sfc: Move all TX DMA length limiting into tx.c
[safe/jmp/linux-2.6] / drivers / net / sfc / falcon.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2008 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/i2c-algo-bit.h>
18 #include <linux/mii.h>
19 #include "net_driver.h"
20 #include "bitfield.h"
21 #include "efx.h"
22 #include "mac.h"
23 #include "spi.h"
24 #include "falcon.h"
25 #include "regs.h"
26 #include "io.h"
27 #include "mdio_10g.h"
28 #include "phy.h"
29 #include "workarounds.h"
30
31 /* Falcon hardware control.
32  * Falcon is the internal codename for the SFC4000 controller that is
33  * present in SFE400X evaluation boards
34  */
35
36 /**
37  * struct falcon_nic_data - Falcon NIC state
38  * @next_buffer_table: First available buffer table id
39  * @pci_dev2: The secondary PCI device if present
40  * @i2c_data: Operations and state for I2C bit-bashing algorithm
41  * @int_error_count: Number of internal errors seen recently
42  * @int_error_expire: Time at which error count will be expired
43  */
44 struct falcon_nic_data {
45         unsigned next_buffer_table;
46         struct pci_dev *pci_dev2;
47         struct i2c_algo_bit_data i2c_data;
48
49         unsigned int_error_count;
50         unsigned long int_error_expire;
51 };
52
53 /**************************************************************************
54  *
55  * Configurable values
56  *
57  **************************************************************************
58  */
59
60 static int disable_dma_stats;
61
62 /* This is set to 16 for a good reason.  In summary, if larger than
63  * 16, the descriptor cache holds more than a default socket
64  * buffer's worth of packets (for UDP we can only have at most one
65  * socket buffer's worth outstanding).  This combined with the fact
66  * that we only get 1 TX event per descriptor cache means the NIC
67  * goes idle.
68  */
69 #define TX_DC_ENTRIES 16
70 #define TX_DC_ENTRIES_ORDER 0
71 #define TX_DC_BASE 0x130000
72
73 #define RX_DC_ENTRIES 64
74 #define RX_DC_ENTRIES_ORDER 2
75 #define RX_DC_BASE 0x100000
76
77 static const unsigned int
78 /* "Large" EEPROM device: Atmel AT25640 or similar
79  * 8 KB, 16-bit address, 32 B write block */
80 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
81                      | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
82                      | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
83 /* Default flash device: Atmel AT25F1024
84  * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
85 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
86                       | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
87                       | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
88                       | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
89                       | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
90
91 /* RX FIFO XOFF watermark
92  *
93  * When the amount of the RX FIFO increases used increases past this
94  * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
95  * This also has an effect on RX/TX arbitration
96  */
97 static int rx_xoff_thresh_bytes = -1;
98 module_param(rx_xoff_thresh_bytes, int, 0644);
99 MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
100
101 /* RX FIFO XON watermark
102  *
103  * When the amount of the RX FIFO used decreases below this
104  * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
105  * This also has an effect on RX/TX arbitration
106  */
107 static int rx_xon_thresh_bytes = -1;
108 module_param(rx_xon_thresh_bytes, int, 0644);
109 MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
110
111 /* If FALCON_MAX_INT_ERRORS internal errors occur within
112  * FALCON_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
113  * disable it.
114  */
115 #define FALCON_INT_ERROR_EXPIRE 3600
116 #define FALCON_MAX_INT_ERRORS 5
117
118 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
119  */
120 #define FALCON_FLUSH_INTERVAL 10
121 #define FALCON_FLUSH_POLL_COUNT 100
122
123 /**************************************************************************
124  *
125  * Falcon constants
126  *
127  **************************************************************************
128  */
129
130 /* Size and alignment of special buffers (4KB) */
131 #define FALCON_BUF_SIZE 4096
132
133 /* Dummy SRAM size code */
134 #define SRM_NB_BSZ_ONCHIP_ONLY (-1)
135
136 #define FALCON_IS_DUAL_FUNC(efx)                \
137         (falcon_rev(efx) < FALCON_REV_B0)
138
139 /**************************************************************************
140  *
141  * Falcon hardware access
142  *
143  **************************************************************************/
144
145 static inline void falcon_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
146                                         unsigned int index)
147 {
148         efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
149                         value, index);
150 }
151
152 /* Read the current event from the event queue */
153 static inline efx_qword_t *falcon_event(struct efx_channel *channel,
154                                         unsigned int index)
155 {
156         return (((efx_qword_t *) (channel->eventq.addr)) + index);
157 }
158
159 /* See if an event is present
160  *
161  * We check both the high and low dword of the event for all ones.  We
162  * wrote all ones when we cleared the event, and no valid event can
163  * have all ones in either its high or low dwords.  This approach is
164  * robust against reordering.
165  *
166  * Note that using a single 64-bit comparison is incorrect; even
167  * though the CPU read will be atomic, the DMA write may not be.
168  */
169 static inline int falcon_event_present(efx_qword_t *event)
170 {
171         return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
172                   EFX_DWORD_IS_ALL_ONES(event->dword[1])));
173 }
174
175 /**************************************************************************
176  *
177  * I2C bus - this is a bit-bashing interface using GPIO pins
178  * Note that it uses the output enables to tristate the outputs
179  * SDA is the data pin and SCL is the clock
180  *
181  **************************************************************************
182  */
183 static void falcon_setsda(void *data, int state)
184 {
185         struct efx_nic *efx = (struct efx_nic *)data;
186         efx_oword_t reg;
187
188         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
189         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
190         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
191 }
192
193 static void falcon_setscl(void *data, int state)
194 {
195         struct efx_nic *efx = (struct efx_nic *)data;
196         efx_oword_t reg;
197
198         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
199         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
200         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
201 }
202
203 static int falcon_getsda(void *data)
204 {
205         struct efx_nic *efx = (struct efx_nic *)data;
206         efx_oword_t reg;
207
208         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
209         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
210 }
211
212 static int falcon_getscl(void *data)
213 {
214         struct efx_nic *efx = (struct efx_nic *)data;
215         efx_oword_t reg;
216
217         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
218         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
219 }
220
221 static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
222         .setsda         = falcon_setsda,
223         .setscl         = falcon_setscl,
224         .getsda         = falcon_getsda,
225         .getscl         = falcon_getscl,
226         .udelay         = 5,
227         /* Wait up to 50 ms for slave to let us pull SCL high */
228         .timeout        = DIV_ROUND_UP(HZ, 20),
229 };
230
231 /**************************************************************************
232  *
233  * Falcon special buffer handling
234  * Special buffers are used for event queues and the TX and RX
235  * descriptor rings.
236  *
237  *************************************************************************/
238
239 /*
240  * Initialise a Falcon special buffer
241  *
242  * This will define a buffer (previously allocated via
243  * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
244  * it to be used for event queues, descriptor rings etc.
245  */
246 static void
247 falcon_init_special_buffer(struct efx_nic *efx,
248                            struct efx_special_buffer *buffer)
249 {
250         efx_qword_t buf_desc;
251         int index;
252         dma_addr_t dma_addr;
253         int i;
254
255         EFX_BUG_ON_PARANOID(!buffer->addr);
256
257         /* Write buffer descriptors to NIC */
258         for (i = 0; i < buffer->entries; i++) {
259                 index = buffer->index + i;
260                 dma_addr = buffer->dma_addr + (i * 4096);
261                 EFX_LOG(efx, "mapping special buffer %d at %llx\n",
262                         index, (unsigned long long)dma_addr);
263                 EFX_POPULATE_QWORD_3(buf_desc,
264                                      FRF_AZ_BUF_ADR_REGION, 0,
265                                      FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
266                                      FRF_AZ_BUF_OWNER_ID_FBUF, 0);
267                 falcon_write_buf_tbl(efx, &buf_desc, index);
268         }
269 }
270
271 /* Unmaps a buffer from Falcon and clears the buffer table entries */
272 static void
273 falcon_fini_special_buffer(struct efx_nic *efx,
274                            struct efx_special_buffer *buffer)
275 {
276         efx_oword_t buf_tbl_upd;
277         unsigned int start = buffer->index;
278         unsigned int end = (buffer->index + buffer->entries - 1);
279
280         if (!buffer->entries)
281                 return;
282
283         EFX_LOG(efx, "unmapping special buffers %d-%d\n",
284                 buffer->index, buffer->index + buffer->entries - 1);
285
286         EFX_POPULATE_OWORD_4(buf_tbl_upd,
287                              FRF_AZ_BUF_UPD_CMD, 0,
288                              FRF_AZ_BUF_CLR_CMD, 1,
289                              FRF_AZ_BUF_CLR_END_ID, end,
290                              FRF_AZ_BUF_CLR_START_ID, start);
291         efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
292 }
293
294 /*
295  * Allocate a new Falcon special buffer
296  *
297  * This allocates memory for a new buffer, clears it and allocates a
298  * new buffer ID range.  It does not write into Falcon's buffer table.
299  *
300  * This call will allocate 4KB buffers, since Falcon can't use 8KB
301  * buffers for event queues and descriptor rings.
302  */
303 static int falcon_alloc_special_buffer(struct efx_nic *efx,
304                                        struct efx_special_buffer *buffer,
305                                        unsigned int len)
306 {
307         struct falcon_nic_data *nic_data = efx->nic_data;
308
309         len = ALIGN(len, FALCON_BUF_SIZE);
310
311         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
312                                             &buffer->dma_addr);
313         if (!buffer->addr)
314                 return -ENOMEM;
315         buffer->len = len;
316         buffer->entries = len / FALCON_BUF_SIZE;
317         BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));
318
319         /* All zeros is a potentially valid event so memset to 0xff */
320         memset(buffer->addr, 0xff, len);
321
322         /* Select new buffer ID */
323         buffer->index = nic_data->next_buffer_table;
324         nic_data->next_buffer_table += buffer->entries;
325
326         EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
327                 "(virt %p phys %llx)\n", buffer->index,
328                 buffer->index + buffer->entries - 1,
329                 (u64)buffer->dma_addr, len,
330                 buffer->addr, (u64)virt_to_phys(buffer->addr));
331
332         return 0;
333 }
334
335 static void falcon_free_special_buffer(struct efx_nic *efx,
336                                        struct efx_special_buffer *buffer)
337 {
338         if (!buffer->addr)
339                 return;
340
341         EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
342                 "(virt %p phys %llx)\n", buffer->index,
343                 buffer->index + buffer->entries - 1,
344                 (u64)buffer->dma_addr, buffer->len,
345                 buffer->addr, (u64)virt_to_phys(buffer->addr));
346
347         pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
348                             buffer->dma_addr);
349         buffer->addr = NULL;
350         buffer->entries = 0;
351 }
352
353 /**************************************************************************
354  *
355  * Falcon generic buffer handling
356  * These buffers are used for interrupt status and MAC stats
357  *
358  **************************************************************************/
359
360 static int falcon_alloc_buffer(struct efx_nic *efx,
361                                struct efx_buffer *buffer, unsigned int len)
362 {
363         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
364                                             &buffer->dma_addr);
365         if (!buffer->addr)
366                 return -ENOMEM;
367         buffer->len = len;
368         memset(buffer->addr, 0, len);
369         return 0;
370 }
371
372 static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
373 {
374         if (buffer->addr) {
375                 pci_free_consistent(efx->pci_dev, buffer->len,
376                                     buffer->addr, buffer->dma_addr);
377                 buffer->addr = NULL;
378         }
379 }
380
381 /**************************************************************************
382  *
383  * Falcon TX path
384  *
385  **************************************************************************/
386
387 /* Returns a pointer to the specified transmit descriptor in the TX
388  * descriptor queue belonging to the specified channel.
389  */
390 static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
391                                                unsigned int index)
392 {
393         return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
394 }
395
396 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
397 static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
398 {
399         unsigned write_ptr;
400         efx_dword_t reg;
401
402         write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
403         EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
404         efx_writed_page(tx_queue->efx, &reg,
405                         FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
406 }
407
408
409 /* For each entry inserted into the software descriptor ring, create a
410  * descriptor in the hardware TX descriptor ring (in host memory), and
411  * write a doorbell.
