sfc: Cleanup RX queue information
[safe/jmp/linux-2.6] / drivers / net / sfc / falcon.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2008 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/i2c-algo-bit.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "mac.h"
22 #include "gmii.h"
23 #include "spi.h"
24 #include "falcon.h"
25 #include "falcon_hwdefs.h"
26 #include "falcon_io.h"
27 #include "mdio_10g.h"
28 #include "phy.h"
29 #include "boards.h"
30 #include "workarounds.h"
31
32 /* Falcon hardware control.
33  * Falcon is the internal codename for the SFC4000 controller that is
34  * present in SFE400X evaluation boards
35  */
36
37 /**
38  * struct falcon_nic_data - Falcon NIC state
39  * @next_buffer_table: First available buffer table id
40  * @pci_dev2: The secondary PCI device if present
41  * @i2c_data: Operations and state for I2C bit-bashing algorithm
42  */
43 struct falcon_nic_data {
44         unsigned next_buffer_table;
45         struct pci_dev *pci_dev2;
46         struct i2c_algo_bit_data i2c_data;
47 };
48
49 /**************************************************************************
50  *
51  * Configurable values
52  *
53  **************************************************************************
54  */
55
56 static int disable_dma_stats;
57
58 /* This is set to 16 for a good reason.  In summary, if larger than
59  * 16, the descriptor cache holds more than a default socket
60  * buffer's worth of packets (for UDP we can only have at most one
61  * socket buffer's worth outstanding).  This combined with the fact
62  * that we only get 1 TX event per descriptor cache means the NIC
63  * goes idle.
64  */
65 #define TX_DC_ENTRIES 16
66 #define TX_DC_ENTRIES_ORDER 0
67 #define TX_DC_BASE 0x130000
68
69 #define RX_DC_ENTRIES 64
70 #define RX_DC_ENTRIES_ORDER 2
71 #define RX_DC_BASE 0x100000
72
73 /* RX FIFO XOFF watermark
74  *
75  * When the amount of the RX FIFO increases used increases past this
76  * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
77  * This also has an effect on RX/TX arbitration
78  */
79 static int rx_xoff_thresh_bytes = -1;
80 module_param(rx_xoff_thresh_bytes, int, 0644);
81 MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
82
83 /* RX FIFO XON watermark
84  *
85  * When the amount of the RX FIFO used decreases below this
86  * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
87  * This also has an effect on RX/TX arbitration
88  */
89 static int rx_xon_thresh_bytes = -1;
90 module_param(rx_xon_thresh_bytes, int, 0644);
91 MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
92
93 /* TX descriptor ring size - min 512 max 4k */
94 #define FALCON_TXD_RING_ORDER TX_DESCQ_SIZE_1K
95 #define FALCON_TXD_RING_SIZE 1024
96 #define FALCON_TXD_RING_MASK (FALCON_TXD_RING_SIZE - 1)
97
98 /* RX descriptor ring size - min 512 max 4k */
99 #define FALCON_RXD_RING_ORDER RX_DESCQ_SIZE_1K
100 #define FALCON_RXD_RING_SIZE 1024
101 #define FALCON_RXD_RING_MASK (FALCON_RXD_RING_SIZE - 1)
102
103 /* Event queue size - max 32k */
104 #define FALCON_EVQ_ORDER EVQ_SIZE_4K
105 #define FALCON_EVQ_SIZE 4096
106 #define FALCON_EVQ_MASK (FALCON_EVQ_SIZE - 1)
107
108 /* Max number of internal errors. After this resets will not be performed */
109 #define FALCON_MAX_INT_ERRORS 4
110
111 /* Maximum period that we wait for flush events. If the flush event
112  * doesn't arrive in this period of time then we check if the queue
113  * was disabled anyway. */
114 #define FALCON_FLUSH_TIMEOUT 10 /* 10ms */
115
116 /**************************************************************************
117  *
118  * Falcon constants
119  *
120  **************************************************************************
121  */
122
123 /* DMA address mask */
124 #define FALCON_DMA_MASK DMA_BIT_MASK(46)
125
126 /* TX DMA length mask (13-bit) */
127 #define FALCON_TX_DMA_MASK (4096 - 1)
128
129 /* Size and alignment of special buffers (4KB) */
130 #define FALCON_BUF_SIZE 4096
131
132 /* Dummy SRAM size code */
133 #define SRM_NB_BSZ_ONCHIP_ONLY (-1)
134
135 /* Be nice if these (or equiv.) were in linux/pci_regs.h, but they're not. */
136 #define PCI_EXP_DEVCAP_PWR_VAL_LBN      18
137 #define PCI_EXP_DEVCAP_PWR_SCL_LBN      26
138 #define PCI_EXP_DEVCTL_PAYLOAD_LBN      5
139 #define PCI_EXP_LNKSTA_LNK_WID          0x3f0
140 #define PCI_EXP_LNKSTA_LNK_WID_LBN      4
141
142 #define FALCON_IS_DUAL_FUNC(efx)                \
143         (falcon_rev(efx) < FALCON_REV_B0)
144
145 /**************************************************************************
146  *
147  * Falcon hardware access
148  *
149  **************************************************************************/
150
151 /* Read the current event from the event queue */
152 static inline efx_qword_t *falcon_event(struct efx_channel *channel,
153                                         unsigned int index)
154 {
155         return (((efx_qword_t *) (channel->eventq.addr)) + index);
156 }
157
158 /* See if an event is present
159  *
160  * We check both the high and low dword of the event for all ones.  We
161  * wrote all ones when we cleared the event, and no valid event can
162  * have all ones in either its high or low dwords.  This approach is
163  * robust against reordering.
164  *
165  * Note that using a single 64-bit comparison is incorrect; even
166  * though the CPU read will be atomic, the DMA write may not be.
167  */
168 static inline int falcon_event_present(efx_qword_t *event)
169 {
170         return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
171                   EFX_DWORD_IS_ALL_ONES(event->dword[1])));
172 }
173
174 /**************************************************************************
175  *
176  * I2C bus - this is a bit-bashing interface using GPIO pins
177  * Note that it uses the output enables to tristate the outputs
178  * SDA is the data pin and SCL is the clock
179  *
180  **************************************************************************
181  */
182 static void falcon_setsda(void *data, int state)
183 {
184         struct efx_nic *efx = (struct efx_nic *)data;
185         efx_oword_t reg;
186
187         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
188         EFX_SET_OWORD_FIELD(reg, GPIO3_OEN, !state);
189         falcon_write(efx, &reg, GPIO_CTL_REG_KER);
190 }
191
192 static void falcon_setscl(void *data, int state)
193 {
194         struct efx_nic *efx = (struct efx_nic *)data;
195         efx_oword_t reg;
196
197         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
198         EFX_SET_OWORD_FIELD(reg, GPIO0_OEN, !state);
199         falcon_write(efx, &reg, GPIO_CTL_REG_KER);
200 }
201
202 static int falcon_getsda(void *data)
203 {
204         struct efx_nic *efx = (struct efx_nic *)data;
205         efx_oword_t reg;
206
207         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
208         return EFX_OWORD_FIELD(reg, GPIO3_IN);
209 }
210
211 static int falcon_getscl(void *data)
212 {
213         struct efx_nic *efx = (struct efx_nic *)data;
214         efx_oword_t reg;
215
216         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
217         return EFX_OWORD_FIELD(reg, GPIO0_IN);
218 }
219
220 static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
221         .setsda         = falcon_setsda,
222         .setscl         = falcon_setscl,
223         .getsda         = falcon_getsda,
224         .getscl         = falcon_getscl,
225         .udelay         = 5,
226         /* Wait up to 50 ms for slave to let us pull SCL high */
227         .timeout        = DIV_ROUND_UP(HZ, 20),
228 };
229
230 /**************************************************************************
231  *
232  * Falcon special buffer handling
233  * Special buffers are used for event queues and the TX and RX
234  * descriptor rings.
235  *
236  *************************************************************************/
237
238 /*
239  * Initialise a Falcon special buffer
240  *
241  * This will define a buffer (previously allocated via
242  * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
243  * it to be used for event queues, descriptor rings etc.
244  */
245 static int
246 falcon_init_special_buffer(struct efx_nic *efx,
247                            struct efx_special_buffer *buffer)
248 {
249         efx_qword_t buf_desc;
250         int index;
251         dma_addr_t dma_addr;
252         int i;
253
254         EFX_BUG_ON_PARANOID(!buffer->addr);
255
256         /* Write buffer descriptors to NIC */
257         for (i = 0; i < buffer->entries; i++) {
258                 index = buffer->index + i;
259                 dma_addr = buffer->dma_addr + (i * 4096);
260                 EFX_LOG(efx, "mapping special buffer %d at %llx\n",
261                         index, (unsigned long long)dma_addr);
262                 EFX_POPULATE_QWORD_4(buf_desc,
263                                      IP_DAT_BUF_SIZE, IP_DAT_BUF_SIZE_4K,
264                                      BUF_ADR_REGION, 0,
265                                      BUF_ADR_FBUF, (dma_addr >> 12),
266                                      BUF_OWNER_ID_FBUF, 0);
267                 falcon_write_sram(efx, &buf_desc, index);
268         }
269
270         return 0;
271 }
272
273 /* Unmaps a buffer from Falcon and clears the buffer table entries */
274 static void
275 falcon_fini_special_buffer(struct efx_nic *efx,
276                            struct efx_special_buffer *buffer)
277 {
278         efx_oword_t buf_tbl_upd;
279         unsigned int start = buffer->index;
280         unsigned int end = (buffer->index + buffer->entries - 1);
281
282         if (!buffer->entries)
283                 return;
284
285         EFX_LOG(efx, "unmapping special buffers %d-%d\n",
286                 buffer->index, buffer->index + buffer->entries - 1);
287
288         EFX_POPULATE_OWORD_4(buf_tbl_upd,
289                              BUF_UPD_CMD, 0,
290                              BUF_CLR_CMD, 1,
291                              BUF_CLR_END_ID, end,
292                              BUF_CLR_START_ID, start);
293         falcon_write(efx, &buf_tbl_upd, BUF_TBL_UPD_REG_KER);
294 }
295
296 /*
297  * Allocate a new Falcon special buffer
298  *
299  * This allocates memory for a new buffer, clears it and allocates a
300  * new buffer ID range.  It does not write into Falcon's buffer table.
301  *
302  * This call will allocate 4KB buffers, since Falcon can't use 8KB
303  * buffers for event queues and descriptor rings.
304  */
305 static int falcon_alloc_special_buffer(struct efx_nic *efx,
306                                        struct efx_special_buffer *buffer,
307                                        unsigned int len)
308 {
309         struct falcon_nic_data *nic_data = efx->nic_data;
310
311         len = ALIGN(len, FALCON_BUF_SIZE);
312
313         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
314                                             &buffer->dma_addr);
315         if (!buffer->addr)
316                 return -ENOMEM;
317         buffer->len = len;
318         buffer->entries = len / FALCON_BUF_SIZE;
319         BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));
320
321         /* All zeros is a potentially valid event so memset to 0xff */
322         memset(buffer->addr, 0xff, len);
323
324         /* Select new buffer ID */
325         buffer->index = nic_data->next_buffer_table;
326         nic_data->next_buffer_table += buffer->entries;
327
328         EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
329                 "(virt %p phys %lx)\n", buffer->index,
330                 buffer->index + buffer->entries - 1,
331                 (unsigned long long)buffer->dma_addr, len,
332                 buffer->addr, virt_to_phys(buffer->addr));
333
334         return 0;
335 }
336
337 static void falcon_free_special_buffer(struct efx_nic *efx,
338                                        struct efx_special_buffer *buffer)
339 {
340         if (!buffer->addr)
341                 return;
342
343         EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
344                 "(virt %p phys %lx)\n", buffer->index,
345                 buffer->index + buffer->entries - 1,
346                 (unsigned long long)buffer->dma_addr, buffer->len,
347                 buffer->addr, virt_to_phys(buffer->addr));
348
349         pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
350                             buffer->dma_addr);
351         buffer->addr = NULL;
352         buffer->entries = 0;
353 }
354
355 /**************************************************************************
356  *
357  * Falcon generic buffer handling
358  * These buffers are used for interrupt status and MAC stats
359  *
360  **************************************************************************/
361
362 static int falcon_alloc_buffer(struct efx_nic *efx,
363                                struct efx_buffer *buffer, unsigned int len)
364 {
365         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
366                                             &buffer->dma_addr);
367         if (!buffer->addr)
368                 return -ENOMEM;
369         buffer->len = len;
370         memset(buffer->addr, 0, len);
371         return 0;
372 }
373
374 static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
375 {
376         if (buffer->addr) {
377                 pci_free_consistent(efx->pci_dev, buffer->len,
378                                     buffer->addr, buffer->dma_addr);
379                 buffer->addr = NULL;
380         }
381 }
382
383 /**************************************************************************
384  *
385  * Falcon TX path
386  *
387  **************************************************************************/
388
389 /* Returns a pointer to the specified transmit descriptor in the TX
390  * descriptor queue belonging to the specified channel.
391  */
392 static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
393                                                unsigned int index)
394 {
395         return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
396 }
397
398 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
399 static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
400 {
401         unsigned write_ptr;
402         efx_dword_t reg;
403
404         write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
405         EFX_POPULATE_DWORD_1(reg, TX_DESC_WPTR_DWORD, write_ptr);
406         falcon_writel_page(tx_queue->efx, &reg,
407                            TX_DESC_UPD_REG_KER_DWORD, tx_queue->queue);
408 }
409
410
411 /* For each entry inserted into the software descriptor ring, create a
412  * descriptor in the hardware TX descriptor ring (in host memory), and
413  * write a doorbell.
