b7e9238aaec4420d9acef9c70730674ba897123c
[safe/jmp/linux-2.6] / drivers / net / sfc / falcon.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2008 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "mac.h"
22 #include "spi.h"
23 #include "falcon.h"
24 #include "regs.h"
25 #include "io.h"
26 #include "mdio_10g.h"
27 #include "phy.h"
28 #include "workarounds.h"
29
30 /* Hardware control for SFC4000 (aka Falcon). */
31
32 /**************************************************************************
33  *
34  * Configurable values
35  *
36  **************************************************************************
37  */
38
39 /* This is set to 16 for a good reason.  In summary, if larger than
40  * 16, the descriptor cache holds more than a default socket
41  * buffer's worth of packets (for UDP we can only have at most one
42  * socket buffer's worth outstanding).  This combined with the fact
43  * that we only get 1 TX event per descriptor cache means the NIC
44  * goes idle.
45  */
46 #define TX_DC_ENTRIES 16
47 #define TX_DC_ENTRIES_ORDER 1
48
49 #define RX_DC_ENTRIES 64
50 #define RX_DC_ENTRIES_ORDER 3
51
52 static const unsigned int
53 /* "Large" EEPROM device: Atmel AT25640 or similar
54  * 8 KB, 16-bit address, 32 B write block */
55 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
56                      | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
57                      | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
58 /* Default flash device: Atmel AT25F1024
59  * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
60 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
61                       | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
62                       | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
63                       | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
64                       | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
65
66 /* RX FIFO XOFF watermark
67  *
68  * When the amount of the RX FIFO increases used increases past this
69  * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
70  * This also has an effect on RX/TX arbitration
71  */
72 static int rx_xoff_thresh_bytes = -1;
73 module_param(rx_xoff_thresh_bytes, int, 0644);
74 MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
75
76 /* RX FIFO XON watermark
77  *
78  * When the amount of the RX FIFO used decreases below this
79  * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
80  * This also has an effect on RX/TX arbitration
81  */
82 static int rx_xon_thresh_bytes = -1;
83 module_param(rx_xon_thresh_bytes, int, 0644);
84 MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
85
86 /* If FALCON_MAX_INT_ERRORS internal errors occur within
87  * FALCON_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
88  * disable it.
89  */
90 #define FALCON_INT_ERROR_EXPIRE 3600
91 #define FALCON_MAX_INT_ERRORS 5
92
93 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
94  */
95 #define FALCON_FLUSH_INTERVAL 10
96 #define FALCON_FLUSH_POLL_COUNT 100
97
98 /**************************************************************************
99  *
100  * Falcon constants
101  *
102  **************************************************************************
103  */
104
105 /* Size and alignment of special buffers (4KB) */
106 #define FALCON_BUF_SIZE 4096
107
108 /* Depth of RX flush request fifo */
109 #define FALCON_RX_FLUSH_COUNT 4
110
111 #define FALCON_IS_DUAL_FUNC(efx)                \
112         (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
113
114 /**************************************************************************
115  *
116  * Falcon hardware access
117  *
118  **************************************************************************/
119
120 static inline void falcon_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
121                                         unsigned int index)
122 {
123         efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
124                         value, index);
125 }
126
127 /* Read the current event from the event queue */
128 static inline efx_qword_t *falcon_event(struct efx_channel *channel,
129                                         unsigned int index)
130 {
131         return (((efx_qword_t *) (channel->eventq.addr)) + index);
132 }
133
134 /* See if an event is present
135  *
136  * We check both the high and low dword of the event for all ones.  We
137  * wrote all ones when we cleared the event, and no valid event can
138  * have all ones in either its high or low dwords.  This approach is
139  * robust against reordering.
140  *
141  * Note that using a single 64-bit comparison is incorrect; even
142  * though the CPU read will be atomic, the DMA write may not be.
143  */
144 static inline int falcon_event_present(efx_qword_t *event)
145 {
146         return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
147                   EFX_DWORD_IS_ALL_ONES(event->dword[1])));
148 }
149
150 /**************************************************************************
151  *
152  * I2C bus - this is a bit-bashing interface using GPIO pins
153  * Note that it uses the output enables to tristate the outputs
154  * SDA is the data pin and SCL is the clock
155  *
156  **************************************************************************
157  */
158 static void falcon_setsda(void *data, int state)
159 {
160         struct efx_nic *efx = (struct efx_nic *)data;
161         efx_oword_t reg;
162
163         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
164         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
165         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
166 }
167
168 static void falcon_setscl(void *data, int state)
169 {
170         struct efx_nic *efx = (struct efx_nic *)data;
171         efx_oword_t reg;
172
173         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
174         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
175         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
176 }
177
178 static int falcon_getsda(void *data)
179 {
180         struct efx_nic *efx = (struct efx_nic *)data;
181         efx_oword_t reg;
182
183         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
184         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
185 }
186
187 static int falcon_getscl(void *data)
188 {
189         struct efx_nic *efx = (struct efx_nic *)data;
190         efx_oword_t reg;
191
192         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
193         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
194 }
195
196 static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
197         .setsda         = falcon_setsda,
198         .setscl         = falcon_setscl,
199         .getsda         = falcon_getsda,
200         .getscl         = falcon_getscl,
201         .udelay         = 5,
202         /* Wait up to 50 ms for slave to let us pull SCL high */
203         .timeout        = DIV_ROUND_UP(HZ, 20),
204 };
205
206 /**************************************************************************
207  *
208  * Falcon special buffer handling
209  * Special buffers are used for event queues and the TX and RX
210  * descriptor rings.
211  *
212  *************************************************************************/
213
214 /*
215  * Initialise a Falcon special buffer
216  *
217  * This will define a buffer (previously allocated via
218  * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
219  * it to be used for event queues, descriptor rings etc.
220  */
221 static void
222 falcon_init_special_buffer(struct efx_nic *efx,
223                            struct efx_special_buffer *buffer)
224 {
225         efx_qword_t buf_desc;
226         int index;
227         dma_addr_t dma_addr;
228         int i;
229
230         EFX_BUG_ON_PARANOID(!buffer->addr);
231
232         /* Write buffer descriptors to NIC */
233         for (i = 0; i < buffer->entries; i++) {
234                 index = buffer->index + i;
235                 dma_addr = buffer->dma_addr + (i * 4096);
236                 EFX_LOG(efx, "mapping special buffer %d at %llx\n",
237                         index, (unsigned long long)dma_addr);
238                 EFX_POPULATE_QWORD_3(buf_desc,
239                                      FRF_AZ_BUF_ADR_REGION, 0,
240                                      FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
241                                      FRF_AZ_BUF_OWNER_ID_FBUF, 0);
242                 falcon_write_buf_tbl(efx, &buf_desc, index);
243         }
244 }
245
246 /* Unmaps a buffer from Falcon and clears the buffer table entries */
247 static void
248 falcon_fini_special_buffer(struct efx_nic *efx,
249                            struct efx_special_buffer *buffer)
250 {
251         efx_oword_t buf_tbl_upd;
252         unsigned int start = buffer->index;
253         unsigned int end = (buffer->index + buffer->entries - 1);
254
255         if (!buffer->entries)
256                 return;
257
258         EFX_LOG(efx, "unmapping special buffers %d-%d\n",
259                 buffer->index, buffer->index + buffer->entries - 1);
260
261         EFX_POPULATE_OWORD_4(buf_tbl_upd,
262                              FRF_AZ_BUF_UPD_CMD, 0,
263                              FRF_AZ_BUF_CLR_CMD, 1,
264                              FRF_AZ_BUF_CLR_END_ID, end,
265                              FRF_AZ_BUF_CLR_START_ID, start);
266         efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
267 }
268
269 /*
270  * Allocate a new Falcon special buffer
271  *
272  * This allocates memory for a new buffer, clears it and allocates a
273  * new buffer ID range.  It does not write into Falcon's buffer table.
274  *
275  * This call will allocate 4KB buffers, since Falcon can't use 8KB
276  * buffers for event queues and descriptor rings.
277  */
278 static int falcon_alloc_special_buffer(struct efx_nic *efx,
279                                        struct efx_special_buffer *buffer,
280                                        unsigned int len)
281 {
282         len = ALIGN(len, FALCON_BUF_SIZE);
283
284         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
285                                             &buffer->dma_addr);
286         if (!buffer->addr)
287                 return -ENOMEM;
288         buffer->len = len;
289         buffer->entries = len / FALCON_BUF_SIZE;
290         BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));
291
292         /* All zeros is a potentially valid event so memset to 0xff */
293         memset(buffer->addr, 0xff, len);
294
295         /* Select new buffer ID */
296         buffer->index = efx->next_buffer_table;
297         efx->next_buffer_table += buffer->entries;
298
299         EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
300                 "(virt %p phys %llx)\n", buffer->index,
301                 buffer->index + buffer->entries - 1,
302                 (u64)buffer->dma_addr, len,
303                 buffer->addr, (u64)virt_to_phys(buffer->addr));
304
305         return 0;
306 }
307
308 static void falcon_free_special_buffer(struct efx_nic *efx,
309                                        struct efx_special_buffer *buffer)
310 {
311         if (!buffer->addr)
312                 return;
313
314         EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
315                 "(virt %p phys %llx)\n", buffer->index,
316                 buffer->index + buffer->entries - 1,
317                 (u64)buffer->dma_addr, buffer->len,
318                 buffer->addr, (u64)virt_to_phys(buffer->addr));
319
320         pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
321                             buffer->dma_addr);
322         buffer->addr = NULL;
323         buffer->entries = 0;
324 }
325
326 /**************************************************************************
327  *
328  * Falcon generic buffer handling
329  * These buffers are used for interrupt status and MAC stats
330  *
331  **************************************************************************/
332
333 static int falcon_alloc_buffer(struct efx_nic *efx,
334                                struct efx_buffer *buffer, unsigned int len)
335 {
336         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
337                                             &buffer->dma_addr);
338         if (!buffer->addr)
339                 return -ENOMEM;
340         buffer->len = len;
341         memset(buffer->addr, 0, len);
342         return 0;
343 }
344
345 static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
346 {
347         if (buffer->addr) {
348                 pci_free_consistent(efx->pci_dev, buffer->len,
349                                     buffer->addr, buffer->dma_addr);
350                 buffer->addr = NULL;
351         }
352 }
353
354 /**************************************************************************
355  *
356  * Falcon TX path
357  *
358  **************************************************************************/
359
360 /* Returns a pointer to the specified transmit descriptor in the TX
361  * descriptor queue belonging to the specified channel.
362  */
363 static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
364                                                unsigned int index)
365 {
366         return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
367 }
368
369 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
370 static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
371 {
372         unsigned write_ptr;
373         efx_dword_t reg;
374
375         write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
376         EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
377         efx_writed_page(tx_queue->efx, &reg,
378                         FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
379 }
380
381
382 /* For each entry inserted into the software descriptor ring, create a
383  * descriptor in the hardware TX descriptor ring (in host memory), and
384  * write a doorbell.