412  */
413 void falcon_push_buffers(struct efx_tx_queue *tx_queue)
414 {
415
416         struct efx_tx_buffer *buffer;
417         efx_qword_t *txd;
418         unsigned write_ptr;
419
420         BUG_ON(tx_queue->write_count == tx_queue->insert_count);
421
422         do {
423                 write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
424                 buffer = &tx_queue->buffer[write_ptr];
425                 txd = falcon_tx_desc(tx_queue, write_ptr);
426                 ++tx_queue->write_count;
427
428                 /* Create TX descriptor ring entry */
429                 EFX_POPULATE_QWORD_4(*txd,
430                                      FSF_AZ_TX_KER_CONT, buffer->continuation,
431                                      FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
432                                      FSF_AZ_TX_KER_BUF_REGION, 0,
433                                      FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
434         } while (tx_queue->write_count != tx_queue->insert_count);
435
436         wmb(); /* Ensure descriptors are written before they are fetched */
437         falcon_notify_tx_desc(tx_queue);
438 }
439
440 /* Allocate hardware resources for a TX queue */
441 int falcon_probe_tx(struct efx_tx_queue *tx_queue)
442 {
443         struct efx_nic *efx = tx_queue->efx;
444         BUILD_BUG_ON(EFX_TXQ_SIZE < 512 || EFX_TXQ_SIZE > 4096 ||
445                      EFX_TXQ_SIZE & EFX_TXQ_MASK);
446         return falcon_alloc_special_buffer(efx, &tx_queue->txd,
447                                            EFX_TXQ_SIZE * sizeof(efx_qword_t));
448 }
449
450 void falcon_init_tx(struct efx_tx_queue *tx_queue)
451 {
452         efx_oword_t tx_desc_ptr;
453         struct efx_nic *efx = tx_queue->efx;
454
455         tx_queue->flushed = false;
456
457         /* Pin TX descriptor ring */
458         falcon_init_special_buffer(efx, &tx_queue->txd);
459
460         /* Push TX descriptor ring to card */
461         EFX_POPULATE_OWORD_10(tx_desc_ptr,
462                               FRF_AZ_TX_DESCQ_EN, 1,
463                               FRF_AZ_TX_ISCSI_DDIG_EN, 0,
464                               FRF_AZ_TX_ISCSI_HDIG_EN, 0,
465                               FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
466                               FRF_AZ_TX_DESCQ_EVQ_ID,
467                               tx_queue->channel->channel,
468                               FRF_AZ_TX_DESCQ_OWNER_ID, 0,
469                               FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
470                               FRF_AZ_TX_DESCQ_SIZE,
471                               __ffs(tx_queue->txd.entries),
472                               FRF_AZ_TX_DESCQ_TYPE, 0,
473                               FRF_BZ_TX_NON_IP_DROP_DIS, 1);
474
475         if (falcon_rev(efx) >= FALCON_REV_B0) {
476                 int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
477                 EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
478                 EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_TCP_CHKSM_DIS,
479                                     !csum);
480         }
481
482         efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
483                          tx_queue->queue);
484
485         if (falcon_rev(efx) < FALCON_REV_B0) {
486                 efx_oword_t reg;
487
488                 /* Only 128 bits in this register */
489                 BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
490
491                 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
492                 if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
493                         clear_bit_le(tx_queue->queue, (void *)&reg);
494                 else
495                         set_bit_le(tx_queue->queue, (void *)&reg);
496                 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
497         }
498 }
499
500 static void falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
501 {
502         struct efx_nic *efx = tx_queue->efx;
503         efx_oword_t tx_flush_descq;
504
505         /* Post a flush command */
506         EFX_POPULATE_OWORD_2(tx_flush_descq,
507                              FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
508                              FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
509         efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
510 }
511
512 void falcon_fini_tx(struct efx_tx_queue *tx_queue)
513 {
514         struct efx_nic *efx = tx_queue->efx;
515         efx_oword_t tx_desc_ptr;
516
517         /* The queue should have been flushed */
518         WARN_ON(!tx_queue->flushed);
519
520         /* Remove TX descriptor ring from card */
521         EFX_ZERO_OWORD(tx_desc_ptr);
522         efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
523                          tx_queue->queue);
524
525         /* Unpin TX descriptor ring */
526         falcon_fini_special_buffer(efx, &tx_queue->txd);
527 }
528
529 /* Free buffers backing TX queue */
530 void falcon_remove_tx(struct efx_tx_queue *tx_queue)
531 {
532         falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
533 }
534
535 /**************************************************************************
536  *
537  * Falcon RX path
538  *
539  **************************************************************************/
540
541 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
542 static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
543                                                unsigned int index)
544 {
545         return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
546 }
547
548 /* This creates an entry in the RX descriptor queue */
549 static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
550                                         unsigned index)
551 {
552         struct efx_rx_buffer *rx_buf;
553         efx_qword_t *rxd;
554
555         rxd = falcon_rx_desc(rx_queue, index);
556         rx_buf = efx_rx_buffer(rx_queue, index);
557         EFX_POPULATE_QWORD_3(*rxd,
558                              FSF_AZ_RX_KER_BUF_SIZE,
559                              rx_buf->len -
560                              rx_queue->efx->type->rx_buffer_padding,
561                              FSF_AZ_RX_KER_BUF_REGION, 0,
562                              FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
563 }
564
565 /* This writes to the RX_DESC_WPTR register for the specified receive
566  * descriptor ring.
567  */
568 void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
569 {
570         efx_dword_t reg;
571         unsigned write_ptr;
572
573         while (rx_queue->notified_count != rx_queue->added_count) {
574                 falcon_build_rx_desc(rx_queue,
575                                      rx_queue->notified_count &
576                                      EFX_RXQ_MASK);
577                 ++rx_queue->notified_count;
578         }
579
580         wmb();
581         write_ptr = rx_queue->added_count & EFX_RXQ_MASK;
582         EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
583         efx_writed_page(rx_queue->efx, &reg,
584                         FR_AZ_RX_DESC_UPD_DWORD_P0, rx_queue->queue);
585 }
586
587 int falcon_probe_rx(struct efx_rx_queue *rx_queue)
588 {
589         struct efx_nic *efx = rx_queue->efx;
590         BUILD_BUG_ON(EFX_RXQ_SIZE < 512 || EFX_RXQ_SIZE > 4096 ||
591                      EFX_RXQ_SIZE & EFX_RXQ_MASK);
592         return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
593                                            EFX_RXQ_SIZE * sizeof(efx_qword_t));
594 }
595
596 void falcon_init_rx(struct efx_rx_queue *rx_queue)
597 {
598         efx_oword_t rx_desc_ptr;
599         struct efx_nic *efx = rx_queue->efx;
600         bool is_b0 = falcon_rev(efx) >= FALCON_REV_B0;
601         bool iscsi_digest_en = is_b0;
602
603         EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
604                 rx_queue->queue, rx_queue->rxd.index,
605                 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
606
607         rx_queue->flushed = false;
608
609         /* Pin RX descriptor ring */
610         falcon_init_special_buffer(efx, &rx_queue->rxd);
611
612         /* Push RX descriptor ring to card */
613         EFX_POPULATE_OWORD_10(rx_desc_ptr,
614                               FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
615                               FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
616                               FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
617                               FRF_AZ_RX_DESCQ_EVQ_ID,
618                               rx_queue->channel->channel,
619                               FRF_AZ_RX_DESCQ_OWNER_ID, 0,
620                               FRF_AZ_RX_DESCQ_LABEL, rx_queue->queue,
621                               FRF_AZ_RX_DESCQ_SIZE,
622                               __ffs(rx_queue->rxd.entries),
623                               FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
624                               /* For >=B0 this is scatter so disable */
625                               FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
626                               FRF_AZ_RX_DESCQ_EN, 1);
627         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
628                          rx_queue->queue);
629 }
630
631 static void falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
632 {
633         struct efx_nic *efx = rx_queue->efx;
634         efx_oword_t rx_flush_descq;
635
636         /* Post a flush command */
637         EFX_POPULATE_OWORD_2(rx_flush_descq,
638                              FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
639                              FRF_AZ_RX_FLUSH_DESCQ, rx_queue->queue);
640         efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
641 }
642
643 void falcon_fini_rx(struct efx_rx_queue *rx_queue)
644 {
645         efx_oword_t rx_desc_ptr;
646         struct efx_nic *efx = rx_queue->efx;
647
648         /* The queue should already have been flushed */
649         WARN_ON(!rx_queue->flushed);
650
651         /* Remove RX descriptor ring from card */
652         EFX_ZERO_OWORD(rx_desc_ptr);
653         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
654                          rx_queue->queue);
655
656         /* Unpin RX descriptor ring */
657         falcon_fini_special_buffer(efx, &rx_queue->rxd);
658 }
659
660 /* Free buffers backing RX queue */
661 void falcon_remove_rx(struct efx_rx_queue *rx_queue)
662 {
663         falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
664 }
665
666 /**************************************************************************
667  *
668  * Falcon event queue processing
669  * Event queues are processed by per-channel tasklets.
670  *
671  **************************************************************************/
672
673 /* Update a channel's event queue's read pointer (RPTR) register
674  *
675  * This writes the EVQ_RPTR_REG register for the specified channel's
676  * event queue.
677  *
678  * Note that EVQ_RPTR_REG contains the index of the "last read" event,
679  * whereas channel->eventq_read_ptr contains the index of the "next to
680  * read" event.
681  */
682 void falcon_eventq_read_ack(struct efx_channel *channel)
683 {
684         efx_dword_t reg;
685         struct efx_nic *efx = channel->efx;
686
687         EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr);
688         efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
689                             channel->channel);
690 }
691
692 /* Use HW to insert a SW defined event */
693 void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
694 {
695         efx_oword_t drv_ev_reg;
696
697         BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
698                      FRF_AZ_DRV_EV_DATA_WIDTH != 64);
699         drv_ev_reg.u32[0] = event->u32[0];
700         drv_ev_reg.u32[1] = event->u32[1];
701         drv_ev_reg.u32[2] = 0;
702         drv_ev_reg.u32[3] = 0;
703         EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
704         efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
705 }
706
707 /* Handle a transmit completion event
708  *
709  * Falcon batches TX completion events; the message we receive is of
710  * the form "complete all TX events up to this index".
711  */
712 static void falcon_handle_tx_event(struct efx_channel *channel,
713                                    efx_qword_t *event)
714 {
715         unsigned int tx_ev_desc_ptr;
716         unsigned int tx_ev_q_label;
717         struct efx_tx_queue *tx_queue;
718         struct efx_nic *efx = channel->efx;
719
720         if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
721                 /* Transmit completion */
722                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
723                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
724                 tx_queue = &efx->tx_queue[tx_ev_q_label];
725                 channel->irq_mod_score +=
726                         (tx_ev_desc_ptr - tx_queue->read_count) &
727                         EFX_TXQ_MASK;
728                 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
729         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
730                 /* Rewrite the FIFO write pointer */
731                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
732                 tx_queue = &efx->tx_queue[tx_ev_q_label];
733
734                 if (efx_dev_registered(efx))
735                         netif_tx_lock(efx->net_dev);
736                 falcon_notify_tx_desc(tx_queue);
737                 if (efx_dev_registered(efx))
738                         netif_tx_unlock(efx->net_dev);
739         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
740                    EFX_WORKAROUND_10727(efx)) {
741                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
742         } else {
743                 EFX_ERR(efx, "channel %d unexpected TX event "
744                         EFX_QWORD_FMT"\n", channel->channel,
745                         EFX_QWORD_VAL(*event));
746         }
747 }
748
749 /* Detect errors included in the rx_evt_pkt_ok bit. */
750 static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
751                                     const efx_qword_t *event,
752                                     bool *rx_ev_pkt_ok,
753                                     bool *discard)
754 {
755         struct efx_nic *efx = rx_queue->efx;
756         bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
757         bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
758         bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
759         bool rx_ev_other_err, rx_ev_pause_frm;
760         bool rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
761         unsigned rx_ev_pkt_type;
762
763         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
764         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
765         rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
766         rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
767         rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
768                                                  FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
769         rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_IP_FRAG_ERR);
770         rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
771                                                   FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
772         rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
773                                                    FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
774         rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
775         rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
776         rx_ev_drib_nib = ((falcon_rev(efx) >= FALCON_REV_B0) ?
777                           0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
778         rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
779
780         /* Every error apart from tobe_disc and pause_frm */
781         rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
782                            rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
783                            rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
784
785         /* Count errors that are not in MAC stats.  Ignore expected
786          * checksum errors during self-test. */
787         if (rx_ev_frm_trunc)
788                 ++rx_queue->channel->n_rx_frm_trunc;
789         else if (rx_ev_tobe_disc)
790                 ++rx_queue->channel->n_rx_tobe_disc;
791         else if (!efx->loopback_selftest) {
792                 if (rx_ev_ip_hdr_chksum_err)
793                         ++rx_queue->channel->n_rx_ip_hdr_chksum_err;
794                 else if (rx_ev_tcp_udp_chksum_err)
795                         ++rx_queue->channel->n_rx_tcp_udp_chksum_err;
796         }
797         if (rx_ev_ip_frag_err)
798                 ++rx_queue->channel->n_rx_ip_frag_err;
799
800         /* The frame must be discarded if any of these are true. */
801         *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
802                     rx_ev_tobe_disc | rx_ev_pause_frm);
803
804         /* TOBE_DISC is expected on unicast mismatches; don't print out an
805          * error message.  FRM_TRUNC indicates RXDP dropped the packet due
806          * to a FIFO overflow.
807          */
808 #ifdef EFX_ENABLE_DEBUG
809         if (rx_ev_other_err) {
810                 EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
811                             EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
812                             rx_queue->queue, EFX_QWORD_VAL(*event),
813                             rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
814                             rx_ev_ip_hdr_chksum_err ?
815                             " [IP_HDR_CHKSUM_ERR]" : "",
816                             rx_ev_tcp_udp_chksum_err ?