414  */
415 void falcon_push_buffers(struct efx_tx_queue *tx_queue)
416 {
417
418         struct efx_tx_buffer *buffer;
419         efx_qword_t *txd;
420         unsigned write_ptr;
421
422         BUG_ON(tx_queue->write_count == tx_queue->insert_count);
423
424         do {
425                 write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
426                 buffer = &tx_queue->buffer[write_ptr];
427                 txd = falcon_tx_desc(tx_queue, write_ptr);
428                 ++tx_queue->write_count;
429
430                 /* Create TX descriptor ring entry */
431                 EFX_POPULATE_QWORD_5(*txd,
432                                      TX_KER_PORT, 0,
433                                      TX_KER_CONT, buffer->continuation,
434                                      TX_KER_BYTE_CNT, buffer->len,
435                                      TX_KER_BUF_REGION, 0,
436                                      TX_KER_BUF_ADR, buffer->dma_addr);
437         } while (tx_queue->write_count != tx_queue->insert_count);
438
439         wmb(); /* Ensure descriptors are written before they are fetched */
440         falcon_notify_tx_desc(tx_queue);
441 }
442
443 /* Allocate hardware resources for a TX queue */
444 int falcon_probe_tx(struct efx_tx_queue *tx_queue)
445 {
446         struct efx_nic *efx = tx_queue->efx;
447         return falcon_alloc_special_buffer(efx, &tx_queue->txd,
448                                            FALCON_TXD_RING_SIZE *
449                                            sizeof(efx_qword_t));
450 }
451
452 int falcon_init_tx(struct efx_tx_queue *tx_queue)
453 {
454         efx_oword_t tx_desc_ptr;
455         struct efx_nic *efx = tx_queue->efx;
456         int rc;
457
458         /* Pin TX descriptor ring */
459         rc = falcon_init_special_buffer(efx, &tx_queue->txd);
460         if (rc)
461                 return rc;
462
463         /* Push TX descriptor ring to card */
464         EFX_POPULATE_OWORD_10(tx_desc_ptr,
465                               TX_DESCQ_EN, 1,
466                               TX_ISCSI_DDIG_EN, 0,
467                               TX_ISCSI_HDIG_EN, 0,
468                               TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
469                               TX_DESCQ_EVQ_ID, tx_queue->channel->evqnum,
470                               TX_DESCQ_OWNER_ID, 0,
471                               TX_DESCQ_LABEL, tx_queue->queue,
472                               TX_DESCQ_SIZE, FALCON_TXD_RING_ORDER,
473                               TX_DESCQ_TYPE, 0,
474                               TX_NON_IP_DROP_DIS_B0, 1);
475
476         if (falcon_rev(efx) >= FALCON_REV_B0) {
477                 int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
478                 EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_IP_CHKSM_DIS_B0, !csum);
479                 EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_TCP_CHKSM_DIS_B0, !csum);
480         }
481
482         falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
483                            tx_queue->queue);
484
485         if (falcon_rev(efx) < FALCON_REV_B0) {
486                 efx_oword_t reg;
487
488                 /* Only 128 bits in this register */
489                 BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
490
491                 falcon_read(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
492                 if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
493                         clear_bit_le(tx_queue->queue, (void *)&reg);
494                 else
495                         set_bit_le(tx_queue->queue, (void *)&reg);
496                 falcon_write(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
497         }
498
499         return 0;
500 }
501
502 static int falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
503 {
504         struct efx_nic *efx = tx_queue->efx;
505         struct efx_channel *channel = &efx->channel[0];
506         efx_oword_t tx_flush_descq;
507         unsigned int read_ptr, i;
508
509         /* Post a flush command */
510         EFX_POPULATE_OWORD_2(tx_flush_descq,
511                              TX_FLUSH_DESCQ_CMD, 1,
512                              TX_FLUSH_DESCQ, tx_queue->queue);
513         falcon_write(efx, &tx_flush_descq, TX_FLUSH_DESCQ_REG_KER);
514         msleep(FALCON_FLUSH_TIMEOUT);
515
516         if (EFX_WORKAROUND_7803(efx))
517                 return 0;
518
519         /* Look for a flush completed event */
520         read_ptr = channel->eventq_read_ptr;
521         for (i = 0; i < FALCON_EVQ_SIZE; ++i) {
522                 efx_qword_t *event = falcon_event(channel, read_ptr);
523                 int ev_code, ev_sub_code, ev_queue;
524                 if (!falcon_event_present(event))
525                         break;
526
527                 ev_code = EFX_QWORD_FIELD(*event, EV_CODE);
528                 ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
529                 ev_queue = EFX_QWORD_FIELD(*event, DRIVER_EV_TX_DESCQ_ID);
530                 if ((ev_sub_code == TX_DESCQ_FLS_DONE_EV_DECODE) &&
531                     (ev_queue == tx_queue->queue)) {
532                         EFX_LOG(efx, "tx queue %d flush command succesful\n",
533                                 tx_queue->queue);
534                         return 0;
535                 }
536
537                 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
538         }
539
540         if (EFX_WORKAROUND_11557(efx)) {
541                 efx_oword_t reg;
542                 bool enabled;
543
544                 falcon_read_table(efx, &reg, efx->type->txd_ptr_tbl_base,
545                                   tx_queue->queue);
546                 enabled = EFX_OWORD_FIELD(reg, TX_DESCQ_EN);
547                 if (!enabled) {
548                         EFX_LOG(efx, "tx queue %d disabled without a "
549                                 "flush event seen\n", tx_queue->queue);
550                         return 0;
551                 }
552         }
553
554         EFX_ERR(efx, "tx queue %d flush command timed out\n", tx_queue->queue);
555         return -ETIMEDOUT;
556 }
557
558 void falcon_fini_tx(struct efx_tx_queue *tx_queue)
559 {
560         struct efx_nic *efx = tx_queue->efx;
561         efx_oword_t tx_desc_ptr;
562
563         /* Stop the hardware using the queue */
564         if (falcon_flush_tx_queue(tx_queue))
565                 EFX_ERR(efx, "failed to flush tx queue %d\n", tx_queue->queue);
566
567         /* Remove TX descriptor ring from card */
568         EFX_ZERO_OWORD(tx_desc_ptr);
569         falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
570                            tx_queue->queue);
571
572         /* Unpin TX descriptor ring */
573         falcon_fini_special_buffer(efx, &tx_queue->txd);
574 }
575
576 /* Free buffers backing TX queue */
577 void falcon_remove_tx(struct efx_tx_queue *tx_queue)
578 {
579         falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
580 }
581
582 /**************************************************************************
583  *
584  * Falcon RX path
585  *
586  **************************************************************************/
587
588 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
589 static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
590                                                unsigned int index)
591 {
592         return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
593 }
594
595 /* This creates an entry in the RX descriptor queue */
596 static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
597                                         unsigned index)
598 {
599         struct efx_rx_buffer *rx_buf;
600         efx_qword_t *rxd;
601
602         rxd = falcon_rx_desc(rx_queue, index);
603         rx_buf = efx_rx_buffer(rx_queue, index);
604         EFX_POPULATE_QWORD_3(*rxd,
605                              RX_KER_BUF_SIZE,
606                              rx_buf->len -
607                              rx_queue->efx->type->rx_buffer_padding,
608                              RX_KER_BUF_REGION, 0,
609                              RX_KER_BUF_ADR, rx_buf->dma_addr);
610 }
611
612 /* This writes to the RX_DESC_WPTR register for the specified receive
613  * descriptor ring.
614  */
615 void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
616 {
617         efx_dword_t reg;
618         unsigned write_ptr;
619
620         while (rx_queue->notified_count != rx_queue->added_count) {
621                 falcon_build_rx_desc(rx_queue,
622                                      rx_queue->notified_count &
623                                      FALCON_RXD_RING_MASK);
624                 ++rx_queue->notified_count;
625         }
626
627         wmb();
628         write_ptr = rx_queue->added_count & FALCON_RXD_RING_MASK;
629         EFX_POPULATE_DWORD_1(reg, RX_DESC_WPTR_DWORD, write_ptr);
630         falcon_writel_page(rx_queue->efx, &reg,
631                            RX_DESC_UPD_REG_KER_DWORD, rx_queue->queue);
632 }
633
634 int falcon_probe_rx(struct efx_rx_queue *rx_queue)
635 {
636         struct efx_nic *efx = rx_queue->efx;
637         return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
638                                            FALCON_RXD_RING_SIZE *
639                                            sizeof(efx_qword_t));
640 }
641
642 int falcon_init_rx(struct efx_rx_queue *rx_queue)
643 {
644         efx_oword_t rx_desc_ptr;
645         struct efx_nic *efx = rx_queue->efx;
646         int rc;
647         bool is_b0 = falcon_rev(efx) >= FALCON_REV_B0;
648         bool iscsi_digest_en = is_b0;
649
650         EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
651                 rx_queue->queue, rx_queue->rxd.index,
652                 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
653
654         /* Pin RX descriptor ring */
655         rc = falcon_init_special_buffer(efx, &rx_queue->rxd);
656         if (rc)
657                 return rc;
658
659         /* Push RX descriptor ring to card */
660         EFX_POPULATE_OWORD_10(rx_desc_ptr,
661                               RX_ISCSI_DDIG_EN, iscsi_digest_en,
662                               RX_ISCSI_HDIG_EN, iscsi_digest_en,
663                               RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
664                               RX_DESCQ_EVQ_ID, rx_queue->channel->evqnum,
665                               RX_DESCQ_OWNER_ID, 0,
666                               RX_DESCQ_LABEL, rx_queue->queue,
667                               RX_DESCQ_SIZE, FALCON_RXD_RING_ORDER,
668                               RX_DESCQ_TYPE, 0 /* kernel queue */ ,
669                               /* For >=B0 this is scatter so disable */
670                               RX_DESCQ_JUMBO, !is_b0,
671                               RX_DESCQ_EN, 1);
672         falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
673                            rx_queue->queue);
674         return 0;
675 }
676
677 static int falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
678 {
679         struct efx_nic *efx = rx_queue->efx;
680         struct efx_channel *channel = &efx->channel[0];
681         unsigned int read_ptr, i;
682         efx_oword_t rx_flush_descq;
683
684         /* Post a flush command */
685         EFX_POPULATE_OWORD_2(rx_flush_descq,
686                              RX_FLUSH_DESCQ_CMD, 1,
687                              RX_FLUSH_DESCQ, rx_queue->queue);
688         falcon_write(efx, &rx_flush_descq, RX_FLUSH_DESCQ_REG_KER);
689         msleep(FALCON_FLUSH_TIMEOUT);
690
691         if (EFX_WORKAROUND_7803(efx))
692                 return 0;
693
694         /* Look for a flush completed event */
695         read_ptr = channel->eventq_read_ptr;
696         for (i = 0; i < FALCON_EVQ_SIZE; ++i) {
697                 efx_qword_t *event = falcon_event(channel, read_ptr);
698                 int ev_code, ev_sub_code, ev_queue;
699                 bool ev_failed;
700                 if (!falcon_event_present(event))
701                         break;
702
703                 ev_code = EFX_QWORD_FIELD(*event, EV_CODE);
704                 ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
705                 ev_queue = EFX_QWORD_FIELD(*event, DRIVER_EV_RX_DESCQ_ID);
706                 ev_failed = EFX_QWORD_FIELD(*event, DRIVER_EV_RX_FLUSH_FAIL);
707
708                 if ((ev_sub_code == RX_DESCQ_FLS_DONE_EV_DECODE) &&
709                     (ev_queue == rx_queue->queue)) {
710                         if (ev_failed) {
711                                 EFX_INFO(efx, "rx queue %d flush command "
712                                          "failed\n", rx_queue->queue);
713                                 return -EAGAIN;
714                         } else {
715                                 EFX_LOG(efx, "rx queue %d flush command "
716                                         "succesful\n", rx_queue->queue);
717                                 return 0;
718                         }
719                 }
720
721                 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
722         }
723
724         if (EFX_WORKAROUND_11557(efx)) {
725                 efx_oword_t reg;
726                 bool enabled;
727
728                 falcon_read_table(efx, &reg, efx->type->rxd_ptr_tbl_base,
729                                   rx_queue->queue);
730                 enabled = EFX_OWORD_FIELD(reg, RX_DESCQ_EN);
731                 if (!enabled) {
732                         EFX_LOG(efx, "rx queue %d disabled without a "
733                                 "flush event seen\n", rx_queue->queue);
734                         return 0;
735                 }
736         }
737
738         EFX_ERR(efx, "rx queue %d flush command timed out\n", rx_queue->queue);
739         return -ETIMEDOUT;
740 }
741
742 void falcon_fini_rx(struct efx_rx_queue *rx_queue)
743 {
744         efx_oword_t rx_desc_ptr;
745         struct efx_nic *efx = rx_queue->efx;
746         int i, rc;
747
748         /* Try and flush the rx queue. This may need to be repeated */
749         for (i = 0; i < 5; i++) {
750                 rc = falcon_flush_rx_queue(rx_queue);
751                 if (rc == -EAGAIN)
752                         continue;
753                 break;
754         }
755         if (rc) {
756                 EFX_ERR(efx, "failed to flush rx queue %d\n", rx_queue->queue);
757                 efx_schedule_reset(efx, RESET_TYPE_INVISIBLE);
758         }
759
760         /* Remove RX descriptor ring from card */
761         EFX_ZERO_OWORD(rx_desc_ptr);
762         falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
763                            rx_queue->queue);
764
765         /* Unpin RX descriptor ring */
766         falcon_fini_special_buffer(efx, &rx_queue->rxd);
767 }
768
769 /* Free buffers backing RX queue */
770 void falcon_remove_rx(struct efx_rx_queue *rx_queue)
771 {
772         falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
773 }
774
775 /**************************************************************************
776  *
777  * Falcon event queue processing
778  * Event queues are processed by per-channel tasklets.
779  *
780  **************************************************************************/
781
782 /* Update a channel's event queue's read pointer (RPTR) register
783  *
784  * This writes the EVQ_RPTR_REG register for the specified channel's
785  * event queue.
786  *
787  * Note that EVQ_RPTR_REG contains the index of the "last read" event,
788  * whereas channel->eventq_read_ptr contains the index of the "next to
789  * read" event.