385  */
386 void falcon_push_buffers(struct efx_tx_queue *tx_queue)
387 {
388
389         struct efx_tx_buffer *buffer;
390         efx_qword_t *txd;
391         unsigned write_ptr;
392
393         BUG_ON(tx_queue->write_count == tx_queue->insert_count);
394
395         do {
396                 write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
397                 buffer = &tx_queue->buffer[write_ptr];
398                 txd = falcon_tx_desc(tx_queue, write_ptr);
399                 ++tx_queue->write_count;
400
401                 /* Create TX descriptor ring entry */
402                 EFX_POPULATE_QWORD_4(*txd,
403                                      FSF_AZ_TX_KER_CONT, buffer->continuation,
404                                      FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
405                                      FSF_AZ_TX_KER_BUF_REGION, 0,
406                                      FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
407         } while (tx_queue->write_count != tx_queue->insert_count);
408
409         wmb(); /* Ensure descriptors are written before they are fetched */
410         falcon_notify_tx_desc(tx_queue);
411 }
412
413 /* Allocate hardware resources for a TX queue */
414 int falcon_probe_tx(struct efx_tx_queue *tx_queue)
415 {
416         struct efx_nic *efx = tx_queue->efx;
417         BUILD_BUG_ON(EFX_TXQ_SIZE < 512 || EFX_TXQ_SIZE > 4096 ||
418                      EFX_TXQ_SIZE & EFX_TXQ_MASK);
419         return falcon_alloc_special_buffer(efx, &tx_queue->txd,
420                                            EFX_TXQ_SIZE * sizeof(efx_qword_t));
421 }
422
423 void falcon_init_tx(struct efx_tx_queue *tx_queue)
424 {
425         efx_oword_t tx_desc_ptr;
426         struct efx_nic *efx = tx_queue->efx;
427
428         tx_queue->flushed = FLUSH_NONE;
429
430         /* Pin TX descriptor ring */
431         falcon_init_special_buffer(efx, &tx_queue->txd);
432
433         /* Push TX descriptor ring to card */
434         EFX_POPULATE_OWORD_10(tx_desc_ptr,
435                               FRF_AZ_TX_DESCQ_EN, 1,
436                               FRF_AZ_TX_ISCSI_DDIG_EN, 0,
437                               FRF_AZ_TX_ISCSI_HDIG_EN, 0,
438                               FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
439                               FRF_AZ_TX_DESCQ_EVQ_ID,
440                               tx_queue->channel->channel,
441                               FRF_AZ_TX_DESCQ_OWNER_ID, 0,
442                               FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
443                               FRF_AZ_TX_DESCQ_SIZE,
444                               __ffs(tx_queue->txd.entries),
445                               FRF_AZ_TX_DESCQ_TYPE, 0,
446                               FRF_BZ_TX_NON_IP_DROP_DIS, 1);
447
448         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
449                 int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
450                 EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
451                 EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_TCP_CHKSM_DIS,
452                                     !csum);
453         }
454
455         efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
456                          tx_queue->queue);
457
458         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
459                 efx_oword_t reg;
460
461                 /* Only 128 bits in this register */
462                 BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
463
464                 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
465                 if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
466                         clear_bit_le(tx_queue->queue, (void *)&reg);
467                 else
468                         set_bit_le(tx_queue->queue, (void *)&reg);
469                 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
470         }
471 }
472
473 static void falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
474 {
475         struct efx_nic *efx = tx_queue->efx;
476         efx_oword_t tx_flush_descq;
477
478         tx_queue->flushed = FLUSH_PENDING;
479
480         /* Post a flush command */
481         EFX_POPULATE_OWORD_2(tx_flush_descq,
482                              FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
483                              FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
484         efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
485 }
486
487 void falcon_fini_tx(struct efx_tx_queue *tx_queue)
488 {
489         struct efx_nic *efx = tx_queue->efx;
490         efx_oword_t tx_desc_ptr;
491
492         /* The queue should have been flushed */
493         WARN_ON(tx_queue->flushed != FLUSH_DONE);
494
495         /* Remove TX descriptor ring from card */
496         EFX_ZERO_OWORD(tx_desc_ptr);
497         efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
498                          tx_queue->queue);
499
500         /* Unpin TX descriptor ring */
501         falcon_fini_special_buffer(efx, &tx_queue->txd);
502 }
503
504 /* Free buffers backing TX queue */
505 void falcon_remove_tx(struct efx_tx_queue *tx_queue)
506 {
507         falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
508 }
509
510 /**************************************************************************
511  *
512  * Falcon RX path
513  *
514  **************************************************************************/
515
516 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
517 static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
518                                                unsigned int index)
519 {
520         return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
521 }
522
523 /* This creates an entry in the RX descriptor queue */
524 static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
525                                         unsigned index)
526 {
527         struct efx_rx_buffer *rx_buf;
528         efx_qword_t *rxd;
529
530         rxd = falcon_rx_desc(rx_queue, index);
531         rx_buf = efx_rx_buffer(rx_queue, index);
532         EFX_POPULATE_QWORD_3(*rxd,
533                              FSF_AZ_RX_KER_BUF_SIZE,
534                              rx_buf->len -
535                              rx_queue->efx->type->rx_buffer_padding,
536                              FSF_AZ_RX_KER_BUF_REGION, 0,
537                              FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
538 }
539
540 /* This writes to the RX_DESC_WPTR register for the specified receive
541  * descriptor ring.
542  */
543 void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
544 {
545         efx_dword_t reg;
546         unsigned write_ptr;
547
548         while (rx_queue->notified_count != rx_queue->added_count) {
549                 falcon_build_rx_desc(rx_queue,
550                                      rx_queue->notified_count &
551                                      EFX_RXQ_MASK);
552                 ++rx_queue->notified_count;
553         }
554
555         wmb();
556         write_ptr = rx_queue->added_count & EFX_RXQ_MASK;
557         EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
558         efx_writed_page(rx_queue->efx, &reg,
559                         FR_AZ_RX_DESC_UPD_DWORD_P0, rx_queue->queue);
560 }
561
562 int falcon_probe_rx(struct efx_rx_queue *rx_queue)
563 {
564         struct efx_nic *efx = rx_queue->efx;
565         BUILD_BUG_ON(EFX_RXQ_SIZE < 512 || EFX_RXQ_SIZE > 4096 ||
566                      EFX_RXQ_SIZE & EFX_RXQ_MASK);
567         return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
568                                            EFX_RXQ_SIZE * sizeof(efx_qword_t));
569 }
570
571 void falcon_init_rx(struct efx_rx_queue *rx_queue)
572 {
573         efx_oword_t rx_desc_ptr;
574         struct efx_nic *efx = rx_queue->efx;
575         bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
576         bool iscsi_digest_en = is_b0;
577
578         EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
579                 rx_queue->queue, rx_queue->rxd.index,
580                 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
581
582         rx_queue->flushed = FLUSH_NONE;
583
584         /* Pin RX descriptor ring */
585         falcon_init_special_buffer(efx, &rx_queue->rxd);
586
587         /* Push RX descriptor ring to card */
588         EFX_POPULATE_OWORD_10(rx_desc_ptr,
589                               FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
590                               FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
591                               FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
592                               FRF_AZ_RX_DESCQ_EVQ_ID,
593                               rx_queue->channel->channel,
594                               FRF_AZ_RX_DESCQ_OWNER_ID, 0,
595                               FRF_AZ_RX_DESCQ_LABEL, rx_queue->queue,
596                               FRF_AZ_RX_DESCQ_SIZE,
597                               __ffs(rx_queue->rxd.entries),
598                               FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
599                               /* For >=B0 this is scatter so disable */
600                               FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
601                               FRF_AZ_RX_DESCQ_EN, 1);
602         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
603                          rx_queue->queue);
604 }
605
606 static void falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
607 {
608         struct efx_nic *efx = rx_queue->efx;
609         efx_oword_t rx_flush_descq;
610
611         rx_queue->flushed = FLUSH_PENDING;
612
613         /* Post a flush command */
614         EFX_POPULATE_OWORD_2(rx_flush_descq,
615                              FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
616                              FRF_AZ_RX_FLUSH_DESCQ, rx_queue->queue);
617         efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
618 }
619
620 void falcon_fini_rx(struct efx_rx_queue *rx_queue)
621 {
622         efx_oword_t rx_desc_ptr;
623         struct efx_nic *efx = rx_queue->efx;
624
625         /* The queue should already have been flushed */
626         WARN_ON(rx_queue->flushed != FLUSH_DONE);
627
628         /* Remove RX descriptor ring from card */
629         EFX_ZERO_OWORD(rx_desc_ptr);
630         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
631                          rx_queue->queue);
632
633         /* Unpin RX descriptor ring */
634         falcon_fini_special_buffer(efx, &rx_queue->rxd);
635 }
636
637 /* Free buffers backing RX queue */
638 void falcon_remove_rx(struct efx_rx_queue *rx_queue)
639 {
640         falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
641 }
642
643 /**************************************************************************
644  *
645  * Falcon event queue processing
646  * Event queues are processed by per-channel tasklets.
647  *
648  **************************************************************************/
649
650 /* Update a channel's event queue's read pointer (RPTR) register
651  *
652  * This writes the EVQ_RPTR_REG register for the specified channel's
653  * event queue.
654  *
655  * Note that EVQ_RPTR_REG contains the index of the "last read" event,
656  * whereas channel->eventq_read_ptr contains the index of the "next to
657  * read" event.
658  */
659 void falcon_eventq_read_ack(struct efx_channel *channel)
660 {
661         efx_dword_t reg;
662         struct efx_nic *efx = channel->efx;
663
664         EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr);
665         efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
666                             channel->channel);
667 }
668
669 /* Use HW to insert a SW defined event */
670 void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
671 {
672         efx_oword_t drv_ev_reg;
673
674         BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
675                      FRF_AZ_DRV_EV_DATA_WIDTH != 64);
676         drv_ev_reg.u32[0] = event->u32[0];
677         drv_ev_reg.u32[1] = event->u32[1];
678         drv_ev_reg.u32[2] = 0;
679         drv_ev_reg.u32[3] = 0;
680         EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
681         efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
682 }
683
684 /* Handle a transmit completion event
685  *
686  * Falcon batches TX completion events; the message we receive is of
687  * the form "complete all TX events up to this index".
688  */
689 static void falcon_handle_tx_event(struct efx_channel *channel,
690                                    efx_qword_t *event)
691 {
692         unsigned int tx_ev_desc_ptr;
693         unsigned int tx_ev_q_label;
694         struct efx_tx_queue *tx_queue;
695         struct efx_nic *efx = channel->efx;
696
697         if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
698                 /* Transmit completion */
699                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
700                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
701                 tx_queue = &efx->tx_queue[tx_ev_q_label];
702                 channel->irq_mod_score +=
703                         (tx_ev_desc_ptr - tx_queue->read_count) &
704                         EFX_TXQ_MASK;
705                 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
706         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
707                 /* Rewrite the FIFO write pointer */
708                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
709                 tx_queue = &efx->tx_queue[tx_ev_q_label];
710
711                 if (efx_dev_registered(efx))
712                         netif_tx_lock(efx->net_dev);
713                 falcon_notify_tx_desc(tx_queue);
714                 if (efx_dev_registered(efx))
715                         netif_tx_unlock(efx->net_dev);
716         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
717                    EFX_WORKAROUND_10727(efx)) {
718                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
719         } else {
720                 EFX_ERR(efx, "channel %d unexpected TX event "
721                         EFX_QWORD_FMT"\n", channel->channel,
722                         EFX_QWORD_VAL(*event));
723         }
724 }
725
726 /* Detect errors included in the rx_evt_pkt_ok bit. */
727 static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
728                                     const efx_qword_t *event,
729                                     bool *rx_ev_pkt_ok,
730                                     bool *discard)
731 {
732         struct efx_nic *efx = rx_queue->efx;
733         bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
734         bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
735         bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
736         bool rx_ev_other_err, rx_ev_pause_frm;
737         bool rx_ev_hdr_type, rx_ev_mcast_pkt;
738         unsigned rx_ev_pkt_type;
739
740         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
741         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
742         rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
743         rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
744         rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
745                                                  FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
746         rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
747                                                   FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
748         rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
749                                                    FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
750         rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
751         rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
752         rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
753                           0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
754         rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
755
756         /* Every error apart from tobe_disc and pause_frm */
757         rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
758                            rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
759                            rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
760
761         /* Count errors that are not in MAC stats.  Ignore expected
762          * checksum errors during self-test. */
763         if (rx_ev_frm_trunc)
764                 ++rx_queue->channel->n_rx_frm_trunc;
765         else if (rx_ev_tobe_disc)
766                 ++rx_queue->channel->n_rx_tobe_disc;
767         else if (!efx->loopback_selftest) {
768                 if (rx_ev_ip_hdr_chksum_err)
769                         ++rx_queue->channel->n_rx_ip_hdr_chksum_err;
770                 else if (rx_ev_tcp_udp_chksum_err)
771                         ++rx_queue->channel->n_rx_tcp_udp_chksum_err;
772         }
773
774         /* The frame must be discarded if any of these are true. */
775         *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
776                     rx_ev_tobe_disc | rx_ev_pause_frm);
777
778         /* TOBE_DISC is expected on unicast mismatches; don't print out an
779          * error message.  FRM_TRUNC indicates RXDP dropped the packet due
780          * to a FIFO overflow.
781          */
782 #ifdef EFX_ENABLE_DEBUG
783         if (rx_ev_other_err) {
784                 EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
785                             EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
786                             rx_queue->queue, EFX_QWORD_VAL(*event),
787                             rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
788                             rx_ev_ip_hdr_chksum_err ?
789                             " [IP_HDR_CHKSUM_ERR]" : "",
790                             rx_ev_tcp_udp_chksum_err ?
791                             " [TCP_UDP_CHKSUM_ERR]" : "",
792                             rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
793                             rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
794                             rx_ev_drib_nib ? " [DRIB_NIB]" : "",
795                             rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
796                             rx_ev_pause_frm ? " [PAUSE]" : "");
797         }
798 #endif
799 }
800
801 /* Handle receive events that are not in-order. */
802 static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
803                                        unsigned index)
804 {
805         struct efx_nic *efx = rx_queue->efx;
806         unsigned expected, dropped;
807
808         expected = rx_queue->removed_count & EFX_RXQ_MASK;
809         dropped = (index - expected) & EFX_RXQ_MASK;
810         EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
811                 dropped, index, expected);
812
813         efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
814                            RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
815 }
816
817 /* Handle a packet received event
818  *
819  * Falcon silicon gives a "discard" flag if it's a unicast packet with the
820  * wrong destination address
821  * Also "is multicast" and "matches multicast filter" flags can be used to
822  * discard non-matching multicast packets.
823  */
824 static void falcon_handle_rx_event(struct efx_channel *channel,
825                                    const efx_qword_t *event)
826 {
827         unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
828         unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
829         unsigned expected_ptr;
830         bool rx_ev_pkt_ok, discard = false, checksummed;
831         struct efx_rx_queue *rx_queue;
832         struct efx_nic *efx = channel->efx;
833
834         /* Basic packet information */
835         rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
836         rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
837         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
838         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
839         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
840         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
841                 channel->channel);
842
843         rx_queue = &efx->rx_queue[channel->channel];
844
845         rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
846         expected_ptr = rx_queue->removed_count & EFX_RXQ_MASK;
847         if (unlikely(rx_ev_desc_ptr != expected_ptr))
848                 falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
849
850         if (likely(rx_ev_pkt_ok)) {
851                 /* If packet is marked as OK and packet type is TCP/IPv4 or
852                  * UDP/IPv4, then we can rely on the hardware checksum.
