sfc: Treat all MAC registers as 128-bit
[safe/jmp/linux-2.6] / drivers / net / sfc / falcon.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2008 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "mac.h"
22 #include "spi.h"
23 #include "falcon.h"
24 #include "regs.h"
25 #include "io.h"
26 #include "mdio_10g.h"
27 #include "phy.h"
28 #include "workarounds.h"
29
30 /* Falcon hardware control.
31  * Falcon is the internal codename for the SFC4000 controller that is
32  * present in SFE400X evaluation boards
33  */
34
35 /**************************************************************************
36  *
37  * Configurable values
38  *
39  **************************************************************************
40  */
41
42 static int disable_dma_stats;
43
44 /* This is set to 16 for a good reason.  In summary, if larger than
45  * 16, the descriptor cache holds more than a default socket
46  * buffer's worth of packets (for UDP we can only have at most one
47  * socket buffer's worth outstanding).  This combined with the fact
48  * that we only get 1 TX event per descriptor cache means the NIC
49  * goes idle.
50  */
51 #define TX_DC_ENTRIES 16
52 #define TX_DC_ENTRIES_ORDER 1
53 #define TX_DC_BASE 0x130000
54
55 #define RX_DC_ENTRIES 64
56 #define RX_DC_ENTRIES_ORDER 3
57 #define RX_DC_BASE 0x100000
58
59 static const unsigned int
60 /* "Large" EEPROM device: Atmel AT25640 or similar
61  * 8 KB, 16-bit address, 32 B write block */
62 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
63                      | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
64                      | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
65 /* Default flash device: Atmel AT25F1024
66  * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
67 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
68                       | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
69                       | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
70                       | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
71                       | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
72
73 /* RX FIFO XOFF watermark
74  *
75  * When the amount of the RX FIFO increases used increases past this
76  * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
77  * This also has an effect on RX/TX arbitration
78  */
79 static int rx_xoff_thresh_bytes = -1;
80 module_param(rx_xoff_thresh_bytes, int, 0644);
81 MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
82
83 /* RX FIFO XON watermark
84  *
85  * When the amount of the RX FIFO used decreases below this
86  * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
87  * This also has an effect on RX/TX arbitration
88  */
89 static int rx_xon_thresh_bytes = -1;
90 module_param(rx_xon_thresh_bytes, int, 0644);
91 MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
92
93 /* If FALCON_MAX_INT_ERRORS internal errors occur within
94  * FALCON_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
95  * disable it.
96  */
97 #define FALCON_INT_ERROR_EXPIRE 3600
98 #define FALCON_MAX_INT_ERRORS 5
99
100 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
101  */
102 #define FALCON_FLUSH_INTERVAL 10
103 #define FALCON_FLUSH_POLL_COUNT 100
104
105 /**************************************************************************
106  *
107  * Falcon constants
108  *
109  **************************************************************************
110  */
111
112 /* Size and alignment of special buffers (4KB) */
113 #define FALCON_BUF_SIZE 4096
114
115 /* Dummy SRAM size code */
116 #define SRM_NB_BSZ_ONCHIP_ONLY (-1)
117
118 #define FALCON_IS_DUAL_FUNC(efx)                \
119         (falcon_rev(efx) < FALCON_REV_B0)
120
121 /**************************************************************************
122  *
123  * Falcon hardware access
124  *
125  **************************************************************************/
126
127 static inline void falcon_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
128                                         unsigned int index)
129 {
130         efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
131                         value, index);
132 }
133
134 /* Read the current event from the event queue */
135 static inline efx_qword_t *falcon_event(struct efx_channel *channel,
136                                         unsigned int index)
137 {
138         return (((efx_qword_t *) (channel->eventq.addr)) + index);
139 }
140
141 /* See if an event is present
142  *
143  * We check both the high and low dword of the event for all ones.  We
144  * wrote all ones when we cleared the event, and no valid event can
145  * have all ones in either its high or low dwords.  This approach is
146  * robust against reordering.
147  *
148  * Note that using a single 64-bit comparison is incorrect; even
149  * though the CPU read will be atomic, the DMA write may not be.
150  */
151 static inline int falcon_event_present(efx_qword_t *event)
152 {
153         return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
154                   EFX_DWORD_IS_ALL_ONES(event->dword[1])));
155 }
156
157 /**************************************************************************
158  *
159  * I2C bus - this is a bit-bashing interface using GPIO pins
160  * Note that it uses the output enables to tristate the outputs
161  * SDA is the data pin and SCL is the clock
162  *
163  **************************************************************************
164  */
165 static void falcon_setsda(void *data, int state)
166 {
167         struct efx_nic *efx = (struct efx_nic *)data;
168         efx_oword_t reg;
169
170         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
171         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
172         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
173 }
174
175 static void falcon_setscl(void *data, int state)
176 {
177         struct efx_nic *efx = (struct efx_nic *)data;
178         efx_oword_t reg;
179
180         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
181         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
182         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
183 }
184
185 static int falcon_getsda(void *data)
186 {
187         struct efx_nic *efx = (struct efx_nic *)data;
188         efx_oword_t reg;
189
190         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
191         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
192 }
193
194 static int falcon_getscl(void *data)
195 {
196         struct efx_nic *efx = (struct efx_nic *)data;
197         efx_oword_t reg;
198
199         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
200         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
201 }
202
203 static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
204         .setsda         = falcon_setsda,
205         .setscl         = falcon_setscl,
206         .getsda         = falcon_getsda,
207         .getscl         = falcon_getscl,
208         .udelay         = 5,
209         /* Wait up to 50 ms for slave to let us pull SCL high */
210         .timeout        = DIV_ROUND_UP(HZ, 20),
211 };
212
213 /**************************************************************************
214  *
215  * Falcon special buffer handling
216  * Special buffers are used for event queues and the TX and RX
217  * descriptor rings.
218  *
219  *************************************************************************/
220
221 /*
222  * Initialise a Falcon special buffer
223  *
224  * This will define a buffer (previously allocated via
225  * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
226  * it to be used for event queues, descriptor rings etc.
227  */
228 static void
229 falcon_init_special_buffer(struct efx_nic *efx,
230                            struct efx_special_buffer *buffer)
231 {
232         efx_qword_t buf_desc;
233         int index;
234         dma_addr_t dma_addr;
235         int i;
236
237         EFX_BUG_ON_PARANOID(!buffer->addr);
238
239         /* Write buffer descriptors to NIC */
240         for (i = 0; i < buffer->entries; i++) {
241                 index = buffer->index + i;
242                 dma_addr = buffer->dma_addr + (i * 4096);
243                 EFX_LOG(efx, "mapping special buffer %d at %llx\n",
244                         index, (unsigned long long)dma_addr);
245                 EFX_POPULATE_QWORD_3(buf_desc,
246                                      FRF_AZ_BUF_ADR_REGION, 0,
247                                      FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
248                                      FRF_AZ_BUF_OWNER_ID_FBUF, 0);
249                 falcon_write_buf_tbl(efx, &buf_desc, index);
250         }
251 }
252
253 /* Unmaps a buffer from Falcon and clears the buffer table entries */
254 static void
255 falcon_fini_special_buffer(struct efx_nic *efx,
256                            struct efx_special_buffer *buffer)
257 {
258         efx_oword_t buf_tbl_upd;
259         unsigned int start = buffer->index;
260         unsigned int end = (buffer->index + buffer->entries - 1);
261
262         if (!buffer->entries)
263                 return;
264
265         EFX_LOG(efx, "unmapping special buffers %d-%d\n",
266                 buffer->index, buffer->index + buffer->entries - 1);
267
268         EFX_POPULATE_OWORD_4(buf_tbl_upd,
269                              FRF_AZ_BUF_UPD_CMD, 0,
270                              FRF_AZ_BUF_CLR_CMD, 1,
271                              FRF_AZ_BUF_CLR_END_ID, end,
272                              FRF_AZ_BUF_CLR_START_ID, start);
273         efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
274 }
275
276 /*
277  * Allocate a new Falcon special buffer
278  *
279  * This allocates memory for a new buffer, clears it and allocates a
280  * new buffer ID range.  It does not write into Falcon's buffer table.
281  *
282  * This call will allocate 4KB buffers, since Falcon can't use 8KB
283  * buffers for event queues and descriptor rings.
284  */
285 static int falcon_alloc_special_buffer(struct efx_nic *efx,
286                                        struct efx_special_buffer *buffer,
287                                        unsigned int len)
288 {
289         len = ALIGN(len, FALCON_BUF_SIZE);
290
291         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
292                                             &buffer->dma_addr);
293         if (!buffer->addr)
294                 return -ENOMEM;
295         buffer->len = len;
296         buffer->entries = len / FALCON_BUF_SIZE;
297         BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));
298
299         /* All zeros is a potentially valid event so memset to 0xff */
300         memset(buffer->addr, 0xff, len);
301
302         /* Select new buffer ID */
303         buffer->index = efx->next_buffer_table;
304         efx->next_buffer_table += buffer->entries;
305
306         EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
307                 "(virt %p phys %llx)\n", buffer->index,
308                 buffer->index + buffer->entries - 1,
309                 (u64)buffer->dma_addr, len,
310                 buffer->addr, (u64)virt_to_phys(buffer->addr));
311
312         return 0;
313 }
314
315 static void falcon_free_special_buffer(struct efx_nic *efx,
316                                        struct efx_special_buffer *buffer)
317 {
318         if (!buffer->addr)
319                 return;
320
321         EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
322                 "(virt %p phys %llx)\n", buffer->index,
323                 buffer->index + buffer->entries - 1,
324                 (u64)buffer->dma_addr, buffer->len,
325                 buffer->addr, (u64)virt_to_phys(buffer->addr));
326
327         pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
328                             buffer->dma_addr);
329         buffer->addr = NULL;
330         buffer->entries = 0;
331 }
332
333 /**************************************************************************
334  *
335  * Falcon generic buffer handling
336  * These buffers are used for interrupt status and MAC stats
337  *
338  **************************************************************************/
339
340 static int falcon_alloc_buffer(struct efx_nic *efx,
341                                struct efx_buffer *buffer, unsigned int len)
342 {
343         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
344                                             &buffer->dma_addr);
345         if (!buffer->addr)
346                 return -ENOMEM;
347         buffer->len = len;
348         memset(buffer->addr, 0, len);
349         return 0;
350 }
351
352 static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
353 {
354         if (buffer->addr) {
355                 pci_free_consistent(efx->pci_dev, buffer->len,
356                                     buffer->addr, buffer->dma_addr);
357                 buffer->addr = NULL;
358         }
359 }
360
361 /**************************************************************************
362  *
363  * Falcon TX path
364  *
365  **************************************************************************/
366
367 /* Returns a pointer to the specified transmit descriptor in the TX
368  * descriptor queue belonging to the specified channel.
369  */
370 static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
371                                                unsigned int index)
372 {
373         return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
374 }
375
376 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
377 static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
378 {
379         unsigned write_ptr;
380         efx_dword_t reg;
381
382         write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
383         EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
384         efx_writed_page(tx_queue->efx, &reg,
385                         FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
386 }
387
388
389 /* For each entry inserted into the software descriptor ring, create a
390  * descriptor in the hardware TX descriptor ring (in host memory), and
391  * write a doorbell.