790  */
791 void falcon_eventq_read_ack(struct efx_channel *channel)
792 {
793         efx_dword_t reg;
794         struct efx_nic *efx = channel->efx;
795
796         EFX_POPULATE_DWORD_1(reg, EVQ_RPTR_DWORD, channel->eventq_read_ptr);
797         falcon_writel_table(efx, &reg, efx->type->evq_rptr_tbl_base,
798                             channel->evqnum);
799 }
800
801 /* Use HW to insert a SW defined event */
802 void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
803 {
804         efx_oword_t drv_ev_reg;
805
806         EFX_POPULATE_OWORD_2(drv_ev_reg,
807                              DRV_EV_QID, channel->evqnum,
808                              DRV_EV_DATA,
809                              EFX_QWORD_FIELD64(*event, WHOLE_EVENT));
810         falcon_write(channel->efx, &drv_ev_reg, DRV_EV_REG_KER);
811 }
812
813 /* Handle a transmit completion event
814  *
815  * Falcon batches TX completion events; the message we receive is of
816  * the form "complete all TX events up to this index".
817  */
818 static void falcon_handle_tx_event(struct efx_channel *channel,
819                                    efx_qword_t *event)
820 {
821         unsigned int tx_ev_desc_ptr;
822         unsigned int tx_ev_q_label;
823         struct efx_tx_queue *tx_queue;
824         struct efx_nic *efx = channel->efx;
825
826         if (likely(EFX_QWORD_FIELD(*event, TX_EV_COMP))) {
827                 /* Transmit completion */
828                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, TX_EV_DESC_PTR);
829                 tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
830                 tx_queue = &efx->tx_queue[tx_ev_q_label];
831                 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
832         } else if (EFX_QWORD_FIELD(*event, TX_EV_WQ_FF_FULL)) {
833                 /* Rewrite the FIFO write pointer */
834                 tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
835                 tx_queue = &efx->tx_queue[tx_ev_q_label];
836
837                 if (efx_dev_registered(efx))
838                         netif_tx_lock(efx->net_dev);
839                 falcon_notify_tx_desc(tx_queue);
840                 if (efx_dev_registered(efx))
841                         netif_tx_unlock(efx->net_dev);
842         } else if (EFX_QWORD_FIELD(*event, TX_EV_PKT_ERR) &&
843                    EFX_WORKAROUND_10727(efx)) {
844                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
845         } else {
846                 EFX_ERR(efx, "channel %d unexpected TX event "
847                         EFX_QWORD_FMT"\n", channel->channel,
848                         EFX_QWORD_VAL(*event));
849         }
850 }
851
852 /* Detect errors included in the rx_evt_pkt_ok bit. */
853 static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
854                                     const efx_qword_t *event,
855                                     bool *rx_ev_pkt_ok,
856                                     bool *discard)
857 {
858         struct efx_nic *efx = rx_queue->efx;
859         bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
860         bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
861         bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
862         bool rx_ev_other_err, rx_ev_pause_frm;
863         bool rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
864         unsigned rx_ev_pkt_type;
865
866         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
867         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
868         rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, RX_EV_TOBE_DISC);
869         rx_ev_pkt_type = EFX_QWORD_FIELD(*event, RX_EV_PKT_TYPE);
870         rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
871                                                  RX_EV_BUF_OWNER_ID_ERR);
872         rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, RX_EV_IF_FRAG_ERR);
873         rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
874                                                   RX_EV_IP_HDR_CHKSUM_ERR);
875         rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
876                                                    RX_EV_TCP_UDP_CHKSUM_ERR);
877         rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, RX_EV_ETH_CRC_ERR);
878         rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, RX_EV_FRM_TRUNC);
879         rx_ev_drib_nib = ((falcon_rev(efx) >= FALCON_REV_B0) ?
880                           0 : EFX_QWORD_FIELD(*event, RX_EV_DRIB_NIB));
881         rx_ev_pause_frm = EFX_QWORD_FIELD(*event, RX_EV_PAUSE_FRM_ERR);
882
883         /* Every error apart from tobe_disc and pause_frm */
884         rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
885                            rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
886                            rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
887
888         /* Count errors that are not in MAC stats. */
889         if (rx_ev_frm_trunc)
890                 ++rx_queue->channel->n_rx_frm_trunc;
891         else if (rx_ev_tobe_disc)
892                 ++rx_queue->channel->n_rx_tobe_disc;
893         else if (rx_ev_ip_hdr_chksum_err)
894                 ++rx_queue->channel->n_rx_ip_hdr_chksum_err;
895         else if (rx_ev_tcp_udp_chksum_err)
896                 ++rx_queue->channel->n_rx_tcp_udp_chksum_err;
897         if (rx_ev_ip_frag_err)
898                 ++rx_queue->channel->n_rx_ip_frag_err;
899
900         /* The frame must be discarded if any of these are true. */
901         *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
902                     rx_ev_tobe_disc | rx_ev_pause_frm);
903
904         /* TOBE_DISC is expected on unicast mismatches; don't print out an
905          * error message.  FRM_TRUNC indicates RXDP dropped the packet due
906          * to a FIFO overflow.
907          */
908 #ifdef EFX_ENABLE_DEBUG
909         if (rx_ev_other_err) {
910                 EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
911                             EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
912                             rx_queue->queue, EFX_QWORD_VAL(*event),
913                             rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
914                             rx_ev_ip_hdr_chksum_err ?
915                             " [IP_HDR_CHKSUM_ERR]" : "",
916                             rx_ev_tcp_udp_chksum_err ?
917                             " [TCP_UDP_CHKSUM_ERR]" : "",
918                             rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
919                             rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
920                             rx_ev_drib_nib ? " [DRIB_NIB]" : "",
921                             rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
922                             rx_ev_pause_frm ? " [PAUSE]" : "");
923         }
924 #endif
925
926         if (unlikely(rx_ev_eth_crc_err && EFX_WORKAROUND_10750(efx) &&
927                      efx->phy_type == PHY_TYPE_10XPRESS))
928                 tenxpress_crc_err(efx);
929 }
930
931 /* Handle receive events that are not in-order. */
932 static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
933                                        unsigned index)
934 {
935         struct efx_nic *efx = rx_queue->efx;
936         unsigned expected, dropped;
937
938         expected = rx_queue->removed_count & FALCON_RXD_RING_MASK;
939         dropped = ((index + FALCON_RXD_RING_SIZE - expected) &
940                    FALCON_RXD_RING_MASK);
941         EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
942                 dropped, index, expected);
943
944         efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
945                            RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
946 }
947
948 /* Handle a packet received event
949  *
950  * Falcon silicon gives a "discard" flag if it's a unicast packet with the
951  * wrong destination address
952  * Also "is multicast" and "matches multicast filter" flags can be used to
953  * discard non-matching multicast packets.
954  */
955 static int falcon_handle_rx_event(struct efx_channel *channel,
956                                   const efx_qword_t *event)
957 {
958         unsigned int rx_ev_q_label, rx_ev_desc_ptr, rx_ev_byte_cnt;
959         unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
960         unsigned expected_ptr;
961         bool rx_ev_pkt_ok, discard = false, checksummed;
962         struct efx_rx_queue *rx_queue;
963         struct efx_nic *efx = channel->efx;
964
965         /* Basic packet information */
966         rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, RX_EV_BYTE_CNT);
967         rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, RX_EV_PKT_OK);
968         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
969         WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_JUMBO_CONT));
970         WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_SOP) != 1);
971
972         rx_ev_q_label = EFX_QWORD_FIELD(*event, RX_EV_Q_LABEL);
973         rx_queue = &efx->rx_queue[rx_ev_q_label];
974
975         rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, RX_EV_DESC_PTR);
976         expected_ptr = rx_queue->removed_count & FALCON_RXD_RING_MASK;
977         if (unlikely(rx_ev_desc_ptr != expected_ptr)) {
978                 falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
979                 return rx_ev_q_label;
980         }
981
982         if (likely(rx_ev_pkt_ok)) {
983                 /* If packet is marked as OK and packet type is TCP/IPv4 or
984                  * UDP/IPv4, then we can rely on the hardware checksum.
985                  */
986                 checksummed = RX_EV_HDR_TYPE_HAS_CHECKSUMS(rx_ev_hdr_type);
987         } else {
988                 falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
989                                         &discard);
990                 checksummed = false;
991         }
992
993         /* Detect multicast packets that didn't match the filter */
994         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
995         if (rx_ev_mcast_pkt) {
996                 unsigned int rx_ev_mcast_hash_match =
997                         EFX_QWORD_FIELD(*event, RX_EV_MCAST_HASH_MATCH);
998
999                 if (unlikely(!rx_ev_mcast_hash_match))
1000                         discard = true;
1001         }
1002
1003         /* Handle received packet */
1004         efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
1005                       checksummed, discard);
1006
1007         return rx_ev_q_label;
1008 }
1009
1010 /* Global events are basically PHY events */
1011 static void falcon_handle_global_event(struct efx_channel *channel,
1012                                        efx_qword_t *event)
1013 {
1014         struct efx_nic *efx = channel->efx;
1015         bool is_phy_event = false, handled = false;
1016
1017         /* Check for interrupt on either port.  Some boards have a
1018          * single PHY wired to the interrupt line for port 1. */
1019         if (EFX_QWORD_FIELD(*event, G_PHY0_INTR) ||
1020             EFX_QWORD_FIELD(*event, G_PHY1_INTR) ||
1021             EFX_QWORD_FIELD(*event, XG_PHY_INTR))
1022                 is_phy_event = true;
1023
1024         if ((falcon_rev(efx) >= FALCON_REV_B0) &&
1025             EFX_OWORD_FIELD(*event, XG_MNT_INTR_B0))
1026                 is_phy_event = true;
1027
1028         if (is_phy_event) {
1029                 efx->phy_op->clear_interrupt(efx);
1030                 queue_work(efx->workqueue, &efx->reconfigure_work);
1031                 handled = true;
1032         }
1033
1034         if (EFX_QWORD_FIELD_VER(efx, *event, RX_RECOVERY)) {
1035                 EFX_ERR(efx, "channel %d seen global RX_RESET "
1036                         "event. Resetting.\n", channel->channel);
1037
1038                 atomic_inc(&efx->rx_reset);
1039                 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
1040                                    RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1041                 handled = true;
1042         }
1043
1044         if (!handled)
1045                 EFX_ERR(efx, "channel %d unknown global event "
1046                         EFX_QWORD_FMT "\n", channel->channel,
1047                         EFX_QWORD_VAL(*event));
1048 }
1049
1050 static void falcon_handle_driver_event(struct efx_channel *channel,
1051                                        efx_qword_t *event)
1052 {
1053         struct efx_nic *efx = channel->efx;
1054         unsigned int ev_sub_code;
1055         unsigned int ev_sub_data;
1056
1057         ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
1058         ev_sub_data = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_DATA);
1059
1060         switch (ev_sub_code) {
1061         case TX_DESCQ_FLS_DONE_EV_DECODE:
1062                 EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
1063                           channel->channel, ev_sub_data);
1064                 break;
1065         case RX_DESCQ_FLS_DONE_EV_DECODE:
1066                 EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
1067                           channel->channel, ev_sub_data);
1068                 break;
1069         case EVQ_INIT_DONE_EV_DECODE:
1070                 EFX_LOG(efx, "channel %d EVQ %d initialised\n",
1071                         channel->channel, ev_sub_data);
1072                 break;
1073         case SRM_UPD_DONE_EV_DECODE:
1074                 EFX_TRACE(efx, "channel %d SRAM update done\n",
1075                           channel->channel);
1076                 break;
1077         case WAKE_UP_EV_DECODE:
1078                 EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
1079                           channel->channel, ev_sub_data);
1080                 break;
1081         case TIMER_EV_DECODE:
1082                 EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
1083                           channel->channel, ev_sub_data);
1084                 break;
1085         case RX_RECOVERY_EV_DECODE:
1086                 EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
1087                         "Resetting.\n", channel->channel);
1088                 atomic_inc(&efx->rx_reset);
1089                 efx_schedule_reset(efx,
1090                                    EFX_WORKAROUND_6555(efx) ?
1091                                    RESET_TYPE_RX_RECOVERY :
1092                                    RESET_TYPE_DISABLE);
1093                 break;
1094         case RX_DSC_ERROR_EV_DECODE:
1095                 EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
1096                         " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
1097                 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
1098                 break;
1099         case TX_DSC_ERROR_EV_DECODE:
1100                 EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
1101                         " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
1102                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1103                 break;
1104         default:
1105                 EFX_TRACE(efx, "channel %d unknown driver event code %d "
1106                           "data %04x\n", channel->channel, ev_sub_code,
1107                           ev_sub_data);
1108                 break;
1109         }
1110 }
1111
1112 int falcon_process_eventq(struct efx_channel *channel, int *rx_quota)
1113 {
1114         unsigned int read_ptr;
1115         efx_qword_t event, *p_event;
1116         int ev_code;
1117         int rxq;
1118         int rxdmaqs = 0;
1119
1120         read_ptr = channel->eventq_read_ptr;
1121
1122         do {
1123                 p_event = falcon_event(channel, read_ptr);
1124                 event = *p_event;
1125
1126                 if (!falcon_event_present(&event))
1127                         /* End of events */
1128                         break;
1129
1130                 EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
1131                           channel->channel, EFX_QWORD_VAL(event));
1132
1133                 /* Clear this event by marking it all ones */
1134                 EFX_SET_QWORD(*p_event);
1135
1136                 ev_code = EFX_QWORD_FIELD(event, EV_CODE);
1137
1138                 switch (ev_code) {
1139                 case RX_IP_EV_DECODE:
1140                         rxq = falcon_handle_rx_event(channel, &event);
1141                         rxdmaqs |= (1 << rxq);
1142                         (*rx_quota)--;
1143                         break;
1144                 case TX_IP_EV_DECODE:
1145                         falcon_handle_tx_event(channel, &event);
1146                         break;
1147                 case DRV_GEN_EV_DECODE:
1148                         channel->eventq_magic
1149                                 = EFX_QWORD_FIELD(event, EVQ_MAGIC);
1150                         EFX_LOG(channel->efx, "channel %d received generated "
1151                                 "event "EFX_QWORD_FMT"\n", channel->channel,
1152                                 EFX_QWORD_VAL(event));
1153                         break;
1154                 case GLOBAL_EV_DECODE:
1155                         falcon_handle_global_event(channel, &event);
1156                         break;
1157                 case DRIVER_EV_DECODE:
1158                         falcon_handle_driver_event(channel, &event);
1159                         break;
1160                 default:
1161                         EFX_ERR(channel->efx, "channel %d unknown event type %d"
1162                                 " (data " EFX_QWORD_FMT ")\n", channel->channel,
1163                                 ev_code, EFX_QWORD_VAL(event));
1164                 }
1165
1166                 /* Increment read pointer */
1167                 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
1168
1169         } while (*rx_quota);
1170
1171         channel->eventq_read_ptr = read_ptr;
1172         return rxdmaqs;
1173 }
1174
1175 void falcon_set_int_moderation(struct efx_channel *channel)
1176 {
1177         efx_dword_t timer_cmd;
1178         struct efx_nic *efx = channel->efx;
1179
1180         /* Set timer register */
1181         if (channel->irq_moderation) {
1182                 /* Round to resolution supported by hardware.  The value we
1183                  * program is based at 0.  So actual interrupt moderation
1184                  * achieved is ((x + 1) * res).
