sfc: Work around unreliable strap pins
[safe/jmp/linux-2.6] / drivers / net / sfc / falcon.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2008 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/i2c-algo-bit.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "mac.h"
22 #include "gmii.h"
23 #include "spi.h"
24 #include "falcon.h"
25 #include "falcon_hwdefs.h"
26 #include "falcon_io.h"
27 #include "mdio_10g.h"
28 #include "phy.h"
29 #include "boards.h"
30 #include "workarounds.h"
31
32 /* Falcon hardware control.
33  * Falcon is the internal codename for the SFC4000 controller that is
34  * present in SFE400X evaluation boards
35  */
36
37 /**
38  * struct falcon_nic_data - Falcon NIC state
39  * @next_buffer_table: First available buffer table id
40  * @pci_dev2: The secondary PCI device if present
41  * @i2c_data: Operations and state for I2C bit-bashing algorithm
42  */
43 struct falcon_nic_data {
44         unsigned next_buffer_table;
45         struct pci_dev *pci_dev2;
46         struct i2c_algo_bit_data i2c_data;
47 };
48
49 /**************************************************************************
50  *
51  * Configurable values
52  *
53  **************************************************************************
54  */
55
56 static int disable_dma_stats;
57
58 /* This is set to 16 for a good reason.  In summary, if larger than
59  * 16, the descriptor cache holds more than a default socket
60  * buffer's worth of packets (for UDP we can only have at most one
61  * socket buffer's worth outstanding).  This combined with the fact
62  * that we only get 1 TX event per descriptor cache means the NIC
63  * goes idle.
64  */
65 #define TX_DC_ENTRIES 16
66 #define TX_DC_ENTRIES_ORDER 0
67 #define TX_DC_BASE 0x130000
68
69 #define RX_DC_ENTRIES 64
70 #define RX_DC_ENTRIES_ORDER 2
71 #define RX_DC_BASE 0x100000
72
73 static const unsigned int
74 /* "Large" EEPROM device: Atmel AT25640 or similar
75  * 8 KB, 16-bit address, 32 B write block */
76 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
77                      | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
78                      | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
79 /* Default flash device: Atmel AT25F1024
80  * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
81 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
82                       | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
83                       | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
84                       | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
85                       | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
86
87 /* RX FIFO XOFF watermark
88  *
89  * When the amount of the RX FIFO increases used increases past this
90  * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
91  * This also has an effect on RX/TX arbitration
92  */
93 static int rx_xoff_thresh_bytes = -1;
94 module_param(rx_xoff_thresh_bytes, int, 0644);
95 MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
96
97 /* RX FIFO XON watermark
98  *
99  * When the amount of the RX FIFO used decreases below this
100  * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
101  * This also has an effect on RX/TX arbitration
102  */
103 static int rx_xon_thresh_bytes = -1;
104 module_param(rx_xon_thresh_bytes, int, 0644);
105 MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
106
107 /* TX descriptor ring size - min 512 max 4k */
108 #define FALCON_TXD_RING_ORDER TX_DESCQ_SIZE_1K
109 #define FALCON_TXD_RING_SIZE 1024
110 #define FALCON_TXD_RING_MASK (FALCON_TXD_RING_SIZE - 1)
111
112 /* RX descriptor ring size - min 512 max 4k */
113 #define FALCON_RXD_RING_ORDER RX_DESCQ_SIZE_1K
114 #define FALCON_RXD_RING_SIZE 1024
115 #define FALCON_RXD_RING_MASK (FALCON_RXD_RING_SIZE - 1)
116
117 /* Event queue size - max 32k */
118 #define FALCON_EVQ_ORDER EVQ_SIZE_4K
119 #define FALCON_EVQ_SIZE 4096
120 #define FALCON_EVQ_MASK (FALCON_EVQ_SIZE - 1)
121
122 /* Max number of internal errors. After this resets will not be performed */
123 #define FALCON_MAX_INT_ERRORS 4
124
125 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
126  */
127 #define FALCON_FLUSH_INTERVAL 10
128 #define FALCON_FLUSH_POLL_COUNT 100
129
130 /**************************************************************************
131  *
132  * Falcon constants
133  *
134  **************************************************************************
135  */
136
137 /* DMA address mask */
138 #define FALCON_DMA_MASK DMA_BIT_MASK(46)
139
140 /* TX DMA length mask (13-bit) */
141 #define FALCON_TX_DMA_MASK (4096 - 1)
142
143 /* Size and alignment of special buffers (4KB) */
144 #define FALCON_BUF_SIZE 4096
145
146 /* Dummy SRAM size code */
147 #define SRM_NB_BSZ_ONCHIP_ONLY (-1)
148
149 /* Be nice if these (or equiv.) were in linux/pci_regs.h, but they're not. */
150 #define PCI_EXP_DEVCAP_PWR_VAL_LBN      18
151 #define PCI_EXP_DEVCAP_PWR_SCL_LBN      26
152 #define PCI_EXP_DEVCTL_PAYLOAD_LBN      5
153 #define PCI_EXP_LNKSTA_LNK_WID          0x3f0
154 #define PCI_EXP_LNKSTA_LNK_WID_LBN      4
155
156 #define FALCON_IS_DUAL_FUNC(efx)                \
157         (falcon_rev(efx) < FALCON_REV_B0)
158
159 /**************************************************************************
160  *
161  * Falcon hardware access
162  *
163  **************************************************************************/
164
165 /* Read the current event from the event queue */
166 static inline efx_qword_t *falcon_event(struct efx_channel *channel,
167                                         unsigned int index)
168 {
169         return (((efx_qword_t *) (channel->eventq.addr)) + index);
170 }
171
172 /* See if an event is present
173  *
174  * We check both the high and low dword of the event for all ones.  We
175  * wrote all ones when we cleared the event, and no valid event can
176  * have all ones in either its high or low dwords.  This approach is
177  * robust against reordering.
178  *
179  * Note that using a single 64-bit comparison is incorrect; even
180  * though the CPU read will be atomic, the DMA write may not be.
181  */
182 static inline int falcon_event_present(efx_qword_t *event)
183 {
184         return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
185                   EFX_DWORD_IS_ALL_ONES(event->dword[1])));
186 }
187
188 /**************************************************************************
189  *
190  * I2C bus - this is a bit-bashing interface using GPIO pins
191  * Note that it uses the output enables to tristate the outputs
192  * SDA is the data pin and SCL is the clock
193  *
194  **************************************************************************
195  */
196 static void falcon_setsda(void *data, int state)
197 {
198         struct efx_nic *efx = (struct efx_nic *)data;
199         efx_oword_t reg;
200
201         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
202         EFX_SET_OWORD_FIELD(reg, GPIO3_OEN, !state);
203         falcon_write(efx, &reg, GPIO_CTL_REG_KER);
204 }
205
206 static void falcon_setscl(void *data, int state)
207 {
208         struct efx_nic *efx = (struct efx_nic *)data;
209         efx_oword_t reg;
210
211         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
212         EFX_SET_OWORD_FIELD(reg, GPIO0_OEN, !state);
213         falcon_write(efx, &reg, GPIO_CTL_REG_KER);
214 }
215
216 static int falcon_getsda(void *data)
217 {
218         struct efx_nic *efx = (struct efx_nic *)data;
219         efx_oword_t reg;
220
221         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
222         return EFX_OWORD_FIELD(reg, GPIO3_IN);
223 }
224
225 static int falcon_getscl(void *data)
226 {
227         struct efx_nic *efx = (struct efx_nic *)data;
228         efx_oword_t reg;
229
230         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
231         return EFX_OWORD_FIELD(reg, GPIO0_IN);
232 }
233
234 static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
235         .setsda         = falcon_setsda,
236         .setscl         = falcon_setscl,
237         .getsda         = falcon_getsda,
238         .getscl         = falcon_getscl,
239         .udelay         = 5,
240         /* Wait up to 50 ms for slave to let us pull SCL high */
241         .timeout        = DIV_ROUND_UP(HZ, 20),
242 };
243
244 /**************************************************************************
245  *
246  * Falcon special buffer handling
247  * Special buffers are used for event queues and the TX and RX
248  * descriptor rings.
249  *
250  *************************************************************************/
251
252 /*
253  * Initialise a Falcon special buffer
254  *
255  * This will define a buffer (previously allocated via
256  * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
257  * it to be used for event queues, descriptor rings etc.
258  */
259 static void
260 falcon_init_special_buffer(struct efx_nic *efx,
261                            struct efx_special_buffer *buffer)
262 {
263         efx_qword_t buf_desc;
264         int index;
265         dma_addr_t dma_addr;
266         int i;
267
268         EFX_BUG_ON_PARANOID(!buffer->addr);
269
270         /* Write buffer descriptors to NIC */
271         for (i = 0; i < buffer->entries; i++) {
272                 index = buffer->index + i;
273                 dma_addr = buffer->dma_addr + (i * 4096);
274                 EFX_LOG(efx, "mapping special buffer %d at %llx\n",
275                         index, (unsigned long long)dma_addr);
276                 EFX_POPULATE_QWORD_4(buf_desc,
277                                      IP_DAT_BUF_SIZE, IP_DAT_BUF_SIZE_4K,
278                                      BUF_ADR_REGION, 0,
279                                      BUF_ADR_FBUF, (dma_addr >> 12),
280                                      BUF_OWNER_ID_FBUF, 0);
281                 falcon_write_sram(efx, &buf_desc, index);
282         }
283 }
284
285 /* Unmaps a buffer from Falcon and clears the buffer table entries */
286 static void
287 falcon_fini_special_buffer(struct efx_nic *efx,
288                            struct efx_special_buffer *buffer)
289 {
290         efx_oword_t buf_tbl_upd;
291         unsigned int start = buffer->index;
292         unsigned int end = (buffer->index + buffer->entries - 1);
293
294         if (!buffer->entries)
295                 return;
296
297         EFX_LOG(efx, "unmapping special buffers %d-%d\n",
298                 buffer->index, buffer->index + buffer->entries - 1);
299
300         EFX_POPULATE_OWORD_4(buf_tbl_upd,
301                              BUF_UPD_CMD, 0,
302                              BUF_CLR_CMD, 1,
303                              BUF_CLR_END_ID, end,
304                              BUF_CLR_START_ID, start);
305         falcon_write(efx, &buf_tbl_upd, BUF_TBL_UPD_REG_KER);
306 }
307
308 /*
309  * Allocate a new Falcon special buffer
310  *
311  * This allocates memory for a new buffer, clears it and allocates a
312  * new buffer ID range.  It does not write into Falcon's buffer table.
313  *
314  * This call will allocate 4KB buffers, since Falcon can't use 8KB
315  * buffers for event queues and descriptor rings.
316  */
317 static int falcon_alloc_special_buffer(struct efx_nic *efx,
318                                        struct efx_special_buffer *buffer,
319                                        unsigned int len)
320 {
321         struct falcon_nic_data *nic_data = efx->nic_data;
322
323         len = ALIGN(len, FALCON_BUF_SIZE);
324
325         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
326                                             &buffer->dma_addr);
327         if (!buffer->addr)
328                 return -ENOMEM;
329         buffer->len = len;
330         buffer->entries = len / FALCON_BUF_SIZE;
331         BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));
332
333         /* All zeros is a potentially valid event so memset to 0xff */
334         memset(buffer->addr, 0xff, len);
335
336         /* Select new buffer ID */
337         buffer->index = nic_data->next_buffer_table;
338         nic_data->next_buffer_table += buffer->entries;
339
340         EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
341                 "(virt %p phys %lx)\n", buffer->index,
342                 buffer->index + buffer->entries - 1,
343                 (unsigned long long)buffer->dma_addr, len,
344                 buffer->addr, virt_to_phys(buffer->addr));
345
346         return 0;
347 }
348
349 static void falcon_free_special_buffer(struct efx_nic *efx,
350                                        struct efx_special_buffer *buffer)
351 {
352         if (!buffer->addr)
353                 return;
354
355         EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
356                 "(virt %p phys %lx)\n", buffer->index,
357                 buffer->index + buffer->entries - 1,
358                 (unsigned long long)buffer->dma_addr, buffer->len,
359                 buffer->addr, virt_to_phys(buffer->addr));
360
361         pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
362                             buffer->dma_addr);
363         buffer->addr = NULL;
364         buffer->entries = 0;
365 }
366
367 /**************************************************************************
368  *
369  * Falcon generic buffer handling
370  * These buffers are used for interrupt status and MAC stats
371  *
372  **************************************************************************/
373
374 static int falcon_alloc_buffer(struct efx_nic *efx,
375                                struct efx_buffer *buffer, unsigned int len)
376 {
377         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
378                                             &buffer->dma_addr);
379         if (!buffer->addr)
380                 return -ENOMEM;
381         buffer->len = len;
382         memset(buffer->addr, 0, len);
383         return 0;
384 }
385
386 static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
387 {
388         if (buffer->addr) {
389                 pci_free_consistent(efx->pci_dev, buffer->len,
390                                     buffer->addr, buffer->dma_addr);
391                 buffer->addr = NULL;
392         }
393 }
394
395 /**************************************************************************
396  *
397  * Falcon TX path
398  *
399  **************************************************************************/
400
401 /* Returns a pointer to the specified transmit descriptor in the TX
402  * descriptor queue belonging to the specified channel.
403  */
404 static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
405                                                unsigned int index)
406 {
407         return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
408 }
409
410 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
411 static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
412 {
413         unsigned write_ptr;
414         efx_dword_t reg;
415
416         write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
417         EFX_POPULATE_DWORD_1(reg, TX_DESC_WPTR_DWORD, write_ptr);
418         falcon_writel_page(tx_queue->efx, &reg,
419                            TX_DESC_UPD_REG_KER_DWORD, tx_queue->queue);
420 }
421
422
423 /* For each entry inserted into the software descriptor ring, create a
424  * descriptor in the hardware TX descriptor ring (in host memory), and
425  * write a doorbell.
