S2io: Version update for Tx completion patch
[safe/jmp/linux-2.6] / drivers / net / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2007 Neterion Inc.
4
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explaination of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     2(MSI_X). Default value is '2(MSI_X)'
41  * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42  *     Possible values '1' for enable '0' for disable. Default is '0'
43  * lro_max_pkts: This parameter defines maximum number of packets can be
44  *     aggregated as a single large packet
45  * napi: This parameter used to enable/disable NAPI (polling Rx)
46  *     Possible values '1' for enable and '0' for disable. Default is '1'
47  * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48  *      Possible values '1' for enable and '0' for disable. Default is '0'
49  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50  *                 Possible values '1' for enable , '0' for disable.
51  *                 Default is '2' - which means disable in promisc mode
52  *                 and enable in non-promiscuous mode.
53  ************************************************************************/
54
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/stddef.h>
68 #include <linux/ioctl.h>
69 #include <linux/timex.h>
70 #include <linux/ethtool.h>
71 #include <linux/workqueue.h>
72 #include <linux/if_vlan.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <net/tcp.h>
76
77 #include <asm/system.h>
78 #include <asm/uaccess.h>
79 #include <asm/io.h>
80 #include <asm/div64.h>
81 #include <asm/irq.h>
82
83 /* local include */
84 #include "s2io.h"
85 #include "s2io-regs.h"
86
87 #define DRV_VERSION "2.0.26.20"
88
89 /* S2io Driver name & version. */
90 static char s2io_driver_name[] = "Neterion";
91 static char s2io_driver_version[] = DRV_VERSION;
92
93 static int rxd_size[2] = {32,48};
94 static int rxd_count[2] = {127,85};
95
96 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
97 {
98         int ret;
99
100         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
101                 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
102
103         return ret;
104 }
105
106 /*
107  * Cards with following subsystem_id have a link state indication
108  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109  * macro below identifies these cards given the subsystem_id.
110  */
111 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112         (dev_type == XFRAME_I_DEVICE) ?                 \
113                 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114                  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
115
116 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
119 #define PANIC   1
120 #define LOW     2
121 static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
122 {
123         struct mac_info *mac_control;
124
125         mac_control = &sp->mac_control;
126         if (rxb_size <= rxd_count[sp->rxd_mode])
127                 return PANIC;
128         else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
129                 return  LOW;
130         return 0;
131 }
132
133 static inline int is_s2io_card_up(const struct s2io_nic * sp)
134 {
135         return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
136 }
137
138 /* Ethtool related variables and Macros. */
139 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
140         "Register test\t(offline)",
141         "Eeprom test\t(offline)",
142         "Link test\t(online)",
143         "RLDRAM test\t(offline)",
144         "BIST Test\t(offline)"
145 };
146
147 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
148         {"tmac_frms"},
149         {"tmac_data_octets"},
150         {"tmac_drop_frms"},
151         {"tmac_mcst_frms"},
152         {"tmac_bcst_frms"},
153         {"tmac_pause_ctrl_frms"},
154         {"tmac_ttl_octets"},
155         {"tmac_ucst_frms"},
156         {"tmac_nucst_frms"},
157         {"tmac_any_err_frms"},
158         {"tmac_ttl_less_fb_octets"},
159         {"tmac_vld_ip_octets"},
160         {"tmac_vld_ip"},
161         {"tmac_drop_ip"},
162         {"tmac_icmp"},
163         {"tmac_rst_tcp"},
164         {"tmac_tcp"},
165         {"tmac_udp"},
166         {"rmac_vld_frms"},
167         {"rmac_data_octets"},
168         {"rmac_fcs_err_frms"},
169         {"rmac_drop_frms"},
170         {"rmac_vld_mcst_frms"},
171         {"rmac_vld_bcst_frms"},
172         {"rmac_in_rng_len_err_frms"},
173         {"rmac_out_rng_len_err_frms"},
174         {"rmac_long_frms"},
175         {"rmac_pause_ctrl_frms"},
176         {"rmac_unsup_ctrl_frms"},
177         {"rmac_ttl_octets"},
178         {"rmac_accepted_ucst_frms"},
179         {"rmac_accepted_nucst_frms"},
180         {"rmac_discarded_frms"},
181         {"rmac_drop_events"},
182         {"rmac_ttl_less_fb_octets"},
183         {"rmac_ttl_frms"},
184         {"rmac_usized_frms"},
185         {"rmac_osized_frms"},
186         {"rmac_frag_frms"},
187         {"rmac_jabber_frms"},
188         {"rmac_ttl_64_frms"},
189         {"rmac_ttl_65_127_frms"},
190         {"rmac_ttl_128_255_frms"},
191         {"rmac_ttl_256_511_frms"},
192         {"rmac_ttl_512_1023_frms"},
193         {"rmac_ttl_1024_1518_frms"},
194         {"rmac_ip"},
195         {"rmac_ip_octets"},
196         {"rmac_hdr_err_ip"},
197         {"rmac_drop_ip"},
198         {"rmac_icmp"},
199         {"rmac_tcp"},
200         {"rmac_udp"},
201         {"rmac_err_drp_udp"},
202         {"rmac_xgmii_err_sym"},
203         {"rmac_frms_q0"},
204         {"rmac_frms_q1"},
205         {"rmac_frms_q2"},
206         {"rmac_frms_q3"},
207         {"rmac_frms_q4"},
208         {"rmac_frms_q5"},
209         {"rmac_frms_q6"},
210         {"rmac_frms_q7"},
211         {"rmac_full_q0"},
212         {"rmac_full_q1"},
213         {"rmac_full_q2"},
214         {"rmac_full_q3"},
215         {"rmac_full_q4"},
216         {"rmac_full_q5"},
217         {"rmac_full_q6"},
218         {"rmac_full_q7"},
219         {"rmac_pause_cnt"},
220         {"rmac_xgmii_data_err_cnt"},
221         {"rmac_xgmii_ctrl_err_cnt"},
222         {"rmac_accepted_ip"},
223         {"rmac_err_tcp"},
224         {"rd_req_cnt"},
225         {"new_rd_req_cnt"},
226         {"new_rd_req_rtry_cnt"},
227         {"rd_rtry_cnt"},
228         {"wr_rtry_rd_ack_cnt"},
229         {"wr_req_cnt"},
230         {"new_wr_req_cnt"},
231         {"new_wr_req_rtry_cnt"},
232         {"wr_rtry_cnt"},
233         {"wr_disc_cnt"},
234         {"rd_rtry_wr_ack_cnt"},
235         {"txp_wr_cnt"},
236         {"txd_rd_cnt"},
237         {"txd_wr_cnt"},
238         {"rxd_rd_cnt"},
239         {"rxd_wr_cnt"},
240         {"txf_rd_cnt"},
241         {"rxf_wr_cnt"}
242 };
243
244 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
245         {"rmac_ttl_1519_4095_frms"},
246         {"rmac_ttl_4096_8191_frms"},
247         {"rmac_ttl_8192_max_frms"},
248         {"rmac_ttl_gt_max_frms"},
249         {"rmac_osized_alt_frms"},
250         {"rmac_jabber_alt_frms"},
251         {"rmac_gt_max_alt_frms"},
252         {"rmac_vlan_frms"},
253         {"rmac_len_discard"},
254         {"rmac_fcs_discard"},
255         {"rmac_pf_discard"},
256         {"rmac_da_discard"},
257         {"rmac_red_discard"},
258         {"rmac_rts_discard"},
259         {"rmac_ingm_full_discard"},
260         {"link_fault_cnt"}
261 };
262
263 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
264         {"\n DRIVER STATISTICS"},
265         {"single_bit_ecc_errs"},
266         {"double_bit_ecc_errs"},
267         {"parity_err_cnt"},
268         {"serious_err_cnt"},
269         {"soft_reset_cnt"},
270         {"fifo_full_cnt"},
271         {"ring_0_full_cnt"},
272         {"ring_1_full_cnt"},
273         {"ring_2_full_cnt"},
274         {"ring_3_full_cnt"},
275         {"ring_4_full_cnt"},
276         {"ring_5_full_cnt"},
277         {"ring_6_full_cnt"},
278         {"ring_7_full_cnt"},
279         {"alarm_transceiver_temp_high"},
280         {"alarm_transceiver_temp_low"},
281         {"alarm_laser_bias_current_high"},
282         {"alarm_laser_bias_current_low"},
283         {"alarm_laser_output_power_high"},
284         {"alarm_laser_output_power_low"},
285         {"warn_transceiver_temp_high"},
286         {"warn_transceiver_temp_low"},
287         {"warn_laser_bias_current_high"},
288         {"warn_laser_bias_current_low"},
289         {"warn_laser_output_power_high"},
290         {"warn_laser_output_power_low"},
291         {"lro_aggregated_pkts"},
292         {"lro_flush_both_count"},
293         {"lro_out_of_sequence_pkts"},
294         {"lro_flush_due_to_max_pkts"},
295         {"lro_avg_aggr_pkts"},
296         {"mem_alloc_fail_cnt"},
297         {"pci_map_fail_cnt"},
298         {"watchdog_timer_cnt"},
299         {"mem_allocated"},
300         {"mem_freed"},
301         {"link_up_cnt"},
302         {"link_down_cnt"},
303         {"link_up_time"},
304         {"link_down_time"},
305         {"tx_tcode_buf_abort_cnt"},
306         {"tx_tcode_desc_abort_cnt"},
307         {"tx_tcode_parity_err_cnt"},
308         {"tx_tcode_link_loss_cnt"},
309         {"tx_tcode_list_proc_err_cnt"},
310         {"rx_tcode_parity_err_cnt"},
311         {"rx_tcode_abort_cnt"},
312         {"rx_tcode_parity_abort_cnt"},
313         {"rx_tcode_rda_fail_cnt"},
314         {"rx_tcode_unkn_prot_cnt"},
315         {"rx_tcode_fcs_err_cnt"},
316         {"rx_tcode_buf_size_err_cnt"},
317         {"rx_tcode_rxd_corrupt_cnt"},
318         {"rx_tcode_unkn_err_cnt"},
319         {"tda_err_cnt"},
320         {"pfc_err_cnt"},
321         {"pcc_err_cnt"},
322         {"tti_err_cnt"},
323         {"tpa_err_cnt"},
324         {"sm_err_cnt"},
325         {"lso_err_cnt"},
326         {"mac_tmac_err_cnt"},
327         {"mac_rmac_err_cnt"},
328         {"xgxs_txgxs_err_cnt"},
329         {"xgxs_rxgxs_err_cnt"},
330         {"rc_err_cnt"},
331         {"prc_pcix_err_cnt"},
332         {"rpa_err_cnt"},
333         {"rda_err_cnt"},
334         {"rti_err_cnt"},
335         {"mc_err_cnt"}
336 };
337
338 #define S2IO_XENA_STAT_LEN      ARRAY_SIZE(ethtool_xena_stats_keys)
339 #define S2IO_ENHANCED_STAT_LEN  ARRAY_SIZE(ethtool_enhanced_stats_keys)
340 #define S2IO_DRIVER_STAT_LEN    ARRAY_SIZE(ethtool_driver_stats_keys)
341
342 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
343 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
344
345 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
346 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
347
348 #define S2IO_TEST_LEN   ARRAY_SIZE(s2io_gstrings)
349 #define S2IO_STRINGS_LEN        S2IO_TEST_LEN * ETH_GSTRING_LEN
350
351 #define S2IO_TIMER_CONF(timer, handle, arg, exp)                \
352                         init_timer(&timer);                     \
353                         timer.function = handle;                \
354                         timer.data = (unsigned long) arg;       \
355                         mod_timer(&timer, (jiffies + exp))      \
356
357 /* copy mac addr to def_mac_addr array */
358 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
359 {
360         sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
361         sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
362         sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
363         sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
364         sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
365         sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
366 }
367 /* Add the vlan */
368 static void s2io_vlan_rx_register(struct net_device *dev,
369                                         struct vlan_group *grp)
370 {
371         int i;
372         struct s2io_nic *nic = dev->priv;
373         unsigned long flags[MAX_TX_FIFOS];
374         struct mac_info *mac_control = &nic->mac_control;
375         struct config_param *config = &nic->config;
376
377         for (i = 0; i < config->tx_fifo_num; i++)
378                 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
379
380         nic->vlgrp = grp;
381         for (i = config->tx_fifo_num - 1; i >= 0; i--)
382                 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
383                                 flags[i]);
384 }
385
386 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
387 static int vlan_strip_flag;
388
389 /*
390  * Constants to be programmed into the Xena's registers, to configure
391  * the XAUI.
392  */
393
394 #define END_SIGN        0x0
395 static const u64 herc_act_dtx_cfg[] = {
396         /* Set address */
397         0x8000051536750000ULL, 0x80000515367500E0ULL,
398         /* Write data */
399         0x8000051536750004ULL, 0x80000515367500E4ULL,
400         /* Set address */
401         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
402         /* Write data */
403         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
404         /* Set address */
405         0x801205150D440000ULL, 0x801205150D4400E0ULL,
406         /* Write data */
407         0x801205150D440004ULL, 0x801205150D4400E4ULL,
408         /* Set address */
409         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
410         /* Write data */
411         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
412         /* Done */
413         END_SIGN
414 };
415
416 static const u64 xena_dtx_cfg[] = {
417         /* Set address */
418         0x8000051500000000ULL, 0x80000515000000E0ULL,
419         /* Write data */
420         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
421         /* Set address */
422         0x8001051500000000ULL, 0x80010515000000E0ULL,
423         /* Write data */
424         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
425         /* Set address */
426         0x8002051500000000ULL, 0x80020515000000E0ULL,
427         /* Write data */
428         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
429         END_SIGN
430 };
431
432 /*
433  * Constants for Fixing the MacAddress problem seen mostly on
434  * Alpha machines.
435  */
436 static const u64 fix_mac[] = {
437         0x0060000000000000ULL, 0x0060600000000000ULL,
438         0x0040600000000000ULL, 0x0000600000000000ULL,
439         0x0020600000000000ULL, 0x0060600000000000ULL,
440         0x0020600000000000ULL, 0x0060600000000000ULL,
441         0x0020600000000000ULL, 0x0060600000000000ULL,
442         0x0020600000000000ULL, 0x0060600000000000ULL,
443         0x0020600000000000ULL, 0x0060600000000000ULL,
444         0x0020600000000000ULL, 0x0060600000000000ULL,
445         0x0020600000000000ULL, 0x0060600000000000ULL,
446         0x0020600000000000ULL, 0x0060600000000000ULL,
447         0x0020600000000000ULL, 0x0060600000000000ULL,
448         0x0020600000000000ULL, 0x0060600000000000ULL,
449         0x0020600000000000ULL, 0x0000600000000000ULL,
450         0x0040600000000000ULL, 0x0060600000000000ULL,
451         END_SIGN
452 };
453
454 MODULE_LICENSE("GPL");
455 MODULE_VERSION(DRV_VERSION);
456
457
458 /* Module Loadable parameters. */
459 S2IO_PARM_INT(tx_fifo_num, 1);
460 S2IO_PARM_INT(rx_ring_num, 1);
461
462
463 S2IO_PARM_INT(rx_ring_mode, 1);
464 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
465 S2IO_PARM_INT(rmac_pause_time, 0x100);
466 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
467 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
468 S2IO_PARM_INT(shared_splits, 0);
469 S2IO_PARM_INT(tmac_util_period, 5);
470 S2IO_PARM_INT(rmac_util_period, 5);
471 S2IO_PARM_INT(l3l4hdr_size, 128);
472 /* Frequency of Rx desc syncs expressed as power of 2 */
473 S2IO_PARM_INT(rxsync_frequency, 3);
474 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
475 S2IO_PARM_INT(intr_type, 2);
476 /* Large receive offload feature */
477 static unsigned int lro_enable;
478 module_param_named(lro, lro_enable, uint, 0);
479
480 /* Max pkts to be aggregated by LRO at one time. If not specified,
481  * aggregation happens until we hit max IP pkt size(64K)
482  */
483 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
484 S2IO_PARM_INT(indicate_max_pkts, 0);
485
486 S2IO_PARM_INT(napi, 1);
487 S2IO_PARM_INT(ufo, 0);
488 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
489
490 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
491     {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
492 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
493     {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
494 static unsigned int rts_frm_len[MAX_RX_RINGS] =
495     {[0 ...(MAX_RX_RINGS - 1)] = 0 };
496
497 module_param_array(tx_fifo_len, uint, NULL, 0);
498 module_param_array(rx_ring_sz, uint, NULL, 0);
499 module_param_array(rts_frm_len, uint, NULL, 0);
500
501 /*
502  * S2IO device table.
503  * This table lists all the devices that this driver supports.
504  */
505 static struct pci_device_id s2io_tbl[] __devinitdata = {
506         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
507          PCI_ANY_ID, PCI_ANY_ID},
508         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
509          PCI_ANY_ID, PCI_ANY_ID},
510         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
511          PCI_ANY_ID, PCI_ANY_ID},
512         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
513          PCI_ANY_ID, PCI_ANY_ID},
514         {0,}
515 };
516
517 MODULE_DEVICE_TABLE(pci, s2io_tbl);
518
519 static struct pci_error_handlers s2io_err_handler = {
520         .error_detected = s2io_io_error_detected,
521         .slot_reset = s2io_io_slot_reset,
522         .resume = s2io_io_resume,
523 };
524
525 static struct pci_driver s2io_driver = {
526       .name = "S2IO",
527       .id_table = s2io_tbl,
528       .probe = s2io_init_nic,
529       .remove = __devexit_p(s2io_rem_nic),
530       .err_handler = &s2io_err_handler,
531 };
532
533 /* A simplifier macro used both by init and free shared_mem Fns(). */
534 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
535
536 /**
537  * init_shared_mem - Allocation and Initialization of Memory
538  * @nic: Device private variable.
539  * Description: The function allocates all the memory areas shared
540  * between the NIC and the driver. This includes Tx descriptors,
541  * Rx descriptors and the statistics block.
542  */
543
544 static int init_shared_mem(struct s2io_nic *nic)
545 {
546         u32 size;
547         void *tmp_v_addr, *tmp_v_addr_next;
548         dma_addr_t tmp_p_addr, tmp_p_addr_next;
549         struct RxD_block *pre_rxd_blk = NULL;
550         int i, j, blk_cnt;
551         int lst_size, lst_per_page;
552         struct net_device *dev = nic->dev;
553         unsigned long tmp;
554         struct buffAdd *ba;
555
556         struct mac_info *mac_control;
557         struct config_param *config;
558         unsigned long long mem_allocated = 0;
559
560         mac_control = &nic->mac_control;
561         config = &nic->config;
562
563
564         /* Allocation and initialization of TXDLs in FIOFs */
565         size = 0;
566         for (i = 0; i < config->tx_fifo_num; i++) {
567                 size += config->tx_cfg[i].fifo_len;
568         }
569         if (size > MAX_AVAILABLE_TXDS) {
570                 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
571                 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
572                 return -EINVAL;
573         }
574
575         size = 0;
576         for (i = 0; i < config->tx_fifo_num; i++) {
577                 size = config->tx_cfg[i].fifo_len;
578                 /*
579                  * Legal values are from 2 to 8192
580                  */
581                 if (size < 2) {
582                         DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
583                         DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
584                         DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
585                                 "are 2 to 8192\n");
586                         return -EINVAL;
587                 }
588         }
589
590         lst_size = (sizeof(struct TxD) * config->max_txds);
591         lst_per_page = PAGE_SIZE / lst_size;
592
593         for (i = 0; i < config->tx_fifo_num; i++) {
594                 int fifo_len = config->tx_cfg[i].fifo_len;
595                 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
596                 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
597                                                           GFP_KERNEL);
598                 if (!mac_control->fifos[i].list_info) {
599                         DBG_PRINT(INFO_DBG,
600                                   "Malloc failed for list_info\n");
601                         return -ENOMEM;
602                 }
603                 mem_allocated += list_holder_size;
604         }
605         for (i = 0; i < config->tx_fifo_num; i++) {
606                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
607                                                 lst_per_page);
608                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
609                 mac_control->fifos[i].tx_curr_put_info.fifo_len =
610                     config->tx_cfg[i].fifo_len - 1;
611                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
612                 mac_control->fifos[i].tx_curr_get_info.fifo_len =
613                     config->tx_cfg[i].fifo_len - 1;
614                 mac_control->fifos[i].fifo_no = i;
615                 mac_control->fifos[i].nic = nic;
616                 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
617
618                 for (j = 0; j < page_num; j++) {
619                         int k = 0;
620                         dma_addr_t tmp_p;
621                         void *tmp_v;
622                         tmp_v = pci_alloc_consistent(nic->pdev,
623                                                      PAGE_SIZE, &tmp_p);
624                         if (!tmp_v) {
625                                 DBG_PRINT(INFO_DBG,
626                                           "pci_alloc_consistent ");
627                                 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
628                                 return -ENOMEM;
629                         }
630                         /* If we got a zero DMA address(can happen on
631                          * certain platforms like PPC), reallocate.
632                          * Store virtual address of page we don't want,
633                          * to be freed later.
634                          */
635                         if (!tmp_p) {
636                                 mac_control->zerodma_virt_addr = tmp_v;
637                                 DBG_PRINT(INIT_DBG,
638                                 "%s: Zero DMA address for TxDL. ", dev->name);
639                                 DBG_PRINT(INIT_DBG,
640                                 "Virtual address %p\n", tmp_v);
641                                 tmp_v = pci_alloc_consistent(nic->pdev,
642                                                      PAGE_SIZE, &tmp_p);
643                                 if (!tmp_v) {
644                                         DBG_PRINT(INFO_DBG,
645                                           "pci_alloc_consistent ");
646                                         DBG_PRINT(INFO_DBG, "failed for TxDL\n");
647                                         return -ENOMEM;
648                                 }
649                                 mem_allocated += PAGE_SIZE;
650                         }
651                         while (k < lst_per_page) {
652                                 int l = (j * lst_per_page) + k;
653                                 if (l == config->tx_cfg[i].fifo_len)
654                                         break;
655                                 mac_control->fifos[i].list_info[l].list_virt_addr =
656                                     tmp_v + (k * lst_size);
657                                 mac_control->fifos[i].list_info[l].list_phy_addr =
658                                     tmp_p + (k * lst_size);
659                                 k++;
660                         }
661                 }
662         }
663
664         for (i = 0; i < config->tx_fifo_num; i++) {
665                 size = config->tx_cfg[i].fifo_len;
666                 mac_control->fifos[i].ufo_in_band_v
667                         = kcalloc(size, sizeof(u64), GFP_KERNEL);
668                 if (!mac_control->fifos[i].ufo_in_band_v)
669                         return -ENOMEM;
670                 mem_allocated += (size * sizeof(u64));
671         }
672
673         /* Allocation and initialization of RXDs in Rings */
674         size = 0;
675         for (i = 0; i < config->rx_ring_num; i++) {
676                 if (config->rx_cfg[i].num_rxd %
677                     (rxd_count[nic->rxd_mode] + 1)) {
678                         DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
679                         DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
680                                   i);
681                         DBG_PRINT(ERR_DBG, "RxDs per Block");
682                         return FAILURE;
683                 }
684                 size += config->rx_cfg[i].num_rxd;
685                 mac_control->rings[i].block_count =
686                         config->rx_cfg[i].num_rxd /
687                         (rxd_count[nic->rxd_mode] + 1 );
688                 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
689                         mac_control->rings[i].block_count;
690         }
691         if (nic->rxd_mode == RXD_MODE_1)
692                 size = (size * (sizeof(struct RxD1)));
693         else
694                 size = (size * (sizeof(struct RxD3)));
695
696         for (i = 0; i < config->rx_ring_num; i++) {
697                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
698                 mac_control->rings[i].rx_curr_get_info.offset = 0;
699                 mac_control->rings[i].rx_curr_get_info.ring_len =
700                     config->rx_cfg[i].num_rxd - 1;
701                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
702                 mac_control->rings[i].rx_curr_put_info.offset = 0;
703                 mac_control->rings[i].rx_curr_put_info.ring_len =
704                     config->rx_cfg[i].num_rxd - 1;
705                 mac_control->rings[i].nic = nic;
706                 mac_control->rings[i].ring_no = i;
707
708                 blk_cnt = config->rx_cfg[i].num_rxd /
709                                 (rxd_count[nic->rxd_mode] + 1);
710                 /*  Allocating all the Rx blocks */
711                 for (j = 0; j < blk_cnt; j++) {
712                         struct rx_block_info *rx_blocks;
713                         int l;
714
715                         rx_blocks = &mac_control->rings[i].rx_blocks[j];
716                         size = SIZE_OF_BLOCK; //size is always page size
717                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
718                                                           &tmp_p_addr);
719                         if (tmp_v_addr == NULL) {
720                                 /*
721                                  * In case of failure, free_shared_mem()
722                                  * is called, which should free any
723                                  * memory that was alloced till the
724                                  * failure happened.
725                                  */
726                                 rx_blocks->block_virt_addr = tmp_v_addr;
727                                 return -ENOMEM;
728                         }
729                         mem_allocated += size;
730                         memset(tmp_v_addr, 0, size);
731                         rx_blocks->block_virt_addr = tmp_v_addr;
732                         rx_blocks->block_dma_addr = tmp_p_addr;
733                         rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
734                                                   rxd_count[nic->rxd_mode],
735                                                   GFP_KERNEL);
736                         if (!rx_blocks->rxds)
737                                 return -ENOMEM;
738                         mem_allocated +=
739                         (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
740                         for (l=0; l<rxd_count[nic->rxd_mode];l++) {
741                                 rx_blocks->rxds[l].virt_addr =
742                                         rx_blocks->block_virt_addr +
743                                         (rxd_size[nic->rxd_mode] * l);
744                                 rx_blocks->rxds[l].dma_addr =
745                                         rx_blocks->block_dma_addr +
746                                         (rxd_size[nic->rxd_mode] * l);
747                         }
748                 }
749                 /* Interlinking all Rx Blocks */
750                 for (j = 0; j < blk_cnt; j++) {
751                         tmp_v_addr =
752                                 mac_control->rings[i].rx_blocks[j].block_virt_addr;
753                         tmp_v_addr_next =
754                                 mac_control->rings[i].rx_blocks[(j + 1) %
755                                               blk_cnt].block_virt_addr;
756                         tmp_p_addr =
757                                 mac_control->rings[i].rx_blocks[j].block_dma_addr;
758                         tmp_p_addr_next =
759                                 mac_control->rings[i].rx_blocks[(j + 1) %
760                                               blk_cnt].block_dma_addr;
761
762                         pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
763                         pre_rxd_blk->reserved_2_pNext_RxD_block =
764                             (unsigned long) tmp_v_addr_next;
765                         pre_rxd_blk->pNext_RxD_Blk_physical =
766                             (u64) tmp_p_addr_next;
767                 }
768         }
769         if (nic->rxd_mode == RXD_MODE_3B) {
770                 /*
771                  * Allocation of Storages for buffer addresses in 2BUFF mode
772                  * and the buffers as well.
773                  */
774                 for (i = 0; i < config->rx_ring_num; i++) {
775                         blk_cnt = config->rx_cfg[i].num_rxd /
776                            (rxd_count[nic->rxd_mode]+ 1);
777                         mac_control->rings[i].ba =
778                                 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
779                                      GFP_KERNEL);
780                         if (!mac_control->rings[i].ba)
781                                 return -ENOMEM;
782                         mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
783                         for (j = 0; j < blk_cnt; j++) {
784                                 int k = 0;
785                                 mac_control->rings[i].ba[j] =
786                                         kmalloc((sizeof(struct buffAdd) *
787                                                 (rxd_count[nic->rxd_mode] + 1)),
788                                                 GFP_KERNEL);
789                                 if (!mac_control->rings[i].ba[j])
790                                         return -ENOMEM;
791                                 mem_allocated += (sizeof(struct buffAdd) *  \
792                                         (rxd_count[nic->rxd_mode] + 1));
793                                 while (k != rxd_count[nic->rxd_mode]) {
794                                         ba = &mac_control->rings[i].ba[j][k];
795
796                                         ba->ba_0_org = (void *) kmalloc
797                                             (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
798                                         if (!ba->ba_0_org)
799                                                 return -ENOMEM;
800                                         mem_allocated +=
801                                                 (BUF0_LEN + ALIGN_SIZE);
802                                         tmp = (unsigned long)ba->ba_0_org;
803                                         tmp += ALIGN_SIZE;
804                                         tmp &= ~((unsigned long) ALIGN_SIZE);
805                                         ba->ba_0 = (void *) tmp;
806
807                                         ba->ba_1_org = (void *) kmalloc
808                                             (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
809                                         if (!ba->ba_1_org)
810                                                 return -ENOMEM;
811                                         mem_allocated
812                                                 += (BUF1_LEN + ALIGN_SIZE);
813                                         tmp = (unsigned long) ba->ba_1_org;
814                                         tmp += ALIGN_SIZE;
815                                         tmp &= ~((unsigned long) ALIGN_SIZE);
816                                         ba->ba_1 = (void *) tmp;
817                                         k++;
818                                 }
819                         }
820                 }
821         }
822
823         /* Allocation and initialization of Statistics block */
824         size = sizeof(struct stat_block);
825         mac_control->stats_mem = pci_alloc_consistent
826             (nic->pdev, size, &mac_control->stats_mem_phy);
827
828         if (!mac_control->stats_mem) {
829                 /*
830                  * In case of failure, free_shared_mem() is called, which
831                  * should free any memory that was alloced till the
832                  * failure happened.
833                  */
834                 return -ENOMEM;
835         }
836         mem_allocated += size;
837         mac_control->stats_mem_sz = size;
838
839         tmp_v_addr = mac_control->stats_mem;
840         mac_control->stats_info = (struct stat_block *) tmp_v_addr;
841         memset(tmp_v_addr, 0, size);
842         DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
843                   (unsigned long long) tmp_p_addr);
844         mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
845         return SUCCESS;
846 }
847
848 /**
849  * free_shared_mem - Free the allocated Memory
850  * @nic:  Device private variable.
851  * Description: This function is to free all memory locations allocated by
852  * the init_shared_mem() function and return it to the kernel.