817                             " [TCP_UDP_CHKSUM_ERR]" : "",
818                             rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
819                             rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
820                             rx_ev_drib_nib ? " [DRIB_NIB]" : "",
821                             rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
822                             rx_ev_pause_frm ? " [PAUSE]" : "");
823         }
824 #endif
825 }
826
827 /* Handle receive events that are not in-order. */
828 static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
829                                        unsigned index)
830 {
831         struct efx_nic *efx = rx_queue->efx;
832         unsigned expected, dropped;
833
834         expected = rx_queue->removed_count & EFX_RXQ_MASK;
835         dropped = (index - expected) & EFX_RXQ_MASK;
836         EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
837                 dropped, index, expected);
838
839         efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
840                            RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
841 }
842
843 /* Handle a packet received event
844  *
845  * Falcon silicon gives a "discard" flag if it's a unicast packet with the
846  * wrong destination address
847  * Also "is multicast" and "matches multicast filter" flags can be used to
848  * discard non-matching multicast packets.
849  */
850 static void falcon_handle_rx_event(struct efx_channel *channel,
851                                    const efx_qword_t *event)
852 {
853         unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
854         unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
855         unsigned expected_ptr;
856         bool rx_ev_pkt_ok, discard = false, checksummed;
857         struct efx_rx_queue *rx_queue;
858         struct efx_nic *efx = channel->efx;
859
860         /* Basic packet information */
861         rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
862         rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
863         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
864         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
865         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
866         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
867                 channel->channel);
868
869         rx_queue = &efx->rx_queue[channel->channel];
870
871         rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
872         expected_ptr = rx_queue->removed_count & EFX_RXQ_MASK;
873         if (unlikely(rx_ev_desc_ptr != expected_ptr))
874                 falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
875
876         if (likely(rx_ev_pkt_ok)) {
877                 /* If packet is marked as OK and packet type is TCP/IPv4 or
878                  * UDP/IPv4, then we can rely on the hardware checksum.
879                  */
880                 checksummed =
881                         rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_TCP ||
882                         rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_UDP;
883         } else {
884                 falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
885                                         &discard);
886                 checksummed = false;
887         }
888
889         /* Detect multicast packets that didn't match the filter */
890         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
891         if (rx_ev_mcast_pkt) {
892                 unsigned int rx_ev_mcast_hash_match =
893                         EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
894
895                 if (unlikely(!rx_ev_mcast_hash_match))
896                         discard = true;
897         }
898
899         channel->irq_mod_score += 2;
900
901         /* Handle received packet */
902         efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
903                       checksummed, discard);
904 }
905
906 /* Global events are basically PHY events */
907 static void falcon_handle_global_event(struct efx_channel *channel,
908                                        efx_qword_t *event)
909 {
910         struct efx_nic *efx = channel->efx;
911         bool handled = false;
912
913         if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
914             EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
915             EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR)) {
916                 efx->phy_op->clear_interrupt(efx);
917                 queue_work(efx->workqueue, &efx->phy_work);
918                 handled = true;
919         }
920
921         if ((falcon_rev(efx) >= FALCON_REV_B0) &&
922             EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
923                 queue_work(efx->workqueue, &efx->mac_work);
924                 handled = true;
925         }
926
927         if (falcon_rev(efx) <= FALCON_REV_A1 ?
928             EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
929             EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
930                 EFX_ERR(efx, "channel %d seen global RX_RESET "
931                         "event. Resetting.\n", channel->channel);
932
933                 atomic_inc(&efx->rx_reset);
934                 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
935                                    RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
936                 handled = true;
937         }
938
939         if (!handled)
940                 EFX_ERR(efx, "channel %d unknown global event "
941                         EFX_QWORD_FMT "\n", channel->channel,
942                         EFX_QWORD_VAL(*event));
943 }
944
945 static void falcon_handle_driver_event(struct efx_channel *channel,
946                                        efx_qword_t *event)
947 {
948         struct efx_nic *efx = channel->efx;
949         unsigned int ev_sub_code;
950         unsigned int ev_sub_data;
951
952         ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
953         ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
954
955         switch (ev_sub_code) {
956         case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
957                 EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
958                           channel->channel, ev_sub_data);
959                 break;
960         case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
961                 EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
962                           channel->channel, ev_sub_data);
963                 break;
964         case FSE_AZ_EVQ_INIT_DONE_EV:
965                 EFX_LOG(efx, "channel %d EVQ %d initialised\n",
966                         channel->channel, ev_sub_data);
967                 break;
968         case FSE_AZ_SRM_UPD_DONE_EV:
969                 EFX_TRACE(efx, "channel %d SRAM update done\n",
970                           channel->channel);
971                 break;
972         case FSE_AZ_WAKE_UP_EV:
973                 EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
974                           channel->channel, ev_sub_data);
975                 break;
976         case FSE_AZ_TIMER_EV:
977                 EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
978                           channel->channel, ev_sub_data);
979                 break;
980         case FSE_AA_RX_RECOVER_EV:
981                 EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
982                         "Resetting.\n", channel->channel);
983                 atomic_inc(&efx->rx_reset);
984                 efx_schedule_reset(efx,
985                                    EFX_WORKAROUND_6555(efx) ?
986                                    RESET_TYPE_RX_RECOVERY :
987                                    RESET_TYPE_DISABLE);
988                 break;
989         case FSE_BZ_RX_DSC_ERROR_EV:
990                 EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
991                         " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
992                 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
993                 break;
994         case FSE_BZ_TX_DSC_ERROR_EV:
995                 EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
996                         " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
997                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
998                 break;
999         default:
1000                 EFX_TRACE(efx, "channel %d unknown driver event code %d "
1001                           "data %04x\n", channel->channel, ev_sub_code,
1002                           ev_sub_data);
1003                 break;
1004         }
1005 }
1006
1007 int falcon_process_eventq(struct efx_channel *channel, int rx_quota)
1008 {
1009         unsigned int read_ptr;
1010         efx_qword_t event, *p_event;
1011         int ev_code;
1012         int rx_packets = 0;
1013
1014         read_ptr = channel->eventq_read_ptr;
1015
1016         do {
1017                 p_event = falcon_event(channel, read_ptr);
1018                 event = *p_event;
1019
1020                 if (!falcon_event_present(&event))
1021                         /* End of events */
1022                         break;
1023
1024                 EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
1025                           channel->channel, EFX_QWORD_VAL(event));
1026
1027                 /* Clear this event by marking it all ones */
1028                 EFX_SET_QWORD(*p_event);
1029
1030                 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1031
1032                 switch (ev_code) {
1033                 case FSE_AZ_EV_CODE_RX_EV:
1034                         falcon_handle_rx_event(channel, &event);
1035                         ++rx_packets;
1036                         break;
1037                 case FSE_AZ_EV_CODE_TX_EV:
1038                         falcon_handle_tx_event(channel, &event);
1039                         break;
1040                 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1041                         channel->eventq_magic = EFX_QWORD_FIELD(
1042                                 event, FSF_AZ_DRV_GEN_EV_MAGIC);
1043                         EFX_LOG(channel->efx, "channel %d received generated "
1044                                 "event "EFX_QWORD_FMT"\n", channel->channel,
1045                                 EFX_QWORD_VAL(event));
1046                         break;
1047                 case FSE_AZ_EV_CODE_GLOBAL_EV:
1048                         falcon_handle_global_event(channel, &event);
1049                         break;
1050                 case FSE_AZ_EV_CODE_DRIVER_EV:
1051                         falcon_handle_driver_event(channel, &event);
1052                         break;
1053                 default:
1054                         EFX_ERR(channel->efx, "channel %d unknown event type %d"
1055                                 " (data " EFX_QWORD_FMT ")\n", channel->channel,
1056                                 ev_code, EFX_QWORD_VAL(event));
1057                 }
1058
1059                 /* Increment read pointer */
1060                 read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1061
1062         } while (rx_packets < rx_quota);
1063
1064         channel->eventq_read_ptr = read_ptr;
1065         return rx_packets;
1066 }
1067
1068 void falcon_set_int_moderation(struct efx_channel *channel)
1069 {
1070         efx_dword_t timer_cmd;
1071         struct efx_nic *efx = channel->efx;
1072
1073         /* Set timer register */
1074         if (channel->irq_moderation) {
1075                 /* Round to resolution supported by hardware.  The value we
1076                  * program is based at 0.  So actual interrupt moderation
1077                  * achieved is ((x + 1) * res).
1078                  */
1079                 channel->irq_moderation -= (channel->irq_moderation %
1080                                             FALCON_IRQ_MOD_RESOLUTION);
1081                 if (channel->irq_moderation < FALCON_IRQ_MOD_RESOLUTION)
1082                         channel->irq_moderation = FALCON_IRQ_MOD_RESOLUTION;
1083                 EFX_POPULATE_DWORD_2(timer_cmd,
1084                                      FRF_AB_TC_TIMER_MODE,
1085                                      FFE_BB_TIMER_MODE_INT_HLDOFF,
1086                                      FRF_AB_TC_TIMER_VAL,
1087                                      channel->irq_moderation /
1088                                      FALCON_IRQ_MOD_RESOLUTION - 1);
1089         } else {
1090                 EFX_POPULATE_DWORD_2(timer_cmd,
1091                                      FRF_AB_TC_TIMER_MODE,
1092                                      FFE_BB_TIMER_MODE_DIS,
1093                                      FRF_AB_TC_TIMER_VAL, 0);
1094         }
1095         BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
1096         efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
1097                                channel->channel);
1098
1099 }
1100
1101 /* Allocate buffer table entries for event queue */
1102 int falcon_probe_eventq(struct efx_channel *channel)
1103 {
1104         struct efx_nic *efx = channel->efx;
1105         BUILD_BUG_ON(EFX_EVQ_SIZE < 512 || EFX_EVQ_SIZE > 32768 ||
1106                      EFX_EVQ_SIZE & EFX_EVQ_MASK);
1107         return falcon_alloc_special_buffer(efx, &channel->eventq,
1108                                            EFX_EVQ_SIZE * sizeof(efx_qword_t));
1109 }
1110
1111 void falcon_init_eventq(struct efx_channel *channel)
1112 {
1113         efx_oword_t evq_ptr;
1114         struct efx_nic *efx = channel->efx;
1115
1116         EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
1117                 channel->channel, channel->eventq.index,
1118                 channel->eventq.index + channel->eventq.entries - 1);
1119
1120         /* Pin event queue buffer */
1121         falcon_init_special_buffer(efx, &channel->eventq);
1122
1123         /* Fill event queue with all ones (i.e. empty events) */
1124         memset(channel->eventq.addr, 0xff, channel->eventq.len);
1125
1126         /* Push event queue to card */
1127         EFX_POPULATE_OWORD_3(evq_ptr,
1128                              FRF_AZ_EVQ_EN, 1,
1129                              FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1130                              FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1131         efx_writeo_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
1132                          channel->channel);
1133
1134         falcon_set_int_moderation(channel);
1135 }
1136
1137 void falcon_fini_eventq(struct efx_channel *channel)
1138 {
1139         efx_oword_t eventq_ptr;
1140         struct efx_nic *efx = channel->efx;
1141
1142         /* Remove event queue from card */
1143         EFX_ZERO_OWORD(eventq_ptr);
1144         efx_writeo_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
1145                          channel->channel);
1146
1147         /* Unpin event queue */
1148         falcon_fini_special_buffer(efx, &channel->eventq);
1149 }
1150
1151 /* Free buffers backing event queue */
1152 void falcon_remove_eventq(struct efx_channel *channel)
1153 {
1154         falcon_free_special_buffer(channel->efx, &channel->eventq);
1155 }
1156
1157
1158 /* Generates a test event on the event queue.  A subsequent call to
1159  * process_eventq() should pick up the event and place the value of
1160  * "magic" into channel->eventq_magic;
1161  */
1162 void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
1163 {
1164         efx_qword_t test_event;
1165
1166         EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
1167                              FSE_AZ_EV_CODE_DRV_GEN_EV,
1168                              FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1169         falcon_generate_event(channel, &test_event);
1170 }
1171
1172 void falcon_sim_phy_event(struct efx_nic *efx)
1173 {
1174         efx_qword_t phy_event;
1175
1176         EFX_POPULATE_QWORD_1(phy_event, FSF_AZ_EV_CODE,
1177                              FSE_AZ_EV_CODE_GLOBAL_EV);
1178         if (EFX_IS10G(efx))
1179                 EFX_SET_QWORD_FIELD(phy_event, FSF_AB_GLB_EV_XG_PHY0_INTR, 1);
1180         else