392  */
393 void falcon_push_buffers(struct efx_tx_queue *tx_queue)
394 {
395
396         struct efx_tx_buffer *buffer;
397         efx_qword_t *txd;
398         unsigned write_ptr;
399
400         BUG_ON(tx_queue->write_count == tx_queue->insert_count);
401
402         do {
403                 write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
404                 buffer = &tx_queue->buffer[write_ptr];
405                 txd = falcon_tx_desc(tx_queue, write_ptr);
406                 ++tx_queue->write_count;
407
408                 /* Create TX descriptor ring entry */
409                 EFX_POPULATE_QWORD_4(*txd,
410                                      FSF_AZ_TX_KER_CONT, buffer->continuation,
411                                      FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
412                                      FSF_AZ_TX_KER_BUF_REGION, 0,
413                                      FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
414         } while (tx_queue->write_count != tx_queue->insert_count);
415
416         wmb(); /* Ensure descriptors are written before they are fetched */
417         falcon_notify_tx_desc(tx_queue);
418 }
419
420 /* Allocate hardware resources for a TX queue */
421 int falcon_probe_tx(struct efx_tx_queue *tx_queue)
422 {
423         struct efx_nic *efx = tx_queue->efx;
424         BUILD_BUG_ON(EFX_TXQ_SIZE < 512 || EFX_TXQ_SIZE > 4096 ||
425                      EFX_TXQ_SIZE & EFX_TXQ_MASK);
426         return falcon_alloc_special_buffer(efx, &tx_queue->txd,
427                                            EFX_TXQ_SIZE * sizeof(efx_qword_t));
428 }
429
430 void falcon_init_tx(struct efx_tx_queue *tx_queue)
431 {
432         efx_oword_t tx_desc_ptr;
433         struct efx_nic *efx = tx_queue->efx;
434
435         tx_queue->flushed = false;
436
437         /* Pin TX descriptor ring */
438         falcon_init_special_buffer(efx, &tx_queue->txd);
439
440         /* Push TX descriptor ring to card */
441         EFX_POPULATE_OWORD_10(tx_desc_ptr,
442                               FRF_AZ_TX_DESCQ_EN, 1,
443                               FRF_AZ_TX_ISCSI_DDIG_EN, 0,
444                               FRF_AZ_TX_ISCSI_HDIG_EN, 0,
445                               FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
446                               FRF_AZ_TX_DESCQ_EVQ_ID,
447                               tx_queue->channel->channel,
448                               FRF_AZ_TX_DESCQ_OWNER_ID, 0,
449                               FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
450                               FRF_AZ_TX_DESCQ_SIZE,
451                               __ffs(tx_queue->txd.entries),
452                               FRF_AZ_TX_DESCQ_TYPE, 0,
453                               FRF_BZ_TX_NON_IP_DROP_DIS, 1);
454
455         if (falcon_rev(efx) >= FALCON_REV_B0) {
456                 int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
457                 EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
458                 EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_TCP_CHKSM_DIS,
459                                     !csum);
460         }
461
462         efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
463                          tx_queue->queue);
464
465         if (falcon_rev(efx) < FALCON_REV_B0) {
466                 efx_oword_t reg;
467
468                 /* Only 128 bits in this register */
469                 BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
470
471                 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
472                 if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
473                         clear_bit_le(tx_queue->queue, (void *)&reg);
474                 else
475                         set_bit_le(tx_queue->queue, (void *)&reg);
476                 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
477         }
478 }
479
480 static void falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
481 {
482         struct efx_nic *efx = tx_queue->efx;
483         efx_oword_t tx_flush_descq;
484
485         /* Post a flush command */
486         EFX_POPULATE_OWORD_2(tx_flush_descq,
487                              FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
488                              FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
489         efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
490 }
491
492 void falcon_fini_tx(struct efx_tx_queue *tx_queue)
493 {
494         struct efx_nic *efx = tx_queue->efx;
495         efx_oword_t tx_desc_ptr;
496
497         /* The queue should have been flushed */
498         WARN_ON(!tx_queue->flushed);
499
500         /* Remove TX descriptor ring from card */
501         EFX_ZERO_OWORD(tx_desc_ptr);
502         efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
503                          tx_queue->queue);
504
505         /* Unpin TX descriptor ring */
506         falcon_fini_special_buffer(efx, &tx_queue->txd);
507 }
508
509 /* Free buffers backing TX queue */
510 void falcon_remove_tx(struct efx_tx_queue *tx_queue)
511 {
512         falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
513 }
514
515 /**************************************************************************
516  *
517  * Falcon RX path
518  *
519  **************************************************************************/
520
521 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
522 static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
523                                                unsigned int index)
524 {
525         return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
526 }
527
528 /* This creates an entry in the RX descriptor queue */
529 static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
530                                         unsigned index)
531 {
532         struct efx_rx_buffer *rx_buf;
533         efx_qword_t *rxd;
534
535         rxd = falcon_rx_desc(rx_queue, index);
536         rx_buf = efx_rx_buffer(rx_queue, index);
537         EFX_POPULATE_QWORD_3(*rxd,
538                              FSF_AZ_RX_KER_BUF_SIZE,
539                              rx_buf->len -
540                              rx_queue->efx->type->rx_buffer_padding,
541                              FSF_AZ_RX_KER_BUF_REGION, 0,
542                              FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
543 }
544
545 /* This writes to the RX_DESC_WPTR register for the specified receive
546  * descriptor ring.
547  */
548 void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
549 {
550         efx_dword_t reg;
551         unsigned write_ptr;
552
553         while (rx_queue->notified_count != rx_queue->added_count) {
554                 falcon_build_rx_desc(rx_queue,
555                                      rx_queue->notified_count &
556                                      EFX_RXQ_MASK);
557                 ++rx_queue->notified_count;
558         }
559
560         wmb();
561         write_ptr = rx_queue->added_count & EFX_RXQ_MASK;
562         EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
563         efx_writed_page(rx_queue->efx, &reg,
564                         FR_AZ_RX_DESC_UPD_DWORD_P0, rx_queue->queue);
565 }
566
567 int falcon_probe_rx(struct efx_rx_queue *rx_queue)
568 {
569         struct efx_nic *efx = rx_queue->efx;
570         BUILD_BUG_ON(EFX_RXQ_SIZE < 512 || EFX_RXQ_SIZE > 4096 ||
571                      EFX_RXQ_SIZE & EFX_RXQ_MASK);
572         return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
573                                            EFX_RXQ_SIZE * sizeof(efx_qword_t));
574 }
575
576 void falcon_init_rx(struct efx_rx_queue *rx_queue)
577 {
578         efx_oword_t rx_desc_ptr;
579         struct efx_nic *efx = rx_queue->efx;
580         bool is_b0 = falcon_rev(efx) >= FALCON_REV_B0;
581         bool iscsi_digest_en = is_b0;
582
583         EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
584                 rx_queue->queue, rx_queue->rxd.index,
585                 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
586
587         rx_queue->flushed = false;
588
589         /* Pin RX descriptor ring */
590         falcon_init_special_buffer(efx, &rx_queue->rxd);
591
592         /* Push RX descriptor ring to card */
593         EFX_POPULATE_OWORD_10(rx_desc_ptr,
594                               FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
595                               FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
596                               FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
597                               FRF_AZ_RX_DESCQ_EVQ_ID,
598                               rx_queue->channel->channel,
599                               FRF_AZ_RX_DESCQ_OWNER_ID, 0,
600                               FRF_AZ_RX_DESCQ_LABEL, rx_queue->queue,
601                               FRF_AZ_RX_DESCQ_SIZE,
602                               __ffs(rx_queue->rxd.entries),
603                               FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
604                               /* For >=B0 this is scatter so disable */
605                               FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
606                               FRF_AZ_RX_DESCQ_EN, 1);
607         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
608                          rx_queue->queue);
609 }
610
611 static void falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
612 {
613         struct efx_nic *efx = rx_queue->efx;
614         efx_oword_t rx_flush_descq;
615
616         /* Post a flush command */
617         EFX_POPULATE_OWORD_2(rx_flush_descq,
618                              FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
619                              FRF_AZ_RX_FLUSH_DESCQ, rx_queue->queue);
620         efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
621 }
622
623 void falcon_fini_rx(struct efx_rx_queue *rx_queue)
624 {
625         efx_oword_t rx_desc_ptr;
626         struct efx_nic *efx = rx_queue->efx;
627
628         /* The queue should already have been flushed */
629         WARN_ON(!rx_queue->flushed);
630
631         /* Remove RX descriptor ring from card */
632         EFX_ZERO_OWORD(rx_desc_ptr);
633         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
634                          rx_queue->queue);
635
636         /* Unpin RX descriptor ring */
637         falcon_fini_special_buffer(efx, &rx_queue->rxd);
638 }
639
640 /* Free buffers backing RX queue */
641 void falcon_remove_rx(struct efx_rx_queue *rx_queue)
642 {
643         falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
644 }
645
646 /**************************************************************************
647  *
648  * Falcon event queue processing
649  * Event queues are processed by per-channel tasklets.
650  *
651  **************************************************************************/
652
653 /* Update a channel's event queue's read pointer (RPTR) register
654  *
655  * This writes the EVQ_RPTR_REG register for the specified channel's
656  * event queue.
657  *
658  * Note that EVQ_RPTR_REG contains the index of the "last read" event,
659  * whereas channel->eventq_read_ptr contains the index of the "next to
660  * read" event.
661  */
662 void falcon_eventq_read_ack(struct efx_channel *channel)
663 {
664         efx_dword_t reg;
665         struct efx_nic *efx = channel->efx;
666
667         EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr);
668         efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
669                             channel->channel);
670 }
671
672 /* Use HW to insert a SW defined event */
673 void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
674 {
675         efx_oword_t drv_ev_reg;
676
677         BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
678                      FRF_AZ_DRV_EV_DATA_WIDTH != 64);
679         drv_ev_reg.u32[0] = event->u32[0];
680         drv_ev_reg.u32[1] = event->u32[1];
681         drv_ev_reg.u32[2] = 0;
682         drv_ev_reg.u32[3] = 0;
683         EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
684         efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
685 }
686
687 /* Handle a transmit completion event
688  *
689  * Falcon batches TX completion events; the message we receive is of
690  * the form "complete all TX events up to this index".
691  */
692 static void falcon_handle_tx_event(struct efx_channel *channel,
693                                    efx_qword_t *event)
694 {
695         unsigned int tx_ev_desc_ptr;
696         unsigned int tx_ev_q_label;
697         struct efx_tx_queue *tx_queue;
698         struct efx_nic *efx = channel->efx;
699
700         if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
701                 /* Transmit completion */
702                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
703                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
704                 tx_queue = &efx->tx_queue[tx_ev_q_label];
705                 channel->irq_mod_score +=
706                         (tx_ev_desc_ptr - tx_queue->read_count) &
707                         EFX_TXQ_MASK;
708                 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
709         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
710                 /* Rewrite the FIFO write pointer */
711                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
712                 tx_queue = &efx->tx_queue[tx_ev_q_label];
713
714                 if (efx_dev_registered(efx))
715                         netif_tx_lock(efx->net_dev);
716                 falcon_notify_tx_desc(tx_queue);
717                 if (efx_dev_registered(efx))
718                         netif_tx_unlock(efx->net_dev);
719         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
720                    EFX_WORKAROUND_10727(efx)) {
721                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
722         } else {
723                 EFX_ERR(efx, "channel %d unexpected TX event "
724                         EFX_QWORD_FMT"\n", channel->channel,
725                         EFX_QWORD_VAL(*event));
726         }
727 }
728
729 /* Detect errors included in the rx_evt_pkt_ok bit. */
730 static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
731                                     const efx_qword_t *event,
732                                     bool *rx_ev_pkt_ok,
733                                     bool *discard)
734 {
735         struct efx_nic *efx = rx_queue->efx;
736         bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
737         bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
738         bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
739         bool rx_ev_other_err, rx_ev_pause_frm;
740         bool rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
741         unsigned rx_ev_pkt_type;
742
743         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
744         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
745         rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
746         rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
747         rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
748                                                  FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
749         rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_IP_FRAG_ERR);
750         rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
751                                                   FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
752         rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
753                                                    FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
754         rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
755         rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
756         rx_ev_drib_nib = ((falcon_rev(efx) >= FALCON_REV_B0) ?
757                           0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
758         rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
759
760         /* Every error apart from tobe_disc and pause_frm */
761         rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
762                            rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
763                            rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
764
765         /* Count errors that are not in MAC stats.  Ignore expected
766          * checksum errors during self-test. */
767         if (rx_ev_frm_trunc)
768                 ++rx_queue->channel->n_rx_frm_trunc;
769         else if (rx_ev_tobe_disc)
770                 ++rx_queue->channel->n_rx_tobe_disc;
771         else if (!efx->loopback_selftest) {
772                 if (rx_ev_ip_hdr_chksum_err)
773                         ++rx_queue->channel->n_rx_ip_hdr_chksum_err;
774                 else if (rx_ev_tcp_udp_chksum_err)
775                         ++rx_queue->channel->n_rx_tcp_udp_chksum_err;
776         }
777         if (rx_ev_ip_frag_err)
778                 ++rx_queue->channel->n_rx_ip_frag_err;
779
780         /* The frame must be discarded if any of these are true. */
781         *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
782                     rx_ev_tobe_disc | rx_ev_pause_frm);
783
784         /* TOBE_DISC is expected on unicast mismatches; don't print out an
785          * error message.  FRM_TRUNC indicates RXDP dropped the packet due
786          * to a FIFO overflow.
787          */
788 #ifdef EFX_ENABLE_DEBUG
789         if (rx_ev_other_err) {
790                 EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
791                             EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
792                             rx_queue->queue, EFX_QWORD_VAL(*event),
793                             rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
794                             rx_ev_ip_hdr_chksum_err ?
795                             " [IP_HDR_CHKSUM_ERR]" : "",
796                             rx_ev_tcp_udp_chksum_err ?
797                             " [TCP_UDP_CHKSUM_ERR]" : "",
798                             rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
799                             rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
800                             rx_ev_drib_nib ? " [DRIB_NIB]" : "",
801                             rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
802                             rx_ev_pause_frm ? " [PAUSE]" : "");
803         }
804 #endif
805 }
806
807 /* Handle receive events that are not in-order. */
808 static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
809                                        unsigned index)
810 {
811         struct efx_nic *efx = rx_queue->efx;
812         unsigned expected, dropped;
813
814         expected = rx_queue->removed_count & EFX_RXQ_MASK;
815         dropped = (index - expected) & EFX_RXQ_MASK;
816         EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
817                 dropped, index, expected);
818
819         efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
820                            RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
821 }
822
823 /* Handle a packet received event
824  *
825  * Falcon silicon gives a "discard" flag if it's a unicast packet with the
826  * wrong destination address
827  * Also "is multicast" and "matches multicast filter" flags can be used to
828  * discard non-matching multicast packets.
