_timeo = 5*HZ;
3133         dev->ethtool_ops = &hme_ethtool_ops;
3134         dev->irq = pdev->irq;
3135         dev->dma = 0;
3136
3137         /* Happy Meal can do it all... */
3138         dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM;
3139
3140 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
3141         /* Hook up PCI register/dma accessors. */
3142         hp->read_desc32 = pci_hme_read_desc32;
3143         hp->write_txd = pci_hme_write_txd;
3144         hp->write_rxd = pci_hme_write_rxd;
3145         hp->dma_map = (u32 (*)(void *, void *, long, int))pci_map_single;
3146         hp->dma_unmap = (void (*)(void *, u32, long, int))pci_unmap_single;
3147         hp->dma_sync_for_cpu = (void (*)(void *, u32, long, int))
3148                 pci_dma_sync_single_for_cpu;
3149         hp->dma_sync_for_device = (void (*)(void *, u32, long, int))
3150                 pci_dma_sync_single_for_device;
3151         hp->read32 = pci_hme_read32;
3152         hp->write32 = pci_hme_write32;
3153 #endif
3154
3155         /* Grrr, Happy Meal comes up by default not advertising
3156          * full duplex 100baseT capabilities, fix this.
3157          */
3158         spin_lock_irq(&hp->happy_lock);
3159         happy_meal_set_initial_advertisement(hp);
3160         spin_unlock_irq(&hp->happy_lock);
3161
3162         if (register_netdev(hp->dev)) {
3163                 printk(KERN_ERR "happymeal(PCI): Cannot register net device, "
3164                        "aborting.\n");
3165                 goto err_out_iounmap;
3166         }
3167
3168         dev_set_drvdata(&pdev->dev, hp);
3169
3170         if (!qfe_slot) {
3171                 struct pci_dev *qpdev = qp->quattro_dev;
3172
3173                 prom_name[0] = 0;
3174                 if (!strncmp(dev->name, "eth", 3)) {
3175                         int i = simple_strtoul(dev->name + 3, NULL, 10);
3176                         sprintf(prom_name, "-%d", i + 3);
3177                 }
3178                 printk(KERN_INFO "%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, prom_name);
3179                 if (qpdev->vendor == PCI_VENDOR_ID_DEC &&
3180                     qpdev->device == PCI_DEVICE_ID_DEC_21153)
3181                         printk("DEC 21153 PCI Bridge\n");
3182                 else
3183                         printk("unknown bridge %04x.%04x\n",
3184                                 qpdev->vendor, qpdev->device);
3185         }
3186
3187         if (qfe_slot != -1)
3188                 printk(KERN_INFO "%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ",
3189                        dev->name, qfe_slot);
3190         else
3191                 printk(KERN_INFO "%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ",
3192                        dev->name);
3193
3194         printk("%s\n", print_mac(mac, dev->dev_addr));
3195
3196         return 0;
3197
3198 err_out_iounmap:
3199         iounmap(hp->gregs);
3200
3201 err_out_free_res:
3202         pci_release_regions(pdev);
3203
3204 err_out_clear_quattro:
3205         if (qp != NULL)
3206                 qp->happy_meals[qfe_slot] = NULL;
3207
3208         free_netdev(dev);
3209
3210 err_out:
3211         return err;
3212 }
3213
3214 static void __devexit happy_meal_pci_remove(struct pci_dev *pdev)
3215 {
3216         struct happy_meal *hp = dev_get_drvdata(&pdev->dev);
3217         struct net_device *net_dev = hp->dev;
3218
3219         unregister_netdev(net_dev);
3220
3221         pci_free_consistent(hp->dma_dev,
3222                             PAGE_SIZE,
3223                             hp->happy_block,
3224                             hp->hblock_dvma);
3225         iounmap(hp->gregs);
3226         pci_release_regions(hp->dma_dev);
3227
3228         free_netdev(net_dev);
3229
3230         dev_set_drvdata(&pdev->dev, NULL);
3231 }
3232
3233 static struct pci_device_id happymeal_pci_ids[] = {
3234         { PCI_DEVICE(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL) },
3235         { }                     /* Terminating entry */
3236 };
3237
3238 MODULE_DEVICE_TABLE(pci, happymeal_pci_ids);
3239
3240 static struct pci_driver hme_pci_driver = {
3241         .name           = "hme",