853                  */
854                 checksummed =
855                         likely(efx->rx_checksum_enabled) &&
856                         (rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_TCP ||
857                          rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_UDP);
858         } else {
859                 falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
860                                         &discard);
861                 checksummed = false;
862         }
863
864         /* Detect multicast packets that didn't match the filter */
865         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
866         if (rx_ev_mcast_pkt) {
867                 unsigned int rx_ev_mcast_hash_match =
868                         EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
869
870                 if (unlikely(!rx_ev_mcast_hash_match)) {
871                         ++channel->n_rx_mcast_mismatch;
872                         discard = true;
873                 }
874         }
875
876         channel->irq_mod_score += 2;
877
878         /* Handle received packet */
879         efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
880                       checksummed, discard);
881 }
882
883 /* Global events are basically PHY events */
884 static void falcon_handle_global_event(struct efx_channel *channel,
885                                        efx_qword_t *event)
886 {
887         struct efx_nic *efx = channel->efx;
888         bool handled = false;
889
890         if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
891             EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
892             EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR)) {
893                 /* Ignored */
894                 handled = true;
895         }
896
897         if ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) &&
898             EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
899                 efx->xmac_poll_required = true;
900                 handled = true;
901         }
902
903         if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
904             EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
905             EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
906                 EFX_ERR(efx, "channel %d seen global RX_RESET "
907                         "event. Resetting.\n", channel->channel);
908
909                 atomic_inc(&efx->rx_reset);
910                 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
911                                    RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
912                 handled = true;
913         }
914
915         if (!handled)
916                 EFX_ERR(efx, "channel %d unknown global event "
917                         EFX_QWORD_FMT "\n", channel->channel,
918                         EFX_QWORD_VAL(*event));
919 }
920
921 static void falcon_handle_driver_event(struct efx_channel *channel,
922                                        efx_qword_t *event)
923 {
924         struct efx_nic *efx = channel->efx;
925         unsigned int ev_sub_code;
926         unsigned int ev_sub_data;
927
928         ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
929         ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
930
931         switch (ev_sub_code) {
932         case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
933                 EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
934                           channel->channel, ev_sub_data);
935                 break;
936         case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
937                 EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
938                           channel->channel, ev_sub_data);
939                 break;
940         case FSE_AZ_EVQ_INIT_DONE_EV:
941                 EFX_LOG(efx, "channel %d EVQ %d initialised\n",
942                         channel->channel, ev_sub_data);
943                 break;
944         case FSE_AZ_SRM_UPD_DONE_EV:
945                 EFX_TRACE(efx, "channel %d SRAM update done\n",
946                           channel->channel);
947                 break;
948         case FSE_AZ_WAKE_UP_EV:
949                 EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
950                           channel->channel, ev_sub_data);
951                 break;
952         case FSE_AZ_TIMER_EV:
953                 EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
954                           channel->channel, ev_sub_data);
955                 break;
956         case FSE_AA_RX_RECOVER_EV:
957                 EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
958                         "Resetting.\n", channel->channel);
959                 atomic_inc(&efx->rx_reset);
960                 efx_schedule_reset(efx,
961                                    EFX_WORKAROUND_6555(efx) ?
962                                    RESET_TYPE_RX_RECOVERY :
963                                    RESET_TYPE_DISABLE);
964                 break;
965         case FSE_BZ_RX_DSC_ERROR_EV:
966                 EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
967                         " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
968                 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
969                 break;
970         case FSE_BZ_TX_DSC_ERROR_EV:
971                 EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
972                         " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
973                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
974                 break;
975         default:
976                 EFX_TRACE(efx, "channel %d unknown driver event code %d "
977                           "data %04x\n", channel->channel, ev_sub_code,
978                           ev_sub_data);
979                 break;
980         }
981 }
982
983 int falcon_process_eventq(struct efx_channel *channel, int rx_quota)
984 {
985         unsigned int read_ptr;
986         efx_qword_t event, *p_event;
987         int ev_code;
988         int rx_packets = 0;
989
990         read_ptr = channel->eventq_read_ptr;
991
992         do {
993                 p_event = falcon_event(channel, read_ptr);
994                 event = *p_event;
995
996                 if (!falcon_event_present(&event))
997                         /* End of events */
998                         break;
999
1000                 EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
1001                           channel->channel, EFX_QWORD_VAL(event));
1002
1003                 /* Clear this event by marking it all ones */
1004                 EFX_SET_QWORD(*p_event);
1005
1006                 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1007
1008                 switch (ev_code) {
1009                 case FSE_AZ_EV_CODE_RX_EV:
1010                         falcon_handle_rx_event(channel, &event);
1011                         ++rx_packets;
1012                         break;
1013                 case FSE_AZ_EV_CODE_TX_EV:
1014                         falcon_handle_tx_event(channel, &event);
1015                         break;
1016                 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1017                         channel->eventq_magic = EFX_QWORD_FIELD(
1018                                 event, FSF_AZ_DRV_GEN_EV_MAGIC);
1019                         EFX_LOG(channel->efx, "channel %d received generated "
1020                                 "event "EFX_QWORD_FMT"\n", channel->channel,
1021                                 EFX_QWORD_VAL(event));
1022                         break;
1023                 case FSE_AZ_EV_CODE_GLOBAL_EV:
1024                         falcon_handle_global_event(channel, &event);
1025                         break;
1026                 case FSE_AZ_EV_CODE_DRIVER_EV:
1027                         falcon_handle_driver_event(channel, &event);
1028                         break;
1029                 default:
1030                         EFX_ERR(channel->efx, "channel %d unknown event type %d"
1031                                 " (data " EFX_QWORD_FMT ")\n", channel->channel,
1032                                 ev_code, EFX_QWORD_VAL(event));
1033                 }
1034
1035                 /* Increment read pointer */
1036                 read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1037
1038         } while (rx_packets < rx_quota);
1039
1040         channel->eventq_read_ptr = read_ptr;
1041         return rx_packets;
1042 }
1043
1044 void falcon_set_int_moderation(struct efx_channel *channel)
1045 {
1046         efx_dword_t timer_cmd;
1047         struct efx_nic *efx = channel->efx;
1048
1049         /* Set timer register */
1050         if (channel->irq_moderation) {
1051                 EFX_POPULATE_DWORD_2(timer_cmd,
1052                                      FRF_AB_TC_TIMER_MODE,
1053                                      FFE_BB_TIMER_MODE_INT_HLDOFF,
1054                                      FRF_AB_TC_TIMER_VAL,
1055                                      channel->irq_moderation - 1);
1056         } else {
1057                 EFX_POPULATE_DWORD_2(timer_cmd,
1058                                      FRF_AB_TC_TIMER_MODE,
1059                                      FFE_BB_TIMER_MODE_DIS,
1060                                      FRF_AB_TC_TIMER_VAL, 0);
1061         }
1062         BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
1063         efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
1064                                channel->channel);
1065
1066 }
1067
1068 /* Allocate buffer table entries for event queue */
1069 int falcon_probe_eventq(struct efx_channel *channel)
1070 {
1071         struct efx_nic *efx = channel->efx;
1072         BUILD_BUG_ON(EFX_EVQ_SIZE < 512 || EFX_EVQ_SIZE > 32768 ||
1073                      EFX_EVQ_SIZE & EFX_EVQ_MASK);
1074         return falcon_alloc_special_buffer(efx, &channel->eventq,
1075                                            EFX_EVQ_SIZE * sizeof(efx_qword_t));
1076 }
1077
1078 void falcon_init_eventq(struct efx_channel *channel)
1079 {
1080         efx_oword_t evq_ptr;
1081         struct efx_nic *efx = channel->efx;
1082
1083         EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
1084                 channel->channel, channel->eventq.index,
1085                 channel->eventq.index + channel->eventq.entries - 1);
1086
1087         /* Pin event queue buffer */
1088         falcon_init_special_buffer(efx, &channel->eventq);
1089
1090         /* Fill event queue with all ones (i.e. empty events) */
1091         memset(channel->eventq.addr, 0xff, channel->eventq.len);
1092
1093         /* Push event queue to card */
1094         EFX_POPULATE_OWORD_3(evq_ptr,
1095                              FRF_AZ_EVQ_EN, 1,
1096                              FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1097                              FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1098         efx_writeo_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
1099                          channel->channel);
1100
1101         falcon_set_int_moderation(channel);
1102 }
1103
1104 void falcon_fini_eventq(struct efx_channel *channel)
1105 {
1106         efx_oword_t eventq_ptr;
1107         struct efx_nic *efx = channel->efx;
1108
1109         /* Remove event queue from card */
1110         EFX_ZERO_OWORD(eventq_ptr);
1111         efx_writeo_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
1112                          channel->channel);
1113
1114         /* Unpin event queue */
1115         falcon_fini_special_buffer(efx, &channel->eventq);
1116 }
1117
1118 /* Free buffers backing event queue */
1119 void falcon_remove_eventq(struct efx_channel *channel)
1120 {
1121         falcon_free_special_buffer(channel->efx, &channel->eventq);
1122 }
1123
1124
1125 /* Generates a test event on the event queue.  A subsequent call to
1126  * process_eventq() should pick up the event and place the value of
1127  * "magic" into channel->eventq_magic;
1128  */
1129 void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
1130 {
1131         efx_qword_t test_event;
1132
1133         EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
1134                              FSE_AZ_EV_CODE_DRV_GEN_EV,
1135                              FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1136         falcon_generate_event(channel, &test_event);
1137 }
1138
1139 /**************************************************************************
1140  *
1141  * Flush handling
1142  *
1143  **************************************************************************/
1144
1145
1146 static void falcon_poll_flush_events(struct efx_nic *efx)
1147 {
1148         struct efx_channel *channel = &efx->channel[0];
1149         struct efx_tx_queue *tx_queue;
1150         struct efx_rx_queue *rx_queue;
1151         unsigned int read_ptr = channel->eventq_read_ptr;
1152         unsigned int end_ptr = (read_ptr - 1) & EFX_EVQ_MASK;
1153
1154         do {
1155                 efx_qword_t *event = falcon_event(channel, read_ptr);
1156                 int ev_code, ev_sub_code, ev_queue;
1157                 bool ev_failed;
1158
1159                 if (!falcon_event_present(event))
1160                         break;
1161
1162                 ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
1163                 ev_sub_code = EFX_QWORD_FIELD(*event,
1164                                               FSF_AZ_DRIVER_EV_SUBCODE);
1165                 if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1166                     ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
1167                         ev_queue = EFX_QWORD_FIELD(*event,
1168                                                    FSF_AZ_DRIVER_EV_SUBDATA);
1169                         if (ev_queue < EFX_TX_QUEUE_COUNT) {
1170                                 tx_queue = efx->tx_queue + ev_queue;
1171                                 tx_queue->flushed = FLUSH_DONE;
1172                         }
1173                 } else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1174                            ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
1175                         ev_queue = EFX_QWORD_FIELD(
1176                                 *event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1177                         ev_failed = EFX_QWORD_FIELD(
1178                                 *event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1179                         if (ev_queue < efx->n_rx_queues) {
1180                                 rx_queue = efx->rx_queue + ev_queue;
1181                                 rx_queue->flushed =
1182                                         ev_failed ? FLUSH_FAILED : FLUSH_DONE;
1183                         }
1184                 }
1185
1186                 /* We're about to destroy the queue anyway, so
1187                  * it's ok to throw away every non-flush event */
1188                 EFX_SET_QWORD(*event);
1189
1190                 read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1191         } while (read_ptr != end_ptr);
1192
1193         channel->eventq_read_ptr = read_ptr;
1194 }
1195
1196 static void falcon_prepare_flush(struct efx_nic *efx)
1197 {
1198         falcon_deconfigure_mac_wrapper(efx);
1199
1200         /* Wait for the tx and rx fifo's to get to the next packet boundary
1201          * (~1ms without back-pressure), then to drain the remainder of the
1202          * fifo's at data path speeds (negligible), with a healthy margin. */
1203         msleep(10);
1204 }
1205
1206 /* Handle tx and rx flushes at the same time, since they run in
1207  * parallel in the hardware and there's no reason for us to
1208  * serialise them */
1209 int falcon_flush_queues(struct efx_nic *efx)
1210 {
1211         struct efx_rx_queue *rx_queue;
1212         struct efx_tx_queue *tx_queue;
1213         int i, tx_pending, rx_pending;
1214
1215         falcon_prepare_flush(efx);
1216
1217         /* Flush all tx queues in parallel */
1218         efx_for_each_tx_queue(tx_queue, efx)
1219                 falcon_flush_tx_queue(tx_queue);
1220
1221         /* The hardware supports four concurrent rx flushes, each of which may
1222          * need to be retried if there is an outstanding descriptor fetch */
1223         for (i = 0; i < FALCON_FLUSH_POLL_COUNT; ++i) {
1224                 rx_pending = tx_pending = 0;
1225                 efx_for_each_rx_queue(rx_queue, efx) {
1226                         if (rx_queue->flushed == FLUSH_PENDING)
1227                                 ++rx_pending;
1228                 }
1229                 efx_for_each_rx_queue(rx_queue, efx) {
1230                         if (rx_pending == FALCON_RX_FLUSH_COUNT)
1231                                 break;
1232                         if (rx_queue->flushed == FLUSH_FAILED ||
1233                             rx_queue->flushed == FLUSH_NONE) {
1234                                 falcon_flush_rx_queue(rx_queue);
1235                                 ++rx_pending;
1236                         }
1237                 }
1238                 efx_for_each_tx_queue(tx_queue, efx) {
1239                         if (tx_queue->flushed != FLUSH_DONE)
1240                                 ++tx_pending;
1241                 }
1242
1243                 if (rx_pending == 0 && tx_pending == 0)
1244                         return 0;
1245
1246                 msleep(FALCON_FLUSH_INTERVAL);
1247                 falcon_poll_flush_events(efx);
1248         }
1249
1250         /* Mark the queues as all flushed. We're going to return failure
1251          * leading to a reset, or fake up success anyway */
1252         efx_for_each_tx_queue(tx_queue, efx) {
1253                 if (tx_queue->flushed != FLUSH_DONE)
1254                         EFX_ERR(efx, "tx queue %d flush command timed out\n",
1255                                 tx_queue->queue);
1256                 tx_queue->flushed = FLUSH_DONE;
1257         }
1258         efx_for_each_rx_queue(rx_queue, efx) {
1259                 if (rx_queue->flushed != FLUSH_DONE)
1260                         EFX_ERR(efx, "rx queue %d flush command timed out\n",
1261                                 rx_queue->queue);
1262                 rx_queue->flushed = FLUSH_DONE;
1263         }
1264
1265         if (EFX_WORKAROUND_7803(efx))
1266                 return 0;
1267
1268         return -ETIMEDOUT;
1269 }
1270
1271 /**************************************************************************
1272  *
1273  * Falcon hardware interrupts
1274  * The hardware interrupt handler does very little work; all the event
1275  * queue processing is carried out by per-channel tasklets.