426  */
427 void falcon_push_buffers(struct efx_tx_queue *tx_queue)
428 {
429
430         struct efx_tx_buffer *buffer;
431         efx_qword_t *txd;
432         unsigned write_ptr;
433
434         BUG_ON(tx_queue->write_count == tx_queue->insert_count);
435
436         do {
437                 write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
438                 buffer = &tx_queue->buffer[write_ptr];
439                 txd = falcon_tx_desc(tx_queue, write_ptr);
440                 ++tx_queue->write_count;
441
442                 /* Create TX descriptor ring entry */
443                 EFX_POPULATE_QWORD_5(*txd,
444                                      TX_KER_PORT, 0,
445                                      TX_KER_CONT, buffer->continuation,
446                                      TX_KER_BYTE_CNT, buffer->len,
447                                      TX_KER_BUF_REGION, 0,
448                                      TX_KER_BUF_ADR, buffer->dma_addr);
449         } while (tx_queue->write_count != tx_queue->insert_count);
450
451         wmb(); /* Ensure descriptors are written before they are fetched */
452         falcon_notify_tx_desc(tx_queue);
453 }
454
455 /* Allocate hardware resources for a TX queue */
456 int falcon_probe_tx(struct efx_tx_queue *tx_queue)
457 {
458         struct efx_nic *efx = tx_queue->efx;
459         return falcon_alloc_special_buffer(efx, &tx_queue->txd,
460                                            FALCON_TXD_RING_SIZE *
461                                            sizeof(efx_qword_t));
462 }
463
464 void falcon_init_tx(struct efx_tx_queue *tx_queue)
465 {
466         efx_oword_t tx_desc_ptr;
467         struct efx_nic *efx = tx_queue->efx;
468
469         tx_queue->flushed = false;
470
471         /* Pin TX descriptor ring */
472         falcon_init_special_buffer(efx, &tx_queue->txd);
473
474         /* Push TX descriptor ring to card */
475         EFX_POPULATE_OWORD_10(tx_desc_ptr,
476                               TX_DESCQ_EN, 1,
477                               TX_ISCSI_DDIG_EN, 0,
478                               TX_ISCSI_HDIG_EN, 0,
479                               TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
480                               TX_DESCQ_EVQ_ID, tx_queue->channel->channel,
481                               TX_DESCQ_OWNER_ID, 0,
482                               TX_DESCQ_LABEL, tx_queue->queue,
483                               TX_DESCQ_SIZE, FALCON_TXD_RING_ORDER,
484                               TX_DESCQ_TYPE, 0,
485                               TX_NON_IP_DROP_DIS_B0, 1);
486
487         if (falcon_rev(efx) >= FALCON_REV_B0) {
488                 int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
489                 EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_IP_CHKSM_DIS_B0, !csum);
490                 EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_TCP_CHKSM_DIS_B0, !csum);
491         }
492
493         falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
494                            tx_queue->queue);
495
496         if (falcon_rev(efx) < FALCON_REV_B0) {
497                 efx_oword_t reg;
498
499                 /* Only 128 bits in this register */
500                 BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
501
502                 falcon_read(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
503                 if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
504                         clear_bit_le(tx_queue->queue, (void *)&reg);
505                 else
506                         set_bit_le(tx_queue->queue, (void *)&reg);
507                 falcon_write(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
508         }
509 }
510
511 static void falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
512 {
513         struct efx_nic *efx = tx_queue->efx;
514         efx_oword_t tx_flush_descq;
515
516         /* Post a flush command */
517         EFX_POPULATE_OWORD_2(tx_flush_descq,
518                              TX_FLUSH_DESCQ_CMD, 1,
519                              TX_FLUSH_DESCQ, tx_queue->queue);
520         falcon_write(efx, &tx_flush_descq, TX_FLUSH_DESCQ_REG_KER);
521 }
522
523 void falcon_fini_tx(struct efx_tx_queue *tx_queue)
524 {
525         struct efx_nic *efx = tx_queue->efx;
526         efx_oword_t tx_desc_ptr;
527
528         /* The queue should have been flushed */
529         WARN_ON(!tx_queue->flushed);
530
531         /* Remove TX descriptor ring from card */
532         EFX_ZERO_OWORD(tx_desc_ptr);
533         falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
534                            tx_queue->queue);
535
536         /* Unpin TX descriptor ring */
537         falcon_fini_special_buffer(efx, &tx_queue->txd);
538 }
539
540 /* Free buffers backing TX queue */
541 void falcon_remove_tx(struct efx_tx_queue *tx_queue)
542 {
543         falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
544 }
545
546 /**************************************************************************
547  *
548  * Falcon RX path
549  *
550  **************************************************************************/
551
552 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
553 static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
554                                                unsigned int index)
555 {
556         return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
557 }
558
559 /* This creates an entry in the RX descriptor queue */
560 static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
561                                         unsigned index)
562 {
563         struct efx_rx_buffer *rx_buf;
564         efx_qword_t *rxd;
565
566         rxd = falcon_rx_desc(rx_queue, index);
567         rx_buf = efx_rx_buffer(rx_queue, index);
568         EFX_POPULATE_QWORD_3(*rxd,
569                              RX_KER_BUF_SIZE,
570                              rx_buf->len -
571                              rx_queue->efx->type->rx_buffer_padding,
572                              RX_KER_BUF_REGION, 0,
573                              RX_KER_BUF_ADR, rx_buf->dma_addr);
574 }
575
576 /* This writes to the RX_DESC_WPTR register for the specified receive
577  * descriptor ring.
578  */
579 void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
580 {
581         efx_dword_t reg;
582         unsigned write_ptr;
583
584         while (rx_queue->notified_count != rx_queue->added_count) {
585                 falcon_build_rx_desc(rx_queue,
586                                      rx_queue->notified_count &
587                                      FALCON_RXD_RING_MASK);
588                 ++rx_queue->notified_count;
589         }
590
591         wmb();
592         write_ptr = rx_queue->added_count & FALCON_RXD_RING_MASK;
593         EFX_POPULATE_DWORD_1(reg, RX_DESC_WPTR_DWORD, write_ptr);
594         falcon_writel_page(rx_queue->efx, &reg,
595                            RX_DESC_UPD_REG_KER_DWORD, rx_queue->queue);
596 }
597
598 int falcon_probe_rx(struct efx_rx_queue *rx_queue)
599 {
600         struct efx_nic *efx = rx_queue->efx;
601         return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
602                                            FALCON_RXD_RING_SIZE *
603                                            sizeof(efx_qword_t));
604 }
605
606 void falcon_init_rx(struct efx_rx_queue *rx_queue)
607 {
608         efx_oword_t rx_desc_ptr;
609         struct efx_nic *efx = rx_queue->efx;
610         bool is_b0 = falcon_rev(efx) >= FALCON_REV_B0;
611         bool iscsi_digest_en = is_b0;
612
613         EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
614                 rx_queue->queue, rx_queue->rxd.index,
615                 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
616
617         rx_queue->flushed = false;
618
619         /* Pin RX descriptor ring */
620         falcon_init_special_buffer(efx, &rx_queue->rxd);
621
622         /* Push RX descriptor ring to card */
623         EFX_POPULATE_OWORD_10(rx_desc_ptr,
624                               RX_ISCSI_DDIG_EN, iscsi_digest_en,
625                               RX_ISCSI_HDIG_EN, iscsi_digest_en,
626                               RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
627                               RX_DESCQ_EVQ_ID, rx_queue->channel->channel,
628                               RX_DESCQ_OWNER_ID, 0,
629                               RX_DESCQ_LABEL, rx_queue->queue,
630                               RX_DESCQ_SIZE, FALCON_RXD_RING_ORDER,
631                               RX_DESCQ_TYPE, 0 /* kernel queue */ ,
632                               /* For >=B0 this is scatter so disable */
633                               RX_DESCQ_JUMBO, !is_b0,
634                               RX_DESCQ_EN, 1);
635         falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
636                            rx_queue->queue);
637 }
638
639 static void falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
640 {
641         struct efx_nic *efx = rx_queue->efx;
642         efx_oword_t rx_flush_descq;
643
644         /* Post a flush command */
645         EFX_POPULATE_OWORD_2(rx_flush_descq,
646                              RX_FLUSH_DESCQ_CMD, 1,
647                              RX_FLUSH_DESCQ, rx_queue->queue);
648         falcon_write(efx, &rx_flush_descq, RX_FLUSH_DESCQ_REG_KER);
649 }
650
651 void falcon_fini_rx(struct efx_rx_queue *rx_queue)
652 {
653         efx_oword_t rx_desc_ptr;
654         struct efx_nic *efx = rx_queue->efx;
655
656         /* The queue should already have been flushed */
657         WARN_ON(!rx_queue->flushed);
658
659         /* Remove RX descriptor ring from card */
660         EFX_ZERO_OWORD(rx_desc_ptr);
661         falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
662                            rx_queue->queue);
663
664         /* Unpin RX descriptor ring */
665         falcon_fini_special_buffer(efx, &rx_queue->rxd);
666 }
667
668 /* Free buffers backing RX queue */
669 void falcon_remove_rx(struct efx_rx_queue *rx_queue)
670 {
671         falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
672 }
673
674 /**************************************************************************
675  *
676  * Falcon event queue processing
677  * Event queues are processed by per-channel tasklets.
678  *
679  **************************************************************************/
680
681 /* Update a channel's event queue's read pointer (RPTR) register
682  *
683  * This writes the EVQ_RPTR_REG register for the specified channel's
684  * event queue.
685  *
686  * Note that EVQ_RPTR_REG contains the index of the "last read" event,
687  * whereas channel->eventq_read_ptr contains the index of the "next to
688  * read" event.
689  */
690 void falcon_eventq_read_ack(struct efx_channel *channel)
691 {
692         efx_dword_t reg;
693         struct efx_nic *efx = channel->efx;
694
695         EFX_POPULATE_DWORD_1(reg, EVQ_RPTR_DWORD, channel->eventq_read_ptr);
696         falcon_writel_table(efx, &reg, efx->type->evq_rptr_tbl_base,
697                             channel->channel);
698 }
699
700 /* Use HW to insert a SW defined event */
701 void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
702 {
703         efx_oword_t drv_ev_reg;
704
705         EFX_POPULATE_OWORD_2(drv_ev_reg,
706                              DRV_EV_QID, channel->channel,
707                              DRV_EV_DATA,
708                              EFX_QWORD_FIELD64(*event, WHOLE_EVENT));
709         falcon_write(channel->efx, &drv_ev_reg, DRV_EV_REG_KER);
710 }
711
712 /* Handle a transmit completion event
713  *
714  * Falcon batches TX completion events; the message we receive is of
715  * the form "complete all TX events up to this index".
716  */
717 static void falcon_handle_tx_event(struct efx_channel *channel,
718                                    efx_qword_t *event)
719 {
720         unsigned int tx_ev_desc_ptr;
721         unsigned int tx_ev_q_label;
722         struct efx_tx_queue *tx_queue;
723         struct efx_nic *efx = channel->efx;
724
725         if (likely(EFX_QWORD_FIELD(*event, TX_EV_COMP))) {
726                 /* Transmit completion */
727                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, TX_EV_DESC_PTR);
728                 tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
729                 tx_queue = &efx->tx_queue[tx_ev_q_label];
730                 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
731         } else if (EFX_QWORD_FIELD(*event, TX_EV_WQ_FF_FULL)) {
732                 /* Rewrite the FIFO write pointer */
733                 tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
734                 tx_queue = &efx->tx_queue[tx_ev_q_label];
735
736                 if (efx_dev_registered(efx))
737                         netif_tx_lock(efx->net_dev);
738                 falcon_notify_tx_desc(tx_queue);
739                 if (efx_dev_registered(efx))
740                         netif_tx_unlock(efx->net_dev);
741         } else if (EFX_QWORD_FIELD(*event, TX_EV_PKT_ERR) &&
742                    EFX_WORKAROUND_10727(efx)) {
743                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
744         } else {
745                 EFX_ERR(efx, "channel %d unexpected TX event "
746                         EFX_QWORD_FMT"\n", channel->channel,
747                         EFX_QWORD_VAL(*event));
748         }
749 }
750
751 /* Detect errors included in the rx_evt_pkt_ok bit. */
752 static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
753                                     const efx_qword_t *event,
754                                     bool *rx_ev_pkt_ok,
755                                     bool *discard)
756 {
757         struct efx_nic *efx = rx_queue->efx;
758         bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
759         bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
760         bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
761         bool rx_ev_other_err, rx_ev_pause_frm;
762         bool rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
763         unsigned rx_ev_pkt_type;
764
765         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
766         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
767         rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, RX_EV_TOBE_DISC);
768         rx_ev_pkt_type = EFX_QWORD_FIELD(*event, RX_EV_PKT_TYPE);
769         rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
770                                                  RX_EV_BUF_OWNER_ID_ERR);
771         rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, RX_EV_IF_FRAG_ERR);
772         rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
773                                                   RX_EV_IP_HDR_CHKSUM_ERR);
774         rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
775                                                    RX_EV_TCP_UDP_CHKSUM_ERR);
776         rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, RX_EV_ETH_CRC_ERR);
777         rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, RX_EV_FRM_TRUNC);
778         rx_ev_drib_nib = ((falcon_rev(efx) >= FALCON_REV_B0) ?
779                           0 : EFX_QWORD_FIELD(*event, RX_EV_DRIB_NIB));
780         rx_ev_pause_frm = EFX_QWORD_FIELD(*event, RX_EV_PAUSE_FRM_ERR);
781
782         /* Every error apart from tobe_disc and pause_frm */
783         rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
784                            rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
785                            rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
786
787         /* Count errors that are not in MAC stats. */
788         if (rx_ev_frm_trunc)
789                 ++rx_queue->channel->n_rx_frm_trunc;
790         else if (rx_ev_tobe_disc)
791                 ++rx_queue->channel->n_rx_tobe_disc;
792         else if (rx_ev_ip_hdr_chksum_err)
793                 ++rx_queue->channel->n_rx_ip_hdr_chksum_err;
794         else if (rx_ev_tcp_udp_chksum_err)
795                 ++rx_queue->channel->n_rx_tcp_udp_chksum_err;
796         if (rx_ev_ip_frag_err)
797                 ++rx_queue->channel->n_rx_ip_frag_err;
798
799         /* The frame must be discarded if any of these are true. */
800         *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
801                     rx_ev_tobe_disc | rx_ev_pause_frm);
802
803         /* TOBE_DISC is expected on unicast mismatches; don't print out an
804          * error message.  FRM_TRUNC indicates RXDP dropped the packet due
805          * to a FIFO overflow.
806          */
807 #ifdef EFX_ENABLE_DEBUG
808         if (rx_ev_other_err) {
809                 EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
810                             EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
811                             rx_queue->queue, EFX_QWORD_VAL(*event),
812                             rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
813                             rx_ev_ip_hdr_chksum_err ?