853  */
854
855 static void free_shared_mem(struct s2io_nic *nic)
856 {
857         int i, j, blk_cnt, size;
858         void *tmp_v_addr;
859         dma_addr_t tmp_p_addr;
860         struct mac_info *mac_control;
861         struct config_param *config;
862         int lst_size, lst_per_page;
863         struct net_device *dev;
864         int page_num = 0;
865
866         if (!nic)
867                 return;
868
869         dev = nic->dev;
870
871         mac_control = &nic->mac_control;
872         config = &nic->config;
873
874         lst_size = (sizeof(struct TxD) * config->max_txds);
875         lst_per_page = PAGE_SIZE / lst_size;
876
877         for (i = 0; i < config->tx_fifo_num; i++) {
878                 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
879                                                         lst_per_page);
880                 for (j = 0; j < page_num; j++) {
881                         int mem_blks = (j * lst_per_page);
882                         if (!mac_control->fifos[i].list_info)
883                                 return;
884                         if (!mac_control->fifos[i].list_info[mem_blks].
885                                  list_virt_addr)
886                                 break;
887                         pci_free_consistent(nic->pdev, PAGE_SIZE,
888                                             mac_control->fifos[i].
889                                             list_info[mem_blks].
890                                             list_virt_addr,
891                                             mac_control->fifos[i].
892                                             list_info[mem_blks].
893                                             list_phy_addr);
894                         nic->mac_control.stats_info->sw_stat.mem_freed
895                                                 += PAGE_SIZE;
896                 }
897                 /* If we got a zero DMA address during allocation,
898                  * free the page now
899                  */
900                 if (mac_control->zerodma_virt_addr) {
901                         pci_free_consistent(nic->pdev, PAGE_SIZE,
902                                             mac_control->zerodma_virt_addr,
903                                             (dma_addr_t)0);
904                         DBG_PRINT(INIT_DBG,
905                                 "%s: Freeing TxDL with zero DMA addr. ",
906                                 dev->name);
907                         DBG_PRINT(INIT_DBG, "Virtual address %p\n",
908                                 mac_control->zerodma_virt_addr);
909                         nic->mac_control.stats_info->sw_stat.mem_freed
910                                                 += PAGE_SIZE;
911                 }
912                 kfree(mac_control->fifos[i].list_info);
913                 nic->mac_control.stats_info->sw_stat.mem_freed +=
914                 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
915         }
916
917         size = SIZE_OF_BLOCK;
918         for (i = 0; i < config->rx_ring_num; i++) {
919                 blk_cnt = mac_control->rings[i].block_count;
920                 for (j = 0; j < blk_cnt; j++) {
921                         tmp_v_addr = mac_control->rings[i].rx_blocks[j].
922                                 block_virt_addr;
923                         tmp_p_addr = mac_control->rings[i].rx_blocks[j].
924                                 block_dma_addr;
925                         if (tmp_v_addr == NULL)
926                                 break;
927                         pci_free_consistent(nic->pdev, size,
928                                             tmp_v_addr, tmp_p_addr);
929                         nic->mac_control.stats_info->sw_stat.mem_freed += size;
930                         kfree(mac_control->rings[i].rx_blocks[j].rxds);
931                         nic->mac_control.stats_info->sw_stat.mem_freed +=
932                         ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
933                 }
934         }
935
936         if (nic->rxd_mode == RXD_MODE_3B) {
937                 /* Freeing buffer storage addresses in 2BUFF mode. */
938                 for (i = 0; i < config->rx_ring_num; i++) {
939                         blk_cnt = config->rx_cfg[i].num_rxd /
940                             (rxd_count[nic->rxd_mode] + 1);
941                         for (j = 0; j < blk_cnt; j++) {
942                                 int k = 0;
943                                 if (!mac_control->rings[i].ba[j])
944                                         continue;
945                                 while (k != rxd_count[nic->rxd_mode]) {
946                                         struct buffAdd *ba =
947                                                 &mac_control->rings[i].ba[j][k];
948                                         kfree(ba->ba_0_org);
949                                         nic->mac_control.stats_info->sw_stat.\
950                                         mem_freed += (BUF0_LEN + ALIGN_SIZE);
951                                         kfree(ba->ba_1_org);
952                                         nic->mac_control.stats_info->sw_stat.\
953                                         mem_freed += (BUF1_LEN + ALIGN_SIZE);
954                                         k++;
955                                 }
956                                 kfree(mac_control->rings[i].ba[j]);
957                                 nic->mac_control.stats_info->sw_stat.mem_freed +=
958                                         (sizeof(struct buffAdd) *
959                                         (rxd_count[nic->rxd_mode] + 1));
960                         }
961                         kfree(mac_control->rings[i].ba);
962                         nic->mac_control.stats_info->sw_stat.mem_freed +=
963                         (sizeof(struct buffAdd *) * blk_cnt);
964                 }
965         }
966
967         for (i = 0; i < nic->config.tx_fifo_num; i++) {
968                 if (mac_control->fifos[i].ufo_in_band_v) {
969                         nic->mac_control.stats_info->sw_stat.mem_freed
970                                 += (config->tx_cfg[i].fifo_len * sizeof(u64));
971                         kfree(mac_control->fifos[i].ufo_in_band_v);
972                 }
973         }
974
975         if (mac_control->stats_mem) {
976                 nic->mac_control.stats_info->sw_stat.mem_freed +=
977                         mac_control->stats_mem_sz;
978                 pci_free_consistent(nic->pdev,
979                                     mac_control->stats_mem_sz,
980                                     mac_control->stats_mem,
981                                     mac_control->stats_mem_phy);
982         }
983 }
984
985 /**
986  * s2io_verify_pci_mode -
987  */
988
989 static int s2io_verify_pci_mode(struct s2io_nic *nic)
990 {
991         struct XENA_dev_config __iomem *bar0 = nic->bar0;
992         register u64 val64 = 0;
993         int     mode;
994
995         val64 = readq(&bar0->pci_mode);
996         mode = (u8)GET_PCI_MODE(val64);
997
998         if ( val64 & PCI_MODE_UNKNOWN_MODE)
999                 return -1;      /* Unknown PCI mode */
1000         return mode;
1001 }
1002
1003 #define NEC_VENID   0x1033
1004 #define NEC_DEVID   0x0125
1005 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1006 {
1007         struct pci_dev *tdev = NULL;
1008         while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1009                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1010                         if (tdev->bus == s2io_pdev->bus->parent)
1011                                 pci_dev_put(tdev);
1012                                 return 1;
1013                 }
1014         }
1015         return 0;
1016 }
1017
1018 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1019 /**
1020  * s2io_print_pci_mode -
1021  */
1022 static int s2io_print_pci_mode(struct s2io_nic *nic)
1023 {
1024         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1025         register u64 val64 = 0;
1026         int     mode;
1027         struct config_param *config = &nic->config;
1028
1029         val64 = readq(&bar0->pci_mode);
1030         mode = (u8)GET_PCI_MODE(val64);
1031
1032         if ( val64 & PCI_MODE_UNKNOWN_MODE)
1033                 return -1;      /* Unknown PCI mode */
1034
1035         config->bus_speed = bus_speed[mode];
1036
1037         if (s2io_on_nec_bridge(nic->pdev)) {
1038                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1039                                                         nic->dev->name);
1040                 return mode;
1041         }
1042
1043         if (val64 & PCI_MODE_32_BITS) {
1044                 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1045         } else {
1046                 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1047         }
1048
1049         switch(mode) {
1050                 case PCI_MODE_PCI_33:
1051                         DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1052                         break;
1053                 case PCI_MODE_PCI_66:
1054                         DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1055                         break;
1056                 case PCI_MODE_PCIX_M1_66:
1057                         DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1058                         break;
1059                 case PCI_MODE_PCIX_M1_100:
1060                         DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1061                         break;
1062                 case PCI_MODE_PCIX_M1_133:
1063                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1064                         break;
1065                 case PCI_MODE_PCIX_M2_66:
1066                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1067                         break;
1068                 case PCI_MODE_PCIX_M2_100:
1069                         DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1070                         break;
1071                 case PCI_MODE_PCIX_M2_133:
1072                         DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1073                         break;
1074                 default:
1075                         return -1;      /* Unsupported bus speed */
1076         }
1077
1078         return mode;
1079 }
1080
1081 /**
1082  *  init_tti - Initialization transmit traffic interrupt scheme
1083  *  @nic: device private variable
1084  *  @link: link status (UP/DOWN) used to enable/disable continuous
1085  *  transmit interrupts
1086  *  Description: The function configures transmit traffic interrupts
1087  *  Return Value:  SUCCESS on success and
1088  *  '-1' on failure
1089  */
1090
1091 static int init_tti(struct s2io_nic *nic, int link)
1092 {
1093         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1094         register u64 val64 = 0;
1095         int i;
1096         struct config_param *config;
1097
1098         config = &nic->config;
1099
1100         for (i = 0; i < config->tx_fifo_num; i++) {
1101                 /*
1102                  * TTI Initialization. Default Tx timer gets us about
1103                  * 250 interrupts per sec. Continuous interrupts are enabled
1104                  * by default.
1105                  */
1106                 if (nic->device_type == XFRAME_II_DEVICE) {
1107                         int count = (nic->config.bus_speed * 125)/2;
1108                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1109                 } else
1110                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1111
1112                 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1113                                 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1114                                 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1115                                 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1116
1117                 if (use_continuous_tx_intrs && (link == LINK_UP))
1118                         val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1119                 writeq(val64, &bar0->tti_data1_mem);
1120
1121                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1122                                 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1123                                 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1124                                 TTI_DATA2_MEM_TX_UFC_D(0x80);
1125
1126                 writeq(val64, &bar0->tti_data2_mem);
1127
1128                 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD |
1129                                 TTI_CMD_MEM_OFFSET(i);
1130                 writeq(val64, &bar0->tti_command_mem);
1131
1132                 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1133                         TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS)
1134                         return FAILURE;
1135         }
1136
1137         return SUCCESS;
1138 }
1139
1140 /**
1141  *  init_nic - Initialization of hardware
1142  *  @nic: device private variable
1143  *  Description: The function sequentially configures every block
1144  *  of the H/W from their reset values.
1145  *  Return Value:  SUCCESS on success and
1146  *  '-1' on failure (endian settings incorrect).
1147  */
1148
1149 static int init_nic(struct s2io_nic *nic)
1150 {
1151         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1152         struct net_device *dev = nic->dev;
1153         register u64 val64 = 0;
1154         void __iomem *add;
1155         u32 time;
1156         int i, j;
1157         struct mac_info *mac_control;
1158         struct config_param *config;
1159         int dtx_cnt = 0;
1160         unsigned long long mem_share;
1161         int mem_size;
1162
1163         mac_control = &nic->mac_control;
1164         config = &nic->config;
1165
1166         /* to set the swapper controle on the card */
1167         if(s2io_set_swapper(nic)) {
1168                 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1169                 return -EIO;
1170         }
1171
1172         /*
1173          * Herc requires EOI to be removed from reset before XGXS, so..
1174          */
1175         if (nic->device_type & XFRAME_II_DEVICE) {
1176                 val64 = 0xA500000000ULL;
1177                 writeq(val64, &bar0->sw_reset);
1178                 msleep(500);
1179                 val64 = readq(&bar0->sw_reset);
1180         }
1181
1182         /* Remove XGXS from reset state */
1183         val64 = 0;
1184         writeq(val64, &bar0->sw_reset);
1185         msleep(500);
1186         val64 = readq(&bar0->sw_reset);
1187
1188         /* Ensure that it's safe to access registers by checking
1189          * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1190          */
1191         if (nic->device_type == XFRAME_II_DEVICE) {
1192                 for (i = 0; i < 50; i++) {
1193                         val64 = readq(&bar0->adapter_status);
1194                         if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1195                                 break;
1196                         msleep(10);
1197                 }
1198                 if (i == 50)
1199                         return -ENODEV;
1200         }
1201
1202         /*  Enable Receiving broadcasts */
1203         add = &bar0->mac_cfg;
1204         val64 = readq(&bar0->mac_cfg);
1205         val64 |= MAC_RMAC_BCAST_ENABLE;
1206         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1207         writel((u32) val64, add);
1208         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1209         writel((u32) (val64 >> 32), (add + 4));
1210
1211         /* Read registers in all blocks */
1212         val64 = readq(&bar0->mac_int_mask);
1213         val64 = readq(&bar0->mc_int_mask);
1214         val64 = readq(&bar0->xgxs_int_mask);
1215
1216         /*  Set MTU */
1217         val64 = dev->mtu;
1218         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1219
1220         if (nic->device_type & XFRAME_II_DEVICE) {
1221                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1222                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1223                                           &bar0->dtx_control, UF);
1224                         if (dtx_cnt & 0x1)
1225                                 msleep(1); /* Necessary!! */
1226                         dtx_cnt++;
1227                 }
1228         } else {
1229                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1230                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1231                                           &bar0->dtx_control, UF);
1232                         val64 = readq(&bar0->dtx_control);
1233                         dtx_cnt++;
1234                 }
1235         }
1236
1237         /*  Tx DMA Initialization */
1238         val64 = 0;
1239         writeq(val64, &bar0->tx_fifo_partition_0);
1240         writeq(val64, &bar0->tx_fifo_partition_1);
1241         writeq(val64, &bar0->tx_fifo_partition_2);
1242         writeq(val64, &bar0->tx_fifo_partition_3);
1243
1244
1245         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1246                 val64 |=
1247                     vBIT(config->tx_cfg[i].fifo_len - 1, ((j * 32) + 19),
1248                          13) | vBIT(config->tx_cfg[i].fifo_priority,
1249                                     ((j * 32) + 5), 3);
1250
1251                 if (i == (config->tx_fifo_num - 1)) {
1252                         if (i % 2 == 0)
1253                                 i++;
1254                 }
1255
1256                 switch (i) {
1257                 case 1:
1258                         writeq(val64, &bar0->tx_fifo_partition_0);
1259                         val64 = 0;
1260                         j = 0;
1261                         break;
1262                 case 3:
1263                         writeq(val64, &bar0->tx_fifo_partition_1);
1264                         val64 = 0;
1265                         j = 0;
1266                         break;
1267                 case 5:
1268                         writeq(val64, &bar0->tx_fifo_partition_2);
1269                         val64 = 0;
1270                         j = 0;
1271                         break;
1272                 case 7:
1273                         writeq(val64, &bar0->tx_fifo_partition_3);
1274                         val64 = 0;
1275                         j = 0;
1276                         break;
1277                 default:
1278                         j++;
1279                         break;
1280                 }
1281         }
1282
1283         /*
1284          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1285          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1286          */
1287         if ((nic->device_type == XFRAME_I_DEVICE) &&
1288                 (nic->pdev->revision < 4))
1289                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1290
1291         val64 = readq(&bar0->tx_fifo_partition_0);
1292         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1293                   &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1294
1295         /*
1296          * Initialization of Tx_PA_CONFIG register to ignore packet
1297          * integrity checking.
1298          */
1299         val64 = readq(&bar0->tx_pa_cfg);
1300         val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1301             TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1302         writeq(val64, &bar0->tx_pa_cfg);
1303
1304         /* Rx DMA intialization. */
1305         val64 = 0;
1306         for (i = 0; i < config->rx_ring_num; i++) {
1307                 val64 |=
1308                     vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1309                          3);
1310         }
1311         writeq(val64, &bar0->rx_queue_priority);
1312
1313         /*
1314          * Allocating equal share of memory to all the
1315          * configured Rings.
1316          */
1317         val64 = 0;
1318         if (nic->device_type & XFRAME_II_DEVICE)
1319                 mem_size = 32;
1320         else
1321                 mem_size = 64;
1322
1323         for (i = 0; i < config->rx_ring_num; i++) {
1324                 switch (i) {
1325                 case 0:
1326                         mem_share = (mem_size / config->rx_ring_num +
1327                                      mem_size % config->rx_ring_num);
1328                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1329                         continue;
1330                 case 1:
1331                         mem_share = (mem_size / config->rx_ring_num);
1332                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1333                         continue;
1334                 case 2:
1335                         mem_share = (mem_size / config->rx_ring_num);
1336                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1337                         continue;
1338                 case 3:
1339                         mem_share = (mem_size / config->rx_ring_num);
1340                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1341                         continue;
1342                 case 4:
1343                         mem_share = (mem_size / config->rx_ring_num);
1344                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1345                         continue;
1346                 case 5:
1347                         mem_share = (mem_size / config->rx_ring_num);
1348                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1349                         continue;
1350                 case 6:
1351                         mem_share = (mem_size / config->rx_ring_num);
1352                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1353                         continue;
1354                 case 7:
1355                         mem_share = (mem_size / config->rx_ring_num);
1356                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1357                         continue;
1358                 }
1359         }
1360         writeq(val64, &bar0->rx_queue_cfg);
1361
1362         /*
1363          * Filling Tx round robin registers
1364          * as per the number of FIFOs for equal scheduling priority
1365          */
1366         switch (config->tx_fifo_num) {
1367         case 1:
1368                 val64 = 0x0;
1369                 writeq(val64, &bar0->tx_w_round_robin_0);
1370                 writeq(val64, &bar0->tx_w_round_robin_1);
1371                 writeq(val64, &bar0->tx_w_round_robin_2);
1372                 writeq(val64, &bar0->tx_w_round_robin_3);
1373                 writeq(val64, &bar0->tx_w_round_robin_4);
1374                 break;
1375         case 2:
1376                 val64 = 0x0001000100010001ULL;
1377                 writeq(val64, &bar0->tx_w_round_robin_0);
1378                 writeq(val64, &bar0->tx_w_round_robin_1);
1379                 writeq(val64, &bar0->tx_w_round_robin_2);
1380                 writeq(val64, &bar0->tx_w_round_robin_3);
1381                 val64 = 0x0001000100000000ULL;
1382                 writeq(val64, &bar0->tx_w_round_robin_4);
1383                 break;
1384         case 3:
1385                 val64 = 0x0001020001020001ULL;
1386                 writeq(val64, &bar0->tx_w_round_robin_0);
1387                 val64 = 0x0200010200010200ULL;
1388                 writeq(val64, &bar0->tx_w_round_robin_1);
1389                 val64 = 0x0102000102000102ULL;
1390                 writeq(val64, &bar0->tx_w_round_robin_2);
1391                 val64 = 0x0001020001020001ULL;
1392                 writeq(val64, &bar0->tx_w_round_robin_3);
1393                 val64 = 0x0200010200000000ULL;
1394                 writeq(val64, &bar0->tx_w_round_robin_4);
1395                 break;
1396         case 4:
1397                 val64 = 0x0001020300010203ULL;
1398                 writeq(val64, &bar0->tx_w_round_robin_0);
1399                 writeq(val64, &bar0->tx_w_round_robin_1);
1400                 writeq(val64, &bar0->tx_w_round_robin_2);
1401                 writeq(val64, &bar0->tx_w_round_robin_3);
1402                 val64 = 0x0001020300000000ULL;
1403                 writeq(val64, &bar0->tx_w_round_robin_4);
1404                 break;
1405         case 5:
1406                 val64 = 0x0001020304000102ULL;
1407                 writeq(val64, &bar0->tx_w_round_robin_0);
1408                 val64 = 0x0304000102030400ULL;
1409                 writeq(val64, &bar0->tx_w_round_robin_1);
1410                 val64 = 0x0102030400010203ULL;
1411                 writeq(val64, &bar0->tx_w_round_robin_2);
1412                 val64 = 0x0400010203040001ULL;
1413                 writeq(val64, &bar0->tx_w_round_robin_3);
1414                 val64 = 0x0203040000000000ULL;
1415                 writeq(val64, &bar0->tx_w_round_robin_4);
1416                 break;
1417         case 6:
1418                 val64 = 0x0001020304050001ULL;
1419                 writeq(val64, &bar0->tx_w_round_robin_0);
1420                 val64 = 0x0203040500010203ULL;
1421                 writeq(val64, &bar0->tx_w_round_robin_1);
1422                 val64 = 0x0405000102030405ULL;
1423                 writeq(val64, &bar0->tx_w_round_robin_2);
1424                 val64 = 0x0001020304050001ULL;
1425                 writeq(val64, &bar0->tx_w_round_robin_3);
1426                 val64 = 0x0203040500000000ULL;
1427                 writeq(val64, &bar0->tx_w_round_robin_4);
1428                 break;
1429         case 7:
1430                 val64 = 0x0001020304050600ULL;
1431                 writeq(val64, &bar0->tx_w_round_robin_0);
1432                 val64 = 0x0102030405060001ULL;
1433                 writeq(val64, &bar0->tx_w_round_robin_1);
1434                 val64 = 0x0203040506000102ULL;
1435                 writeq(val64, &bar0->tx_w_round_robin_2);
1436                 val64 = 0x0304050600010203ULL;
1437                 writeq(val64, &bar0->tx_w_round_robin_3);
1438                 val64 = 0x0405060000000000ULL;
1439                 writeq(val64, &bar0->tx_w_round_robin_4);
1440                 break;
1441         case 8:
1442                 val64 = 0x0001020304050607ULL;
1443                 writeq(val64, &bar0->tx_w_round_robin_0);
1444                 writeq(val64, &bar0->tx_w_round_robin_1);
1445                 writeq(val64, &bar0->tx_w_round_robin_2);
1446                 writeq(val64, &bar0->tx_w_round_robin_3);
1447                 val64 = 0x0001020300000000ULL;
1448                 writeq(val64, &bar0->tx_w_round_robin_4);
1449                 break;
1450         }
1451
1452         /* Enable all configured Tx FIFO partitions */
1453         val64 = readq(&bar0->tx_fifo_partition_0);
1454         val64 |= (TX_FIFO_PARTITION_EN);
1455         writeq(val64, &bar0->tx_fifo_partition_0);
1456
1457         /* Filling the Rx round robin registers as per the
1458          * number of Rings and steering based on QoS.
1459          */
1460         switch (config->rx_ring_num) {
1461         case 1:
1462                 val64 = 0x8080808080808080ULL;
1463                 writeq(val64, &bar0->rts_qos_steering);
1464                 break;
1465         case 2:
1466                 val64 = 0x0000010000010000ULL;
1467                 writeq(val64, &bar0->rx_w_round_robin_0);
1468                 val64 = 0x0100000100000100ULL;
1469                 writeq(val64, &bar0->rx_w_round_robin_1);
1470                 val64 = 0x0001000001000001ULL;
1471                 writeq(val64, &bar0->rx_w_round_robin_2);
1472                 val64 = 0x0000010000010000ULL;
1473                 writeq(val64, &bar0->rx_w_round_robin_3);
1474                 val64 = 0x0100000000000000ULL;
1475                 writeq(val64, &bar0->rx_w_round_robin_4);
1476
1477                 val64 = 0x8080808040404040ULL;
1478                 writeq(val64, &bar0->rts_qos_steering);
1479                 break;
1480         case 3:
1481                 val64 = 0x0001000102000001ULL;
1482                 writeq(val64, &bar0->rx_w_round_robin_0);
1483                 val64 = 0x0001020000010001ULL;
1484                 writeq(val64, &bar0->rx_w_round_robin_1);
1485                 val64 = 0x0200000100010200ULL;
1486                 writeq(val64, &bar0->rx_w_round_robin_2);
1487                 val64 = 0x0001000102000001ULL;
1488                 writeq(val64, &bar0->rx_w_round_robin_3);
1489                 val64 = 0x0001020000000000ULL;
1490                 writeq(val64, &bar0->rx_w_round_robin_4);
1491
1492                 val64 = 0x8080804040402020ULL;
1493                 writeq(val64, &bar0->rts_qos_steering);
1494                 break;
1495         case 4:
1496                 val64 = 0x0001020300010200ULL;
1497                 writeq(val64, &bar0->rx_w_round_robin_0);
1498                 val64 = 0x0100000102030001ULL;
1499                 writeq(val64, &bar0->rx_w_round_robin_1);
1500                 val64 = 0x0200010000010203ULL;
1501                 writeq(val64, &bar0->rx_w_round_robin_2);
1502                 val64 = 0x0001020001000001ULL;
1503                 writeq(val64, &bar0->rx_w_round_robin_3);
1504                 val64 = 0x0203000100000000ULL;
1505                 writeq(val64, &bar0->rx_w_round_robin_4);
1506
1507                 val64 = 0x8080404020201010ULL;
1508                 writeq(val64, &bar0->rts_qos_steering);
1509                 break;
1510         case 5:
1511                 val64 = 0x0001000203000102ULL;
1512                 writeq(val64, &bar0->rx_w_round_robin_0);
1513                 val64 = 0x0001020001030004ULL;
1514                 writeq(val64, &bar0->rx_w_round_robin_1);
1515                 val64 = 0x0001000203000102ULL;
1516                 writeq(val64, &bar0->rx_w_round_robin_2);
1517                 val64 = 0x0001020001030004ULL;
1518                 writeq(val64, &bar0->rx_w_round_robin_3);
1519                 val64 = 0x0001000000000000ULL;
1520                 writeq(val64, &bar0->rx_w_round_robin_4);
1521
1522                 val64 = 0x8080404020201008ULL;
1523                 writeq(val64, &bar0->rts_qos_steering);
1524                 break;
1525         case 6:
1526                 val64 = 0x0001020304000102ULL;
1527                 writeq(val64, &bar0->rx_w_round_robin_0);
1528                 val64 = 0x0304050001020001ULL;
1529                 writeq(val64, &bar0->rx_w_round_robin_1);
1530                 val64 = 0x0203000100000102ULL;
1531                 writeq(val64, &bar0->rx_w_round_robin_2);
1532                 val64 = 0x0304000102030405ULL;
1533                 writeq(val64, &bar0->rx_w_round_robin_3);
1534                 val64 = 0x0001000200000000ULL;
1535                 writeq(val64, &bar0->rx_w_round_robin_4);
1536
1537                 val64 = 0x8080404020100804ULL;
1538                 writeq(val64, &bar0->rts_qos_steering);
1539                 break;
1540         case 7:
1541                 val64 = 0x0001020001020300ULL;
1542                 writeq(val64, &bar0->rx_w_round_robin_0);
1543                 val64 = 0x0102030400010203ULL;
1544                 writeq(val64, &bar0->rx_w_round_robin_1);
1545                 val64 = 0x0405060001020001ULL;
1546                 writeq(val64, &bar0->rx_w_round_robin_2);
1547                 val64 = 0x0304050000010200ULL;
1548                 writeq(val64, &bar0->rx_w_round_robin_3);
1549                 val64 = 0x0102030000000000ULL;
1550                 writeq(val64, &bar0->rx_w_round_robin_4);
1551
1552                 val64 = 0x8080402010080402ULL;
1553                 writeq(val64, &bar0->rts_qos_steering);
1554                 break;
1555         case 8:
1556                 val64 = 0x0001020300040105ULL;
1557                 writeq(val64, &bar0->rx_w_round_robin_0);
1558                 val64 = 0x0200030106000204ULL;
1559                 writeq(val64, &bar0->rx_w_round_robin_1);
1560                 val64 = 0x0103000502010007ULL;
1561                 writeq(val64, &bar0->rx_w_round_robin_2);
1562                 val64 = 0x0304010002060500ULL;
1563                 writeq(val64, &bar0->rx_w_round_robin_3);
1564                 val64 = 0x0103020400000000ULL;
1565                 writeq(val64, &bar0->rx_w_round_robin_4);
1566
1567                 val64 = 0x8040201008040201ULL;
1568                 writeq(val64, &bar0->rts_qos_steering);
1569                 break;
1570         }
1571
1572         /* UDP Fix */
1573         val64 = 0;
1574         for (i = 0; i < 8; i++)
1575                 writeq(val64, &bar0->rts_frm_len_n[i]);
1576
1577         /* Set the default rts frame length for the rings configured */
1578         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1579         for (i = 0 ; i < config->rx_ring_num ; i++)
1580                 writeq(val64, &bar0->rts_frm_len_n[i]);
1581
1582         /* Set the frame length for the configured rings
1583          * desired by the user
1584          */
1585         for (i = 0; i < config->rx_ring_num; i++) {
1586                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1587                  * specified frame length steering.
1588                  * If the user provides the frame length then program
1589                  * the rts_frm_len register for those values or else
1590                  * leave it as it is.
1591                  */
1592                 if (rts_frm_len[i] != 0) {
1593                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1594                                 &bar0->rts_frm_len_n[i]);
1595                 }
1596         }
1597
1598         /* Disable differentiated services steering logic */
1599         for (i = 0; i < 64; i++) {
1600                 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1601                         DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1602                                 dev->name);
1603                         DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1604                         return -ENODEV;
1605                 }
1606         }
1607
1608         /* Program statistics memory */
1609         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1610
1611         if (nic->device_type == XFRAME_II_DEVICE) {
1612                 val64 = STAT_BC(0x320);
1613                 writeq(val64, &bar0->stat_byte_cnt);
1614         }
1615
1616         /*
1617          * Initializing the sampling rate for the device to calculate the
1618          * bandwidth utilization.
1619          */
1620         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1621             MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1622         writeq(val64, &bar0->mac_link_util);
1623
1624         /*
1625          * Initializing the Transmit and Receive Traffic Interrupt
1626          * Scheme.
1627          */
1628
1629         /* Initialize TTI */
1630         if (SUCCESS != init_tti(nic, nic->last_link_state))
1631                 return -ENODEV;
1632
1633         /* RTI Initialization */
1634         if (nic->device_type == XFRAME_II_DEVICE) {
1635                 /*
1636                  * Programmed to generate Apprx 500 Intrs per
1637                  * second
1638                  */
1639                 int count = (nic->config.bus_speed * 125)/4;
1640                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1641         } else
1642                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1643         val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1644                  RTI_DATA1_MEM_RX_URNG_B(0x10) |
1645                  RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1646
1647         writeq(val64, &bar0->rti_data1_mem);
1648
1649         val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1650                 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1651         if (nic->config.intr_type == MSI_X)
1652             val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1653                         RTI_DATA2_MEM_RX_UFC_D(0x40));
1654         else
1655             val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1656                         RTI_DATA2_MEM_RX_UFC_D(0x80));
1657         writeq(val64, &bar0->rti_data2_mem);
1658
1659         for (i = 0; i < config->rx_ring_num; i++) {
1660                 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1661                                 | RTI_CMD_MEM_OFFSET(i);
1662                 writeq(val64, &bar0->rti_command_mem);
1663
1664                 /*
1665                  * Once the operation completes, the Strobe bit of the
1666                  * command register will be reset. We poll for this
1667                  * particular condition. We wait for a maximum of 500ms
1668                  * for the operation to complete, if it's not complete
1669                  * by then we return error.
1670                  */
1671                 time = 0;
1672                 while (TRUE) {
1673                         val64 = readq(&bar0->rti_command_mem);
1674                         if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1675                                 break;
1676
1677                         if (time > 10) {
1678                                 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1679                                           dev->name);
1680                                 return -ENODEV;
1681                         }
1682                         time++;
1683                         msleep(50);
1684                 }
1685         }
1686
1687         /*
1688          * Initializing proper values as Pause threshold into all
1689          * the 8 Queues on Rx side.