1276  *
1277  **************************************************************************/
1278
1279 /* Enable/disable/generate Falcon interrupts */
1280 static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
1281                                      int force)
1282 {
1283         efx_oword_t int_en_reg_ker;
1284
1285         EFX_POPULATE_OWORD_2(int_en_reg_ker,
1286                              FRF_AZ_KER_INT_KER, force,
1287                              FRF_AZ_DRV_INT_EN_KER, enabled);
1288         efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1289 }
1290
1291 void falcon_enable_interrupts(struct efx_nic *efx)
1292 {
1293         struct efx_channel *channel;
1294
1295         EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1296         wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1297
1298         /* Enable interrupts */
1299         falcon_interrupts(efx, 1, 0);
1300
1301         /* Force processing of all the channels to get the EVQ RPTRs up to
1302            date */
1303         efx_for_each_channel(channel, efx)
1304                 efx_schedule_channel(channel);
1305 }
1306
1307 void falcon_disable_interrupts(struct efx_nic *efx)
1308 {
1309         /* Disable interrupts */
1310         falcon_interrupts(efx, 0, 0);
1311 }
1312
1313 /* Generate a Falcon test interrupt
1314  * Interrupt must already have been enabled, otherwise nasty things
1315  * may happen.
1316  */
1317 void falcon_generate_interrupt(struct efx_nic *efx)
1318 {
1319         falcon_interrupts(efx, 1, 1);
1320 }
1321
1322 /* Acknowledge a legacy interrupt from Falcon
1323  *
1324  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
1325  *
1326  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
1327  * BIU. Interrupt acknowledge is read sensitive so must write instead
1328  * (then read to ensure the BIU collector is flushed)
1329  *
1330  * NB most hardware supports MSI interrupts
1331  */
1332 static inline void falcon_irq_ack_a1(struct efx_nic *efx)
1333 {
1334         efx_dword_t reg;
1335
1336         EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
1337         efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
1338         efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
1339 }
1340
1341 /* Process a fatal interrupt
1342  * Disable bus mastering ASAP and schedule a reset
1343  */
1344 static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
1345 {
1346         struct falcon_nic_data *nic_data = efx->nic_data;
1347         efx_oword_t *int_ker = efx->irq_status.addr;
1348         efx_oword_t fatal_intr;
1349         int error, mem_perr;
1350
1351         efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1352         error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1353
1354         EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
1355                 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1356                 EFX_OWORD_VAL(fatal_intr),
1357                 error ? "disabling bus mastering" : "no recognised error");
1358         if (error == 0)
1359                 goto out;
1360
1361         /* If this is a memory parity error dump which blocks are offending */
1362         mem_perr = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER);
1363         if (mem_perr) {
1364                 efx_oword_t reg;
1365                 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1366                 EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
1367                         EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
1368         }
1369
1370         /* Disable both devices */
1371         pci_clear_master(efx->pci_dev);
1372         if (FALCON_IS_DUAL_FUNC(efx))
1373                 pci_clear_master(nic_data->pci_dev2);
1374         falcon_disable_interrupts(efx);
1375
1376         /* Count errors and reset or disable the NIC accordingly */
1377         if (efx->int_error_count == 0 ||
1378             time_after(jiffies, efx->int_error_expire)) {
1379                 efx->int_error_count = 0;
1380                 efx->int_error_expire =
1381                         jiffies + FALCON_INT_ERROR_EXPIRE * HZ;
1382         }
1383         if (++efx->int_error_count < FALCON_MAX_INT_ERRORS) {
1384                 EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
1385                 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1386         } else {
1387                 EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
1388                         "NIC will be disabled\n");
1389                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1390         }
1391 out:
1392         return IRQ_HANDLED;
1393 }
1394
1395 /* Handle a legacy interrupt from Falcon
1396  * Acknowledges the interrupt and schedule event queue processing.
1397  */
1398 static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
1399 {
1400         struct efx_nic *efx = dev_id;
1401         efx_oword_t *int_ker = efx->irq_status.addr;
1402         irqreturn_t result = IRQ_NONE;
1403         struct efx_channel *channel;
1404         efx_dword_t reg;
1405         u32 queues;
1406         int syserr;
1407
1408         /* Read the ISR which also ACKs the interrupts */
1409         efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1410         queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1411
1412         /* Check to see if we have a serious error condition */
1413         syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1414         if (unlikely(syserr))
1415                 return falcon_fatal_interrupt(efx);
1416
1417         /* Schedule processing of any interrupting queues */
1418         efx_for_each_channel(channel, efx) {
1419                 if ((queues & 1) ||
1420                     falcon_event_present(
1421                             falcon_event(channel, channel->eventq_read_ptr))) {
1422                         efx_schedule_channel(channel);
1423                         result = IRQ_HANDLED;
1424                 }
1425                 queues >>= 1;
1426         }
1427
1428         if (result == IRQ_HANDLED) {
1429                 efx->last_irq_cpu = raw_smp_processor_id();
1430                 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1431                           irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1432         }
1433
1434         return result;
1435 }
1436
1437
1438 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
1439 {
1440         struct efx_nic *efx = dev_id;
1441         efx_oword_t *int_ker = efx->irq_status.addr;
1442         struct efx_channel *channel;
1443         int syserr;
1444         int queues;
1445
1446         /* Check to see if this is our interrupt.  If it isn't, we
1447          * exit without having touched the hardware.
1448          */
1449         if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
1450                 EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
1451                           raw_smp_processor_id());
1452                 return IRQ_NONE;
1453         }
1454         efx->last_irq_cpu = raw_smp_processor_id();
1455         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1456                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1457
1458         /* Check to see if we have a serious error condition */
1459         syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1460         if (unlikely(syserr))
1461                 return falcon_fatal_interrupt(efx);
1462
1463         /* Determine interrupting queues, clear interrupt status
1464          * register and acknowledge the device interrupt.
1465          */
1466         BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
1467         queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
1468         EFX_ZERO_OWORD(*int_ker);
1469         wmb(); /* Ensure the vector is cleared before interrupt ack */
1470         falcon_irq_ack_a1(efx);
1471
1472         /* Schedule processing of any interrupting queues */
1473         channel = &efx->channel[0];
1474         while (queues) {
1475                 if (queues & 0x01)
1476                         efx_schedule_channel(channel);
1477                 channel++;
1478                 queues >>= 1;
1479         }
1480
1481         return IRQ_HANDLED;
1482 }
1483
1484 /* Handle an MSI interrupt from Falcon
1485  *
1486  * Handle an MSI hardware interrupt.  This routine schedules event
1487  * queue processing.  No interrupt acknowledgement cycle is necessary.
1488  * Also, we never need to check that the interrupt is for us, since
1489  * MSI interrupts cannot be shared.
1490  */
1491 static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
1492 {
1493         struct efx_channel *channel = dev_id;
1494         struct efx_nic *efx = channel->efx;
1495         efx_oword_t *int_ker = efx->irq_status.addr;
1496         int syserr;
1497
1498         efx->last_irq_cpu = raw_smp_processor_id();
1499         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1500                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1501
1502         /* Check to see if we have a serious error condition */
1503         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1504         if (unlikely(syserr))
1505                 return falcon_fatal_interrupt(efx);
1506
1507         /* Schedule processing of the channel */
1508         efx_schedule_channel(channel);
1509
1510         return IRQ_HANDLED;
1511 }
1512
1513
1514 /* Setup RSS indirection table.
1515  * This maps from the hash value of the packet to RXQ
1516  */
1517 static void falcon_setup_rss_indir_table(struct efx_nic *efx)
1518 {
1519         int i = 0;
1520         unsigned long offset;
1521         efx_dword_t dword;
1522
1523         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1524                 return;
1525
1526         for (offset = FR_BZ_RX_INDIRECTION_TBL;
1527              offset < FR_BZ_RX_INDIRECTION_TBL + 0x800;
1528              offset += 0x10) {
1529                 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1530                                      i % efx->n_rx_queues);
1531                 efx_writed(efx, &dword, offset);
1532                 i++;
1533         }
1534 }
1535
1536 /* Hook interrupt handler(s)
1537  * Try MSI and then legacy interrupts.