1185                  */
1186                 unsigned int res = 5;
1187                 channel->irq_moderation -= (channel->irq_moderation % res);
1188                 if (channel->irq_moderation < res)
1189                         channel->irq_moderation = res;
1190                 EFX_POPULATE_DWORD_2(timer_cmd,
1191                                      TIMER_MODE, TIMER_MODE_INT_HLDOFF,
1192                                      TIMER_VAL,
1193                                      (channel->irq_moderation / res) - 1);
1194         } else {
1195                 EFX_POPULATE_DWORD_2(timer_cmd,
1196                                      TIMER_MODE, TIMER_MODE_DIS,
1197                                      TIMER_VAL, 0);
1198         }
1199         falcon_writel_page_locked(efx, &timer_cmd, TIMER_CMD_REG_KER,
1200                                   channel->evqnum);
1201
1202 }
1203
1204 /* Allocate buffer table entries for event queue */
1205 int falcon_probe_eventq(struct efx_channel *channel)
1206 {
1207         struct efx_nic *efx = channel->efx;
1208         unsigned int evq_size;
1209
1210         evq_size = FALCON_EVQ_SIZE * sizeof(efx_qword_t);
1211         return falcon_alloc_special_buffer(efx, &channel->eventq, evq_size);
1212 }
1213
1214 int falcon_init_eventq(struct efx_channel *channel)
1215 {
1216         efx_oword_t evq_ptr;
1217         struct efx_nic *efx = channel->efx;
1218         int rc;
1219
1220         EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
1221                 channel->channel, channel->eventq.index,
1222                 channel->eventq.index + channel->eventq.entries - 1);
1223
1224         /* Pin event queue buffer */
1225         rc = falcon_init_special_buffer(efx, &channel->eventq);
1226         if (rc)
1227                 return rc;
1228
1229         /* Fill event queue with all ones (i.e. empty events) */
1230         memset(channel->eventq.addr, 0xff, channel->eventq.len);
1231
1232         /* Push event queue to card */
1233         EFX_POPULATE_OWORD_3(evq_ptr,
1234                              EVQ_EN, 1,
1235                              EVQ_SIZE, FALCON_EVQ_ORDER,
1236                              EVQ_BUF_BASE_ID, channel->eventq.index);
1237         falcon_write_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
1238                            channel->evqnum);
1239
1240         falcon_set_int_moderation(channel);
1241
1242         return 0;
1243 }
1244
1245 void falcon_fini_eventq(struct efx_channel *channel)
1246 {
1247         efx_oword_t eventq_ptr;
1248         struct efx_nic *efx = channel->efx;
1249
1250         /* Remove event queue from card */
1251         EFX_ZERO_OWORD(eventq_ptr);
1252         falcon_write_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
1253                            channel->evqnum);
1254
1255         /* Unpin event queue */
1256         falcon_fini_special_buffer(efx, &channel->eventq);
1257 }
1258
1259 /* Free buffers backing event queue */
1260 void falcon_remove_eventq(struct efx_channel *channel)
1261 {
1262         falcon_free_special_buffer(channel->efx, &channel->eventq);
1263 }
1264
1265
1266 /* Generates a test event on the event queue.  A subsequent call to
1267  * process_eventq() should pick up the event and place the value of
1268  * "magic" into channel->eventq_magic;
1269  */
1270 void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
1271 {
1272         efx_qword_t test_event;
1273
1274         EFX_POPULATE_QWORD_2(test_event,
1275                              EV_CODE, DRV_GEN_EV_DECODE,
1276                              EVQ_MAGIC, magic);
1277         falcon_generate_event(channel, &test_event);
1278 }
1279
1280
1281 /**************************************************************************
1282  *
1283  * Falcon hardware interrupts
1284  * The hardware interrupt handler does very little work; all the event
1285  * queue processing is carried out by per-channel tasklets.
1286  *
1287  **************************************************************************/
1288
1289 /* Enable/disable/generate Falcon interrupts */
1290 static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
1291                                      int force)
1292 {
1293         efx_oword_t int_en_reg_ker;
1294
1295         EFX_POPULATE_OWORD_2(int_en_reg_ker,
1296                              KER_INT_KER, force,
1297                              DRV_INT_EN_KER, enabled);
1298         falcon_write(efx, &int_en_reg_ker, INT_EN_REG_KER);
1299 }
1300
1301 void falcon_enable_interrupts(struct efx_nic *efx)
1302 {
1303         efx_oword_t int_adr_reg_ker;
1304         struct efx_channel *channel;
1305
1306         EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1307         wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1308
1309         /* Program address */
1310         EFX_POPULATE_OWORD_2(int_adr_reg_ker,
1311                              NORM_INT_VEC_DIS_KER, EFX_INT_MODE_USE_MSI(efx),
1312                              INT_ADR_KER, efx->irq_status.dma_addr);
1313         falcon_write(efx, &int_adr_reg_ker, INT_ADR_REG_KER);
1314
1315         /* Enable interrupts */
1316         falcon_interrupts(efx, 1, 0);
1317
1318         /* Force processing of all the channels to get the EVQ RPTRs up to
1319            date */
1320         efx_for_each_channel(channel, efx)
1321                 efx_schedule_channel(channel);
1322 }
1323
1324 void falcon_disable_interrupts(struct efx_nic *efx)
1325 {
1326         /* Disable interrupts */
1327         falcon_interrupts(efx, 0, 0);
1328 }
1329
1330 /* Generate a Falcon test interrupt
1331  * Interrupt must already have been enabled, otherwise nasty things
1332  * may happen.
1333  */
1334 void falcon_generate_interrupt(struct efx_nic *efx)
1335 {
1336         falcon_interrupts(efx, 1, 1);
1337 }
1338
1339 /* Acknowledge a legacy interrupt from Falcon
1340  *
1341  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
1342  *
1343  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
1344  * BIU. Interrupt acknowledge is read sensitive so must write instead
1345  * (then read to ensure the BIU collector is flushed)
1346  *
1347  * NB most hardware supports MSI interrupts
1348  */
1349 static inline void falcon_irq_ack_a1(struct efx_nic *efx)
1350 {
1351         efx_dword_t reg;
1352
1353         EFX_POPULATE_DWORD_1(reg, INT_ACK_DUMMY_DATA, 0xb7eb7e);
1354         falcon_writel(efx, &reg, INT_ACK_REG_KER_A1);
1355         falcon_readl(efx, &reg, WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1);
1356 }
1357
1358 /* Process a fatal interrupt
1359  * Disable bus mastering ASAP and schedule a reset
1360  */
1361 static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
1362 {
1363         struct falcon_nic_data *nic_data = efx->nic_data;
1364         efx_oword_t *int_ker = efx->irq_status.addr;
1365         efx_oword_t fatal_intr;
1366         int error, mem_perr;
1367         static int n_int_errors;
1368
1369         falcon_read(efx, &fatal_intr, FATAL_INTR_REG_KER);
1370         error = EFX_OWORD_FIELD(fatal_intr, INT_KER_ERROR);
1371
1372         EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
1373                 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1374                 EFX_OWORD_VAL(fatal_intr),
1375                 error ? "disabling bus mastering" : "no recognised error");
1376         if (error == 0)
1377                 goto out;
1378
1379         /* If this is a memory parity error dump which blocks are offending */
1380         mem_perr = EFX_OWORD_FIELD(fatal_intr, MEM_PERR_INT_KER);
1381         if (mem_perr) {
1382                 efx_oword_t reg;
1383                 falcon_read(efx, &reg, MEM_STAT_REG_KER);
1384                 EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
1385                         EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
1386         }
1387
1388         /* Disable DMA bus mastering on both devices */
1389         pci_disable_device(efx->pci_dev);
1390         if (FALCON_IS_DUAL_FUNC(efx))
1391                 pci_disable_device(nic_data->pci_dev2);
1392
1393         if (++n_int_errors < FALCON_MAX_INT_ERRORS) {
1394                 EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
1395                 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1396         } else {
1397                 EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
1398                         "NIC will be disabled\n");
1399                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1400         }
1401 out:
1402         return IRQ_HANDLED;
1403 }
1404
1405 /* Handle a legacy interrupt from Falcon
1406  * Acknowledges the interrupt and schedule event queue processing.
1407  */
1408 static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
1409 {
1410         struct efx_nic *efx = dev_id;
1411         efx_oword_t *int_ker = efx->irq_status.addr;
1412         struct efx_channel *channel;
1413         efx_dword_t reg;
1414         u32 queues;
1415         int syserr;
1416
1417         /* Read the ISR which also ACKs the interrupts */
1418         falcon_readl(efx, &reg, INT_ISR0_B0);
1419         queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1420
1421         /* Check to see if we have a serious error condition */
1422         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1423         if (unlikely(syserr))
1424                 return falcon_fatal_interrupt(efx);
1425
1426         if (queues == 0)
1427                 return IRQ_NONE;
1428
1429         efx->last_irq_cpu = raw_smp_processor_id();
1430         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1431                   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1432
1433         /* Schedule processing of any interrupting queues */
1434         channel = &efx->channel[0];
1435         while (queues) {
1436                 if (queues & 0x01)
1437                         efx_schedule_channel(channel);
1438                 channel++;
1439                 queues >>= 1;
1440         }
1441
1442         return IRQ_HANDLED;
1443 }
1444
1445
1446 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
1447 {
1448         struct efx_nic *efx = dev_id;
1449         efx_oword_t *int_ker = efx->irq_status.addr;
1450         struct efx_channel *channel;
1451         int syserr;
1452         int queues;
1453
1454         /* Check to see if this is our interrupt.  If it isn't, we
1455          * exit without having touched the hardware.
1456          */
1457         if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
1458                 EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
1459                           raw_smp_processor_id());
1460                 return IRQ_NONE;
1461         }
1462         efx->last_irq_cpu = raw_smp_processor_id();
1463         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1464                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1465
1466         /* Check to see if we have a serious error condition */
1467         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1468         if (unlikely(syserr))
1469                 return falcon_fatal_interrupt(efx);
1470
1471         /* Determine interrupting queues, clear interrupt status
1472          * register and acknowledge the device interrupt.
1473          */
1474         BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
1475         queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
1476         EFX_ZERO_OWORD(*int_ker);
1477         wmb(); /* Ensure the vector is cleared before interrupt ack */
1478         falcon_irq_ack_a1(efx);
1479
1480         /* Schedule processing of any interrupting queues */
1481         channel = &efx->channel[0];
1482         while (queues) {
1483                 if (queues & 0x01)
1484                         efx_schedule_channel(channel);
1485                 channel++;
1486                 queues >>= 1;
1487         }
1488
1489         return IRQ_HANDLED;
1490 }
1491
1492 /* Handle an MSI interrupt from Falcon
1493  *
1494  * Handle an MSI hardware interrupt.  This routine schedules event
1495  * queue processing.  No interrupt acknowledgement cycle is necessary.
1496  * Also, we never need to check that the interrupt is for us, since
1497  * MSI interrupts cannot be shared.
1498  */
1499 static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
1500 {
1501         struct efx_channel *channel = dev_id;
1502         struct efx_nic *efx = channel->efx;
1503         efx_oword_t *int_ker = efx->irq_status.addr;
1504         int syserr;
1505
1506         efx->last_irq_cpu = raw_smp_processor_id();
1507         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1508                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1509
1510         /* Check to see if we have a serious error condition */
1511         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1512         if (unlikely(syserr))
1513                 return falcon_fatal_interrupt(efx);
1514
1515         /* Schedule processing of the channel */
1516         efx_schedule_channel(channel);
1517
1518         return IRQ_HANDLED;
1519 }
1520
1521
1522 /* Setup RSS indirection table.
1523  * This maps from the hash value of the packet to RXQ
1524  */
1525 static void falcon_setup_rss_indir_table(struct efx_nic *efx)
1526 {
1527         int i = 0;
1528         unsigned long offset;
1529         efx_dword_t dword;
1530
1531         if (falcon_rev(efx) < FALCON_REV_B0)
1532                 return;
1533
1534         for (offset = RX_RSS_INDIR_TBL_B0;
1535              offset < RX_RSS_INDIR_TBL_B0 + 0x800;
1536              offset += 0x10) {
1537                 EFX_POPULATE_DWORD_1(dword, RX_RSS_INDIR_ENT_B0,
1538                                      i % efx->n_rx_queues);
1539                 falcon_writel(efx, &dword, offset);
1540                 i++;
1541         }
1542 }
1543
1544 /* Hook interrupt handler(s)
1545  * Try MSI and then legacy interrupts.