1690          */
1691         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1692         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1693
1694         /* Disable RMAC PAD STRIPPING */
1695         add = &bar0->mac_cfg;
1696         val64 = readq(&bar0->mac_cfg);
1697         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1698         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1699         writel((u32) (val64), add);
1700         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1701         writel((u32) (val64 >> 32), (add + 4));
1702         val64 = readq(&bar0->mac_cfg);
1703
1704         /* Enable FCS stripping by adapter */
1705         add = &bar0->mac_cfg;
1706         val64 = readq(&bar0->mac_cfg);
1707         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1708         if (nic->device_type == XFRAME_II_DEVICE)
1709                 writeq(val64, &bar0->mac_cfg);
1710         else {
1711                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1712                 writel((u32) (val64), add);
1713                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1714                 writel((u32) (val64 >> 32), (add + 4));
1715         }
1716
1717         /*
1718          * Set the time value to be inserted in the pause frame
1719          * generated by xena.
1720          */
1721         val64 = readq(&bar0->rmac_pause_cfg);
1722         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1723         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1724         writeq(val64, &bar0->rmac_pause_cfg);
1725
1726         /*
1727          * Set the Threshold Limit for Generating the pause frame
1728          * If the amount of data in any Queue exceeds ratio of
1729          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1730          * pause frame is generated
1731          */
1732         val64 = 0;
1733         for (i = 0; i < 4; i++) {
1734                 val64 |=
1735                     (((u64) 0xFF00 | nic->mac_control.
1736                       mc_pause_threshold_q0q3)
1737                      << (i * 2 * 8));
1738         }
1739         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1740
1741         val64 = 0;
1742         for (i = 0; i < 4; i++) {
1743                 val64 |=
1744                     (((u64) 0xFF00 | nic->mac_control.
1745                       mc_pause_threshold_q4q7)
1746                      << (i * 2 * 8));
1747         }
1748         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1749
1750         /*
1751          * TxDMA will stop Read request if the number of read split has
1752          * exceeded the limit pointed by shared_splits
1753          */
1754         val64 = readq(&bar0->pic_control);
1755         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1756         writeq(val64, &bar0->pic_control);
1757
1758         if (nic->config.bus_speed == 266) {
1759                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1760                 writeq(0x0, &bar0->read_retry_delay);
1761                 writeq(0x0, &bar0->write_retry_delay);
1762         }
1763
1764         /*
1765          * Programming the Herc to split every write transaction
1766          * that does not start on an ADB to reduce disconnects.
1767          */
1768         if (nic->device_type == XFRAME_II_DEVICE) {
1769                 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1770                         MISC_LINK_STABILITY_PRD(3);
1771                 writeq(val64, &bar0->misc_control);
1772                 val64 = readq(&bar0->pic_control2);
1773                 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1774                 writeq(val64, &bar0->pic_control2);
1775         }
1776         if (strstr(nic->product_name, "CX4")) {
1777                 val64 = TMAC_AVG_IPG(0x17);
1778                 writeq(val64, &bar0->tmac_avg_ipg);
1779         }
1780
1781         return SUCCESS;
1782 }
1783 #define LINK_UP_DOWN_INTERRUPT          1
1784 #define MAC_RMAC_ERR_TIMER              2
1785
1786 static int s2io_link_fault_indication(struct s2io_nic *nic)
1787 {
1788         if (nic->config.intr_type != INTA)
1789                 return MAC_RMAC_ERR_TIMER;
1790         if (nic->device_type == XFRAME_II_DEVICE)
1791                 return LINK_UP_DOWN_INTERRUPT;
1792         else
1793                 return MAC_RMAC_ERR_TIMER;
1794 }
1795
1796 /**
1797  *  do_s2io_write_bits -  update alarm bits in alarm register
1798  *  @value: alarm bits
1799  *  @flag: interrupt status
1800  *  @addr: address value
1801  *  Description: update alarm bits in alarm register
1802  *  Return Value:
1803  *  NONE.
1804  */
1805 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1806 {
1807         u64 temp64;
1808
1809         temp64 = readq(addr);
1810
1811         if(flag == ENABLE_INTRS)
1812                 temp64 &= ~((u64) value);
1813         else
1814                 temp64 |= ((u64) value);
1815         writeq(temp64, addr);
1816 }
1817
1818 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1819 {
1820         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1821         register u64 gen_int_mask = 0;
1822
1823         if (mask & TX_DMA_INTR) {
1824
1825                 gen_int_mask |= TXDMA_INT_M;
1826
1827                 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1828                                 TXDMA_PCC_INT | TXDMA_TTI_INT |
1829                                 TXDMA_LSO_INT | TXDMA_TPA_INT |
1830                                 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1831
1832                 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1833                                 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1834                                 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1835                                 &bar0->pfc_err_mask);
1836
1837                 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1838                                 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1839                                 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1840
1841                 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1842                                 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1843                                 PCC_N_SERR | PCC_6_COF_OV_ERR |
1844                                 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1845                                 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1846                                 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1847
1848                 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1849                                 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1850
1851                 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1852                                 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1853                                 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1854                                 flag, &bar0->lso_err_mask);
1855
1856                 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1857                                 flag, &bar0->tpa_err_mask);
1858
1859                 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1860
1861         }
1862
1863         if (mask & TX_MAC_INTR) {
1864                 gen_int_mask |= TXMAC_INT_M;
1865                 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1866                                 &bar0->mac_int_mask);
1867                 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1868                                 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1869                                 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1870                                 flag, &bar0->mac_tmac_err_mask);
1871         }
1872
1873         if (mask & TX_XGXS_INTR) {
1874                 gen_int_mask |= TXXGXS_INT_M;
1875                 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1876                                 &bar0->xgxs_int_mask);
1877                 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1878                                 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1879                                 flag, &bar0->xgxs_txgxs_err_mask);
1880         }
1881
1882         if (mask & RX_DMA_INTR) {
1883                 gen_int_mask |= RXDMA_INT_M;
1884                 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1885                                 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1886                                 flag, &bar0->rxdma_int_mask);
1887                 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1888                                 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1889                                 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1890                                 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1891                 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1892                                 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1893                                 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1894                                 &bar0->prc_pcix_err_mask);
1895                 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1896                                 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1897                                 &bar0->rpa_err_mask);
1898                 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1899                                 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1900                                 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1901                                 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
1902                                 flag, &bar0->rda_err_mask);
1903                 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1904                                 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1905                                 flag, &bar0->rti_err_mask);
1906         }
1907
1908         if (mask & RX_MAC_INTR) {
1909                 gen_int_mask |= RXMAC_INT_M;
1910                 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1911                                 &bar0->mac_int_mask);
1912                 do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1913                                 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1914                                 RMAC_DOUBLE_ECC_ERR |
1915                                 RMAC_LINK_STATE_CHANGE_INT,
1916                                 flag, &bar0->mac_rmac_err_mask);
1917         }
1918
1919         if (mask & RX_XGXS_INTR)
1920         {
1921                 gen_int_mask |= RXXGXS_INT_M;
1922                 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1923                                 &bar0->xgxs_int_mask);
1924                 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1925                                 &bar0->xgxs_rxgxs_err_mask);
1926         }
1927
1928         if (mask & MC_INTR) {
1929                 gen_int_mask |= MC_INT_M;
1930                 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
1931                 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1932                                 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1933                                 &bar0->mc_err_mask);
1934         }
1935         nic->general_int_mask = gen_int_mask;
1936
1937         /* Remove this line when alarm interrupts are enabled */
1938         nic->general_int_mask = 0;
1939 }
1940 /**
1941  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1942  *  @nic: device private variable,
1943  *  @mask: A mask indicating which Intr block must be modified and,
1944  *  @flag: A flag indicating whether to enable or disable the Intrs.
1945  *  Description: This function will either disable or enable the interrupts
1946  *  depending on the flag argument. The mask argument can be used to
1947  *  enable/disable any Intr block.
1948  *  Return Value: NONE.
1949  */
1950
1951 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1952 {
1953         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1954         register u64 temp64 = 0, intr_mask = 0;
1955
1956         intr_mask = nic->general_int_mask;
1957
1958         /*  Top level interrupt classification */
1959         /*  PIC Interrupts */
1960         if (mask & TX_PIC_INTR) {
1961                 /*  Enable PIC Intrs in the general intr mask register */
1962                 intr_mask |= TXPIC_INT_M;
1963                 if (flag == ENABLE_INTRS) {
1964                         /*
1965                          * If Hercules adapter enable GPIO otherwise
1966                          * disable all PCIX, Flash, MDIO, IIC and GPIO
1967                          * interrupts for now.
1968                          * TODO
1969                          */
1970                         if (s2io_link_fault_indication(nic) ==
1971                                         LINK_UP_DOWN_INTERRUPT ) {
1972                                 do_s2io_write_bits(PIC_INT_GPIO, flag,
1973                                                 &bar0->pic_int_mask);
1974                                 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
1975                                                 &bar0->gpio_int_mask);
1976                         } else
1977                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1978                 } else if (flag == DISABLE_INTRS) {
1979                         /*
1980                          * Disable PIC Intrs in the general
1981                          * intr mask register
1982                          */
1983                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1984                 }
1985         }
1986
1987         /*  Tx traffic interrupts */
1988         if (mask & TX_TRAFFIC_INTR) {
1989                 intr_mask |= TXTRAFFIC_INT_M;
1990                 if (flag == ENABLE_INTRS) {
1991                         /*
1992                          * Enable all the Tx side interrupts
1993                          * writing 0 Enables all 64 TX interrupt levels
1994                          */
1995                         writeq(0x0, &bar0->tx_traffic_mask);
1996                 } else if (flag == DISABLE_INTRS) {
1997                         /*
1998                          * Disable Tx Traffic Intrs in the general intr mask
1999                          * register.
2000                          */
2001                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2002                 }
2003         }
2004
2005         /*  Rx traffic interrupts */
2006         if (mask & RX_TRAFFIC_INTR) {
2007                 intr_mask |= RXTRAFFIC_INT_M;
2008                 if (flag == ENABLE_INTRS) {
2009                         /* writing 0 Enables all 8 RX interrupt levels */
2010                         writeq(0x0, &bar0->rx_traffic_mask);
2011                 } else if (flag == DISABLE_INTRS) {
2012                         /*
2013                          * Disable Rx Traffic Intrs in the general intr mask
2014                          * register.
2015                          */
2016                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2017                 }
2018         }
2019
2020         temp64 = readq(&bar0->general_int_mask);
2021         if (flag == ENABLE_INTRS)
2022                 temp64 &= ~((u64) intr_mask);
2023         else
2024                 temp64 = DISABLE_ALL_INTRS;
2025         writeq(temp64, &bar0->general_int_mask);
2026
2027         nic->general_int_mask = readq(&bar0->general_int_mask);
2028 }
2029
2030 /**
2031  *  verify_pcc_quiescent- Checks for PCC quiescent state
2032  *  Return: 1 If PCC is quiescence
2033  *          0 If PCC is not quiescence
2034  */
2035 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2036 {
2037         int ret = 0, herc;
2038         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2039         u64 val64 = readq(&bar0->adapter_status);
2040
2041         herc = (sp->device_type == XFRAME_II_DEVICE);
2042
2043         if (flag == FALSE) {
2044                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2045                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2046                                 ret = 1;
2047                 } else {
2048                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2049                                 ret = 1;
2050                 }
2051         } else {
2052                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2053                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2054                              ADAPTER_STATUS_RMAC_PCC_IDLE))
2055                                 ret = 1;
2056                 } else {
2057                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2058                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2059                                 ret = 1;
2060                 }
2061         }
2062
2063         return ret;
2064 }
2065 /**
2066  *  verify_xena_quiescence - Checks whether the H/W is ready
2067  *  Description: Returns whether the H/W is ready to go or not. Depending
2068  *  on whether adapter enable bit was written or not the comparison
2069  *  differs and the calling function passes the input argument flag to
2070  *  indicate this.
2071  *  Return: 1 If xena is quiescence
2072  *          0 If Xena is not quiescence
2073  */
2074
2075 static int verify_xena_quiescence(struct s2io_nic *sp)
2076 {
2077         int  mode;
2078         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2079         u64 val64 = readq(&bar0->adapter_status);
2080         mode = s2io_verify_pci_mode(sp);
2081
2082         if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2083                 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2084                 return 0;
2085         }
2086         if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2087         DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2088                 return 0;
2089         }
2090         if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2091                 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2092                 return 0;
2093         }
2094         if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2095                 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2096                 return 0;
2097         }
2098         if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2099                 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2100                 return 0;
2101         }
2102         if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2103                 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2104                 return 0;
2105         }
2106         if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2107                 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2108                 return 0;
2109         }
2110         if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2111                 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2112                 return 0;
2113         }
2114
2115         /*
2116          * In PCI 33 mode, the P_PLL is not used, and therefore,
2117          * the the P_PLL_LOCK bit in the adapter_status register will
2118          * not be asserted.
2119          */
2120         if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2121                 sp->device_type == XFRAME_II_DEVICE && mode !=
2122                 PCI_MODE_PCI_33) {
2123                 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2124                 return 0;
2125         }
2126         if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2127                         ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2128                 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2129                 return 0;
2130         }
2131         return 1;
2132 }
2133
2134 /**
2135  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2136  * @sp: Pointer to device specifc structure
2137  * Description :
2138  * New procedure to clear mac address reading  problems on Alpha platforms
2139  *
2140  */
2141
2142 static void fix_mac_address(struct s2io_nic * sp)
2143 {
2144         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2145         u64 val64;
2146         int i = 0;
2147
2148         while (fix_mac[i] != END_SIGN) {
2149                 writeq(fix_mac[i++], &bar0->gpio_control);
2150                 udelay(10);
2151                 val64 = readq(&bar0->gpio_control);
2152         }
2153 }
2154
2155 /**
2156  *  start_nic - Turns the device on
2157  *  @nic : device private variable.
2158  *  Description:
2159  *  This function actually turns the device on. Before this  function is
2160  *  called,all Registers are configured from their reset states
2161  *  and shared memory is allocated but the NIC is still quiescent. On
2162  *  calling this function, the device interrupts are cleared and the NIC is
2163  *  literally switched on by writing into the adapter control register.
2164  *  Return Value:
2165  *  SUCCESS on success and -1 on failure.
2166  */
2167
2168 static int start_nic(struct s2io_nic *nic)
2169 {
2170         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2171         struct net_device *dev = nic->dev;
2172         register u64 val64 = 0;
2173         u16 subid, i;
2174         struct mac_info *mac_control;
2175         struct config_param *config;
2176
2177         mac_control = &nic->mac_control;
2178         config = &nic->config;
2179
2180         /*  PRC Initialization and configuration */
2181         for (i = 0; i < config->rx_ring_num; i++) {
2182                 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2183                        &bar0->prc_rxd0_n[i]);
2184
2185                 val64 = readq(&bar0->prc_ctrl_n[i]);
2186                 if (nic->rxd_mode == RXD_MODE_1)
2187                         val64 |= PRC_CTRL_RC_ENABLED;
2188                 else
2189                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2190                 if (nic->device_type == XFRAME_II_DEVICE)
2191                         val64 |= PRC_CTRL_GROUP_READS;
2192                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2193                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2194                 writeq(val64, &bar0->prc_ctrl_n[i]);
2195         }
2196
2197         if (nic->rxd_mode == RXD_MODE_3B) {
2198                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2199                 val64 = readq(&bar0->rx_pa_cfg);
2200                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2201                 writeq(val64, &bar0->rx_pa_cfg);
2202         }
2203
2204         if (vlan_tag_strip == 0) {
2205                 val64 = readq(&bar0->rx_pa_cfg);
2206                 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2207                 writeq(val64, &bar0->rx_pa_cfg);
2208                 vlan_strip_flag = 0;
2209         }
2210
2211         /*
2212          * Enabling MC-RLDRAM. After enabling the device, we timeout
2213          * for around 100ms, which is approximately the time required
2214          * for the device to be ready for operation.
2215          */
2216         val64 = readq(&bar0->mc_rldram_mrs);
2217         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2218         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2219         val64 = readq(&bar0->mc_rldram_mrs);
2220
2221         msleep(100);    /* Delay by around 100 ms. */
2222
2223         /* Enabling ECC Protection. */
2224         val64 = readq(&bar0->adapter_control);
2225         val64 &= ~ADAPTER_ECC_EN;
2226         writeq(val64, &bar0->adapter_control);
2227
2228         /*
2229          * Verify if the device is ready to be enabled, if so enable
2230          * it.
2231          */
2232         val64 = readq(&bar0->adapter_status);
2233         if (!verify_xena_quiescence(nic)) {
2234                 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2235                 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2236                           (unsigned long long) val64);
2237                 return FAILURE;
2238         }
2239
2240         /*
2241          * With some switches, link might be already up at this point.
2242          * Because of this weird behavior, when we enable laser,
2243          * we may not get link. We need to handle this. We cannot
2244          * figure out which switch is misbehaving. So we are forced to
2245          * make a global change.
2246          */
2247
2248         /* Enabling Laser. */
2249         val64 = readq(&bar0->adapter_control);
2250         val64 |= ADAPTER_EOI_TX_ON;
2251         writeq(val64, &bar0->adapter_control);
2252
2253         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2254                 /*
2255                  * Dont see link state interrupts initally on some switches,
2256                  * so directly scheduling the link state task here.
2257                  */
2258                 schedule_work(&nic->set_link_task);
2259         }
2260         /* SXE-002: Initialize link and activity LED */
2261         subid = nic->pdev->subsystem_device;
2262         if (((subid & 0xFF) >= 0x07) &&
2263             (nic->device_type == XFRAME_I_DEVICE)) {
2264                 val64 = readq(&bar0->gpio_control);
2265                 val64 |= 0x0000800000000000ULL;
2266                 writeq(val64, &bar0->gpio_control);
2267                 val64 = 0x0411040400000000ULL;
2268                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2269         }
2270
2271         return SUCCESS;
2272 }
2273 /**
2274  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2275  */
2276 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2277                                         TxD *txdlp, int get_off)
2278 {
2279         struct s2io_nic *nic = fifo_data->nic;
2280         struct sk_buff *skb;
2281         struct TxD *txds;
2282         u16 j, frg_cnt;
2283
2284         txds = txdlp;
2285         if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2286                 pci_unmap_single(nic->pdev, (dma_addr_t)
2287                         txds->Buffer_Pointer, sizeof(u64),
2288                         PCI_DMA_TODEVICE);
2289                 txds++;
2290         }
2291
2292         skb = (struct sk_buff *) ((unsigned long)
2293                         txds->Host_Control);
2294         if (!skb) {
2295                 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2296                 return NULL;
2297         }
2298         pci_unmap_single(nic->pdev, (dma_addr_t)
2299                          txds->Buffer_Pointer,
2300                          skb->len - skb->data_len,
2301                          PCI_DMA_TODEVICE);
2302         frg_cnt = skb_shinfo(skb)->nr_frags;
2303         if (frg_cnt) {
2304                 txds++;
2305                 for (j = 0; j < frg_cnt; j++, txds++) {
2306                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2307                         if (!txds->Buffer_Pointer)
2308                                 break;
2309                         pci_unmap_page(nic->pdev, (dma_addr_t)
2310                                         txds->Buffer_Pointer,
2311                                        frag->size, PCI_DMA_TODEVICE);
2312                 }
2313         }
2314         memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2315         return(skb);
2316 }
2317
2318 /**
2319  *  free_tx_buffers - Free all queued Tx buffers
2320  *  @nic : device private variable.
2321  *  Description:
2322  *  Free all queued Tx buffers.
2323  *  Return Value: void
2324 */
2325
2326 static void free_tx_buffers(struct s2io_nic *nic)
2327 {
2328         struct net_device *dev = nic->dev;
2329         struct sk_buff *skb;
2330         struct TxD *txdp;
2331         int i, j;
2332         struct mac_info *mac_control;
2333         struct config_param *config;
2334         int cnt = 0;
2335
2336         mac_control = &nic->mac_control;
2337         config = &nic->config;
2338
2339         for (i = 0; i < config->tx_fifo_num; i++) {
2340                 unsigned long flags;
2341                 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags);
2342                 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2343                         txdp = (struct TxD *) \
2344                         mac_control->fifos[i].list_info[j].list_virt_addr;
2345                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2346                         if (skb) {
2347                                 nic->mac_control.stats_info->sw_stat.mem_freed
2348                                         += skb->truesize;
2349                                 dev_kfree_skb(skb);
2350                                 cnt++;
2351                         }
2352                 }
2353                 DBG_PRINT(INTR_DBG,
2354                           "%s:forcibly freeing %d skbs on FIFO%d\n",
2355                           dev->name, cnt, i);
2356                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2357                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2358                 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, flags);
2359         }
2360 }
2361
2362 /**
2363  *   stop_nic -  To stop the nic
2364  *   @nic ; device private variable.
2365  *   Description:
2366  *   This function does exactly the opposite of what the start_nic()
2367  *   function does. This function is called to stop the device.
2368  *   Return Value:
2369  *   void.
2370  */
2371
2372 static void stop_nic(struct s2io_nic *nic)
2373 {
2374         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2375         register u64 val64 = 0;
2376         u16 interruptible;
2377         struct mac_info *mac_control;
2378         struct config_param *config;
2379
2380         mac_control = &nic->mac_control;
2381         config = &nic->config;
2382
2383         /*  Disable all interrupts */
2384         en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2385         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2386         interruptible |= TX_PIC_INTR;
2387         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2388
2389         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2390         val64 = readq(&bar0->adapter_control);
2391         val64 &= ~(ADAPTER_CNTL_EN);
2392         writeq(val64, &bar0->adapter_control);
2393 }
2394
2395 /**
2396  *  fill_rx_buffers - Allocates the Rx side skbs
2397  *  @nic:  device private variable
2398  *  @ring_no: ring number
2399  *  Description:
2400  *  The function allocates Rx side skbs and puts the physical
2401  *  address of these buffers into the RxD buffer pointers, so that the NIC
2402  *  can DMA the received frame into these locations.
2403  *  The NIC supports 3 receive modes, viz
2404  *  1. single buffer,
2405  *  2. three buffer and
2406  *  3. Five buffer modes.
2407  *  Each mode defines how many fragments the received frame will be split
2408  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2409  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2410  *  is split into 3 fragments. As of now only single buffer mode is
2411  *  supported.
2412  *   Return Value:
2413  *  SUCCESS on success or an appropriate -ve value on failure.
2414  */
2415
2416 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2417 {
2418         struct net_device *dev = nic->dev;
2419         struct sk_buff *skb;
2420         struct RxD_t *rxdp;
2421         int off, off1, size, block_no, block_no1;
2422         u32 alloc_tab = 0;
2423         u32 alloc_cnt;
2424         struct mac_info *mac_control;
2425         struct config_param *config;
2426         u64 tmp;
2427         struct buffAdd *ba;
2428         unsigned long flags;
2429         struct RxD_t *first_rxdp = NULL;
2430         u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2431         struct RxD1 *rxdp1;
2432         struct RxD3 *rxdp3;
2433         struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
2434
2435         mac_control = &nic->mac_control;
2436         config = &nic->config;
2437         alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2438             atomic_read(&nic->rx_bufs_left[ring_no]);
2439
2440         block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2441         off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2442         while (alloc_tab < alloc_cnt) {
2443                 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2444                     block_index;
2445                 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2446
2447                 rxdp = mac_control->rings[ring_no].
2448                                 rx_blocks[block_no].rxds[off].virt_addr;
2449
2450                 if ((block_no == block_no1) && (off == off1) &&
2451                                         (rxdp->Host_Control)) {
2452                         DBG_PRINT(INTR_DBG, "%s: Get and Put",
2453                                   dev->name);
2454                         DBG_PRINT(INTR_DBG, " info equated\n");
2455                         goto end;
2456                 }
2457                 if (off && (off == rxd_count[nic->rxd_mode])) {
2458                         mac_control->rings[ring_no].rx_curr_put_info.
2459                             block_index++;
2460                         if (mac_control->rings[ring_no].rx_curr_put_info.
2461                             block_index == mac_control->rings[ring_no].
2462                                         block_count)
2463                                 mac_control->rings[ring_no].rx_curr_put_info.
2464                                         block_index = 0;
2465                         block_no = mac_control->rings[ring_no].
2466                                         rx_curr_put_info.block_index;
2467                         if (off == rxd_count[nic->rxd_mode])
2468                                 off = 0;
2469                         mac_control->rings[ring_no].rx_curr_put_info.
2470                                 offset = off;
2471                         rxdp = mac_control->rings[ring_no].
2472                                 rx_blocks[block_no].block_virt_addr;
2473                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2474                                   dev->name, rxdp);
2475                 }
2476                 if(!napi) {
2477                         spin_lock_irqsave(&nic->put_lock, flags);
2478                         mac_control->rings[ring_no].put_pos =
2479                         (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2480                         spin_unlock_irqrestore(&nic->put_lock, flags);
2481                 } else {
2482                         mac_control->rings[ring_no].put_pos =
2483                         (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2484                 }
2485                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2486                         ((nic->rxd_mode == RXD_MODE_3B) &&
2487                                 (rxdp->Control_2 & s2BIT(0)))) {
2488                         mac_control->rings[ring_no].rx_curr_put_info.
2489                                         offset = off;
2490                         goto end;
2491                 }
2492                 /* calculate size of skb based on ring mode */
2493                 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2494                                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2495                 if (nic->rxd_mode == RXD_MODE_1)
2496                         size += NET_IP_ALIGN;
2497                 else
2498                         size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2499
2500                 /* allocate skb */
2501                 skb = dev_alloc_skb(size);
2502                 if(!skb) {
2503                         DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2504                         DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2505                         if (first_rxdp) {
2506                                 wmb();
2507                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2508                         }
2509                         nic->mac_control.stats_info->sw_stat. \
2510                                 mem_alloc_fail_cnt++;
2511                         return -ENOMEM ;
2512                 }
2513                 nic->mac_control.stats_info->sw_stat.mem_allocated
2514                         += skb->truesize;
2515                 if (nic->rxd_mode == RXD_MODE_1) {
2516                         /* 1 buffer mode - normal operation mode */
2517                         rxdp1 = (struct RxD1*)rxdp;
2518                         memset(rxdp, 0, sizeof(struct RxD1));
2519                         skb_reserve(skb, NET_IP_ALIGN);
2520                         rxdp1->Buffer0_ptr = pci_map_single
2521                             (nic->pdev, skb->data, size - NET_IP_ALIGN,
2522                                 PCI_DMA_FROMDEVICE);
2523                         if( (rxdp1->Buffer0_ptr == 0) ||
2524                                 (rxdp1->Buffer0_ptr ==
2525                                 DMA_ERROR_CODE))
2526                                 goto pci_map_failed;
2527
2528                         rxdp->Control_2 =
2529                                 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2530
2531                 } else if (nic->rxd_mode == RXD_MODE_3B) {
2532                         /*
2533                          * 2 buffer mode -
2534                          * 2 buffer mode provides 128
2535                          * byte aligned receive buffers.
2536                          */
2537
2538                         rxdp3 = (struct RxD3*)rxdp;
2539                         /* save buffer pointers to avoid frequent dma mapping */
2540                         Buffer0_ptr = rxdp3->Buffer0_ptr;
2541                         Buffer1_ptr = rxdp3->Buffer1_ptr;
2542                         memset(rxdp, 0, sizeof(struct RxD3));
2543                         /* restore the buffer pointers for dma sync*/
2544                         rxdp3->Buffer0_ptr = Buffer0_ptr;
2545                         rxdp3->Buffer1_ptr = Buffer1_ptr;
2546
2547                         ba = &mac_control->rings[ring_no].ba[block_no][off];
2548                         skb_reserve(skb, BUF0_LEN);
2549                         tmp = (u64)(unsigned long) skb->data;
2550                         tmp += ALIGN_SIZE;
2551                         tmp &= ~ALIGN_SIZE;
2552                         skb->data = (void *) (unsigned long)tmp;
2553                         skb_reset_tail_pointer(skb);
2554
2555                         if (!(rxdp3->Buffer0_ptr))
2556                                 rxdp3->Buffer0_ptr =
2557                                    pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2558                                            PCI_DMA_FROMDEVICE);
2559                         else
2560                                 pci_dma_sync_single_for_device(nic->pdev,
2561                                 (dma_addr_t) rxdp3->Buffer0_ptr,
2562                                     BUF0_LEN, PCI_DMA_FROMDEVICE);
2563                         if( (rxdp3->Buffer0_ptr == 0) ||
2564                                 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
2565                                 goto pci_map_failed;
2566
2567                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2568                         if (nic->rxd_mode == RXD_MODE_3B) {
2569                                 /* Two buffer mode */
2570
2571                                 /*
2572                                  * Buffer2 will have L3/L4 header plus
2573                                  * L4 payload
2574                                  */
2575                                 rxdp3->Buffer2_ptr = pci_map_single
2576                                 (nic->pdev, skb->data, dev->mtu + 4,
2577                                                 PCI_DMA_FROMDEVICE);
2578
2579                                 if( (rxdp3->Buffer2_ptr == 0) ||
2580                                         (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
2581                                         goto pci_map_failed;
2582
2583                                 rxdp3->Buffer1_ptr =
2584                                                 pci_map_single(nic->pdev,
2585                                                 ba->ba_1, BUF1_LEN,
2586                                                 PCI_DMA_FROMDEVICE);
2587                                 if( (rxdp3->Buffer1_ptr == 0) ||
2588                                         (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
2589                                         pci_unmap_single
2590                                                 (nic->pdev,
2591                                                 (dma_addr_t)rxdp3->Buffer2_ptr,
2592                                                 dev->mtu + 4,
2593                                                 PCI_DMA_FROMDEVICE);
2594                                         goto pci_map_failed;
2595                                 }
2596                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2597                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2598                                                                 (dev->mtu + 4);
2599                         }
2600                         rxdp->Control_2 |= s2BIT(0);
2601                 }
2602                 rxdp->Host_Control = (unsigned long) (skb);
2603                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2604                         rxdp->Control_1 |= RXD_OWN_XENA;
2605                 off++;
2606                 if (off == (rxd_count[nic->rxd_mode] + 1))
2607                         off = 0;
2608                 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2609
2610                 rxdp->Control_2 |= SET_RXD_MARKER;
2611                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2612                         if (first_rxdp) {
2613                                 wmb();
2614                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2615                         }
2616                         first_rxdp = rxdp;
2617                 }
2618                 atomic_inc(&nic->rx_bufs_left[ring_no]);
2619                 alloc_tab++;
2620         }
2621
2622       end:
2623         /* Transfer ownership of first descriptor to adapter just before
2624          * exiting. Before that, use memory barrier so that ownership
2625          * and other fields are seen by adapter correctly.