1181                 EFX_SET_QWORD_FIELD(phy_event, FSF_AB_GLB_EV_G_PHY0_INTR, 1);
1182
1183         falcon_generate_event(&efx->channel[0], &phy_event);
1184 }
1185
1186 /**************************************************************************
1187  *
1188  * Flush handling
1189  *
1190  **************************************************************************/
1191
1192
1193 static void falcon_poll_flush_events(struct efx_nic *efx)
1194 {
1195         struct efx_channel *channel = &efx->channel[0];
1196         struct efx_tx_queue *tx_queue;
1197         struct efx_rx_queue *rx_queue;
1198         unsigned int read_ptr = channel->eventq_read_ptr;
1199         unsigned int end_ptr = (read_ptr - 1) & EFX_EVQ_MASK;
1200
1201         do {
1202                 efx_qword_t *event = falcon_event(channel, read_ptr);
1203                 int ev_code, ev_sub_code, ev_queue;
1204                 bool ev_failed;
1205
1206                 if (!falcon_event_present(event))
1207                         break;
1208
1209                 ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
1210                 ev_sub_code = EFX_QWORD_FIELD(*event,
1211                                               FSF_AZ_DRIVER_EV_SUBCODE);
1212                 if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1213                     ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
1214                         ev_queue = EFX_QWORD_FIELD(*event,
1215                                                    FSF_AZ_DRIVER_EV_SUBDATA);
1216                         if (ev_queue < EFX_TX_QUEUE_COUNT) {
1217                                 tx_queue = efx->tx_queue + ev_queue;
1218                                 tx_queue->flushed = true;
1219                         }
1220                 } else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1221                            ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
1222                         ev_queue = EFX_QWORD_FIELD(
1223                                 *event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1224                         ev_failed = EFX_QWORD_FIELD(
1225                                 *event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1226                         if (ev_queue < efx->n_rx_queues) {
1227                                 rx_queue = efx->rx_queue + ev_queue;
1228
1229                                 /* retry the rx flush */
1230                                 if (ev_failed)
1231                                         falcon_flush_rx_queue(rx_queue);
1232                                 else
1233                                         rx_queue->flushed = true;
1234                         }
1235                 }
1236
1237                 read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1238         } while (read_ptr != end_ptr);
1239 }
1240
1241 /* Handle tx and rx flushes at the same time, since they run in
1242  * parallel in the hardware and there's no reason for us to
1243  * serialise them */
1244 int falcon_flush_queues(struct efx_nic *efx)
1245 {
1246         struct efx_rx_queue *rx_queue;
1247         struct efx_tx_queue *tx_queue;
1248         int i;
1249         bool outstanding;
1250
1251         /* Issue flush requests */
1252         efx_for_each_tx_queue(tx_queue, efx) {
1253                 tx_queue->flushed = false;
1254                 falcon_flush_tx_queue(tx_queue);
1255         }
1256         efx_for_each_rx_queue(rx_queue, efx) {
1257                 rx_queue->flushed = false;
1258                 falcon_flush_rx_queue(rx_queue);
1259         }
1260
1261         /* Poll the evq looking for flush completions. Since we're not pushing
1262          * any more rx or tx descriptors at this point, we're in no danger of
1263          * overflowing the evq whilst we wait */
1264         for (i = 0; i < FALCON_FLUSH_POLL_COUNT; ++i) {
1265                 msleep(FALCON_FLUSH_INTERVAL);
1266                 falcon_poll_flush_events(efx);
1267
1268                 /* Check if every queue has been succesfully flushed */
1269                 outstanding = false;
1270                 efx_for_each_tx_queue(tx_queue, efx)
1271                         outstanding |= !tx_queue->flushed;
1272                 efx_for_each_rx_queue(rx_queue, efx)
1273                         outstanding |= !rx_queue->flushed;
1274                 if (!outstanding)
1275                         return 0;
1276         }
1277
1278         /* Mark the queues as all flushed. We're going to return failure
1279          * leading to a reset, or fake up success anyway. "flushed" now
1280          * indicates that we tried to flush. */
1281         efx_for_each_tx_queue(tx_queue, efx) {
1282                 if (!tx_queue->flushed)
1283                         EFX_ERR(efx, "tx queue %d flush command timed out\n",
1284                                 tx_queue->queue);
1285                 tx_queue->flushed = true;
1286         }
1287         efx_for_each_rx_queue(rx_queue, efx) {
1288                 if (!rx_queue->flushed)
1289                         EFX_ERR(efx, "rx queue %d flush command timed out\n",
1290                                 rx_queue->queue);
1291                 rx_queue->flushed = true;
1292         }
1293
1294         if (EFX_WORKAROUND_7803(efx))
1295                 return 0;
1296
1297         return -ETIMEDOUT;
1298 }
1299
1300 /**************************************************************************
1301  *
1302  * Falcon hardware interrupts
1303  * The hardware interrupt handler does very little work; all the event
1304  * queue processing is carried out by per-channel tasklets.
1305  *
1306  **************************************************************************/
1307
1308 /* Enable/disable/generate Falcon interrupts */
1309 static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
1310                                      int force)
1311 {
1312         efx_oword_t int_en_reg_ker;
1313
1314         EFX_POPULATE_OWORD_2(int_en_reg_ker,
1315                              FRF_AZ_KER_INT_KER, force,
1316                              FRF_AZ_DRV_INT_EN_KER, enabled);
1317         efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1318 }
1319
1320 void falcon_enable_interrupts(struct efx_nic *efx)
1321 {
1322         efx_oword_t int_adr_reg_ker;
1323         struct efx_channel *channel;
1324
1325         EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1326         wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1327
1328         /* Program address */
1329         EFX_POPULATE_OWORD_2(int_adr_reg_ker,
1330                              FRF_AZ_NORM_INT_VEC_DIS_KER,
1331                              EFX_INT_MODE_USE_MSI(efx),
1332                              FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1333         efx_writeo(efx, &int_adr_reg_ker, FR_AZ_INT_ADR_KER);
1334
1335         /* Enable interrupts */
1336         falcon_interrupts(efx, 1, 0);
1337
1338         /* Force processing of all the channels to get the EVQ RPTRs up to
1339            date */
1340         efx_for_each_channel(channel, efx)
1341                 efx_schedule_channel(channel);
1342 }
1343
1344 void falcon_disable_interrupts(struct efx_nic *efx)
1345 {
1346         /* Disable interrupts */
1347         falcon_interrupts(efx, 0, 0);
1348 }
1349
1350 /* Generate a Falcon test interrupt
1351  * Interrupt must already have been enabled, otherwise nasty things
1352  * may happen.
1353  */
1354 void falcon_generate_interrupt(struct efx_nic *efx)
1355 {
1356         falcon_interrupts(efx, 1, 1);
1357 }
1358
1359 /* Acknowledge a legacy interrupt from Falcon
1360  *
1361  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
1362  *
1363  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
1364  * BIU. Interrupt acknowledge is read sensitive so must write instead
1365  * (then read to ensure the BIU collector is flushed)
1366  *
1367  * NB most hardware supports MSI interrupts
1368  */
1369 static inline void falcon_irq_ack_a1(struct efx_nic *efx)
1370 {
1371         efx_dword_t reg;
1372
1373         EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
1374         efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
1375         efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
1376 }
1377
1378 /* Process a fatal interrupt
1379  * Disable bus mastering ASAP and schedule a reset
1380  */
1381 static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
1382 {
1383         struct falcon_nic_data *nic_data = efx->nic_data;
1384         efx_oword_t *int_ker = efx->irq_status.addr;
1385         efx_oword_t fatal_intr;
1386         int error, mem_perr;
1387
1388         efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1389         error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1390
1391         EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
1392                 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1393                 EFX_OWORD_VAL(fatal_intr),
1394                 error ? "disabling bus mastering" : "no recognised error");
1395         if (error == 0)
1396                 goto out;
1397
1398         /* If this is a memory parity error dump which blocks are offending */
1399         mem_perr = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER);
1400         if (mem_perr) {
1401                 efx_oword_t reg;
1402                 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1403                 EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
1404                         EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
1405         }
1406
1407         /* Disable both devices */
1408         pci_clear_master(efx->pci_dev);
1409         if (FALCON_IS_DUAL_FUNC(efx))
1410                 pci_clear_master(nic_data->pci_dev2);
1411         falcon_disable_interrupts(efx);
1412
1413         /* Count errors and reset or disable the NIC accordingly */
1414         if (nic_data->int_error_count == 0 ||
1415             time_after(jiffies, nic_data->int_error_expire)) {
1416                 nic_data->int_error_count = 0;
1417                 nic_data->int_error_expire =
1418                         jiffies + FALCON_INT_ERROR_EXPIRE * HZ;
1419         }
1420         if (++nic_data->int_error_count < FALCON_MAX_INT_ERRORS) {
1421                 EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
1422                 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1423         } else {
1424                 EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
1425                         "NIC will be disabled\n");
1426                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1427         }
1428 out:
1429         return IRQ_HANDLED;
1430 }
1431
1432 /* Handle a legacy interrupt from Falcon
1433  * Acknowledges the interrupt and schedule event queue processing.
1434  */
1435 static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
1436 {
1437         struct efx_nic *efx = dev_id;
1438         efx_oword_t *int_ker = efx->irq_status.addr;
1439         irqreturn_t result = IRQ_NONE;
1440         struct efx_channel *channel;
1441         efx_dword_t reg;
1442         u32 queues;
1443         int syserr;
1444
1445         /* Read the ISR which also ACKs the interrupts */
1446         efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1447         queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1448
1449         /* Check to see if we have a serious error condition */
1450         syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1451         if (unlikely(syserr))
1452                 return falcon_fatal_interrupt(efx);
1453
1454         /* Schedule processing of any interrupting queues */
1455         efx_for_each_channel(channel, efx) {
1456                 if ((queues & 1) ||
1457                     falcon_event_present(
1458                             falcon_event(channel, channel->eventq_read_ptr))) {
1459                         efx_schedule_channel(channel);
1460                         result = IRQ_HANDLED;
1461                 }
1462                 queues >>= 1;
1463         }
1464
1465         if (result == IRQ_HANDLED) {
1466                 efx->last_irq_cpu = raw_smp_processor_id();
1467                 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1468                           irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1469         }
1470
1471         return result;
1472 }
1473
1474
1475 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
1476 {
1477         struct efx_nic *efx = dev_id;
1478         efx_oword_t *int_ker = efx->irq_status.addr;
1479         struct efx_channel *channel;
1480         int syserr;
1481         int queues;
1482
1483         /* Check to see if this is our interrupt.  If it isn't, we
1484          * exit without having touched the hardware.
1485          */
1486         if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
1487                 EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
1488                           raw_smp_processor_id());
1489                 return IRQ_NONE;
1490         }
1491         efx->last_irq_cpu = raw_smp_processor_id();
1492         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1493                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1494
1495         /* Check to see if we have a serious error condition */
1496         syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1497         if (unlikely(syserr))
1498                 return falcon_fatal_interrupt(efx);
1499
1500         /* Determine interrupting queues, clear interrupt status
1501          * register and acknowledge the device interrupt.
1502          */
1503         BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
1504         queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
1505         EFX_ZERO_OWORD(*int_ker);
1506         wmb(); /* Ensure the vector is cleared before interrupt ack */
1507         falcon_irq_ack_a1(efx);
1508
1509         /* Schedule processing of any interrupting queues */
1510         channel = &efx->channel[0];
1511         while (queues) {
1512                 if (queues & 0x01)
1513                         efx_schedule_channel(channel);
1514                 channel++;
1515                 queues >>= 1;
1516         }
1517
1518         return IRQ_HANDLED;
1519 }
1520
1521 /* Handle an MSI interrupt from Falcon
1522  *
1523  * Handle an MSI hardware interrupt.  This routine schedules event
1524  * queue processing.  No interrupt acknowledgement cycle is necessary.
1525  * Also, we never need to check that the interrupt is for us, since
1526  * MSI interrupts cannot be shared.
1527  */
1528 static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
1529 {
1530         struct efx_channel *channel = dev_id;
1531         struct efx_nic *efx = channel->efx;
1532         efx_oword_t *int_ker = efx->irq_status.addr;
1533         int syserr;
1534
1535         efx->last_irq_cpu = raw_smp_processor_id();
1536         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1537                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1538
1539         /* Check to see if we have a serious error condition */
1540         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1541         if (unlikely(syserr))
1542                 return falcon_fatal_interrupt(efx);
1543
1544         /* Schedule processing of the channel */
1545         efx_schedule_channel(channel);
1546
1547         return IRQ_HANDLED;
1548 }
1549
1550
1551 /* Setup RSS indirection table.
1552  * This maps from the hash value of the packet to RXQ
1553  */
1554 static void falcon_setup_rss_indir_table(struct efx_nic *efx)
1555 {
1556         int i = 0;
1557         unsigned long offset;
1558         efx_dword_t dword;
1559
1560         if (falcon_rev(efx) < FALCON_REV_B0)
1561                 return;
1562
1563         for (offset = FR_BZ_RX_INDIRECTION_TBL;
1564              offset < FR_BZ_RX_INDIRECTION_TBL + 0x800;
1565              offset += 0x10) {
1566                 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1567                                      i % efx->n_rx_queues);
1568                 efx_writed(efx, &dword, offset);
1569                 i++;
1570         }
1571 }
1572
1573 /* Hook interrupt handler(s)
1574  * Try MSI and then legacy interrupts.