814                             " [IP_HDR_CHKSUM_ERR]" : "",
815                             rx_ev_tcp_udp_chksum_err ?
816                             " [TCP_UDP_CHKSUM_ERR]" : "",
817                             rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
818                             rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
819                             rx_ev_drib_nib ? " [DRIB_NIB]" : "",
820                             rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
821                             rx_ev_pause_frm ? " [PAUSE]" : "");
822         }
823 #endif
824
825         if (unlikely(rx_ev_eth_crc_err && EFX_WORKAROUND_10750(efx) &&
826                      efx->phy_type == PHY_TYPE_10XPRESS))
827                 tenxpress_crc_err(efx);
828 }
829
830 /* Handle receive events that are not in-order. */
831 static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
832                                        unsigned index)
833 {
834         struct efx_nic *efx = rx_queue->efx;
835         unsigned expected, dropped;
836
837         expected = rx_queue->removed_count & FALCON_RXD_RING_MASK;
838         dropped = ((index + FALCON_RXD_RING_SIZE - expected) &
839                    FALCON_RXD_RING_MASK);
840         EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
841                 dropped, index, expected);
842
843         efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
844                            RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
845 }
846
847 /* Handle a packet received event
848  *
849  * Falcon silicon gives a "discard" flag if it's a unicast packet with the
850  * wrong destination address
851  * Also "is multicast" and "matches multicast filter" flags can be used to
852  * discard non-matching multicast packets.
853  */
854 static void falcon_handle_rx_event(struct efx_channel *channel,
855                                    const efx_qword_t *event)
856 {
857         unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
858         unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
859         unsigned expected_ptr;
860         bool rx_ev_pkt_ok, discard = false, checksummed;
861         struct efx_rx_queue *rx_queue;
862         struct efx_nic *efx = channel->efx;
863
864         /* Basic packet information */
865         rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, RX_EV_BYTE_CNT);
866         rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, RX_EV_PKT_OK);
867         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
868         WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_JUMBO_CONT));
869         WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_SOP) != 1);
870         WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_Q_LABEL) != channel->channel);
871
872         rx_queue = &efx->rx_queue[channel->channel];
873
874         rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, RX_EV_DESC_PTR);
875         expected_ptr = rx_queue->removed_count & FALCON_RXD_RING_MASK;
876         if (unlikely(rx_ev_desc_ptr != expected_ptr))
877                 falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
878
879         if (likely(rx_ev_pkt_ok)) {
880                 /* If packet is marked as OK and packet type is TCP/IPv4 or
881                  * UDP/IPv4, then we can rely on the hardware checksum.
882                  */
883                 checksummed = RX_EV_HDR_TYPE_HAS_CHECKSUMS(rx_ev_hdr_type);
884         } else {
885                 falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
886                                         &discard);
887                 checksummed = false;
888         }
889
890         /* Detect multicast packets that didn't match the filter */
891         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
892         if (rx_ev_mcast_pkt) {
893                 unsigned int rx_ev_mcast_hash_match =
894                         EFX_QWORD_FIELD(*event, RX_EV_MCAST_HASH_MATCH);
895
896                 if (unlikely(!rx_ev_mcast_hash_match))
897                         discard = true;
898         }
899
900         /* Handle received packet */
901         efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
902                       checksummed, discard);
903 }
904
905 /* Global events are basically PHY events */
906 static void falcon_handle_global_event(struct efx_channel *channel,
907                                        efx_qword_t *event)
908 {
909         struct efx_nic *efx = channel->efx;
910         bool is_phy_event = false, handled = false;
911
912         /* Check for interrupt on either port.  Some boards have a
913          * single PHY wired to the interrupt line for port 1. */
914         if (EFX_QWORD_FIELD(*event, G_PHY0_INTR) ||
915             EFX_QWORD_FIELD(*event, G_PHY1_INTR) ||
916             EFX_QWORD_FIELD(*event, XG_PHY_INTR))
917                 is_phy_event = true;
918
919         if ((falcon_rev(efx) >= FALCON_REV_B0) &&
920             EFX_QWORD_FIELD(*event, XG_MNT_INTR_B0))
921                 is_phy_event = true;
922
923         if (is_phy_event) {
924                 efx->phy_op->clear_interrupt(efx);
925                 queue_work(efx->workqueue, &efx->reconfigure_work);
926                 handled = true;
927         }
928
929         if (EFX_QWORD_FIELD_VER(efx, *event, RX_RECOVERY)) {
930                 EFX_ERR(efx, "channel %d seen global RX_RESET "
931                         "event. Resetting.\n", channel->channel);
932
933                 atomic_inc(&efx->rx_reset);
934                 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
935                                    RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
936                 handled = true;
937         }
938
939         if (!handled)
940                 EFX_ERR(efx, "channel %d unknown global event "
941                         EFX_QWORD_FMT "\n", channel->channel,
942                         EFX_QWORD_VAL(*event));
943 }
944
945 static void falcon_handle_driver_event(struct efx_channel *channel,
946                                        efx_qword_t *event)
947 {
948         struct efx_nic *efx = channel->efx;
949         unsigned int ev_sub_code;
950         unsigned int ev_sub_data;
951
952         ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
953         ev_sub_data = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_DATA);
954
955         switch (ev_sub_code) {
956         case TX_DESCQ_FLS_DONE_EV_DECODE:
957                 EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
958                           channel->channel, ev_sub_data);
959                 break;
960         case RX_DESCQ_FLS_DONE_EV_DECODE:
961                 EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
962                           channel->channel, ev_sub_data);
963                 break;
964         case EVQ_INIT_DONE_EV_DECODE:
965                 EFX_LOG(efx, "channel %d EVQ %d initialised\n",
966                         channel->channel, ev_sub_data);
967                 break;
968         case SRM_UPD_DONE_EV_DECODE:
969                 EFX_TRACE(efx, "channel %d SRAM update done\n",
970                           channel->channel);
971                 break;
972         case WAKE_UP_EV_DECODE:
973                 EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
974                           channel->channel, ev_sub_data);
975                 break;
976         case TIMER_EV_DECODE:
977                 EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
978                           channel->channel, ev_sub_data);
979                 break;
980         case RX_RECOVERY_EV_DECODE:
981                 EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
982                         "Resetting.\n", channel->channel);
983                 atomic_inc(&efx->rx_reset);
984                 efx_schedule_reset(efx,
985                                    EFX_WORKAROUND_6555(efx) ?
986                                    RESET_TYPE_RX_RECOVERY :
987                                    RESET_TYPE_DISABLE);
988                 break;
989         case RX_DSC_ERROR_EV_DECODE:
990                 EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
991                         " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
992                 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
993                 break;
994         case TX_DSC_ERROR_EV_DECODE:
995                 EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
996                         " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
997                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
998                 break;
999         default:
1000                 EFX_TRACE(efx, "channel %d unknown driver event code %d "
1001                           "data %04x\n", channel->channel, ev_sub_code,
1002                           ev_sub_data);
1003                 break;
1004         }
1005 }
1006
1007 int falcon_process_eventq(struct efx_channel *channel, int rx_quota)
1008 {
1009         unsigned int read_ptr;
1010         efx_qword_t event, *p_event;
1011         int ev_code;
1012         int rx_packets = 0;
1013
1014         read_ptr = channel->eventq_read_ptr;
1015
1016         do {
1017                 p_event = falcon_event(channel, read_ptr);
1018                 event = *p_event;
1019
1020                 if (!falcon_event_present(&event))
1021                         /* End of events */
1022                         break;
1023
1024                 EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
1025                           channel->channel, EFX_QWORD_VAL(event));
1026
1027                 /* Clear this event by marking it all ones */
1028                 EFX_SET_QWORD(*p_event);
1029
1030                 ev_code = EFX_QWORD_FIELD(event, EV_CODE);
1031
1032                 switch (ev_code) {
1033                 case RX_IP_EV_DECODE:
1034                         falcon_handle_rx_event(channel, &event);
1035                         ++rx_packets;
1036                         break;
1037                 case TX_IP_EV_DECODE:
1038                         falcon_handle_tx_event(channel, &event);
1039                         break;
1040                 case DRV_GEN_EV_DECODE:
1041                         channel->eventq_magic
1042                                 = EFX_QWORD_FIELD(event, EVQ_MAGIC);
1043                         EFX_LOG(channel->efx, "channel %d received generated "
1044                                 "event "EFX_QWORD_FMT"\n", channel->channel,
1045                                 EFX_QWORD_VAL(event));
1046                         break;
1047                 case GLOBAL_EV_DECODE:
1048                         falcon_handle_global_event(channel, &event);
1049                         break;
1050                 case DRIVER_EV_DECODE:
1051                         falcon_handle_driver_event(channel, &event);
1052                         break;
1053                 default:
1054                         EFX_ERR(channel->efx, "channel %d unknown event type %d"
1055                                 " (data " EFX_QWORD_FMT ")\n", channel->channel,
1056                                 ev_code, EFX_QWORD_VAL(event));
1057                 }
1058
1059                 /* Increment read pointer */
1060                 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
1061
1062         } while (rx_packets < rx_quota);
1063
1064         channel->eventq_read_ptr = read_ptr;
1065         return rx_packets;
1066 }
1067
1068 void falcon_set_int_moderation(struct efx_channel *channel)
1069 {
1070         efx_dword_t timer_cmd;
1071         struct efx_nic *efx = channel->efx;
1072
1073         /* Set timer register */
1074         if (channel->irq_moderation) {
1075                 /* Round to resolution supported by hardware.  The value we
1076                  * program is based at 0.  So actual interrupt moderation
1077                  * achieved is ((x + 1) * res).
1078                  */
1079                 unsigned int res = 5;
1080                 channel->irq_moderation -= (channel->irq_moderation % res);
1081                 if (channel->irq_moderation < res)
1082                         channel->irq_moderation = res;
1083                 EFX_POPULATE_DWORD_2(timer_cmd,
1084                                      TIMER_MODE, TIMER_MODE_INT_HLDOFF,
1085                                      TIMER_VAL,
1086                                      (channel->irq_moderation / res) - 1);
1087         } else {
1088                 EFX_POPULATE_DWORD_2(timer_cmd,
1089                                      TIMER_MODE, TIMER_MODE_DIS,
1090                                      TIMER_VAL, 0);
1091         }
1092         falcon_writel_page_locked(efx, &timer_cmd, TIMER_CMD_REG_KER,
1093                                   channel->channel);
1094
1095 }
1096
1097 /* Allocate buffer table entries for event queue */
1098 int falcon_probe_eventq(struct efx_channel *channel)
1099 {
1100         struct efx_nic *efx = channel->efx;
1101         unsigned int evq_size;
1102
1103         evq_size = FALCON_EVQ_SIZE * sizeof(efx_qword_t);
1104         return falcon_alloc_special_buffer(efx, &channel->eventq, evq_size);
1105 }
1106
1107 void falcon_init_eventq(struct efx_channel *channel)
1108 {
1109         efx_oword_t evq_ptr;
1110         struct efx_nic *efx = channel->efx;
1111
1112         EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
1113                 channel->channel, channel->eventq.index,
1114                 channel->eventq.index + channel->eventq.entries - 1);
1115
1116         /* Pin event queue buffer */
1117         falcon_init_special_buffer(efx, &channel->eventq);
1118
1119         /* Fill event queue with all ones (i.e. empty events) */
1120         memset(channel->eventq.addr, 0xff, channel->eventq.len);
1121
1122         /* Push event queue to card */
1123         EFX_POPULATE_OWORD_3(evq_ptr,
1124                              EVQ_EN, 1,
1125                              EVQ_SIZE, FALCON_EVQ_ORDER,
1126                              EVQ_BUF_BASE_ID, channel->eventq.index);
1127         falcon_write_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
1128                            channel->channel);
1129
1130         falcon_set_int_moderation(channel);
1131 }
1132
1133 void falcon_fini_eventq(struct efx_channel *channel)
1134 {
1135         efx_oword_t eventq_ptr;
1136         struct efx_nic *efx = channel->efx;
1137
1138         /* Remove event queue from card */
1139         EFX_ZERO_OWORD(eventq_ptr);
1140         falcon_write_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
1141                            channel->channel);
1142
1143         /* Unpin event queue */
1144         falcon_fini_special_buffer(efx, &channel->eventq);
1145 }
1146
1147 /* Free buffers backing event queue */
1148 void falcon_remove_eventq(struct efx_channel *channel)
1149 {
1150         falcon_free_special_buffer(channel->efx, &channel->eventq);
1151 }
1152
1153
1154 /* Generates a test event on the event queue.  A subsequent call to
1155  * process_eventq() should pick up the event and place the value of
1156  * "magic" into channel->eventq_magic;
1157  */
1158 void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
1159 {
1160         efx_qword_t test_event;
1161
1162         EFX_POPULATE_QWORD_2(test_event,
1163                              EV_CODE, DRV_GEN_EV_DECODE,
1164                              EVQ_MAGIC, magic);
1165         falcon_generate_event(channel, &test_event);
1166 }
1167
1168 /**************************************************************************
1169  *
1170  * Flush handling
1171  *
1172  **************************************************************************/
1173
1174
1175 static void falcon_poll_flush_events(struct efx_nic *efx)
1176 {
1177         struct efx_channel *channel = &efx->channel[0];
1178         struct efx_tx_queue *tx_queue;
1179         struct efx_rx_queue *rx_queue;
1180         unsigned int read_ptr, i;
1181
1182         read_ptr = channel->eventq_read_ptr;
1183         for (i = 0; i < FALCON_EVQ_SIZE; ++i) {
1184                 efx_qword_t *event = falcon_event(channel, read_ptr);
1185                 int ev_code, ev_sub_code, ev_queue;
1186                 bool ev_failed;
1187                 if (!falcon_event_present(event))
1188                         break;
1189
1190                 ev_code = EFX_QWORD_FIELD(*event, EV_CODE);
1191                 if (ev_code != DRIVER_EV_DECODE)
1192                         continue;
1193
1194                 ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
1195                 switch (ev_sub_code) {
1196                 case TX_DESCQ_FLS_DONE_EV_DECODE:
1197                         ev_queue = EFX_QWORD_FIELD(*event,
1198                                                    DRIVER_EV_TX_DESCQ_ID);
1199                         if (ev_queue < EFX_TX_QUEUE_COUNT) {
1200                                 tx_queue = efx->tx_queue + ev_queue;
1201                                 tx_queue->flushed = true;
1202                         }
1203                         break;
1204                 case RX_DESCQ_FLS_DONE_EV_DECODE:
1205                         ev_queue = EFX_QWORD_FIELD(*event,
1206                                                    DRIVER_EV_RX_DESCQ_ID);
1207                         ev_failed = EFX_QWORD_FIELD(*event,
1208                                                     DRIVER_EV_RX_FLUSH_FAIL);
1209                         if (ev_queue < efx->n_rx_queues) {
1210                                 rx_queue = efx->rx_queue + ev_queue;
1211
1212                                 /* retry the rx flush */
1213                                 if (ev_failed)
1214                                         falcon_flush_rx_queue(rx_queue);
1215                                 else
1216                                         rx_queue->flushed = true;
1217                         }
1218                         break;
1219                 }
1220
1221                 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
1222         }
1223 }
1224
1225 /* Handle tx and rx flushes at the same time, since they run in
1226  * parallel in the hardware and there's no reason for us to
1227  * serialise them */
1228 int falcon_flush_queues(struct efx_nic *efx)
1229 {
1230         struct efx_rx_queue *rx_queue;
1231         struct efx_tx_queue *tx_queue;
1232         int i;
1233         bool outstanding;
1234
1235         /* Issue flush requests */
1236         efx_for_each_tx_queue(tx_queue, efx) {
1237                 tx_queue->flushed = false;
1238                 falcon_flush_tx_queue(tx_queue);
1239         }
1240         efx_for_each_rx_queue(rx_queue, efx) {
1241                 rx_queue->flushed = false;
1242                 falcon_flush_rx_queue(rx_queue);
1243         }
1244
1245         /* Poll the evq looking for flush completions. Since we're not pushing
1246          * any more rx or tx descriptors at this point, we're in no danger of
1247          * overflowing the evq whilst we wait */
1248         for (i = 0; i < FALCON_FLUSH_POLL_COUNT; ++i) {
1249                 msleep(FALCON_FLUSH_INTERVAL);
1250                 falcon_poll_flush_events(efx);
1251
1252                 /* Check if every queue has been succesfully flushed */
1253                 outstanding = false;
1254                 efx_for_each_tx_queue(tx_queue, efx)
1255                         outstanding |= !tx_queue->flushed;
1256                 efx_for_each_rx_queue(rx_queue, efx)
1257                         outstanding |= !rx_queue->flushed;
1258                 if (!outstanding)
1259                         return 0;
1260         }
1261
1262         /* Mark the queues as all flushed. We're going to return failure
1263          * leading to a reset, or fake up success anyway. "flushed" now
1264          * indicates that we tried to flush. */
1265         efx_for_each_tx_queue(tx_queue, efx) {
1266                 if (!tx_queue->flushed)
1267                         EFX_ERR(efx, "tx queue %d flush command timed out\n",
1268                                 tx_queue->queue);
1269                 tx_queue->flushed = true;
1270         }
1271         efx_for_each_rx_queue(rx_queue, efx) {
1272                 if (!rx_queue->flushed)
1273                         EFX_ERR(efx, "rx queue %d flush command timed out\n",
1274                                 rx_queue->queue);
1275                 rx_queue->flushed = true;
1276         }
1277
1278         if (EFX_WORKAROUND_7803(efx))
1279                 return 0;
1280
1281         return -ETIMEDOUT;
1282 }
1283
1284 /**************************************************************************
1285  *
1286  * Falcon hardware interrupts
1287  * The hardware interrupt handler does very little work; all the event
1288  * queue processing is carried out by per-channel tasklets.