2626          */
2627         if (first_rxdp) {
2628                 wmb();
2629                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2630         }
2631
2632         return SUCCESS;
2633 pci_map_failed:
2634         stats->pci_map_fail_cnt++;
2635         stats->mem_freed += skb->truesize;
2636         dev_kfree_skb_irq(skb);
2637         return -ENOMEM;
2638 }
2639
2640 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2641 {
2642         struct net_device *dev = sp->dev;
2643         int j;
2644         struct sk_buff *skb;
2645         struct RxD_t *rxdp;
2646         struct mac_info *mac_control;
2647         struct buffAdd *ba;
2648         struct RxD1 *rxdp1;
2649         struct RxD3 *rxdp3;
2650
2651         mac_control = &sp->mac_control;
2652         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2653                 rxdp = mac_control->rings[ring_no].
2654                                 rx_blocks[blk].rxds[j].virt_addr;
2655                 skb = (struct sk_buff *)
2656                         ((unsigned long) rxdp->Host_Control);
2657                 if (!skb) {
2658                         continue;
2659                 }
2660                 if (sp->rxd_mode == RXD_MODE_1) {
2661                         rxdp1 = (struct RxD1*)rxdp;
2662                         pci_unmap_single(sp->pdev, (dma_addr_t)
2663                                 rxdp1->Buffer0_ptr,
2664                                 dev->mtu +
2665                                 HEADER_ETHERNET_II_802_3_SIZE
2666                                 + HEADER_802_2_SIZE +
2667                                 HEADER_SNAP_SIZE,
2668                                 PCI_DMA_FROMDEVICE);
2669                         memset(rxdp, 0, sizeof(struct RxD1));
2670                 } else if(sp->rxd_mode == RXD_MODE_3B) {
2671                         rxdp3 = (struct RxD3*)rxdp;
2672                         ba = &mac_control->rings[ring_no].
2673                                 ba[blk][j];
2674                         pci_unmap_single(sp->pdev, (dma_addr_t)
2675                                 rxdp3->Buffer0_ptr,
2676                                 BUF0_LEN,
2677                                 PCI_DMA_FROMDEVICE);
2678                         pci_unmap_single(sp->pdev, (dma_addr_t)
2679                                 rxdp3->Buffer1_ptr,
2680                                 BUF1_LEN,
2681                                 PCI_DMA_FROMDEVICE);
2682                         pci_unmap_single(sp->pdev, (dma_addr_t)
2683                                 rxdp3->Buffer2_ptr,
2684                                 dev->mtu + 4,
2685                                 PCI_DMA_FROMDEVICE);
2686                         memset(rxdp, 0, sizeof(struct RxD3));
2687                 }
2688                 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2689                 dev_kfree_skb(skb);
2690                 atomic_dec(&sp->rx_bufs_left[ring_no]);
2691         }
2692 }
2693
2694 /**
2695  *  free_rx_buffers - Frees all Rx buffers
2696  *  @sp: device private variable.
2697  *  Description:
2698  *  This function will free all Rx buffers allocated by host.
2699  *  Return Value:
2700  *  NONE.
2701  */
2702
2703 static void free_rx_buffers(struct s2io_nic *sp)
2704 {
2705         struct net_device *dev = sp->dev;
2706         int i, blk = 0, buf_cnt = 0;
2707         struct mac_info *mac_control;
2708         struct config_param *config;
2709
2710         mac_control = &sp->mac_control;
2711         config = &sp->config;
2712
2713         for (i = 0; i < config->rx_ring_num; i++) {
2714                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2715                         free_rxd_blk(sp,i,blk);
2716
2717                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2718                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2719                 mac_control->rings[i].rx_curr_put_info.offset = 0;
2720                 mac_control->rings[i].rx_curr_get_info.offset = 0;
2721                 atomic_set(&sp->rx_bufs_left[i], 0);
2722                 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2723                           dev->name, buf_cnt, i);
2724         }
2725 }
2726
2727 /**
2728  * s2io_poll - Rx interrupt handler for NAPI support
2729  * @napi : pointer to the napi structure.
2730  * @budget : The number of packets that were budgeted to be processed
2731  * during  one pass through the 'Poll" function.
2732  * Description:
2733  * Comes into picture only if NAPI support has been incorporated. It does
2734  * the same thing that rx_intr_handler does, but not in a interrupt context
2735  * also It will process only a given number of packets.
2736  * Return value:
2737  * 0 on success and 1 if there are No Rx packets to be processed.
2738  */
2739
2740 static int s2io_poll(struct napi_struct *napi, int budget)
2741 {
2742         struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2743         struct net_device *dev = nic->dev;
2744         int pkt_cnt = 0, org_pkts_to_process;
2745         struct mac_info *mac_control;
2746         struct config_param *config;
2747         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2748         int i;
2749
2750         mac_control = &nic->mac_control;
2751         config = &nic->config;
2752
2753         nic->pkts_to_process = budget;
2754         org_pkts_to_process = nic->pkts_to_process;
2755
2756         writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2757         readl(&bar0->rx_traffic_int);
2758
2759         for (i = 0; i < config->rx_ring_num; i++) {
2760                 rx_intr_handler(&mac_control->rings[i]);
2761                 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2762                 if (!nic->pkts_to_process) {
2763                         /* Quota for the current iteration has been met */
2764                         goto no_rx;
2765                 }
2766         }
2767
2768         netif_rx_complete(dev, napi);
2769
2770         for (i = 0; i < config->rx_ring_num; i++) {
2771                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2772                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2773                         DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2774                         break;
2775                 }
2776         }
2777         /* Re enable the Rx interrupts. */
2778         writeq(0x0, &bar0->rx_traffic_mask);
2779         readl(&bar0->rx_traffic_mask);
2780         return pkt_cnt;
2781
2782 no_rx:
2783         for (i = 0; i < config->rx_ring_num; i++) {
2784                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2785                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2786                         DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2787                         break;
2788                 }
2789         }
2790         return pkt_cnt;
2791 }
2792
2793 #ifdef CONFIG_NET_POLL_CONTROLLER
2794 /**
2795  * s2io_netpoll - netpoll event handler entry point
2796  * @dev : pointer to the device structure.
2797  * Description:
2798  *      This function will be called by upper layer to check for events on the
2799  * interface in situations where interrupts are disabled. It is used for
2800  * specific in-kernel networking tasks, such as remote consoles and kernel
2801  * debugging over the network (example netdump in RedHat).
2802  */
2803 static void s2io_netpoll(struct net_device *dev)
2804 {
2805         struct s2io_nic *nic = dev->priv;
2806         struct mac_info *mac_control;
2807         struct config_param *config;
2808         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2809         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2810         int i;
2811
2812         if (pci_channel_offline(nic->pdev))
2813                 return;
2814
2815         disable_irq(dev->irq);
2816
2817         mac_control = &nic->mac_control;
2818         config = &nic->config;
2819
2820         writeq(val64, &bar0->rx_traffic_int);
2821         writeq(val64, &bar0->tx_traffic_int);
2822
2823         /* we need to free up the transmitted skbufs or else netpoll will
2824          * run out of skbs and will fail and eventually netpoll application such
2825          * as netdump will fail.
2826          */
2827         for (i = 0; i < config->tx_fifo_num; i++)
2828                 tx_intr_handler(&mac_control->fifos[i]);
2829
2830         /* check for received packet and indicate up to network */
2831         for (i = 0; i < config->rx_ring_num; i++)
2832                 rx_intr_handler(&mac_control->rings[i]);
2833
2834         for (i = 0; i < config->rx_ring_num; i++) {
2835                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2836                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2837                         DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2838                         break;
2839                 }
2840         }
2841         enable_irq(dev->irq);
2842         return;
2843 }
2844 #endif
2845
2846 /**
2847  *  rx_intr_handler - Rx interrupt handler
2848  *  @nic: device private variable.
2849  *  Description:
2850  *  If the interrupt is because of a received frame or if the
2851  *  receive ring contains fresh as yet un-processed frames,this function is
2852  *  called. It picks out the RxD at which place the last Rx processing had
2853  *  stopped and sends the skb to the OSM's Rx handler and then increments
2854  *  the offset.
2855  *  Return Value:
2856  *  NONE.
2857  */
2858 static void rx_intr_handler(struct ring_info *ring_data)
2859 {
2860         struct s2io_nic *nic = ring_data->nic;
2861         struct net_device *dev = (struct net_device *) nic->dev;
2862         int get_block, put_block, put_offset;
2863         struct rx_curr_get_info get_info, put_info;
2864         struct RxD_t *rxdp;
2865         struct sk_buff *skb;
2866         int pkt_cnt = 0;
2867         int i;
2868         struct RxD1* rxdp1;
2869         struct RxD3* rxdp3;
2870
2871         spin_lock(&nic->rx_lock);
2872
2873         get_info = ring_data->rx_curr_get_info;
2874         get_block = get_info.block_index;
2875         memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2876         put_block = put_info.block_index;
2877         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2878         if (!napi) {
2879                 spin_lock(&nic->put_lock);
2880                 put_offset = ring_data->put_pos;
2881                 spin_unlock(&nic->put_lock);
2882         } else
2883                 put_offset = ring_data->put_pos;
2884
2885         while (RXD_IS_UP2DT(rxdp)) {
2886                 /*
2887                  * If your are next to put index then it's
2888                  * FIFO full condition
2889                  */
2890                 if ((get_block == put_block) &&
2891                     (get_info.offset + 1) == put_info.offset) {
2892                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2893                         break;
2894                 }
2895                 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2896                 if (skb == NULL) {
2897                         DBG_PRINT(ERR_DBG, "%s: The skb is ",
2898                                   dev->name);
2899                         DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2900                         spin_unlock(&nic->rx_lock);
2901                         return;
2902                 }
2903                 if (nic->rxd_mode == RXD_MODE_1) {
2904                         rxdp1 = (struct RxD1*)rxdp;
2905                         pci_unmap_single(nic->pdev, (dma_addr_t)
2906                                 rxdp1->Buffer0_ptr,
2907                                 dev->mtu +
2908                                 HEADER_ETHERNET_II_802_3_SIZE +
2909                                 HEADER_802_2_SIZE +
2910                                 HEADER_SNAP_SIZE,
2911                                 PCI_DMA_FROMDEVICE);
2912                 } else if (nic->rxd_mode == RXD_MODE_3B) {
2913                         rxdp3 = (struct RxD3*)rxdp;
2914                         pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2915                                 rxdp3->Buffer0_ptr,
2916                                 BUF0_LEN, PCI_DMA_FROMDEVICE);
2917                         pci_unmap_single(nic->pdev, (dma_addr_t)
2918                                 rxdp3->Buffer2_ptr,
2919                                 dev->mtu + 4,
2920                                 PCI_DMA_FROMDEVICE);
2921                 }
2922                 prefetch(skb->data);
2923                 rx_osm_handler(ring_data, rxdp);
2924                 get_info.offset++;
2925                 ring_data->rx_curr_get_info.offset = get_info.offset;
2926                 rxdp = ring_data->rx_blocks[get_block].
2927                                 rxds[get_info.offset].virt_addr;
2928                 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2929                         get_info.offset = 0;
2930                         ring_data->rx_curr_get_info.offset = get_info.offset;
2931                         get_block++;
2932                         if (get_block == ring_data->block_count)
2933                                 get_block = 0;
2934                         ring_data->rx_curr_get_info.block_index = get_block;
2935                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2936                 }
2937
2938                 nic->pkts_to_process -= 1;
2939                 if ((napi) && (!nic->pkts_to_process))
2940                         break;
2941                 pkt_cnt++;
2942                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2943                         break;
2944         }
2945         if (nic->lro) {
2946                 /* Clear all LRO sessions before exiting */
2947                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2948                         struct lro *lro = &nic->lro0_n[i];
2949                         if (lro->in_use) {
2950                                 update_L3L4_header(nic, lro);
2951                                 queue_rx_frame(lro->parent);
2952                                 clear_lro_session(lro);
2953                         }
2954                 }
2955         }
2956
2957         spin_unlock(&nic->rx_lock);
2958 }
2959
2960 /**
2961  *  tx_intr_handler - Transmit interrupt handler
2962  *  @nic : device private variable
2963  *  Description:
2964  *  If an interrupt was raised to indicate DMA complete of the
2965  *  Tx packet, this function is called. It identifies the last TxD
2966  *  whose buffer was freed and frees all skbs whose data have already
2967  *  DMA'ed into the NICs internal memory.
2968  *  Return Value:
2969  *  NONE
2970  */
2971
2972 static void tx_intr_handler(struct fifo_info *fifo_data)
2973 {
2974         struct s2io_nic *nic = fifo_data->nic;
2975         struct net_device *dev = (struct net_device *) nic->dev;
2976         struct tx_curr_get_info get_info, put_info;
2977         struct sk_buff *skb;
2978         struct TxD *txdlp;
2979         unsigned long flags = 0;
2980         u8 err_mask;
2981
2982         if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
2983                         return;
2984
2985         get_info = fifo_data->tx_curr_get_info;
2986         memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2987         txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
2988             list_virt_addr;
2989         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2990                (get_info.offset != put_info.offset) &&
2991                (txdlp->Host_Control)) {
2992                 /* Check for TxD errors */
2993                 if (txdlp->Control_1 & TXD_T_CODE) {
2994                         unsigned long long err;
2995                         err = txdlp->Control_1 & TXD_T_CODE;
2996                         if (err & 0x1) {
2997                                 nic->mac_control.stats_info->sw_stat.
2998                                                 parity_err_cnt++;
2999                         }
3000
3001                         /* update t_code statistics */
3002                         err_mask = err >> 48;
3003                         switch(err_mask) {
3004                                 case 2:
3005                                         nic->mac_control.stats_info->sw_stat.
3006                                                         tx_buf_abort_cnt++;
3007                                 break;
3008
3009                                 case 3:
3010                                         nic->mac_control.stats_info->sw_stat.
3011                                                         tx_desc_abort_cnt++;
3012                                 break;
3013
3014                                 case 7:
3015                                         nic->mac_control.stats_info->sw_stat.
3016                                                         tx_parity_err_cnt++;
3017                                 break;
3018
3019                                 case 10:
3020                                         nic->mac_control.stats_info->sw_stat.
3021                                                         tx_link_loss_cnt++;
3022                                 break;
3023
3024                                 case 15:
3025                                         nic->mac_control.stats_info->sw_stat.
3026                                                         tx_list_proc_err_cnt++;
3027                                 break;
3028                         }
3029                 }
3030
3031                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3032                 if (skb == NULL) {
3033                         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3034                         DBG_PRINT(ERR_DBG, "%s: Null skb ",
3035                         __FUNCTION__);
3036                         DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
3037                         return;
3038                 }
3039
3040                 /* Updating the statistics block */
3041                 nic->stats.tx_bytes += skb->len;
3042                 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
3043                 dev_kfree_skb_irq(skb);
3044
3045                 get_info.offset++;
3046                 if (get_info.offset == get_info.fifo_len + 1)
3047                         get_info.offset = 0;
3048                 txdlp = (struct TxD *) fifo_data->list_info
3049                     [get_info.offset].list_virt_addr;
3050                 fifo_data->tx_curr_get_info.offset =
3051                     get_info.offset;
3052         }
3053
3054         if (netif_queue_stopped(dev))
3055                 netif_wake_queue(dev);
3056
3057         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3058 }
3059
3060 /**
3061  *  s2io_mdio_write - Function to write in to MDIO registers
3062  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3063  *  @addr     : address value
3064  *  @value    : data value
3065  *  @dev      : pointer to net_device structure
3066  *  Description:
3067  *  This function is used to write values to the MDIO registers
3068  *  NONE
3069  */
3070 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3071 {
3072         u64 val64 = 0x0;
3073         struct s2io_nic *sp = dev->priv;
3074         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3075
3076         //address transaction
3077         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3078                         | MDIO_MMD_DEV_ADDR(mmd_type)
3079                         | MDIO_MMS_PRT_ADDR(0x0);
3080         writeq(val64, &bar0->mdio_control);
3081         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3082         writeq(val64, &bar0->mdio_control);
3083         udelay(100);
3084
3085         //Data transaction
3086         val64 = 0x0;
3087         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3088                         | MDIO_MMD_DEV_ADDR(mmd_type)
3089                         | MDIO_MMS_PRT_ADDR(0x0)
3090                         | MDIO_MDIO_DATA(value)
3091                         | MDIO_OP(MDIO_OP_WRITE_TRANS);
3092         writeq(val64, &bar0->mdio_control);
3093         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3094         writeq(val64, &bar0->mdio_control);
3095         udelay(100);
3096
3097         val64 = 0x0;
3098         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3099         | MDIO_MMD_DEV_ADDR(mmd_type)
3100         | MDIO_MMS_PRT_ADDR(0x0)
3101         | MDIO_OP(MDIO_OP_READ_TRANS);
3102         writeq(val64, &bar0->mdio_control);
3103         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3104         writeq(val64, &bar0->mdio_control);
3105         udelay(100);
3106
3107 }
3108
3109 /**
3110  *  s2io_mdio_read - Function to write in to MDIO registers
3111  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3112  *  @addr     : address value
3113  *  @dev      : pointer to net_device structure
3114  *  Description:
3115  *  This function is used to read values to the MDIO registers
3116  *  NONE
3117  */
3118 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3119 {
3120         u64 val64 = 0x0;
3121         u64 rval64 = 0x0;
3122         struct s2io_nic *sp = dev->priv;
3123         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3124
3125         /* address transaction */
3126         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3127                         | MDIO_MMD_DEV_ADDR(mmd_type)
3128                         | MDIO_MMS_PRT_ADDR(0x0);
3129         writeq(val64, &bar0->mdio_control);
3130         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3131         writeq(val64, &bar0->mdio_control);
3132         udelay(100);
3133
3134         /* Data transaction */
3135         val64 = 0x0;
3136         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3137                         | MDIO_MMD_DEV_ADDR(mmd_type)
3138                         | MDIO_MMS_PRT_ADDR(0x0)
3139                         | MDIO_OP(MDIO_OP_READ_TRANS);
3140         writeq(val64, &bar0->mdio_control);
3141         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3142         writeq(val64, &bar0->mdio_control);
3143         udelay(100);
3144
3145         /* Read the value from regs */
3146         rval64 = readq(&bar0->mdio_control);
3147         rval64 = rval64 & 0xFFFF0000;
3148         rval64 = rval64 >> 16;
3149         return rval64;
3150 }
3151 /**
3152  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3153  *  @counter      : couter value to be updated
3154  *  @flag         : flag to indicate the status
3155  *  @type         : counter type
3156  *  Description:
3157  *  This function is to check the status of the xpak counters value
3158  *  NONE
3159  */
3160
3161 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3162 {
3163         u64 mask = 0x3;
3164         u64 val64;
3165         int i;
3166         for(i = 0; i <index; i++)
3167                 mask = mask << 0x2;
3168
3169         if(flag > 0)
3170         {
3171                 *counter = *counter + 1;
3172                 val64 = *regs_stat & mask;
3173                 val64 = val64 >> (index * 0x2);
3174                 val64 = val64 + 1;
3175                 if(val64 == 3)
3176                 {
3177                         switch(type)
3178                         {
3179                         case 1:
3180                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3181                                           "service. Excessive temperatures may "
3182                                           "result in premature transceiver "
3183                                           "failure \n");
3184                         break;
3185                         case 2:
3186                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3187                                           "service Excessive bias currents may "
3188                                           "indicate imminent laser diode "
3189                                           "failure \n");
3190                         break;
3191                         case 3:
3192                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3193                                           "service Excessive laser output "
3194                                           "power may saturate far-end "
3195                                           "receiver\n");
3196                         break;
3197                         default:
3198                                 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3199                                           "type \n");
3200                         }
3201                         val64 = 0x0;
3202                 }
3203                 val64 = val64 << (index * 0x2);
3204                 *regs_stat = (*regs_stat & (~mask)) | (val64);
3205
3206         } else {
3207                 *regs_stat = *regs_stat & (~mask);
3208         }
3209 }
3210
3211 /**
3212  *  s2io_updt_xpak_counter - Function to update the xpak counters
3213  *  @dev         : pointer to net_device struct
3214  *  Description:
3215  *  This function is to upate the status of the xpak counters value
3216  *  NONE
3217  */
3218 static void s2io_updt_xpak_counter(struct net_device *dev)
3219 {
3220         u16 flag  = 0x0;
3221         u16 type  = 0x0;
3222         u16 val16 = 0x0;
3223         u64 val64 = 0x0;
3224         u64 addr  = 0x0;
3225
3226         struct s2io_nic *sp = dev->priv;
3227         struct stat_block *stat_info = sp->mac_control.stats_info;
3228
3229         /* Check the communication with the MDIO slave */
3230         addr = 0x0000;
3231         val64 = 0x0;
3232         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3233         if((val64 == 0xFFFF) || (val64 == 0x0000))
3234         {
3235                 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3236                           "Returned %llx\n", (unsigned long long)val64);
3237                 return;
3238         }
3239
3240         /* Check for the expecte value of 2040 at PMA address 0x0000 */
3241         if(val64 != 0x2040)
3242         {
3243                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3244                 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3245                           (unsigned long long)val64);
3246                 return;
3247         }
3248
3249         /* Loading the DOM register to MDIO register */
3250         addr = 0xA100;
3251         s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3252         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3253
3254         /* Reading the Alarm flags */
3255         addr = 0xA070;
3256         val64 = 0x0;
3257         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3258
3259         flag = CHECKBIT(val64, 0x7);
3260         type = 1;
3261         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3262                                 &stat_info->xpak_stat.xpak_regs_stat,
3263                                 0x0, flag, type);
3264
3265         if(CHECKBIT(val64, 0x6))
3266                 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3267
3268         flag = CHECKBIT(val64, 0x3);
3269         type = 2;
3270         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3271                                 &stat_info->xpak_stat.xpak_regs_stat,
3272                                 0x2, flag, type);
3273
3274         if(CHECKBIT(val64, 0x2))
3275                 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3276
3277         flag = CHECKBIT(val64, 0x1);
3278         type = 3;
3279         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3280                                 &stat_info->xpak_stat.xpak_regs_stat,
3281                                 0x4, flag, type);
3282
3283         if(CHECKBIT(val64, 0x0))
3284                 stat_info->xpak_stat.alarm_laser_output_power_low++;
3285
3286         /* Reading the Warning flags */
3287         addr = 0xA074;
3288         val64 = 0x0;
3289         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3290
3291         if(CHECKBIT(val64, 0x7))
3292                 stat_info->xpak_stat.warn_transceiver_temp_high++;
3293
3294         if(CHECKBIT(val64, 0x6))
3295                 stat_info->xpak_stat.warn_transceiver_temp_low++;
3296
3297         if(CHECKBIT(val64, 0x3))
3298                 stat_info->xpak_stat.warn_laser_bias_current_high++;
3299
3300         if(CHECKBIT(val64, 0x2))
3301                 stat_info->xpak_stat.warn_laser_bias_current_low++;
3302
3303         if(CHECKBIT(val64, 0x1))
3304                 stat_info->xpak_stat.warn_laser_output_power_high++;
3305
3306         if(CHECKBIT(val64, 0x0))
3307                 stat_info->xpak_stat.warn_laser_output_power_low++;
3308 }
3309
3310 /**
3311  *  wait_for_cmd_complete - waits for a command to complete.
3312  *  @sp : private member of the device structure, which is a pointer to the
3313  *  s2io_nic structure.
3314  *  Description: Function that waits for a command to Write into RMAC
3315  *  ADDR DATA registers to be completed and returns either success or
3316  *  error depending on whether the command was complete or not.
3317  *  Return value:
3318  *   SUCCESS on success and FAILURE on failure.
3319  */
3320
3321 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3322                                 int bit_state)
3323 {
3324         int ret = FAILURE, cnt = 0, delay = 1;
3325         u64 val64;
3326
3327         if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3328                 return FAILURE;
3329
3330         do {
3331                 val64 = readq(addr);
3332                 if (bit_state == S2IO_BIT_RESET) {
3333                         if (!(val64 & busy_bit)) {
3334                                 ret = SUCCESS;
3335                                 break;
3336                         }
3337                 } else {
3338                         if (!(val64 & busy_bit)) {
3339                                 ret = SUCCESS;
3340                                 break;
3341                         }
3342                 }
3343
3344                 if(in_interrupt())
3345                         mdelay(delay);
3346                 else
3347                         msleep(delay);
3348
3349                 if (++cnt >= 10)
3350                         delay = 50;
3351         } while (cnt < 20);
3352         return ret;
3353 }
3354 /*
3355  * check_pci_device_id - Checks if the device id is supported
3356  * @id : device id
3357  * Description: Function to check if the pci device id is supported by driver.
3358  * Return value: Actual device id if supported else PCI_ANY_ID
3359  */
3360 static u16 check_pci_device_id(u16 id)
3361 {
3362         switch (id) {
3363         case PCI_DEVICE_ID_HERC_WIN:
3364         case PCI_DEVICE_ID_HERC_UNI:
3365                 return XFRAME_II_DEVICE;
3366         case PCI_DEVICE_ID_S2IO_UNI:
3367         case PCI_DEVICE_ID_S2IO_WIN:
3368                 return XFRAME_I_DEVICE;
3369         default:
3370                 return PCI_ANY_ID;
3371         }
3372 }
3373
3374 /**
3375  *  s2io_reset - Resets the card.
3376  *  @sp : private member of the device structure.
3377  *  Description: Function to Reset the card. This function then also
3378  *  restores the previously saved PCI configuration space registers as
3379  *  the card reset also resets the configuration space.
3380  *  Return value:
3381  *  void.
3382  */
3383
3384 static void s2io_reset(struct s2io_nic * sp)
3385 {
3386         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3387         u64 val64;
3388         u16 subid, pci_cmd;
3389         int i;
3390         u16 val16;
3391         unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3392         unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3393
3394         DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3395                         __FUNCTION__, sp->dev->name);
3396
3397         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3398         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3399
3400         val64 = SW_RESET_ALL;
3401         writeq(val64, &bar0->sw_reset);
3402         if (strstr(sp->product_name, "CX4")) {
3403                 msleep(750);
3404         }
3405         msleep(250);
3406         for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3407
3408                 /* Restore the PCI state saved during initialization. */
3409                 pci_restore_state(sp->pdev);
3410                 pci_read_config_word(sp->pdev, 0x2, &val16);
3411                 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3412                         break;
3413                 msleep(200);
3414         }
3415
3416         if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3417                 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3418         }
3419
3420         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3421
3422         s2io_init_pci(sp);
3423
3424         /* Set swapper to enable I/O register access */
3425         s2io_set_swapper(sp);
3426
3427         /* restore mac_addr entries */
3428         do_s2io_restore_unicast_mc(sp);
3429
3430         /* Restore the MSIX table entries from local variables */
3431         restore_xmsi_data(sp);
3432
3433         /* Clear certain PCI/PCI-X fields after reset */
3434         if (sp->device_type == XFRAME_II_DEVICE) {
3435                 /* Clear "detected parity error" bit */
3436                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3437
3438                 /* Clearing PCIX Ecc status register */
3439                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3440
3441                 /* Clearing PCI_STATUS error reflected here */
3442                 writeq(s2BIT(62), &bar0->txpic_int_reg);
3443         }
3444
3445         /* Reset device statistics maintained by OS */
3446         memset(&sp->stats, 0, sizeof (struct net_device_stats));
3447
3448         up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3449         down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3450         up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3451         down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3452         reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3453         mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3454         mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3455         watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3456         /* save link up/down time/cnt, reset/memory/watchdog cnt */
3457         memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3458         /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3459         sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3460         sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3461         sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3462         sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3463         sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3464         sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3465         sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3466         sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3467
3468         /* SXE-002: Configure link and activity LED to turn it off */
3469         subid = sp->pdev->subsystem_device;
3470         if (((subid & 0xFF) >= 0x07) &&
3471             (sp->device_type == XFRAME_I_DEVICE)) {
3472                 val64 = readq(&bar0->gpio_control);
3473                 val64 |= 0x0000800000000000ULL;
3474                 writeq(val64, &bar0->gpio_control);
3475                 val64 = 0x0411040400000000ULL;
3476                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3477         }
3478
3479         /*
3480          * Clear spurious ECC interrupts that would have occured on
3481          * XFRAME II cards after reset.
3482          */
3483         if (sp->device_type == XFRAME_II_DEVICE) {
3484                 val64 = readq(&bar0->pcc_err_reg);
3485                 writeq(val64, &bar0->pcc_err_reg);
3486         }
3487
3488         sp->device_enabled_once = FALSE;
3489 }
3490
3491 /**
3492  *  s2io_set_swapper - to set the swapper controle on the card
3493  *  @sp : private member of the device structure,
3494  *  pointer to the s2io_nic structure.
3495  *  Description: Function to set the swapper control on the card
3496  *  correctly depending on the 'endianness' of the system.
3497  *  Return value:
3498  *  SUCCESS on success and FAILURE on failure.
3499  */
3500
3501 static int s2io_set_swapper(struct s2io_nic * sp)
3502 {
3503         struct net_device *dev = sp->dev;
3504         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3505         u64 val64, valt, valr;
3506
3507         /*
3508          * Set proper endian settings and verify the same by reading
3509          * the PIF Feed-back register.