829  */
830 static void falcon_handle_rx_event(struct efx_channel *channel,
831                                    const efx_qword_t *event)
832 {
833         unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
834         unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
835         unsigned expected_ptr;
836         bool rx_ev_pkt_ok, discard = false, checksummed;
837         struct efx_rx_queue *rx_queue;
838         struct efx_nic *efx = channel->efx;
839
840         /* Basic packet information */
841         rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
842         rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
843         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
844         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
845         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
846         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
847                 channel->channel);
848
849         rx_queue = &efx->rx_queue[channel->channel];
850
851         rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
852         expected_ptr = rx_queue->removed_count & EFX_RXQ_MASK;
853         if (unlikely(rx_ev_desc_ptr != expected_ptr))
854                 falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
855
856         if (likely(rx_ev_pkt_ok)) {
857                 /* If packet is marked as OK and packet type is TCP/IPv4 or
858                  * UDP/IPv4, then we can rely on the hardware checksum.
859                  */
860                 checksummed =
861                         efx->rx_checksum_enabled &&
862                         (rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_TCP ||
863                          rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_UDP);
864         } else {
865                 falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
866                                         &discard);
867                 checksummed = false;
868         }
869
870         /* Detect multicast packets that didn't match the filter */
871         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
872         if (rx_ev_mcast_pkt) {
873                 unsigned int rx_ev_mcast_hash_match =
874                         EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
875
876                 if (unlikely(!rx_ev_mcast_hash_match))
877                         discard = true;
878         }
879
880         channel->irq_mod_score += 2;
881
882         /* Handle received packet */
883         efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
884                       checksummed, discard);
885 }
886
887 /* Global events are basically PHY events */
888 static void falcon_handle_global_event(struct efx_channel *channel,
889                                        efx_qword_t *event)
890 {
891         struct efx_nic *efx = channel->efx;
892         bool handled = false;
893
894         if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
895             EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
896             EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR)) {
897                 efx->phy_op->clear_interrupt(efx);
898                 queue_work(efx->workqueue, &efx->phy_work);
899                 handled = true;
900         }
901
902         if ((falcon_rev(efx) >= FALCON_REV_B0) &&
903             EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
904                 queue_work(efx->workqueue, &efx->mac_work);
905                 handled = true;
906         }
907
908         if (falcon_rev(efx) <= FALCON_REV_A1 ?
909             EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
910             EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
911                 EFX_ERR(efx, "channel %d seen global RX_RESET "
912                         "event. Resetting.\n", channel->channel);
913
914                 atomic_inc(&efx->rx_reset);
915                 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
916                                    RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
917                 handled = true;
918         }
919
920         if (!handled)
921                 EFX_ERR(efx, "channel %d unknown global event "
922                         EFX_QWORD_FMT "\n", channel->channel,
923                         EFX_QWORD_VAL(*event));
924 }
925
926 static void falcon_handle_driver_event(struct efx_channel *channel,
927                                        efx_qword_t *event)
928 {
929         struct efx_nic *efx = channel->efx;
930         unsigned int ev_sub_code;
931         unsigned int ev_sub_data;
932
933         ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
934         ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
935
936         switch (ev_sub_code) {
937         case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
938                 EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
939                           channel->channel, ev_sub_data);
940                 break;
941         case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
942                 EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
943                           channel->channel, ev_sub_data);
944                 break;
945         case FSE_AZ_EVQ_INIT_DONE_EV:
946                 EFX_LOG(efx, "channel %d EVQ %d initialised\n",
947                         channel->channel, ev_sub_data);
948                 break;
949         case FSE_AZ_SRM_UPD_DONE_EV:
950                 EFX_TRACE(efx, "channel %d SRAM update done\n",
951                           channel->channel);
952                 break;
953         case FSE_AZ_WAKE_UP_EV:
954                 EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
955                           channel->channel, ev_sub_data);
956                 break;
957         case FSE_AZ_TIMER_EV:
958                 EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
959                           channel->channel, ev_sub_data);
960                 break;
961         case FSE_AA_RX_RECOVER_EV:
962                 EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
963                         "Resetting.\n", channel->channel);
964                 atomic_inc(&efx->rx_reset);
965                 efx_schedule_reset(efx,
966                                    EFX_WORKAROUND_6555(efx) ?
967                                    RESET_TYPE_RX_RECOVERY :
968                                    RESET_TYPE_DISABLE);
969                 break;
970         case FSE_BZ_RX_DSC_ERROR_EV:
971                 EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
972                         " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
973                 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
974                 break;
975         case FSE_BZ_TX_DSC_ERROR_EV:
976                 EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
977                         " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
978                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
979                 break;
980         default:
981                 EFX_TRACE(efx, "channel %d unknown driver event code %d "
982                           "data %04x\n", channel->channel, ev_sub_code,
983                           ev_sub_data);
984                 break;
985         }
986 }
987
988 int falcon_process_eventq(struct efx_channel *channel, int rx_quota)
989 {
990         unsigned int read_ptr;
991         efx_qword_t event, *p_event;
992         int ev_code;
993         int rx_packets = 0;
994
995         read_ptr = channel->eventq_read_ptr;
996
997         do {
998                 p_event = falcon_event(channel, read_ptr);
999                 event = *p_event;
1000
1001                 if (!falcon_event_present(&event))
1002                         /* End of events */
1003                         break;
1004
1005                 EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
1006                           channel->channel, EFX_QWORD_VAL(event));
1007
1008                 /* Clear this event by marking it all ones */
1009                 EFX_SET_QWORD(*p_event);
1010
1011                 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1012
1013                 switch (ev_code) {
1014                 case FSE_AZ_EV_CODE_RX_EV:
1015                         falcon_handle_rx_event(channel, &event);
1016                         ++rx_packets;
1017                         break;
1018                 case FSE_AZ_EV_CODE_TX_EV:
1019                         falcon_handle_tx_event(channel, &event);
1020                         break;
1021                 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1022                         channel->eventq_magic = EFX_QWORD_FIELD(
1023                                 event, FSF_AZ_DRV_GEN_EV_MAGIC);
1024                         EFX_LOG(channel->efx, "channel %d received generated "
1025                                 "event "EFX_QWORD_FMT"\n", channel->channel,
1026                                 EFX_QWORD_VAL(event));
1027                         break;
1028                 case FSE_AZ_EV_CODE_GLOBAL_EV:
1029                         falcon_handle_global_event(channel, &event);
1030                         break;
1031                 case FSE_AZ_EV_CODE_DRIVER_EV:
1032                         falcon_handle_driver_event(channel, &event);
1033                         break;
1034                 default:
1035                         EFX_ERR(channel->efx, "channel %d unknown event type %d"
1036                                 " (data " EFX_QWORD_FMT ")\n", channel->channel,
1037                                 ev_code, EFX_QWORD_VAL(event));
1038                 }
1039
1040                 /* Increment read pointer */
1041                 read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1042
1043         } while (rx_packets < rx_quota);
1044
1045         channel->eventq_read_ptr = read_ptr;
1046         return rx_packets;
1047 }
1048
1049 void falcon_set_int_moderation(struct efx_channel *channel)
1050 {
1051         efx_dword_t timer_cmd;
1052         struct efx_nic *efx = channel->efx;
1053
1054         /* Set timer register */
1055         if (channel->irq_moderation) {
1056                 EFX_POPULATE_DWORD_2(timer_cmd,
1057                                      FRF_AB_TC_TIMER_MODE,
1058                                      FFE_BB_TIMER_MODE_INT_HLDOFF,
1059                                      FRF_AB_TC_TIMER_VAL,
1060                                      channel->irq_moderation - 1);
1061         } else {
1062                 EFX_POPULATE_DWORD_2(timer_cmd,
1063                                      FRF_AB_TC_TIMER_MODE,
1064                                      FFE_BB_TIMER_MODE_DIS,
1065                                      FRF_AB_TC_TIMER_VAL, 0);
1066         }
1067         BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
1068         efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
1069                                channel->channel);
1070
1071 }
1072
1073 /* Allocate buffer table entries for event queue */
1074 int falcon_probe_eventq(struct efx_channel *channel)
1075 {
1076         struct efx_nic *efx = channel->efx;
1077         BUILD_BUG_ON(EFX_EVQ_SIZE < 512 || EFX_EVQ_SIZE > 32768 ||
1078                      EFX_EVQ_SIZE & EFX_EVQ_MASK);
1079         return falcon_alloc_special_buffer(efx, &channel->eventq,
1080                                            EFX_EVQ_SIZE * sizeof(efx_qword_t));
1081 }
1082
1083 void falcon_init_eventq(struct efx_channel *channel)
1084 {
1085         efx_oword_t evq_ptr;
1086         struct efx_nic *efx = channel->efx;
1087
1088         EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
1089                 channel->channel, channel->eventq.index,
1090                 channel->eventq.index + channel->eventq.entries - 1);
1091
1092         /* Pin event queue buffer */
1093         falcon_init_special_buffer(efx, &channel->eventq);
1094
1095         /* Fill event queue with all ones (i.e. empty events) */
1096         memset(channel->eventq.addr, 0xff, channel->eventq.len);
1097
1098         /* Push event queue to card */
1099         EFX_POPULATE_OWORD_3(evq_ptr,
1100                              FRF_AZ_EVQ_EN, 1,
1101                              FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1102                              FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1103         efx_writeo_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
1104                          channel->channel);
1105
1106         falcon_set_int_moderation(channel);
1107 }
1108
1109 void falcon_fini_eventq(struct efx_channel *channel)
1110 {
1111         efx_oword_t eventq_ptr;
1112         struct efx_nic *efx = channel->efx;
1113
1114         /* Remove event queue from card */
1115         EFX_ZERO_OWORD(eventq_ptr);
1116         efx_writeo_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
1117                          channel->channel);
1118
1119         /* Unpin event queue */
1120         falcon_fini_special_buffer(efx, &channel->eventq);
1121 }
1122
1123 /* Free buffers backing event queue */
1124 void falcon_remove_eventq(struct efx_channel *channel)
1125 {
1126         falcon_free_special_buffer(channel->efx, &channel->eventq);
1127 }
1128
1129
1130 /* Generates a test event on the event queue.  A subsequent call to
1131  * process_eventq() should pick up the event and place the value of
1132  * "magic" into channel->eventq_magic;
1133  */
1134 void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
1135 {
1136         efx_qword_t test_event;
1137
1138         EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
1139                              FSE_AZ_EV_CODE_DRV_GEN_EV,
1140                              FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1141         falcon_generate_event(channel, &test_event);
1142 }
1143
1144 void falcon_sim_phy_event(struct efx_nic *efx)
1145 {
1146         efx_qword_t phy_event;
1147
1148         EFX_POPULATE_QWORD_1(phy_event, FSF_AZ_EV_CODE,
1149                              FSE_AZ_EV_CODE_GLOBAL_EV);
1150         if (EFX_IS10G(efx))
1151                 EFX_SET_QWORD_FIELD(phy_event, FSF_AB_GLB_EV_XG_PHY0_INTR, 1);
1152         else
1153                 EFX_SET_QWORD_FIELD(phy_event, FSF_AB_GLB_EV_G_PHY0_INTR, 1);
1154
1155         falcon_generate_event(&efx->channel[0], &phy_event);
1156 }
1157
1158 /**************************************************************************
1159  *
1160  * Flush handling
1161  *
1162  **************************************************************************/
1163
1164
1165 static void falcon_poll_flush_events(struct efx_nic *efx)
1166 {
1167         struct efx_channel *channel = &efx->channel[0];
1168         struct efx_tx_queue *tx_queue;
1169         struct efx_rx_queue *rx_queue;
1170         unsigned int read_ptr = channel->eventq_read_ptr;
1171         unsigned int end_ptr = (read_ptr - 1) & EFX_EVQ_MASK;
1172
1173         do {
1174                 efx_qword_t *event = falcon_event(channel, read_ptr);
1175                 int ev_code, ev_sub_code, ev_queue;
1176                 bool ev_failed;
1177
1178                 if (!falcon_event_present(event))
1179                         break;
1180
1181                 ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
1182                 ev_sub_code = EFX_QWORD_FIELD(*event,
1183                                               FSF_AZ_DRIVER_EV_SUBCODE);
1184                 if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1185                     ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
1186                         ev_queue = EFX_QWORD_FIELD(*event,
1187                                                    FSF_AZ_DRIVER_EV_SUBDATA);
1188                         if (ev_queue < EFX_TX_QUEUE_COUNT) {
1189                                 tx_queue = efx->tx_queue + ev_queue;
1190                                 tx_queue->flushed = true;
1191                         }
1192                 } else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1193                            ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
1194                         ev_queue = EFX_QWORD_FIELD(
1195                                 *event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1196                         ev_failed = EFX_QWORD_FIELD(
1197                                 *event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1198                         if (ev_queue < efx->n_rx_queues) {
1199                                 rx_queue = efx->rx_queue + ev_queue;
1200
1201                                 /* retry the rx flush */
1202                                 if (ev_failed)
1203                                         falcon_flush_rx_queue(rx_queue);
1204                                 else
1205                                         rx_queue->flushed = true;
1206                         }
1207                 }
1208
1209                 read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1210         } while (read_ptr != end_ptr);
1211 }
1212
1213 /* Handle tx and rx flushes at the same time, since they run in
1214  * parallel in the hardware and there's no reason for us to
1215  * serialise them */
1216 int falcon_flush_queues(struct efx_nic *efx)
1217 {
1218         struct efx_rx_queue *rx_queue;
1219         struct efx_tx_queue *tx_queue;
1220         int i;
1221         bool outstanding;
1222
1223         /* Issue flush requests */
1224         efx_for_each_tx_queue(tx_queue, efx) {
1225                 tx_queue->flushed = false;
1226                 falcon_flush_tx_queue(tx_queue);
1227         }
1228         efx_for_each_rx_queue(rx_queue, efx) {
1229                 rx_queue->flushed = false;
1230                 falcon_flush_rx_queue(rx_queue);
1231         }
1232
1233         /* Poll the evq looking for flush completions. Since we're not pushing
1234          * any more rx or tx descriptors at this point, we're in no danger of
1235          * overflowing the evq whilst we wait */
1236         for (i = 0; i < FALCON_FLUSH_POLL_COUNT; ++i) {
1237                 msleep(FALCON_FLUSH_INTERVAL);
1238                 falcon_poll_flush_events(efx);
1239
1240                 /* Check if every queue has been succesfully flushed */
1241                 outstanding = false;
1242                 efx_for_each_tx_queue(tx_queue, efx)
1243                         outstanding |= !tx_queue->flushed;
1244                 efx_for_each_rx_queue(rx_queue, efx)
1245                         outstanding |= !rx_queue->flushed;
1246                 if (!outstanding)
1247                         return 0;
1248         }
1249
1250         /* Mark the queues as all flushed. We're going to return failure
1251          * leading to a reset, or fake up success anyway. "flushed" now
1252          * indicates that we tried to flush. */
1253         efx_for_each_tx_queue(tx_queue, efx) {
1254                 if (!tx_queue->flushed)
1255                         EFX_ERR(efx, "tx queue %d flush command timed out\n",
1256                                 tx_queue->queue);
1257                 tx_queue->flushed = true;
1258         }
1259         efx_for_each_rx_queue(rx_queue, efx) {
1260                 if (!rx_queue->flushed)
1261                         EFX_ERR(efx, "rx queue %d flush command timed out\n",
1262                                 rx_queue->queue);
1263                 rx_queue->flushed = true;
1264         }
1265
1266         if (EFX_WORKAROUND_7803(efx))
1267                 return 0;
1268
1269         return -ETIMEDOUT;
1270 }
1271
1272 /**************************************************************************
1273  *
1274  * Falcon hardware interrupts
1275  * The hardware interrupt handler does very little work; all the event
1276  * queue processing is carried out by per-channel tasklets.