1289  *
1290  **************************************************************************/
1291
1292 /* Enable/disable/generate Falcon interrupts */
1293 static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
1294                                      int force)
1295 {
1296         efx_oword_t int_en_reg_ker;
1297
1298         EFX_POPULATE_OWORD_2(int_en_reg_ker,
1299                              KER_INT_KER, force,
1300                              DRV_INT_EN_KER, enabled);
1301         falcon_write(efx, &int_en_reg_ker, INT_EN_REG_KER);
1302 }
1303
1304 void falcon_enable_interrupts(struct efx_nic *efx)
1305 {
1306         efx_oword_t int_adr_reg_ker;
1307         struct efx_channel *channel;
1308
1309         EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1310         wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1311
1312         /* Program address */
1313         EFX_POPULATE_OWORD_2(int_adr_reg_ker,
1314                              NORM_INT_VEC_DIS_KER, EFX_INT_MODE_USE_MSI(efx),
1315                              INT_ADR_KER, efx->irq_status.dma_addr);
1316         falcon_write(efx, &int_adr_reg_ker, INT_ADR_REG_KER);
1317
1318         /* Enable interrupts */
1319         falcon_interrupts(efx, 1, 0);
1320
1321         /* Force processing of all the channels to get the EVQ RPTRs up to
1322            date */
1323         efx_for_each_channel(channel, efx)
1324                 efx_schedule_channel(channel);
1325 }
1326
1327 void falcon_disable_interrupts(struct efx_nic *efx)
1328 {
1329         /* Disable interrupts */
1330         falcon_interrupts(efx, 0, 0);
1331 }
1332
1333 /* Generate a Falcon test interrupt
1334  * Interrupt must already have been enabled, otherwise nasty things
1335  * may happen.
1336  */
1337 void falcon_generate_interrupt(struct efx_nic *efx)
1338 {
1339         falcon_interrupts(efx, 1, 1);
1340 }
1341
1342 /* Acknowledge a legacy interrupt from Falcon
1343  *
1344  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
1345  *
1346  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
1347  * BIU. Interrupt acknowledge is read sensitive so must write instead
1348  * (then read to ensure the BIU collector is flushed)
1349  *
1350  * NB most hardware supports MSI interrupts
1351  */
1352 static inline void falcon_irq_ack_a1(struct efx_nic *efx)
1353 {
1354         efx_dword_t reg;
1355
1356         EFX_POPULATE_DWORD_1(reg, INT_ACK_DUMMY_DATA, 0xb7eb7e);
1357         falcon_writel(efx, &reg, INT_ACK_REG_KER_A1);
1358         falcon_readl(efx, &reg, WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1);
1359 }
1360
1361 /* Process a fatal interrupt
1362  * Disable bus mastering ASAP and schedule a reset
1363  */
1364 static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
1365 {
1366         struct falcon_nic_data *nic_data = efx->nic_data;
1367         efx_oword_t *int_ker = efx->irq_status.addr;
1368         efx_oword_t fatal_intr;
1369         int error, mem_perr;
1370         static int n_int_errors;
1371
1372         falcon_read(efx, &fatal_intr, FATAL_INTR_REG_KER);
1373         error = EFX_OWORD_FIELD(fatal_intr, INT_KER_ERROR);
1374
1375         EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
1376                 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1377                 EFX_OWORD_VAL(fatal_intr),
1378                 error ? "disabling bus mastering" : "no recognised error");
1379         if (error == 0)
1380                 goto out;
1381
1382         /* If this is a memory parity error dump which blocks are offending */
1383         mem_perr = EFX_OWORD_FIELD(fatal_intr, MEM_PERR_INT_KER);
1384         if (mem_perr) {
1385                 efx_oword_t reg;
1386                 falcon_read(efx, &reg, MEM_STAT_REG_KER);
1387                 EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
1388                         EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
1389         }
1390
1391         /* Disable both devices */
1392         pci_disable_device(efx->pci_dev);
1393         if (FALCON_IS_DUAL_FUNC(efx))
1394                 pci_disable_device(nic_data->pci_dev2);
1395         falcon_disable_interrupts(efx);
1396
1397         if (++n_int_errors < FALCON_MAX_INT_ERRORS) {
1398                 EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
1399                 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1400         } else {
1401                 EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
1402                         "NIC will be disabled\n");
1403                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1404         }
1405 out:
1406         return IRQ_HANDLED;
1407 }
1408
1409 /* Handle a legacy interrupt from Falcon
1410  * Acknowledges the interrupt and schedule event queue processing.
1411  */
1412 static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
1413 {
1414         struct efx_nic *efx = dev_id;
1415         efx_oword_t *int_ker = efx->irq_status.addr;
1416         struct efx_channel *channel;
1417         efx_dword_t reg;
1418         u32 queues;
1419         int syserr;
1420
1421         /* Read the ISR which also ACKs the interrupts */
1422         falcon_readl(efx, &reg, INT_ISR0_B0);
1423         queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1424
1425         /* Check to see if we have a serious error condition */
1426         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1427         if (unlikely(syserr))
1428                 return falcon_fatal_interrupt(efx);
1429
1430         if (queues == 0)
1431                 return IRQ_NONE;
1432
1433         efx->last_irq_cpu = raw_smp_processor_id();
1434         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1435                   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1436
1437         /* Schedule processing of any interrupting queues */
1438         channel = &efx->channel[0];
1439         while (queues) {
1440                 if (queues & 0x01)
1441                         efx_schedule_channel(channel);
1442                 channel++;
1443                 queues >>= 1;
1444         }
1445
1446         return IRQ_HANDLED;
1447 }
1448
1449
1450 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
1451 {
1452         struct efx_nic *efx = dev_id;
1453         efx_oword_t *int_ker = efx->irq_status.addr;
1454         struct efx_channel *channel;
1455         int syserr;
1456         int queues;
1457
1458         /* Check to see if this is our interrupt.  If it isn't, we
1459          * exit without having touched the hardware.
1460          */
1461         if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
1462                 EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
1463                           raw_smp_processor_id());
1464                 return IRQ_NONE;
1465         }
1466         efx->last_irq_cpu = raw_smp_processor_id();
1467         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1468                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1469
1470         /* Check to see if we have a serious error condition */
1471         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1472         if (unlikely(syserr))
1473                 return falcon_fatal_interrupt(efx);
1474
1475         /* Determine interrupting queues, clear interrupt status
1476          * register and acknowledge the device interrupt.
1477          */
1478         BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
1479         queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
1480         EFX_ZERO_OWORD(*int_ker);
1481         wmb(); /* Ensure the vector is cleared before interrupt ack */
1482         falcon_irq_ack_a1(efx);
1483
1484         /* Schedule processing of any interrupting queues */
1485         channel = &efx->channel[0];
1486         while (queues) {
1487                 if (queues & 0x01)
1488                         efx_schedule_channel(channel);
1489                 channel++;
1490                 queues >>= 1;
1491         }
1492
1493         return IRQ_HANDLED;
1494 }
1495
1496 /* Handle an MSI interrupt from Falcon
1497  *
1498  * Handle an MSI hardware interrupt.  This routine schedules event
1499  * queue processing.  No interrupt acknowledgement cycle is necessary.
1500  * Also, we never need to check that the interrupt is for us, since
1501  * MSI interrupts cannot be shared.
1502  */
1503 static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
1504 {
1505         struct efx_channel *channel = dev_id;
1506         struct efx_nic *efx = channel->efx;
1507         efx_oword_t *int_ker = efx->irq_status.addr;
1508         int syserr;
1509
1510         efx->last_irq_cpu = raw_smp_processor_id();
1511         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1512                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1513
1514         /* Check to see if we have a serious error condition */
1515         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1516         if (unlikely(syserr))
1517                 return falcon_fatal_interrupt(efx);
1518
1519         /* Schedule processing of the channel */
1520         efx_schedule_channel(channel);
1521
1522         return IRQ_HANDLED;
1523 }
1524
1525
1526 /* Setup RSS indirection table.
1527  * This maps from the hash value of the packet to RXQ
1528  */
1529 static void falcon_setup_rss_indir_table(struct efx_nic *efx)
1530 {
1531         int i = 0;
1532         unsigned long offset;
1533         efx_dword_t dword;
1534
1535         if (falcon_rev(efx) < FALCON_REV_B0)
1536                 return;
1537
1538         for (offset = RX_RSS_INDIR_TBL_B0;
1539              offset < RX_RSS_INDIR_TBL_B0 + 0x800;
1540              offset += 0x10) {
1541                 EFX_POPULATE_DWORD_1(dword, RX_RSS_INDIR_ENT_B0,
1542                                      i % efx->n_rx_queues);
1543                 falcon_writel(efx, &dword, offset);
1544                 i++;
1545         }
1546 }
1547
1548 /* Hook interrupt handler(s)
1549  * Try MSI and then legacy interrupts.