1575  */
1576 int falcon_init_interrupt(struct efx_nic *efx)
1577 {
1578         struct efx_channel *channel;
1579         int rc;
1580
1581         if (!EFX_INT_MODE_USE_MSI(efx)) {
1582                 irq_handler_t handler;
1583                 if (falcon_rev(efx) >= FALCON_REV_B0)
1584                         handler = falcon_legacy_interrupt_b0;
1585                 else
1586                         handler = falcon_legacy_interrupt_a1;
1587
1588                 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1589                                  efx->name, efx);
1590                 if (rc) {
1591                         EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
1592                                 efx->pci_dev->irq);
1593                         goto fail1;
1594                 }
1595                 return 0;
1596         }
1597
1598         /* Hook MSI or MSI-X interrupt */
1599         efx_for_each_channel(channel, efx) {
1600                 rc = request_irq(channel->irq, falcon_msi_interrupt,
1601                                  IRQF_PROBE_SHARED, /* Not shared */
1602                                  channel->name, channel);
1603                 if (rc) {
1604                         EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
1605                         goto fail2;
1606                 }
1607         }
1608
1609         return 0;
1610
1611  fail2:
1612         efx_for_each_channel(channel, efx)
1613                 free_irq(channel->irq, channel);
1614  fail1:
1615         return rc;
1616 }
1617
1618 void falcon_fini_interrupt(struct efx_nic *efx)
1619 {
1620         struct efx_channel *channel;
1621         efx_oword_t reg;
1622
1623         /* Disable MSI/MSI-X interrupts */
1624         efx_for_each_channel(channel, efx) {
1625                 if (channel->irq)
1626                         free_irq(channel->irq, channel);
1627         }
1628
1629         /* ACK legacy interrupt */
1630         if (falcon_rev(efx) >= FALCON_REV_B0)
1631                 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1632         else
1633                 falcon_irq_ack_a1(efx);
1634
1635         /* Disable legacy interrupt */
1636         if (efx->legacy_irq)
1637                 free_irq(efx->legacy_irq, efx);
1638 }
1639
1640 /**************************************************************************
1641  *
1642  * EEPROM/flash
1643  *
1644  **************************************************************************
1645  */
1646
1647 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1648
1649 static int falcon_spi_poll(struct efx_nic *efx)
1650 {
1651         efx_oword_t reg;
1652         efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
1653         return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
1654 }
1655
1656 /* Wait for SPI command completion */
1657 static int falcon_spi_wait(struct efx_nic *efx)
1658 {
1659         /* Most commands will finish quickly, so we start polling at
1660          * very short intervals.  Sometimes the command may have to
1661          * wait for VPD or expansion ROM access outside of our
1662          * control, so we allow up to 100 ms. */
1663         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
1664         int i;
1665
1666         for (i = 0; i < 10; i++) {
1667                 if (!falcon_spi_poll(efx))
1668                         return 0;
1669                 udelay(10);
1670         }
1671
1672         for (;;) {
1673                 if (!falcon_spi_poll(efx))
1674                         return 0;
1675                 if (time_after_eq(jiffies, timeout)) {
1676                         EFX_ERR(efx, "timed out waiting for SPI\n");
1677                         return -ETIMEDOUT;
1678                 }
1679                 schedule_timeout_uninterruptible(1);
1680         }
1681 }
1682
1683 int falcon_spi_cmd(const struct efx_spi_device *spi,
1684                    unsigned int command, int address,
1685                    const void *in, void *out, size_t len)
1686 {
1687         struct efx_nic *efx = spi->efx;
1688         bool addressed = (address >= 0);
1689         bool reading = (out != NULL);
1690         efx_oword_t reg;
1691         int rc;
1692
1693         /* Input validation */
1694         if (len > FALCON_SPI_MAX_LEN)
1695                 return -EINVAL;
1696         BUG_ON(!mutex_is_locked(&efx->spi_lock));
1697
1698         /* Check that previous command is not still running */
1699         rc = falcon_spi_poll(efx);
1700         if (rc)
1701                 return rc;
1702
1703         /* Program address register, if we have an address */
1704         if (addressed) {
1705                 EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
1706                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
1707         }
1708
1709         /* Program data register, if we have data */
1710         if (in != NULL) {
1711                 memcpy(&reg, in, len);
1712                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
1713         }
1714
1715         /* Issue read/write command */
1716         EFX_POPULATE_OWORD_7(reg,
1717                              FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
1718                              FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
1719                              FRF_AB_EE_SPI_HCMD_DABCNT, len,
1720                              FRF_AB_EE_SPI_HCMD_READ, reading,
1721                              FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
1722                              FRF_AB_EE_SPI_HCMD_ADBCNT,
1723                              (addressed ? spi->addr_len : 0),
1724                              FRF_AB_EE_SPI_HCMD_ENC, command);
1725         efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
1726
1727         /* Wait for read/write to complete */
1728         rc = falcon_spi_wait(efx);
1729         if (rc)
1730                 return rc;
1731
1732         /* Read data */
1733         if (out != NULL) {
1734                 efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
1735                 memcpy(out, &reg, len);
1736         }
1737
1738         return 0;
1739 }
1740
1741 static size_t
1742 falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
1743 {
1744         return min(FALCON_SPI_MAX_LEN,
1745                    (spi->block_size - (start & (spi->block_size - 1))));
1746 }
1747
1748 static inline u8
1749 efx_spi_munge_command(const struct efx_spi_device *spi,
1750                       const u8 command, const unsigned int address)
1751 {
1752         return command | (((address >> 8) & spi->munge_address) << 3);
1753 }
1754
1755 /* Wait up to 10 ms for buffered write completion */
1756 int falcon_spi_wait_write(const struct efx_spi_device *spi)
1757 {
1758         struct efx_nic *efx = spi->efx;
1759         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
1760         u8 status;
1761         int rc;
1762
1763         for (;;) {
1764                 rc = falcon_spi_cmd(spi, SPI_RDSR, -1, NULL,
1765                                     &status, sizeof(status));
1766                 if (rc)
1767                         return rc;
1768                 if (!(status & SPI_STATUS_NRDY))
1769                         return 0;
1770                 if (time_after_eq(jiffies, timeout)) {
1771                         EFX_ERR(efx, "SPI write timeout on device %d"
1772                                 " last status=0x%02x\n",
1773                                 spi->device_id, status);
1774                         return -ETIMEDOUT;
1775                 }
1776                 schedule_timeout_uninterruptible(1);
1777         }
1778 }
1779
1780 int falcon_spi_read(const struct efx_spi_device *spi, loff_t start,
1781                     size_t len, size_t *retlen, u8 *buffer)
1782 {
1783         size_t block_len, pos = 0;
1784         unsigned int command;
1785         int rc = 0;
1786
1787         while (pos < len) {
1788                 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
1789
1790                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1791                 rc = falcon_spi_cmd(spi, command, start + pos, NULL,
1792                                     buffer + pos, block_len);
1793                 if (rc)
1794                         break;
1795                 pos += block_len;
1796
1797                 /* Avoid locking up the system */
1798                 cond_resched();
1799                 if (signal_pending(current)) {
1800                         rc = -EINTR;
1801                         break;
1802                 }
1803         }
1804
1805         if (retlen)
1806                 *retlen = pos;
1807         return rc;
1808 }
1809
1810 int falcon_spi_write(const struct efx_spi_device *spi, loff_t start,
1811                      size_t len, size_t *retlen, const u8 *buffer)
1812 {
1813         u8 verify_buffer[FALCON_SPI_MAX_LEN];
1814         size_t block_len, pos = 0;
1815         unsigned int command;
1816         int rc = 0;
1817
1818         while (pos < len) {
1819                 rc = falcon_spi_cmd(spi, SPI_WREN, -1, NULL, NULL, 0);
1820                 if (rc)
1821                         break;
1822
1823                 block_len = min(len - pos,
1824                                 falcon_spi_write_limit(spi, start + pos));
1825                 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
1826                 rc = falcon_spi_cmd(spi, command, start + pos,
1827                                     buffer + pos, NULL, block_len);
1828                 if (rc)
1829                         break;
1830
1831                 rc = falcon_spi_wait_write(spi);
1832                 if (rc)
1833                         break;
1834
1835                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1836                 rc = falcon_spi_cmd(spi, command, start + pos,
1837                                     NULL, verify_buffer, block_len);
1838                 if (memcmp(verify_buffer, buffer + pos, block_len)) {
1839                         rc = -EIO;
1840                         break;
1841                 }
1842
1843                 pos += block_len;
1844
1845                 /* Avoid locking up the system */
1846                 cond_resched();
1847                 if (signal_pending(current)) {
1848                         rc = -EINTR;
1849                         break;
1850                 }
1851         }
1852
1853         if (retlen)
1854                 *retlen = pos;
1855         return rc;
1856 }
1857
1858 /**************************************************************************
1859  *
1860  * MAC wrapper
1861  *
1862  **************************************************************************
1863  */
1864
1865 static int falcon_reset_macs(struct efx_nic *efx)
1866 {
1867         efx_oword_t reg;
1868         int count;
1869
1870         if (falcon_rev(efx) < FALCON_REV_B0) {
1871                 /* It's not safe to use GLB_CTL_REG to reset the
1872                  * macs, so instead use the internal MAC resets
1873                  */
1874                 if (!EFX_IS10G(efx)) {
1875                         EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 1);
1876                         efx_writeo(efx, &reg, FR_AB_GM_CFG1);
1877                         udelay(1000);
1878
1879                         EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 0);
1880                         efx_writeo(efx, &reg, FR_AB_GM_CFG1);
1881                         udelay(1000);
1882                         return 0;
1883                 } else {
1884                         EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1885                         efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1886
1887                         for (count = 0; count < 10000; count++) {
1888                                 efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1889                                 if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1890                                     0)
1891                                         return 0;
1892                                 udelay(10);
1893                         }
1894
1895                         EFX_ERR(efx, "timed out waiting for XMAC core reset\n");
1896                         return -ETIMEDOUT;
1897                 }
1898         }
1899
1900         /* MAC stats will fail whilst the TX fifo is draining. Serialise
1901          * the drain sequence with the statistics fetch */
1902         efx_stats_disable(efx);
1903
1904         efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1905         EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN, 1);
1906         efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1907
1908         efx_reado(efx, &reg, FR_AB_GLB_CTL);
1909         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1910         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1911         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1912         efx_writeo(efx, &reg, FR_AB_GLB_CTL);
1913
1914         count = 0;
1915         while (1) {
1916                 efx_reado(efx, &reg, FR_AB_GLB_CTL);
1917                 if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1918                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1919                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1920                         EFX_LOG(efx, "Completed MAC reset after %d loops\n",
1921                                 count);
1922                         break;
1923                 }
1924                 if (count > 20) {
1925                         EFX_ERR(efx, "MAC reset failed\n");
1926                         break;
1927                 }
1928                 count++;
1929                 udelay(10);
1930         }
1931
1932         efx_stats_enable(efx);
1933
1934         /* If we've reset the EM block and the link is up, then
1935          * we'll have to kick the XAUI link so the PHY can recover */
1936         if (efx->link_up && EFX_IS10G(efx) && EFX_WORKAROUND_5147(efx))
1937                 falcon_reset_xaui(efx);
1938
1939         return 0;
1940 }
1941
1942 void falcon_drain_tx_fifo(struct efx_nic *efx)
1943 {
1944         efx_oword_t reg;
1945
1946         if ((falcon_rev(efx) < FALCON_REV_B0) ||
1947             (efx->loopback_mode != LOOPBACK_NONE))
1948                 return;
1949
1950         efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1951         /* There is no point in draining more than once */
1952         if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1953                 return;
1954
1955         falcon_reset_macs(efx);
1956 }
1957