3510          */
3511
3512         val64 = readq(&bar0->pif_rd_swapper_fb);
3513         if (val64 != 0x0123456789ABCDEFULL) {
3514                 int i = 0;
3515                 u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */
3516                                 0x8100008181000081ULL,  /* FE=1, SE=0 */
3517                                 0x4200004242000042ULL,  /* FE=0, SE=1 */
3518                                 0};                     /* FE=0, SE=0 */
3519
3520                 while(i<4) {
3521                         writeq(value[i], &bar0->swapper_ctrl);
3522                         val64 = readq(&bar0->pif_rd_swapper_fb);
3523                         if (val64 == 0x0123456789ABCDEFULL)
3524                                 break;
3525                         i++;
3526                 }
3527                 if (i == 4) {
3528                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3529                                 dev->name);
3530                         DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3531                                 (unsigned long long) val64);
3532                         return FAILURE;
3533                 }
3534                 valr = value[i];
3535         } else {
3536                 valr = readq(&bar0->swapper_ctrl);
3537         }
3538
3539         valt = 0x0123456789ABCDEFULL;
3540         writeq(valt, &bar0->xmsi_address);
3541         val64 = readq(&bar0->xmsi_address);
3542
3543         if(val64 != valt) {
3544                 int i = 0;
3545                 u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3546                                 0x0081810000818100ULL,  /* FE=1, SE=0 */
3547                                 0x0042420000424200ULL,  /* FE=0, SE=1 */
3548                                 0};                     /* FE=0, SE=0 */
3549
3550                 while(i<4) {
3551                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3552                         writeq(valt, &bar0->xmsi_address);
3553                         val64 = readq(&bar0->xmsi_address);
3554                         if(val64 == valt)
3555                                 break;
3556                         i++;
3557                 }
3558                 if(i == 4) {
3559                         unsigned long long x = val64;
3560                         DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3561                         DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3562                         return FAILURE;
3563                 }
3564         }
3565         val64 = readq(&bar0->swapper_ctrl);
3566         val64 &= 0xFFFF000000000000ULL;
3567
3568 #ifdef  __BIG_ENDIAN
3569         /*
3570          * The device by default set to a big endian format, so a
3571          * big endian driver need not set anything.
3572          */
3573         val64 |= (SWAPPER_CTRL_TXP_FE |
3574                  SWAPPER_CTRL_TXP_SE |
3575                  SWAPPER_CTRL_TXD_R_FE |
3576                  SWAPPER_CTRL_TXD_W_FE |
3577                  SWAPPER_CTRL_TXF_R_FE |
3578                  SWAPPER_CTRL_RXD_R_FE |
3579                  SWAPPER_CTRL_RXD_W_FE |
3580                  SWAPPER_CTRL_RXF_W_FE |
3581                  SWAPPER_CTRL_XMSI_FE |
3582                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3583         if (sp->config.intr_type == INTA)
3584                 val64 |= SWAPPER_CTRL_XMSI_SE;
3585         writeq(val64, &bar0->swapper_ctrl);
3586 #else
3587         /*
3588          * Initially we enable all bits to make it accessible by the
3589          * driver, then we selectively enable only those bits that
3590          * we want to set.
3591          */
3592         val64 |= (SWAPPER_CTRL_TXP_FE |
3593                  SWAPPER_CTRL_TXP_SE |
3594                  SWAPPER_CTRL_TXD_R_FE |
3595                  SWAPPER_CTRL_TXD_R_SE |
3596                  SWAPPER_CTRL_TXD_W_FE |
3597                  SWAPPER_CTRL_TXD_W_SE |
3598                  SWAPPER_CTRL_TXF_R_FE |
3599                  SWAPPER_CTRL_RXD_R_FE |
3600                  SWAPPER_CTRL_RXD_R_SE |
3601                  SWAPPER_CTRL_RXD_W_FE |
3602                  SWAPPER_CTRL_RXD_W_SE |
3603                  SWAPPER_CTRL_RXF_W_FE |
3604                  SWAPPER_CTRL_XMSI_FE |
3605                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3606         if (sp->config.intr_type == INTA)
3607                 val64 |= SWAPPER_CTRL_XMSI_SE;
3608         writeq(val64, &bar0->swapper_ctrl);
3609 #endif
3610         val64 = readq(&bar0->swapper_ctrl);
3611
3612         /*
3613          * Verifying if endian settings are accurate by reading a
3614          * feedback register.
3615          */
3616         val64 = readq(&bar0->pif_rd_swapper_fb);
3617         if (val64 != 0x0123456789ABCDEFULL) {
3618                 /* Endian settings are incorrect, calls for another dekko. */
3619                 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3620                           dev->name);
3621                 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3622                           (unsigned long long) val64);
3623                 return FAILURE;
3624         }
3625
3626         return SUCCESS;
3627 }
3628
3629 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3630 {
3631         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3632         u64 val64;
3633         int ret = 0, cnt = 0;
3634
3635         do {
3636                 val64 = readq(&bar0->xmsi_access);
3637                 if (!(val64 & s2BIT(15)))
3638                         break;
3639                 mdelay(1);
3640                 cnt++;
3641         } while(cnt < 5);
3642         if (cnt == 5) {
3643                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3644                 ret = 1;
3645         }
3646
3647         return ret;
3648 }
3649
3650 static void restore_xmsi_data(struct s2io_nic *nic)
3651 {
3652         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3653         u64 val64;
3654         int i;
3655
3656         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3657                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3658                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3659                 val64 = (s2BIT(7) | s2BIT(15) | vBIT(i, 26, 6));
3660                 writeq(val64, &bar0->xmsi_access);
3661                 if (wait_for_msix_trans(nic, i)) {
3662                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3663                         continue;
3664                 }
3665         }
3666 }
3667
3668 static void store_xmsi_data(struct s2io_nic *nic)
3669 {
3670         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3671         u64 val64, addr, data;
3672         int i;
3673
3674         /* Store and display */
3675         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3676                 val64 = (s2BIT(15) | vBIT(i, 26, 6));
3677                 writeq(val64, &bar0->xmsi_access);
3678                 if (wait_for_msix_trans(nic, i)) {
3679                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3680                         continue;
3681                 }
3682                 addr = readq(&bar0->xmsi_address);
3683                 data = readq(&bar0->xmsi_data);
3684                 if (addr && data) {
3685                         nic->msix_info[i].addr = addr;
3686                         nic->msix_info[i].data = data;
3687                 }
3688         }
3689 }
3690
3691 static int s2io_enable_msi_x(struct s2io_nic *nic)
3692 {
3693         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3694         u64 tx_mat, rx_mat;
3695         u16 msi_control; /* Temp variable */
3696         int ret, i, j, msix_indx = 1;
3697
3698         nic->entries = kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct msix_entry),
3699                                GFP_KERNEL);
3700         if (!nic->entries) {
3701                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3702                         __FUNCTION__);
3703                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3704                 return -ENOMEM;
3705         }
3706         nic->mac_control.stats_info->sw_stat.mem_allocated
3707                 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3708
3709         nic->s2io_entries =
3710                 kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct s2io_msix_entry),
3711                                    GFP_KERNEL);
3712         if (!nic->s2io_entries) {
3713                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3714                         __FUNCTION__);
3715                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3716                 kfree(nic->entries);
3717                 nic->mac_control.stats_info->sw_stat.mem_freed
3718                         += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3719                 return -ENOMEM;
3720         }
3721          nic->mac_control.stats_info->sw_stat.mem_allocated
3722                 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3723
3724         for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3725                 nic->entries[i].entry = i;
3726                 nic->s2io_entries[i].entry = i;
3727                 nic->s2io_entries[i].arg = NULL;
3728                 nic->s2io_entries[i].in_use = 0;
3729         }
3730
3731         tx_mat = readq(&bar0->tx_mat0_n[0]);
3732         for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3733                 tx_mat |= TX_MAT_SET(i, msix_indx);
3734                 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3735                 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3736                 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3737         }
3738         writeq(tx_mat, &bar0->tx_mat0_n[0]);
3739
3740         rx_mat = readq(&bar0->rx_mat);
3741         for (j = 0; j < nic->config.rx_ring_num; j++, msix_indx++) {
3742                 rx_mat |= RX_MAT_SET(j, msix_indx);
3743                 nic->s2io_entries[msix_indx].arg
3744                         = &nic->mac_control.rings[j];
3745                 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3746                 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3747         }
3748         writeq(rx_mat, &bar0->rx_mat);
3749
3750         nic->avail_msix_vectors = 0;
3751         ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3752         /* We fail init if error or we get less vectors than min required */
3753         if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3754                 nic->avail_msix_vectors = ret;
3755                 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3756         }
3757         if (ret) {
3758                 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3759                 kfree(nic->entries);
3760                 nic->mac_control.stats_info->sw_stat.mem_freed
3761                         += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3762                 kfree(nic->s2io_entries);
3763                 nic->mac_control.stats_info->sw_stat.mem_freed
3764                 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3765                 nic->entries = NULL;
3766                 nic->s2io_entries = NULL;
3767                 nic->avail_msix_vectors = 0;
3768                 return -ENOMEM;
3769         }
3770         if (!nic->avail_msix_vectors)
3771                 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3772
3773         /*
3774          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3775          * in the herc NIC. (Temp change, needs to be removed later)
3776          */
3777         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3778         msi_control |= 0x1; /* Enable MSI */
3779         pci_write_config_word(nic->pdev, 0x42, msi_control);
3780
3781         return 0;
3782 }
3783
3784 /* Handle software interrupt used during MSI(X) test */
3785 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3786 {
3787         struct s2io_nic *sp = dev_id;
3788
3789         sp->msi_detected = 1;
3790         wake_up(&sp->msi_wait);
3791
3792         return IRQ_HANDLED;
3793 }
3794
3795 /* Test interrupt path by forcing a a software IRQ */
3796 static int s2io_test_msi(struct s2io_nic *sp)
3797 {
3798         struct pci_dev *pdev = sp->pdev;
3799         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3800         int err;
3801         u64 val64, saved64;
3802
3803         err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3804                         sp->name, sp);
3805         if (err) {
3806                 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3807                        sp->dev->name, pci_name(pdev), pdev->irq);
3808                 return err;
3809         }
3810
3811         init_waitqueue_head (&sp->msi_wait);
3812         sp->msi_detected = 0;
3813
3814         saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3815         val64 |= SCHED_INT_CTRL_ONE_SHOT;
3816         val64 |= SCHED_INT_CTRL_TIMER_EN;
3817         val64 |= SCHED_INT_CTRL_INT2MSI(1);
3818         writeq(val64, &bar0->scheduled_int_ctrl);
3819
3820         wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3821
3822         if (!sp->msi_detected) {
3823                 /* MSI(X) test failed, go back to INTx mode */
3824                 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3825                         "using MSI(X) during test\n", sp->dev->name,
3826                         pci_name(pdev));
3827
3828                 err = -EOPNOTSUPP;
3829         }
3830
3831         free_irq(sp->entries[1].vector, sp);
3832
3833         writeq(saved64, &bar0->scheduled_int_ctrl);
3834
3835         return err;
3836 }
3837
3838 static void remove_msix_isr(struct s2io_nic *sp)
3839 {
3840         int i;
3841         u16 msi_control;
3842
3843         for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3844                 if (sp->s2io_entries[i].in_use ==
3845                         MSIX_REGISTERED_SUCCESS) {
3846                         int vector = sp->entries[i].vector;
3847                         void *arg = sp->s2io_entries[i].arg;
3848                         free_irq(vector, arg);
3849                 }
3850         }
3851
3852         kfree(sp->entries);
3853         kfree(sp->s2io_entries);
3854         sp->entries = NULL;
3855         sp->s2io_entries = NULL;
3856
3857         pci_read_config_word(sp->pdev, 0x42, &msi_control);
3858         msi_control &= 0xFFFE; /* Disable MSI */
3859         pci_write_config_word(sp->pdev, 0x42, msi_control);
3860
3861         pci_disable_msix(sp->pdev);
3862 }
3863
3864 static void remove_inta_isr(struct s2io_nic *sp)
3865 {
3866         struct net_device *dev = sp->dev;
3867
3868         free_irq(sp->pdev->irq, dev);
3869 }
3870
3871 /* ********************************************************* *
3872  * Functions defined below concern the OS part of the driver *
3873  * ********************************************************* */
3874
3875 /**
3876  *  s2io_open - open entry point of the driver
3877  *  @dev : pointer to the device structure.
3878  *  Description:
3879  *  This function is the open entry point of the driver. It mainly calls a
3880  *  function to allocate Rx buffers and inserts them into the buffer
3881  *  descriptors and then enables the Rx part of the NIC.
3882  *  Return value:
3883  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3884  *   file on failure.
3885  */
3886
3887 static int s2io_open(struct net_device *dev)
3888 {
3889         struct s2io_nic *sp = dev->priv;
3890         int err = 0;
3891
3892         /*
3893          * Make sure you have link off by default every time
3894          * Nic is initialized
3895          */
3896         netif_carrier_off(dev);
3897         sp->last_link_state = 0;
3898
3899         if (sp->config.intr_type == MSI_X) {
3900                 int ret = s2io_enable_msi_x(sp);
3901
3902                 if (!ret) {
3903                         ret = s2io_test_msi(sp);
3904                         /* rollback MSI-X, will re-enable during add_isr() */
3905                         remove_msix_isr(sp);
3906                 }
3907                 if (ret) {
3908
3909                         DBG_PRINT(ERR_DBG,
3910                           "%s: MSI-X requested but failed to enable\n",
3911                           dev->name);
3912                         sp->config.intr_type = INTA;
3913                 }
3914         }
3915
3916         /* NAPI doesn't work well with MSI(X) */
3917          if (sp->config.intr_type != INTA) {
3918                 if(sp->config.napi)
3919                         sp->config.napi = 0;
3920         }
3921
3922         /* Initialize H/W and enable interrupts */
3923         err = s2io_card_up(sp);
3924         if (err) {
3925                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3926                           dev->name);
3927                 goto hw_init_failed;
3928         }
3929
3930         if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3931                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3932                 s2io_card_down(sp);
3933                 err = -ENODEV;
3934                 goto hw_init_failed;
3935         }
3936
3937         netif_start_queue(dev);
3938         return 0;
3939
3940 hw_init_failed:
3941         if (sp->config.intr_type == MSI_X) {
3942                 if (sp->entries) {
3943                         kfree(sp->entries);
3944                         sp->mac_control.stats_info->sw_stat.mem_freed
3945                         += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3946                 }
3947                 if (sp->s2io_entries) {
3948                         kfree(sp->s2io_entries);
3949                         sp->mac_control.stats_info->sw_stat.mem_freed
3950                         += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3951                 }
3952         }
3953         return err;
3954 }
3955
3956 /**
3957  *  s2io_close -close entry point of the driver
3958  *  @dev : device pointer.
3959  *  Description:
3960  *  This is the stop entry point of the driver. It needs to undo exactly
3961  *  whatever was done by the open entry point,thus it's usually referred to
3962  *  as the close function.Among other things this function mainly stops the
3963  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3964  *  Return value:
3965  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3966  *  file on failure.
3967  */
3968
3969 static int s2io_close(struct net_device *dev)
3970 {
3971         struct s2io_nic *sp = dev->priv;
3972         struct config_param *config = &sp->config;
3973         u64 tmp64;
3974         int offset;
3975
3976         /* Return if the device is already closed               *
3977         *  Can happen when s2io_card_up failed in change_mtu    *
3978         */
3979         if (!is_s2io_card_up(sp))
3980                 return 0;
3981
3982         netif_stop_queue(dev);
3983
3984         /* delete all populated mac entries */
3985         for (offset = 1; offset < config->max_mc_addr; offset++) {
3986                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
3987                 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
3988                         do_s2io_delete_unicast_mc(sp, tmp64);
3989         }
3990
3991         /* Reset card, kill tasklet and free Tx and Rx buffers. */
3992         s2io_card_down(sp);
3993
3994         return 0;
3995 }
3996
3997 /**
3998  *  s2io_xmit - Tx entry point of te driver
3999  *  @skb : the socket buffer containing the Tx data.
4000  *  @dev : device pointer.
4001  *  Description :
4002  *  This function is the Tx entry point of the driver. S2IO NIC supports
4003  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
4004  *  NOTE: when device cant queue the pkt,just the trans_start variable will
4005  *  not be upadted.
4006  *  Return value:
4007  *  0 on success & 1 on failure.
4008  */
4009
4010 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4011 {
4012         struct s2io_nic *sp = dev->priv;
4013         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4014         register u64 val64;
4015         struct TxD *txdp;
4016         struct TxFIFO_element __iomem *tx_fifo;
4017         unsigned long flags = 0;
4018         u16 vlan_tag = 0;
4019         int vlan_priority = 0;
4020         struct fifo_info *fifo = NULL;
4021         struct mac_info *mac_control;
4022         struct config_param *config;
4023         int offload_type;
4024         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
4025
4026         mac_control = &sp->mac_control;
4027         config = &sp->config;
4028
4029         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4030
4031         if (unlikely(skb->len <= 0)) {
4032                 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4033                 dev_kfree_skb_any(skb);
4034                 return 0;
4035         }
4036
4037         if (!is_s2io_card_up(sp)) {
4038                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4039                           dev->name);
4040                 dev_kfree_skb(skb);
4041                 return 0;
4042         }
4043
4044         queue = 0;
4045         /* Get Fifo number to Transmit based on vlan priority */
4046         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
4047                 vlan_tag = vlan_tx_tag_get(skb);
4048                 vlan_priority = vlan_tag >> 13;
4049                 queue = config->fifo_mapping[vlan_priority];
4050         }
4051
4052         fifo = &mac_control->fifos[queue];
4053         spin_lock_irqsave(&fifo->tx_lock, flags);
4054         put_off = (u16) fifo->tx_curr_put_info.offset;
4055         get_off = (u16) fifo->tx_curr_get_info.offset;
4056         txdp = (struct TxD *) fifo->list_info[put_off].list_virt_addr;
4057
4058         queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4059         /* Avoid "put" pointer going beyond "get" pointer */
4060         if (txdp->Host_Control ||
4061                    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4062                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4063                 netif_stop_queue(dev);
4064                 dev_kfree_skb(skb);
4065                 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4066                 return 0;
4067         }
4068
4069         offload_type = s2io_offload_type(skb);
4070         if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4071                 txdp->Control_1 |= TXD_TCP_LSO_EN;
4072                 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4073         }
4074         if (skb->ip_summed == CHECKSUM_PARTIAL) {
4075                 txdp->Control_2 |=
4076                     (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4077                      TXD_TX_CKO_UDP_EN);
4078         }
4079         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4080         txdp->Control_1 |= TXD_LIST_OWN_XENA;
4081         txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4082
4083         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
4084                 txdp->Control_2 |= TXD_VLAN_ENABLE;
4085                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4086         }
4087
4088         frg_len = skb->len - skb->data_len;
4089         if (offload_type == SKB_GSO_UDP) {
4090                 int ufo_size;
4091
4092                 ufo_size = s2io_udp_mss(skb);
4093                 ufo_size &= ~7;
4094                 txdp->Control_1 |= TXD_UFO_EN;
4095                 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4096                 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4097 #ifdef __BIG_ENDIAN
4098                 fifo->ufo_in_band_v[put_off] =
4099                                 (u64)skb_shinfo(skb)->ip6_frag_id;
4100 #else
4101                 fifo->ufo_in_band_v[put_off] =
4102                                 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
4103 #endif
4104                 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4105                 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4106                                         fifo->ufo_in_band_v,
4107                                         sizeof(u64), PCI_DMA_TODEVICE);
4108                 if((txdp->Buffer_Pointer == 0) ||
4109                         (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4110                         goto pci_map_failed;
4111                 txdp++;
4112         }
4113
4114         txdp->Buffer_Pointer = pci_map_single
4115             (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4116         if((txdp->Buffer_Pointer == 0) ||
4117                 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4118                 goto pci_map_failed;
4119
4120         txdp->Host_Control = (unsigned long) skb;
4121         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4122         if (offload_type == SKB_GSO_UDP)
4123                 txdp->Control_1 |= TXD_UFO_EN;
4124
4125         frg_cnt = skb_shinfo(skb)->nr_frags;
4126         /* For fragmented SKB. */
4127         for (i = 0; i < frg_cnt; i++) {
4128                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4129                 /* A '0' length fragment will be ignored */
4130                 if (!frag->size)
4131                         continue;
4132                 txdp++;
4133                 txdp->Buffer_Pointer = (u64) pci_map_page
4134                     (sp->pdev, frag->page, frag->page_offset,
4135                      frag->size, PCI_DMA_TODEVICE);
4136                 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4137                 if (offload_type == SKB_GSO_UDP)
4138                         txdp->Control_1 |= TXD_UFO_EN;
4139         }
4140         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4141
4142         if (offload_type == SKB_GSO_UDP)
4143                 frg_cnt++; /* as Txd0 was used for inband header */
4144
4145         tx_fifo = mac_control->tx_FIFO_start[queue];
4146         val64 = fifo->list_info[put_off].list_phy_addr;
4147         writeq(val64, &tx_fifo->TxDL_Pointer);
4148
4149         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4150                  TX_FIFO_LAST_LIST);
4151         if (offload_type)
4152                 val64 |= TX_FIFO_SPECIAL_FUNC;
4153
4154         writeq(val64, &tx_fifo->List_Control);
4155
4156         mmiowb();
4157
4158         put_off++;
4159         if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4160                 put_off = 0;
4161         fifo->tx_curr_put_info.offset = put_off;
4162
4163         /* Avoid "put" pointer going beyond "get" pointer */
4164         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4165                 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4166                 DBG_PRINT(TX_DBG,
4167                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4168                           put_off, get_off);
4169                 netif_stop_queue(dev);
4170         }
4171         mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4172         dev->trans_start = jiffies;
4173         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4174
4175         if (sp->config.intr_type == MSI_X)
4176                 tx_intr_handler(fifo);
4177
4178         return 0;
4179 pci_map_failed:
4180         stats->pci_map_fail_cnt++;
4181         netif_stop_queue(dev);
4182         stats->mem_freed += skb->truesize;
4183         dev_kfree_skb(skb);
4184         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4185         return 0;
4186 }
4187
4188 static void
4189 s2io_alarm_handle(unsigned long data)
4190 {
4191         struct s2io_nic *sp = (struct s2io_nic *)data;
4192         struct net_device *dev = sp->dev;
4193
4194         s2io_handle_errors(dev);
4195         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4196 }
4197
4198 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
4199 {
4200         int rxb_size, level;
4201
4202         if (!sp->lro) {
4203                 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4204                 level = rx_buffer_level(sp, rxb_size, rng_n);
4205
4206                 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4207                         int ret;
4208                         DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4209                         DBG_PRINT(INTR_DBG, "PANIC levels\n");
4210                         if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4211                                 DBG_PRINT(INFO_DBG, "Out of memory in %s",
4212                                           __FUNCTION__);
4213                                 clear_bit(0, (&sp->tasklet_status));
4214                                 return -1;
4215                         }
4216                         clear_bit(0, (&sp->tasklet_status));
4217                 } else if (level == LOW)
4218                         tasklet_schedule(&sp->task);
4219
4220         } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4221                         DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4222                         DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
4223         }
4224         return 0;
4225 }
4226
4227 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4228 {
4229         struct ring_info *ring = (struct ring_info *)dev_id;
4230         struct s2io_nic *sp = ring->nic;
4231
4232         if (!is_s2io_card_up(sp))
4233                 return IRQ_HANDLED;
4234
4235         rx_intr_handler(ring);
4236         s2io_chk_rx_buffers(sp, ring->ring_no);
4237
4238         return IRQ_HANDLED;
4239 }
4240
4241 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4242 {
4243         struct fifo_info *fifo = (struct fifo_info *)dev_id;
4244         struct s2io_nic *sp = fifo->nic;
4245
4246         if (!is_s2io_card_up(sp))
4247                 return IRQ_HANDLED;
4248
4249         tx_intr_handler(fifo);
4250         return IRQ_HANDLED;
4251 }
4252 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4253 {
4254         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4255         u64 val64;
4256
4257         val64 = readq(&bar0->pic_int_status);
4258         if (val64 & PIC_INT_GPIO) {
4259                 val64 = readq(&bar0->gpio_int_reg);
4260                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4261                     (val64 & GPIO_INT_REG_LINK_UP)) {
4262                         /*
4263                          * This is unstable state so clear both up/down
4264                          * interrupt and adapter to re-evaluate the link state.
4265                          */
4266                         val64 |=  GPIO_INT_REG_LINK_DOWN;
4267                         val64 |= GPIO_INT_REG_LINK_UP;
4268                         writeq(val64, &bar0->gpio_int_reg);
4269                         val64 = readq(&bar0->gpio_int_mask);
4270                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4271                                    GPIO_INT_MASK_LINK_DOWN);
4272                         writeq(val64, &bar0->gpio_int_mask);
4273                 }
4274                 else if (val64 & GPIO_INT_REG_LINK_UP) {
4275                         val64 = readq(&bar0->adapter_status);
4276                                 /* Enable Adapter */
4277                         val64 = readq(&bar0->adapter_control);
4278                         val64 |= ADAPTER_CNTL_EN;
4279                         writeq(val64, &bar0->adapter_control);
4280                         val64 |= ADAPTER_LED_ON;
4281                         writeq(val64, &bar0->adapter_control);
4282                         if (!sp->device_enabled_once)
4283                                 sp->device_enabled_once = 1;
4284
4285                         s2io_link(sp, LINK_UP);
4286                         /*
4287                          * unmask link down interrupt and mask link-up
4288                          * intr
4289                          */
4290                         val64 = readq(&bar0->gpio_int_mask);
4291                         val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4292                         val64 |= GPIO_INT_MASK_LINK_UP;
4293                         writeq(val64, &bar0->gpio_int_mask);
4294
4295                 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4296                         val64 = readq(&bar0->adapter_status);
4297                         s2io_link(sp, LINK_DOWN);
4298                         /* Link is down so unmaks link up interrupt */
4299                         val64 = readq(&bar0->gpio_int_mask);
4300                         val64 &= ~GPIO_INT_MASK_LINK_UP;
4301                         val64 |= GPIO_INT_MASK_LINK_DOWN;
4302                         writeq(val64, &bar0->gpio_int_mask);
4303
4304                         /* turn off LED */
4305                         val64 = readq(&bar0->adapter_control);
4306                         val64 = val64 &(~ADAPTER_LED_ON);
4307                         writeq(val64, &bar0->adapter_control);
4308                 }
4309         }
4310         val64 = readq(&bar0->gpio_int_mask);
4311 }
4312
4313 /**
4314  *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4315  *  @value: alarm bits
4316  *  @addr: address value
4317  *  @cnt: counter variable
4318  *  Description: Check for alarm and increment the counter
4319  *  Return Value:
4320  *  1 - if alarm bit set
4321  *  0 - if alarm bit is not set
4322  */
4323 static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
4324                           unsigned long long *cnt)
4325 {
4326         u64 val64;
4327         val64 = readq(addr);
4328         if ( val64 & value ) {
4329                 writeq(val64, addr);
4330                 (*cnt)++;
4331                 return 1;
4332         }
4333         return 0;
4334
4335 }
4336
4337 /**
4338  *  s2io_handle_errors - Xframe error indication handler
4339  *  @nic: device private variable
4340  *  Description: Handle alarms such as loss of link, single or
4341  *  double ECC errors, critical and serious errors.