1538  */
1539 int falcon_init_interrupt(struct efx_nic *efx)
1540 {
1541         struct efx_channel *channel;
1542         int rc;
1543
1544         if (!EFX_INT_MODE_USE_MSI(efx)) {
1545                 irq_handler_t handler;
1546                 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1547                         handler = falcon_legacy_interrupt_b0;
1548                 else
1549                         handler = falcon_legacy_interrupt_a1;
1550
1551                 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1552                                  efx->name, efx);
1553                 if (rc) {
1554                         EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
1555                                 efx->pci_dev->irq);
1556                         goto fail1;
1557                 }
1558                 return 0;
1559         }
1560
1561         /* Hook MSI or MSI-X interrupt */
1562         efx_for_each_channel(channel, efx) {
1563                 rc = request_irq(channel->irq, falcon_msi_interrupt,
1564                                  IRQF_PROBE_SHARED, /* Not shared */
1565                                  channel->name, channel);
1566                 if (rc) {
1567                         EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
1568                         goto fail2;
1569                 }
1570         }
1571
1572         return 0;
1573
1574  fail2:
1575         efx_for_each_channel(channel, efx)
1576                 free_irq(channel->irq, channel);
1577  fail1:
1578         return rc;
1579 }
1580
1581 void falcon_fini_interrupt(struct efx_nic *efx)
1582 {
1583         struct efx_channel *channel;
1584         efx_oword_t reg;
1585
1586         /* Disable MSI/MSI-X interrupts */
1587         efx_for_each_channel(channel, efx) {
1588                 if (channel->irq)
1589                         free_irq(channel->irq, channel);
1590         }
1591
1592         /* ACK legacy interrupt */
1593         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1594                 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1595         else
1596                 falcon_irq_ack_a1(efx);
1597
1598         /* Disable legacy interrupt */
1599         if (efx->legacy_irq)
1600                 free_irq(efx->legacy_irq, efx);
1601 }
1602
1603 /**************************************************************************
1604  *
1605  * EEPROM/flash
1606  *
1607  **************************************************************************
1608  */
1609
1610 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1611
1612 static int falcon_spi_poll(struct efx_nic *efx)
1613 {
1614         efx_oword_t reg;
1615         efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
1616         return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
1617 }
1618
1619 /* Wait for SPI command completion */
1620 static int falcon_spi_wait(struct efx_nic *efx)
1621 {
1622         /* Most commands will finish quickly, so we start polling at
1623          * very short intervals.  Sometimes the command may have to
1624          * wait for VPD or expansion ROM access outside of our
1625          * control, so we allow up to 100 ms. */
1626         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
1627         int i;
1628
1629         for (i = 0; i < 10; i++) {
1630                 if (!falcon_spi_poll(efx))
1631                         return 0;
1632                 udelay(10);
1633         }
1634
1635         for (;;) {
1636                 if (!falcon_spi_poll(efx))
1637                         return 0;
1638                 if (time_after_eq(jiffies, timeout)) {
1639                         EFX_ERR(efx, "timed out waiting for SPI\n");
1640                         return -ETIMEDOUT;
1641                 }
1642                 schedule_timeout_uninterruptible(1);
1643         }
1644 }
1645
1646 int falcon_spi_cmd(const struct efx_spi_device *spi,
1647                    unsigned int command, int address,
1648                    const void *in, void *out, size_t len)
1649 {
1650         struct efx_nic *efx = spi->efx;
1651         bool addressed = (address >= 0);
1652         bool reading = (out != NULL);
1653         efx_oword_t reg;
1654         int rc;
1655
1656         /* Input validation */
1657         if (len > FALCON_SPI_MAX_LEN)
1658                 return -EINVAL;
1659         BUG_ON(!mutex_is_locked(&efx->spi_lock));
1660
1661         /* Check that previous command is not still running */
1662         rc = falcon_spi_poll(efx);
1663         if (rc)
1664                 return rc;
1665
1666         /* Program address register, if we have an address */
1667         if (addressed) {
1668                 EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
1669                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
1670         }
1671
1672         /* Program data register, if we have data */
1673         if (in != NULL) {
1674                 memcpy(&reg, in, len);
1675                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
1676         }
1677
1678         /* Issue read/write command */
1679         EFX_POPULATE_OWORD_7(reg,
1680                              FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
1681                              FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
1682                              FRF_AB_EE_SPI_HCMD_DABCNT, len,
1683                              FRF_AB_EE_SPI_HCMD_READ, reading,
1684                              FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
1685                              FRF_AB_EE_SPI_HCMD_ADBCNT,
1686                              (addressed ? spi->addr_len : 0),
1687                              FRF_AB_EE_SPI_HCMD_ENC, command);
1688         efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
1689
1690         /* Wait for read/write to complete */
1691         rc = falcon_spi_wait(efx);
1692         if (rc)
1693                 return rc;
1694
1695         /* Read data */
1696         if (out != NULL) {
1697                 efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
1698                 memcpy(out, &reg, len);
1699         }
1700
1701         return 0;
1702 }
1703
1704 static size_t
1705 falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
1706 {
1707         return min(FALCON_SPI_MAX_LEN,
1708                    (spi->block_size - (start & (spi->block_size - 1))));
1709 }
1710
1711 static inline u8
1712 efx_spi_munge_command(const struct efx_spi_device *spi,
1713                       const u8 command, const unsigned int address)
1714 {
1715         return command | (((address >> 8) & spi->munge_address) << 3);
1716 }
1717
1718 /* Wait up to 10 ms for buffered write completion */
1719 int falcon_spi_wait_write(const struct efx_spi_device *spi)
1720 {
1721         struct efx_nic *efx = spi->efx;
1722         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
1723         u8 status;
1724         int rc;
1725
1726         for (;;) {
1727                 rc = falcon_spi_cmd(spi, SPI_RDSR, -1, NULL,
1728                                     &status, sizeof(status));
1729                 if (rc)
1730                         return rc;
1731                 if (!(status & SPI_STATUS_NRDY))
1732                         return 0;
1733                 if (time_after_eq(jiffies, timeout)) {
1734                         EFX_ERR(efx, "SPI write timeout on device %d"
1735                                 " last status=0x%02x\n",
1736                                 spi->device_id, status);
1737                         return -ETIMEDOUT;
1738                 }
1739                 schedule_timeout_uninterruptible(1);
1740         }
1741 }
1742
1743 int falcon_spi_read(const struct efx_spi_device *spi, loff_t start,
1744                     size_t len, size_t *retlen, u8 *buffer)
1745 {
1746         size_t block_len, pos = 0;
1747         unsigned int command;
1748         int rc = 0;
1749
1750         while (pos < len) {
1751                 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
1752
1753                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1754                 rc = falcon_spi_cmd(spi, command, start + pos, NULL,
1755                                     buffer + pos, block_len);
1756                 if (rc)
1757                         break;
1758                 pos += block_len;
1759
1760                 /* Avoid locking up the system */
1761                 cond_resched();
1762                 if (signal_pending(current)) {
1763                         rc = -EINTR;
1764                         break;
1765                 }
1766         }
1767
1768         if (retlen)
1769                 *retlen = pos;
1770         return rc;
1771 }
1772
1773 int falcon_spi_write(const struct efx_spi_device *spi, loff_t start,
1774                      size_t len, size_t *retlen, const u8 *buffer)
1775 {
1776         u8 verify_buffer[FALCON_SPI_MAX_LEN];
1777         size_t block_len, pos = 0;
1778         unsigned int command;
1779         int rc = 0;
1780
1781         while (pos < len) {
1782                 rc = falcon_spi_cmd(spi, SPI_WREN, -1, NULL, NULL, 0);
1783                 if (rc)
1784                         break;
1785
1786                 block_len = min(len - pos,
1787                                 falcon_spi_write_limit(spi, start + pos));
1788                 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
1789                 rc = falcon_spi_cmd(spi, command, start + pos,
1790                                     buffer + pos, NULL, block_len);
1791                 if (rc)
1792                         break;
1793
1794                 rc = falcon_spi_wait_write(spi);
1795                 if (rc)
1796                         break;
1797
1798                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1799                 rc = falcon_spi_cmd(spi, command, start + pos,
1800                                     NULL, verify_buffer, block_len);
1801                 if (memcmp(verify_buffer, buffer + pos, block_len)) {
1802                         rc = -EIO;
1803                         break;
1804                 }
1805
1806                 pos += block_len;
1807
1808                 /* Avoid locking up the system */
1809                 cond_resched();
1810                 if (signal_pending(current)) {
1811                         rc = -EINTR;
1812                         break;
1813                 }
1814         }
1815
1816         if (retlen)
1817                 *retlen = pos;
1818         return rc;
1819 }
1820
1821 /**************************************************************************
1822  *
1823  * MAC wrapper
1824  *
1825  **************************************************************************
1826  */
1827
1828 static int falcon_reset_macs(struct efx_nic *efx)
1829 {
1830         efx_oword_t reg;
1831         int count;
1832
1833         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
1834                 /* It's not safe to use GLB_CTL_REG to reset the
1835                  * macs, so instead use the internal MAC resets
1836                  */
1837                 if (!EFX_IS10G(efx)) {
1838                         EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 1);
1839                         efx_writeo(efx, &reg, FR_AB_GM_CFG1);
1840                         udelay(1000);
1841
1842                         EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 0);
1843                         efx_writeo(efx, &reg, FR_AB_GM_CFG1);
1844                         udelay(1000);
1845                         return 0;
1846                 } else {
1847                         EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1848                         efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1849
1850                         for (count = 0; count < 10000; count++) {
1851                                 efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1852                                 if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1853                                     0)
1854                                         return 0;
1855                                 udelay(10);
1856                         }
1857
1858                         EFX_ERR(efx, "timed out waiting for XMAC core reset\n");
1859                         return -ETIMEDOUT;
1860                 }
1861         }
1862
1863         /* MAC stats will fail whilst the TX fifo is draining. Serialise
1864          * the drain sequence with the statistics fetch */
1865         falcon_stop_nic_stats(efx);
1866
1867         efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1868         EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN, 1);
1869         efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1870
1871         efx_reado(efx, &reg, FR_AB_GLB_CTL);
1872         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1873         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1874         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1875         efx_writeo(efx, &reg, FR_AB_GLB_CTL);
1876
1877         count = 0;
1878         while (1) {
1879                 efx_reado(efx, &reg, FR_AB_GLB_CTL);
1880                 if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1881                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1882                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1883                         EFX_LOG(efx, "Completed MAC reset after %d loops\n",
1884                                 count);
1885                         break;
1886                 }
1887                 if (count > 20) {
1888                         EFX_ERR(efx, "MAC reset failed\n");
1889                         break;
1890                 }
1891                 count++;
1892                 udelay(10);
1893         }
1894
1895         /* If we've reset the EM block and the link is up, then
1896          * we'll have to kick the XAUI link so the PHY can recover */
1897         if (efx->link_state.up && EFX_IS10G(efx) && EFX_WORKAROUND_5147(efx))
1898                 falcon_reset_xaui(efx);
1899
1900         falcon_start_nic_stats(efx);
1901
1902         return 0;
1903 }
1904
1905 void falcon_drain_tx_fifo(struct efx_nic *efx)
1906 {
1907         efx_oword_t reg;
1908
1909         if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
1910             (efx->loopback_mode != LOOPBACK_NONE))
1911                 return;
1912
1913         efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1914         /* There is no point in draining more than once */
1915         if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1916                 return;
1917
1918         falcon_reset_macs(efx);
1919 }
1920
1921 void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1922 {
1923         efx_oword_t reg;
1924
1925         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1926                 return;
1927
1928         /* Isolate the MAC -> RX */
1929         efx_reado(efx, &reg, FR_AZ_RX_CFG);
1930         EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1931         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1932
1933         if (!efx->link_state.up)
1934                 falcon_drain_tx_fifo(efx);
1935 }
1936
1937 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1938 {
1939         struct efx_link_state *link_state = &efx->link_state;
1940         efx_oword_t reg;
1941         int link_speed;
1942         bool tx_fc;
1943
1944         switch (link_state->speed) {
1945         case 10000: link_speed = 3; break;
1946         case 1000:  link_speed = 2; break;
1947         case 100:   link_speed = 1; break;
1948         default:    link_speed = 0; break;
1949         }
1950         /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1951          * as advertised.  Disable to ensure packets are not
1952          * indefinitely held and TX queue can be flushed at any point
1953          * while the link is down. */
1954         EFX_POPULATE_OWORD_5(reg,
1955                              FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1956                              FRF_AB_MAC_BCAD_ACPT, 1,
1957                              FRF_AB_MAC_UC_PROM, efx->promiscuous,
1958                              FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1959                              FRF_AB_MAC_SPEED, link_speed);
1960         /* On B0, MAC backpressure can be disabled and packets get