1958 void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1959 {
1960         efx_oword_t reg;
1961
1962         if (falcon_rev(efx) < FALCON_REV_B0)
1963                 return;
1964
1965         /* Isolate the MAC -> RX */
1966         efx_reado(efx, &reg, FR_AZ_RX_CFG);
1967         EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1968         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1969
1970         if (!efx->link_up)
1971                 falcon_drain_tx_fifo(efx);
1972 }
1973
1974 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1975 {
1976         efx_oword_t reg;
1977         int link_speed;
1978         bool tx_fc;
1979
1980         switch (efx->link_speed) {
1981         case 10000: link_speed = 3; break;
1982         case 1000:  link_speed = 2; break;
1983         case 100:   link_speed = 1; break;
1984         default:    link_speed = 0; break;
1985         }
1986         /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1987          * as advertised.  Disable to ensure packets are not
1988          * indefinitely held and TX queue can be flushed at any point
1989          * while the link is down. */
1990         EFX_POPULATE_OWORD_5(reg,
1991                              FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1992                              FRF_AB_MAC_BCAD_ACPT, 1,
1993                              FRF_AB_MAC_UC_PROM, efx->promiscuous,
1994                              FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1995                              FRF_AB_MAC_SPEED, link_speed);
1996         /* On B0, MAC backpressure can be disabled and packets get
1997          * discarded. */
1998         if (falcon_rev(efx) >= FALCON_REV_B0) {
1999                 EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
2000                                     !efx->link_up);
2001         }
2002
2003         efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
2004
2005         /* Restore the multicast hash registers. */
2006         falcon_set_multicast_hash(efx);
2007
2008         /* Transmission of pause frames when RX crosses the threshold is
2009          * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
2010          * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
2011         tx_fc = !!(efx->link_fc & EFX_FC_TX);
2012         efx_reado(efx, &reg, FR_AZ_RX_CFG);
2013         EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, tx_fc);
2014
2015         /* Unisolate the MAC -> RX */
2016         if (falcon_rev(efx) >= FALCON_REV_B0)
2017                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2018         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
2019 }
2020
2021 int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset)
2022 {
2023         efx_oword_t reg;
2024         u32 *dma_done;
2025         int i;
2026
2027         if (disable_dma_stats)
2028                 return 0;
2029
2030         /* Statistics fetch will fail if the MAC is in TX drain */
2031         if (falcon_rev(efx) >= FALCON_REV_B0) {
2032                 efx_oword_t temp;
2033                 efx_reado(efx, &temp, FR_AB_MAC_CTRL);
2034                 if (EFX_OWORD_FIELD(temp, FRF_BB_TXFIFO_DRAIN_EN))
2035                         return 0;
2036         }
2037
2038         dma_done = (efx->stats_buffer.addr + done_offset);
2039         *dma_done = FALCON_STATS_NOT_DONE;
2040         wmb(); /* ensure done flag is clear */
2041
2042         /* Initiate DMA transfer of stats */
2043         EFX_POPULATE_OWORD_2(reg,
2044                              FRF_AB_MAC_STAT_DMA_CMD, 1,
2045                              FRF_AB_MAC_STAT_DMA_ADR,
2046                              efx->stats_buffer.dma_addr);
2047         efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
2048
2049         /* Wait for transfer to complete */
2050         for (i = 0; i < 400; i++) {
2051                 if (*(volatile u32 *)dma_done == FALCON_STATS_DONE) {
2052                         rmb(); /* Ensure the stats are valid. */
2053                         return 0;
2054                 }
2055                 udelay(10);
2056         }
2057
2058         EFX_ERR(efx, "timed out waiting for statistics\n");
2059         return -ETIMEDOUT;
2060 }
2061
2062 /**************************************************************************
2063  *
2064  * PHY access via GMII
2065  *
2066  **************************************************************************
2067  */
2068
2069 /* Wait for GMII access to complete */
2070 static int falcon_gmii_wait(struct efx_nic *efx)
2071 {
2072         efx_dword_t md_stat;
2073         int count;
2074
2075         /* wait upto 50ms - taken max from datasheet */
2076         for (count = 0; count < 5000; count++) {
2077                 efx_readd(efx, &md_stat, FR_AB_MD_STAT);
2078                 if (EFX_DWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
2079                         if (EFX_DWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
2080                             EFX_DWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
2081                                 EFX_ERR(efx, "error from GMII access "
2082                                         EFX_DWORD_FMT"\n",
2083                                         EFX_DWORD_VAL(md_stat));
2084                                 return -EIO;
2085                         }
2086                         return 0;
2087                 }
2088                 udelay(10);
2089         }
2090         EFX_ERR(efx, "timed out waiting for GMII\n");
2091         return -ETIMEDOUT;
2092 }
2093
2094 /* Write an MDIO register of a PHY connected to Falcon. */
2095 static int falcon_mdio_write(struct net_device *net_dev,
2096                              int prtad, int devad, u16 addr, u16 value)
2097 {
2098         struct efx_nic *efx = netdev_priv(net_dev);
2099         efx_oword_t reg;
2100         int rc;
2101
2102         EFX_REGDUMP(efx, "writing MDIO %d register %d.%d with 0x%04x\n",
2103                     prtad, devad, addr, value);
2104
2105         spin_lock_bh(&efx->phy_lock);
2106
2107         /* Check MDIO not currently being accessed */
2108         rc = falcon_gmii_wait(efx);
2109         if (rc)
2110                 goto out;
2111
2112         /* Write the address/ID register */
2113         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
2114         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
2115
2116         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
2117                              FRF_AB_MD_DEV_ADR, devad);
2118         efx_writeo(efx, &reg, FR_AB_MD_ID);
2119
2120         /* Write data */
2121         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
2122         efx_writeo(efx, &reg, FR_AB_MD_TXD);
2123
2124         EFX_POPULATE_OWORD_2(reg,
2125                              FRF_AB_MD_WRC, 1,
2126                              FRF_AB_MD_GC, 0);
2127         efx_writeo(efx, &reg, FR_AB_MD_CS);
2128
2129         /* Wait for data to be written */
2130         rc = falcon_gmii_wait(efx);
2131         if (rc) {
2132                 /* Abort the write operation */
2133                 EFX_POPULATE_OWORD_2(reg,
2134                                      FRF_AB_MD_WRC, 0,
2135                                      FRF_AB_MD_GC, 1);
2136                 efx_writeo(efx, &reg, FR_AB_MD_CS);
2137                 udelay(10);
2138         }
2139
2140  out:
2141         spin_unlock_bh(&efx->phy_lock);
2142         return rc;
2143 }
2144
2145 /* Read an MDIO register of a PHY connected to Falcon. */
2146 static int falcon_mdio_read(struct net_device *net_dev,
2147                             int prtad, int devad, u16 addr)
2148 {
2149         struct efx_nic *efx = netdev_priv(net_dev);
2150         efx_oword_t reg;
2151         int rc;
2152
2153         spin_lock_bh(&efx->phy_lock);
2154
2155         /* Check MDIO not currently being accessed */
2156         rc = falcon_gmii_wait(efx);
2157         if (rc)
2158                 goto out;
2159
2160         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
2161         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
2162
2163         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
2164                              FRF_AB_MD_DEV_ADR, devad);
2165         efx_writeo(efx, &reg, FR_AB_MD_ID);
2166
2167         /* Request data to be read */
2168         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
2169         efx_writeo(efx, &reg, FR_AB_MD_CS);
2170
2171         /* Wait for data to become available */
2172         rc = falcon_gmii_wait(efx);
2173         if (rc == 0) {
2174                 efx_reado(efx, &reg, FR_AB_MD_RXD);
2175                 rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
2176                 EFX_REGDUMP(efx, "read from MDIO %d register %d.%d, got %04x\n",
2177                             prtad, devad, addr, rc);
2178         } else {
2179                 /* Abort the read operation */
2180                 EFX_POPULATE_OWORD_2(reg,
2181                                      FRF_AB_MD_RIC, 0,
2182                                      FRF_AB_MD_GC, 1);
2183                 efx_writeo(efx, &reg, FR_AB_MD_CS);
2184
2185                 EFX_LOG(efx, "read from MDIO %d register %d.%d, got error %d\n",
2186                         prtad, devad, addr, rc);
2187         }
2188
2189  out:
2190         spin_unlock_bh(&efx->phy_lock);
2191         return rc;
2192 }
2193
2194 static int falcon_probe_phy(struct efx_nic *efx)
2195 {
2196         switch (efx->phy_type) {
2197         case PHY_TYPE_SFX7101:
2198                 efx->phy_op = &falcon_sfx7101_phy_ops;
2199                 break;
2200         case PHY_TYPE_SFT9001A:
2201         case PHY_TYPE_SFT9001B:
2202                 efx->phy_op = &falcon_sft9001_phy_ops;
2203                 break;
2204         case PHY_TYPE_QT2022C2:
2205         case PHY_TYPE_QT2025C:
2206                 efx->phy_op = &falcon_xfp_phy_ops;
2207                 break;
2208         default:
2209                 EFX_ERR(efx, "Unknown PHY type %d\n",
2210                         efx->phy_type);
2211                 return -1;
2212         }
2213
2214         if (efx->phy_op->macs & EFX_XMAC)
2215                 efx->loopback_modes |= ((1 << LOOPBACK_XGMII) |
2216                                         (1 << LOOPBACK_XGXS) |
2217                                         (1 << LOOPBACK_XAUI));
2218         if (efx->phy_op->macs & EFX_GMAC)
2219                 efx->loopback_modes |= (1 << LOOPBACK_GMAC);
2220         efx->loopback_modes |= efx->phy_op->loopbacks;
2221
2222         return 0;
2223 }
2224
2225 int falcon_switch_mac(struct efx_nic *efx)
2226 {
2227         struct efx_mac_operations *old_mac_op = efx->mac_op;
2228         efx_oword_t nic_stat;
2229         unsigned strap_val;
2230         int rc = 0;
2231
2232         /* Don't try to fetch MAC stats while we're switching MACs */
2233         efx_stats_disable(efx);
2234
2235         /* Internal loopbacks override the phy speed setting */
2236         if (efx->loopback_mode == LOOPBACK_GMAC) {
2237                 efx->link_speed = 1000;
2238                 efx->link_fd = true;
2239         } else if (LOOPBACK_INTERNAL(efx)) {
2240                 efx->link_speed = 10000;
2241                 efx->link_fd = true;
2242         }
2243
2244         WARN_ON(!mutex_is_locked(&efx->mac_lock));
2245         efx->mac_op = (EFX_IS10G(efx) ?
2246                        &falcon_xmac_operations : &falcon_gmac_operations);
2247
2248         /* Always push the NIC_STAT_REG setting even if the mac hasn't
2249          * changed, because this function is run post online reset */
2250         efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2251         strap_val = EFX_IS10G(efx) ? 5 : 3;
2252         if (falcon_rev(efx) >= FALCON_REV_B0) {
2253                 EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP_EN, 1);
2254                 EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP, strap_val);
2255                 efx_writeo(efx, &nic_stat, FR_AB_NIC_STAT);
2256         } else {
2257                 /* Falcon A1 does not support 1G/10G speed switching
2258                  * and must not be used with a PHY that does. */
2259                 BUG_ON(EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_PINS) !=
2260                        strap_val);
2261         }
2262
2263         if (old_mac_op == efx->mac_op)
2264                 goto out;
2265
2266         EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G');
2267         /* Not all macs support a mac-level link state */
2268         efx->mac_up = true;
2269
2270         rc = falcon_reset_macs(efx);
2271 out:
2272         efx_stats_enable(efx);
2273         return rc;
2274 }
2275
2276 /* This call is responsible for hooking in the MAC and PHY operations */
2277 int falcon_probe_port(struct efx_nic *efx)
2278 {
2279         int rc;
2280
2281         /* Hook in PHY operations table */
2282         rc = falcon_probe_phy(efx);
2283         if (rc)
2284                 return rc;
2285
2286         /* Set up MDIO structure for PHY */
2287         efx->mdio.mmds = efx->phy_op->mmds;
2288         efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
2289         efx->mdio.mdio_read = falcon_mdio_read;
2290         efx->mdio.mdio_write = falcon_mdio_write;
2291
2292         /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
2293         if (falcon_rev(efx) >= FALCON_REV_B0)
2294                 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
2295         else
2296                 efx->wanted_fc = EFX_FC_RX;
2297
2298         /* Allocate buffer for stats */
2299         rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
2300                                  FALCON_MAC_STATS_SIZE);
2301         if (rc)
2302                 return rc;
2303         EFX_LOG(efx, "stats buffer at %llx (virt %p phys %llx)\n",
2304                 (u64)efx->stats_buffer.dma_addr,
2305                 efx->stats_buffer.addr,
2306                 (u64)virt_to_phys(efx->stats_buffer.addr));
2307
2308         return 0;
2309 }
2310
2311 void falcon_remove_port(struct efx_nic *efx)
2312 {
2313         falcon_free_buffer(efx, &efx->stats_buffer);
2314 }
2315
2316 /**************************************************************************
2317  *
2318  * Multicast filtering
2319  *
2320  **************************************************************************
2321  */
2322
2323 void falcon_set_multicast_hash(struct efx_nic *efx)
2324 {
2325         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2326
2327         /* Broadcast packets go through the multicast hash filter.
2328          * ether_crc_le() of the broadcast address is 0xbe2612ff
2329          * so we always add bit 0xff to the mask.