1277  *
1278  **************************************************************************/
1279
1280 /* Enable/disable/generate Falcon interrupts */
1281 static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
1282                                      int force)
1283 {
1284         efx_oword_t int_en_reg_ker;
1285
1286         EFX_POPULATE_OWORD_2(int_en_reg_ker,
1287                              FRF_AZ_KER_INT_KER, force,
1288                              FRF_AZ_DRV_INT_EN_KER, enabled);
1289         efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1290 }
1291
1292 void falcon_enable_interrupts(struct efx_nic *efx)
1293 {
1294         efx_oword_t int_adr_reg_ker;
1295         struct efx_channel *channel;
1296
1297         EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1298         wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1299
1300         /* Program address */
1301         EFX_POPULATE_OWORD_2(int_adr_reg_ker,
1302                              FRF_AZ_NORM_INT_VEC_DIS_KER,
1303                              EFX_INT_MODE_USE_MSI(efx),
1304                              FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1305         efx_writeo(efx, &int_adr_reg_ker, FR_AZ_INT_ADR_KER);
1306
1307         /* Enable interrupts */
1308         falcon_interrupts(efx, 1, 0);
1309
1310         /* Force processing of all the channels to get the EVQ RPTRs up to
1311            date */
1312         efx_for_each_channel(channel, efx)
1313                 efx_schedule_channel(channel);
1314 }
1315
1316 void falcon_disable_interrupts(struct efx_nic *efx)
1317 {
1318         /* Disable interrupts */
1319         falcon_interrupts(efx, 0, 0);
1320 }
1321
1322 /* Generate a Falcon test interrupt
1323  * Interrupt must already have been enabled, otherwise nasty things
1324  * may happen.
1325  */
1326 void falcon_generate_interrupt(struct efx_nic *efx)
1327 {
1328         falcon_interrupts(efx, 1, 1);
1329 }
1330
1331 /* Acknowledge a legacy interrupt from Falcon
1332  *
1333  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
1334  *
1335  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
1336  * BIU. Interrupt acknowledge is read sensitive so must write instead
1337  * (then read to ensure the BIU collector is flushed)
1338  *
1339  * NB most hardware supports MSI interrupts
1340  */
1341 static inline void falcon_irq_ack_a1(struct efx_nic *efx)
1342 {
1343         efx_dword_t reg;
1344
1345         EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
1346         efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
1347         efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
1348 }
1349
1350 /* Process a fatal interrupt
1351  * Disable bus mastering ASAP and schedule a reset
1352  */
1353 static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
1354 {
1355         struct falcon_nic_data *nic_data = efx->nic_data;
1356         efx_oword_t *int_ker = efx->irq_status.addr;
1357         efx_oword_t fatal_intr;
1358         int error, mem_perr;
1359
1360         efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1361         error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1362
1363         EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
1364                 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1365                 EFX_OWORD_VAL(fatal_intr),
1366                 error ? "disabling bus mastering" : "no recognised error");
1367         if (error == 0)
1368                 goto out;
1369
1370         /* If this is a memory parity error dump which blocks are offending */
1371         mem_perr = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER);
1372         if (mem_perr) {
1373                 efx_oword_t reg;
1374                 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1375                 EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
1376                         EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
1377         }
1378
1379         /* Disable both devices */
1380         pci_clear_master(efx->pci_dev);
1381         if (FALCON_IS_DUAL_FUNC(efx))
1382                 pci_clear_master(nic_data->pci_dev2);
1383         falcon_disable_interrupts(efx);
1384
1385         /* Count errors and reset or disable the NIC accordingly */
1386         if (efx->int_error_count == 0 ||
1387             time_after(jiffies, efx->int_error_expire)) {
1388                 efx->int_error_count = 0;
1389                 efx->int_error_expire =
1390                         jiffies + FALCON_INT_ERROR_EXPIRE * HZ;
1391         }
1392         if (++efx->int_error_count < FALCON_MAX_INT_ERRORS) {
1393                 EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
1394                 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1395         } else {
1396                 EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
1397                         "NIC will be disabled\n");
1398                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1399         }
1400 out:
1401         return IRQ_HANDLED;
1402 }
1403
1404 /* Handle a legacy interrupt from Falcon
1405  * Acknowledges the interrupt and schedule event queue processing.
1406  */
1407 static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
1408 {
1409         struct efx_nic *efx = dev_id;
1410         efx_oword_t *int_ker = efx->irq_status.addr;
1411         irqreturn_t result = IRQ_NONE;
1412         struct efx_channel *channel;
1413         efx_dword_t reg;
1414         u32 queues;
1415         int syserr;
1416
1417         /* Read the ISR which also ACKs the interrupts */
1418         efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1419         queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1420
1421         /* Check to see if we have a serious error condition */
1422         syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1423         if (unlikely(syserr))
1424                 return falcon_fatal_interrupt(efx);
1425
1426         /* Schedule processing of any interrupting queues */
1427         efx_for_each_channel(channel, efx) {
1428                 if ((queues & 1) ||
1429                     falcon_event_present(
1430                             falcon_event(channel, channel->eventq_read_ptr))) {
1431                         efx_schedule_channel(channel);
1432                         result = IRQ_HANDLED;
1433                 }
1434                 queues >>= 1;
1435         }
1436
1437         if (result == IRQ_HANDLED) {
1438                 efx->last_irq_cpu = raw_smp_processor_id();
1439                 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1440                           irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1441         }
1442
1443         return result;
1444 }
1445
1446
1447 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
1448 {
1449         struct efx_nic *efx = dev_id;
1450         efx_oword_t *int_ker = efx->irq_status.addr;
1451         struct efx_channel *channel;
1452         int syserr;
1453         int queues;
1454
1455         /* Check to see if this is our interrupt.  If it isn't, we
1456          * exit without having touched the hardware.
1457          */
1458         if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
1459                 EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
1460                           raw_smp_processor_id());
1461                 return IRQ_NONE;
1462         }
1463         efx->last_irq_cpu = raw_smp_processor_id();
1464         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1465                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1466
1467         /* Check to see if we have a serious error condition */
1468         syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1469         if (unlikely(syserr))
1470                 return falcon_fatal_interrupt(efx);
1471
1472         /* Determine interrupting queues, clear interrupt status
1473          * register and acknowledge the device interrupt.
1474          */
1475         BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
1476         queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
1477         EFX_ZERO_OWORD(*int_ker);
1478         wmb(); /* Ensure the vector is cleared before interrupt ack */
1479         falcon_irq_ack_a1(efx);
1480
1481         /* Schedule processing of any interrupting queues */
1482         channel = &efx->channel[0];
1483         while (queues) {
1484                 if (queues & 0x01)
1485                         efx_schedule_channel(channel);
1486                 channel++;
1487                 queues >>= 1;
1488         }
1489
1490         return IRQ_HANDLED;
1491 }
1492
1493 /* Handle an MSI interrupt from Falcon
1494  *
1495  * Handle an MSI hardware interrupt.  This routine schedules event
1496  * queue processing.  No interrupt acknowledgement cycle is necessary.
1497  * Also, we never need to check that the interrupt is for us, since
1498  * MSI interrupts cannot be shared.
1499  */
1500 static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
1501 {
1502         struct efx_channel *channel = dev_id;
1503         struct efx_nic *efx = channel->efx;
1504         efx_oword_t *int_ker = efx->irq_status.addr;
1505         int syserr;
1506
1507         efx->last_irq_cpu = raw_smp_processor_id();
1508         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1509                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1510
1511         /* Check to see if we have a serious error condition */
1512         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1513         if (unlikely(syserr))
1514                 return falcon_fatal_interrupt(efx);
1515
1516         /* Schedule processing of the channel */
1517         efx_schedule_channel(channel);
1518
1519         return IRQ_HANDLED;
1520 }
1521
1522
1523 /* Setup RSS indirection table.
1524  * This maps from the hash value of the packet to RXQ
1525  */
1526 static void falcon_setup_rss_indir_table(struct efx_nic *efx)
1527 {
1528         int i = 0;
1529         unsigned long offset;
1530         efx_dword_t dword;
1531
1532         if (falcon_rev(efx) < FALCON_REV_B0)
1533                 return;
1534
1535         for (offset = FR_BZ_RX_INDIRECTION_TBL;
1536              offset < FR_BZ_RX_INDIRECTION_TBL + 0x800;
1537              offset += 0x10) {
1538                 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1539                                      i % efx->n_rx_queues);
1540                 efx_writed(efx, &dword, offset);
1541                 i++;
1542         }
1543 }
1544
1545 /* Hook interrupt handler(s)
1546  * Try MSI and then legacy interrupts.