1550  */
1551 int falcon_init_interrupt(struct efx_nic *efx)
1552 {
1553         struct efx_channel *channel;
1554         int rc;
1555
1556         if (!EFX_INT_MODE_USE_MSI(efx)) {
1557                 irq_handler_t handler;
1558                 if (falcon_rev(efx) >= FALCON_REV_B0)
1559                         handler = falcon_legacy_interrupt_b0;
1560                 else
1561                         handler = falcon_legacy_interrupt_a1;
1562
1563                 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1564                                  efx->name, efx);
1565                 if (rc) {
1566                         EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
1567                                 efx->pci_dev->irq);
1568                         goto fail1;
1569                 }
1570                 return 0;
1571         }
1572
1573         /* Hook MSI or MSI-X interrupt */
1574         efx_for_each_channel(channel, efx) {
1575                 rc = request_irq(channel->irq, falcon_msi_interrupt,
1576                                  IRQF_PROBE_SHARED, /* Not shared */
1577                                  efx->name, channel);
1578                 if (rc) {
1579                         EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
1580                         goto fail2;
1581                 }
1582         }
1583
1584         return 0;
1585
1586  fail2:
1587         efx_for_each_channel(channel, efx)
1588                 free_irq(channel->irq, channel);
1589  fail1:
1590         return rc;
1591 }
1592
1593 void falcon_fini_interrupt(struct efx_nic *efx)
1594 {
1595         struct efx_channel *channel;
1596         efx_oword_t reg;
1597
1598         /* Disable MSI/MSI-X interrupts */
1599         efx_for_each_channel(channel, efx) {
1600                 if (channel->irq)
1601                         free_irq(channel->irq, channel);
1602         }
1603
1604         /* ACK legacy interrupt */
1605         if (falcon_rev(efx) >= FALCON_REV_B0)
1606                 falcon_read(efx, &reg, INT_ISR0_B0);
1607         else
1608                 falcon_irq_ack_a1(efx);
1609
1610         /* Disable legacy interrupt */
1611         if (efx->legacy_irq)
1612                 free_irq(efx->legacy_irq, efx);
1613 }
1614
1615 /**************************************************************************
1616  *
1617  * EEPROM/flash
1618  *
1619  **************************************************************************
1620  */
1621
1622 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1623
1624 static int falcon_spi_poll(struct efx_nic *efx)
1625 {
1626         efx_oword_t reg;
1627         falcon_read(efx, &reg, EE_SPI_HCMD_REG_KER);
1628         return EFX_OWORD_FIELD(reg, EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
1629 }
1630
1631 /* Wait for SPI command completion */
1632 static int falcon_spi_wait(struct efx_nic *efx)
1633 {
1634         /* Most commands will finish quickly, so we start polling at
1635          * very short intervals.  Sometimes the command may have to
1636          * wait for VPD or expansion ROM access outside of our
1637          * control, so we allow up to 100 ms. */
1638         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
1639         int i;
1640
1641         for (i = 0; i < 10; i++) {
1642                 if (!falcon_spi_poll(efx))
1643                         return 0;
1644                 udelay(10);
1645         }
1646
1647         for (;;) {
1648                 if (!falcon_spi_poll(efx))
1649                         return 0;
1650                 if (time_after_eq(jiffies, timeout)) {
1651                         EFX_ERR(efx, "timed out waiting for SPI\n");
1652                         return -ETIMEDOUT;
1653                 }
1654                 schedule_timeout_uninterruptible(1);
1655         }
1656 }
1657
1658 int falcon_spi_cmd(const struct efx_spi_device *spi,
1659                    unsigned int command, int address,
1660                    const void *in, void *out, size_t len)
1661 {
1662         struct efx_nic *efx = spi->efx;
1663         bool addressed = (address >= 0);
1664         bool reading = (out != NULL);
1665         efx_oword_t reg;
1666         int rc;
1667
1668         /* Input validation */
1669         if (len > FALCON_SPI_MAX_LEN)
1670                 return -EINVAL;
1671         BUG_ON(!mutex_is_locked(&efx->spi_lock));
1672
1673         /* Check that previous command is not still running */
1674         rc = falcon_spi_poll(efx);
1675         if (rc)
1676                 return rc;
1677
1678         /* Program address register, if we have an address */
1679         if (addressed) {
1680                 EFX_POPULATE_OWORD_1(reg, EE_SPI_HADR_ADR, address);
1681                 falcon_write(efx, &reg, EE_SPI_HADR_REG_KER);
1682         }
1683
1684         /* Program data register, if we have data */
1685         if (in != NULL) {
1686                 memcpy(&reg, in, len);
1687                 falcon_write(efx, &reg, EE_SPI_HDATA_REG_KER);
1688         }
1689
1690         /* Issue read/write command */
1691         EFX_POPULATE_OWORD_7(reg,
1692                              EE_SPI_HCMD_CMD_EN, 1,
1693                              EE_SPI_HCMD_SF_SEL, spi->device_id,
1694                              EE_SPI_HCMD_DABCNT, len,
1695                              EE_SPI_HCMD_READ, reading,
1696                              EE_SPI_HCMD_DUBCNT, 0,
1697                              EE_SPI_HCMD_ADBCNT,
1698                              (addressed ? spi->addr_len : 0),
1699                              EE_SPI_HCMD_ENC, command);
1700         falcon_write(efx, &reg, EE_SPI_HCMD_REG_KER);
1701
1702         /* Wait for read/write to complete */
1703         rc = falcon_spi_wait(efx);
1704         if (rc)
1705                 return rc;
1706
1707         /* Read data */
1708         if (out != NULL) {
1709                 falcon_read(efx, &reg, EE_SPI_HDATA_REG_KER);
1710                 memcpy(out, &reg, len);
1711         }
1712
1713         return 0;
1714 }
1715
1716 static size_t
1717 falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
1718 {
1719         return min(FALCON_SPI_MAX_LEN,
1720                    (spi->block_size - (start & (spi->block_size - 1))));
1721 }
1722
1723 static inline u8
1724 efx_spi_munge_command(const struct efx_spi_device *spi,
1725                       const u8 command, const unsigned int address)
1726 {
1727         return command | (((address >> 8) & spi->munge_address) << 3);
1728 }
1729
1730 /* Wait up to 10 ms for buffered write completion */
1731 int falcon_spi_wait_write(const struct efx_spi_device *spi)
1732 {
1733         struct efx_nic *efx = spi->efx;
1734         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
1735         u8 status;
1736         int rc;
1737
1738         for (;;) {
1739                 rc = falcon_spi_cmd(spi, SPI_RDSR, -1, NULL,
1740                                     &status, sizeof(status));
1741                 if (rc)
1742                         return rc;
1743                 if (!(status & SPI_STATUS_NRDY))
1744                         return 0;
1745                 if (time_after_eq(jiffies, timeout)) {
1746                         EFX_ERR(efx, "SPI write timeout on device %d"
1747                                 " last status=0x%02x\n",
1748                                 spi->device_id, status);
1749                         return -ETIMEDOUT;
1750                 }
1751                 schedule_timeout_uninterruptible(1);
1752         }
1753 }
1754
1755 int falcon_spi_read(const struct efx_spi_device *spi, loff_t start,
1756                     size_t len, size_t *retlen, u8 *buffer)
1757 {
1758         size_t block_len, pos = 0;
1759         unsigned int command;
1760         int rc = 0;
1761
1762         while (pos < len) {
1763                 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
1764
1765                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1766                 rc = falcon_spi_cmd(spi, command, start + pos, NULL,
1767                                     buffer + pos, block_len);
1768                 if (rc)
1769                         break;
1770                 pos += block_len;
1771
1772                 /* Avoid locking up the system */
1773                 cond_resched();
1774                 if (signal_pending(current)) {
1775                         rc = -EINTR;
1776                         break;
1777                 }
1778         }
1779
1780         if (retlen)
1781                 *retlen = pos;
1782         return rc;
1783 }
1784
1785 int falcon_spi_write(const struct efx_spi_device *spi, loff_t start,
1786                      size_t len, size_t *retlen, const u8 *buffer)
1787 {
1788         u8 verify_buffer[FALCON_SPI_MAX_LEN];
1789         size_t block_len, pos = 0;
1790         unsigned int command;
1791         int rc = 0;
1792
1793         while (pos < len) {
1794                 rc = falcon_spi_cmd(spi, SPI_WREN, -1, NULL, NULL, 0);
1795                 if (rc)
1796                         break;
1797
1798                 block_len = min(len - pos,
1799                                 falcon_spi_write_limit(spi, start + pos));
1800                 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
1801                 rc = falcon_spi_cmd(spi, command, start + pos,
1802                                     buffer + pos, NULL, block_len);
1803                 if (rc)
1804                         break;
1805
1806                 rc = falcon_spi_wait_write(spi);
1807                 if (rc)
1808                         break;
1809
1810                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1811                 rc = falcon_spi_cmd(spi, command, start + pos,
1812                                     NULL, verify_buffer, block_len);
1813                 if (memcmp(verify_buffer, buffer + pos, block_len)) {
1814                         rc = -EIO;
1815                         break;
1816                 }
1817
1818                 pos += block_len;
1819
1820                 /* Avoid locking up the system */
1821                 cond_resched();
1822                 if (signal_pending(current)) {
1823                         rc = -EINTR;
1824                         break;
1825                 }
1826         }
1827
1828         if (retlen)
1829                 *retlen = pos;
1830         return rc;
1831 }
1832
1833 /**************************************************************************
1834  *
1835  * MAC wrapper
1836  *
1837  **************************************************************************
1838  */
1839 void falcon_drain_tx_fifo(struct efx_nic *efx)
1840 {
1841         efx_oword_t temp;
1842         int count;
1843
1844         if ((falcon_rev(efx) < FALCON_REV_B0) ||
1845             (efx->loopback_mode != LOOPBACK_NONE))
1846                 return;
1847
1848         falcon_read(efx, &temp, MAC0_CTRL_REG_KER);
1849         /* There is no point in draining more than once */
1850         if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0))
1851                 return;
1852
1853         /* MAC stats will fail whilst the TX fifo is draining. Serialise
1854          * the drain sequence with the statistics fetch */
1855         spin_lock(&efx->stats_lock);
1856
1857         EFX_SET_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0, 1);
1858         falcon_write(efx, &temp, MAC0_CTRL_REG_KER);
1859
1860         /* Reset the MAC and EM block. */
1861         falcon_read(efx, &temp, GLB_CTL_REG_KER);
1862         EFX_SET_OWORD_FIELD(temp, RST_XGTX, 1);
1863         EFX_SET_OWORD_FIELD(temp, RST_XGRX, 1);
1864         EFX_SET_OWORD_FIELD(temp, RST_EM, 1);
1865         falcon_write(efx, &temp, GLB_CTL_REG_KER);
1866
1867         count = 0;
1868         while (1) {
1869                 falcon_read(efx, &temp, GLB_CTL_REG_KER);
1870                 if (!EFX_OWORD_FIELD(temp, RST_XGTX) &&
1871                     !EFX_OWORD_FIELD(temp, RST_XGRX) &&
1872                     !EFX_OWORD_FIELD(temp, RST_EM)) {
1873                         EFX_LOG(efx, "Completed MAC reset after %d loops\n",
1874                                 count);
1875                         break;
1876                 }
1877                 if (count > 20) {
1878                         EFX_ERR(efx, "MAC reset failed\n");
1879                         break;
1880                 }
1881                 count++;
1882                 udelay(10);
1883         }
1884
1885         spin_unlock(&efx->stats_lock);
1886
1887         /* If we've reset the EM block and the link is up, then
1888          * we'll have to kick the XAUI link so the PHY can recover */
1889         if (efx->link_up && EFX_WORKAROUND_5147(efx))
1890                 falcon_reset_xaui(efx);
1891 }
1892
1893 void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1894 {
1895         efx_oword_t temp;
1896
1897         if (falcon_rev(efx) < FALCON_REV_B0)
1898                 return;
1899
1900         /* Isolate the MAC -> RX */
1901         falcon_read(efx, &temp, RX_CFG_REG_KER);
1902         EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 0);
1903         falcon_write(efx, &temp, RX_CFG_REG_KER);
1904
1905         if (!efx->link_up)
1906                 falcon_drain_tx_fifo(efx);
1907 }
1908
1909 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1910 {
1911         efx_oword_t reg;
1912         int link_speed;
1913         bool tx_fc;
1914
1915         if (efx->link_options & GM_LPA_10000)
1916                 link_speed = 0x3;
1917         else if (efx->link_options & GM_LPA_1000)
1918                 link_speed = 0x2;
1919         else if (efx->link_options & GM_LPA_100)
1920                 link_speed = 0x1;
1921         else
1922                 link_speed = 0x0;
1923         /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1924          * as advertised.  Disable to ensure packets are not
1925          * indefinitely held and TX queue can be flushed at any point
1926          * while the link is down. */
1927         EFX_POPULATE_OWORD_5(reg,
1928                              MAC_XOFF_VAL, 0xffff /* max pause time */,
1929                              MAC_BCAD_ACPT, 1,
1930                              MAC_UC_PROM, efx->promiscuous,
1931                              MAC_LINK_STATUS, 1, /* always set */
1932                              MAC_SPEED, link_speed);
1933         /* On B0, MAC backpressure can be disabled and packets get
1934          * discarded. */
1935         if (falcon_rev(efx) >= FALCON_REV_B0) {
1936                 EFX_SET_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0,
1937                                     !efx->link_up);
1938         }
1939
1940         falcon_write(efx, &reg, MAC0_CTRL_REG_KER);
1941
1942         /* Restore the multicast hash registers. */
1943         falcon_set_multicast_hash(efx);
1944
1945         /* Transmission of pause frames when RX crosses the threshold is
1946          * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
1947          * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
1948         tx_fc = !!(efx->flow_control & EFX_FC_TX);
1949         falcon_read(efx, &reg, RX_CFG_REG_KER);
1950         EFX_SET_OWORD_FIELD_VER(efx, reg, RX_XOFF_MAC_EN, tx_fc);
1951
1952         /* Unisolate the MAC -> RX */
1953         if (falcon_rev(efx) >= FALCON_REV_B0)
1954                 EFX_SET_OWORD_FIELD(reg, RX_INGR_EN_B0, 1);
1955         falcon_write(efx, &reg, RX_CFG_REG_KER);
1956 }
1957
1958 int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset)
1959 {
1960         efx_oword_t reg;
1961         u32 *dma_done;
1962         int i;
1963
1964         if (disable_dma_stats)
1965                 return 0;
1966
1967         /* Statistics fetch will fail if the MAC is in TX drain */
1968         if (falcon_rev(efx) >= FALCON_REV_B0) {
1969                 efx_oword_t temp;
1970                 falcon_read(efx, &temp, MAC0_CTRL_REG_KER);
1971                 if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0))
1972                         return 0;
1973         }
1974
1975         dma_done = (efx->stats_buffer.addr + done_offset);
1976         *dma_done = FALCON_STATS_NOT_DONE;
1977         wmb(); /* ensure done flag is clear */
1978
1979         /* Initiate DMA transfer of stats */
1980         EFX_POPULATE_OWORD_2(reg,
1981                              MAC_STAT_DMA_CMD, 1,
1982                              MAC_STAT_DMA_ADR,
1983                              efx->stats_buffer.dma_addr);
1984         falcon_write(efx, &reg, MAC0_STAT_DMA_REG_KER);
1985
1986         /* Wait for transfer to complete */
1987         for (i = 0; i < 400; i++) {
1988                 if (*(volatile u32 *)dma_done == FALCON_STATS_DONE) {
1989                         rmb(); /* Ensure the stats are valid. */
1990                         return 0;
1991                 }
1992                 udelay(10);
1993         }
1994
1995         EFX_ERR(efx, "timed out waiting for statistics\n");
1996         return -ETIMEDOUT;
1997 }
1998
1999 /**************************************************************************
2000  *
2001  * PHY access via GMII
2002  *
2003  **************************************************************************
2004  */
2005
2006 /* Use the top bit of the MII PHY id to indicate the PHY type
2007  * (1G/10G), with the remaining bits as the actual PHY id.
2008  *
2009  * This allows us to avoid leaking information from the mii_if_info
2010  * structure into other data structures.