3242         .id_table       = happymeal_pci_ids,
3243         .probe          = happy_meal_pci_probe,
3244         .remove         = __devexit_p(happy_meal_pci_remove),
3245 };
3246
3247 static int __init happy_meal_pci_init(void)
3248 {
3249         return pci_register_driver(&hme_pci_driver);
3250 }
3251
3252 static void happy_meal_pci_exit(void)
3253 {
3254         pci_unregister_driver(&hme_pci_driver);
3255
3256         while (qfe_pci_list) {
3257                 struct quattro *qfe = qfe_pci_list;
3258                 struct quattro *next = qfe->next;
3259
3260                 kfree(qfe);
3261
3262                 qfe_pci_list = next;
3263         }
3264 }
3265
3266 #endif
3267
3268 #ifdef CONFIG_SBUS
3269 static int __devinit hme_sbus_probe(struct of_device *dev, const struct of_device_id *match)
3270 {
3271         struct sbus_dev *sdev = to_sbus_device(&dev->dev);
3272         struct device_node *dp = dev->node;
3273         const char *model = of_get_property(dp, "model", NULL);
3274         int is_qfe = (match->data != NULL);
3275
3276         if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe"))
3277                 is_qfe = 1;
3278
3279         return happy_meal_sbus_probe_one(sdev, is_qfe);
3280 }
3281
3282 static int __devexit hme_sbus_remove(struct of_device *dev)
3283 {
3284         struct happy_meal *hp = dev_get_drvdata(&dev->dev);
3285         struct net_device *net_dev = hp->dev;
3286
3287         unregister_netdev(net_dev);
3288
3289         /* XXX qfe parent interrupt... */
3290
3291         sbus_iounmap(hp->gregs, GREG_REG_SIZE);
3292         sbus_iounmap(hp->etxregs, ETX_REG_SIZE);
3293         sbus_iounmap(hp->erxregs, ERX_REG_SIZE);
3294         sbus_iounmap(hp->bigmacregs, BMAC_REG_SIZE);
3295         sbus_iounmap(hp->tcvregs, TCVR_REG_SIZE);
3296         dma_free_coherent(hp->dma_dev,
3297                           PAGE_SIZE,
3298                           hp->happy_block,
3299                           hp->hblock_dvma);
3300
3301         free_netdev(net_dev);
3302
3303         dev_set_drvdata(&dev->dev, NULL);
3304
3305         return 0;
3306 }
3307
3308 static struct of_device_id hme_sbus_match[] = {
3309         {
3310                 .name = "SUNW,hme",
3311         },
3312         {
3313                 .name = "SUNW,qfe",
3314                 .data = (void *) 1,
3315         },
3316         {
3317                 .name = "qfe",
3318                 .data = (void *) 1,
3319         },
3320         {},
3321 };
3322
3323 MODULE_DEVICE_TABLE(of, hme_sbus_match);
3324
3325 static struct of_platform_driver hme_sbus_driver = {
3326         .name           = "hme",
3327         .match_table    = hme_sbus_match,
3328         .probe          = hme_sbus_probe,
3329         .remove         = __devexit_p(hme_sbus_remove),
3330 };
3331
3332 static int __init happy_meal_sbus_init(void)
3333 {
3334         int err;
3335
3336         err = of_register_driver(&hme_sbus_driver, &sbus_bus_type);
3337         if (!err)
3338                 quattro_sbus_register_irqs();
3339
3340         return err;
3341 }
3342
3343 static void happy_meal_sbus_exit(void)
3344 {
3345         of_unregister_driver(&hme_sbus_driver);
3346         quattro_sbus_free_irqs();
3347
3348         while (qfe_sbus_list) {
3349                 struct quattro *qfe = qfe_sbus_list;
3350                 struct quattro *next = qfe->next;
3351
3352                 kfree(qfe);
3353
3354                 qfe_sbus_list = next;
3355         }
3356 }
3357 #endif
3358
3359 static int __init happy_meal_probe(void)
3360 {
3361         int err = 0;
3362
3363 #ifdef CONFIG_SBUS
3364         err = happy_meal_sbus_init();
3365 #endif
3366 #ifdef CONFIG_PCI
3367         if (!err) {
3368                 err = happy_meal_pci_init();
3369 #ifdef CONFIG_SBUS
3370                 if (err)
3371                         happy_meal_sbus_exit();
3372 #endif
3373         }
3374 #endif
3375
3376         return err;
3377 }
3378
3379
3380 static void __exit happy_meal_exit(void)
3381 {
3382 #ifdef CONFIG_SBUS
3383         happy_meal_sbus_exit();
3384 #endif
3385 #ifdef CONFIG_PCI
3386         happy_meal_pci_exit();
3387 #endif
3388 }
3389
3390 module_init(happy_meal_probe);
3391 module_exit(happy_meal_exit);