1547  */
1548 int falcon_init_interrupt(struct efx_nic *efx)
1549 {
1550         struct efx_channel *channel;
1551         int rc;
1552
1553         if (!EFX_INT_MODE_USE_MSI(efx)) {
1554                 irq_handler_t handler;
1555                 if (falcon_rev(efx) >= FALCON_REV_B0)
1556                         handler = falcon_legacy_interrupt_b0;
1557                 else
1558                         handler = falcon_legacy_interrupt_a1;
1559
1560                 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1561                                  efx->name, efx);
1562                 if (rc) {
1563                         EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
1564                                 efx->pci_dev->irq);
1565                         goto fail1;
1566                 }
1567                 return 0;
1568         }
1569
1570         /* Hook MSI or MSI-X interrupt */
1571         efx_for_each_channel(channel, efx) {
1572                 rc = request_irq(channel->irq, falcon_msi_interrupt,
1573                                  IRQF_PROBE_SHARED, /* Not shared */
1574                                  channel->name, channel);
1575                 if (rc) {
1576                         EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
1577                         goto fail2;
1578                 }
1579         }
1580
1581         return 0;
1582
1583  fail2:
1584         efx_for_each_channel(channel, efx)
1585                 free_irq(channel->irq, channel);
1586  fail1:
1587         return rc;
1588 }
1589
1590 void falcon_fini_interrupt(struct efx_nic *efx)
1591 {
1592         struct efx_channel *channel;
1593         efx_oword_t reg;
1594
1595         /* Disable MSI/MSI-X interrupts */
1596         efx_for_each_channel(channel, efx) {
1597                 if (channel->irq)
1598                         free_irq(channel->irq, channel);
1599         }
1600
1601         /* ACK legacy interrupt */
1602         if (falcon_rev(efx) >= FALCON_REV_B0)
1603                 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1604         else
1605                 falcon_irq_ack_a1(efx);
1606
1607         /* Disable legacy interrupt */
1608         if (efx->legacy_irq)
1609                 free_irq(efx->legacy_irq, efx);
1610 }
1611
1612 /**************************************************************************
1613  *
1614  * EEPROM/flash
1615  *
1616  **************************************************************************
1617  */
1618
1619 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1620
1621 static int falcon_spi_poll(struct efx_nic *efx)
1622 {
1623         efx_oword_t reg;
1624         efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
1625         return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
1626 }
1627
1628 /* Wait for SPI command completion */
1629 static int falcon_spi_wait(struct efx_nic *efx)
1630 {
1631         /* Most commands will finish quickly, so we start polling at
1632          * very short intervals.  Sometimes the command may have to
1633          * wait for VPD or expansion ROM access outside of our
1634          * control, so we allow up to 100 ms. */
1635         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
1636         int i;
1637
1638         for (i = 0; i < 10; i++) {
1639                 if (!falcon_spi_poll(efx))
1640                         return 0;
1641                 udelay(10);
1642         }
1643
1644         for (;;) {
1645                 if (!falcon_spi_poll(efx))
1646                         return 0;
1647                 if (time_after_eq(jiffies, timeout)) {
1648                         EFX_ERR(efx, "timed out waiting for SPI\n");
1649                         return -ETIMEDOUT;
1650                 }
1651                 schedule_timeout_uninterruptible(1);
1652         }
1653 }
1654
1655 int falcon_spi_cmd(const struct efx_spi_device *spi,
1656                    unsigned int command, int address,
1657                    const void *in, void *out, size_t len)
1658 {
1659         struct efx_nic *efx = spi->efx;
1660         bool addressed = (address >= 0);
1661         bool reading = (out != NULL);
1662         efx_oword_t reg;
1663         int rc;
1664
1665         /* Input validation */
1666         if (len > FALCON_SPI_MAX_LEN)
1667                 return -EINVAL;
1668         BUG_ON(!mutex_is_locked(&efx->spi_lock));
1669
1670         /* Check that previous command is not still running */
1671         rc = falcon_spi_poll(efx);
1672         if (rc)
1673                 return rc;
1674
1675         /* Program address register, if we have an address */
1676         if (addressed) {
1677                 EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
1678                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
1679         }
1680
1681         /* Program data register, if we have data */
1682         if (in != NULL) {
1683                 memcpy(&reg, in, len);
1684                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
1685         }
1686
1687         /* Issue read/write command */
1688         EFX_POPULATE_OWORD_7(reg,
1689                              FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
1690                              FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
1691                              FRF_AB_EE_SPI_HCMD_DABCNT, len,
1692                              FRF_AB_EE_SPI_HCMD_READ, reading,
1693                              FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
1694                              FRF_AB_EE_SPI_HCMD_ADBCNT,
1695                              (addressed ? spi->addr_len : 0),
1696                              FRF_AB_EE_SPI_HCMD_ENC, command);
1697         efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
1698
1699         /* Wait for read/write to complete */
1700         rc = falcon_spi_wait(efx);
1701         if (rc)
1702                 return rc;
1703
1704         /* Read data */
1705         if (out != NULL) {
1706                 efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
1707                 memcpy(out, &reg, len);
1708         }
1709
1710         return 0;
1711 }
1712
1713 static size_t
1714 falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
1715 {
1716         return min(FALCON_SPI_MAX_LEN,
1717                    (spi->block_size - (start & (spi->block_size - 1))));
1718 }
1719
1720 static inline u8
1721 efx_spi_munge_command(const struct efx_spi_device *spi,
1722                       const u8 command, const unsigned int address)
1723 {
1724         return command | (((address >> 8) & spi->munge_address) << 3);
1725 }
1726
1727 /* Wait up to 10 ms for buffered write completion */
1728 int falcon_spi_wait_write(const struct efx_spi_device *spi)
1729 {
1730         struct efx_nic *efx = spi->efx;
1731         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
1732         u8 status;
1733         int rc;
1734
1735         for (;;) {
1736                 rc = falcon_spi_cmd(spi, SPI_RDSR, -1, NULL,
1737                                     &status, sizeof(status));
1738                 if (rc)
1739                         return rc;
1740                 if (!(status & SPI_STATUS_NRDY))
1741                         return 0;
1742                 if (time_after_eq(jiffies, timeout)) {
1743                         EFX_ERR(efx, "SPI write timeout on device %d"
1744                                 " last status=0x%02x\n",
1745                                 spi->device_id, status);
1746                         return -ETIMEDOUT;
1747                 }
1748                 schedule_timeout_uninterruptible(1);
1749         }
1750 }
1751
1752 int falcon_spi_read(const struct efx_spi_device *spi, loff_t start,
1753                     size_t len, size_t *retlen, u8 *buffer)
1754 {
1755         size_t block_len, pos = 0;
1756         unsigned int command;
1757         int rc = 0;
1758
1759         while (pos < len) {
1760                 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
1761
1762                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1763                 rc = falcon_spi_cmd(spi, command, start + pos, NULL,
1764                                     buffer + pos, block_len);
1765                 if (rc)
1766                         break;
1767                 pos += block_len;
1768
1769                 /* Avoid locking up the system */
1770                 cond_resched();
1771                 if (signal_pending(current)) {
1772                         rc = -EINTR;
1773                         break;
1774                 }
1775         }
1776
1777         if (retlen)
1778                 *retlen = pos;
1779         return rc;
1780 }
1781
1782 int falcon_spi_write(const struct efx_spi_device *spi, loff_t start,
1783                      size_t len, size_t *retlen, const u8 *buffer)
1784 {
1785         u8 verify_buffer[FALCON_SPI_MAX_LEN];
1786         size_t block_len, pos = 0;
1787         unsigned int command;
1788         int rc = 0;
1789
1790         while (pos < len) {
1791                 rc = falcon_spi_cmd(spi, SPI_WREN, -1, NULL, NULL, 0);
1792                 if (rc)
1793                         break;
1794
1795                 block_len = min(len - pos,
1796                                 falcon_spi_write_limit(spi, start + pos));
1797                 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
1798                 rc = falcon_spi_cmd(spi, command, start + pos,
1799                                     buffer + pos, NULL, block_len);
1800                 if (rc)
1801                         break;
1802
1803                 rc = falcon_spi_wait_write(spi);
1804                 if (rc)
1805                         break;
1806
1807                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1808                 rc = falcon_spi_cmd(spi, command, start + pos,
1809                                     NULL, verify_buffer, block_len);
1810                 if (memcmp(verify_buffer, buffer + pos, block_len)) {
1811                         rc = -EIO;
1812                         break;
1813                 }
1814
1815                 pos += block_len;
1816
1817                 /* Avoid locking up the system */
1818                 cond_resched();
1819                 if (signal_pending(current)) {
1820                         rc = -EINTR;
1821                         break;
1822                 }
1823         }
1824
1825         if (retlen)
1826                 *retlen = pos;
1827         return rc;
1828 }
1829
1830 /**************************************************************************
1831  *
1832  * MAC wrapper
1833  *
1834  **************************************************************************
1835  */
1836
1837 static int falcon_reset_macs(struct efx_nic *efx)
1838 {
1839         efx_oword_t reg;
1840         int count;
1841
1842         if (falcon_rev(efx) < FALCON_REV_B0) {
1843                 /* It's not safe to use GLB_CTL_REG to reset the
1844                  * macs, so instead use the internal MAC resets
1845                  */
1846                 if (!EFX_IS10G(efx)) {
1847                         EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 1);
1848                         efx_writeo(efx, &reg, FR_AB_GM_CFG1);
1849                         udelay(1000);
1850
1851                         EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 0);
1852                         efx_writeo(efx, &reg, FR_AB_GM_CFG1);
1853                         udelay(1000);
1854                         return 0;
1855                 } else {
1856                         EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1857                         efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1858
1859                         for (count = 0; count < 10000; count++) {
1860                                 efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1861                                 if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1862                                     0)
1863                                         return 0;
1864                                 udelay(10);
1865                         }
1866
1867                         EFX_ERR(efx, "timed out waiting for XMAC core reset\n");
1868                         return -ETIMEDOUT;
1869                 }
1870         }
1871
1872         /* MAC stats will fail whilst the TX fifo is draining. Serialise
1873          * the drain sequence with the statistics fetch */
1874         efx_stats_disable(efx);
1875
1876         efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1877         EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN, 1);
1878         efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1879
1880         efx_reado(efx, &reg, FR_AB_GLB_CTL);
1881         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1882         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1883         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1884         efx_writeo(efx, &reg, FR_AB_GLB_CTL);
1885
1886         count = 0;
1887         while (1) {
1888                 efx_reado(efx, &reg, FR_AB_GLB_CTL);
1889                 if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1890                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1891                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1892                         EFX_LOG(efx, "Completed MAC reset after %d loops\n",
1893                                 count);
1894                         break;
1895                 }
1896                 if (count > 20) {
1897                         EFX_ERR(efx, "MAC reset failed\n");
1898                         break;
1899                 }
1900                 count++;
1901                 udelay(10);
1902         }
1903
1904         efx_stats_enable(efx);
1905
1906         /* If we've reset the EM block and the link is up, then
1907          * we'll have to kick the XAUI link so the PHY can recover */
1908         if (efx->link_state.up && EFX_IS10G(efx) && EFX_WORKAROUND_5147(efx))
1909                 falcon_reset_xaui(efx);
1910
1911         return 0;
1912 }
1913
1914 void falcon_drain_tx_fifo(struct efx_nic *efx)
1915 {
1916         efx_oword_t reg;
1917
1918         if ((falcon_rev(efx) < FALCON_REV_B0) ||
1919             (efx->loopback_mode != LOOPBACK_NONE))
1920                 return;
1921
1922         efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1923         /* There is no point in draining more than once */
1924         if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1925                 return;
1926