2011  */
2012 #define FALCON_PHY_ID_ID_WIDTH  EFX_WIDTH(MD_PRT_DEV_ADR)
2013 #define FALCON_PHY_ID_ID_MASK   ((1 << FALCON_PHY_ID_ID_WIDTH) - 1)
2014 #define FALCON_PHY_ID_WIDTH     (FALCON_PHY_ID_ID_WIDTH + 1)
2015 #define FALCON_PHY_ID_MASK      ((1 << FALCON_PHY_ID_WIDTH) - 1)
2016 #define FALCON_PHY_ID_10G       (1 << (FALCON_PHY_ID_WIDTH - 1))
2017
2018
2019 /* Packing the clause 45 port and device fields into a single value */
2020 #define MD_PRT_ADR_COMP_LBN   (MD_PRT_ADR_LBN - MD_DEV_ADR_LBN)
2021 #define MD_PRT_ADR_COMP_WIDTH  MD_PRT_ADR_WIDTH
2022 #define MD_DEV_ADR_COMP_LBN    0
2023 #define MD_DEV_ADR_COMP_WIDTH  MD_DEV_ADR_WIDTH
2024
2025
2026 /* Wait for GMII access to complete */
2027 static int falcon_gmii_wait(struct efx_nic *efx)
2028 {
2029         efx_dword_t md_stat;
2030         int count;
2031
2032         for (count = 0; count < 1000; count++) {        /* wait upto 10ms */
2033                 falcon_readl(efx, &md_stat, MD_STAT_REG_KER);
2034                 if (EFX_DWORD_FIELD(md_stat, MD_BSY) == 0) {
2035                         if (EFX_DWORD_FIELD(md_stat, MD_LNFL) != 0 ||
2036                             EFX_DWORD_FIELD(md_stat, MD_BSERR) != 0) {
2037                                 EFX_ERR(efx, "error from GMII access "
2038                                         EFX_DWORD_FMT"\n",
2039                                         EFX_DWORD_VAL(md_stat));
2040                                 return -EIO;
2041                         }
2042                         return 0;
2043                 }
2044                 udelay(10);
2045         }
2046         EFX_ERR(efx, "timed out waiting for GMII\n");
2047         return -ETIMEDOUT;
2048 }
2049
2050 /* Writes a GMII register of a PHY connected to Falcon using MDIO. */
2051 static void falcon_mdio_write(struct net_device *net_dev, int phy_id,
2052                               int addr, int value)
2053 {
2054         struct efx_nic *efx = netdev_priv(net_dev);
2055         unsigned int phy_id2 = phy_id & FALCON_PHY_ID_ID_MASK;
2056         efx_oword_t reg;
2057
2058         /* The 'generic' prt/dev packing in mdio_10g.h is conveniently
2059          * chosen so that the only current user, Falcon, can take the
2060          * packed value and use them directly.
2061          * Fail to build if this assumption is broken.
2062          */
2063         BUILD_BUG_ON(FALCON_PHY_ID_10G != MDIO45_XPRT_ID_IS10G);
2064         BUILD_BUG_ON(FALCON_PHY_ID_ID_WIDTH != MDIO45_PRT_DEV_WIDTH);
2065         BUILD_BUG_ON(MD_PRT_ADR_COMP_LBN != MDIO45_PRT_ID_COMP_LBN);
2066         BUILD_BUG_ON(MD_DEV_ADR_COMP_LBN != MDIO45_DEV_ID_COMP_LBN);
2067
2068         if (phy_id2 == PHY_ADDR_INVALID)
2069                 return;
2070
2071         /* See falcon_mdio_read for an explanation. */
2072         if (!(phy_id & FALCON_PHY_ID_10G)) {
2073                 int mmd = ffs(efx->phy_op->mmds) - 1;
2074                 EFX_TRACE(efx, "Fixing erroneous clause22 write\n");
2075                 phy_id2 = mdio_clause45_pack(phy_id2, mmd)
2076                         & FALCON_PHY_ID_ID_MASK;
2077         }
2078
2079         EFX_REGDUMP(efx, "writing GMII %d register %02x with %04x\n", phy_id,
2080                     addr, value);
2081
2082         spin_lock_bh(&efx->phy_lock);
2083
2084         /* Check MII not currently being accessed */
2085         if (falcon_gmii_wait(efx) != 0)
2086                 goto out;
2087
2088         /* Write the address/ID register */
2089         EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
2090         falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
2091
2092         EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_id2);
2093         falcon_write(efx, &reg, MD_ID_REG_KER);
2094
2095         /* Write data */
2096         EFX_POPULATE_OWORD_1(reg, MD_TXD, value);
2097         falcon_write(efx, &reg, MD_TXD_REG_KER);
2098
2099         EFX_POPULATE_OWORD_2(reg,
2100                              MD_WRC, 1,
2101                              MD_GC, 0);
2102         falcon_write(efx, &reg, MD_CS_REG_KER);
2103
2104         /* Wait for data to be written */
2105         if (falcon_gmii_wait(efx) != 0) {
2106                 /* Abort the write operation */
2107                 EFX_POPULATE_OWORD_2(reg,
2108                                      MD_WRC, 0,
2109                                      MD_GC, 1);
2110                 falcon_write(efx, &reg, MD_CS_REG_KER);
2111                 udelay(10);
2112         }
2113
2114  out:
2115         spin_unlock_bh(&efx->phy_lock);
2116 }
2117
2118 /* Reads a GMII register from a PHY connected to Falcon.  If no value
2119  * could be read, -1 will be returned. */
2120 static int falcon_mdio_read(struct net_device *net_dev, int phy_id, int addr)
2121 {
2122         struct efx_nic *efx = netdev_priv(net_dev);
2123         unsigned int phy_addr = phy_id & FALCON_PHY_ID_ID_MASK;
2124         efx_oword_t reg;
2125         int value = -1;
2126
2127         if (phy_addr == PHY_ADDR_INVALID)
2128                 return -1;
2129
2130         /* Our PHY code knows whether it needs to talk clause 22(1G) or 45(10G)
2131          * but the generic Linux code does not make any distinction or have
2132          * any state for this.
2133          * We spot the case where someone tried to talk 22 to a 45 PHY and
2134          * redirect the request to the lowest numbered MMD as a clause45
2135          * request. This is enough to allow simple queries like id and link
2136          * state to succeed. TODO: We may need to do more in future.
2137          */
2138         if (!(phy_id & FALCON_PHY_ID_10G)) {
2139                 int mmd = ffs(efx->phy_op->mmds) - 1;
2140                 EFX_TRACE(efx, "Fixing erroneous clause22 read\n");
2141                 phy_addr = mdio_clause45_pack(phy_addr, mmd)
2142                         & FALCON_PHY_ID_ID_MASK;
2143         }
2144
2145         spin_lock_bh(&efx->phy_lock);
2146
2147         /* Check MII not currently being accessed */
2148         if (falcon_gmii_wait(efx) != 0)
2149                 goto out;
2150
2151         EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
2152         falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
2153
2154         EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_addr);
2155         falcon_write(efx, &reg, MD_ID_REG_KER);
2156
2157         /* Request data to be read */
2158         EFX_POPULATE_OWORD_2(reg, MD_RDC, 1, MD_GC, 0);
2159         falcon_write(efx, &reg, MD_CS_REG_KER);
2160
2161         /* Wait for data to become available */
2162         value = falcon_gmii_wait(efx);
2163         if (value == 0) {
2164                 falcon_read(efx, &reg, MD_RXD_REG_KER);
2165                 value = EFX_OWORD_FIELD(reg, MD_RXD);
2166                 EFX_REGDUMP(efx, "read from GMII %d register %02x, got %04x\n",
2167                             phy_id, addr, value);
2168         } else {
2169                 /* Abort the read operation */
2170                 EFX_POPULATE_OWORD_2(reg,
2171                                      MD_RIC, 0,
2172                                      MD_GC, 1);
2173                 falcon_write(efx, &reg, MD_CS_REG_KER);
2174
2175                 EFX_LOG(efx, "read from GMII 0x%x register %02x, got "
2176                         "error %d\n", phy_id, addr, value);
2177         }
2178
2179  out:
2180         spin_unlock_bh(&efx->phy_lock);
2181
2182         return value;
2183 }
2184
2185 static void falcon_init_mdio(struct mii_if_info *gmii)
2186 {
2187         gmii->mdio_read = falcon_mdio_read;
2188         gmii->mdio_write = falcon_mdio_write;
2189         gmii->phy_id_mask = FALCON_PHY_ID_MASK;
2190         gmii->reg_num_mask = ((1 << EFX_WIDTH(MD_PHY_ADR)) - 1);
2191 }
2192
2193 static int falcon_probe_phy(struct efx_nic *efx)
2194 {
2195         switch (efx->phy_type) {
2196         case PHY_TYPE_10XPRESS:
2197                 efx->phy_op = &falcon_tenxpress_phy_ops;
2198                 break;
2199         case PHY_TYPE_XFP:
2200                 efx->phy_op = &falcon_xfp_phy_ops;
2201                 break;
2202         default:
2203                 EFX_ERR(efx, "Unknown PHY type %d\n",
2204                         efx->phy_type);
2205                 return -1;
2206         }
2207
2208         efx->loopback_modes = LOOPBACKS_10G_INTERNAL | efx->phy_op->loopbacks;
2209         return 0;
2210 }
2211
2212 /* This call is responsible for hooking in the MAC and PHY operations */
2213 int falcon_probe_port(struct efx_nic *efx)
2214 {
2215         int rc;
2216
2217         /* Hook in PHY operations table */
2218         rc = falcon_probe_phy(efx);
2219         if (rc)
2220                 return rc;
2221
2222         /* Set up GMII structure for PHY */
2223         efx->mii.supports_gmii = true;
2224         falcon_init_mdio(&efx->mii);
2225
2226         /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
2227         if (falcon_rev(efx) >= FALCON_REV_B0)
2228                 efx->flow_control = EFX_FC_RX | EFX_FC_TX;
2229         else
2230                 efx->flow_control = EFX_FC_RX;
2231
2232         /* Allocate buffer for stats */
2233         rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
2234                                  FALCON_MAC_STATS_SIZE);
2235         if (rc)
2236                 return rc;
2237         EFX_LOG(efx, "stats buffer at %llx (virt %p phys %lx)\n",
2238                 (unsigned long long)efx->stats_buffer.dma_addr,
2239                 efx->stats_buffer.addr,
2240                 virt_to_phys(efx->stats_buffer.addr));
2241
2242         return 0;
2243 }
2244
2245 void falcon_remove_port(struct efx_nic *efx)
2246 {
2247         falcon_free_buffer(efx, &efx->stats_buffer);
2248 }
2249
2250 /**************************************************************************
2251  *
2252  * Multicast filtering
2253  *
2254  **************************************************************************
2255  */
2256
2257 void falcon_set_multicast_hash(struct efx_nic *efx)
2258 {
2259         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2260
2261         /* Broadcast packets go through the multicast hash filter.
2262          * ether_crc_le() of the broadcast address is 0xbe2612ff
2263          * so we always add bit 0xff to the mask.
2264          */
2265         set_bit_le(0xff, mc_hash->byte);
2266
2267         falcon_write(efx, &mc_hash->oword[0], MAC_MCAST_HASH_REG0_KER);
2268         falcon_write(efx, &mc_hash->oword[1], MAC_MCAST_HASH_REG1_KER);
2269 }
2270
2271
2272 /**************************************************************************
2273  *
2274  * Falcon test code
2275  *
2276  **************************************************************************/
2277
2278 int falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
2279 {
2280         struct falcon_nvconfig *nvconfig;
2281         struct efx_spi_device *spi;
2282         void *region;
2283         int rc, magic_num, struct_ver;
2284         __le16 *word, *limit;
2285         u32 csum;
2286
2287         spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
2288         if (!spi)
2289                 return -EINVAL;
2290
2291         region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
2292         if (!region)
2293                 return -ENOMEM;
2294         nvconfig = region + NVCONFIG_OFFSET;
2295
2296         mutex_lock(&efx->spi_lock);
2297         rc = falcon_spi_read(spi, 0, FALCON_NVCONFIG_END, NULL, region);
2298         mutex_unlock(&efx->spi_lock);
2299         if (rc) {
2300                 EFX_ERR(efx, "Failed to read %s\n",
2301                         efx->spi_flash ? "flash" : "EEPROM");
2302                 rc = -EIO;
2303                 goto out;
2304         }
2305
2306         magic_num = le16_to_cpu(nvconfig->board_magic_num);
2307         struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
2308
2309         rc = -EINVAL;
2310         if (magic_num != NVCONFIG_BOARD_MAGIC_NUM) {
2311                 EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
2312                 goto out;
2313         }
2314         if (struct_ver < 2) {
2315                 EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
2316                 goto out;
2317         } else if (struct_ver < 4) {
2318                 word = &nvconfig->board_magic_num;
2319                 limit = (__le16 *) (nvconfig + 1);
2320         } else {
2321                 word = region;
2322                 limit = region + FALCON_NVCONFIG_END;
2323         }
2324         for (csum = 0; word < limit; ++word)
2325                 csum += le16_to_cpu(*word);
2326
2327         if (~csum & 0xffff) {
2328                 EFX_ERR(efx, "NVRAM has incorrect checksum\n");
2329                 goto out;
2330         }
2331
2332         rc = 0;
2333         if (nvconfig_out)
2334                 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
2335
2336  out:
2337         kfree(region);
2338         return rc;
2339 }
2340
2341 /* Registers tested in the falcon register test */
2342 static struct {
2343         unsigned address;
2344         efx_oword_t mask;
2345 } efx_test_registers[] = {
2346         { ADR_REGION_REG_KER,
2347           EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
2348         { RX_CFG_REG_KER,
2349           EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
2350         { TX_CFG_REG_KER,
2351           EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
2352         { TX_CFG2_REG_KER,
2353           EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
2354         { MAC0_CTRL_REG_KER,
2355           EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
2356         { SRM_TX_DC_CFG_REG_KER,
2357           EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
2358         { RX_DC_CFG_REG_KER,
2359           EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
2360         { RX_DC_PF_WM_REG_KER,
2361           EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
2362         { DP_CTRL_REG,
2363           EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
2364         { XM_GLB_CFG_REG,
2365           EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
2366         { XM_TX_CFG_REG,
2367           EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
2368         { XM_RX_CFG_REG,
2369           EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
2370         { XM_RX_PARAM_REG,
2371           EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
2372         { XM_FC_REG,
2373           EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
2374         { XM_ADR_LO_REG,
2375           EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
2376         { XX_SD_CTL_REG,
2377           EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
2378 };
2379
2380 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
2381                                      const efx_oword_t *mask)
2382 {
2383         return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
2384                 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
2385 }
2386
2387 int falcon_test_registers(struct efx_nic *efx)
2388 {
2389         unsigned address = 0, i, j;
2390         efx_oword_t mask, imask, original, reg, buf;
2391
2392         /* Falcon should be in loopback to isolate the XMAC from the PHY */
2393         WARN_ON(!LOOPBACK_INTERNAL(efx));
2394
2395         for (i = 0; i < ARRAY_SIZE(efx_test_registers); ++i) {
2396                 address = efx_test_registers[i].address;
2397                 mask = imask = efx_test_registers[i].mask;
2398                 EFX_INVERT_OWORD(imask);
2399
2400                 falcon_read(efx, &original, address);
2401
2402                 /* bit sweep on and off */
2403                 for (j = 0; j < 128; j++) {
2404                         if (!EFX_EXTRACT_OWORD32(mask, j, j))
2405                                 continue;
2406
2407                         /* Test this testable bit can be set in isolation */
2408                         EFX_AND_OWORD(reg, original, mask);
2409                         EFX_SET_OWORD32(reg, j, j, 1);
2410
2411                         falcon_write(efx, &reg, address);
2412                         falcon_read(efx, &buf, address);
2413
2414                         if (efx_masked_compare_oword(&reg, &buf, &mask))
2415                                 goto fail;
2416
2417                         /* Test this testable bit can be cleared in isolation */
2418                         EFX_OR_OWORD(reg, original, mask);
2419                         EFX_SET_OWORD32(reg, j, j, 0);
2420
2421                         falcon_write(efx, &reg, address);
2422                         falcon_read(efx, &buf, address);
2423
2424                         if (efx_masked_compare_oword(&reg, &buf, &mask))
2425                                 goto fail;
2426                 }
2427
2428                 falcon_write(efx, &original, address);
2429         }
2430
2431         return 0;
2432
2433 fail:
2434         EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
2435                 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
2436                 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
2437         return -EIO;
2438 }
2439
2440 /**************************************************************************
2441  *
2442  * Device reset
2443  *
2444  **************************************************************************
2445  */
2446
2447 /* Resets NIC to known state.  This routine must be called in process
2448  * context and is allowed to sleep. */
2449 int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2450 {
2451         struct falcon_nic_data *nic_data = efx->nic_data;
2452         efx_oword_t glb_ctl_reg_ker;
2453         int rc;
2454
2455         EFX_LOG(efx, "performing hardware reset (%d)\n", method);
2456
2457         /* Initiate device reset */
2458         if (method == RESET_TYPE_WORLD) {
2459                 rc = pci_save_state(efx->pci_dev);
2460                 if (rc) {
2461                         EFX_ERR(efx, "failed to backup PCI state of primary "
2462                                 "function prior to hardware reset\n");
2463                         goto fail1;
2464                 }
2465                 if (FALCON_IS_DUAL_FUNC(efx)) {
2466                         rc = pci_save_state(nic_data->pci_dev2);
2467                         if (rc) {
2468                                 EFX_ERR(efx, "failed to backup PCI state of "
2469                                         "secondary function prior to "
2470                                         "hardware reset\n");
2471                                 goto fail2;
2472                         }
2473                 }
2474
2475                 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2476                                      EXT_PHY_RST_DUR, 0x7,
2477                                      SWRST, 1);
2478         } else {
2479                 int reset_phy = (method == RESET_TYPE_INVISIBLE ?