2330          */
2331         set_bit_le(0xff, mc_hash->byte);
2332
2333         efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
2334         efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
2335 }
2336
2337
2338 /**************************************************************************
2339  *
2340  * Falcon test code
2341  *
2342  **************************************************************************/
2343
2344 int falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
2345 {
2346         struct falcon_nvconfig *nvconfig;
2347         struct efx_spi_device *spi;
2348         void *region;
2349         int rc, magic_num, struct_ver;
2350         __le16 *word, *limit;
2351         u32 csum;
2352
2353         spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
2354         if (!spi)
2355                 return -EINVAL;
2356
2357         region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
2358         if (!region)
2359                 return -ENOMEM;
2360         nvconfig = region + FALCON_NVCONFIG_OFFSET;
2361
2362         mutex_lock(&efx->spi_lock);
2363         rc = falcon_spi_read(spi, 0, FALCON_NVCONFIG_END, NULL, region);
2364         mutex_unlock(&efx->spi_lock);
2365         if (rc) {
2366                 EFX_ERR(efx, "Failed to read %s\n",
2367                         efx->spi_flash ? "flash" : "EEPROM");
2368                 rc = -EIO;
2369                 goto out;
2370         }
2371
2372         magic_num = le16_to_cpu(nvconfig->board_magic_num);
2373         struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
2374
2375         rc = -EINVAL;
2376         if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
2377                 EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
2378                 goto out;
2379         }
2380         if (struct_ver < 2) {
2381                 EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
2382                 goto out;
2383         } else if (struct_ver < 4) {
2384                 word = &nvconfig->board_magic_num;
2385                 limit = (__le16 *) (nvconfig + 1);
2386         } else {
2387                 word = region;
2388                 limit = region + FALCON_NVCONFIG_END;
2389         }
2390         for (csum = 0; word < limit; ++word)
2391                 csum += le16_to_cpu(*word);
2392
2393         if (~csum & 0xffff) {
2394                 EFX_ERR(efx, "NVRAM has incorrect checksum\n");
2395                 goto out;
2396         }
2397
2398         rc = 0;
2399         if (nvconfig_out)
2400                 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
2401
2402  out:
2403         kfree(region);
2404         return rc;
2405 }
2406
2407 /* Registers tested in the falcon register test */
2408 static struct {
2409         unsigned address;
2410         efx_oword_t mask;
2411 } efx_test_registers[] = {
2412         { FR_AZ_ADR_REGION,
2413           EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
2414         { FR_AZ_RX_CFG,
2415           EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
2416         { FR_AZ_TX_CFG,
2417           EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
2418         { FR_AZ_TX_RESERVED,
2419           EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
2420         { FR_AB_MAC_CTRL,
2421           EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
2422         { FR_AZ_SRM_TX_DC_CFG,
2423           EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
2424         { FR_AZ_RX_DC_CFG,
2425           EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
2426         { FR_AZ_RX_DC_PF_WM,
2427           EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
2428         { FR_BZ_DP_CTRL,
2429           EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
2430         { FR_AB_GM_CFG2,
2431           EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
2432         { FR_AB_GMF_CFG0,
2433           EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
2434         { FR_AB_XM_GLB_CFG,
2435           EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
2436         { FR_AB_XM_TX_CFG,
2437           EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
2438         { FR_AB_XM_RX_CFG,
2439           EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
2440         { FR_AB_XM_RX_PARAM,
2441           EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
2442         { FR_AB_XM_FC,
2443           EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
2444         { FR_AB_XM_ADR_LO,
2445           EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
2446         { FR_AB_XX_SD_CTL,
2447           EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
2448 };
2449
2450 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
2451                                      const efx_oword_t *mask)
2452 {
2453         return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
2454                 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
2455 }
2456
2457 int falcon_test_registers(struct efx_nic *efx)
2458 {
2459         unsigned address = 0, i, j;
2460         efx_oword_t mask, imask, original, reg, buf;
2461
2462         /* Falcon should be in loopback to isolate the XMAC from the PHY */
2463         WARN_ON(!LOOPBACK_INTERNAL(efx));
2464
2465         for (i = 0; i < ARRAY_SIZE(efx_test_registers); ++i) {
2466                 address = efx_test_registers[i].address;
2467                 mask = imask = efx_test_registers[i].mask;
2468                 EFX_INVERT_OWORD(imask);
2469
2470                 efx_reado(efx, &original, address);
2471
2472                 /* bit sweep on and off */
2473                 for (j = 0; j < 128; j++) {
2474                         if (!EFX_EXTRACT_OWORD32(mask, j, j))
2475                                 continue;
2476
2477                         /* Test this testable bit can be set in isolation */
2478                         EFX_AND_OWORD(reg, original, mask);
2479                         EFX_SET_OWORD32(reg, j, j, 1);
2480
2481                         efx_writeo(efx, &reg, address);
2482                         efx_reado(efx, &buf, address);
2483
2484                         if (efx_masked_compare_oword(&reg, &buf, &mask))
2485                                 goto fail;
2486
2487                         /* Test this testable bit can be cleared in isolation */
2488                         EFX_OR_OWORD(reg, original, mask);
2489                         EFX_SET_OWORD32(reg, j, j, 0);
2490
2491                         efx_writeo(efx, &reg, address);
2492                         efx_reado(efx, &buf, address);
2493
2494                         if (efx_masked_compare_oword(&reg, &buf, &mask))
2495                                 goto fail;
2496                 }
2497
2498                 efx_writeo(efx, &original, address);
2499         }
2500
2501         return 0;
2502
2503 fail:
2504         EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
2505                 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
2506                 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
2507         return -EIO;
2508 }
2509
2510 /**************************************************************************
2511  *
2512  * Device reset
2513  *
2514  **************************************************************************
2515  */
2516
2517 /* Resets NIC to known state.  This routine must be called in process
2518  * context and is allowed to sleep. */
2519 int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2520 {
2521         struct falcon_nic_data *nic_data = efx->nic_data;
2522         efx_oword_t glb_ctl_reg_ker;
2523         int rc;
2524
2525         EFX_LOG(efx, "performing hardware reset (%d)\n", method);
2526
2527         /* Initiate device reset */
2528         if (method == RESET_TYPE_WORLD) {
2529                 rc = pci_save_state(efx->pci_dev);
2530                 if (rc) {
2531                         EFX_ERR(efx, "failed to backup PCI state of primary "
2532                                 "function prior to hardware reset\n");
2533                         goto fail1;
2534                 }
2535                 if (FALCON_IS_DUAL_FUNC(efx)) {
2536                         rc = pci_save_state(nic_data->pci_dev2);
2537                         if (rc) {
2538                                 EFX_ERR(efx, "failed to backup PCI state of "
2539                                         "secondary function prior to "
2540                                         "hardware reset\n");
2541                                 goto fail2;
2542                         }
2543                 }
2544
2545                 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2546                                      FRF_AB_EXT_PHY_RST_DUR,
2547                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
2548                                      FRF_AB_SWRST, 1);
2549         } else {
2550                 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2551                                      /* exclude PHY from "invisible" reset */
2552                                      FRF_AB_EXT_PHY_RST_CTL,
2553                                      method == RESET_TYPE_INVISIBLE,
2554                                      /* exclude EEPROM/flash and PCIe */
2555                                      FRF_AB_PCIE_CORE_RST_CTL, 1,
2556                                      FRF_AB_PCIE_NSTKY_RST_CTL, 1,
2557                                      FRF_AB_PCIE_SD_RST_CTL, 1,
2558                                      FRF_AB_EE_RST_CTL, 1,
2559                                      FRF_AB_EXT_PHY_RST_DUR,
2560                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
2561                                      FRF_AB_SWRST, 1);
2562         }
2563         efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2564
2565         EFX_LOG(efx, "waiting for hardware reset\n");
2566         schedule_timeout_uninterruptible(HZ / 20);
2567
2568         /* Restore PCI configuration if needed */
2569         if (method == RESET_TYPE_WORLD) {
2570                 if (FALCON_IS_DUAL_FUNC(efx)) {
2571                         rc = pci_restore_state(nic_data->pci_dev2);
2572                         if (rc) {
2573                                 EFX_ERR(efx, "failed to restore PCI config for "
2574                                         "the secondary function\n");
2575                                 goto fail3;
2576                         }
2577                 }
2578                 rc = pci_restore_state(efx->pci_dev);
2579                 if (rc) {
2580                         EFX_ERR(efx, "failed to restore PCI config for the "
2581                                 "primary function\n");
2582                         goto fail4;
2583                 }
2584                 EFX_LOG(efx, "successfully restored PCI config\n");
2585         }
2586
2587         /* Assert that reset complete */
2588         efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2589         if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2590                 rc = -ETIMEDOUT;
2591                 EFX_ERR(efx, "timed out waiting for hardware reset\n");
2592                 goto fail5;
2593         }
2594         EFX_LOG(efx, "hardware reset complete\n");
2595
2596         return 0;
2597
2598         /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2599 fail2:
2600 fail3:
2601         pci_restore_state(efx->pci_dev);
2602 fail1:
2603 fail4:
2604 fail5:
2605         return rc;
2606 }
2607
2608 /* Zeroes out the SRAM contents.  This routine must be called in
2609  * process context and is allowed to sleep.
2610  */
2611 static int falcon_reset_sram(struct efx_nic *efx)
2612 {
2613         efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2614         int count;
2615
2616         /* Set the SRAM wake/sleep GPIO appropriately. */
2617         efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2618         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2619         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2620         efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2621
2622         /* Initiate SRAM reset */
2623         EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2624                              FRF_AZ_SRM_INIT_EN, 1,
2625                              FRF_AZ_SRM_NB_SZ, 0);
2626         efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2627
2628         /* Wait for SRAM reset to complete */
2629         count = 0;
2630         do {
2631                 EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
2632
2633                 /* SRAM reset is slow; expect around 16ms */
2634                 schedule_timeout_uninterruptible(HZ / 50);
2635
2636                 /* Check for reset complete */
2637                 efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2638                 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2639                         EFX_LOG(efx, "SRAM reset complete\n");
2640
2641                         return 0;
2642                 }
2643         } while (++count < 20); /* wait upto 0.4 sec */
2644
2645         EFX_ERR(efx, "timed out waiting for SRAM reset\n");
2646         return -ETIMEDOUT;
2647 }
2648
2649 static int falcon_spi_device_init(struct efx_nic *efx,
2650                                   struct efx_spi_device **spi_device_ret,
2651                                   unsigned int device_id, u32 device_type)
2652 {
2653         struct efx_spi_device *spi_device;
2654
2655         if (device_type != 0) {
2656                 spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
2657                 if (!spi_device)
2658                         return -ENOMEM;
2659                 spi_device->device_id = device_id;
2660                 spi_device->size =
2661                         1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2662                 spi_device->addr_len =
2663                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2664                 spi_device->munge_address = (spi_device->size == 1 << 9 &&
2665                                              spi_device->addr_len == 1);
2666                 spi_device->erase_command =
2667                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2668                 spi_device->erase_size =
2669                         1 << SPI_DEV_TYPE_FIELD(device_type,
2670                                                 SPI_DEV_TYPE_ERASE_SIZE);
2671                 spi_device->block_size =
2672                         1 << SPI_DEV_TYPE_FIELD(device_type,
2673                                                 SPI_DEV_TYPE_BLOCK_SIZE);
2674
2675                 spi_device->efx = efx;
2676         } else {
2677                 spi_device = NULL;
2678         }
2679
2680         kfree(*spi_device_ret);
2681         *spi_device_ret = spi_device;
2682         return 0;
2683 }
2684
2685
2686 static void falcon_remove_spi_devices(struct efx_nic *efx)
2687 {
2688         kfree(efx->spi_eeprom);
2689         efx->spi_eeprom = NULL;
2690         kfree(efx->spi_flash);
2691         efx->spi_flash = NULL;
2692 }
2693
2694 /* Extract non-volatile configuration */
2695 static int falcon_probe_nvconfig(struct efx_nic *efx)
2696 {
2697         struct falcon_nvconfig *nvconfig;
2698         int board_rev;
2699         int rc;
2700
2701         nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2702         if (!nvconfig)
2703                 return -ENOMEM;
2704
2705         rc = falcon_read_nvram(efx, nvconfig);
2706         if (rc == -EINVAL) {
2707                 EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
2708                 efx->phy_type = PHY_TYPE_NONE;
2709                 efx->mdio.prtad = MDIO_PRTAD_NONE;
2710                 board_rev = 0;
2711                 rc = 0;
2712         } else if (rc) {
2713                 goto fail1;
2714         } else {
2715                 struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
2716                 struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
2717
2718                 efx->phy_type = v2->port0_phy_type;
2719                 efx->mdio.prtad = v2->port0_phy_addr;
2720                 board_rev = le16_to_cpu(v2->board_revision);
2721
2722                 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2723                         rc = falcon_spi_device_init(
2724                                 efx, &efx->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2725                                 le32_to_cpu(v3->spi_device_type
2726                                             [FFE_AB_SPI_DEVICE_FLASH]));
2727                         if (rc)
2728                                 goto fail2;
2729                         rc = falcon_spi_device_init(
2730                                 efx, &efx->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2731                                 le32_to_cpu(v3->spi_device_type
2732                                             [FFE_AB_SPI_DEVICE_EEPROM]));
2733                         if (rc)
2734                                 goto fail2;
2735                 }
2736         }
2737
2738         /* Read the MAC addresses */
2739         memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
2740
2741         EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mdio.prtad);
2742
2743         falcon_probe_board(efx, board_rev);
2744
2745         kfree(nvconfig);
2746         return 0;
2747
2748  fail2:
2749         falcon_remove_spi_devices(efx);
2750  fail1:
2751         kfree(nvconfig);
2752         return rc;
2753 }
2754
2755 /* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
2756  * count, port speed).  Set workaround and feature flags accordingly.