1961          * discarded. */
1962         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1963                 EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1964                                     !link_state->up);
1965         }
1966
1967         efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1968
1969         /* Restore the multicast hash registers. */
1970         falcon_push_multicast_hash(efx);
1971
1972         /* Transmission of pause frames when RX crosses the threshold is
1973          * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
1974          * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
1975         tx_fc = !!(efx->link_state.fc & EFX_FC_TX);
1976         efx_reado(efx, &reg, FR_AZ_RX_CFG);
1977         EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, tx_fc);
1978
1979         /* Unisolate the MAC -> RX */
1980         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1981                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
1982         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1983 }
1984
1985 static void falcon_stats_request(struct efx_nic *efx)
1986 {
1987         struct falcon_nic_data *nic_data = efx->nic_data;
1988         efx_oword_t reg;
1989
1990         WARN_ON(nic_data->stats_pending);
1991         WARN_ON(nic_data->stats_disable_count);
1992
1993         if (nic_data->stats_dma_done == NULL)
1994                 return; /* no mac selected */
1995
1996         *nic_data->stats_dma_done = FALCON_STATS_NOT_DONE;
1997         nic_data->stats_pending = true;
1998         wmb(); /* ensure done flag is clear */
1999
2000         /* Initiate DMA transfer of stats */
2001         EFX_POPULATE_OWORD_2(reg,
2002                              FRF_AB_MAC_STAT_DMA_CMD, 1,
2003                              FRF_AB_MAC_STAT_DMA_ADR,
2004                              efx->stats_buffer.dma_addr);
2005         efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
2006
2007         mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
2008 }
2009
2010 static void falcon_stats_complete(struct efx_nic *efx)
2011 {
2012         struct falcon_nic_data *nic_data = efx->nic_data;
2013
2014         if (!nic_data->stats_pending)
2015                 return;
2016
2017         nic_data->stats_pending = 0;
2018         if (*nic_data->stats_dma_done == FALCON_STATS_DONE) {
2019                 rmb(); /* read the done flag before the stats */
2020                 efx->mac_op->update_stats(efx);
2021         } else {
2022                 EFX_ERR(efx, "timed out waiting for statistics\n");
2023         }
2024 }
2025
2026 static void falcon_stats_timer_func(unsigned long context)
2027 {
2028         struct efx_nic *efx = (struct efx_nic *)context;
2029         struct falcon_nic_data *nic_data = efx->nic_data;
2030
2031         spin_lock(&efx->stats_lock);
2032
2033         falcon_stats_complete(efx);
2034         if (nic_data->stats_disable_count == 0)
2035                 falcon_stats_request(efx);
2036
2037         spin_unlock(&efx->stats_lock);
2038 }
2039
2040 static bool falcon_loopback_link_poll(struct efx_nic *efx)
2041 {
2042         struct efx_link_state old_state = efx->link_state;
2043
2044         WARN_ON(!mutex_is_locked(&efx->mac_lock));
2045         WARN_ON(!LOOPBACK_INTERNAL(efx));
2046
2047         efx->link_state.fd = true;
2048         efx->link_state.fc = efx->wanted_fc;
2049         efx->link_state.up = true;
2050
2051         if (efx->loopback_mode == LOOPBACK_GMAC)
2052                 efx->link_state.speed = 1000;
2053         else
2054                 efx->link_state.speed = 10000;
2055
2056         return !efx_link_state_equal(&efx->link_state, &old_state);
2057 }
2058
2059 /**************************************************************************
2060  *
2061  * PHY access via GMII
2062  *
2063  **************************************************************************
2064  */
2065
2066 /* Wait for GMII access to complete */
2067 static int falcon_gmii_wait(struct efx_nic *efx)
2068 {
2069         efx_oword_t md_stat;
2070         int count;
2071
2072         /* wait upto 50ms - taken max from datasheet */
2073         for (count = 0; count < 5000; count++) {
2074                 efx_reado(efx, &md_stat, FR_AB_MD_STAT);
2075                 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
2076                         if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
2077                             EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
2078                                 EFX_ERR(efx, "error from GMII access "
2079                                         EFX_OWORD_FMT"\n",
2080                                         EFX_OWORD_VAL(md_stat));
2081                                 return -EIO;
2082                         }
2083                         return 0;
2084                 }
2085                 udelay(10);
2086         }
2087         EFX_ERR(efx, "timed out waiting for GMII\n");
2088         return -ETIMEDOUT;
2089 }
2090
2091 /* Write an MDIO register of a PHY connected to Falcon. */
2092 static int falcon_mdio_write(struct net_device *net_dev,
2093                              int prtad, int devad, u16 addr, u16 value)
2094 {
2095         struct efx_nic *efx = netdev_priv(net_dev);
2096         efx_oword_t reg;
2097         int rc;
2098
2099         EFX_REGDUMP(efx, "writing MDIO %d register %d.%d with 0x%04x\n",
2100                     prtad, devad, addr, value);
2101
2102         mutex_lock(&efx->mdio_lock);
2103
2104         /* Check MDIO not currently being accessed */
2105         rc = falcon_gmii_wait(efx);
2106         if (rc)
2107                 goto out;
2108
2109         /* Write the address/ID register */
2110         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
2111         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
2112
2113         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
2114                              FRF_AB_MD_DEV_ADR, devad);
2115         efx_writeo(efx, &reg, FR_AB_MD_ID);
2116
2117         /* Write data */
2118         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
2119         efx_writeo(efx, &reg, FR_AB_MD_TXD);
2120
2121         EFX_POPULATE_OWORD_2(reg,
2122                              FRF_AB_MD_WRC, 1,
2123                              FRF_AB_MD_GC, 0);
2124         efx_writeo(efx, &reg, FR_AB_MD_CS);
2125
2126         /* Wait for data to be written */
2127         rc = falcon_gmii_wait(efx);
2128         if (rc) {
2129                 /* Abort the write operation */
2130                 EFX_POPULATE_OWORD_2(reg,
2131                                      FRF_AB_MD_WRC, 0,
2132                                      FRF_AB_MD_GC, 1);
2133                 efx_writeo(efx, &reg, FR_AB_MD_CS);
2134                 udelay(10);
2135         }
2136
2137 out:
2138         mutex_unlock(&efx->mdio_lock);
2139         return rc;
2140 }
2141
2142 /* Read an MDIO register of a PHY connected to Falcon. */
2143 static int falcon_mdio_read(struct net_device *net_dev,
2144                             int prtad, int devad, u16 addr)
2145 {
2146         struct efx_nic *efx = netdev_priv(net_dev);
2147         efx_oword_t reg;
2148         int rc;
2149
2150         mutex_lock(&efx->mdio_lock);
2151
2152         /* Check MDIO not currently being accessed */
2153         rc = falcon_gmii_wait(efx);
2154         if (rc)
2155                 goto out;
2156
2157         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
2158         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
2159
2160         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
2161                              FRF_AB_MD_DEV_ADR, devad);
2162         efx_writeo(efx, &reg, FR_AB_MD_ID);
2163
2164         /* Request data to be read */
2165         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
2166         efx_writeo(efx, &reg, FR_AB_MD_CS);
2167
2168         /* Wait for data to become available */
2169         rc = falcon_gmii_wait(efx);
2170         if (rc == 0) {
2171                 efx_reado(efx, &reg, FR_AB_MD_RXD);
2172                 rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
2173                 EFX_REGDUMP(efx, "read from MDIO %d register %d.%d, got %04x\n",
2174                             prtad, devad, addr, rc);
2175         } else {
2176                 /* Abort the read operation */
2177                 EFX_POPULATE_OWORD_2(reg,
2178                                      FRF_AB_MD_RIC, 0,
2179                                      FRF_AB_MD_GC, 1);
2180                 efx_writeo(efx, &reg, FR_AB_MD_CS);
2181
2182                 EFX_LOG(efx, "read from MDIO %d register %d.%d, got error %d\n",
2183                         prtad, devad, addr, rc);
2184         }
2185
2186 out:
2187         mutex_unlock(&efx->mdio_lock);
2188         return rc;
2189 }
2190
2191 static void falcon_clock_mac(struct efx_nic *efx)
2192 {
2193         unsigned strap_val;
2194         efx_oword_t nic_stat;
2195
2196         /* Configure the NIC generated MAC clock correctly */
2197         efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2198         strap_val = EFX_IS10G(efx) ? 5 : 3;
2199         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2200                 EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP_EN, 1);
2201                 EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP, strap_val);
2202                 efx_writeo(efx, &nic_stat, FR_AB_NIC_STAT);
2203         } else {
2204                 /* Falcon A1 does not support 1G/10G speed switching
2205                  * and must not be used with a PHY that does. */
2206                 BUG_ON(EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_PINS) !=
2207                        strap_val);
2208         }
2209 }
2210
2211 int falcon_switch_mac(struct efx_nic *efx)
2212 {
2213         struct efx_mac_operations *old_mac_op = efx->mac_op;
2214         struct falcon_nic_data *nic_data = efx->nic_data;
2215         unsigned int stats_done_offset;
2216         int rc = 0;
2217
2218         /* Don't try to fetch MAC stats while we're switching MACs */
2219         falcon_stop_nic_stats(efx);
2220
2221         WARN_ON(!mutex_is_locked(&efx->mac_lock));
2222         efx->mac_op = (EFX_IS10G(efx) ?
2223                        &falcon_xmac_operations : &falcon_gmac_operations);
2224
2225         if (EFX_IS10G(efx))
2226                 stats_done_offset = XgDmaDone_offset;
2227         else
2228                 stats_done_offset = GDmaDone_offset;
2229         nic_data->stats_dma_done = efx->stats_buffer.addr + stats_done_offset;
2230
2231         if (old_mac_op == efx->mac_op)
2232                 goto out;
2233
2234         falcon_clock_mac(efx);
2235
2236         EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G');
2237         /* Not all macs support a mac-level link state */
2238         efx->xmac_poll_required = false;
2239
2240         rc = falcon_reset_macs(efx);
2241 out:
2242         falcon_start_nic_stats(efx);
2243         return rc;
2244 }
2245
2246 /* This call is responsible for hooking in the MAC and PHY operations */
2247 int falcon_probe_port(struct efx_nic *efx)
2248 {
2249         int rc;
2250
2251         switch (efx->phy_type) {
2252         case PHY_TYPE_SFX7101:
2253                 efx->phy_op = &falcon_sfx7101_phy_ops;
2254                 break;
2255         case PHY_TYPE_SFT9001A:
2256         case PHY_TYPE_SFT9001B:
2257                 efx->phy_op = &falcon_sft9001_phy_ops;
2258                 break;
2259         case PHY_TYPE_QT2022C2:
2260         case PHY_TYPE_QT2025C:
2261                 efx->phy_op = &falcon_qt202x_phy_ops;
2262                 break;
2263         default:
2264                 EFX_ERR(efx, "Unknown PHY type %d\n",
2265                         efx->phy_type);
2266                 return -ENODEV;
2267         }
2268
2269         if (efx->phy_op->macs & EFX_XMAC)
2270                 efx->loopback_modes |= ((1 << LOOPBACK_XGMII) |
2271                                         (1 << LOOPBACK_XGXS) |
2272                                         (1 << LOOPBACK_XAUI));
2273         if (efx->phy_op->macs & EFX_GMAC)
2274                 efx->loopback_modes |= (1 << LOOPBACK_GMAC);
2275         efx->loopback_modes |= efx->phy_op->loopbacks;
2276
2277         /* Set up MDIO structure for PHY */
2278         efx->mdio.mmds = efx->phy_op->mmds;
2279         efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
2280         efx->mdio.mdio_read = falcon_mdio_read;
2281         efx->mdio.mdio_write = falcon_mdio_write;
2282
2283         /* Initial assumption */
2284         efx->link_state.speed = 10000;
2285         efx->link_state.fd = true;
2286
2287         /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
2288         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
2289                 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
2290         else
2291                 efx->wanted_fc = EFX_FC_RX;
2292
2293         /* Allocate buffer for stats */
2294         rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
2295                                  FALCON_MAC_STATS_SIZE);
2296         if (rc)
2297                 return rc;
2298         EFX_LOG(efx, "stats buffer at %llx (virt %p phys %llx)\n",
2299                 (u64)efx->stats_buffer.dma_addr,
2300                 efx->stats_buffer.addr,
2301                 (u64)virt_to_phys(efx->stats_buffer.addr));
2302
2303         return 0;
2304 }
2305
2306 void falcon_remove_port(struct efx_nic *efx)
2307 {
2308         falcon_free_buffer(efx, &efx->stats_buffer);
2309 }
2310
2311 /**************************************************************************
2312  *
2313  * Multicast filtering
2314  *
2315  **************************************************************************
2316  */
2317
2318 void falcon_push_multicast_hash(struct efx_nic *efx)
2319 {
2320         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2321
2322         WARN_ON(!mutex_is_locked(&efx->mac_lock));
2323
2324         efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
2325         efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
2326 }
2327
2328
2329 /**************************************************************************
2330  *
2331  * Falcon test code
2332  *
2333  **************************************************************************/
2334
2335 int falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
2336 {
2337         struct falcon_nvconfig *nvconfig;
2338         struct efx_spi_device *spi;
2339         void *region;
2340         int rc, magic_num, struct_ver;
2341         __le16 *word, *limit;
2342         u32 csum;
2343
2344         spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
2345         if (!spi)
2346                 return -EINVAL;
2347
2348         region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
2349         if (!region)
2350                 return -ENOMEM;
2351         nvconfig = region + FALCON_NVCONFIG_OFFSET;
2352
2353         mutex_lock(&efx->spi_lock);
2354         rc = falcon_spi_read(spi, 0, FALCON_NVCONFIG_END, NULL, region);
2355         mutex_unlock(&efx->spi_lock);
2356         if (rc) {
2357                 EFX_ERR(efx, "Failed to read %s\n",
2358                         efx->spi_flash ? "flash" : "EEPROM");
2359                 rc = -EIO;
2360                 goto out;
2361         }
2362
2363         magic_num = le16_to_cpu(nvconfig->board_magic_num);
2364         struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
2365
2366         rc = -EINVAL;
2367         if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
2368                 EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
2369                 goto out;
2370         }
2371         if (struct_ver < 2) {
2372                 EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
2373                 goto out;
2374         } else if (struct_ver < 4) {
2375                 word = &nvconfig->board_magic_num;
2376                 limit = (__le16 *) (nvconfig + 1);
2377         } else {
2378                 word = region;
2379                 limit = region + FALCON_NVCONFIG_END;
2380         }
2381         for (csum = 0; word < limit; ++word)
2382                 csum += le16_to_cpu(*word);
2383
2384         if (~csum & 0xffff) {
2385                 EFX_ERR(efx, "NVRAM has incorrect checksum\n");
2386                 goto out;