4342  *  Return Value:
4343  *  NONE
4344  */
4345 static void s2io_handle_errors(void * dev_id)
4346 {
4347         struct net_device *dev = (struct net_device *) dev_id;
4348         struct s2io_nic *sp = dev->priv;
4349         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4350         u64 temp64 = 0,val64=0;
4351         int i = 0;
4352
4353         struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4354         struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4355
4356         if (!is_s2io_card_up(sp))
4357                 return;
4358
4359         if (pci_channel_offline(sp->pdev))
4360                 return;
4361
4362         memset(&sw_stat->ring_full_cnt, 0,
4363                 sizeof(sw_stat->ring_full_cnt));
4364
4365         /* Handling the XPAK counters update */
4366         if(stats->xpak_timer_count < 72000) {
4367                 /* waiting for an hour */
4368                 stats->xpak_timer_count++;
4369         } else {
4370                 s2io_updt_xpak_counter(dev);
4371                 /* reset the count to zero */
4372                 stats->xpak_timer_count = 0;
4373         }
4374
4375         /* Handling link status change error Intr */
4376         if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4377                 val64 = readq(&bar0->mac_rmac_err_reg);
4378                 writeq(val64, &bar0->mac_rmac_err_reg);
4379                 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4380                         schedule_work(&sp->set_link_task);
4381         }
4382
4383         /* In case of a serious error, the device will be Reset. */
4384         if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4385                                 &sw_stat->serious_err_cnt))
4386                 goto reset;
4387
4388         /* Check for data parity error */
4389         if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4390                                 &sw_stat->parity_err_cnt))
4391                 goto reset;
4392
4393         /* Check for ring full counter */
4394         if (sp->device_type == XFRAME_II_DEVICE) {
4395                 val64 = readq(&bar0->ring_bump_counter1);
4396                 for (i=0; i<4; i++) {
4397                         temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4398                         temp64 >>= 64 - ((i+1)*16);
4399                         sw_stat->ring_full_cnt[i] += temp64;
4400                 }
4401
4402                 val64 = readq(&bar0->ring_bump_counter2);
4403                 for (i=0; i<4; i++) {
4404                         temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4405                         temp64 >>= 64 - ((i+1)*16);
4406                          sw_stat->ring_full_cnt[i+4] += temp64;
4407                 }
4408         }
4409
4410         val64 = readq(&bar0->txdma_int_status);
4411         /*check for pfc_err*/
4412         if (val64 & TXDMA_PFC_INT) {
4413                 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4414                                 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4415                                 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4416                                 &sw_stat->pfc_err_cnt))
4417                         goto reset;
4418                 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4419                                 &sw_stat->pfc_err_cnt);
4420         }
4421
4422         /*check for tda_err*/
4423         if (val64 & TXDMA_TDA_INT) {
4424                 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4425                                 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4426                                 &sw_stat->tda_err_cnt))
4427                         goto reset;
4428                 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4429                                 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4430         }
4431         /*check for pcc_err*/
4432         if (val64 & TXDMA_PCC_INT) {
4433                 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4434                                 | PCC_N_SERR | PCC_6_COF_OV_ERR
4435                                 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4436                                 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4437                                 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4438                                 &sw_stat->pcc_err_cnt))
4439                         goto reset;
4440                 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4441                                 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4442         }
4443
4444         /*check for tti_err*/
4445         if (val64 & TXDMA_TTI_INT) {
4446                 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4447                                 &sw_stat->tti_err_cnt))
4448                         goto reset;
4449                 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4450                                 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4451         }
4452
4453         /*check for lso_err*/
4454         if (val64 & TXDMA_LSO_INT) {
4455                 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4456                                 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4457                                 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4458                         goto reset;
4459                 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4460                                 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4461         }
4462
4463         /*check for tpa_err*/
4464         if (val64 & TXDMA_TPA_INT) {
4465                 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4466                         &sw_stat->tpa_err_cnt))
4467                         goto reset;
4468                 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4469                         &sw_stat->tpa_err_cnt);
4470         }
4471
4472         /*check for sm_err*/
4473         if (val64 & TXDMA_SM_INT) {
4474                 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4475                         &sw_stat->sm_err_cnt))
4476                         goto reset;
4477         }
4478
4479         val64 = readq(&bar0->mac_int_status);
4480         if (val64 & MAC_INT_STATUS_TMAC_INT) {
4481                 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4482                                 &bar0->mac_tmac_err_reg,
4483                                 &sw_stat->mac_tmac_err_cnt))
4484                         goto reset;
4485                 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4486                                 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4487                                 &bar0->mac_tmac_err_reg,
4488                                 &sw_stat->mac_tmac_err_cnt);
4489         }
4490
4491         val64 = readq(&bar0->xgxs_int_status);
4492         if (val64 & XGXS_INT_STATUS_TXGXS) {
4493                 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4494                                 &bar0->xgxs_txgxs_err_reg,
4495                                 &sw_stat->xgxs_txgxs_err_cnt))
4496                         goto reset;
4497                 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4498                                 &bar0->xgxs_txgxs_err_reg,
4499                                 &sw_stat->xgxs_txgxs_err_cnt);
4500         }
4501
4502         val64 = readq(&bar0->rxdma_int_status);
4503         if (val64 & RXDMA_INT_RC_INT_M) {
4504                 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4505                                 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4506                                 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4507                         goto reset;
4508                 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4509                                 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4510                                 &sw_stat->rc_err_cnt);
4511                 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4512                                 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4513                                 &sw_stat->prc_pcix_err_cnt))
4514                         goto reset;
4515                 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4516                                 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4517                                 &sw_stat->prc_pcix_err_cnt);
4518         }
4519
4520         if (val64 & RXDMA_INT_RPA_INT_M) {
4521                 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4522                                 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4523                         goto reset;
4524                 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4525                                 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4526         }
4527
4528         if (val64 & RXDMA_INT_RDA_INT_M) {
4529                 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4530                                 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4531                                 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4532                                 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4533                         goto reset;
4534                 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4535                                 | RDA_MISC_ERR | RDA_PCIX_ERR,
4536                                 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4537         }
4538
4539         if (val64 & RXDMA_INT_RTI_INT_M) {
4540                 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4541                                 &sw_stat->rti_err_cnt))
4542                         goto reset;
4543                 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4544                                 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4545         }
4546
4547         val64 = readq(&bar0->mac_int_status);
4548         if (val64 & MAC_INT_STATUS_RMAC_INT) {
4549                 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4550                                 &bar0->mac_rmac_err_reg,
4551                                 &sw_stat->mac_rmac_err_cnt))
4552                         goto reset;
4553                 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4554                                 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4555                                 &sw_stat->mac_rmac_err_cnt);
4556         }
4557
4558         val64 = readq(&bar0->xgxs_int_status);
4559         if (val64 & XGXS_INT_STATUS_RXGXS) {
4560                 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4561                                 &bar0->xgxs_rxgxs_err_reg,
4562                                 &sw_stat->xgxs_rxgxs_err_cnt))
4563                         goto reset;
4564         }
4565
4566         val64 = readq(&bar0->mc_int_status);
4567         if(val64 & MC_INT_STATUS_MC_INT) {
4568                 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4569                                 &sw_stat->mc_err_cnt))
4570                         goto reset;
4571
4572                 /* Handling Ecc errors */
4573                 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4574                         writeq(val64, &bar0->mc_err_reg);
4575                         if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4576                                 sw_stat->double_ecc_errs++;
4577                                 if (sp->device_type != XFRAME_II_DEVICE) {
4578                                         /*
4579                                          * Reset XframeI only if critical error
4580                                          */
4581                                         if (val64 &
4582                                                 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4583                                                 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4584                                                                 goto reset;
4585                                         }
4586                         } else
4587                                 sw_stat->single_ecc_errs++;
4588                 }
4589         }
4590         return;
4591
4592 reset:
4593         netif_stop_queue(dev);
4594         schedule_work(&sp->rst_timer_task);
4595         sw_stat->soft_reset_cnt++;
4596         return;
4597 }
4598
4599 /**
4600  *  s2io_isr - ISR handler of the device .
4601  *  @irq: the irq of the device.
4602  *  @dev_id: a void pointer to the dev structure of the NIC.
4603  *  Description:  This function is the ISR handler of the device. It
4604  *  identifies the reason for the interrupt and calls the relevant
4605  *  service routines. As a contongency measure, this ISR allocates the
4606  *  recv buffers, if their numbers are below the panic value which is
4607  *  presently set to 25% of the original number of rcv buffers allocated.
4608  *  Return value:
4609  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4610  *   IRQ_NONE: will be returned if interrupt is not from our device
4611  */
4612 static irqreturn_t s2io_isr(int irq, void *dev_id)
4613 {
4614         struct net_device *dev = (struct net_device *) dev_id;
4615         struct s2io_nic *sp = dev->priv;
4616         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4617         int i;
4618         u64 reason = 0;
4619         struct mac_info *mac_control;
4620         struct config_param *config;
4621
4622         /* Pretend we handled any irq's from a disconnected card */
4623         if (pci_channel_offline(sp->pdev))
4624                 return IRQ_NONE;
4625
4626         if (!is_s2io_card_up(sp))
4627                 return IRQ_NONE;
4628
4629         mac_control = &sp->mac_control;
4630         config = &sp->config;
4631
4632         /*
4633          * Identify the cause for interrupt and call the appropriate
4634          * interrupt handler. Causes for the interrupt could be;
4635          * 1. Rx of packet.
4636          * 2. Tx complete.
4637          * 3. Link down.
4638          */
4639         reason = readq(&bar0->general_int_status);
4640
4641         if (unlikely(reason == S2IO_MINUS_ONE) ) {
4642                 /* Nothing much can be done. Get out */
4643                 return IRQ_HANDLED;
4644         }
4645
4646         if (reason & (GEN_INTR_RXTRAFFIC |
4647                 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4648         {
4649                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4650
4651                 if (config->napi) {
4652                         if (reason & GEN_INTR_RXTRAFFIC) {
4653                                 if (likely(netif_rx_schedule_prep(dev,
4654                                                         &sp->napi))) {
4655                                         __netif_rx_schedule(dev, &sp->napi);
4656                                         writeq(S2IO_MINUS_ONE,
4657                                                &bar0->rx_traffic_mask);
4658                                 } else
4659                                         writeq(S2IO_MINUS_ONE,
4660                                                &bar0->rx_traffic_int);
4661                         }
4662                 } else {
4663                         /*
4664                          * rx_traffic_int reg is an R1 register, writing all 1's
4665                          * will ensure that the actual interrupt causing bit
4666                          * get's cleared and hence a read can be avoided.
4667                          */
4668                         if (reason & GEN_INTR_RXTRAFFIC)
4669                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4670
4671                         for (i = 0; i < config->rx_ring_num; i++)
4672                                 rx_intr_handler(&mac_control->rings[i]);
4673                 }
4674
4675                 /*
4676                  * tx_traffic_int reg is an R1 register, writing all 1's
4677                  * will ensure that the actual interrupt causing bit get's
4678                  * cleared and hence a read can be avoided.
4679                  */
4680                 if (reason & GEN_INTR_TXTRAFFIC)
4681                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4682
4683                 for (i = 0; i < config->tx_fifo_num; i++)
4684                         tx_intr_handler(&mac_control->fifos[i]);
4685
4686                 if (reason & GEN_INTR_TXPIC)
4687                         s2io_txpic_intr_handle(sp);
4688
4689                 /*
4690                  * Reallocate the buffers from the interrupt handler itself.
4691                  */
4692                 if (!config->napi) {
4693                         for (i = 0; i < config->rx_ring_num; i++)
4694                                 s2io_chk_rx_buffers(sp, i);
4695                 }
4696                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4697                 readl(&bar0->general_int_status);
4698
4699                 return IRQ_HANDLED;
4700
4701         }
4702         else if (!reason) {
4703                 /* The interrupt was not raised by us */
4704                 return IRQ_NONE;
4705         }
4706
4707         return IRQ_HANDLED;
4708 }
4709
4710 /**
4711  * s2io_updt_stats -
4712  */
4713 static void s2io_updt_stats(struct s2io_nic *sp)
4714 {
4715         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4716         u64 val64;
4717         int cnt = 0;
4718
4719         if (is_s2io_card_up(sp)) {
4720                 /* Apprx 30us on a 133 MHz bus */
4721                 val64 = SET_UPDT_CLICKS(10) |
4722                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4723                 writeq(val64, &bar0->stat_cfg);
4724                 do {
4725                         udelay(100);
4726                         val64 = readq(&bar0->stat_cfg);
4727                         if (!(val64 & s2BIT(0)))
4728                                 break;
4729                         cnt++;
4730                         if (cnt == 5)
4731                                 break; /* Updt failed */
4732                 } while(1);
4733         }
4734 }
4735
4736 /**
4737  *  s2io_get_stats - Updates the device statistics structure.
4738  *  @dev : pointer to the device structure.
4739  *  Description:
4740  *  This function updates the device statistics structure in the s2io_nic
4741  *  structure and returns a pointer to the same.
4742  *  Return value:
4743  *  pointer to the updated net_device_stats structure.
4744  */
4745
4746 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4747 {
4748         struct s2io_nic *sp = dev->priv;
4749         struct mac_info *mac_control;
4750         struct config_param *config;
4751
4752
4753         mac_control = &sp->mac_control;
4754         config = &sp->config;
4755
4756         /* Configure Stats for immediate updt */
4757         s2io_updt_stats(sp);
4758
4759         sp->stats.tx_packets =
4760                 le32_to_cpu(mac_control->stats_info->tmac_frms);
4761         sp->stats.tx_errors =
4762                 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4763         sp->stats.rx_errors =
4764                 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4765         sp->stats.multicast =
4766                 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4767         sp->stats.rx_length_errors =
4768                 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4769
4770         return (&sp->stats);
4771 }
4772
4773 /**
4774  *  s2io_set_multicast - entry point for multicast address enable/disable.
4775  *  @dev : pointer to the device structure
4776  *  Description:
4777  *  This function is a driver entry point which gets called by the kernel
4778  *  whenever multicast addresses must be enabled/disabled. This also gets
4779  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4780  *  determine, if multicast address must be enabled or if promiscuous mode
4781  *  is to be disabled etc.
4782  *  Return value:
4783  *  void.
4784  */
4785
4786 static void s2io_set_multicast(struct net_device *dev)
4787 {
4788         int i, j, prev_cnt;
4789         struct dev_mc_list *mclist;
4790         struct s2io_nic *sp = dev->priv;
4791         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4792         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4793             0xfeffffffffffULL;
4794         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4795         void __iomem *add;
4796         struct config_param *config = &sp->config;
4797
4798         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4799                 /*  Enable all Multicast addresses */
4800                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4801                        &bar0->rmac_addr_data0_mem);
4802                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4803                        &bar0->rmac_addr_data1_mem);
4804                 val64 = RMAC_ADDR_CMD_MEM_WE |
4805                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4806                     RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4807                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4808                 /* Wait till command completes */
4809                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4810                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4811                                         S2IO_BIT_RESET);
4812
4813                 sp->m_cast_flg = 1;
4814                 sp->all_multi_pos = config->max_mc_addr - 1;
4815         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4816                 /*  Disable all Multicast addresses */
4817                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4818                        &bar0->rmac_addr_data0_mem);
4819                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4820                        &bar0->rmac_addr_data1_mem);
4821                 val64 = RMAC_ADDR_CMD_MEM_WE |
4822                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4823                     RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4824                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4825                 /* Wait till command completes */
4826                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4827                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4828                                         S2IO_BIT_RESET);
4829
4830                 sp->m_cast_flg = 0;
4831                 sp->all_multi_pos = 0;
4832         }
4833
4834         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4835                 /*  Put the NIC into promiscuous mode */
4836                 add = &bar0->mac_cfg;
4837                 val64 = readq(&bar0->mac_cfg);
4838                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4839
4840                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4841                 writel((u32) val64, add);
4842                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4843                 writel((u32) (val64 >> 32), (add + 4));
4844
4845                 if (vlan_tag_strip != 1) {
4846                         val64 = readq(&bar0->rx_pa_cfg);
4847                         val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4848                         writeq(val64, &bar0->rx_pa_cfg);
4849                         vlan_strip_flag = 0;
4850                 }
4851
4852                 val64 = readq(&bar0->mac_cfg);
4853                 sp->promisc_flg = 1;
4854                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4855                           dev->name);
4856         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4857                 /*  Remove the NIC from promiscuous mode */
4858                 add = &bar0->mac_cfg;
4859                 val64 = readq(&bar0->mac_cfg);
4860                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4861
4862                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4863                 writel((u32) val64, add);
4864                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4865                 writel((u32) (val64 >> 32), (add + 4));
4866
4867                 if (vlan_tag_strip != 0) {
4868                         val64 = readq(&bar0->rx_pa_cfg);
4869                         val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4870                         writeq(val64, &bar0->rx_pa_cfg);
4871                         vlan_strip_flag = 1;
4872                 }
4873
4874                 val64 = readq(&bar0->mac_cfg);
4875                 sp->promisc_flg = 0;
4876                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4877                           dev->name);
4878         }
4879
4880         /*  Update individual M_CAST address list */
4881         if ((!sp->m_cast_flg) && dev->mc_count) {
4882                 if (dev->mc_count >
4883                     (config->max_mc_addr - config->max_mac_addr)) {
4884                         DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4885                                   dev->name);
4886                         DBG_PRINT(ERR_DBG, "can be added, please enable ");
4887                         DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4888                         return;
4889                 }
4890
4891                 prev_cnt = sp->mc_addr_count;
4892                 sp->mc_addr_count = dev->mc_count;
4893
4894                 /* Clear out the previous list of Mc in the H/W. */
4895                 for (i = 0; i < prev_cnt; i++) {
4896                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4897                                &bar0->rmac_addr_data0_mem);
4898                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4899                                 &bar0->rmac_addr_data1_mem);
4900                         val64 = RMAC_ADDR_CMD_MEM_WE |
4901                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4902                             RMAC_ADDR_CMD_MEM_OFFSET
4903                             (config->mc_start_offset + i);
4904                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4905
4906                         /* Wait for command completes */
4907                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4908                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4909                                         S2IO_BIT_RESET)) {
4910                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4911                                           dev->name);
4912                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4913                                 return;
4914                         }
4915                 }
4916
4917                 /* Create the new Rx filter list and update the same in H/W. */
4918                 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4919                      i++, mclist = mclist->next) {
4920                         memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4921                                ETH_ALEN);
4922                         mac_addr = 0;
4923                         for (j = 0; j < ETH_ALEN; j++) {
4924                                 mac_addr |= mclist->dmi_addr[j];
4925                                 mac_addr <<= 8;
4926                         }
4927                         mac_addr >>= 8;
4928                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4929                                &bar0->rmac_addr_data0_mem);
4930                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4931                                 &bar0->rmac_addr_data1_mem);
4932                         val64 = RMAC_ADDR_CMD_MEM_WE |
4933                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4934                             RMAC_ADDR_CMD_MEM_OFFSET
4935                             (i + config->mc_start_offset);
4936                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4937
4938                         /* Wait for command completes */
4939                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4940                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4941                                         S2IO_BIT_RESET)) {
4942                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4943                                           dev->name);
4944                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4945                                 return;
4946                         }
4947                 }
4948         }
4949 }
4950
4951 /* read from CAM unicast & multicast addresses and store it in
4952  * def_mac_addr structure
4953  */
4954 void do_s2io_store_unicast_mc(struct s2io_nic *sp)
4955 {
4956         int offset;
4957         u64 mac_addr = 0x0;
4958         struct config_param *config = &sp->config;
4959
4960         /* store unicast & multicast mac addresses */
4961         for (offset = 0; offset < config->max_mc_addr; offset++) {
4962                 mac_addr = do_s2io_read_unicast_mc(sp, offset);
4963                 /* if read fails disable the entry */
4964                 if (mac_addr == FAILURE)
4965                         mac_addr = S2IO_DISABLE_MAC_ENTRY;
4966                 do_s2io_copy_mac_addr(sp, offset, mac_addr);
4967         }
4968 }
4969
4970 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
4971 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
4972 {
4973         int offset;
4974         struct config_param *config = &sp->config;
4975         /* restore unicast mac address */
4976         for (offset = 0; offset < config->max_mac_addr; offset++)
4977                 do_s2io_prog_unicast(sp->dev,
4978                         sp->def_mac_addr[offset].mac_addr);
4979
4980         /* restore multicast mac address */
4981         for (offset = config->mc_start_offset;
4982                 offset < config->max_mc_addr; offset++)
4983                 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
4984 }
4985
4986 /* add a multicast MAC address to CAM */
4987 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
4988 {
4989         int i;
4990         u64 mac_addr = 0;
4991         struct config_param *config = &sp->config;
4992
4993         for (i = 0; i < ETH_ALEN; i++) {
4994                 mac_addr <<= 8;
4995                 mac_addr |= addr[i];
4996         }
4997         if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
4998                 return SUCCESS;
4999
5000         /* check if the multicast mac already preset in CAM */
5001         for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5002                 u64 tmp64;
5003                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5004                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5005                         break;
5006
5007                 if (tmp64 == mac_addr)
5008                         return SUCCESS;
5009         }
5010         if (i == config->max_mc_addr) {
5011                 DBG_PRINT(ERR_DBG,
5012                         "CAM full no space left for multicast MAC\n");
5013                 return FAILURE;
5014         }
5015         /* Update the internal structure with this new mac address */
5016         do_s2io_copy_mac_addr(sp, i, mac_addr);
5017
5018         return (do_s2io_add_mac(sp, mac_addr, i));
5019 }
5020
5021 /* add MAC address to CAM */
5022 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5023 {
5024         u64 val64;
5025         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5026
5027         writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5028                 &bar0->rmac_addr_data0_mem);
5029
5030         val64 =
5031                 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5032                 RMAC_ADDR_CMD_MEM_OFFSET(off);
5033         writeq(val64, &bar0->rmac_addr_cmd_mem);
5034
5035         /* Wait till command completes */
5036         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5037                 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5038                 S2IO_BIT_RESET)) {
5039                 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5040                 return FAILURE;
5041         }
5042         return SUCCESS;
5043 }
5044 /* deletes a specified unicast/multicast mac entry from CAM */
5045 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5046 {
5047         int offset;
5048         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5049         struct config_param *config = &sp->config;
5050
5051         for (offset = 1;
5052                 offset < config->max_mc_addr; offset++) {
5053                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5054                 if (tmp64 == addr) {
5055                         /* disable the entry by writing  0xffffffffffffULL */
5056                         if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE)
5057                                 return FAILURE;
5058                         /* store the new mac list from CAM */
5059                         do_s2io_store_unicast_mc(sp);
5060                         return SUCCESS;
5061                 }
5062         }
5063         DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5064                         (unsigned long long)addr);
5065         return FAILURE;
5066 }
5067
5068 /* read mac entries from CAM */
5069 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5070 {
5071         u64 tmp64 = 0xffffffffffff0000ULL, val64;
5072         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5073
5074         /* read mac addr */
5075         val64 =
5076                 RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5077                 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5078         writeq(val64, &bar0->rmac_addr_cmd_mem);
5079
5080         /* Wait till command completes */
5081         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5082                 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5083                 S2IO_BIT_RESET)) {
5084                 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5085                 return FAILURE;
5086         }
5087         tmp64 = readq(&bar0->rmac_addr_data0_mem);
5088         return (tmp64 >> 16);
5089 }
5090
5091 /**
5092  * s2io_set_mac_addr driver entry point
5093  */
5094
5095 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5096 {
5097         struct sockaddr *addr = p;
5098
5099         if (!is_valid_ether_addr(addr->sa_data))
5100                 return -EINVAL;
5101
5102         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5103
5104         /* store the MAC address in CAM */
5105         return (do_s2io_prog_unicast(dev, dev->dev_addr));
5106 }
5107 /**
5108  *  do_s2io_prog_unicast - Programs the Xframe mac address
5109  *  @dev : pointer to the device structure.
5110  *  @addr: a uchar pointer to the new mac address which is to be set.
5111  *  Description : This procedure will program the Xframe to receive
5112  *  frames with new Mac Address
5113  *  Return value: SUCCESS on success and an appropriate (-)ve integer
5114  *  as defined in errno.h file on failure.
5115  */
5116
5117 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5118 {
5119         struct s2io_nic *sp = dev->priv;
5120         register u64 mac_addr = 0, perm_addr = 0;
5121         int i;
5122         u64 tmp64;
5123         struct config_param *config = &sp->config;
5124
5125         /*
5126         * Set the new MAC address as the new unicast filter and reflect this
5127         * change on the device address registered with the OS. It will be
5128         * at offset 0.
5129         */
5130         for (i = 0; i < ETH_ALEN; i++) {
5131                 mac_addr <<= 8;
5132                 mac_addr |= addr[i];
5133                 perm_addr <<= 8;
5134                 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5135         }
5136
5137         /* check if the dev_addr is different than perm_addr */
5138         if (mac_addr == perm_addr)
5139                 return SUCCESS;
5140
5141         /* check if the mac already preset in CAM */
5142         for (i = 1; i < config->max_mac_addr; i++) {
5143                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5144                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5145                         break;
5146
5147                 if (tmp64 == mac_addr) {
5148                         DBG_PRINT(INFO_DBG,
5149                         "MAC addr:0x%llx already present in CAM\n",
5150                         (unsigned long long)mac_addr);
5151                         return SUCCESS;
5152                 }
5153         }
5154         if (i == config->max_mac_addr) {
5155                 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5156                 return FAILURE;
5157         }
5158         /* Update the internal structure with this new mac address */
5159         do_s2io_copy_mac_addr(sp, i, mac_addr);
5160         return (do_s2io_add_mac(sp, mac_addr, i));
5161 }
5162
5163 /**
5164  * s2io_ethtool_sset - Sets different link parameters.
5165  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
5166  * @info: pointer to the structure with parameters given by ethtool to set
5167  * link information.
5168  * Description:
5169  * The function sets different link parameters provided by the user onto
5170  * the NIC.
5171  * Return value:
5172  * 0 on success.
5173 */
5174
5175 static int s2io_ethtool_sset(struct net_device *dev,
5176                              struct ethtool_cmd *info)
5177 {
5178         struct s2io_nic *sp = dev->priv;
5179         if ((info->autoneg == AUTONEG_ENABLE) ||
5180             (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
5181                 return -EINVAL;
5182         else {
5183                 s2io_close(sp->dev);
5184                 s2io_open(sp->dev);
5185         }
5186
5187         return 0;
5188 }
5189
5190 /**
5191  * s2io_ethtol_gset - Return link specific information.
5192  * @sp : private member of the device structure, pointer to the
5193  *      s2io_nic structure.
5194  * @info : pointer to the structure with parameters given by ethtool
5195  * to return link information.
5196  * Description:
5197  * Returns link specific information like speed, duplex etc.. to ethtool.
5198  * Return value :
5199  * return 0 on success.
5200  */
5201
5202 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5203 {
5204         struct s2io_nic *sp = dev->priv;
5205         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5206         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5207         info->port = PORT_FIBRE;
5208
5209         /* info->transceiver */
5210         info->transceiver = XCVR_EXTERNAL;
5211
5212         if (netif_carrier_ok(sp->dev)) {
5213                 info->speed = 10000;
5214                 info->duplex = DUPLEX_FULL;
5215         } else {
5216                 info->speed = -1;
5217                 info->duplex = -1;
5218         }
5219
5220         info->autoneg = AUTONEG_DISABLE;
5221         return 0;
5222 }
5223
5224 /**
5225  * s2io_ethtool_gdrvinfo - Returns driver specific information.
5226  * @sp : private member of the device structure, which is a pointer to the
5227  * s2io_nic structure.
5228  * @info : pointer to the structure with parameters given by ethtool to
5229  * return driver information.
5230  * Description:
5231  * Returns driver specefic information like name, version etc.. to ethtool.
5232  * Return value:
5233  *  void
5234  */
5235
5236 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5237                                   struct ethtool_drvinfo *info)
5238 {
5239         struct s2io_nic *sp = dev->priv;
5240
5241         strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5242         strncpy(info->version, s2io_driver_version, sizeof(info->version));
5243         strncpy(info->fw_version, "", sizeof(info->fw_version));
5244         strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5245         info->regdump_len = XENA_REG_SPACE;
5246         info->eedump_len = XENA_EEPROM_SPACE;
5247 }
5248
5249 /**
5250  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5251  *  @sp: private member of the device structure, which is a pointer to the
5252  *  s2io_nic structure.
5253  *  @regs : pointer to the structure with parameters given by ethtool for
5254  *  dumping the registers.
5255  *  @reg_space: The input argumnet into which all the registers are dumped.
5256  *  Description:
5257  *  Dumps the entire register space of xFrame NIC into the user given
5258  *  buffer area.
5259  * Return value :
5260  * void .
5261 */
5262
5263 static void s2io_ethtool_gregs(struct net_device *dev,
5264                                struct ethtool_regs *regs, void *space)
5265 {
5266         int i;
5267         u64 reg;
5268         u8 *reg_space = (u8 *) space;
5269         struct s2io_nic *sp = dev->priv;
5270
5271         regs->len = XENA_REG_SPACE;
5272         regs->version = sp->pdev->subsystem_device;
5273
5274         for (i = 0; i < regs->len; i += 8) {
5275                 reg = readq(sp->bar0 + i);
5276                 memcpy((reg_space + i), &reg, 8);
5277         }
5278 }
5279
5280 /**
5281  *  s2io_phy_id  - timer function that alternates adapter LED.
5282  *  @data : address of the private member of the device structure, which
5283  *  is a pointer to the s2io_nic structure, provided as an u32.
5284  * Description: This is actually the timer function that alternates the
5285  * adapter LED bit of the adapter control bit to set/reset every time on
5286  * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5287  *  once every second.
5288 */
5289 static void s2io_phy_id(unsigned long data)
5290 {
5291         struct s2io_nic *sp = (struct s2io_nic *) data;
5292         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5293         u64 val64 = 0;
5294         u16 subid;
5295
5296         subid = sp->pdev->subsystem_device;
5297         if ((sp->device_type == XFRAME_II_DEVICE) ||
5298                    ((subid & 0xFF) >= 0x07)) {
5299                 val64 = readq(&bar0->gpio_control);
5300                 val64 ^= GPIO_CTRL_GPIO_0;
5301                 writeq(val64, &bar0->gpio_control);
5302         } else {
5303                 val64 = readq(&bar0->adapter_control);
5304                 val64 ^= ADAPTER_LED_ON;
5305                 writeq(val64, &bar0->adapter_control);
5306         }
5307
5308         mod_timer(&sp->id_timer, jiffies + HZ / 2);
5309 }
5310
5311 /**
5312  * s2io_ethtool_idnic - To physically identify the nic on the system.
5313  * @sp : private member of the device structure, which is a pointer to the
5314  * s2io_nic structure.
5315  * @id : pointer to the structure with identification parameters given by
5316  * ethtool.
5317  * Description: Used to physically identify the NIC on the system.
5318  * The Link LED will blink for a time specified by the user for
5319  * identification.
5320  * NOTE: The Link has to be Up to be able to blink the LED. Hence
5321  * identification is possible only if it's link is up.
5322  * Return value:
5323  * int , returns 0 on success
5324  */
5325
5326 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5327 {
5328         u64 val64 = 0, last_gpio_ctrl_val;
5329         struct s2io_nic *sp = dev->priv;
5330         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5331         u16 subid;
5332
5333         subid = sp->pdev->subsystem_device;
5334         last_gpio_ctrl_val = readq(&bar0->gpio_control);
5335         if ((sp->device_type == XFRAME_I_DEVICE) &&
5336                 ((subid & 0xFF) < 0x07)) {
5337                 val64 = readq(&bar0->adapter_control);
5338                 if (!(val64 & ADAPTER_CNTL_EN)) {
5339                         printk(KERN_ERR
5340                                "Adapter Link down, cannot blink LED\n");
5341                         return -EFAULT;
5342                 }
5343         }
5344         if (sp->id_timer.function == NULL) {
5345                 init_timer(&sp->id_timer);
5346                 sp->id_timer.function = s2io_phy_id;
5347                 sp->id_timer.data = (unsigned long) sp;
5348         }
5349         mod_timer(&sp->id_timer, jiffies);
5350         if (data)
5351                 msleep_interruptible(data * HZ);
5352         else
5353                 msleep_interruptible(MAX_FLICKER_TIME);
5354         del_timer_sync(&sp->id_timer);
5355
5356         if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5357                 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5358                 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5359         }
5360
5361         return 0;
5362 }
5363
5364 static void s2io_ethtool_gringparam(struct net_device *dev,
5365                                     struct ethtool_ringparam *ering)
5366 {
5367         struct s2io_nic *sp = dev->priv;
5368         int i,tx_desc_count=0,rx_desc_count=0;
5369
5370         if (sp->rxd_mode == RXD_MODE_1)
5371                 ering->rx_max_pending = MAX_RX_DESC_1;
5372         else if (sp->rxd_mode == RXD_MODE_3B)
5373                 ering->rx_max_pending = MAX_RX_DESC_2;
5374
5375         ering->tx_max_pending = MAX_TX_DESC;
5376         for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5377                 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5378
5379         DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5380         ering->tx_pending = tx_desc_count;
5381         rx_desc_count = 0;
5382         for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5383                 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5384
5385         ering->rx_pending = rx_desc_count;
5386
5387         ering->rx_mini_max_pending = 0;
5388         ering->rx_mini_pending = 0;
5389         if(sp->rxd_mode == RXD_MODE_1)
5390                 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5391         else if (sp->rxd_mode == RXD_MODE_3B)
5392                 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5393         ering->rx_jumbo_pending = rx_desc_count;
5394 }
5395
5396 /**
5397  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5398  * @sp : private member of the device structure, which is a pointer to the
5399  *      s2io_nic structure.
5400  * @ep : pointer to the structure with pause parameters given by ethtool.
5401  * Description:
5402  * Returns the Pause frame generation and reception capability of the NIC.
5403  * Return value:
5404  *  void
5405  */
5406 static void s2io_ethtool_getpause_data(struct net_device *dev,
5407                                        struct ethtool_pauseparam *ep)
5408 {
5409         u64 val64;
5410         struct s2io_nic *sp = dev->priv;
5411         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5412
5413         val64 = readq(&bar0->rmac_pause_cfg);
5414         if (val64 & RMAC_PAUSE_GEN_ENABLE)
5415                 ep->tx_pause = TRUE;
5416         if (val64 & RMAC_PAUSE_RX_ENABLE)
5417                 ep->rx_pause = TRUE;
5418         ep->autoneg = FALSE;
5419 }
5420
5421 /**
5422  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5423  * @sp : private member of the device structure, which is a pointer to the
5424  *      s2io_nic structure.