1927         falcon_reset_macs(efx);
1928 }
1929
1930 void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1931 {
1932         efx_oword_t reg;
1933
1934         if (falcon_rev(efx) < FALCON_REV_B0)
1935                 return;
1936
1937         /* Isolate the MAC -> RX */
1938         efx_reado(efx, &reg, FR_AZ_RX_CFG);
1939         EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1940         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1941
1942         if (!efx->link_state.up)
1943                 falcon_drain_tx_fifo(efx);
1944 }
1945
1946 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1947 {
1948         struct efx_link_state *link_state = &efx->link_state;
1949         efx_oword_t reg;
1950         int link_speed;
1951         bool tx_fc;
1952
1953         switch (link_state->speed) {
1954         case 10000: link_speed = 3; break;
1955         case 1000:  link_speed = 2; break;
1956         case 100:   link_speed = 1; break;
1957         default:    link_speed = 0; break;
1958         }
1959         /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1960          * as advertised.  Disable to ensure packets are not
1961          * indefinitely held and TX queue can be flushed at any point
1962          * while the link is down. */
1963         EFX_POPULATE_OWORD_5(reg,
1964                              FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1965                              FRF_AB_MAC_BCAD_ACPT, 1,
1966                              FRF_AB_MAC_UC_PROM, efx->promiscuous,
1967                              FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1968                              FRF_AB_MAC_SPEED, link_speed);
1969         /* On B0, MAC backpressure can be disabled and packets get
1970          * discarded. */
1971         if (falcon_rev(efx) >= FALCON_REV_B0) {
1972                 EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1973                                     !link_state->up);
1974         }
1975
1976         efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1977
1978         /* Restore the multicast hash registers. */
1979         falcon_set_multicast_hash(efx);
1980
1981         /* Transmission of pause frames when RX crosses the threshold is
1982          * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
1983          * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
1984         tx_fc = !!(efx->link_state.fc & EFX_FC_TX);
1985         efx_reado(efx, &reg, FR_AZ_RX_CFG);
1986         EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, tx_fc);
1987
1988         /* Unisolate the MAC -> RX */
1989         if (falcon_rev(efx) >= FALCON_REV_B0)
1990                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
1991         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1992 }
1993
1994 int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset)
1995 {
1996         efx_oword_t reg;
1997         u32 *dma_done;
1998         int i;
1999
2000         if (disable_dma_stats)
2001                 return 0;
2002
2003         /* Statistics fetch will fail if the MAC is in TX drain */
2004         if (falcon_rev(efx) >= FALCON_REV_B0) {
2005                 efx_oword_t temp;
2006                 efx_reado(efx, &temp, FR_AB_MAC_CTRL);
2007                 if (EFX_OWORD_FIELD(temp, FRF_BB_TXFIFO_DRAIN_EN))
2008                         return 0;
2009         }
2010
2011         dma_done = (efx->stats_buffer.addr + done_offset);
2012         *dma_done = FALCON_STATS_NOT_DONE;
2013         wmb(); /* ensure done flag is clear */
2014
2015         /* Initiate DMA transfer of stats */
2016         EFX_POPULATE_OWORD_2(reg,
2017                              FRF_AB_MAC_STAT_DMA_CMD, 1,
2018                              FRF_AB_MAC_STAT_DMA_ADR,
2019                              efx->stats_buffer.dma_addr);
2020         efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
2021
2022         /* Wait for transfer to complete */
2023         for (i = 0; i < 400; i++) {
2024                 if (*(volatile u32 *)dma_done == FALCON_STATS_DONE) {
2025                         rmb(); /* Ensure the stats are valid. */
2026                         return 0;
2027                 }
2028                 udelay(10);
2029         }
2030
2031         EFX_ERR(efx, "timed out waiting for statistics\n");
2032         return -ETIMEDOUT;
2033 }
2034
2035 /**************************************************************************
2036  *
2037  * PHY access via GMII
2038  *
2039  **************************************************************************
2040  */
2041
2042 /* Wait for GMII access to complete */
2043 static int falcon_gmii_wait(struct efx_nic *efx)
2044 {
2045         efx_oword_t md_stat;
2046         int count;
2047
2048         /* wait upto 50ms - taken max from datasheet */
2049         for (count = 0; count < 5000; count++) {
2050                 efx_reado(efx, &md_stat, FR_AB_MD_STAT);
2051                 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
2052                         if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
2053                             EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
2054                                 EFX_ERR(efx, "error from GMII access "
2055                                         EFX_OWORD_FMT"\n",
2056                                         EFX_OWORD_VAL(md_stat));
2057                                 return -EIO;
2058                         }
2059                         return 0;
2060                 }
2061                 udelay(10);
2062         }
2063         EFX_ERR(efx, "timed out waiting for GMII\n");
2064         return -ETIMEDOUT;
2065 }
2066
2067 /* Write an MDIO register of a PHY connected to Falcon. */
2068 static int falcon_mdio_write(struct net_device *net_dev,
2069                              int prtad, int devad, u16 addr, u16 value)
2070 {
2071         struct efx_nic *efx = netdev_priv(net_dev);
2072         efx_oword_t reg;
2073         int rc;
2074
2075         EFX_REGDUMP(efx, "writing MDIO %d register %d.%d with 0x%04x\n",
2076                     prtad, devad, addr, value);
2077
2078         spin_lock_bh(&efx->phy_lock);
2079
2080         /* Check MDIO not currently being accessed */
2081         rc = falcon_gmii_wait(efx);
2082         if (rc)
2083                 goto out;
2084
2085         /* Write the address/ID register */
2086         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
2087         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
2088
2089         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
2090                              FRF_AB_MD_DEV_ADR, devad);
2091         efx_writeo(efx, &reg, FR_AB_MD_ID);
2092
2093         /* Write data */
2094         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
2095         efx_writeo(efx, &reg, FR_AB_MD_TXD);
2096
2097         EFX_POPULATE_OWORD_2(reg,
2098                              FRF_AB_MD_WRC, 1,
2099                              FRF_AB_MD_GC, 0);
2100         efx_writeo(efx, &reg, FR_AB_MD_CS);
2101
2102         /* Wait for data to be written */
2103         rc = falcon_gmii_wait(efx);
2104         if (rc) {
2105                 /* Abort the write operation */
2106                 EFX_POPULATE_OWORD_2(reg,
2107                                      FRF_AB_MD_WRC, 0,
2108                                      FRF_AB_MD_GC, 1);
2109                 efx_writeo(efx, &reg, FR_AB_MD_CS);
2110                 udelay(10);
2111         }
2112
2113  out:
2114         spin_unlock_bh(&efx->phy_lock);
2115         return rc;
2116 }
2117
2118 /* Read an MDIO register of a PHY connected to Falcon. */
2119 static int falcon_mdio_read(struct net_device *net_dev,
2120                             int prtad, int devad, u16 addr)
2121 {
2122         struct efx_nic *efx = netdev_priv(net_dev);
2123         efx_oword_t reg;
2124         int rc;
2125
2126         spin_lock_bh(&efx->phy_lock);
2127
2128         /* Check MDIO not currently being accessed */
2129         rc = falcon_gmii_wait(efx);
2130         if (rc)
2131                 goto out;
2132
2133         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
2134         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
2135
2136         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
2137                              FRF_AB_MD_DEV_ADR, devad);
2138         efx_writeo(efx, &reg, FR_AB_MD_ID);
2139
2140         /* Request data to be read */
2141         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
2142         efx_writeo(efx, &reg, FR_AB_MD_CS);
2143
2144         /* Wait for data to become available */
2145         rc = falcon_gmii_wait(efx);
2146         if (rc == 0) {
2147                 efx_reado(efx, &reg, FR_AB_MD_RXD);
2148                 rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
2149                 EFX_REGDUMP(efx, "read from MDIO %d register %d.%d, got %04x\n",
2150                             prtad, devad, addr, rc);
2151         } else {
2152                 /* Abort the read operation */
2153                 EFX_POPULATE_OWORD_2(reg,
2154                                      FRF_AB_MD_RIC, 0,
2155                                      FRF_AB_MD_GC, 1);
2156                 efx_writeo(efx, &reg, FR_AB_MD_CS);
2157
2158                 EFX_LOG(efx, "read from MDIO %d register %d.%d, got error %d\n",
2159                         prtad, devad, addr, rc);
2160         }
2161
2162  out:
2163         spin_unlock_bh(&efx->phy_lock);
2164         return rc;
2165 }
2166
2167 int falcon_switch_mac(struct efx_nic *efx)
2168 {
2169         struct efx_mac_operations *old_mac_op = efx->mac_op;
2170         efx_oword_t nic_stat;
2171         unsigned strap_val;
2172         int rc = 0;
2173
2174         /* Don't try to fetch MAC stats while we're switching MACs */
2175         efx_stats_disable(efx);
2176
2177         /* Internal loopbacks override the phy speed setting */
2178         if (efx->loopback_mode == LOOPBACK_GMAC) {
2179                 efx->link_state.speed = 1000;
2180                 efx->link_state.fd = true;
2181         } else if (LOOPBACK_INTERNAL(efx)) {
2182                 efx->link_state.speed = 10000;
2183                 efx->link_state.fd = true;
2184         }
2185
2186         WARN_ON(!mutex_is_locked(&efx->mac_lock));
2187         efx->mac_op = (EFX_IS10G(efx) ?
2188                        &falcon_xmac_operations : &falcon_gmac_operations);
2189
2190         /* Always push the NIC_STAT_REG setting even if the mac hasn't
2191          * changed, because this function is run post online reset */
2192         efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2193         strap_val = EFX_IS10G(efx) ? 5 : 3;
2194         if (falcon_rev(efx) >= FALCON_REV_B0) {
2195                 EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP_EN, 1);
2196                 EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP, strap_val);
2197                 efx_writeo(efx, &nic_stat, FR_AB_NIC_STAT);
2198         } else {
2199                 /* Falcon A1 does not support 1G/10G speed switching
2200                  * and must not be used with a PHY that does. */
2201                 BUG_ON(EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_PINS) !=
2202                        strap_val);
2203         }
2204
2205         if (old_mac_op == efx->mac_op)
2206                 goto out;
2207
2208         EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G');
2209         /* Not all macs support a mac-level link state */
2210         efx->mac_up = true;
2211
2212         rc = falcon_reset_macs(efx);
2213 out:
2214         efx_stats_enable(efx);
2215         return rc;
2216 }
2217
2218 /* This call is responsible for hooking in the MAC and PHY operations */
2219 int falcon_probe_port(struct efx_nic *efx)
2220 {
2221         int rc;
2222
2223         switch (efx->phy_type) {
2224         case PHY_TYPE_SFX7101:
2225                 efx->phy_op = &falcon_sfx7101_phy_ops;
2226                 break;
2227         case PHY_TYPE_SFT9001A:
2228         case PHY_TYPE_SFT9001B:
2229                 efx->phy_op = &falcon_sft9001_phy_ops;
2230                 break;
2231         case PHY_TYPE_QT2022C2:
2232         case PHY_TYPE_QT2025C:
2233                 efx->phy_op = &falcon_qt202x_phy_ops;
2234                 break;
2235         default:
2236                 EFX_ERR(efx, "Unknown PHY type %d\n",
2237                         efx->phy_type);
2238                 return -ENODEV;
2239         }
2240
2241         if (efx->phy_op->macs & EFX_XMAC)
2242                 efx->loopback_modes |= ((1 << LOOPBACK_XGMII) |
2243                                         (1 << LOOPBACK_XGXS) |
2244                                         (1 << LOOPBACK_XAUI));
2245         if (efx->phy_op->macs & EFX_GMAC)
2246                 efx->loopback_modes |= (1 << LOOPBACK_GMAC);
2247         efx->loopback_modes |= efx->phy_op->loopbacks;
2248
2249         /* Set up MDIO structure for PHY */
2250         efx->mdio.mmds = efx->phy_op->mmds;
2251         efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
2252         efx->mdio.mdio_read = falcon_mdio_read;
2253         efx->mdio.mdio_write = falcon_mdio_write;
2254
2255         /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
2256         if (falcon_rev(efx) >= FALCON_REV_B0)
2257                 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
2258         else
2259                 efx->wanted_fc = EFX_FC_RX;
2260
2261         /* Allocate buffer for stats */
2262         rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
2263                                  FALCON_MAC_STATS_SIZE);
2264         if (rc)
2265                 return rc;
2266         EFX_LOG(efx, "stats buffer at %llx (virt %p phys %llx)\n",
2267                 (u64)efx->stats_buffer.dma_addr,
2268                 efx->stats_buffer.addr,
2269                 (u64)virt_to_phys(efx->stats_buffer.addr));
2270
2271         return 0;
2272 }
2273
2274 void falcon_remove_port(struct efx_nic *efx)
2275 {
2276         falcon_free_buffer(efx, &efx->stats_buffer);
2277 }
2278
2279 /**************************************************************************
2280  *
2281  * Multicast filtering
2282  *
2283  **************************************************************************
2284  */
2285
2286 void falcon_set_multicast_hash(struct efx_nic *efx)
2287 {
2288         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2289
2290         /* Broadcast packets go through the multicast hash filter.
2291          * ether_crc_le() of the broadcast address is 0xbe2612ff
2292          * so we always add bit 0xff to the mask.