2480                                  EXCLUDE_FROM_RESET : 0);
2481
2482                 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2483                                      EXT_PHY_RST_CTL, reset_phy,
2484                                      PCIE_CORE_RST_CTL, EXCLUDE_FROM_RESET,
2485                                      PCIE_NSTCK_RST_CTL, EXCLUDE_FROM_RESET,
2486                                      PCIE_SD_RST_CTL, EXCLUDE_FROM_RESET,
2487                                      EE_RST_CTL, EXCLUDE_FROM_RESET,
2488                                      EXT_PHY_RST_DUR, 0x7 /* 10ms */,
2489                                      SWRST, 1);
2490         }
2491         falcon_write(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
2492
2493         EFX_LOG(efx, "waiting for hardware reset\n");
2494         schedule_timeout_uninterruptible(HZ / 20);
2495
2496         /* Restore PCI configuration if needed */
2497         if (method == RESET_TYPE_WORLD) {
2498                 if (FALCON_IS_DUAL_FUNC(efx)) {
2499                         rc = pci_restore_state(nic_data->pci_dev2);
2500                         if (rc) {
2501                                 EFX_ERR(efx, "failed to restore PCI config for "
2502                                         "the secondary function\n");
2503                                 goto fail3;
2504                         }
2505                 }
2506                 rc = pci_restore_state(efx->pci_dev);
2507                 if (rc) {
2508                         EFX_ERR(efx, "failed to restore PCI config for the "
2509                                 "primary function\n");
2510                         goto fail4;
2511                 }
2512                 EFX_LOG(efx, "successfully restored PCI config\n");
2513         }
2514
2515         /* Assert that reset complete */
2516         falcon_read(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
2517         if (EFX_OWORD_FIELD(glb_ctl_reg_ker, SWRST) != 0) {
2518                 rc = -ETIMEDOUT;
2519                 EFX_ERR(efx, "timed out waiting for hardware reset\n");
2520                 goto fail5;
2521         }
2522         EFX_LOG(efx, "hardware reset complete\n");
2523
2524         return 0;
2525
2526         /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2527 fail2:
2528 fail3:
2529         pci_restore_state(efx->pci_dev);
2530 fail1:
2531 fail4:
2532 fail5:
2533         return rc;
2534 }
2535
2536 /* Zeroes out the SRAM contents.  This routine must be called in
2537  * process context and is allowed to sleep.
2538  */
2539 static int falcon_reset_sram(struct efx_nic *efx)
2540 {
2541         efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2542         int count;
2543
2544         /* Set the SRAM wake/sleep GPIO appropriately. */
2545         falcon_read(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
2546         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OEN, 1);
2547         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OUT, 1);
2548         falcon_write(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
2549
2550         /* Initiate SRAM reset */
2551         EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2552                              SRAM_OOB_BT_INIT_EN, 1,
2553                              SRM_NUM_BANKS_AND_BANK_SIZE, 0);
2554         falcon_write(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
2555
2556         /* Wait for SRAM reset to complete */
2557         count = 0;
2558         do {
2559                 EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
2560
2561                 /* SRAM reset is slow; expect around 16ms */
2562                 schedule_timeout_uninterruptible(HZ / 50);
2563
2564                 /* Check for reset complete */
2565                 falcon_read(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
2566                 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, SRAM_OOB_BT_INIT_EN)) {
2567                         EFX_LOG(efx, "SRAM reset complete\n");
2568
2569                         return 0;
2570                 }
2571         } while (++count < 20); /* wait upto 0.4 sec */
2572
2573         EFX_ERR(efx, "timed out waiting for SRAM reset\n");
2574         return -ETIMEDOUT;
2575 }
2576
2577 static int falcon_spi_device_init(struct efx_nic *efx,
2578                                   struct efx_spi_device **spi_device_ret,
2579                                   unsigned int device_id, u32 device_type)
2580 {
2581         struct efx_spi_device *spi_device;
2582
2583         if (device_type != 0) {
2584                 spi_device = kmalloc(sizeof(*spi_device), GFP_KERNEL);
2585                 if (!spi_device)
2586                         return -ENOMEM;
2587                 spi_device->device_id = device_id;
2588                 spi_device->size =
2589                         1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2590                 spi_device->addr_len =
2591                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2592                 spi_device->munge_address = (spi_device->size == 1 << 9 &&
2593                                              spi_device->addr_len == 1);
2594                 spi_device->erase_command =
2595                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2596                 spi_device->erase_size =
2597                         1 << SPI_DEV_TYPE_FIELD(device_type,
2598                                                 SPI_DEV_TYPE_ERASE_SIZE);
2599                 spi_device->block_size =
2600                         1 << SPI_DEV_TYPE_FIELD(device_type,
2601                                                 SPI_DEV_TYPE_BLOCK_SIZE);
2602
2603                 spi_device->efx = efx;
2604         } else {
2605                 spi_device = NULL;
2606         }
2607
2608         kfree(*spi_device_ret);
2609         *spi_device_ret = spi_device;
2610         return 0;
2611 }
2612
2613
2614 static void falcon_remove_spi_devices(struct efx_nic *efx)
2615 {
2616         kfree(efx->spi_eeprom);
2617         efx->spi_eeprom = NULL;
2618         kfree(efx->spi_flash);
2619         efx->spi_flash = NULL;
2620 }
2621
2622 /* Extract non-volatile configuration */
2623 static int falcon_probe_nvconfig(struct efx_nic *efx)
2624 {
2625         struct falcon_nvconfig *nvconfig;
2626         int board_rev;
2627         int rc;
2628
2629         nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2630         if (!nvconfig)
2631                 return -ENOMEM;
2632
2633         rc = falcon_read_nvram(efx, nvconfig);
2634         if (rc == -EINVAL) {
2635                 EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
2636                 efx->phy_type = PHY_TYPE_NONE;
2637                 efx->mii.phy_id = PHY_ADDR_INVALID;
2638                 board_rev = 0;
2639                 rc = 0;
2640         } else if (rc) {
2641                 goto fail1;
2642         } else {
2643                 struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
2644                 struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
2645
2646                 efx->phy_type = v2->port0_phy_type;
2647                 efx->mii.phy_id = v2->port0_phy_addr;
2648                 board_rev = le16_to_cpu(v2->board_revision);
2649
2650                 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2651                         __le32 fl = v3->spi_device_type[EE_SPI_FLASH];
2652                         __le32 ee = v3->spi_device_type[EE_SPI_EEPROM];
2653                         rc = falcon_spi_device_init(efx, &efx->spi_flash,
2654                                                     EE_SPI_FLASH,
2655                                                     le32_to_cpu(fl));
2656                         if (rc)
2657                                 goto fail2;
2658                         rc = falcon_spi_device_init(efx, &efx->spi_eeprom,
2659                                                     EE_SPI_EEPROM,
2660                                                     le32_to_cpu(ee));
2661                         if (rc)
2662                                 goto fail2;
2663                 }
2664         }
2665
2666         /* Read the MAC addresses */
2667         memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
2668
2669         EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mii.phy_id);
2670
2671         efx_set_board_info(efx, board_rev);
2672
2673         kfree(nvconfig);
2674         return 0;
2675
2676  fail2:
2677         falcon_remove_spi_devices(efx);
2678  fail1:
2679         kfree(nvconfig);
2680         return rc;
2681 }
2682
2683 /* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
2684  * count, port speed).  Set workaround and feature flags accordingly.
2685  */
2686 static int falcon_probe_nic_variant(struct efx_nic *efx)
2687 {
2688         efx_oword_t altera_build;
2689
2690         falcon_read(efx, &altera_build, ALTERA_BUILD_REG_KER);
2691         if (EFX_OWORD_FIELD(altera_build, VER_ALL)) {
2692                 EFX_ERR(efx, "Falcon FPGA not supported\n");
2693                 return -ENODEV;
2694         }
2695
2696         switch (falcon_rev(efx)) {
2697         case FALCON_REV_A0:
2698         case 0xff:
2699                 EFX_ERR(efx, "Falcon rev A0 not supported\n");
2700                 return -ENODEV;
2701
2702         case FALCON_REV_A1:{
2703                 efx_oword_t nic_stat;
2704
2705                 falcon_read(efx, &nic_stat, NIC_STAT_REG);
2706
2707                 if (EFX_OWORD_FIELD(nic_stat, STRAP_PCIE) == 0) {
2708                         EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
2709                         return -ENODEV;
2710                 }
2711                 if (!EFX_OWORD_FIELD(nic_stat, STRAP_10G)) {
2712                         EFX_ERR(efx, "1G mode not supported\n");
2713                         return -ENODEV;
2714                 }
2715                 break;
2716         }
2717
2718         case FALCON_REV_B0:
2719                 break;
2720
2721         default:
2722                 EFX_ERR(efx, "Unknown Falcon rev %d\n", falcon_rev(efx));
2723                 return -ENODEV;
2724         }
2725
2726         return 0;
2727 }
2728
2729 /* Probe all SPI devices on the NIC */
2730 static void falcon_probe_spi_devices(struct efx_nic *efx)
2731 {
2732         efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2733         int boot_dev;
2734
2735         falcon_read(efx, &gpio_ctl, GPIO_CTL_REG_KER);
2736         falcon_read(efx, &nic_stat, NIC_STAT_REG);
2737         falcon_read(efx, &ee_vpd_cfg, EE_VPD_CFG_REG_KER);
2738
2739         if (EFX_OWORD_FIELD(gpio_ctl, BOOTED_USING_NVDEVICE)) {
2740                 boot_dev = (EFX_OWORD_FIELD(nic_stat, SF_PRST) ?