5425  * @ep : pointer to the structure with pause parameters given by ethtool.
5426  * Description:
5427  * It can be used to set or reset Pause frame generation or reception
5428  * support of the NIC.
5429  * Return value:
5430  * int, returns 0 on Success
5431  */
5432
5433 static int s2io_ethtool_setpause_data(struct net_device *dev,
5434                                struct ethtool_pauseparam *ep)
5435 {
5436         u64 val64;
5437         struct s2io_nic *sp = dev->priv;
5438         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5439
5440         val64 = readq(&bar0->rmac_pause_cfg);
5441         if (ep->tx_pause)
5442                 val64 |= RMAC_PAUSE_GEN_ENABLE;
5443         else
5444                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5445         if (ep->rx_pause)
5446                 val64 |= RMAC_PAUSE_RX_ENABLE;
5447         else
5448                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5449         writeq(val64, &bar0->rmac_pause_cfg);
5450         return 0;
5451 }
5452
5453 /**
5454  * read_eeprom - reads 4 bytes of data from user given offset.
5455  * @sp : private member of the device structure, which is a pointer to the
5456  *      s2io_nic structure.
5457  * @off : offset at which the data must be written
5458  * @data : Its an output parameter where the data read at the given
5459  *      offset is stored.
5460  * Description:
5461  * Will read 4 bytes of data from the user given offset and return the
5462  * read data.
5463  * NOTE: Will allow to read only part of the EEPROM visible through the
5464  *   I2C bus.
5465  * Return value:
5466  *  -1 on failure and 0 on success.
5467  */
5468
5469 #define S2IO_DEV_ID             5
5470 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5471 {
5472         int ret = -1;
5473         u32 exit_cnt = 0;
5474         u64 val64;
5475         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5476
5477         if (sp->device_type == XFRAME_I_DEVICE) {
5478                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5479                     I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5480                     I2C_CONTROL_CNTL_START;
5481                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5482
5483                 while (exit_cnt < 5) {
5484                         val64 = readq(&bar0->i2c_control);
5485                         if (I2C_CONTROL_CNTL_END(val64)) {
5486                                 *data = I2C_CONTROL_GET_DATA(val64);
5487                                 ret = 0;
5488                                 break;
5489                         }
5490                         msleep(50);
5491                         exit_cnt++;
5492                 }
5493         }
5494
5495         if (sp->device_type == XFRAME_II_DEVICE) {
5496                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5497                         SPI_CONTROL_BYTECNT(0x3) |
5498                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5499                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5500                 val64 |= SPI_CONTROL_REQ;
5501                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5502                 while (exit_cnt < 5) {
5503                         val64 = readq(&bar0->spi_control);
5504                         if (val64 & SPI_CONTROL_NACK) {
5505                                 ret = 1;
5506                                 break;
5507                         } else if (val64 & SPI_CONTROL_DONE) {
5508                                 *data = readq(&bar0->spi_data);
5509                                 *data &= 0xffffff;
5510                                 ret = 0;
5511                                 break;
5512                         }
5513                         msleep(50);
5514                         exit_cnt++;
5515                 }
5516         }
5517         return ret;
5518 }
5519
5520 /**
5521  *  write_eeprom - actually writes the relevant part of the data value.
5522  *  @sp : private member of the device structure, which is a pointer to the
5523  *       s2io_nic structure.
5524  *  @off : offset at which the data must be written
5525  *  @data : The data that is to be written
5526  *  @cnt : Number of bytes of the data that are actually to be written into
5527  *  the Eeprom. (max of 3)
5528  * Description:
5529  *  Actually writes the relevant part of the data value into the Eeprom
5530  *  through the I2C bus.
5531  * Return value:
5532  *  0 on success, -1 on failure.
5533  */
5534
5535 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5536 {
5537         int exit_cnt = 0, ret = -1;
5538         u64 val64;
5539         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5540
5541         if (sp->device_type == XFRAME_I_DEVICE) {
5542                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5543                     I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5544                     I2C_CONTROL_CNTL_START;
5545                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5546
5547                 while (exit_cnt < 5) {
5548                         val64 = readq(&bar0->i2c_control);
5549                         if (I2C_CONTROL_CNTL_END(val64)) {
5550                                 if (!(val64 & I2C_CONTROL_NACK))
5551                                         ret = 0;
5552                                 break;
5553                         }
5554                         msleep(50);
5555                         exit_cnt++;
5556                 }
5557         }
5558
5559         if (sp->device_type == XFRAME_II_DEVICE) {
5560                 int write_cnt = (cnt == 8) ? 0 : cnt;
5561                 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5562
5563                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5564                         SPI_CONTROL_BYTECNT(write_cnt) |
5565                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5566                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5567                 val64 |= SPI_CONTROL_REQ;
5568                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5569                 while (exit_cnt < 5) {
5570                         val64 = readq(&bar0->spi_control);
5571                         if (val64 & SPI_CONTROL_NACK) {
5572                                 ret = 1;
5573                                 break;
5574                         } else if (val64 & SPI_CONTROL_DONE) {
5575                                 ret = 0;
5576                                 break;
5577                         }
5578                         msleep(50);
5579                         exit_cnt++;
5580                 }
5581         }
5582         return ret;
5583 }
5584 static void s2io_vpd_read(struct s2io_nic *nic)
5585 {
5586         u8 *vpd_data;
5587         u8 data;
5588         int i=0, cnt, fail = 0;
5589         int vpd_addr = 0x80;
5590
5591         if (nic->device_type == XFRAME_II_DEVICE) {
5592                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5593                 vpd_addr = 0x80;
5594         }
5595         else {
5596                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5597                 vpd_addr = 0x50;
5598         }
5599         strcpy(nic->serial_num, "NOT AVAILABLE");
5600
5601         vpd_data = kmalloc(256, GFP_KERNEL);
5602         if (!vpd_data) {
5603                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5604                 return;
5605         }
5606         nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5607
5608         for (i = 0; i < 256; i +=4 ) {
5609                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5610                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5611                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5612                 for (cnt = 0; cnt <5; cnt++) {
5613                         msleep(2);
5614                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5615                         if (data == 0x80)
5616                                 break;
5617                 }
5618                 if (cnt >= 5) {
5619                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5620                         fail = 1;
5621                         break;
5622                 }
5623                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5624                                       (u32 *)&vpd_data[i]);
5625         }
5626
5627         if(!fail) {
5628                 /* read serial number of adapter */
5629                 for (cnt = 0; cnt < 256; cnt++) {
5630                 if ((vpd_data[cnt] == 'S') &&
5631                         (vpd_data[cnt+1] == 'N') &&
5632                         (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5633                                 memset(nic->serial_num, 0, VPD_STRING_LEN);
5634                                 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5635                                         vpd_data[cnt+2]);
5636                                 break;
5637                         }
5638                 }
5639         }
5640
5641         if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5642                 memset(nic->product_name, 0, vpd_data[1]);
5643                 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5644         }
5645         kfree(vpd_data);
5646         nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5647 }
5648
5649 /**
5650  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5651  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5652  *  @eeprom : pointer to the user level structure provided by ethtool,
5653  *  containing all relevant information.
5654  *  @data_buf : user defined value to be written into Eeprom.
5655  *  Description: Reads the values stored in the Eeprom at given offset
5656  *  for a given length. Stores these values int the input argument data
5657  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5658  *  Return value:
5659  *  int  0 on success
5660  */
5661
5662 static int s2io_ethtool_geeprom(struct net_device *dev,
5663                          struct ethtool_eeprom *eeprom, u8 * data_buf)
5664 {
5665         u32 i, valid;
5666         u64 data;
5667         struct s2io_nic *sp = dev->priv;
5668
5669         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5670
5671         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5672                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5673
5674         for (i = 0; i < eeprom->len; i += 4) {
5675                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5676                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5677                         return -EFAULT;
5678                 }
5679                 valid = INV(data);
5680                 memcpy((data_buf + i), &valid, 4);
5681         }
5682         return 0;
5683 }
5684
5685 /**
5686  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5687  *  @sp : private member of the device structure, which is a pointer to the
5688  *  s2io_nic structure.
5689  *  @eeprom : pointer to the user level structure provided by ethtool,
5690  *  containing all relevant information.
5691  *  @data_buf ; user defined value to be written into Eeprom.
5692  *  Description:
5693  *  Tries to write the user provided value in the Eeprom, at the offset
5694  *  given by the user.
5695  *  Return value:
5696  *  0 on success, -EFAULT on failure.
5697  */
5698
5699 static int s2io_ethtool_seeprom(struct net_device *dev,
5700                                 struct ethtool_eeprom *eeprom,
5701                                 u8 * data_buf)
5702 {
5703         int len = eeprom->len, cnt = 0;
5704         u64 valid = 0, data;
5705         struct s2io_nic *sp = dev->priv;
5706
5707         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5708                 DBG_PRINT(ERR_DBG,
5709                           "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5710                 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5711                           eeprom->magic);
5712                 return -EFAULT;
5713         }
5714
5715         while (len) {
5716                 data = (u32) data_buf[cnt] & 0x000000FF;
5717                 if (data) {
5718                         valid = (u32) (data << 24);
5719                 } else
5720                         valid = data;
5721
5722                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5723                         DBG_PRINT(ERR_DBG,
5724                                   "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5725                         DBG_PRINT(ERR_DBG,
5726                                   "write into the specified offset\n");
5727                         return -EFAULT;
5728                 }
5729                 cnt++;
5730                 len--;
5731         }
5732
5733         return 0;
5734 }
5735
5736 /**
5737  * s2io_register_test - reads and writes into all clock domains.
5738  * @sp : private member of the device structure, which is a pointer to the
5739  * s2io_nic structure.
5740  * @data : variable that returns the result of each of the test conducted b
5741  * by the driver.
5742  * Description:
5743  * Read and write into all clock domains. The NIC has 3 clock domains,
5744  * see that registers in all the three regions are accessible.
5745  * Return value:
5746  * 0 on success.
5747  */
5748
5749 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5750 {
5751         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5752         u64 val64 = 0, exp_val;
5753         int fail = 0;
5754
5755         val64 = readq(&bar0->pif_rd_swapper_fb);
5756         if (val64 != 0x123456789abcdefULL) {
5757                 fail = 1;
5758                 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5759         }
5760
5761         val64 = readq(&bar0->rmac_pause_cfg);
5762         if (val64 != 0xc000ffff00000000ULL) {
5763                 fail = 1;
5764                 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5765         }
5766
5767         val64 = readq(&bar0->rx_queue_cfg);
5768         if (sp->device_type == XFRAME_II_DEVICE)
5769                 exp_val = 0x0404040404040404ULL;
5770         else
5771                 exp_val = 0x0808080808080808ULL;
5772         if (val64 != exp_val) {
5773                 fail = 1;
5774                 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5775         }
5776
5777         val64 = readq(&bar0->xgxs_efifo_cfg);
5778         if (val64 != 0x000000001923141EULL) {
5779                 fail = 1;
5780                 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5781         }
5782
5783         val64 = 0x5A5A5A5A5A5A5A5AULL;
5784         writeq(val64, &bar0->xmsi_data);
5785         val64 = readq(&bar0->xmsi_data);
5786         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5787                 fail = 1;
5788                 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5789         }
5790
5791         val64 = 0xA5A5A5A5A5A5A5A5ULL;
5792         writeq(val64, &bar0->xmsi_data);
5793         val64 = readq(&bar0->xmsi_data);
5794         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5795                 fail = 1;
5796                 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5797         }
5798
5799         *data = fail;
5800         return fail;
5801 }
5802
5803 /**
5804  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5805  * @sp : private member of the device structure, which is a pointer to the
5806  * s2io_nic structure.
5807  * @data:variable that returns the result of each of the test conducted by
5808  * the driver.
5809  * Description:
5810  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5811  * register.
5812  * Return value:
5813  * 0 on success.
5814  */
5815
5816 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5817 {
5818         int fail = 0;
5819         u64 ret_data, org_4F0, org_7F0;
5820         u8 saved_4F0 = 0, saved_7F0 = 0;
5821         struct net_device *dev = sp->dev;
5822
5823         /* Test Write Error at offset 0 */
5824         /* Note that SPI interface allows write access to all areas
5825          * of EEPROM. Hence doing all negative testing only for Xframe I.
5826          */
5827         if (sp->device_type == XFRAME_I_DEVICE)
5828                 if (!write_eeprom(sp, 0, 0, 3))
5829                         fail = 1;
5830
5831         /* Save current values at offsets 0x4F0 and 0x7F0 */
5832         if (!read_eeprom(sp, 0x4F0, &org_4F0))
5833                 saved_4F0 = 1;
5834         if (!read_eeprom(sp, 0x7F0, &org_7F0))
5835                 saved_7F0 = 1;
5836
5837         /* Test Write at offset 4f0 */
5838         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5839                 fail = 1;
5840         if (read_eeprom(sp, 0x4F0, &ret_data))
5841                 fail = 1;
5842
5843         if (ret_data != 0x012345) {
5844                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5845                         "Data written %llx Data read %llx\n",
5846                         dev->name, (unsigned long long)0x12345,
5847                         (unsigned long long)ret_data);
5848                 fail = 1;
5849         }
5850
5851         /* Reset the EEPROM data go FFFF */
5852         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5853
5854         /* Test Write Request Error at offset 0x7c */
5855         if (sp->device_type == XFRAME_I_DEVICE)
5856                 if (!write_eeprom(sp, 0x07C, 0, 3))
5857                         fail = 1;
5858
5859         /* Test Write Request at offset 0x7f0 */
5860         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5861                 fail = 1;
5862         if (read_eeprom(sp, 0x7F0, &ret_data))
5863                 fail = 1;
5864
5865         if (ret_data != 0x012345) {
5866                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5867                         "Data written %llx Data read %llx\n",
5868                         dev->name, (unsigned long long)0x12345,
5869                         (unsigned long long)ret_data);
5870                 fail = 1;
5871         }
5872
5873         /* Reset the EEPROM data go FFFF */
5874         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5875
5876         if (sp->device_type == XFRAME_I_DEVICE) {
5877                 /* Test Write Error at offset 0x80 */
5878                 if (!write_eeprom(sp, 0x080, 0, 3))
5879                         fail = 1;
5880
5881                 /* Test Write Error at offset 0xfc */
5882                 if (!write_eeprom(sp, 0x0FC, 0, 3))
5883                         fail = 1;
5884
5885                 /* Test Write Error at offset 0x100 */
5886                 if (!write_eeprom(sp, 0x100, 0, 3))
5887                         fail = 1;
5888
5889                 /* Test Write Error at offset 4ec */
5890                 if (!write_eeprom(sp, 0x4EC, 0, 3))
5891                         fail = 1;
5892         }
5893
5894         /* Restore values at offsets 0x4F0 and 0x7F0 */
5895         if (saved_4F0)
5896                 write_eeprom(sp, 0x4F0, org_4F0, 3);
5897         if (saved_7F0)
5898                 write_eeprom(sp, 0x7F0, org_7F0, 3);
5899
5900         *data = fail;
5901         return fail;
5902 }
5903
5904 /**
5905  * s2io_bist_test - invokes the MemBist test of the card .
5906  * @sp : private member of the device structure, which is a pointer to the
5907  * s2io_nic structure.
5908  * @data:variable that returns the result of each of the test conducted by
5909  * the driver.
5910  * Description:
5911  * This invokes the MemBist test of the card. We give around
5912  * 2 secs time for the Test to complete. If it's still not complete
5913  * within this peiod, we consider that the test failed.
5914  * Return value:
5915  * 0 on success and -1 on failure.
5916  */
5917
5918 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
5919 {
5920         u8 bist = 0;
5921         int cnt = 0, ret = -1;
5922
5923         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5924         bist |= PCI_BIST_START;
5925         pci_write_config_word(sp->pdev, PCI_BIST, bist);
5926
5927         while (cnt < 20) {
5928                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5929                 if (!(bist & PCI_BIST_START)) {
5930                         *data = (bist & PCI_BIST_CODE_MASK);
5931                         ret = 0;
5932                         break;
5933                 }
5934                 msleep(100);
5935                 cnt++;
5936         }
5937
5938         return ret;
5939 }
5940
5941 /**
5942  * s2io-link_test - verifies the link state of the nic
5943  * @sp ; private member of the device structure, which is a pointer to the
5944  * s2io_nic structure.
5945  * @data: variable that returns the result of each of the test conducted by
5946  * the driver.
5947  * Description:
5948  * The function verifies the link state of the NIC and updates the input
5949  * argument 'data' appropriately.
5950  * Return value:
5951  * 0 on success.
5952  */
5953
5954 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
5955 {
5956         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5957         u64 val64;
5958
5959         val64 = readq(&bar0->adapter_status);
5960         if(!(LINK_IS_UP(val64)))
5961                 *data = 1;
5962         else
5963                 *data = 0;
5964
5965         return *data;
5966 }
5967
5968 /**
5969  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5970  * @sp - private member of the device structure, which is a pointer to the
5971  * s2io_nic structure.
5972  * @data - variable that returns the result of each of the test
5973  * conducted by the driver.
5974  * Description:
5975  *  This is one of the offline test that tests the read and write
5976  *  access to the RldRam chip on the NIC.
5977  * Return value:
5978  *  0 on success.
5979  */
5980
5981 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
5982 {
5983         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5984         u64 val64;
5985         int cnt, iteration = 0, test_fail = 0;
5986
5987         val64 = readq(&bar0->adapter_control);
5988         val64 &= ~ADAPTER_ECC_EN;
5989         writeq(val64, &bar0->adapter_control);
5990
5991         val64 = readq(&bar0->mc_rldram_test_ctrl);
5992         val64 |= MC_RLDRAM_TEST_MODE;
5993         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5994
5995         val64 = readq(&bar0->mc_rldram_mrs);
5996         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5997         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5998
5999         val64 |= MC_RLDRAM_MRS_ENABLE;
6000         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6001
6002         while (iteration < 2) {
6003                 val64 = 0x55555555aaaa0000ULL;
6004                 if (iteration == 1) {
6005                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6006                 }
6007                 writeq(val64, &bar0->mc_rldram_test_d0);
6008
6009                 val64 = 0xaaaa5a5555550000ULL;
6010                 if (iteration == 1) {
6011                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6012                 }
6013                 writeq(val64, &bar0->mc_rldram_test_d1);
6014
6015                 val64 = 0x55aaaaaaaa5a0000ULL;
6016                 if (iteration == 1) {
6017                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6018                 }
6019                 writeq(val64, &bar0->mc_rldram_test_d2);
6020
6021                 val64 = (u64) (0x0000003ffffe0100ULL);
6022                 writeq(val64, &bar0->mc_rldram_test_add);
6023
6024                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
6025                         MC_RLDRAM_TEST_GO;
6026                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6027
6028                 for (cnt = 0; cnt < 5; cnt++) {
6029                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6030                         if (val64 & MC_RLDRAM_TEST_DONE)
6031                                 break;
6032                         msleep(200);
6033                 }
6034
6035                 if (cnt == 5)
6036                         break;
6037
6038                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6039                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6040
6041                 for (cnt = 0; cnt < 5; cnt++) {
6042                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6043                         if (val64 & MC_RLDRAM_TEST_DONE)
6044                                 break;
6045                         msleep(500);
6046                 }
6047
6048                 if (cnt == 5)
6049                         break;
6050
6051                 val64 = readq(&bar0->mc_rldram_test_ctrl);
6052                 if (!(val64 & MC_RLDRAM_TEST_PASS))
6053                         test_fail = 1;
6054
6055                 iteration++;
6056         }
6057
6058         *data = test_fail;
6059
6060         /* Bring the adapter out of test mode */
6061         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6062
6063         return test_fail;
6064 }
6065
6066 /**
6067  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6068  *  @sp : private member of the device structure, which is a pointer to the
6069  *  s2io_nic structure.
6070  *  @ethtest : pointer to a ethtool command specific structure that will be
6071  *  returned to the user.
6072  *  @data : variable that returns the result of each of the test
6073  * conducted by the driver.
6074  * Description:
6075  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
6076  *  the health of the card.
6077  * Return value:
6078  *  void
6079  */
6080
6081 static void s2io_ethtool_test(struct net_device *dev,
6082                               struct ethtool_test *ethtest,
6083                               uint64_t * data)
6084 {
6085         struct s2io_nic *sp = dev->priv;
6086         int orig_state = netif_running(sp->dev);
6087
6088         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6089                 /* Offline Tests. */
6090                 if (orig_state)
6091                         s2io_close(sp->dev);
6092
6093                 if (s2io_register_test(sp, &data[0]))
6094                         ethtest->flags |= ETH_TEST_FL_FAILED;
6095
6096                 s2io_reset(sp);
6097
6098                 if (s2io_rldram_test(sp, &data[3]))
6099                         ethtest->flags |= ETH_TEST_FL_FAILED;
6100
6101                 s2io_reset(sp);
6102
6103                 if (s2io_eeprom_test(sp, &data[1]))
6104                         ethtest->flags |= ETH_TEST_FL_FAILED;
6105
6106                 if (s2io_bist_test(sp, &data[4]))
6107                         ethtest->flags |= ETH_TEST_FL_FAILED;
6108
6109                 if (orig_state)
6110                         s2io_open(sp->dev);
6111
6112                 data[2] = 0;
6113         } else {
6114                 /* Online Tests. */
6115                 if (!orig_state) {
6116                         DBG_PRINT(ERR_DBG,
6117                                   "%s: is not up, cannot run test\n",
6118                                   dev->name);
6119                         data[0] = -1;
6120                         data[1] = -1;
6121                         data[2] = -1;
6122                         data[3] = -1;
6123                         data[4] = -1;
6124                 }
6125
6126                 if (s2io_link_test(sp, &data[2]))
6127                         ethtest->flags |= ETH_TEST_FL_FAILED;
6128
6129                 data[0] = 0;
6130                 data[1] = 0;
6131                 data[3] = 0;
6132                 data[4] = 0;
6133         }
6134 }
6135
6136 static void s2io_get_ethtool_stats(struct net_device *dev,
6137                                    struct ethtool_stats *estats,
6138                                    u64 * tmp_stats)
6139 {
6140         int i = 0, k;
6141         struct s2io_nic *sp = dev->priv;
6142         struct stat_block *stat_info = sp->mac_control.stats_info;
6143
6144         s2io_updt_stats(sp);
6145         tmp_stats[i++] =
6146                 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32  |
6147                 le32_to_cpu(stat_info->tmac_frms);
6148         tmp_stats[i++] =
6149                 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
6150                 le32_to_cpu(stat_info->tmac_data_octets);
6151         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
6152         tmp_stats[i++] =
6153                 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
6154                 le32_to_cpu(stat_info->tmac_mcst_frms);
6155         tmp_stats[i++] =
6156                 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
6157                 le32_to_cpu(stat_info->tmac_bcst_frms);
6158         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
6159         tmp_stats[i++] =
6160                 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
6161                 le32_to_cpu(stat_info->tmac_ttl_octets);
6162         tmp_stats[i++] =
6163                 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
6164                 le32_to_cpu(stat_info->tmac_ucst_frms);
6165         tmp_stats[i++] =
6166                 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
6167                 le32_to_cpu(stat_info->tmac_nucst_frms);
6168         tmp_stats[i++] =
6169                 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
6170                 le32_to_cpu(stat_info->tmac_any_err_frms);
6171         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
6172         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
6173         tmp_stats[i++] =
6174                 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
6175                 le32_to_cpu(stat_info->tmac_vld_ip);
6176         tmp_stats[i++] =
6177                 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
6178                 le32_to_cpu(stat_info->tmac_drop_ip);
6179         tmp_stats[i++] =
6180                 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
6181                 le32_to_cpu(stat_info->tmac_icmp);
6182         tmp_stats[i++] =
6183                 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
6184                 le32_to_cpu(stat_info->tmac_rst_tcp);
6185         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
6186         tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
6187                 le32_to_cpu(stat_info->tmac_udp);
6188         tmp_stats[i++] =
6189                 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
6190                 le32_to_cpu(stat_info->rmac_vld_frms);
6191         tmp_stats[i++] =
6192                 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
6193                 le32_to_cpu(stat_info->rmac_data_octets);
6194         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6195         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
6196         tmp_stats[i++] =
6197                 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6198                 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6199         tmp_stats[i++] =
6200                 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6201                 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
6202         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
6203         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
6204         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6205         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
6206         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6207         tmp_stats[i++] =
6208                 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6209                 le32_to_cpu(stat_info->rmac_ttl_octets);
6210         tmp_stats[i++] =
6211                 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6212                 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6213         tmp_stats[i++] =
6214                 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6215                  << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
6216         tmp_stats[i++] =
6217                 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6218                 le32_to_cpu(stat_info->rmac_discarded_frms);
6219         tmp_stats[i++] =
6220                 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6221                  << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6222         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6223         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
6224         tmp_stats[i++] =
6225                 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6226                 le32_to_cpu(stat_info->rmac_usized_frms);
6227         tmp_stats[i++] =
6228                 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6229                 le32_to_cpu(stat_info->rmac_osized_frms);
6230         tmp_stats[i++] =
6231                 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6232                 le32_to_cpu(stat_info->rmac_frag_frms);
6233         tmp_stats[i++] =
6234                 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6235                 le32_to_cpu(stat_info->rmac_jabber_frms);
6236         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6237         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6238         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6239         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6240         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6241         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6242         tmp_stats[i++] =
6243                 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
6244                 le32_to_cpu(stat_info->rmac_ip);
6245         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6246         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
6247         tmp_stats[i++] =
6248                 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
6249                 le32_to_cpu(stat_info->rmac_drop_ip);
6250         tmp_stats[i++] =
6251                 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
6252                 le32_to_cpu(stat_info->rmac_icmp);
6253         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
6254         tmp_stats[i++] =
6255                 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
6256                 le32_to_cpu(stat_info->rmac_udp);
6257         tmp_stats[i++] =
6258                 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6259                 le32_to_cpu(stat_info->rmac_err_drp_udp);
6260         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6261         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6262         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6263         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6264         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6265         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6266         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6267         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6268         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6269         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6270         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6271         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6272         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6273         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6274         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6275         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6276         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
6277         tmp_stats[i++] =
6278                 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6279                 le32_to_cpu(stat_info->rmac_pause_cnt);
6280         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6281         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
6282         tmp_stats[i++] =
6283                 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6284                 le32_to_cpu(stat_info->rmac_accepted_ip);
6285         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
6286         tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6287         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6288         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6289         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6290         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6291         tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6292         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6293         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6294         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6295         tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6296         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6297         tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6298         tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6299         tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6300         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6301         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6302         tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6303         tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
6304
6305         /* Enhanced statistics exist only for Hercules */
6306         if(sp->device_type == XFRAME_II_DEVICE) {
6307                 tmp_stats[i++] =
6308                                 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6309                 tmp_stats[i++] =
6310                                 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6311                 tmp_stats[i++] =
6312                                 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6313                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6314                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6315                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6316                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6317                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6318                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6319                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6320                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6321                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6322                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6323                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6324                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6325                 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6326         }
6327
6328         tmp_stats[i++] = 0;
6329         tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6330         tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
6331         tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6332         tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6333         tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6334         tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
6335         for (k = 0; k < MAX_RX_RINGS; k++)
6336                 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
6337         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6338         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6339         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6340         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6341         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6342         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6343         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6344         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6345         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6346         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6347         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6348         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
6349         tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6350         tmp_stats[i++] = stat_info->sw_stat.sending_both;
6351         tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6352         tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
6353         if (stat_info->sw_stat.num_aggregations) {
6354                 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6355                 int count = 0;
6356                 /*
6357                  * Since 64-bit divide does not work on all platforms,
6358                  * do repeated subtraction.