2293          */
2294         set_bit_le(0xff, mc_hash->byte);
2295
2296         efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
2297         efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
2298 }
2299
2300
2301 /**************************************************************************
2302  *
2303  * Falcon test code
2304  *
2305  **************************************************************************/
2306
2307 int falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
2308 {
2309         struct falcon_nvconfig *nvconfig;
2310         struct efx_spi_device *spi;
2311         void *region;
2312         int rc, magic_num, struct_ver;
2313         __le16 *word, *limit;
2314         u32 csum;
2315
2316         spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
2317         if (!spi)
2318                 return -EINVAL;
2319
2320         region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
2321         if (!region)
2322                 return -ENOMEM;
2323         nvconfig = region + FALCON_NVCONFIG_OFFSET;
2324
2325         mutex_lock(&efx->spi_lock);
2326         rc = falcon_spi_read(spi, 0, FALCON_NVCONFIG_END, NULL, region);
2327         mutex_unlock(&efx->spi_lock);
2328         if (rc) {
2329                 EFX_ERR(efx, "Failed to read %s\n",
2330                         efx->spi_flash ? "flash" : "EEPROM");
2331                 rc = -EIO;
2332                 goto out;
2333         }
2334
2335         magic_num = le16_to_cpu(nvconfig->board_magic_num);
2336         struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
2337
2338         rc = -EINVAL;
2339         if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
2340                 EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
2341                 goto out;
2342         }
2343         if (struct_ver < 2) {
2344                 EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
2345                 goto out;
2346         } else if (struct_ver < 4) {
2347                 word = &nvconfig->board_magic_num;
2348                 limit = (__le16 *) (nvconfig + 1);
2349         } else {
2350                 word = region;
2351                 limit = region + FALCON_NVCONFIG_END;
2352         }
2353         for (csum = 0; word < limit; ++word)
2354                 csum += le16_to_cpu(*word);
2355
2356         if (~csum & 0xffff) {
2357                 EFX_ERR(efx, "NVRAM has incorrect checksum\n");
2358                 goto out;
2359         }
2360
2361         rc = 0;
2362         if (nvconfig_out)
2363                 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
2364
2365  out:
2366         kfree(region);
2367         return rc;
2368 }
2369
2370 /* Registers tested in the falcon register test */
2371 static struct {
2372         unsigned address;
2373         efx_oword_t mask;
2374 } efx_test_registers[] = {
2375         { FR_AZ_ADR_REGION,
2376           EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
2377         { FR_AZ_RX_CFG,
2378           EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
2379         { FR_AZ_TX_CFG,
2380           EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
2381         { FR_AZ_TX_RESERVED,
2382           EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
2383         { FR_AB_MAC_CTRL,
2384           EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
2385         { FR_AZ_SRM_TX_DC_CFG,
2386           EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
2387         { FR_AZ_RX_DC_CFG,
2388           EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
2389         { FR_AZ_RX_DC_PF_WM,
2390           EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
2391         { FR_BZ_DP_CTRL,
2392           EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
2393         { FR_AB_GM_CFG2,
2394           EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
2395         { FR_AB_GMF_CFG0,
2396           EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
2397         { FR_AB_XM_GLB_CFG,
2398           EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
2399         { FR_AB_XM_TX_CFG,
2400           EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
2401         { FR_AB_XM_RX_CFG,
2402           EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
2403         { FR_AB_XM_RX_PARAM,
2404           EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
2405         { FR_AB_XM_FC,
2406           EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
2407         { FR_AB_XM_ADR_LO,
2408           EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
2409         { FR_AB_XX_SD_CTL,
2410           EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
2411 };
2412
2413 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
2414                                      const efx_oword_t *mask)
2415 {
2416         return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
2417                 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
2418 }
2419
2420 int falcon_test_registers(struct efx_nic *efx)
2421 {
2422         unsigned address = 0, i, j;
2423         efx_oword_t mask, imask, original, reg, buf;
2424
2425         /* Falcon should be in loopback to isolate the XMAC from the PHY */
2426         WARN_ON(!LOOPBACK_INTERNAL(efx));
2427
2428         for (i = 0; i < ARRAY_SIZE(efx_test_registers); ++i) {
2429                 address = efx_test_registers[i].address;
2430                 mask = imask = efx_test_registers[i].mask;
2431                 EFX_INVERT_OWORD(imask);
2432
2433                 efx_reado(efx, &original, address);
2434
2435                 /* bit sweep on and off */
2436                 for (j = 0; j < 128; j++) {
2437                         if (!EFX_EXTRACT_OWORD32(mask, j, j))
2438                                 continue;
2439
2440                         /* Test this testable bit can be set in isolation */
2441                         EFX_AND_OWORD(reg, original, mask);
2442                         EFX_SET_OWORD32(reg, j, j, 1);
2443
2444                         efx_writeo(efx, &reg, address);
2445                         efx_reado(efx, &buf, address);
2446
2447                         if (efx_masked_compare_oword(&reg, &buf, &mask))
2448                                 goto fail;
2449
2450                         /* Test this testable bit can be cleared in isolation */
2451                         EFX_OR_OWORD(reg, original, mask);
2452                         EFX_SET_OWORD32(reg, j, j, 0);
2453
2454                         efx_writeo(efx, &reg, address);
2455                         efx_reado(efx, &buf, address);
2456
2457                         if (efx_masked_compare_oword(&reg, &buf, &mask))
2458                                 goto fail;
2459                 }
2460
2461                 efx_writeo(efx, &original, address);
2462         }
2463
2464         return 0;
2465
2466 fail:
2467         EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
2468                 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
2469                 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
2470         return -EIO;
2471 }
2472
2473 /**************************************************************************
2474  *
2475  * Device reset
2476  *
2477  **************************************************************************
2478  */
2479
2480 /* Resets NIC to known state.  This routine must be called in process
2481  * context and is allowed to sleep. */
2482 int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2483 {
2484         struct falcon_nic_data *nic_data = efx->nic_data;
2485         efx_oword_t glb_ctl_reg_ker;
2486         int rc;
2487
2488         EFX_LOG(efx, "performing %s hardware reset\n", RESET_TYPE(method));
2489
2490         /* Initiate device reset */
2491         if (method == RESET_TYPE_WORLD) {
2492                 rc = pci_save_state(efx->pci_dev);
2493                 if (rc) {
2494                         EFX_ERR(efx, "failed to backup PCI state of primary "
2495                                 "function prior to hardware reset\n");
2496                         goto fail1;
2497                 }
2498                 if (FALCON_IS_DUAL_FUNC(efx)) {
2499                         rc = pci_save_state(nic_data->pci_dev2);
2500                         if (rc) {
2501                                 EFX_ERR(efx, "failed to backup PCI state of "
2502                                         "secondary function prior to "
2503                                         "hardware reset\n");
2504                                 goto fail2;
2505                         }
2506                 }
2507
2508                 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2509                                      FRF_AB_EXT_PHY_RST_DUR,
2510                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
2511                                      FRF_AB_SWRST, 1);
2512         } else {
2513                 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2514                                      /* exclude PHY from "invisible" reset */
2515                                      FRF_AB_EXT_PHY_RST_CTL,
2516                                      method == RESET_TYPE_INVISIBLE,
2517                                      /* exclude EEPROM/flash and PCIe */
2518                                      FRF_AB_PCIE_CORE_RST_CTL, 1,
2519                                      FRF_AB_PCIE_NSTKY_RST_CTL, 1,
2520                                      FRF_AB_PCIE_SD_RST_CTL, 1,
2521                                      FRF_AB_EE_RST_CTL, 1,
2522                                      FRF_AB_EXT_PHY_RST_DUR,
2523                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
2524                                      FRF_AB_SWRST, 1);
2525         }
2526         efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2527
2528         EFX_LOG(efx, "waiting for hardware reset\n");
2529         schedule_timeout_uninterruptible(HZ / 20);
2530
2531         /* Restore PCI configuration if needed */
2532         if (method == RESET_TYPE_WORLD) {
2533                 if (FALCON_IS_DUAL_FUNC(efx)) {
2534                         rc = pci_restore_state(nic_data->pci_dev2);
2535                         if (rc) {
2536                                 EFX_ERR(efx, "failed to restore PCI config for "
2537                                         "the secondary function\n");
2538                                 goto fail3;
2539                         }
2540                 }
2541                 rc = pci_restore_state(efx->pci_dev);
2542                 if (rc) {
2543                         EFX_ERR(efx, "failed to restore PCI config for the "
2544                                 "primary function\n");
2545                         goto fail4;
2546                 }
2547                 EFX_LOG(efx, "successfully restored PCI config\n");
2548         }
2549
2550         /* Assert that reset complete */
2551         efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2552         if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2553                 rc = -ETIMEDOUT;
2554                 EFX_ERR(efx, "timed out waiting for hardware reset\n");
2555                 goto fail5;
2556         }
2557         EFX_LOG(efx, "hardware reset complete\n");
2558
2559         return 0;
2560
2561         /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2562 fail2:
2563 fail3:
2564         pci_restore_state(efx->pci_dev);
2565 fail1:
2566 fail4:
2567 fail5:
2568         return rc;
2569 }
2570
2571 /* Zeroes out the SRAM contents.  This routine must be called in
2572  * process context and is allowed to sleep.
2573  */
2574 static int falcon_reset_sram(struct efx_nic *efx)
2575 {
2576         efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2577         int count;
2578
2579         /* Set the SRAM wake/sleep GPIO appropriately. */
2580         efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2581         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2582         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2583         efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2584
2585         /* Initiate SRAM reset */
2586         EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2587                              FRF_AZ_SRM_INIT_EN, 1,
2588                              FRF_AZ_SRM_NB_SZ, 0);
2589         efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2590
2591         /* Wait for SRAM reset to complete */
2592         count = 0;
2593         do {
2594                 EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
2595
2596                 /* SRAM reset is slow; expect around 16ms */
2597                 schedule_timeout_uninterruptible(HZ / 50);
2598
2599                 /* Check for reset complete */
2600                 efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2601                 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2602                         EFX_LOG(efx, "SRAM reset complete\n");
2603
2604                         return 0;
2605                 }
2606         } while (++count < 20); /* wait upto 0.4 sec */
2607
2608         EFX_ERR(efx, "timed out waiting for SRAM reset\n");
2609         return -ETIMEDOUT;
2610 }
2611
2612 static int falcon_spi_device_init(struct efx_nic *efx,
2613                                   struct efx_spi_device **spi_device_ret,
2614                                   unsigned int device_id, u32 device_type)
2615 {
2616         struct efx_spi_device *spi_device;
2617
2618         if (device_type != 0) {
2619                 spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
2620                 if (!spi_device)
2621                         return -ENOMEM;
2622                 spi_device->device_id = device_id;
2623                 spi_device->size =
2624                         1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2625                 spi_device->addr_len =
2626                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2627                 spi_device->munge_address = (spi_device->size == 1 << 9 &&
2628                                              spi_device->addr_len == 1);
2629                 spi_device->erase_command =
2630                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2631                 spi_device->erase_size =
2632                         1 << SPI_DEV_TYPE_FIELD(device_type,
2633                                                 SPI_DEV_TYPE_ERASE_SIZE);
2634                 spi_device->block_size =
2635                         1 << SPI_DEV_TYPE_FIELD(device_type,
2636                                                 SPI_DEV_TYPE_BLOCK_SIZE);
2637
2638                 spi_device->efx = efx;
2639         } else {
2640                 spi_device = NULL;
2641         }
2642
2643         kfree(*spi_device_ret);
2644         *spi_device_ret = spi_device;
2645         return 0;
2646 }
2647
2648
2649 static void falcon_remove_spi_devices(struct efx_nic *efx)
2650 {
2651         kfree(efx->spi_eeprom);
2652         efx->spi_eeprom = NULL;
2653         kfree(efx->spi_flash);
2654         efx->spi_flash = NULL;
2655 }
2656
2657 /* Extract non-volatile configuration */
2658 static int falcon_probe_nvconfig(struct efx_nic *efx)
2659 {
2660         struct falcon_nvconfig *nvconfig;
2661         int board_rev;
2662         int rc;
2663
2664         nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2665         if (!nvconfig)
2666                 return -ENOMEM;
2667
2668         rc = falcon_read_nvram(efx, nvconfig);
2669         if (rc == -EINVAL) {
2670                 EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
2671                 efx->phy_type = PHY_TYPE_NONE;
2672                 efx->mdio.prtad = MDIO_PRTAD_NONE;
2673                 board_rev = 0;
2674                 rc = 0;
2675         } else if (rc) {
2676                 goto fail1;
2677         } else {
2678                 struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
2679                 struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
2680
2681                 efx->phy_type = v2->port0_phy_type;
2682                 efx->mdio.prtad = v2->port0_phy_addr;
2683                 board_rev = le16_to_cpu(v2->board_revision);
2684
2685                 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2686                         rc = falcon_spi_device_init(
2687                                 efx, &efx->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2688                                 le32_to_cpu(v3->spi_device_type
2689                                             [FFE_AB_SPI_DEVICE_FLASH]));
2690                         if (rc)
2691                                 goto fail2;
2692                         rc = falcon_spi_device_init(
2693                                 efx, &efx->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2694                                 le32_to_cpu(v3->spi_device_type
2695                                             [FFE_AB_SPI_DEVICE_EEPROM]));
2696                         if (rc)
2697                                 goto fail2;
2698                 }
2699         }
2700
2701         /* Read the MAC addresses */
2702         memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
2703
2704         EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mdio.prtad);
2705
2706         falcon_probe_board(efx, board_rev);
2707
2708         kfree(nvconfig);
2709         return 0;
2710
2711  fail2:
2712         falcon_remove_spi_devices(efx);
2713  fail1:
2714         kfree(nvconfig);
2715         return rc;
2716 }
2717
2718 /* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
2719  * count, port speed).  Set workaround and feature flags accordingly.