1546  */
1547 int falcon_init_interrupt(struct efx_nic *efx)
1548 {
1549         struct efx_channel *channel;
1550         int rc;
1551
1552         if (!EFX_INT_MODE_USE_MSI(efx)) {
1553                 irq_handler_t handler;
1554                 if (falcon_rev(efx) >= FALCON_REV_B0)
1555                         handler = falcon_legacy_interrupt_b0;
1556                 else
1557                         handler = falcon_legacy_interrupt_a1;
1558
1559                 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1560                                  efx->name, efx);
1561                 if (rc) {
1562                         EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
1563                                 efx->pci_dev->irq);
1564                         goto fail1;
1565                 }
1566                 return 0;
1567         }
1568
1569         /* Hook MSI or MSI-X interrupt */
1570         efx_for_each_channel(channel, efx) {
1571                 rc = request_irq(channel->irq, falcon_msi_interrupt,
1572                                  IRQF_PROBE_SHARED, /* Not shared */
1573                                  efx->name, channel);
1574                 if (rc) {
1575                         EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
1576                         goto fail2;
1577                 }
1578         }
1579
1580         return 0;
1581
1582  fail2:
1583         efx_for_each_channel(channel, efx)
1584                 free_irq(channel->irq, channel);
1585  fail1:
1586         return rc;
1587 }
1588
1589 void falcon_fini_interrupt(struct efx_nic *efx)
1590 {
1591         struct efx_channel *channel;
1592         efx_oword_t reg;
1593
1594         /* Disable MSI/MSI-X interrupts */
1595         efx_for_each_channel(channel, efx) {
1596                 if (channel->irq)
1597                         free_irq(channel->irq, channel);
1598         }
1599
1600         /* ACK legacy interrupt */
1601         if (falcon_rev(efx) >= FALCON_REV_B0)
1602                 falcon_read(efx, &reg, INT_ISR0_B0);
1603         else
1604                 falcon_irq_ack_a1(efx);
1605
1606         /* Disable legacy interrupt */
1607         if (efx->legacy_irq)
1608                 free_irq(efx->legacy_irq, efx);
1609 }
1610
1611 /**************************************************************************
1612  *
1613  * EEPROM/flash
1614  *
1615  **************************************************************************
1616  */
1617
1618 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1619
1620 /* Wait for SPI command completion */
1621 static int falcon_spi_wait(struct efx_nic *efx)
1622 {
1623         unsigned long timeout = jiffies + DIV_ROUND_UP(HZ, 10);
1624         efx_oword_t reg;
1625         bool cmd_en, timer_active;
1626
1627         for (;;) {
1628                 falcon_read(efx, &reg, EE_SPI_HCMD_REG_KER);
1629                 cmd_en = EFX_OWORD_FIELD(reg, EE_SPI_HCMD_CMD_EN);
1630                 timer_active = EFX_OWORD_FIELD(reg, EE_WR_TIMER_ACTIVE);
1631                 if (!cmd_en && !timer_active)
1632                         return 0;
1633                 if (time_after_eq(jiffies, timeout)) {
1634                         EFX_ERR(efx, "timed out waiting for SPI\n");
1635                         return -ETIMEDOUT;
1636                 }
1637                 cpu_relax();
1638         }
1639 }
1640
1641 static int falcon_spi_cmd(const struct efx_spi_device *spi,
1642                           unsigned int command, int address,
1643                           const void *in, void *out, unsigned int len)
1644 {
1645         struct efx_nic *efx = spi->efx;
1646         bool addressed = (address >= 0);
1647         bool reading = (out != NULL);
1648         efx_oword_t reg;
1649         int rc;
1650
1651         /* Input validation */
1652         if (len > FALCON_SPI_MAX_LEN)
1653                 return -EINVAL;
1654
1655         /* Check SPI not currently being accessed */
1656         rc = falcon_spi_wait(efx);
1657         if (rc)
1658                 return rc;
1659
1660         /* Program address register, if we have an address */
1661         if (addressed) {
1662                 EFX_POPULATE_OWORD_1(reg, EE_SPI_HADR_ADR, address);
1663                 falcon_write(efx, &reg, EE_SPI_HADR_REG_KER);
1664         }
1665
1666         /* Program data register, if we have data */
1667         if (in != NULL) {
1668                 memcpy(&reg, in, len);
1669                 falcon_write(efx, &reg, EE_SPI_HDATA_REG_KER);
1670         }
1671
1672         /* Issue read/write command */
1673         EFX_POPULATE_OWORD_7(reg,
1674                              EE_SPI_HCMD_CMD_EN, 1,
1675                              EE_SPI_HCMD_SF_SEL, spi->device_id,
1676                              EE_SPI_HCMD_DABCNT, len,
1677                              EE_SPI_HCMD_READ, reading,
1678                              EE_SPI_HCMD_DUBCNT, 0,
1679                              EE_SPI_HCMD_ADBCNT,
1680                              (addressed ? spi->addr_len : 0),
1681                              EE_SPI_HCMD_ENC, command);
1682         falcon_write(efx, &reg, EE_SPI_HCMD_REG_KER);
1683
1684         /* Wait for read/write to complete */
1685         rc = falcon_spi_wait(efx);
1686         if (rc)
1687                 return rc;
1688
1689         /* Read data */
1690         if (out != NULL) {
1691                 falcon_read(efx, &reg, EE_SPI_HDATA_REG_KER);
1692                 memcpy(out, &reg, len);
1693         }
1694
1695         return 0;
1696 }
1697
1698 static unsigned int
1699 falcon_spi_write_limit(const struct efx_spi_device *spi, unsigned int start)
1700 {
1701         return min(FALCON_SPI_MAX_LEN,
1702                    (spi->block_size - (start & (spi->block_size - 1))));
1703 }
1704
1705 static inline u8
1706 efx_spi_munge_command(const struct efx_spi_device *spi,
1707                       const u8 command, const unsigned int address)
1708 {
1709         return command | (((address >> 8) & spi->munge_address) << 3);
1710 }
1711
1712
1713 static int falcon_spi_fast_wait(const struct efx_spi_device *spi)
1714 {
1715         u8 status;
1716         int i, rc;
1717
1718         /* Wait up to 1000us for flash/EEPROM to finish a fast operation. */
1719         for (i = 0; i < 50; i++) {
1720                 udelay(20);
1721
1722                 rc = falcon_spi_cmd(spi, SPI_RDSR, -1, NULL,
1723                                     &status, sizeof(status));
1724                 if (rc)
1725                         return rc;
1726                 if (!(status & SPI_STATUS_NRDY))
1727                         return 0;
1728         }
1729         EFX_ERR(spi->efx,
1730                 "timed out waiting for device %d last status=0x%02x\n",
1731                 spi->device_id, status);
1732         return -ETIMEDOUT;
1733 }
1734
1735 int falcon_spi_read(const struct efx_spi_device *spi, loff_t start,
1736                     size_t len, size_t *retlen, u8 *buffer)
1737 {
1738         unsigned int command, block_len, pos = 0;
1739         int rc = 0;
1740
1741         while (pos < len) {
1742                 block_len = min((unsigned int)len - pos,
1743                                 FALCON_SPI_MAX_LEN);
1744
1745                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1746                 rc = falcon_spi_cmd(spi, command, start + pos, NULL,
1747                                     buffer + pos, block_len);
1748                 if (rc)
1749                         break;
1750                 pos += block_len;
1751
1752                 /* Avoid locking up the system */
1753                 cond_resched();
1754                 if (signal_pending(current)) {
1755                         rc = -EINTR;
1756                         break;
1757                 }
1758         }
1759
1760         if (retlen)
1761                 *retlen = pos;
1762         return rc;
1763 }
1764
1765 int falcon_spi_write(const struct efx_spi_device *spi, loff_t start,
1766                      size_t len, size_t *retlen, const u8 *buffer)
1767 {
1768         u8 verify_buffer[FALCON_SPI_MAX_LEN];
1769         unsigned int command, block_len, pos = 0;
1770         int rc = 0;
1771
1772         while (pos < len) {
1773                 rc = falcon_spi_cmd(spi, SPI_WREN, -1, NULL, NULL, 0);
1774                 if (rc)
1775                         break;
1776
1777                 block_len = min((unsigned int)len - pos,
1778                                 falcon_spi_write_limit(spi, start + pos));
1779                 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
1780                 rc = falcon_spi_cmd(spi, command, start + pos,
1781                                     buffer + pos, NULL, block_len);
1782                 if (rc)
1783                         break;
1784
1785                 rc = falcon_spi_fast_wait(spi);
1786                 if (rc)
1787                         break;
1788
1789                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1790                 rc = falcon_spi_cmd(spi, command, start + pos,
1791                                     NULL, verify_buffer, block_len);
1792                 if (memcmp(verify_buffer, buffer + pos, block_len)) {
1793                         rc = -EIO;
1794                         break;
1795                 }
1796
1797                 pos += block_len;
1798
1799                 /* Avoid locking up the system */
1800                 cond_resched();
1801                 if (signal_pending(current)) {
1802                         rc = -EINTR;
1803                         break;
1804                 }
1805         }
1806
1807         if (retlen)
1808                 *retlen = pos;
1809         return rc;
1810 }
1811
1812 /**************************************************************************
1813  *
1814  * MAC wrapper
1815  *
1816  **************************************************************************
1817  */
1818 void falcon_drain_tx_fifo(struct efx_nic *efx)
1819 {
1820         efx_oword_t temp;
1821         int count;
1822
1823         if ((falcon_rev(efx) < FALCON_REV_B0) ||
1824             (efx->loopback_mode != LOOPBACK_NONE))
1825                 return;
1826
1827         falcon_read(efx, &temp, MAC0_CTRL_REG_KER);
1828         /* There is no point in draining more than once */
1829         if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0))
1830                 return;
1831
1832         /* MAC stats will fail whilst the TX fifo is draining. Serialise
1833          * the drain sequence with the statistics fetch */
1834         spin_lock(&efx->stats_lock);
1835
1836         EFX_SET_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0, 1);
1837         falcon_write(efx, &temp, MAC0_CTRL_REG_KER);
1838
1839         /* Reset the MAC and EM block. */
1840         falcon_read(efx, &temp, GLB_CTL_REG_KER);
1841         EFX_SET_OWORD_FIELD(temp, RST_XGTX, 1);
1842         EFX_SET_OWORD_FIELD(temp, RST_XGRX, 1);
1843         EFX_SET_OWORD_FIELD(temp, RST_EM, 1);
1844         falcon_write(efx, &temp, GLB_CTL_REG_KER);
1845
1846         count = 0;
1847         while (1) {
1848                 falcon_read(efx, &temp, GLB_CTL_REG_KER);
1849                 if (!EFX_OWORD_FIELD(temp, RST_XGTX) &&
1850                     !EFX_OWORD_FIELD(temp, RST_XGRX) &&
1851                     !EFX_OWORD_FIELD(temp, RST_EM)) {
1852                         EFX_LOG(efx, "Completed MAC reset after %d loops\n",
1853                                 count);
1854                         break;
1855                 }
1856                 if (count > 20) {
1857                         EFX_ERR(efx, "MAC reset failed\n");
1858                         break;
1859                 }
1860                 count++;
1861                 udelay(10);
1862         }
1863
1864         spin_unlock(&efx->stats_lock);
1865
1866         /* If we've reset the EM block and the link is up, then
1867          * we'll have to kick the XAUI link so the PHY can recover */
1868         if (efx->link_up && EFX_WORKAROUND_5147(efx))
1869                 falcon_reset_xaui(efx);
1870 }
1871
1872 void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1873 {
1874         efx_oword_t temp;
1875
1876         if (falcon_rev(efx) < FALCON_REV_B0)
1877                 return;
1878
1879         /* Isolate the MAC -> RX */
1880         falcon_read(efx, &temp, RX_CFG_REG_KER);
1881         EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 0);
1882         falcon_write(efx, &temp, RX_CFG_REG_KER);
1883
1884         if (!efx->link_up)
1885                 falcon_drain_tx_fifo(efx);
1886 }
1887
1888 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1889 {
1890         efx_oword_t reg;
1891         int link_speed;
1892         bool tx_fc;
1893
1894         if (efx->link_options & GM_LPA_10000)
1895                 link_speed = 0x3;
1896         else if (efx->link_options & GM_LPA_1000)
1897                 link_speed = 0x2;
1898         else if (efx->link_options & GM_LPA_100)
1899                 link_speed = 0x1;
1900         else
1901                 link_speed = 0x0;
1902         /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1903          * as advertised.  Disable to ensure packets are not
1904          * indefinitely held and TX queue can be flushed at any point
1905          * while the link is down. */
1906         EFX_POPULATE_OWORD_5(reg,
1907                              MAC_XOFF_VAL, 0xffff /* max pause time */,
1908                              MAC_BCAD_ACPT, 1,
1909                              MAC_UC_PROM, efx->promiscuous,
1910                              MAC_LINK_STATUS, 1, /* always set */
1911                              MAC_SPEED, link_speed);
1912         /* On B0, MAC backpressure can be disabled and packets get
1913          * discarded. */
1914         if (falcon_rev(efx) >= FALCON_REV_B0) {
1915                 EFX_SET_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0,
1916                                     !efx->link_up);
1917         }
1918
1919         falcon_write(efx, &reg, MAC0_CTRL_REG_KER);
1920
1921         /* Restore the multicast hash registers. */
1922         falcon_set_multicast_hash(efx);
1923
1924         /* Transmission of pause frames when RX crosses the threshold is
1925          * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
1926          * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
1927         tx_fc = !!(efx->flow_control & EFX_FC_TX);
1928         falcon_read(efx, &reg, RX_CFG_REG_KER);
1929         EFX_SET_OWORD_FIELD_VER(efx, reg, RX_XOFF_MAC_EN, tx_fc);
1930
1931         /* Unisolate the MAC -> RX */
1932         if (falcon_rev(efx) >= FALCON_REV_B0)
1933                 EFX_SET_OWORD_FIELD(reg, RX_INGR_EN_B0, 1);
1934         falcon_write(efx, &reg, RX_CFG_REG_KER);
1935 }
1936
1937 int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset)
1938 {
1939         efx_oword_t reg;
1940         u32 *dma_done;
1941         int i;
1942
1943         if (disable_dma_stats)
1944                 return 0;
1945
1946         /* Statistics fetch will fail if the MAC is in TX drain */
1947         if (falcon_rev(efx) >= FALCON_REV_B0) {
1948                 efx_oword_t temp;
1949                 falcon_read(efx, &temp, MAC0_CTRL_REG_KER);
1950                 if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0))
1951                         return 0;
1952         }
1953
1954         dma_done = (efx->stats_buffer.addr + done_offset);
1955         *dma_done = FALCON_STATS_NOT_DONE;
1956         wmb(); /* ensure done flag is clear */
1957
1958         /* Initiate DMA transfer of stats */
1959         EFX_POPULATE_OWORD_2(reg,
1960                              MAC_STAT_DMA_CMD, 1,
1961                              MAC_STAT_DMA_ADR,
1962                              efx->stats_buffer.dma_addr);
1963         falcon_write(efx, &reg, MAC0_STAT_DMA_REG_KER);
1964
1965         /* Wait for transfer to complete */
1966         for (i = 0; i < 400; i++) {
1967                 if (*(volatile u32 *)dma_done == FALCON_STATS_DONE)
1968                         return 0;
1969                 udelay(10);
1970         }
1971
1972         EFX_ERR(efx, "timed out waiting for statistics\n");
1973         return -ETIMEDOUT;
1974 }
1975
1976 /**************************************************************************
1977  *
1978  * PHY access via GMII
1979  *
1980  **************************************************************************
1981  */
1982
1983 /* Use the top bit of the MII PHY id to indicate the PHY type
1984  * (1G/10G), with the remaining bits as the actual PHY id.