2757  */
2758 static int falcon_probe_nic_variant(struct efx_nic *efx)
2759 {
2760         efx_oword_t altera_build;
2761         efx_oword_t nic_stat;
2762
2763         efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
2764         if (EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER)) {
2765                 EFX_ERR(efx, "Falcon FPGA not supported\n");
2766                 return -ENODEV;
2767         }
2768
2769         efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2770
2771         switch (falcon_rev(efx)) {
2772         case FALCON_REV_A0:
2773         case 0xff:
2774                 EFX_ERR(efx, "Falcon rev A0 not supported\n");
2775                 return -ENODEV;
2776
2777         case FALCON_REV_A1:
2778                 if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2779                         EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
2780                         return -ENODEV;
2781                 }
2782                 break;
2783
2784         case FALCON_REV_B0:
2785                 break;
2786
2787         default:
2788                 EFX_ERR(efx, "Unknown Falcon rev %d\n", falcon_rev(efx));
2789                 return -ENODEV;
2790         }
2791
2792         /* Initial assumed speed */
2793         efx->link_speed = EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) ? 10000 : 1000;
2794
2795         return 0;
2796 }
2797
2798 /* Probe all SPI devices on the NIC */
2799 static void falcon_probe_spi_devices(struct efx_nic *efx)
2800 {
2801         efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2802         int boot_dev;
2803
2804         efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2805         efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2806         efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2807
2808         if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2809                 boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2810                             FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2811                 EFX_LOG(efx, "Booted from %s\n",
2812                         boot_dev == FFE_AB_SPI_DEVICE_FLASH ? "flash" : "EEPROM");
2813         } else {
2814                 /* Disable VPD and set clock dividers to safe
2815                  * values for initial programming. */
2816                 boot_dev = -1;
2817                 EFX_LOG(efx, "Booted from internal ASIC settings;"
2818                         " setting SPI config\n");
2819                 EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2820                                      /* 125 MHz / 7 ~= 20 MHz */
2821                                      FRF_AB_EE_SF_CLOCK_DIV, 7,
2822                                      /* 125 MHz / 63 ~= 2 MHz */
2823                                      FRF_AB_EE_EE_CLOCK_DIV, 63);
2824                 efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2825         }
2826
2827         if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2828                 falcon_spi_device_init(efx, &efx->spi_flash,
2829                                        FFE_AB_SPI_DEVICE_FLASH,
2830                                        default_flash_type);
2831         if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2832                 falcon_spi_device_init(efx, &efx->spi_eeprom,
2833                                        FFE_AB_SPI_DEVICE_EEPROM,
2834                                        large_eeprom_type);
2835 }
2836
2837 int falcon_probe_nic(struct efx_nic *efx)
2838 {
2839         struct falcon_nic_data *nic_data;
2840         int rc;
2841
2842         /* Allocate storage for hardware specific data */
2843         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2844         if (!nic_data)
2845                 return -ENOMEM;
2846         efx->nic_data = nic_data;
2847
2848         /* Determine number of ports etc. */
2849         rc = falcon_probe_nic_variant(efx);
2850         if (rc)
2851                 goto fail1;
2852
2853         /* Probe secondary function if expected */
2854         if (FALCON_IS_DUAL_FUNC(efx)) {
2855                 struct pci_dev *dev = pci_dev_get(efx->pci_dev);
2856
2857                 while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
2858                                              dev))) {
2859                         if (dev->bus == efx->pci_dev->bus &&
2860                             dev->devfn == efx->pci_dev->devfn + 1) {
2861                                 nic_data->pci_dev2 = dev;
2862                                 break;
2863                         }
2864                 }
2865                 if (!nic_data->pci_dev2) {
2866                         EFX_ERR(efx, "failed to find secondary function\n");
2867                         rc = -ENODEV;
2868                         goto fail2;
2869                 }
2870         }
2871
2872         /* Now we can reset the NIC */
2873         rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
2874         if (rc) {
2875                 EFX_ERR(efx, "failed to reset NIC\n");
2876                 goto fail3;
2877         }
2878
2879         /* Allocate memory for INT_KER */
2880         rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
2881         if (rc)
2882                 goto fail4;
2883         BUG_ON(efx->irq_status.dma_addr & 0x0f);
2884
2885         EFX_LOG(efx, "INT_KER at %llx (virt %p phys %llx)\n",
2886                 (u64)efx->irq_status.dma_addr,
2887                 efx->irq_status.addr, (u64)virt_to_phys(efx->irq_status.addr));
2888
2889         falcon_probe_spi_devices(efx);
2890
2891         /* Read in the non-volatile configuration */
2892         rc = falcon_probe_nvconfig(efx);
2893         if (rc)
2894                 goto fail5;
2895
2896         /* Initialise I2C adapter */
2897         efx->i2c_adap.owner = THIS_MODULE;
2898         nic_data->i2c_data = falcon_i2c_bit_operations;
2899         nic_data->i2c_data.data = efx;
2900         efx->i2c_adap.algo_data = &nic_data->i2c_data;
2901         efx->i2c_adap.dev.parent = &efx->pci_dev->dev;
2902         strlcpy(efx->i2c_adap.name, "SFC4000 GPIO", sizeof(efx->i2c_adap.name));
2903         rc = i2c_bit_add_bus(&efx->i2c_adap);
2904         if (rc)
2905                 goto fail5;
2906
2907         return 0;
2908
2909  fail5:
2910         falcon_remove_spi_devices(efx);
2911         falcon_free_buffer(efx, &efx->irq_status);
2912  fail4:
2913  fail3:
2914         if (nic_data->pci_dev2) {
2915                 pci_dev_put(nic_data->pci_dev2);
2916                 nic_data->pci_dev2 = NULL;
2917         }
2918  fail2:
2919  fail1:
2920         kfree(efx->nic_data);
2921         return rc;
2922 }
2923
2924 static void falcon_init_rx_cfg(struct efx_nic *efx)
2925 {
2926         /* Prior to Siena the RX DMA engine will split each frame at
2927          * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
2928          * be so large that that never happens. */
2929         const unsigned huge_buf_size = (3 * 4096) >> 5;
2930         /* RX control FIFO thresholds (32 entries) */
2931         const unsigned ctrl_xon_thr = 20;
2932         const unsigned ctrl_xoff_thr = 25;
2933         /* RX data FIFO thresholds (256-byte units; size varies) */
2934         int data_xon_thr = rx_xon_thresh_bytes >> 8;
2935         int data_xoff_thr = rx_xoff_thresh_bytes >> 8;
2936         efx_oword_t reg;
2937
2938         efx_reado(efx, &reg, FR_AZ_RX_CFG);
2939         if (falcon_rev(efx) <= FALCON_REV_A1) {
2940                 /* Data FIFO size is 5.5K */
2941                 if (data_xon_thr < 0)
2942                         data_xon_thr = 512 >> 8;
2943                 if (data_xoff_thr < 0)
2944                         data_xoff_thr = 2048 >> 8;
2945                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2946                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2947                                     huge_buf_size);
2948                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, data_xon_thr);
2949                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, data_xoff_thr);
2950                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
2951                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2952         } else {
2953                 /* Data FIFO size is 80K; register fields moved */
2954                 if (data_xon_thr < 0)
2955                         data_xon_thr = 27648 >> 8; /* ~3*max MTU */
2956                 if (data_xoff_thr < 0)
2957                         data_xoff_thr = 54272 >> 8; /* ~80Kb - 3*max MTU */
2958                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
2959                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
2960                                     huge_buf_size);
2961                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, data_xon_thr);
2962                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, data_xoff_thr);
2963                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
2964                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
2965                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2966         }
2967         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
2968 }
2969
2970 /* This call performs hardware-specific global initialisation, such as
2971  * defining the descriptor cache sizes and number of RSS channels.
2972  * It does not set up any buffers, descriptor rings or event queues.
2973  */
2974 int falcon_init_nic(struct efx_nic *efx)
2975 {
2976         efx_oword_t temp;
2977         int rc;
2978
2979         /* Use on-chip SRAM */
2980         efx_reado(efx, &temp, FR_AB_NIC_STAT);
2981         EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
2982         efx_writeo(efx, &temp, FR_AB_NIC_STAT);
2983
2984         /* Set the source of the GMAC clock */
2985         if (falcon_rev(efx) == FALCON_REV_B0) {
2986                 efx_reado(efx, &temp, FR_AB_GPIO_CTL);
2987                 EFX_SET_OWORD_FIELD(temp, FRF_AB_USE_NIC_CLK, true);
2988                 efx_writeo(efx, &temp, FR_AB_GPIO_CTL);
2989         }
2990
2991         rc = falcon_reset_sram(efx);
2992         if (rc)
2993                 return rc;
2994
2995         /* Set positions of descriptor caches in SRAM. */
2996         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
2997         efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
2998         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
2999         efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
3000
3001         /* Set TX descriptor cache size. */
3002         BUILD_BUG_ON(TX_DC_ENTRIES != (16 << TX_DC_ENTRIES_ORDER));
3003         EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
3004         efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
3005
3006         /* Set RX descriptor cache size.  Set low watermark to size-8, as
3007          * this allows most efficient prefetching.
3008          */
3009         BUILD_BUG_ON(RX_DC_ENTRIES != (16 << RX_DC_ENTRIES_ORDER));
3010         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
3011         efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
3012         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
3013         efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
3014
3015         /* Clear the parity enables on the TX data fifos as
3016          * they produce false parity errors because of timing issues
3017          */
3018         if (EFX_WORKAROUND_5129(efx)) {
3019                 efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
3020                 EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
3021                 efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
3022         }
3023
3024         /* Enable all the genuinely fatal interrupts.  (They are still
3025          * masked by the overall interrupt mask, controlled by
3026          * falcon_interrupts()).
3027          *
3028          * Note: All other fatal interrupts are enabled
3029          */
3030         EFX_POPULATE_OWORD_3(temp,
3031                              FRF_AZ_ILL_ADR_INT_KER_EN, 1,
3032                              FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
3033                              FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
3034         EFX_INVERT_OWORD(temp);
3035         efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
3036
3037         if (EFX_WORKAROUND_7244(efx)) {
3038                 efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
3039                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
3040                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
3041                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
3042                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
3043                 efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
3044         }
3045
3046         falcon_setup_rss_indir_table(efx);
3047
3048         /* XXX This is documented only for Falcon A0/A1 */
3049         /* Setup RX.  Wait for descriptor is broken and must
3050          * be disabled.  RXDP recovery shouldn't be needed, but is.
3051          */
3052         efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
3053         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
3054         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
3055         if (EFX_WORKAROUND_5583(efx))
3056                 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
3057         efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
3058
3059         /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
3060          * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
3061          */
3062         efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
3063         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
3064         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
3065         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
3066         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 0);
3067         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
3068         /* Enable SW_EV to inherit in char driver - assume harmless here */
3069         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
3070         /* Prefetch threshold 2 => fetch when descriptor cache half empty */
3071         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
3072         /* Squash TX of packets of 16 bytes or less */
3073         if (falcon_rev(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
3074                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
3075         efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
3076
3077         /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
3078          * descriptors (which is bad).
3079          */
3080         efx_reado(efx, &temp, FR_AZ_TX_CFG);
3081         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
3082         efx_writeo(efx, &temp, FR_AZ_TX_CFG);
3083
3084         falcon_init_rx_cfg(efx);
3085
3086         /* Set destination of both TX and RX Flush events */
3087         if (falcon_rev(efx) >= FALCON_REV_B0) {
3088                 EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
3089                 efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
3090         }
3091
3092         return 0;
3093 }
3094
3095 void falcon_remove_nic(struct efx_nic *efx)
3096 {
3097         struct falcon_nic_data *nic_data = efx->nic_data;
3098         int rc;
3099
3100         /* Remove I2C adapter and clear it in preparation for a retry */
3101         rc = i2c_del_adapter(&efx->i2c_adap);
3102         BUG_ON(rc);
3103         memset(&efx->i2c_adap, 0, sizeof(efx->i2c_adap));
3104
3105         falcon_remove_spi_devices(efx);
3106         falcon_free_buffer(efx, &efx->irq_status);
3107
3108         falcon_reset_hw(efx, RESET_TYPE_ALL);
3109
3110         /* Release the second function after the reset */
3111         if (nic_data->pci_dev2) {
3112                 pci_dev_put(nic_data->pci_dev2);
3113                 nic_data->pci_dev2 = NULL;
3114         }
3115
3116         /* Tear down the private nic state */
3117         kfree(efx->nic_data);
3118         efx->nic_data = NULL;
3119 }
3120
3121 void falcon_update_nic_stats(struct efx_nic *efx)
3122 {
3123         efx_oword_t cnt;
3124
3125         efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
3126         efx->n_rx_nodesc_drop_cnt +=
3127                 EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
3128 }
3129
3130 /**************************************************************************
3131  *
3132  * Revision-dependent attributes used by efx.c
3133  *
3134  **************************************************************************
3135  */
3136
3137 struct efx_nic_type falcon_a_nic_type = {
3138         .mem_bar = 2,
3139         .mem_map_size = 0x20000,
3140         .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
3141         .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
3142         .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
3143         .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
3144         .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
3145         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
3146         .rx_buffer_padding = 0x24,
3147         .max_interrupt_mode = EFX_INT_MODE_MSI,
3148         .phys_addr_channels = 4,
3149 };
3150
3151 struct efx_nic_type falcon_b_nic_type = {
3152         .mem_bar = 2,
3153         /* Map everything up to and including the RSS indirection
3154          * table.  Don't map MSI-X table, MSI-X PBA since Linux
3155          * requires that they not be mapped.  */
3156         .mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
3157                          FR_BZ_RX_INDIRECTION_TBL_STEP *
3158                          FR_BZ_RX_INDIRECTION_TBL_ROWS),
3159         .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
3160         .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
3161         .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
3162         .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
3163         .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
3164         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
3165         .rx_buffer_padding = 0,
3166         .max_interrupt_mode = EFX_INT_MODE_MSIX,
3167         .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
3168                                    * interrupt handler only supports 32
3169                                    * channels */
3170 };
3171