2741                             EE_SPI_FLASH : EE_SPI_EEPROM);
2742                 EFX_LOG(efx, "Booted from %s\n",
2743                         boot_dev == EE_SPI_FLASH ? "flash" : "EEPROM");
2744         } else {
2745                 /* Disable VPD and set clock dividers to safe
2746                  * values for initial programming. */
2747                 boot_dev = -1;
2748                 EFX_LOG(efx, "Booted from internal ASIC settings;"
2749                         " setting SPI config\n");
2750                 EFX_POPULATE_OWORD_3(ee_vpd_cfg, EE_VPD_EN, 0,
2751                                      /* 125 MHz / 7 ~= 20 MHz */
2752                                      EE_SF_CLOCK_DIV, 7,
2753                                      /* 125 MHz / 63 ~= 2 MHz */
2754                                      EE_EE_CLOCK_DIV, 63);
2755                 falcon_write(efx, &ee_vpd_cfg, EE_VPD_CFG_REG_KER);
2756         }
2757
2758         if (boot_dev == EE_SPI_FLASH)
2759                 falcon_spi_device_init(efx, &efx->spi_flash, EE_SPI_FLASH,
2760                                        default_flash_type);
2761         if (boot_dev == EE_SPI_EEPROM)
2762                 falcon_spi_device_init(efx, &efx->spi_eeprom, EE_SPI_EEPROM,
2763                                        large_eeprom_type);
2764 }
2765
2766 int falcon_probe_nic(struct efx_nic *efx)
2767 {
2768         struct falcon_nic_data *nic_data;
2769         int rc;
2770
2771         /* Allocate storage for hardware specific data */
2772         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2773         if (!nic_data)
2774                 return -ENOMEM;
2775         efx->nic_data = nic_data;
2776
2777         /* Determine number of ports etc. */
2778         rc = falcon_probe_nic_variant(efx);
2779         if (rc)
2780                 goto fail1;
2781
2782         /* Probe secondary function if expected */
2783         if (FALCON_IS_DUAL_FUNC(efx)) {
2784                 struct pci_dev *dev = pci_dev_get(efx->pci_dev);
2785
2786                 while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
2787                                              dev))) {
2788                         if (dev->bus == efx->pci_dev->bus &&
2789                             dev->devfn == efx->pci_dev->devfn + 1) {
2790                                 nic_data->pci_dev2 = dev;
2791                                 break;
2792                         }
2793                 }
2794                 if (!nic_data->pci_dev2) {
2795                         EFX_ERR(efx, "failed to find secondary function\n");
2796                         rc = -ENODEV;
2797                         goto fail2;
2798                 }
2799         }
2800
2801         /* Now we can reset the NIC */
2802         rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
2803         if (rc) {
2804                 EFX_ERR(efx, "failed to reset NIC\n");
2805                 goto fail3;
2806         }
2807
2808         /* Allocate memory for INT_KER */
2809         rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
2810         if (rc)
2811                 goto fail4;
2812         BUG_ON(efx->irq_status.dma_addr & 0x0f);
2813
2814         EFX_LOG(efx, "INT_KER at %llx (virt %p phys %lx)\n",
2815                 (unsigned long long)efx->irq_status.dma_addr,
2816                 efx->irq_status.addr, virt_to_phys(efx->irq_status.addr));
2817
2818         falcon_probe_spi_devices(efx);
2819
2820         /* Read in the non-volatile configuration */
2821         rc = falcon_probe_nvconfig(efx);
2822         if (rc)
2823                 goto fail5;
2824
2825         /* Initialise I2C adapter */
2826         efx->i2c_adap.owner = THIS_MODULE;
2827         nic_data->i2c_data = falcon_i2c_bit_operations;
2828         nic_data->i2c_data.data = efx;
2829         efx->i2c_adap.algo_data = &nic_data->i2c_data;
2830         efx->i2c_adap.dev.parent = &efx->pci_dev->dev;
2831         strlcpy(efx->i2c_adap.name, "SFC4000 GPIO", sizeof(efx->i2c_adap.name));
2832         rc = i2c_bit_add_bus(&efx->i2c_adap);
2833         if (rc)
2834                 goto fail5;
2835
2836         return 0;
2837
2838  fail5:
2839         falcon_remove_spi_devices(efx);
2840         falcon_free_buffer(efx, &efx->irq_status);
2841  fail4:
2842  fail3:
2843         if (nic_data->pci_dev2) {
2844                 pci_dev_put(nic_data->pci_dev2);
2845                 nic_data->pci_dev2 = NULL;
2846         }
2847  fail2:
2848  fail1:
2849         kfree(efx->nic_data);
2850         return rc;
2851 }
2852
2853 /* This call performs hardware-specific global initialisation, such as
2854  * defining the descriptor cache sizes and number of RSS channels.
2855  * It does not set up any buffers, descriptor rings or event queues.
2856  */
2857 int falcon_init_nic(struct efx_nic *efx)
2858 {
2859         efx_oword_t temp;
2860         unsigned thresh;
2861         int rc;
2862
2863         /* Use on-chip SRAM */
2864         falcon_read(efx, &temp, NIC_STAT_REG);
2865         EFX_SET_OWORD_FIELD(temp, ONCHIP_SRAM, 1);
2866         falcon_write(efx, &temp, NIC_STAT_REG);
2867
2868         /* Set buffer table mode */
2869         EFX_POPULATE_OWORD_1(temp, BUF_TBL_MODE, BUF_TBL_MODE_FULL);
2870         falcon_write(efx, &temp, BUF_TBL_CFG_REG_KER);
2871
2872         rc = falcon_reset_sram(efx);
2873         if (rc)
2874                 return rc;
2875
2876         /* Set positions of descriptor caches in SRAM. */
2877         EFX_POPULATE_OWORD_1(temp, SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
2878         falcon_write(efx, &temp, SRM_TX_DC_CFG_REG_KER);
2879         EFX_POPULATE_OWORD_1(temp, SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
2880         falcon_write(efx, &temp, SRM_RX_DC_CFG_REG_KER);
2881
2882         /* Set TX descriptor cache size. */
2883         BUILD_BUG_ON(TX_DC_ENTRIES != (16 << TX_DC_ENTRIES_ORDER));
2884         EFX_POPULATE_OWORD_1(temp, TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
2885         falcon_write(efx, &temp, TX_DC_CFG_REG_KER);
2886
2887         /* Set RX descriptor cache size.  Set low watermark to size-8, as
2888          * this allows most efficient prefetching.
2889          */
2890         BUILD_BUG_ON(RX_DC_ENTRIES != (16 << RX_DC_ENTRIES_ORDER));
2891         EFX_POPULATE_OWORD_1(temp, RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
2892         falcon_write(efx, &temp, RX_DC_CFG_REG_KER);
2893         EFX_POPULATE_OWORD_1(temp, RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
2894         falcon_write(efx, &temp, RX_DC_PF_WM_REG_KER);
2895
2896         /* Clear the parity enables on the TX data fifos as
2897          * they produce false parity errors because of timing issues
2898          */
2899         if (EFX_WORKAROUND_5129(efx)) {
2900                 falcon_read(efx, &temp, SPARE_REG_KER);
2901                 EFX_SET_OWORD_FIELD(temp, MEM_PERR_EN_TX_DATA, 0);
2902                 falcon_write(efx, &temp, SPARE_REG_KER);
2903         }
2904
2905         /* Enable all the genuinely fatal interrupts.  (They are still
2906          * masked by the overall interrupt mask, controlled by
2907          * falcon_interrupts()).
2908          *
2909          * Note: All other fatal interrupts are enabled
2910          */
2911         EFX_POPULATE_OWORD_3(temp,
2912                              ILL_ADR_INT_KER_EN, 1,
2913                              RBUF_OWN_INT_KER_EN, 1,
2914                              TBUF_OWN_INT_KER_EN, 1);
2915         EFX_INVERT_OWORD(temp);
2916         falcon_write(efx, &temp, FATAL_INTR_REG_KER);
2917
2918         if (EFX_WORKAROUND_7244(efx)) {
2919                 falcon_read(efx, &temp, RX_FILTER_CTL_REG);
2920                 EFX_SET_OWORD_FIELD(temp, UDP_FULL_SRCH_LIMIT, 8);
2921                 EFX_SET_OWORD_FIELD(temp, UDP_WILD_SRCH_LIMIT, 8);
2922                 EFX_SET_OWORD_FIELD(temp, TCP_FULL_SRCH_LIMIT, 8);
2923                 EFX_SET_OWORD_FIELD(temp, TCP_WILD_SRCH_LIMIT, 8);
2924                 falcon_write(efx, &temp, RX_FILTER_CTL_REG);
2925         }
2926
2927         falcon_setup_rss_indir_table(efx);
2928
2929         /* Setup RX.  Wait for descriptor is broken and must
2930          * be disabled.  RXDP recovery shouldn't be needed, but is.
2931          */
2932         falcon_read(efx, &temp, RX_SELF_RST_REG_KER);
2933         EFX_SET_OWORD_FIELD(temp, RX_NODESC_WAIT_DIS, 1);
2934         EFX_SET_OWORD_FIELD(temp, RX_RECOVERY_EN, 1);
2935         if (EFX_WORKAROUND_5583(efx))
2936                 EFX_SET_OWORD_FIELD(temp, RX_ISCSI_DIS, 1);
2937         falcon_write(efx, &temp, RX_SELF_RST_REG_KER);
2938
2939         /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
2940          * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
2941          */
2942         falcon_read(efx, &temp, TX_CFG2_REG_KER);
2943         EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER, 0xfe);
2944         EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER_EN, 1);
2945         EFX_SET_OWORD_FIELD(temp, TX_ONE_PKT_PER_Q, 1);
2946         EFX_SET_OWORD_FIELD(temp, TX_CSR_PUSH_EN, 0);
2947         EFX_SET_OWORD_FIELD(temp, TX_DIS_NON_IP_EV, 1);
2948         /* Enable SW_EV to inherit in char driver - assume harmless here */
2949         EFX_SET_OWORD_FIELD(temp, TX_SW_EV_EN, 1);
2950         /* Prefetch threshold 2 => fetch when descriptor cache half empty */
2951         EFX_SET_OWORD_FIELD(temp, TX_PREF_THRESHOLD, 2);
2952         /* Squash TX of packets of 16 bytes or less */
2953         if (falcon_rev(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
2954                 EFX_SET_OWORD_FIELD(temp, TX_FLUSH_MIN_LEN_EN_B0, 1);
2955         falcon_write(efx, &temp, TX_CFG2_REG_KER);
2956
2957         /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2958          * descriptors (which is bad).
2959          */
2960         falcon_read(efx, &temp, TX_CFG_REG_KER);
2961         EFX_SET_OWORD_FIELD(temp, TX_NO_EOP_DISC_EN, 0);
2962         falcon_write(efx, &temp, TX_CFG_REG_KER);
2963
2964         /* RX config */
2965         falcon_read(efx, &temp, RX_CFG_REG_KER);
2966         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_DESC_PUSH_EN, 0);
2967         if (EFX_WORKAROUND_7575(efx))
2968                 EFX_SET_OWORD_FIELD_VER(efx, temp, RX_USR_BUF_SIZE,
2969                                         (3 * 4096) / 32);
2970         if (falcon_rev(efx) >= FALCON_REV_B0)
2971                 EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 1);
2972
2973         /* RX FIFO flow control thresholds */
2974         thresh = ((rx_xon_thresh_bytes >= 0) ?
2975                   rx_xon_thresh_bytes : efx->type->rx_xon_thresh);
2976         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_MAC_TH, thresh / 256);
2977         thresh = ((rx_xoff_thresh_bytes >= 0) ?
2978                   rx_xoff_thresh_bytes : efx->type->rx_xoff_thresh);
2979         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_MAC_TH, thresh / 256);
2980         /* RX control FIFO thresholds [32 entries] */
2981         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_TX_TH, 20);
2982         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_TX_TH, 25);
2983         falcon_write(efx, &temp, RX_CFG_REG_KER);
2984
2985         /* Set destination of both TX and RX Flush events */
2986         if (falcon_rev(efx) >= FALCON_REV_B0) {
2987                 EFX_POPULATE_OWORD_1(temp, FLS_EVQ_ID, 0);
2988                 falcon_write(efx, &temp, DP_CTRL_REG);
2989         }
2990
2991         return 0;
2992 }
2993
2994 void falcon_remove_nic(struct efx_nic *efx)
2995 {
2996         struct falcon_nic_data *nic_data = efx->nic_data;
2997         int rc;
2998
2999         rc = i2c_del_adapter(&efx->i2c_adap);
3000         BUG_ON(rc);
3001
3002         falcon_remove_spi_devices(efx);
3003         falcon_free_buffer(efx, &efx->irq_status);
3004
3005         falcon_reset_hw(efx, RESET_TYPE_ALL);
3006
3007         /* Release the second function after the reset */
3008         if (nic_data->pci_dev2) {
3009                 pci_dev_put(nic_data->pci_dev2);
3010                 nic_data->pci_dev2 = NULL;
3011         }
3012
3013         /* Tear down the private nic state */
3014         kfree(efx->nic_data);
3015         efx->nic_data = NULL;
3016 }
3017
3018 void falcon_update_nic_stats(struct efx_nic *efx)
3019 {
3020         efx_oword_t cnt;
3021
3022         falcon_read(efx, &cnt, RX_NODESC_DROP_REG_KER);
3023         efx->n_rx_nodesc_drop_cnt += EFX_OWORD_FIELD(cnt, RX_NODESC_DROP_CNT);
3024 }
3025
3026 /**************************************************************************
3027  *
3028  * Revision-dependent attributes used by efx.c
3029  *
3030  **************************************************************************
3031  */
3032
3033 struct efx_nic_type falcon_a_nic_type = {
3034         .mem_bar = 2,
3035         .mem_map_size = 0x20000,
3036         .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_A1,
3037         .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_A1,
3038         .buf_tbl_base = BUF_TBL_KER_A1,
3039         .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_A1,
3040         .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_A1,
3041         .txd_ring_mask = FALCON_TXD_RING_MASK,
3042         .rxd_ring_mask = FALCON_RXD_RING_MASK,
3043         .evq_size = FALCON_EVQ_SIZE,
3044         .max_dma_mask = FALCON_DMA_MASK,
3045         .tx_dma_mask = FALCON_TX_DMA_MASK,
3046         .bug5391_mask = 0xf,
3047         .rx_xoff_thresh = 2048,
3048         .rx_xon_thresh = 512,
3049         .rx_buffer_padding = 0x24,
3050         .max_interrupt_mode = EFX_INT_MODE_MSI,
3051         .phys_addr_channels = 4,
3052 };
3053
3054 struct efx_nic_type falcon_b_nic_type = {
3055         .mem_bar = 2,
3056         /* Map everything up to and including the RSS indirection
3057          * table.  Don't map MSI-X table, MSI-X PBA since Linux
3058          * requires that they not be mapped.  */
3059         .mem_map_size = RX_RSS_INDIR_TBL_B0 + 0x800,
3060         .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_B0,
3061         .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_B0,
3062         .buf_tbl_base = BUF_TBL_KER_B0,
3063         .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_B0,
3064         .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_B0,
3065         .txd_ring_mask = FALCON_TXD_RING_MASK,
3066         .rxd_ring_mask = FALCON_RXD_RING_MASK,
3067         .evq_size = FALCON_EVQ_SIZE,
3068         .max_dma_mask = FALCON_DMA_MASK,
3069         .tx_dma_mask = FALCON_TX_DMA_MASK,
3070         .bug5391_mask = 0,
3071         .rx_xoff_thresh = 54272, /* ~80Kb - 3*max MTU */
3072         .rx_xon_thresh = 27648,  /* ~3*max MTU */
3073         .rx_buffer_padding = 0,
3074         .max_interrupt_mode = EFX_INT_MODE_MSIX,
3075         .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
3076                                    * interrupt handler only supports 32
3077                                    * channels */
3078 };
3079