1985  *
1986  * This allows us to avoid leaking information from the mii_if_info
1987  * structure into other data structures.
1988  */
1989 #define FALCON_PHY_ID_ID_WIDTH  EFX_WIDTH(MD_PRT_DEV_ADR)
1990 #define FALCON_PHY_ID_ID_MASK   ((1 << FALCON_PHY_ID_ID_WIDTH) - 1)
1991 #define FALCON_PHY_ID_WIDTH     (FALCON_PHY_ID_ID_WIDTH + 1)
1992 #define FALCON_PHY_ID_MASK      ((1 << FALCON_PHY_ID_WIDTH) - 1)
1993 #define FALCON_PHY_ID_10G       (1 << (FALCON_PHY_ID_WIDTH - 1))
1994
1995
1996 /* Packing the clause 45 port and device fields into a single value */
1997 #define MD_PRT_ADR_COMP_LBN   (MD_PRT_ADR_LBN - MD_DEV_ADR_LBN)
1998 #define MD_PRT_ADR_COMP_WIDTH  MD_PRT_ADR_WIDTH
1999 #define MD_DEV_ADR_COMP_LBN    0
2000 #define MD_DEV_ADR_COMP_WIDTH  MD_DEV_ADR_WIDTH
2001
2002
2003 /* Wait for GMII access to complete */
2004 static int falcon_gmii_wait(struct efx_nic *efx)
2005 {
2006         efx_dword_t md_stat;
2007         int count;
2008
2009         for (count = 0; count < 1000; count++) {        /* wait upto 10ms */
2010                 falcon_readl(efx, &md_stat, MD_STAT_REG_KER);
2011                 if (EFX_DWORD_FIELD(md_stat, MD_BSY) == 0) {
2012                         if (EFX_DWORD_FIELD(md_stat, MD_LNFL) != 0 ||
2013                             EFX_DWORD_FIELD(md_stat, MD_BSERR) != 0) {
2014                                 EFX_ERR(efx, "error from GMII access "
2015                                         EFX_DWORD_FMT"\n",
2016                                         EFX_DWORD_VAL(md_stat));
2017                                 return -EIO;
2018                         }
2019                         return 0;
2020                 }
2021                 udelay(10);
2022         }
2023         EFX_ERR(efx, "timed out waiting for GMII\n");
2024         return -ETIMEDOUT;
2025 }
2026
2027 /* Writes a GMII register of a PHY connected to Falcon using MDIO. */
2028 static void falcon_mdio_write(struct net_device *net_dev, int phy_id,
2029                               int addr, int value)
2030 {
2031         struct efx_nic *efx = netdev_priv(net_dev);
2032         unsigned int phy_id2 = phy_id & FALCON_PHY_ID_ID_MASK;
2033         efx_oword_t reg;
2034
2035         /* The 'generic' prt/dev packing in mdio_10g.h is conveniently
2036          * chosen so that the only current user, Falcon, can take the
2037          * packed value and use them directly.
2038          * Fail to build if this assumption is broken.
2039          */
2040         BUILD_BUG_ON(FALCON_PHY_ID_10G != MDIO45_XPRT_ID_IS10G);
2041         BUILD_BUG_ON(FALCON_PHY_ID_ID_WIDTH != MDIO45_PRT_DEV_WIDTH);
2042         BUILD_BUG_ON(MD_PRT_ADR_COMP_LBN != MDIO45_PRT_ID_COMP_LBN);
2043         BUILD_BUG_ON(MD_DEV_ADR_COMP_LBN != MDIO45_DEV_ID_COMP_LBN);
2044
2045         if (phy_id2 == PHY_ADDR_INVALID)
2046                 return;
2047
2048         /* See falcon_mdio_read for an explanation. */
2049         if (!(phy_id & FALCON_PHY_ID_10G)) {
2050                 int mmd = ffs(efx->phy_op->mmds) - 1;
2051                 EFX_TRACE(efx, "Fixing erroneous clause22 write\n");
2052                 phy_id2 = mdio_clause45_pack(phy_id2, mmd)
2053                         & FALCON_PHY_ID_ID_MASK;
2054         }
2055
2056         EFX_REGDUMP(efx, "writing GMII %d register %02x with %04x\n", phy_id,
2057                     addr, value);
2058
2059         spin_lock_bh(&efx->phy_lock);
2060
2061         /* Check MII not currently being accessed */
2062         if (falcon_gmii_wait(efx) != 0)
2063                 goto out;
2064
2065         /* Write the address/ID register */
2066         EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
2067         falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
2068
2069         EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_id2);
2070         falcon_write(efx, &reg, MD_ID_REG_KER);
2071
2072         /* Write data */
2073         EFX_POPULATE_OWORD_1(reg, MD_TXD, value);
2074         falcon_write(efx, &reg, MD_TXD_REG_KER);
2075
2076         EFX_POPULATE_OWORD_2(reg,
2077                              MD_WRC, 1,
2078                              MD_GC, 0);
2079         falcon_write(efx, &reg, MD_CS_REG_KER);
2080
2081         /* Wait for data to be written */
2082         if (falcon_gmii_wait(efx) != 0) {
2083                 /* Abort the write operation */
2084                 EFX_POPULATE_OWORD_2(reg,
2085                                      MD_WRC, 0,
2086                                      MD_GC, 1);
2087                 falcon_write(efx, &reg, MD_CS_REG_KER);
2088                 udelay(10);
2089         }
2090
2091  out:
2092         spin_unlock_bh(&efx->phy_lock);
2093 }
2094
2095 /* Reads a GMII register from a PHY connected to Falcon.  If no value
2096  * could be read, -1 will be returned. */
2097 static int falcon_mdio_read(struct net_device *net_dev, int phy_id, int addr)
2098 {
2099         struct efx_nic *efx = netdev_priv(net_dev);
2100         unsigned int phy_addr = phy_id & FALCON_PHY_ID_ID_MASK;
2101         efx_oword_t reg;
2102         int value = -1;
2103
2104         if (phy_addr == PHY_ADDR_INVALID)
2105                 return -1;
2106
2107         /* Our PHY code knows whether it needs to talk clause 22(1G) or 45(10G)
2108          * but the generic Linux code does not make any distinction or have
2109          * any state for this.
2110          * We spot the case where someone tried to talk 22 to a 45 PHY and
2111          * redirect the request to the lowest numbered MMD as a clause45
2112          * request. This is enough to allow simple queries like id and link
2113          * state to succeed. TODO: We may need to do more in future.
2114          */
2115         if (!(phy_id & FALCON_PHY_ID_10G)) {
2116                 int mmd = ffs(efx->phy_op->mmds) - 1;
2117                 EFX_TRACE(efx, "Fixing erroneous clause22 read\n");
2118                 phy_addr = mdio_clause45_pack(phy_addr, mmd)
2119                         & FALCON_PHY_ID_ID_MASK;
2120         }
2121
2122         spin_lock_bh(&efx->phy_lock);
2123
2124         /* Check MII not currently being accessed */
2125         if (falcon_gmii_wait(efx) != 0)
2126                 goto out;
2127
2128         EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
2129         falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
2130
2131         EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_addr);
2132         falcon_write(efx, &reg, MD_ID_REG_KER);
2133
2134         /* Request data to be read */
2135         EFX_POPULATE_OWORD_2(reg, MD_RDC, 1, MD_GC, 0);
2136         falcon_write(efx, &reg, MD_CS_REG_KER);
2137
2138         /* Wait for data to become available */
2139         value = falcon_gmii_wait(efx);
2140         if (value == 0) {
2141                 falcon_read(efx, &reg, MD_RXD_REG_KER);
2142                 value = EFX_OWORD_FIELD(reg, MD_RXD);
2143                 EFX_REGDUMP(efx, "read from GMII %d register %02x, got %04x\n",
2144                             phy_id, addr, value);
2145         } else {
2146                 /* Abort the read operation */
2147                 EFX_POPULATE_OWORD_2(reg,
2148                                      MD_RIC, 0,
2149                                      MD_GC, 1);
2150                 falcon_write(efx, &reg, MD_CS_REG_KER);
2151
2152                 EFX_LOG(efx, "read from GMII 0x%x register %02x, got "
2153                         "error %d\n", phy_id, addr, value);
2154         }
2155
2156  out:
2157         spin_unlock_bh(&efx->phy_lock);
2158
2159         return value;
2160 }
2161
2162 static void falcon_init_mdio(struct mii_if_info *gmii)
2163 {
2164         gmii->mdio_read = falcon_mdio_read;
2165         gmii->mdio_write = falcon_mdio_write;
2166         gmii->phy_id_mask = FALCON_PHY_ID_MASK;
2167         gmii->reg_num_mask = ((1 << EFX_WIDTH(MD_PHY_ADR)) - 1);
2168 }
2169
2170 static int falcon_probe_phy(struct efx_nic *efx)
2171 {
2172         switch (efx->phy_type) {
2173         case PHY_TYPE_10XPRESS:
2174                 efx->phy_op = &falcon_tenxpress_phy_ops;
2175                 break;
2176         case PHY_TYPE_XFP:
2177                 efx->phy_op = &falcon_xfp_phy_ops;
2178                 break;
2179         default:
2180                 EFX_ERR(efx, "Unknown PHY type %d\n",
2181                         efx->phy_type);
2182                 return -1;
2183         }
2184
2185         efx->loopback_modes = LOOPBACKS_10G_INTERNAL | efx->phy_op->loopbacks;
2186         return 0;
2187 }
2188
2189 /* This call is responsible for hooking in the MAC and PHY operations */
2190 int falcon_probe_port(struct efx_nic *efx)
2191 {
2192         int rc;
2193
2194         /* Hook in PHY operations table */
2195         rc = falcon_probe_phy(efx);
2196         if (rc)
2197                 return rc;
2198
2199         /* Set up GMII structure for PHY */
2200         efx->mii.supports_gmii = true;
2201         falcon_init_mdio(&efx->mii);
2202
2203         /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
2204         if (falcon_rev(efx) >= FALCON_REV_B0)
2205                 efx->flow_control = EFX_FC_RX | EFX_FC_TX;
2206         else
2207                 efx->flow_control = EFX_FC_RX;
2208
2209         /* Allocate buffer for stats */
2210         rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
2211                                  FALCON_MAC_STATS_SIZE);
2212         if (rc)
2213                 return rc;
2214         EFX_LOG(efx, "stats buffer at %llx (virt %p phys %lx)\n",
2215                 (unsigned long long)efx->stats_buffer.dma_addr,
2216                 efx->stats_buffer.addr,
2217                 virt_to_phys(efx->stats_buffer.addr));
2218
2219         return 0;
2220 }
2221
2222 void falcon_remove_port(struct efx_nic *efx)
2223 {
2224         falcon_free_buffer(efx, &efx->stats_buffer);
2225 }
2226
2227 /**************************************************************************
2228  *
2229  * Multicast filtering
2230  *
2231  **************************************************************************
2232  */
2233
2234 void falcon_set_multicast_hash(struct efx_nic *efx)
2235 {
2236         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2237
2238         /* Broadcast packets go through the multicast hash filter.
2239          * ether_crc_le() of the broadcast address is 0xbe2612ff
2240          * so we always add bit 0xff to the mask.
2241          */
2242         set_bit_le(0xff, mc_hash->byte);
2243
2244         falcon_write(efx, &mc_hash->oword[0], MAC_MCAST_HASH_REG0_KER);
2245         falcon_write(efx, &mc_hash->oword[1], MAC_MCAST_HASH_REG1_KER);
2246 }
2247
2248 /**************************************************************************
2249  *
2250  * Device reset
2251  *
2252  **************************************************************************
2253  */
2254
2255 /* Resets NIC to known state.  This routine must be called in process
2256  * context and is allowed to sleep. */
2257 int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2258 {
2259         struct falcon_nic_data *nic_data = efx->nic_data;
2260         efx_oword_t glb_ctl_reg_ker;
2261         int rc;
2262
2263         EFX_LOG(efx, "performing hardware reset (%d)\n", method);
2264
2265         /* Initiate device reset */
2266         if (method == RESET_TYPE_WORLD) {
2267                 rc = pci_save_state(efx->pci_dev);
2268                 if (rc) {
2269                         EFX_ERR(efx, "failed to backup PCI state of primary "
2270                                 "function prior to hardware reset\n");
2271                         goto fail1;
2272                 }
2273                 if (FALCON_IS_DUAL_FUNC(efx)) {
2274                         rc = pci_save_state(nic_data->pci_dev2);
2275                         if (rc) {
2276                                 EFX_ERR(efx, "failed to backup PCI state of "
2277                                         "secondary function prior to "
2278                                         "hardware reset\n");
2279                                 goto fail2;
2280                         }
2281                 }
2282
2283                 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2284                                      EXT_PHY_RST_DUR, 0x7,
2285                                      SWRST, 1);
2286         } else {
2287                 int reset_phy = (method == RESET_TYPE_INVISIBLE ?