2387         }
2388
2389         rc = 0;
2390         if (nvconfig_out)
2391                 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
2392
2393  out:
2394         kfree(region);
2395         return rc;
2396 }
2397
2398 /* Registers tested in the falcon register test */
2399 static struct {
2400         unsigned address;
2401         efx_oword_t mask;
2402 } efx_test_registers[] = {
2403         { FR_AZ_ADR_REGION,
2404           EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
2405         { FR_AZ_RX_CFG,
2406           EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
2407         { FR_AZ_TX_CFG,
2408           EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
2409         { FR_AZ_TX_RESERVED,
2410           EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
2411         { FR_AB_MAC_CTRL,
2412           EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
2413         { FR_AZ_SRM_TX_DC_CFG,
2414           EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
2415         { FR_AZ_RX_DC_CFG,
2416           EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
2417         { FR_AZ_RX_DC_PF_WM,
2418           EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
2419         { FR_BZ_DP_CTRL,
2420           EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
2421         { FR_AB_GM_CFG2,
2422           EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
2423         { FR_AB_GMF_CFG0,
2424           EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
2425         { FR_AB_XM_GLB_CFG,
2426           EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
2427         { FR_AB_XM_TX_CFG,
2428           EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
2429         { FR_AB_XM_RX_CFG,
2430           EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
2431         { FR_AB_XM_RX_PARAM,
2432           EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
2433         { FR_AB_XM_FC,
2434           EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
2435         { FR_AB_XM_ADR_LO,
2436           EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
2437         { FR_AB_XX_SD_CTL,
2438           EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
2439 };
2440
2441 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
2442                                      const efx_oword_t *mask)
2443 {
2444         return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
2445                 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
2446 }
2447
2448 int falcon_test_registers(struct efx_nic *efx)
2449 {
2450         unsigned address = 0, i, j;
2451         efx_oword_t mask, imask, original, reg, buf;
2452
2453         /* Falcon should be in loopback to isolate the XMAC from the PHY */
2454         WARN_ON(!LOOPBACK_INTERNAL(efx));
2455
2456         for (i = 0; i < ARRAY_SIZE(efx_test_registers); ++i) {
2457                 address = efx_test_registers[i].address;
2458                 mask = imask = efx_test_registers[i].mask;
2459                 EFX_INVERT_OWORD(imask);
2460
2461                 efx_reado(efx, &original, address);
2462
2463                 /* bit sweep on and off */
2464                 for (j = 0; j < 128; j++) {
2465                         if (!EFX_EXTRACT_OWORD32(mask, j, j))
2466                                 continue;
2467
2468                         /* Test this testable bit can be set in isolation */
2469                         EFX_AND_OWORD(reg, original, mask);
2470                         EFX_SET_OWORD32(reg, j, j, 1);
2471
2472                         efx_writeo(efx, &reg, address);
2473                         efx_reado(efx, &buf, address);
2474
2475                         if (efx_masked_compare_oword(&reg, &buf, &mask))
2476                                 goto fail;
2477
2478                         /* Test this testable bit can be cleared in isolation */
2479                         EFX_OR_OWORD(reg, original, mask);
2480                         EFX_SET_OWORD32(reg, j, j, 0);
2481
2482                         efx_writeo(efx, &reg, address);
2483                         efx_reado(efx, &buf, address);
2484
2485                         if (efx_masked_compare_oword(&reg, &buf, &mask))
2486                                 goto fail;
2487                 }
2488
2489                 efx_writeo(efx, &original, address);
2490         }
2491
2492         return 0;
2493
2494 fail:
2495         EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
2496                 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
2497                 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
2498         return -EIO;
2499 }
2500
2501 /**************************************************************************
2502  *
2503  * Device reset
2504  *
2505  **************************************************************************
2506  */
2507
2508 /* Resets NIC to known state.  This routine must be called in process
2509  * context and is allowed to sleep. */
2510 int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2511 {
2512         struct falcon_nic_data *nic_data = efx->nic_data;
2513         efx_oword_t glb_ctl_reg_ker;
2514         int rc;
2515
2516         EFX_LOG(efx, "performing %s hardware reset\n", RESET_TYPE(method));
2517
2518         /* Initiate device reset */
2519         if (method == RESET_TYPE_WORLD) {
2520                 rc = pci_save_state(efx->pci_dev);
2521                 if (rc) {
2522                         EFX_ERR(efx, "failed to backup PCI state of primary "
2523                                 "function prior to hardware reset\n");
2524                         goto fail1;
2525                 }
2526                 if (FALCON_IS_DUAL_FUNC(efx)) {
2527                         rc = pci_save_state(nic_data->pci_dev2);
2528                         if (rc) {
2529                                 EFX_ERR(efx, "failed to backup PCI state of "
2530                                         "secondary function prior to "
2531                                         "hardware reset\n");
2532                                 goto fail2;
2533                         }
2534                 }
2535
2536                 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2537                                      FRF_AB_EXT_PHY_RST_DUR,
2538                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
2539                                      FRF_AB_SWRST, 1);
2540         } else {
2541                 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2542                                      /* exclude PHY from "invisible" reset */
2543                                      FRF_AB_EXT_PHY_RST_CTL,
2544                                      method == RESET_TYPE_INVISIBLE,
2545                                      /* exclude EEPROM/flash and PCIe */
2546                                      FRF_AB_PCIE_CORE_RST_CTL, 1,
2547                                      FRF_AB_PCIE_NSTKY_RST_CTL, 1,
2548                                      FRF_AB_PCIE_SD_RST_CTL, 1,
2549                                      FRF_AB_EE_RST_CTL, 1,
2550                                      FRF_AB_EXT_PHY_RST_DUR,
2551                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
2552                                      FRF_AB_SWRST, 1);
2553         }
2554         efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2555
2556         EFX_LOG(efx, "waiting for hardware reset\n");
2557         schedule_timeout_uninterruptible(HZ / 20);
2558
2559         /* Restore PCI configuration if needed */
2560         if (method == RESET_TYPE_WORLD) {
2561                 if (FALCON_IS_DUAL_FUNC(efx)) {
2562                         rc = pci_restore_state(nic_data->pci_dev2);
2563                         if (rc) {
2564                                 EFX_ERR(efx, "failed to restore PCI config for "
2565                                         "the secondary function\n");
2566                                 goto fail3;
2567                         }
2568                 }
2569                 rc = pci_restore_state(efx->pci_dev);
2570                 if (rc) {
2571                         EFX_ERR(efx, "failed to restore PCI config for the "
2572                                 "primary function\n");
2573                         goto fail4;
2574                 }
2575                 EFX_LOG(efx, "successfully restored PCI config\n");
2576         }
2577
2578         /* Assert that reset complete */
2579         efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2580         if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2581                 rc = -ETIMEDOUT;
2582                 EFX_ERR(efx, "timed out waiting for hardware reset\n");
2583                 goto fail5;
2584         }
2585         EFX_LOG(efx, "hardware reset complete\n");
2586
2587         return 0;
2588
2589         /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2590 fail2:
2591 fail3:
2592         pci_restore_state(efx->pci_dev);
2593 fail1:
2594 fail4:
2595 fail5:
2596         return rc;
2597 }
2598
2599 void falcon_monitor(struct efx_nic *efx)
2600 {
2601         bool link_changed;
2602         int rc;
2603
2604         BUG_ON(!mutex_is_locked(&efx->mac_lock));
2605
2606         rc = falcon_board(efx)->type->monitor(efx);
2607         if (rc) {
2608                 EFX_ERR(efx, "Board sensor %s; shutting down PHY\n",
2609                         (rc == -ERANGE) ? "reported fault" : "failed");
2610                 efx->phy_mode |= PHY_MODE_LOW_POWER;
2611                 __efx_reconfigure_port(efx);
2612         }
2613
2614         if (LOOPBACK_INTERNAL(efx))
2615                 link_changed = falcon_loopback_link_poll(efx);
2616         else
2617                 link_changed = efx->phy_op->poll(efx);
2618
2619         if (link_changed) {
2620                 falcon_stop_nic_stats(efx);
2621                 falcon_deconfigure_mac_wrapper(efx);
2622
2623                 falcon_switch_mac(efx);
2624                 efx->mac_op->reconfigure(efx);
2625
2626                 falcon_start_nic_stats(efx);
2627
2628                 efx_link_status_changed(efx);
2629         }
2630
2631         if (EFX_IS10G(efx))
2632                 falcon_poll_xmac(efx);
2633 }
2634
2635 /* Zeroes out the SRAM contents.  This routine must be called in
2636  * process context and is allowed to sleep.
2637  */
2638 static int falcon_reset_sram(struct efx_nic *efx)
2639 {
2640         efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2641         int count;
2642
2643         /* Set the SRAM wake/sleep GPIO appropriately. */
2644         efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2645         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2646         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2647         efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2648
2649         /* Initiate SRAM reset */
2650         EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2651                              FRF_AZ_SRM_INIT_EN, 1,
2652                              FRF_AZ_SRM_NB_SZ, 0);
2653         efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2654
2655         /* Wait for SRAM reset to complete */
2656         count = 0;
2657         do {
2658                 EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
2659
2660                 /* SRAM reset is slow; expect around 16ms */
2661                 schedule_timeout_uninterruptible(HZ / 50);
2662
2663                 /* Check for reset complete */
2664                 efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2665                 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2666                         EFX_LOG(efx, "SRAM reset complete\n");
2667
2668                         return 0;
2669                 }
2670         } while (++count < 20); /* wait upto 0.4 sec */
2671
2672         EFX_ERR(efx, "timed out waiting for SRAM reset\n");
2673         return -ETIMEDOUT;
2674 }
2675
2676 static int falcon_spi_device_init(struct efx_nic *efx,
2677                                   struct efx_spi_device **spi_device_ret,
2678                                   unsigned int device_id, u32 device_type)
2679 {
2680         struct efx_spi_device *spi_device;
2681
2682         if (device_type != 0) {
2683                 spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
2684                 if (!spi_device)
2685                         return -ENOMEM;
2686                 spi_device->device_id = device_id;
2687                 spi_device->size =
2688                         1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2689                 spi_device->addr_len =
2690                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2691                 spi_device->munge_address = (spi_device->size == 1 << 9 &&
2692                                              spi_device->addr_len == 1);
2693                 spi_device->erase_command =
2694                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2695                 spi_device->erase_size =
2696                         1 << SPI_DEV_TYPE_FIELD(device_type,
2697                                                 SPI_DEV_TYPE_ERASE_SIZE);
2698                 spi_device->block_size =
2699                         1 << SPI_DEV_TYPE_FIELD(device_type,
2700                                                 SPI_DEV_TYPE_BLOCK_SIZE);
2701
2702                 spi_device->efx = efx;
2703         } else {
2704                 spi_device = NULL;
2705         }
2706
2707         kfree(*spi_device_ret);
2708         *spi_device_ret = spi_device;
2709         return 0;
2710 }
2711
2712
2713 static void falcon_remove_spi_devices(struct efx_nic *efx)
2714 {
2715         kfree(efx->spi_eeprom);
2716         efx->spi_eeprom = NULL;
2717         kfree(efx->spi_flash);
2718         efx->spi_flash = NULL;
2719 }
2720
2721 /* Extract non-volatile configuration */
2722 static int falcon_probe_nvconfig(struct efx_nic *efx)
2723 {
2724         struct falcon_nvconfig *nvconfig;
2725         int board_rev;
2726         int rc;
2727
2728         nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2729         if (!nvconfig)
2730                 return -ENOMEM;
2731
2732         rc = falcon_read_nvram(efx, nvconfig);
2733         if (rc == -EINVAL) {
2734                 EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
2735                 efx->phy_type = PHY_TYPE_NONE;
2736                 efx->mdio.prtad = MDIO_PRTAD_NONE;
2737                 board_rev = 0;
2738                 rc = 0;
2739         } else if (rc) {
2740                 goto fail1;
2741         } else {
2742                 struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
2743                 struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
2744
2745                 efx->phy_type = v2->port0_phy_type;
2746                 efx->mdio.prtad = v2->port0_phy_addr;
2747                 board_rev = le16_to_cpu(v2->board_revision);
2748
2749                 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2750                         rc = falcon_spi_device_init(
2751                                 efx, &efx->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2752                                 le32_to_cpu(v3->spi_device_type
2753                                             [FFE_AB_SPI_DEVICE_FLASH]));
2754                         if (rc)
2755                                 goto fail2;
2756                         rc = falcon_spi_device_init(
2757                                 efx, &efx->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2758                                 le32_to_cpu(v3->spi_device_type
2759                                             [FFE_AB_SPI_DEVICE_EEPROM]));
2760                         if (rc)
2761                                 goto fail2;
2762                 }
2763         }
2764
2765         /* Read the MAC addresses */
2766         memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
2767
2768         EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mdio.prtad);
2769
2770         falcon_probe_board(efx, board_rev);
2771
2772         kfree(nvconfig);
2773         return 0;
2774
2775  fail2:
2776         falcon_remove_spi_devices(efx);
2777  fail1:
2778         kfree(nvconfig);
2779         return rc;
2780 }
2781
2782 /* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
2783  * count, port speed).  Set workaround and feature flags accordingly.