2720  */
2721 static int falcon_probe_nic_variant(struct efx_nic *efx)
2722 {
2723         efx_oword_t altera_build;
2724         efx_oword_t nic_stat;
2725
2726         efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
2727         if (EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER)) {
2728                 EFX_ERR(efx, "Falcon FPGA not supported\n");
2729                 return -ENODEV;
2730         }
2731
2732         efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2733
2734         switch (falcon_rev(efx)) {
2735         case FALCON_REV_A0:
2736         case 0xff:
2737                 EFX_ERR(efx, "Falcon rev A0 not supported\n");
2738                 return -ENODEV;
2739
2740         case FALCON_REV_A1:
2741                 if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2742                         EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
2743                         return -ENODEV;
2744                 }
2745                 break;
2746
2747         case FALCON_REV_B0:
2748                 break;
2749
2750         default:
2751                 EFX_ERR(efx, "Unknown Falcon rev %d\n", falcon_rev(efx));
2752                 return -ENODEV;
2753         }
2754
2755         /* Initial assumed speed */
2756         efx->link_state.speed = EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) ? 10000 : 1000;
2757
2758         return 0;
2759 }
2760
2761 /* Probe all SPI devices on the NIC */
2762 static void falcon_probe_spi_devices(struct efx_nic *efx)
2763 {
2764         efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2765         int boot_dev;
2766
2767         efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2768         efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2769         efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2770
2771         if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2772                 boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2773                             FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2774                 EFX_LOG(efx, "Booted from %s\n",
2775                         boot_dev == FFE_AB_SPI_DEVICE_FLASH ? "flash" : "EEPROM");
2776         } else {
2777                 /* Disable VPD and set clock dividers to safe
2778                  * values for initial programming. */
2779                 boot_dev = -1;
2780                 EFX_LOG(efx, "Booted from internal ASIC settings;"
2781                         " setting SPI config\n");
2782                 EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2783                                      /* 125 MHz / 7 ~= 20 MHz */
2784                                      FRF_AB_EE_SF_CLOCK_DIV, 7,
2785                                      /* 125 MHz / 63 ~= 2 MHz */
2786                                      FRF_AB_EE_EE_CLOCK_DIV, 63);
2787                 efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2788         }
2789
2790         if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2791                 falcon_spi_device_init(efx, &efx->spi_flash,
2792                                        FFE_AB_SPI_DEVICE_FLASH,
2793                                        default_flash_type);
2794         if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2795                 falcon_spi_device_init(efx, &efx->spi_eeprom,
2796                                        FFE_AB_SPI_DEVICE_EEPROM,
2797                                        large_eeprom_type);
2798 }
2799
2800 int falcon_probe_nic(struct efx_nic *efx)
2801 {
2802         struct falcon_nic_data *nic_data;
2803         struct falcon_board *board;
2804         int rc;
2805
2806         /* Allocate storage for hardware specific data */
2807         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2808         if (!nic_data)
2809                 return -ENOMEM;
2810         efx->nic_data = nic_data;
2811
2812         /* Determine number of ports etc. */
2813         rc = falcon_probe_nic_variant(efx);
2814         if (rc)
2815                 goto fail1;
2816
2817         /* Probe secondary function if expected */
2818         if (FALCON_IS_DUAL_FUNC(efx)) {
2819                 struct pci_dev *dev = pci_dev_get(efx->pci_dev);
2820
2821                 while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
2822                                              dev))) {
2823                         if (dev->bus == efx->pci_dev->bus &&
2824                             dev->devfn == efx->pci_dev->devfn + 1) {
2825                                 nic_data->pci_dev2 = dev;
2826                                 break;
2827                         }
2828                 }
2829                 if (!nic_data->pci_dev2) {
2830                         EFX_ERR(efx, "failed to find secondary function\n");
2831                         rc = -ENODEV;
2832                         goto fail2;
2833                 }
2834         }
2835
2836         /* Now we can reset the NIC */
2837         rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
2838         if (rc) {
2839                 EFX_ERR(efx, "failed to reset NIC\n");
2840                 goto fail3;
2841         }
2842
2843         /* Allocate memory for INT_KER */
2844         rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
2845         if (rc)
2846                 goto fail4;
2847         BUG_ON(efx->irq_status.dma_addr & 0x0f);
2848
2849         EFX_LOG(efx, "INT_KER at %llx (virt %p phys %llx)\n",
2850                 (u64)efx->irq_status.dma_addr,
2851                 efx->irq_status.addr, (u64)virt_to_phys(efx->irq_status.addr));
2852
2853         falcon_probe_spi_devices(efx);
2854
2855         /* Read in the non-volatile configuration */
2856         rc = falcon_probe_nvconfig(efx);
2857         if (rc)
2858                 goto fail5;
2859
2860         /* Initialise I2C adapter */
2861         board = falcon_board(efx);
2862         board->i2c_adap.owner = THIS_MODULE;
2863         board->i2c_data = falcon_i2c_bit_operations;
2864         board->i2c_data.data = efx;
2865         board->i2c_adap.algo_data = &board->i2c_data;
2866         board->i2c_adap.dev.parent = &efx->pci_dev->dev;
2867         strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
2868                 sizeof(board->i2c_adap.name));
2869         rc = i2c_bit_add_bus(&board->i2c_adap);
2870         if (rc)
2871                 goto fail5;
2872
2873         rc = falcon_board(efx)->init(efx);
2874         if (rc) {
2875                 EFX_ERR(efx, "failed to initialise board\n");
2876                 goto fail6;
2877         }
2878
2879         return 0;
2880
2881  fail6:
2882         BUG_ON(i2c_del_adapter(&board->i2c_adap));
2883         memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2884  fail5:
2885         falcon_remove_spi_devices(efx);
2886         falcon_free_buffer(efx, &efx->irq_status);
2887  fail4:
2888  fail3:
2889         if (nic_data->pci_dev2) {
2890                 pci_dev_put(nic_data->pci_dev2);
2891                 nic_data->pci_dev2 = NULL;
2892         }
2893  fail2:
2894  fail1:
2895         kfree(efx->nic_data);
2896         return rc;
2897 }
2898
2899 static void falcon_init_rx_cfg(struct efx_nic *efx)
2900 {
2901         /* Prior to Siena the RX DMA engine will split each frame at
2902          * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
2903          * be so large that that never happens. */
2904         const unsigned huge_buf_size = (3 * 4096) >> 5;
2905         /* RX control FIFO thresholds (32 entries) */
2906         const unsigned ctrl_xon_thr = 20;
2907         const unsigned ctrl_xoff_thr = 25;
2908         /* RX data FIFO thresholds (256-byte units; size varies) */
2909         int data_xon_thr = rx_xon_thresh_bytes >> 8;
2910         int data_xoff_thr = rx_xoff_thresh_bytes >> 8;
2911         efx_oword_t reg;
2912
2913         efx_reado(efx, &reg, FR_AZ_RX_CFG);
2914         if (falcon_rev(efx) <= FALCON_REV_A1) {
2915                 /* Data FIFO size is 5.5K */
2916                 if (data_xon_thr < 0)
2917                         data_xon_thr = 512 >> 8;
2918                 if (data_xoff_thr < 0)
2919                         data_xoff_thr = 2048 >> 8;
2920                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2921                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2922                                     huge_buf_size);
2923                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, data_xon_thr);
2924                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, data_xoff_thr);
2925                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
2926                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2927         } else {
2928                 /* Data FIFO size is 80K; register fields moved */
2929                 if (data_xon_thr < 0)
2930                         data_xon_thr = 27648 >> 8; /* ~3*max MTU */
2931                 if (data_xoff_thr < 0)
2932                         data_xoff_thr = 54272 >> 8; /* ~80Kb - 3*max MTU */
2933                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
2934                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
2935                                     huge_buf_size);
2936                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, data_xon_thr);
2937                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, data_xoff_thr);
2938                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
2939                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
2940                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2941         }
2942         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
2943 }
2944
2945 /* This call performs hardware-specific global initialisation, such as
2946  * defining the descriptor cache sizes and number of RSS channels.
2947  * It does not set up any buffers, descriptor rings or event queues.
2948  */
2949 int falcon_init_nic(struct efx_nic *efx)
2950 {
2951         efx_oword_t temp;
2952         int rc;
2953
2954         /* Use on-chip SRAM */
2955         efx_reado(efx, &temp, FR_AB_NIC_STAT);
2956         EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
2957         efx_writeo(efx, &temp, FR_AB_NIC_STAT);
2958
2959         /* Set the source of the GMAC clock */
2960         if (falcon_rev(efx) == FALCON_REV_B0) {
2961                 efx_reado(efx, &temp, FR_AB_GPIO_CTL);
2962                 EFX_SET_OWORD_FIELD(temp, FRF_AB_USE_NIC_CLK, true);
2963                 efx_writeo(efx, &temp, FR_AB_GPIO_CTL);
2964         }
2965
2966         rc = falcon_reset_sram(efx);
2967         if (rc)
2968                 return rc;
2969
2970         /* Set positions of descriptor caches in SRAM. */
2971         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
2972         efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
2973         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
2974         efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
2975
2976         /* Set TX descriptor cache size. */
2977         BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
2978         EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
2979         efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
2980
2981         /* Set RX descriptor cache size.  Set low watermark to size-8, as
2982          * this allows most efficient prefetching.
2983          */
2984         BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
2985         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
2986         efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
2987         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
2988         efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
2989
2990         /* Clear the parity enables on the TX data fifos as
2991          * they produce false parity errors because of timing issues
2992          */
2993         if (EFX_WORKAROUND_5129(efx)) {
2994                 efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
2995                 EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
2996                 efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
2997         }
2998
2999         /* Enable all the genuinely fatal interrupts.  (They are still
3000          * masked by the overall interrupt mask, controlled by
3001          * falcon_interrupts()).
3002          *
3003          * Note: All other fatal interrupts are enabled
3004          */
3005         EFX_POPULATE_OWORD_3(temp,
3006                              FRF_AZ_ILL_ADR_INT_KER_EN, 1,
3007                              FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
3008                              FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
3009         EFX_INVERT_OWORD(temp);
3010         efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
3011
3012         if (EFX_WORKAROUND_7244(efx)) {
3013                 efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
3014                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
3015                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
3016                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
3017                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
3018                 efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
3019         }
3020
3021         falcon_setup_rss_indir_table(efx);
3022
3023         /* XXX This is documented only for Falcon A0/A1 */
3024         /* Setup RX.  Wait for descriptor is broken and must
3025          * be disabled.  RXDP recovery shouldn't be needed, but is.
3026          */
3027         efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
3028         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
3029         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
3030         if (EFX_WORKAROUND_5583(efx))
3031                 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
3032         efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
3033
3034         /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
3035          * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
3036          */
3037         efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
3038         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
3039         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
3040         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
3041         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 0);
3042         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
3043         /* Enable SW_EV to inherit in char driver - assume harmless here */
3044         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
3045         /* Prefetch threshold 2 => fetch when descriptor cache half empty */
3046         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
3047         /* Squash TX of packets of 16 bytes or less */
3048         if (falcon_rev(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
3049                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
3050         efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
3051
3052         /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
3053          * descriptors (which is bad).
3054          */
3055         efx_reado(efx, &temp, FR_AZ_TX_CFG);
3056         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
3057         efx_writeo(efx, &temp, FR_AZ_TX_CFG);
3058
3059         falcon_init_rx_cfg(efx);
3060
3061         /* Set destination of both TX and RX Flush events */
3062         if (falcon_rev(efx) >= FALCON_REV_B0) {
3063                 EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
3064                 efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
3065         }
3066
3067         return 0;
3068 }
3069
3070 void falcon_remove_nic(struct efx_nic *efx)
3071 {
3072         struct falcon_nic_data *nic_data = efx->nic_data;
3073         struct falcon_board *board = falcon_board(efx);
3074         int rc;
3075
3076         falcon_board(efx)->fini(efx);
3077
3078         /* Remove I2C adapter and clear it in preparation for a retry */
3079         rc = i2c_del_adapter(&board->i2c_adap);
3080         BUG_ON(rc);
3081         memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
3082
3083         falcon_remove_spi_devices(efx);
3084         falcon_free_buffer(efx, &efx->irq_status);
3085
3086         falcon_reset_hw(efx, RESET_TYPE_ALL);
3087
3088         /* Release the second function after the reset */
3089         if (nic_data->pci_dev2) {
3090                 pci_dev_put(nic_data->pci_dev2);
3091                 nic_data->pci_dev2 = NULL;
3092         }
3093
3094         /* Tear down the private nic state */
3095         kfree(efx->nic_data);
3096         efx->nic_data = NULL;
3097 }
3098
3099 void falcon_update_nic_stats(struct efx_nic *efx)
3100 {
3101         efx_oword_t cnt;
3102
3103         efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
3104         efx->n_rx_nodesc_drop_cnt +=
3105                 EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
3106 }
3107
3108 /**************************************************************************
3109  *
3110  * Revision-dependent attributes used by efx.c
3111  *
3112  **************************************************************************
3113  */
3114
3115 struct efx_nic_type falcon_a_nic_type = {
3116         .mem_map_size = 0x20000,
3117         .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
3118         .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
3119         .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
3120         .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
3121         .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
3122         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
3123         .rx_buffer_padding = 0x24,
3124         .max_interrupt_mode = EFX_INT_MODE_MSI,
3125         .phys_addr_channels = 4,
3126 };
3127
3128 struct efx_nic_type falcon_b_nic_type = {
3129         /* Map everything up to and including the RSS indirection
3130          * table.  Don't map MSI-X table, MSI-X PBA since Linux
3131          * requires that they not be mapped.  */
3132         .mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
3133                          FR_BZ_RX_INDIRECTION_TBL_STEP *
3134                          FR_BZ_RX_INDIRECTION_TBL_ROWS),
3135         .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
3136         .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
3137         .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
3138         .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
3139         .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
3140         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
3141         .rx_buffer_padding = 0,
3142         .max_interrupt_mode = EFX_INT_MODE_MSIX,
3143         .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
3144                                    * interrupt handler only supports 32
3145                                    * channels */
3146 };
3147