2288                                  EXCLUDE_FROM_RESET : 0);
2289
2290                 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2291                                      EXT_PHY_RST_CTL, reset_phy,
2292                                      PCIE_CORE_RST_CTL, EXCLUDE_FROM_RESET,
2293                                      PCIE_NSTCK_RST_CTL, EXCLUDE_FROM_RESET,
2294                                      PCIE_SD_RST_CTL, EXCLUDE_FROM_RESET,
2295                                      EE_RST_CTL, EXCLUDE_FROM_RESET,
2296                                      EXT_PHY_RST_DUR, 0x7 /* 10ms */,
2297                                      SWRST, 1);
2298         }
2299         falcon_write(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
2300
2301         EFX_LOG(efx, "waiting for hardware reset\n");
2302         schedule_timeout_uninterruptible(HZ / 20);
2303
2304         /* Restore PCI configuration if needed */
2305         if (method == RESET_TYPE_WORLD) {
2306                 if (FALCON_IS_DUAL_FUNC(efx)) {
2307                         rc = pci_restore_state(nic_data->pci_dev2);
2308                         if (rc) {
2309                                 EFX_ERR(efx, "failed to restore PCI config for "
2310                                         "the secondary function\n");
2311                                 goto fail3;
2312                         }
2313                 }
2314                 rc = pci_restore_state(efx->pci_dev);
2315                 if (rc) {
2316                         EFX_ERR(efx, "failed to restore PCI config for the "
2317                                 "primary function\n");
2318                         goto fail4;
2319                 }
2320                 EFX_LOG(efx, "successfully restored PCI config\n");
2321         }
2322
2323         /* Assert that reset complete */
2324         falcon_read(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
2325         if (EFX_OWORD_FIELD(glb_ctl_reg_ker, SWRST) != 0) {
2326                 rc = -ETIMEDOUT;
2327                 EFX_ERR(efx, "timed out waiting for hardware reset\n");
2328                 goto fail5;
2329         }
2330         EFX_LOG(efx, "hardware reset complete\n");
2331
2332         return 0;
2333
2334         /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2335 fail2:
2336 fail3:
2337         pci_restore_state(efx->pci_dev);
2338 fail1:
2339 fail4:
2340 fail5:
2341         return rc;
2342 }
2343
2344 /* Zeroes out the SRAM contents.  This routine must be called in
2345  * process context and is allowed to sleep.
2346  */
2347 static int falcon_reset_sram(struct efx_nic *efx)
2348 {
2349         efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2350         int count;
2351
2352         /* Set the SRAM wake/sleep GPIO appropriately. */
2353         falcon_read(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
2354         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OEN, 1);
2355         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OUT, 1);
2356         falcon_write(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
2357
2358         /* Initiate SRAM reset */
2359         EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2360                              SRAM_OOB_BT_INIT_EN, 1,
2361                              SRM_NUM_BANKS_AND_BANK_SIZE, 0);
2362         falcon_write(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
2363
2364         /* Wait for SRAM reset to complete */
2365         count = 0;
2366         do {
2367                 EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
2368
2369                 /* SRAM reset is slow; expect around 16ms */
2370                 schedule_timeout_uninterruptible(HZ / 50);
2371
2372                 /* Check for reset complete */
2373                 falcon_read(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
2374                 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, SRAM_OOB_BT_INIT_EN)) {
2375                         EFX_LOG(efx, "SRAM reset complete\n");
2376
2377                         return 0;
2378                 }
2379         } while (++count < 20); /* wait upto 0.4 sec */
2380
2381         EFX_ERR(efx, "timed out waiting for SRAM reset\n");
2382         return -ETIMEDOUT;
2383 }
2384
2385 static int falcon_spi_device_init(struct efx_nic *efx,
2386                                   struct efx_spi_device **spi_device_ret,
2387                                   unsigned int device_id, u32 device_type)
2388 {
2389         struct efx_spi_device *spi_device;
2390
2391         if (device_type != 0) {
2392                 spi_device = kmalloc(sizeof(*spi_device), GFP_KERNEL);
2393                 if (!spi_device)
2394                         return -ENOMEM;
2395                 spi_device->device_id = device_id;
2396                 spi_device->size =
2397                         1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2398                 spi_device->addr_len =
2399                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2400                 spi_device->munge_address = (spi_device->size == 1 << 9 &&
2401                                              spi_device->addr_len == 1);
2402                 spi_device->block_size =
2403                         1 << SPI_DEV_TYPE_FIELD(device_type,
2404                                                 SPI_DEV_TYPE_BLOCK_SIZE);
2405
2406                 spi_device->efx = efx;
2407         } else {
2408                 spi_device = NULL;
2409         }
2410
2411         kfree(*spi_device_ret);
2412         *spi_device_ret = spi_device;
2413         return 0;
2414 }
2415
2416
2417 static void falcon_remove_spi_devices(struct efx_nic *efx)
2418 {
2419         kfree(efx->spi_eeprom);
2420         efx->spi_eeprom = NULL;
2421         kfree(efx->spi_flash);
2422         efx->spi_flash = NULL;
2423 }
2424
2425 /* Extract non-volatile configuration */
2426 static int falcon_probe_nvconfig(struct efx_nic *efx)
2427 {
2428         struct falcon_nvconfig *nvconfig;
2429         struct efx_spi_device *spi;
2430         int magic_num, struct_ver, board_rev;
2431         int rc;
2432
2433         nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2434         if (!nvconfig)
2435                 return -ENOMEM;
2436
2437         /* Read the whole configuration structure into memory. */
2438         spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
2439         rc = falcon_spi_read(spi, NVCONFIG_BASE, sizeof(*nvconfig),
2440                              NULL, (char *)nvconfig);
2441         if (rc) {
2442                 EFX_ERR(efx, "Failed to read %s\n", efx->spi_flash ? "flash" :
2443                         "EEPROM");
2444                 goto fail1;
2445         }
2446
2447         /* Read the MAC addresses */
2448         memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
2449
2450         /* Read the board configuration. */
2451         magic_num = le16_to_cpu(nvconfig->board_magic_num);
2452         struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
2453
2454         if (magic_num != NVCONFIG_BOARD_MAGIC_NUM || struct_ver < 2) {
2455                 EFX_ERR(efx, "Non volatile memory bad magic=%x ver=%x "
2456                         "therefore using defaults\n", magic_num, struct_ver);
2457                 efx->phy_type = PHY_TYPE_NONE;
2458                 efx->mii.phy_id = PHY_ADDR_INVALID;
2459                 board_rev = 0;
2460         } else {
2461                 struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
2462                 struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
2463
2464                 efx->phy_type = v2->port0_phy_type;
2465                 efx->mii.phy_id = v2->port0_phy_addr;
2466                 board_rev = le16_to_cpu(v2->board_revision);
2467
2468                 if (struct_ver >= 3) {
2469                         __le32 fl = v3->spi_device_type[EE_SPI_FLASH];
2470                         __le32 ee = v3->spi_device_type[EE_SPI_EEPROM];
2471                         rc = falcon_spi_device_init(efx, &efx->spi_flash,
2472                                                     EE_SPI_FLASH,
2473                                                     le32_to_cpu(fl));
2474                         if (rc)
2475                                 goto fail2;
2476                         rc = falcon_spi_device_init(efx, &efx->spi_eeprom,
2477                                                     EE_SPI_EEPROM,
2478                                                     le32_to_cpu(ee));
2479                         if (rc)
2480                                 goto fail2;
2481                 }
2482         }
2483
2484         EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mii.phy_id);
2485
2486         efx_set_board_info(efx, board_rev);
2487
2488         kfree(nvconfig);
2489         return 0;
2490
2491  fail2:
2492         falcon_remove_spi_devices(efx);
2493  fail1:
2494         kfree(nvconfig);
2495         return rc;
2496 }
2497
2498 /* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
2499  * count, port speed).  Set workaround and feature flags accordingly.
2500  */
2501 static int falcon_probe_nic_variant(struct efx_nic *efx)
2502 {
2503         efx_oword_t altera_build;
2504
2505         falcon_read(efx, &altera_build, ALTERA_BUILD_REG_KER);
2506         if (EFX_OWORD_FIELD(altera_build, VER_ALL)) {
2507                 EFX_ERR(efx, "Falcon FPGA not supported\n");
2508                 return -ENODEV;
2509         }
2510
2511         switch (falcon_rev(efx)) {
2512         case FALCON_REV_A0:
2513         case 0xff:
2514                 EFX_ERR(efx, "Falcon rev A0 not supported\n");
2515                 return -ENODEV;
2516
2517         case FALCON_REV_A1:{
2518                 efx_oword_t nic_stat;
2519
2520                 falcon_read(efx, &nic_stat, NIC_STAT_REG);
2521
2522                 if (EFX_OWORD_FIELD(nic_stat, STRAP_PCIE) == 0) {
2523                         EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
2524                         return -ENODEV;
2525                 }
2526                 if (!EFX_OWORD_FIELD(nic_stat, STRAP_10G)) {
2527                         EFX_ERR(efx, "1G mode not supported\n");
2528                         return -ENODEV;
2529                 }
2530                 break;
2531         }
2532
2533         case FALCON_REV_B0:
2534                 break;
2535
2536         default:
2537                 EFX_ERR(efx, "Unknown Falcon rev %d\n", falcon_rev(efx));
2538                 return -ENODEV;
2539         }
2540
2541         return 0;
2542 }
2543
2544 /* Probe all SPI devices on the NIC */
2545 static void falcon_probe_spi_devices(struct efx_nic *efx)
2546 {
2547         efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2548         bool has_flash, has_eeprom, boot_is_external;
2549
2550         falcon_read(efx, &gpio_ctl, GPIO_CTL_REG_KER);
2551         falcon_read(efx, &nic_stat, NIC_STAT_REG);
2552         falcon_read(efx, &ee_vpd_cfg, EE_VPD_CFG_REG_KER);
2553
2554         has_flash = EFX_OWORD_FIELD(nic_stat, SF_PRST);
2555         has_eeprom = EFX_OWORD_FIELD(nic_stat, EE_PRST);
2556         boot_is_external = EFX_OWORD_FIELD(gpio_ctl, BOOTED_USING_NVDEVICE);
2557
2558         if (has_flash) {
2559                 /* Default flash SPI device: Atmel AT25F1024
2560                  * 128 KB, 24-bit address, 32 KB erase block,
2561                  * 256 B write block
2562                  */
2563                 u32 flash_device_type =
2564                         (17 << SPI_DEV_TYPE_SIZE_LBN)
2565                         | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
2566                         | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
2567                         | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
2568                         | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN);
2569
2570                 falcon_spi_device_init(efx, &efx->spi_flash,
2571                                        EE_SPI_FLASH, flash_device_type);
2572
2573                 if (!boot_is_external) {
2574                         /* Disable VPD and set clock dividers to safe
2575                          * values for initial programming.
2576                          */
2577                         EFX_LOG(efx, "Booted from internal ASIC settings;"
2578                                 " setting SPI config\n");
2579                         EFX_POPULATE_OWORD_3(ee_vpd_cfg, EE_VPD_EN, 0,
2580                                              /* 125 MHz / 7 ~= 20 MHz */
2581                                              EE_SF_CLOCK_DIV, 7,
2582                                              /* 125 MHz / 63 ~= 2 MHz */
2583                                              EE_EE_CLOCK_DIV, 63);
2584                         falcon_write(efx, &ee_vpd_cfg, EE_VPD_CFG_REG_KER);
2585                 }
2586         }
2587
2588         if (has_eeprom) {
2589                 u32 eeprom_device_type;
2590
2591                 /* If it has no flash, it must have a large EEPROM
2592                  * for chip config; otherwise check whether 9-bit
2593                  * addressing is used for VPD configuration
2594                  */
2595                 if (has_flash &&
2596                     (!boot_is_external ||
2597                      EFX_OWORD_FIELD(ee_vpd_cfg, EE_VPD_EN_AD9_MODE))) {
2598                         /* Default SPI device: Atmel AT25040 or similar
2599                          * 512 B, 9-bit address, 8 B write block
2600                          */
2601                         eeprom_device_type =
2602                                 (9 << SPI_DEV_TYPE_SIZE_LBN)
2603                                 | (1 << SPI_DEV_TYPE_ADDR_LEN_LBN)
2604                                 | (3 << SPI_DEV_TYPE_BLOCK_SIZE_LBN);
2605                 } else {
2606                         /* "Large" SPI device: Atmel AT25640 or similar
2607                          * 8 KB, 16-bit address, 32 B write block
2608                          */
2609                         eeprom_device_type =
2610                                 (13 << SPI_DEV_TYPE_SIZE_LBN)
2611                                 | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
2612                                 | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN);
2613                 }
2614
2615                 falcon_spi_device_init(efx, &efx->spi_eeprom,
2616                                        EE_SPI_EEPROM, eeprom_device_type);
2617         }
2618
2619         EFX_LOG(efx, "flash is %s, EEPROM is %s\n",
2620                 (has_flash ? "present" : "absent"),
2621                 (has_eeprom ? "present" : "absent"));
2622 }
2623
2624 int falcon_probe_nic(struct efx_nic *efx)
2625 {
2626         struct falcon_nic_data *nic_data;
2627         int rc;
2628
2629         /* Allocate storage for hardware specific data */
2630         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2631         efx->nic_data = nic_data;
2632
2633         /* Determine number of ports etc. */
2634         rc = falcon_probe_nic_variant(efx);
2635         if (rc)
2636                 goto fail1;
2637
2638         /* Probe secondary function if expected */
2639         if (FALCON_IS_DUAL_FUNC(efx)) {
2640                 struct pci_dev *dev = pci_dev_get(efx->pci_dev);
2641
2642                 while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
2643                                              dev))) {
2644                         if (dev->bus == efx->pci_dev->bus &&
2645                             dev->devfn == efx->pci_dev->devfn + 1) {
2646                                 nic_data->pci_dev2 = dev;
2647                                 break;
2648                         }
2649                 }
2650                 if (!nic_data->pci_dev2) {
2651                         EFX_ERR(efx, "failed to find secondary function\n");
2652                         rc = -ENODEV;
2653                         goto fail2;
2654                 }
2655         }
2656
2657         /* Now we can reset the NIC */
2658         rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
2659         if (rc) {
2660                 EFX_ERR(efx, "failed to reset NIC\n");
2661                 goto fail3;
2662         }
2663
2664         /* Allocate memory for INT_KER */
2665         rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
2666         if (rc)
2667                 goto fail4;
2668         BUG_ON(efx->irq_status.dma_addr & 0x0f);
2669
2670         EFX_LOG(efx, "INT_KER at %llx (virt %p phys %lx)\n",
2671                 (unsigned long long)efx->irq_status.dma_addr,
2672                 efx->irq_status.addr, virt_to_phys(efx->irq_status.addr));
2673
2674         falcon_probe_spi_devices(efx);
2675
2676         /* Read in the non-volatile configuration */
2677         rc = falcon_probe_nvconfig(efx);
2678         if (rc)
2679                 goto fail5;
2680
2681         /* Initialise I2C adapter */
2682         efx->i2c_adap.owner = THIS_MODULE;
2683         nic_data->i2c_data = falcon_i2c_bit_operations;
2684         nic_data->i2c_data.data = efx;
2685         efx->i2c_adap.algo_data = &nic_data->i2c_data;
2686         efx->i2c_adap.dev.parent = &efx->pci_dev->dev;
2687         strlcpy(efx->i2c_adap.name, "SFC4000 GPIO", sizeof(efx->i2c_adap.name));
2688         rc = i2c_bit_add_bus(&efx->i2c_adap);
2689         if (rc)
2690                 goto fail5;
2691
2692         return 0;
2693
2694  fail5:
2695         falcon_remove_spi_devices(efx);
2696         falcon_free_buffer(efx, &efx->irq_status);
2697  fail4:
2698  fail3:
2699         if (nic_data->pci_dev2) {
2700                 pci_dev_put(nic_data->pci_dev2);
2701                 nic_data->pci_dev2 = NULL;
2702         }
2703  fail2:
2704  fail1:
2705         kfree(efx->nic_data);
2706         return rc;
2707 }
2708
2709 /* This call performs hardware-specific global initialisation, such as
2710  * defining the descriptor cache sizes and number of RSS channels.