2784  */
2785 static int falcon_probe_nic_variant(struct efx_nic *efx)
2786 {
2787         efx_oword_t altera_build;
2788         efx_oword_t nic_stat;
2789
2790         efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
2791         if (EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER)) {
2792                 EFX_ERR(efx, "Falcon FPGA not supported\n");
2793                 return -ENODEV;
2794         }
2795
2796         efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2797
2798         if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2799                 u8 pci_rev = efx->pci_dev->revision;
2800
2801                 if ((pci_rev == 0xff) || (pci_rev == 0)) {
2802                         EFX_ERR(efx, "Falcon rev A0 not supported\n");
2803                         return -ENODEV;
2804                 }
2805                 if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
2806                         EFX_ERR(efx, "Falcon rev A1 1G not supported\n");
2807                         return -ENODEV;
2808                 }
2809                 if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2810                         EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
2811                         return -ENODEV;
2812                 }
2813         }
2814
2815         return 0;
2816 }
2817
2818 /* Probe all SPI devices on the NIC */
2819 static void falcon_probe_spi_devices(struct efx_nic *efx)
2820 {
2821         efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2822         int boot_dev;
2823
2824         efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2825         efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2826         efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2827
2828         if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2829                 boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2830                             FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2831                 EFX_LOG(efx, "Booted from %s\n",
2832                         boot_dev == FFE_AB_SPI_DEVICE_FLASH ? "flash" : "EEPROM");
2833         } else {
2834                 /* Disable VPD and set clock dividers to safe
2835                  * values for initial programming. */
2836                 boot_dev = -1;
2837                 EFX_LOG(efx, "Booted from internal ASIC settings;"
2838                         " setting SPI config\n");
2839                 EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2840                                      /* 125 MHz / 7 ~= 20 MHz */
2841                                      FRF_AB_EE_SF_CLOCK_DIV, 7,
2842                                      /* 125 MHz / 63 ~= 2 MHz */
2843                                      FRF_AB_EE_EE_CLOCK_DIV, 63);
2844                 efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2845         }
2846
2847         if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2848                 falcon_spi_device_init(efx, &efx->spi_flash,
2849                                        FFE_AB_SPI_DEVICE_FLASH,
2850                                        default_flash_type);
2851         if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2852                 falcon_spi_device_init(efx, &efx->spi_eeprom,
2853                                        FFE_AB_SPI_DEVICE_EEPROM,
2854                                        large_eeprom_type);
2855 }
2856
2857 int falcon_probe_nic(struct efx_nic *efx)
2858 {
2859         struct falcon_nic_data *nic_data;
2860         struct falcon_board *board;
2861         int rc;
2862
2863         /* Allocate storage for hardware specific data */
2864         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2865         if (!nic_data)
2866                 return -ENOMEM;
2867         efx->nic_data = nic_data;
2868
2869         /* Determine number of ports etc. */
2870         rc = falcon_probe_nic_variant(efx);
2871         if (rc)
2872                 goto fail1;
2873
2874         /* Probe secondary function if expected */
2875         if (FALCON_IS_DUAL_FUNC(efx)) {
2876                 struct pci_dev *dev = pci_dev_get(efx->pci_dev);
2877
2878                 while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
2879                                              dev))) {
2880                         if (dev->bus == efx->pci_dev->bus &&
2881                             dev->devfn == efx->pci_dev->devfn + 1) {
2882                                 nic_data->pci_dev2 = dev;
2883                                 break;
2884                         }
2885                 }
2886                 if (!nic_data->pci_dev2) {
2887                         EFX_ERR(efx, "failed to find secondary function\n");
2888                         rc = -ENODEV;
2889                         goto fail2;
2890                 }
2891         }
2892
2893         /* Now we can reset the NIC */
2894         rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
2895         if (rc) {
2896                 EFX_ERR(efx, "failed to reset NIC\n");
2897                 goto fail3;
2898         }
2899
2900         /* Allocate memory for INT_KER */
2901         rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
2902         if (rc)
2903                 goto fail4;
2904         BUG_ON(efx->irq_status.dma_addr & 0x0f);
2905
2906         EFX_LOG(efx, "INT_KER at %llx (virt %p phys %llx)\n",
2907                 (u64)efx->irq_status.dma_addr,
2908                 efx->irq_status.addr, (u64)virt_to_phys(efx->irq_status.addr));
2909
2910         falcon_probe_spi_devices(efx);
2911
2912         /* Read in the non-volatile configuration */
2913         rc = falcon_probe_nvconfig(efx);
2914         if (rc)
2915                 goto fail5;
2916
2917         /* Initialise I2C adapter */
2918         board = falcon_board(efx);
2919         board->i2c_adap.owner = THIS_MODULE;
2920         board->i2c_data = falcon_i2c_bit_operations;
2921         board->i2c_data.data = efx;
2922         board->i2c_adap.algo_data = &board->i2c_data;
2923         board->i2c_adap.dev.parent = &efx->pci_dev->dev;
2924         strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
2925                 sizeof(board->i2c_adap.name));
2926         rc = i2c_bit_add_bus(&board->i2c_adap);
2927         if (rc)
2928                 goto fail5;
2929
2930         rc = falcon_board(efx)->type->init(efx);
2931         if (rc) {
2932                 EFX_ERR(efx, "failed to initialise board\n");
2933                 goto fail6;
2934         }
2935
2936         nic_data->stats_disable_count = 1;
2937         setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
2938                     (unsigned long)efx);
2939
2940         return 0;
2941
2942  fail6:
2943         BUG_ON(i2c_del_adapter(&board->i2c_adap));
2944         memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2945  fail5:
2946         falcon_remove_spi_devices(efx);
2947         falcon_free_buffer(efx, &efx->irq_status);
2948  fail4:
2949  fail3:
2950         if (nic_data->pci_dev2) {
2951                 pci_dev_put(nic_data->pci_dev2);
2952                 nic_data->pci_dev2 = NULL;
2953         }
2954  fail2:
2955  fail1:
2956         kfree(efx->nic_data);
2957         return rc;
2958 }
2959
2960 static void falcon_init_rx_cfg(struct efx_nic *efx)
2961 {
2962         /* Prior to Siena the RX DMA engine will split each frame at
2963          * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
2964          * be so large that that never happens. */
2965         const unsigned huge_buf_size = (3 * 4096) >> 5;
2966         /* RX control FIFO thresholds (32 entries) */
2967         const unsigned ctrl_xon_thr = 20;
2968         const unsigned ctrl_xoff_thr = 25;
2969         /* RX data FIFO thresholds (256-byte units; size varies) */
2970         int data_xon_thr = rx_xon_thresh_bytes >> 8;
2971         int data_xoff_thr = rx_xoff_thresh_bytes >> 8;
2972         efx_oword_t reg;
2973
2974         efx_reado(efx, &reg, FR_AZ_RX_CFG);
2975         if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2976                 /* Data FIFO size is 5.5K */
2977                 if (data_xon_thr < 0)
2978                         data_xon_thr = 512 >> 8;
2979                 if (data_xoff_thr < 0)
2980                         data_xoff_thr = 2048 >> 8;
2981                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2982                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2983                                     huge_buf_size);
2984                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, data_xon_thr);
2985                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, data_xoff_thr);
2986                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
2987                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2988         } else {
2989                 /* Data FIFO size is 80K; register fields moved */
2990                 if (data_xon_thr < 0)
2991                         data_xon_thr = 27648 >> 8; /* ~3*max MTU */
2992                 if (data_xoff_thr < 0)
2993                         data_xoff_thr = 54272 >> 8; /* ~80Kb - 3*max MTU */
2994                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
2995                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
2996                                     huge_buf_size);
2997                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, data_xon_thr);
2998                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, data_xoff_thr);
2999                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
3000                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
3001                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
3002         }
3003         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
3004 }
3005
3006 /* This call performs hardware-specific global initialisation, such as
3007  * defining the descriptor cache sizes and number of RSS channels.
3008  * It does not set up any buffers, descriptor rings or event queues.
3009  */
3010 int falcon_init_nic(struct efx_nic *efx)
3011 {
3012         efx_oword_t temp;
3013         int rc;
3014
3015         /* Use on-chip SRAM */
3016         efx_reado(efx, &temp, FR_AB_NIC_STAT);
3017         EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
3018         efx_writeo(efx, &temp, FR_AB_NIC_STAT);
3019
3020         /* Set the source of the GMAC clock */
3021         if (efx_nic_rev(efx) == EFX_REV_FALCON_B0) {
3022                 efx_reado(efx, &temp, FR_AB_GPIO_CTL);
3023                 EFX_SET_OWORD_FIELD(temp, FRF_AB_USE_NIC_CLK, true);
3024                 efx_writeo(efx, &temp, FR_AB_GPIO_CTL);
3025         }
3026
3027         /* Select the correct MAC */
3028         falcon_clock_mac(efx);
3029
3030         rc = falcon_reset_sram(efx);
3031         if (rc)
3032                 return rc;
3033
3034         /* Set positions of descriptor caches in SRAM. */
3035         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR,
3036                              efx->type->tx_dc_base / 8);
3037         efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
3038         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR,
3039                              efx->type->rx_dc_base / 8);
3040         efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
3041
3042         /* Set TX descriptor cache size. */
3043         BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
3044         EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
3045         efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
3046
3047         /* Set RX descriptor cache size.  Set low watermark to size-8, as
3048          * this allows most efficient prefetching.
3049          */
3050         BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
3051         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
3052         efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
3053         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
3054         efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
3055
3056         /* Program INT_KER address */
3057         EFX_POPULATE_OWORD_2(temp,
3058                              FRF_AZ_NORM_INT_VEC_DIS_KER,
3059                              EFX_INT_MODE_USE_MSI(efx),
3060                              FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
3061         efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
3062
3063         /* Clear the parity enables on the TX data fifos as
3064          * they produce false parity errors because of timing issues
3065          */
3066         if (EFX_WORKAROUND_5129(efx)) {
3067                 efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
3068                 EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
3069                 efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
3070         }
3071
3072         /* Enable all the genuinely fatal interrupts.  (They are still
3073          * masked by the overall interrupt mask, controlled by
3074          * falcon_interrupts()).
3075          *
3076          * Note: All other fatal interrupts are enabled
3077          */
3078         EFX_POPULATE_OWORD_3(temp,
3079                              FRF_AZ_ILL_ADR_INT_KER_EN, 1,
3080                              FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
3081                              FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
3082         EFX_INVERT_OWORD(temp);
3083         efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
3084
3085         if (EFX_WORKAROUND_7244(efx)) {
3086                 efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
3087                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
3088                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
3089                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
3090                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
3091                 efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
3092         }
3093
3094         falcon_setup_rss_indir_table(efx);
3095
3096         /* XXX This is documented only for Falcon A0/A1 */
3097         /* Setup RX.  Wait for descriptor is broken and must
3098          * be disabled.  RXDP recovery shouldn't be needed, but is.
3099          */
3100         efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
3101         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
3102         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
3103         if (EFX_WORKAROUND_5583(efx))
3104                 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
3105         efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
3106
3107         /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
3108          * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
3109          */
3110         efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
3111         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
3112         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
3113         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
3114         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 0);
3115         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
3116         /* Enable SW_EV to inherit in char driver - assume harmless here */
3117         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
3118         /* Prefetch threshold 2 => fetch when descriptor cache half empty */
3119         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
3120         /* Squash TX of packets of 16 bytes or less */
3121         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
3122                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
3123         efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
3124
3125         /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
3126          * descriptors (which is bad).
3127          */
3128         efx_reado(efx, &temp, FR_AZ_TX_CFG);
3129         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
3130         efx_writeo(efx, &temp, FR_AZ_TX_CFG);
3131
3132         falcon_init_rx_cfg(efx);
3133
3134         /* Set destination of both TX and RX Flush events */
3135         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
3136                 EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
3137                 efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
3138         }
3139
3140         return 0;
3141 }
3142
3143 void falcon_remove_nic(struct efx_nic *efx)
3144 {
3145         struct falcon_nic_data *nic_data = efx->nic_data;
3146         struct falcon_board *board = falcon_board(efx);
3147         int rc;
3148
3149         board->type->fini(efx);
3150
3151         /* Remove I2C adapter and clear it in preparation for a retry */
3152         rc = i2c_del_adapter(&board->i2c_adap);
3153         BUG_ON(rc);
3154         memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
3155
3156         falcon_remove_spi_devices(efx);
3157         falcon_free_buffer(efx, &efx->irq_status);
3158
3159         falcon_reset_hw(efx, RESET_TYPE_ALL);
3160
3161         /* Release the second function after the reset */
3162         if (nic_data->pci_dev2) {
3163                 pci_dev_put(nic_data->pci_dev2);
3164                 nic_data->pci_dev2 = NULL;
3165         }
3166
3167         /* Tear down the private nic state */
3168         kfree(efx->nic_data);
3169         efx->nic_data = NULL;
3170 }
3171
3172 void falcon_update_nic_stats(struct efx_nic *efx)
3173 {
3174         struct falcon_nic_data *nic_data = efx->nic_data;
3175         efx_oword_t cnt;
3176
3177         if (nic_data->stats_disable_count)
3178                 return;
3179
3180         efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
3181         efx->n_rx_nodesc_drop_cnt +=
3182                 EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
3183
3184         if (nic_data->stats_pending &&
3185             *nic_data->stats_dma_done == FALCON_STATS_DONE) {
3186                 nic_data->stats_pending = false;
3187                 rmb(); /* read the done flag before the stats */
3188                 efx->mac_op->update_stats(efx);
3189         }
3190 }
3191
3192 void falcon_start_nic_stats(struct efx_nic *efx)
3193 {
3194         struct falcon_nic_data *nic_data = efx->nic_data;
3195
3196         spin_lock_bh(&efx->stats_lock);
3197         if (--nic_data->stats_disable_count == 0)
3198                 falcon_stats_request(efx);
3199         spin_unlock_bh(&efx->stats_lock);
3200 }
3201
3202 void falcon_stop_nic_stats(struct efx_nic *efx)
3203 {
3204         struct falcon_nic_data *nic_data = efx->nic_data;
3205         int i;
3206
3207         might_sleep();
3208
3209         spin_lock_bh(&efx->stats_lock);
3210         ++nic_data->stats_disable_count;
3211         spin_unlock_bh(&efx->stats_lock);
3212
3213         del_timer_sync(&nic_data->stats_timer);
3214
3215         /* Wait enough time for the most recent transfer to
3216          * complete. */
3217         for (i = 0; i < 4 && nic_data->stats_pending; i++) {
3218                 if (*nic_data->stats_dma_done == FALCON_STATS_DONE)
3219                         break;
3220                 msleep(1);
3221         }
3222
3223         spin_lock_bh(&efx->stats_lock);
3224         falcon_stats_complete(efx);
3225         spin_unlock_bh(&efx->stats_lock);
3226 }
3227
3228 /**************************************************************************
3229  *
3230  * Revision-dependent attributes used by efx.c
3231  *
3232  **************************************************************************
3233  */
3234
3235 struct efx_nic_type falcon_a1_nic_type = {
3236         .default_mac_ops = &falcon_xmac_operations,
3237
3238         .revision = EFX_REV_FALCON_A1,
3239         .mem_map_size = 0x20000,
3240         .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
3241         .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
3242         .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
3243         .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
3244         .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
3245         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
3246         .rx_buffer_padding = 0x24,
3247         .max_interrupt_mode = EFX_INT_MODE_MSI,
3248         .phys_addr_channels = 4,
3249         .tx_dc_base = 0x130000,
3250         .rx_dc_base = 0x100000,
3251 };
3252
3253 struct efx_nic_type falcon_b0_nic_type = {
3254         .default_mac_ops = &falcon_xmac_operations,
3255
3256         .revision = EFX_REV_FALCON_B0,
3257         /* Map everything up to and including the RSS indirection
3258          * table.  Don't map MSI-X table, MSI-X PBA since Linux
3259          * requires that they not be mapped.  */
3260         .mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
3261                          FR_BZ_RX_INDIRECTION_TBL_STEP *
3262                          FR_BZ_RX_INDIRECTION_TBL_ROWS),
3263         .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
3264         .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
3265         .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
3266         .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
3267         .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
3268         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
3269         .rx_buffer_padding = 0,
3270         .max_interrupt_mode = EFX_INT_MODE_MSIX,
3271         .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
3272                                    * interrupt handler only supports 32
3273                                    * channels */
3274         .tx_dc_base = 0x130000,
3275         .rx_dc_base = 0x100000,
3276 };
3277