2711  * It does not set up any buffers, descriptor rings or event queues.
2712  */
2713 int falcon_init_nic(struct efx_nic *efx)
2714 {
2715         efx_oword_t temp;
2716         unsigned thresh;
2717         int rc;
2718
2719         /* Set up the address region register. This is only needed
2720          * for the B0 FPGA, but since we are just pushing in the
2721          * reset defaults this may as well be unconditional. */
2722         EFX_POPULATE_OWORD_4(temp, ADR_REGION0, 0,
2723                                    ADR_REGION1, (1 << 16),
2724                                    ADR_REGION2, (2 << 16),
2725                                    ADR_REGION3, (3 << 16));
2726         falcon_write(efx, &temp, ADR_REGION_REG_KER);
2727
2728         /* Use on-chip SRAM */
2729         falcon_read(efx, &temp, NIC_STAT_REG);
2730         EFX_SET_OWORD_FIELD(temp, ONCHIP_SRAM, 1);
2731         falcon_write(efx, &temp, NIC_STAT_REG);
2732
2733         /* Set buffer table mode */
2734         EFX_POPULATE_OWORD_1(temp, BUF_TBL_MODE, BUF_TBL_MODE_FULL);
2735         falcon_write(efx, &temp, BUF_TBL_CFG_REG_KER);
2736
2737         rc = falcon_reset_sram(efx);
2738         if (rc)
2739                 return rc;
2740
2741         /* Set positions of descriptor caches in SRAM. */
2742         EFX_POPULATE_OWORD_1(temp, SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
2743         falcon_write(efx, &temp, SRM_TX_DC_CFG_REG_KER);
2744         EFX_POPULATE_OWORD_1(temp, SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
2745         falcon_write(efx, &temp, SRM_RX_DC_CFG_REG_KER);
2746
2747         /* Set TX descriptor cache size. */
2748         BUILD_BUG_ON(TX_DC_ENTRIES != (16 << TX_DC_ENTRIES_ORDER));
2749         EFX_POPULATE_OWORD_1(temp, TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
2750         falcon_write(efx, &temp, TX_DC_CFG_REG_KER);
2751
2752         /* Set RX descriptor cache size.  Set low watermark to size-8, as
2753          * this allows most efficient prefetching.
2754          */
2755         BUILD_BUG_ON(RX_DC_ENTRIES != (16 << RX_DC_ENTRIES_ORDER));
2756         EFX_POPULATE_OWORD_1(temp, RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
2757         falcon_write(efx, &temp, RX_DC_CFG_REG_KER);
2758         EFX_POPULATE_OWORD_1(temp, RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
2759         falcon_write(efx, &temp, RX_DC_PF_WM_REG_KER);
2760
2761         /* Clear the parity enables on the TX data fifos as
2762          * they produce false parity errors because of timing issues
2763          */
2764         if (EFX_WORKAROUND_5129(efx)) {
2765                 falcon_read(efx, &temp, SPARE_REG_KER);
2766                 EFX_SET_OWORD_FIELD(temp, MEM_PERR_EN_TX_DATA, 0);
2767                 falcon_write(efx, &temp, SPARE_REG_KER);
2768         }
2769
2770         /* Enable all the genuinely fatal interrupts.  (They are still
2771          * masked by the overall interrupt mask, controlled by
2772          * falcon_interrupts()).
2773          *
2774          * Note: All other fatal interrupts are enabled
2775          */
2776         EFX_POPULATE_OWORD_3(temp,
2777                              ILL_ADR_INT_KER_EN, 1,
2778                              RBUF_OWN_INT_KER_EN, 1,
2779                              TBUF_OWN_INT_KER_EN, 1);
2780         EFX_INVERT_OWORD(temp);
2781         falcon_write(efx, &temp, FATAL_INTR_REG_KER);
2782
2783         /* Set number of RSS queues for receive path. */
2784         falcon_read(efx, &temp, RX_FILTER_CTL_REG);
2785         if (falcon_rev(efx) >= FALCON_REV_B0)
2786                 EFX_SET_OWORD_FIELD(temp, NUM_KER, 0);
2787         else
2788                 EFX_SET_OWORD_FIELD(temp, NUM_KER, efx->n_rx_queues - 1);
2789         if (EFX_WORKAROUND_7244(efx)) {
2790                 EFX_SET_OWORD_FIELD(temp, UDP_FULL_SRCH_LIMIT, 8);
2791                 EFX_SET_OWORD_FIELD(temp, UDP_WILD_SRCH_LIMIT, 8);
2792                 EFX_SET_OWORD_FIELD(temp, TCP_FULL_SRCH_LIMIT, 8);
2793                 EFX_SET_OWORD_FIELD(temp, TCP_WILD_SRCH_LIMIT, 8);
2794         }
2795         falcon_write(efx, &temp, RX_FILTER_CTL_REG);
2796
2797         falcon_setup_rss_indir_table(efx);
2798
2799         /* Setup RX.  Wait for descriptor is broken and must
2800          * be disabled.  RXDP recovery shouldn't be needed, but is.
2801          */
2802         falcon_read(efx, &temp, RX_SELF_RST_REG_KER);
2803         EFX_SET_OWORD_FIELD(temp, RX_NODESC_WAIT_DIS, 1);
2804         EFX_SET_OWORD_FIELD(temp, RX_RECOVERY_EN, 1);
2805         if (EFX_WORKAROUND_5583(efx))
2806                 EFX_SET_OWORD_FIELD(temp, RX_ISCSI_DIS, 1);
2807         falcon_write(efx, &temp, RX_SELF_RST_REG_KER);
2808
2809         /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
2810          * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
2811          */
2812         falcon_read(efx, &temp, TX_CFG2_REG_KER);
2813         EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER, 0xfe);
2814         EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER_EN, 1);
2815         EFX_SET_OWORD_FIELD(temp, TX_ONE_PKT_PER_Q, 1);
2816         EFX_SET_OWORD_FIELD(temp, TX_CSR_PUSH_EN, 0);
2817         EFX_SET_OWORD_FIELD(temp, TX_DIS_NON_IP_EV, 1);
2818         /* Enable SW_EV to inherit in char driver - assume harmless here */
2819         EFX_SET_OWORD_FIELD(temp, TX_SW_EV_EN, 1);
2820         /* Prefetch threshold 2 => fetch when descriptor cache half empty */
2821         EFX_SET_OWORD_FIELD(temp, TX_PREF_THRESHOLD, 2);
2822         /* Squash TX of packets of 16 bytes or less */
2823         if (falcon_rev(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
2824                 EFX_SET_OWORD_FIELD(temp, TX_FLUSH_MIN_LEN_EN_B0, 1);
2825         falcon_write(efx, &temp, TX_CFG2_REG_KER);
2826
2827         /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2828          * descriptors (which is bad).
2829          */
2830         falcon_read(efx, &temp, TX_CFG_REG_KER);
2831         EFX_SET_OWORD_FIELD(temp, TX_NO_EOP_DISC_EN, 0);
2832         falcon_write(efx, &temp, TX_CFG_REG_KER);
2833
2834         /* RX config */
2835         falcon_read(efx, &temp, RX_CFG_REG_KER);
2836         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_DESC_PUSH_EN, 0);
2837         if (EFX_WORKAROUND_7575(efx))
2838                 EFX_SET_OWORD_FIELD_VER(efx, temp, RX_USR_BUF_SIZE,
2839                                         (3 * 4096) / 32);
2840         if (falcon_rev(efx) >= FALCON_REV_B0)
2841                 EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 1);
2842
2843         /* RX FIFO flow control thresholds */
2844         thresh = ((rx_xon_thresh_bytes >= 0) ?
2845                   rx_xon_thresh_bytes : efx->type->rx_xon_thresh);
2846         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_MAC_TH, thresh / 256);
2847         thresh = ((rx_xoff_thresh_bytes >= 0) ?
2848                   rx_xoff_thresh_bytes : efx->type->rx_xoff_thresh);
2849         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_MAC_TH, thresh / 256);
2850         /* RX control FIFO thresholds [32 entries] */
2851         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_TX_TH, 20);
2852         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_TX_TH, 25);
2853         falcon_write(efx, &temp, RX_CFG_REG_KER);
2854
2855         /* Set destination of both TX and RX Flush events */
2856         if (falcon_rev(efx) >= FALCON_REV_B0) {
2857                 EFX_POPULATE_OWORD_1(temp, FLS_EVQ_ID, 0);
2858                 falcon_write(efx, &temp, DP_CTRL_REG);
2859         }
2860
2861         return 0;
2862 }
2863
2864 void falcon_remove_nic(struct efx_nic *efx)
2865 {
2866         struct falcon_nic_data *nic_data = efx->nic_data;
2867         int rc;
2868
2869         rc = i2c_del_adapter(&efx->i2c_adap);
2870         BUG_ON(rc);
2871
2872         falcon_remove_spi_devices(efx);
2873         falcon_free_buffer(efx, &efx->irq_status);
2874
2875         falcon_reset_hw(efx, RESET_TYPE_ALL);
2876
2877         /* Release the second function after the reset */
2878         if (nic_data->pci_dev2) {
2879                 pci_dev_put(nic_data->pci_dev2);
2880                 nic_data->pci_dev2 = NULL;
2881         }
2882
2883         /* Tear down the private nic state */
2884         kfree(efx->nic_data);
2885         efx->nic_data = NULL;
2886 }
2887
2888 void falcon_update_nic_stats(struct efx_nic *efx)
2889 {
2890         efx_oword_t cnt;
2891
2892         falcon_read(efx, &cnt, RX_NODESC_DROP_REG_KER);
2893         efx->n_rx_nodesc_drop_cnt += EFX_OWORD_FIELD(cnt, RX_NODESC_DROP_CNT);
2894 }
2895
2896 /**************************************************************************
2897  *
2898  * Revision-dependent attributes used by efx.c
2899  *
2900  **************************************************************************
2901  */
2902
2903 struct efx_nic_type falcon_a_nic_type = {
2904         .mem_bar = 2,
2905         .mem_map_size = 0x20000,
2906         .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_A1,
2907         .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_A1,
2908         .buf_tbl_base = BUF_TBL_KER_A1,
2909         .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_A1,
2910         .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_A1,
2911         .txd_ring_mask = FALCON_TXD_RING_MASK,
2912         .rxd_ring_mask = FALCON_RXD_RING_MASK,
2913         .evq_size = FALCON_EVQ_SIZE,
2914         .max_dma_mask = FALCON_DMA_MASK,
2915         .tx_dma_mask = FALCON_TX_DMA_MASK,
2916         .bug5391_mask = 0xf,
2917         .rx_xoff_thresh = 2048,
2918         .rx_xon_thresh = 512,
2919         .rx_buffer_padding = 0x24,
2920         .max_interrupt_mode = EFX_INT_MODE_MSI,
2921         .phys_addr_channels = 4,
2922 };
2923
2924 struct efx_nic_type falcon_b_nic_type = {
2925         .mem_bar = 2,
2926         /* Map everything up to and including the RSS indirection
2927          * table.  Don't map MSI-X table, MSI-X PBA since Linux
2928          * requires that they not be mapped.  */
2929         .mem_map_size = RX_RSS_INDIR_TBL_B0 + 0x800,
2930         .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_B0,
2931         .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_B0,
2932         .buf_tbl_base = BUF_TBL_KER_B0,
2933         .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_B0,
2934         .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_B0,
2935         .txd_ring_mask = FALCON_TXD_RING_MASK,
2936         .rxd_ring_mask = FALCON_RXD_RING_MASK,
2937         .evq_size = FALCON_EVQ_SIZE,
2938         .max_dma_mask = FALCON_DMA_MASK,
2939         .tx_dma_mask = FALCON_TX_DMA_MASK,
2940         .bug5391_mask = 0,
2941         .rx_xoff_thresh = 54272, /* ~80Kb - 3*max MTU */
2942         .rx_xon_thresh = 27648,  /* ~3*max MTU */
2943         .rx_buffer_padding = 0,
2944         .max_interrupt_mode = EFX_INT_MODE_MSIX,
2945         .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
2946                                    * interrupt handler only supports 32
2947                                    * channels */
2948 };
2949