6359                  */
6360                 while (tmp >= stat_info->sw_stat.num_aggregations) {
6361                         tmp -= stat_info->sw_stat.num_aggregations;
6362                         count++;
6363                 }
6364                 tmp_stats[i++] = count;
6365         }
6366         else
6367                 tmp_stats[i++] = 0;
6368         tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
6369         tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
6370         tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
6371         tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6372         tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6373         tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6374         tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6375         tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6376         tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6377
6378         tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6379         tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6380         tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6381         tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6382         tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6383
6384         tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6385         tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6386         tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6387         tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6388         tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6389         tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6390         tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6391         tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6392         tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
6393         tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6394         tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6395         tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6396         tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6397         tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6398         tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6399         tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6400         tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6401         tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6402         tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6403         tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6404         tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6405         tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6406         tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6407         tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6408         tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6409         tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
6410 }
6411
6412 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6413 {
6414         return (XENA_REG_SPACE);
6415 }
6416
6417
6418 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
6419 {
6420         struct s2io_nic *sp = dev->priv;
6421
6422         return (sp->rx_csum);
6423 }
6424
6425 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6426 {
6427         struct s2io_nic *sp = dev->priv;
6428
6429         if (data)
6430                 sp->rx_csum = 1;
6431         else
6432                 sp->rx_csum = 0;
6433
6434         return 0;
6435 }
6436
6437 static int s2io_get_eeprom_len(struct net_device *dev)
6438 {
6439         return (XENA_EEPROM_SPACE);
6440 }
6441
6442 static int s2io_get_sset_count(struct net_device *dev, int sset)
6443 {
6444         struct s2io_nic *sp = dev->priv;
6445
6446         switch (sset) {
6447         case ETH_SS_TEST:
6448                 return S2IO_TEST_LEN;
6449         case ETH_SS_STATS:
6450                 switch(sp->device_type) {
6451                 case XFRAME_I_DEVICE:
6452                         return XFRAME_I_STAT_LEN;
6453                 case XFRAME_II_DEVICE:
6454                         return XFRAME_II_STAT_LEN;
6455                 default:
6456                         return 0;
6457                 }
6458         default:
6459                 return -EOPNOTSUPP;
6460         }
6461 }
6462
6463 static void s2io_ethtool_get_strings(struct net_device *dev,
6464                                      u32 stringset, u8 * data)
6465 {
6466         int stat_size = 0;
6467         struct s2io_nic *sp = dev->priv;
6468
6469         switch (stringset) {
6470         case ETH_SS_TEST:
6471                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6472                 break;
6473         case ETH_SS_STATS:
6474                 stat_size = sizeof(ethtool_xena_stats_keys);
6475                 memcpy(data, &ethtool_xena_stats_keys,stat_size);
6476                 if(sp->device_type == XFRAME_II_DEVICE) {
6477                         memcpy(data + stat_size,
6478                                 &ethtool_enhanced_stats_keys,
6479                                 sizeof(ethtool_enhanced_stats_keys));
6480                         stat_size += sizeof(ethtool_enhanced_stats_keys);
6481                 }
6482
6483                 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6484                         sizeof(ethtool_driver_stats_keys));
6485         }
6486 }
6487
6488 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6489 {
6490         if (data)
6491                 dev->features |= NETIF_F_IP_CSUM;
6492         else
6493                 dev->features &= ~NETIF_F_IP_CSUM;
6494
6495         return 0;
6496 }
6497
6498 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6499 {
6500         return (dev->features & NETIF_F_TSO) != 0;
6501 }
6502 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6503 {
6504         if (data)
6505                 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6506         else
6507                 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6508
6509         return 0;
6510 }
6511
6512 static const struct ethtool_ops netdev_ethtool_ops = {
6513         .get_settings = s2io_ethtool_gset,
6514         .set_settings = s2io_ethtool_sset,
6515         .get_drvinfo = s2io_ethtool_gdrvinfo,
6516         .get_regs_len = s2io_ethtool_get_regs_len,
6517         .get_regs = s2io_ethtool_gregs,
6518         .get_link = ethtool_op_get_link,
6519         .get_eeprom_len = s2io_get_eeprom_len,
6520         .get_eeprom = s2io_ethtool_geeprom,
6521         .set_eeprom = s2io_ethtool_seeprom,
6522         .get_ringparam = s2io_ethtool_gringparam,
6523         .get_pauseparam = s2io_ethtool_getpause_data,
6524         .set_pauseparam = s2io_ethtool_setpause_data,
6525         .get_rx_csum = s2io_ethtool_get_rx_csum,
6526         .set_rx_csum = s2io_ethtool_set_rx_csum,
6527         .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6528         .set_sg = ethtool_op_set_sg,
6529         .get_tso = s2io_ethtool_op_get_tso,
6530         .set_tso = s2io_ethtool_op_set_tso,
6531         .set_ufo = ethtool_op_set_ufo,
6532         .self_test = s2io_ethtool_test,
6533         .get_strings = s2io_ethtool_get_strings,
6534         .phys_id = s2io_ethtool_idnic,
6535         .get_ethtool_stats = s2io_get_ethtool_stats,
6536         .get_sset_count = s2io_get_sset_count,
6537 };
6538
6539 /**
6540  *  s2io_ioctl - Entry point for the Ioctl
6541  *  @dev :  Device pointer.
6542  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
6543  *  a proprietary structure used to pass information to the driver.
6544  *  @cmd :  This is used to distinguish between the different commands that
6545  *  can be passed to the IOCTL functions.
6546  *  Description:
6547  *  Currently there are no special functionality supported in IOCTL, hence
6548  *  function always return EOPNOTSUPPORTED
6549  */
6550
6551 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6552 {
6553         return -EOPNOTSUPP;
6554 }
6555
6556 /**
6557  *  s2io_change_mtu - entry point to change MTU size for the device.
6558  *   @dev : device pointer.
6559  *   @new_mtu : the new MTU size for the device.
6560  *   Description: A driver entry point to change MTU size for the device.
6561  *   Before changing the MTU the device must be stopped.
6562  *  Return value:
6563  *   0 on success and an appropriate (-)ve integer as defined in errno.h
6564  *   file on failure.
6565  */
6566
6567 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6568 {
6569         struct s2io_nic *sp = dev->priv;
6570         int ret = 0;
6571
6572         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6573                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6574                           dev->name);
6575                 return -EPERM;
6576         }
6577
6578         dev->mtu = new_mtu;
6579         if (netif_running(dev)) {
6580                 s2io_card_down(sp);
6581                 netif_stop_queue(dev);
6582                 ret = s2io_card_up(sp);
6583                 if (ret) {
6584                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6585                                   __FUNCTION__);
6586                         return ret;
6587                 }
6588                 if (netif_queue_stopped(dev))
6589                         netif_wake_queue(dev);
6590         } else { /* Device is down */
6591                 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6592                 u64 val64 = new_mtu;
6593
6594                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6595         }
6596
6597         return ret;
6598 }
6599
6600 /**
6601  *  s2io_tasklet - Bottom half of the ISR.
6602  *  @dev_adr : address of the device structure in dma_addr_t format.
6603  *  Description:
6604  *  This is the tasklet or the bottom half of the ISR. This is
6605  *  an extension of the ISR which is scheduled by the scheduler to be run
6606  *  when the load on the CPU is low. All low priority tasks of the ISR can
6607  *  be pushed into the tasklet. For now the tasklet is used only to
6608  *  replenish the Rx buffers in the Rx buffer descriptors.
6609  *  Return value:
6610  *  void.
6611  */
6612
6613 static void s2io_tasklet(unsigned long dev_addr)
6614 {
6615         struct net_device *dev = (struct net_device *) dev_addr;
6616         struct s2io_nic *sp = dev->priv;
6617         int i, ret;
6618         struct mac_info *mac_control;
6619         struct config_param *config;
6620
6621         mac_control = &sp->mac_control;
6622         config = &sp->config;
6623
6624         if (!TASKLET_IN_USE) {
6625                 for (i = 0; i < config->rx_ring_num; i++) {
6626                         ret = fill_rx_buffers(sp, i);
6627                         if (ret == -ENOMEM) {
6628                                 DBG_PRINT(INFO_DBG, "%s: Out of ",
6629                                           dev->name);
6630                                 DBG_PRINT(INFO_DBG, "memory in tasklet\n");
6631                                 break;
6632                         } else if (ret == -EFILL) {
6633                                 DBG_PRINT(INFO_DBG,
6634                                           "%s: Rx Ring %d is full\n",
6635                                           dev->name, i);
6636                                 break;
6637                         }
6638                 }
6639                 clear_bit(0, (&sp->tasklet_status));
6640         }
6641 }
6642
6643 /**
6644  * s2io_set_link - Set the LInk status
6645  * @data: long pointer to device private structue
6646  * Description: Sets the link status for the adapter
6647  */
6648
6649 static void s2io_set_link(struct work_struct *work)
6650 {
6651         struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6652         struct net_device *dev = nic->dev;
6653         struct XENA_dev_config __iomem *bar0 = nic->bar0;
6654         register u64 val64;
6655         u16 subid;
6656
6657         rtnl_lock();
6658
6659         if (!netif_running(dev))
6660                 goto out_unlock;
6661
6662         if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6663                 /* The card is being reset, no point doing anything */
6664                 goto out_unlock;
6665         }
6666
6667         subid = nic->pdev->subsystem_device;
6668         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6669                 /*
6670                  * Allow a small delay for the NICs self initiated
6671                  * cleanup to complete.
6672                  */
6673                 msleep(100);
6674         }
6675
6676         val64 = readq(&bar0->adapter_status);
6677         if (LINK_IS_UP(val64)) {
6678                 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6679                         if (verify_xena_quiescence(nic)) {
6680                                 val64 = readq(&bar0->adapter_control);
6681                                 val64 |= ADAPTER_CNTL_EN;
6682                                 writeq(val64, &bar0->adapter_control);
6683                                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6684                                         nic->device_type, subid)) {
6685                                         val64 = readq(&bar0->gpio_control);
6686                                         val64 |= GPIO_CTRL_GPIO_0;
6687                                         writeq(val64, &bar0->gpio_control);
6688                                         val64 = readq(&bar0->gpio_control);
6689                                 } else {
6690                                         val64 |= ADAPTER_LED_ON;
6691                                         writeq(val64, &bar0->adapter_control);
6692                                 }
6693                                 nic->device_enabled_once = TRUE;
6694                         } else {
6695                                 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6696                                 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6697                                 netif_stop_queue(dev);
6698                         }
6699                 }
6700                 val64 = readq(&bar0->adapter_control);
6701                 val64 |= ADAPTER_LED_ON;
6702                 writeq(val64, &bar0->adapter_control);
6703                 s2io_link(nic, LINK_UP);
6704         } else {
6705                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6706                                                       subid)) {
6707                         val64 = readq(&bar0->gpio_control);
6708                         val64 &= ~GPIO_CTRL_GPIO_0;
6709                         writeq(val64, &bar0->gpio_control);
6710                         val64 = readq(&bar0->gpio_control);
6711                 }
6712                 /* turn off LED */
6713                 val64 = readq(&bar0->adapter_control);
6714                 val64 = val64 &(~ADAPTER_LED_ON);
6715                 writeq(val64, &bar0->adapter_control);
6716                 s2io_link(nic, LINK_DOWN);
6717         }
6718         clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6719
6720 out_unlock:
6721         rtnl_unlock();
6722 }
6723
6724 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6725                                 struct buffAdd *ba,
6726                                 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6727                                 u64 *temp2, int size)
6728 {
6729         struct net_device *dev = sp->dev;
6730         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6731
6732         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6733                 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6734                 /* allocate skb */
6735                 if (*skb) {
6736                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6737                         /*
6738                          * As Rx frame are not going to be processed,
6739                          * using same mapped address for the Rxd
6740                          * buffer pointer
6741                          */
6742                         rxdp1->Buffer0_ptr = *temp0;
6743                 } else {
6744                         *skb = dev_alloc_skb(size);
6745                         if (!(*skb)) {
6746                                 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6747                                 DBG_PRINT(INFO_DBG, "memory to allocate ");
6748                                 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6749                                 sp->mac_control.stats_info->sw_stat. \
6750                                         mem_alloc_fail_cnt++;
6751                                 return -ENOMEM ;
6752                         }
6753                         sp->mac_control.stats_info->sw_stat.mem_allocated
6754                                 += (*skb)->truesize;
6755                         /* storing the mapped addr in a temp variable
6756                          * such it will be used for next rxd whose
6757                          * Host Control is NULL
6758                          */
6759                         rxdp1->Buffer0_ptr = *temp0 =
6760                                 pci_map_single( sp->pdev, (*skb)->data,
6761                                         size - NET_IP_ALIGN,
6762                                         PCI_DMA_FROMDEVICE);
6763                         if( (rxdp1->Buffer0_ptr == 0) ||
6764                                 (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
6765                                 goto memalloc_failed;
6766                         }
6767                         rxdp->Host_Control = (unsigned long) (*skb);
6768                 }
6769         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6770                 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6771                 /* Two buffer Mode */
6772                 if (*skb) {
6773                         rxdp3->Buffer2_ptr = *temp2;
6774                         rxdp3->Buffer0_ptr = *temp0;
6775                         rxdp3->Buffer1_ptr = *temp1;
6776                 } else {
6777                         *skb = dev_alloc_skb(size);
6778                         if (!(*skb)) {
6779                                 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6780                                 DBG_PRINT(INFO_DBG, "memory to allocate ");
6781                                 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6782                                 sp->mac_control.stats_info->sw_stat. \
6783                                         mem_alloc_fail_cnt++;
6784                                 return -ENOMEM;
6785                         }
6786                         sp->mac_control.stats_info->sw_stat.mem_allocated
6787                                 += (*skb)->truesize;
6788                         rxdp3->Buffer2_ptr = *temp2 =
6789                                 pci_map_single(sp->pdev, (*skb)->data,
6790                                                dev->mtu + 4,
6791                                                PCI_DMA_FROMDEVICE);
6792                         if( (rxdp3->Buffer2_ptr == 0) ||
6793                                 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
6794                                 goto memalloc_failed;
6795                         }
6796                         rxdp3->Buffer0_ptr = *temp0 =
6797                                 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6798                                                 PCI_DMA_FROMDEVICE);
6799                         if( (rxdp3->Buffer0_ptr == 0) ||
6800                                 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
6801                                 pci_unmap_single (sp->pdev,
6802                                         (dma_addr_t)rxdp3->Buffer2_ptr,
6803                                         dev->mtu + 4, PCI_DMA_FROMDEVICE);
6804                                 goto memalloc_failed;
6805                         }
6806                         rxdp->Host_Control = (unsigned long) (*skb);
6807
6808                         /* Buffer-1 will be dummy buffer not used */
6809                         rxdp3->Buffer1_ptr = *temp1 =
6810                                 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6811                                                 PCI_DMA_FROMDEVICE);
6812                         if( (rxdp3->Buffer1_ptr == 0) ||
6813                                 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
6814                                 pci_unmap_single (sp->pdev,
6815                                         (dma_addr_t)rxdp3->Buffer0_ptr,
6816                                         BUF0_LEN, PCI_DMA_FROMDEVICE);
6817                                 pci_unmap_single (sp->pdev,
6818                                         (dma_addr_t)rxdp3->Buffer2_ptr,
6819                                         dev->mtu + 4, PCI_DMA_FROMDEVICE);
6820                                 goto memalloc_failed;
6821                         }
6822                 }
6823         }
6824         return 0;
6825         memalloc_failed:
6826                 stats->pci_map_fail_cnt++;
6827                 stats->mem_freed += (*skb)->truesize;
6828                 dev_kfree_skb(*skb);
6829                 return -ENOMEM;
6830 }
6831
6832 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6833                                 int size)
6834 {
6835         struct net_device *dev = sp->dev;
6836         if (sp->rxd_mode == RXD_MODE_1) {
6837                 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6838         } else if (sp->rxd_mode == RXD_MODE_3B) {
6839                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6840                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6841                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6842         }
6843 }
6844
6845 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6846 {
6847         int i, j, k, blk_cnt = 0, size;
6848         struct mac_info * mac_control = &sp->mac_control;
6849         struct config_param *config = &sp->config;
6850         struct net_device *dev = sp->dev;
6851         struct RxD_t *rxdp = NULL;
6852         struct sk_buff *skb = NULL;
6853         struct buffAdd *ba = NULL;
6854         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6855
6856         /* Calculate the size based on ring mode */
6857         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6858                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6859         if (sp->rxd_mode == RXD_MODE_1)
6860                 size += NET_IP_ALIGN;
6861         else if (sp->rxd_mode == RXD_MODE_3B)
6862                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6863
6864         for (i = 0; i < config->rx_ring_num; i++) {
6865                 blk_cnt = config->rx_cfg[i].num_rxd /
6866                         (rxd_count[sp->rxd_mode] +1);
6867
6868                 for (j = 0; j < blk_cnt; j++) {
6869                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6870                                 rxdp = mac_control->rings[i].
6871                                         rx_blocks[j].rxds[k].virt_addr;
6872                                 if(sp->rxd_mode == RXD_MODE_3B)
6873                                         ba = &mac_control->rings[i].ba[j][k];
6874                                 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6875                                                        &skb,(u64 *)&temp0_64,
6876                                                        (u64 *)&temp1_64,
6877                                                        (u64 *)&temp2_64,
6878                                                         size) == ENOMEM) {
6879                                         return 0;
6880                                 }
6881
6882                                 set_rxd_buffer_size(sp, rxdp, size);
6883                                 wmb();
6884                                 /* flip the Ownership bit to Hardware */
6885                                 rxdp->Control_1 |= RXD_OWN_XENA;
6886                         }
6887                 }
6888         }
6889         return 0;
6890
6891 }
6892
6893 static int s2io_add_isr(struct s2io_nic * sp)
6894 {
6895         int ret = 0;
6896         struct net_device *dev = sp->dev;
6897         int err = 0;
6898
6899         if (sp->config.intr_type == MSI_X)
6900                 ret = s2io_enable_msi_x(sp);
6901         if (ret) {
6902                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6903                 sp->config.intr_type = INTA;
6904         }
6905
6906         /* Store the values of the MSIX table in the struct s2io_nic structure */
6907         store_xmsi_data(sp);
6908
6909         /* After proper initialization of H/W, register ISR */
6910         if (sp->config.intr_type == MSI_X) {
6911                 int i, msix_tx_cnt=0,msix_rx_cnt=0;
6912
6913                 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6914                         if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6915                                 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6916                                         dev->name, i);
6917                                 err = request_irq(sp->entries[i].vector,
6918                                           s2io_msix_fifo_handle, 0, sp->desc[i],
6919                                                   sp->s2io_entries[i].arg);
6920                                 /* If either data or addr is zero print it */
6921                                 if(!(sp->msix_info[i].addr &&
6922                                         sp->msix_info[i].data)) {
6923                                         DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx "
6924                                                 "Data:0x%lx\n",sp->desc[i],
6925                                                 (unsigned long long)
6926                                                 sp->msix_info[i].addr,
6927                                                 (unsigned long)
6928                                                 ntohl(sp->msix_info[i].data));
6929                                 } else {
6930                                         msix_tx_cnt++;
6931                                 }
6932                         } else {
6933                                 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6934                                         dev->name, i);
6935                                 err = request_irq(sp->entries[i].vector,
6936                                           s2io_msix_ring_handle, 0, sp->desc[i],
6937                                                   sp->s2io_entries[i].arg);
6938                                 /* If either data or addr is zero print it */
6939                                 if(!(sp->msix_info[i].addr &&
6940                                         sp->msix_info[i].data)) {
6941                                         DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx "
6942                                                 "Data:0x%lx\n",sp->desc[i],
6943                                                 (unsigned long long)
6944                                                 sp->msix_info[i].addr,
6945                                                 (unsigned long)
6946                                                 ntohl(sp->msix_info[i].data));
6947                                 } else {
6948                                         msix_rx_cnt++;
6949                                 }
6950                         }
6951                         if (err) {
6952                                 remove_msix_isr(sp);
6953                                 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6954                                           "failed\n", dev->name, i);
6955                                 DBG_PRINT(ERR_DBG, "%s: defaulting to INTA\n",
6956                                                  dev->name);
6957                                 sp->config.intr_type = INTA;
6958                                 break;
6959                         }
6960                         sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6961                 }
6962                 if (!err) {
6963                         printk(KERN_INFO "MSI-X-TX %d entries enabled\n",
6964                                 msix_tx_cnt);
6965                         printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
6966                                 msix_rx_cnt);
6967                 }
6968         }
6969         if (sp->config.intr_type == INTA) {
6970                 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6971                                 sp->name, dev);
6972                 if (err) {
6973                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6974                                   dev->name);
6975                         return -1;
6976                 }
6977         }
6978         return 0;
6979 }
6980 static void s2io_rem_isr(struct s2io_nic * sp)
6981 {
6982         if (sp->config.intr_type == MSI_X)
6983                 remove_msix_isr(sp);
6984         else
6985                 remove_inta_isr(sp);
6986 }
6987
6988 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
6989 {
6990         int cnt = 0;
6991         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6992         unsigned long flags;
6993         register u64 val64 = 0;
6994         struct config_param *config;
6995         config = &sp->config;
6996
6997         if (!is_s2io_card_up(sp))
6998                 return;
6999
7000         del_timer_sync(&sp->alarm_timer);
7001         /* If s2io_set_link task is executing, wait till it completes. */
7002         while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
7003                 msleep(50);
7004         }
7005         clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7006
7007         /* Disable napi */
7008         if (config->napi)
7009                 napi_disable(&sp->napi);
7010
7011         /* disable Tx and Rx traffic on the NIC */
7012         if (do_io)
7013                 stop_nic(sp);
7014
7015         s2io_rem_isr(sp);
7016
7017         /* Kill tasklet. */
7018         tasklet_kill(&sp->task);
7019
7020         /* Check if the device is Quiescent and then Reset the NIC */
7021         while(do_io) {
7022                 /* As per the HW requirement we need to replenish the
7023                  * receive buffer to avoid the ring bump. Since there is
7024                  * no intention of processing the Rx frame at this pointwe are
7025                  * just settting the ownership bit of rxd in Each Rx
7026                  * ring to HW and set the appropriate buffer size
7027                  * based on the ring mode
7028                  */
7029                 rxd_owner_bit_reset(sp);
7030
7031                 val64 = readq(&bar0->adapter_status);
7032                 if (verify_xena_quiescence(sp)) {
7033                         if(verify_pcc_quiescent(sp, sp->device_enabled_once))
7034                         break;
7035                 }
7036
7037                 msleep(50);
7038                 cnt++;
7039                 if (cnt == 10) {
7040                         DBG_PRINT(ERR_DBG,
7041                                   "s2io_close:Device not Quiescent ");
7042                         DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
7043                                   (unsigned long long) val64);
7044                         break;
7045                 }
7046         }
7047         if (do_io)
7048                 s2io_reset(sp);
7049
7050         /* Free all Tx buffers */
7051         free_tx_buffers(sp);
7052
7053         /* Free all Rx buffers */
7054         spin_lock_irqsave(&sp->rx_lock, flags);
7055         free_rx_buffers(sp);
7056         spin_unlock_irqrestore(&sp->rx_lock, flags);
7057
7058         clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7059 }
7060
7061 static void s2io_card_down(struct s2io_nic * sp)
7062 {
7063         do_s2io_card_down(sp, 1);
7064 }
7065
7066 static int s2io_card_up(struct s2io_nic * sp)
7067 {
7068         int i, ret = 0;
7069         struct mac_info *mac_control;
7070         struct config_param *config;
7071         struct net_device *dev = (struct net_device *) sp->dev;
7072         u16 interruptible;
7073
7074         /* Initialize the H/W I/O registers */
7075         ret = init_nic(sp);
7076         if (ret != 0) {
7077                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7078                           dev->name);
7079                 if (ret != -EIO)
7080                         s2io_reset(sp);
7081                 return ret;
7082         }
7083
7084         /*
7085          * Initializing the Rx buffers. For now we are considering only 1
7086          * Rx ring and initializing buffers into 30 Rx blocks
7087          */
7088         mac_control = &sp->mac_control;
7089         config = &sp->config;
7090
7091         for (i = 0; i < config->rx_ring_num; i++) {
7092                 if ((ret = fill_rx_buffers(sp, i))) {
7093                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7094                                   dev->name);
7095                         s2io_reset(sp);
7096                         free_rx_buffers(sp);
7097                         return -ENOMEM;
7098                 }
7099                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7100                           atomic_read(&sp->rx_bufs_left[i]));
7101         }
7102
7103         /* Initialise napi */
7104         if (config->napi)
7105                 napi_enable(&sp->napi);
7106
7107         /* Maintain the state prior to the open */
7108         if (sp->promisc_flg)
7109                 sp->promisc_flg = 0;
7110         if (sp->m_cast_flg) {
7111                 sp->m_cast_flg = 0;
7112                 sp->all_multi_pos= 0;
7113         }
7114
7115         /* Setting its receive mode */
7116         s2io_set_multicast(dev);
7117
7118         if (sp->lro) {
7119                 /* Initialize max aggregatable pkts per session based on MTU */
7120                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7121                 /* Check if we can use(if specified) user provided value */
7122                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7123                         sp->lro_max_aggr_per_sess = lro_max_pkts;
7124         }
7125
7126         /* Enable Rx Traffic and interrupts on the NIC */
7127         if (start_nic(sp)) {
7128                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7129                 s2io_reset(sp);
7130                 free_rx_buffers(sp);
7131                 return -ENODEV;
7132         }
7133
7134         /* Add interrupt service routine */
7135         if (s2io_add_isr(sp) != 0) {
7136                 if (sp->config.intr_type == MSI_X)
7137                         s2io_rem_isr(sp);
7138                 s2io_reset(sp);
7139                 free_rx_buffers(sp);
7140                 return -ENODEV;
7141         }
7142
7143         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7144
7145         /* Enable tasklet for the device */
7146         tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
7147
7148         /*  Enable select interrupts */
7149         en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7150         if (sp->config.intr_type != INTA)
7151                 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
7152         else {
7153                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7154                 interruptible |= TX_PIC_INTR;
7155                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7156         }
7157
7158         set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7159         return 0;
7160 }
7161
7162 /**
7163  * s2io_restart_nic - Resets the NIC.
7164  * @data : long pointer to the device private structure
7165  * Description:
7166  * This function is scheduled to be run by the s2io_tx_watchdog
7167  * function after 0.5 secs to reset the NIC. The idea is to reduce
7168  * the run time of the watch dog routine which is run holding a
7169  * spin lock.
7170  */
7171
7172 static void s2io_restart_nic(struct work_struct *work)
7173 {
7174         struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7175         struct net_device *dev = sp->dev;
7176
7177         rtnl_lock();
7178
7179         if (!netif_running(dev))
7180                 goto out_unlock;
7181
7182         s2io_card_down(sp);
7183         if (s2io_card_up(sp)) {
7184                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
7185                           dev->name);
7186         }
7187         netif_wake_queue(dev);
7188         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
7189                   dev->name);
7190 out_unlock:
7191         rtnl_unlock();
7192 }
7193
7194 /**
7195  *  s2io_tx_watchdog - Watchdog for transmit side.
7196  *  @dev : Pointer to net device structure
7197  *  Description:
7198  *  This function is triggered if the Tx Queue is stopped
7199  *  for a pre-defined amount of time when the Interface is still up.
7200  *  If the Interface is jammed in such a situation, the hardware is
7201  *  reset (by s2io_close) and restarted again (by s2io_open) to
7202  *  overcome any problem that might have been caused in the hardware.
7203  *  Return value:
7204  *  void
7205  */
7206
7207 static void s2io_tx_watchdog(struct net_device *dev)
7208 {
7209         struct s2io_nic *sp = dev->priv;
7210
7211         if (netif_carrier_ok(dev)) {
7212                 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
7213                 schedule_work(&sp->rst_timer_task);
7214                 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
7215         }
7216 }
7217
7218 /**
7219  *   rx_osm_handler - To perform some OS related operations on SKB.
7220  *   @sp: private member of the device structure,pointer to s2io_nic structure.
7221  *   @skb : the socket buffer pointer.
7222  *   @len : length of the packet
7223  *   @cksum : FCS checksum of the frame.
7224  *   @ring_no : the ring from which this RxD was extracted.
7225  *   Description:
7226  *   This function is called by the Rx interrupt serivce routine to perform
7227  *   some OS related operations on the SKB before passing it to the upper
7228  *   layers. It mainly checks if the checksum is OK, if so adds it to the
7229  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7230  *   to the upper layer. If the checksum is wrong, it increments the Rx
7231  *   packet error count, frees the SKB and returns error.
7232  *   Return value:
7233  *   SUCCESS on success and -1 on failure.
7234  */
7235 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7236 {
7237         struct s2io_nic *sp = ring_data->nic;
7238         struct net_device *dev = (struct net_device *) sp->dev;
7239         struct sk_buff *skb = (struct sk_buff *)
7240                 ((unsigned long) rxdp->Host_Control);
7241         int ring_no = ring_data->ring_no;
7242         u16 l3_csum, l4_csum;
7243         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7244         struct lro *lro;
7245         u8 err_mask;
7246
7247         skb->dev = dev;
7248
7249         if (err) {
7250                 /* Check for parity error */
7251                 if (err & 0x1) {
7252                         sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7253                 }
7254                 err_mask = err >> 48;
7255                 switch(err_mask) {
7256                         case 1:
7257                                 sp->mac_control.stats_info->sw_stat.
7258                                 rx_parity_err_cnt++;
7259                         break;
7260
7261                         case 2:
7262                                 sp->mac_control.stats_info->sw_stat.
7263                                 rx_abort_cnt++;
7264                         break;
7265
7266                         case 3:
7267                                 sp->mac_control.stats_info->sw_stat.
7268                                 rx_parity_abort_cnt++;
7269                         break;
7270
7271                         case 4:
7272                                 sp->mac_control.stats_info->sw_stat.
7273                                 rx_rda_fail_cnt++;
7274                         break;
7275
7276                         case 5:
7277                                 sp->mac_control.stats_info->sw_stat.
7278                                 rx_unkn_prot_cnt++;
7279                         break;
7280
7281                         case 6:
7282                                 sp->mac_control.stats_info->sw_stat.
7283                                 rx_fcs_err_cnt++;
7284                         break;
7285
7286                         case 7:
7287                                 sp->mac_control.stats_info->sw_stat.
7288                                 rx_buf_size_err_cnt++;
7289                         break;
7290
7291                         case 8:
7292                                 sp->mac_control.stats_info->sw_stat.
7293                                 rx_rxd_corrupt_cnt++;
7294                         break;
7295
7296                         case 15:
7297                                 sp->mac_control.stats_info->sw_stat.
7298                                 rx_unkn_err_cnt++;
7299                         break;
7300                 }
7301                 /*
7302                 * Drop the packet if bad transfer code. Exception being
7303                 * 0x5, which could be due to unsupported IPv6 extension header.
7304                 * In this case, we let stack handle the packet.
7305                 * Note that in this case, since checksum will be incorrect,
7306                 * stack will validate the same.
7307                 */
7308                 if (err_mask != 0x5) {
7309                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7310                                 dev->name, err_mask);
7311                         sp->stats.rx_crc_errors++;
7312                         sp->mac_control.stats_info->sw_stat.mem_freed
7313                                 += skb->truesize;
7314                         dev_kfree_skb(skb);
7315                         atomic_dec(&sp->rx_bufs_left[ring_no]);
7316                         rxdp->Host_Control = 0;
7317                         return 0;
7318                 }
7319         }
7320
7321         /* Updating statistics */
7322         sp->stats.rx_packets++;
7323         rxdp->Host_Control = 0;
7324         if (sp->rxd_mode == RXD_MODE_1) {
7325                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7326
7327                 sp->stats.rx_bytes += len;
7328                 skb_put(skb, len);
7329
7330         } else if (sp->rxd_mode == RXD_MODE_3B) {
7331                 int get_block = ring_data->rx_curr_get_info.block_index;
7332                 int get_off = ring_data->rx_curr_get_info.offset;
7333                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7334                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7335                 unsigned char *buff = skb_push(skb, buf0_len);
7336
7337                 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7338                 sp->stats.rx_bytes += buf0_len + buf2_len;
7339                 memcpy(buff, ba->ba_0, buf0_len);
7340                 skb_put(skb, buf2_len);
7341         }
7342
7343         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
7344             (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7345             (sp->rx_csum)) {
7346                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7347                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7348                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7349                         /*
7350                          * NIC verifies if the Checksum of the received
7351                          * frame is Ok or not and accordingly returns
7352                          * a flag in the RxD.
7353                          */
7354                         skb->ip_summed = CHECKSUM_UNNECESSARY;
7355                         if (sp->lro) {
7356                                 u32 tcp_len;
7357                                 u8 *tcp;
7358                                 int ret = 0;
7359
7360                                 ret = s2io_club_tcp_session(skb->data, &tcp,
7361                                                             &tcp_len, &lro,
7362                                                             rxdp, sp);
7363                                 switch (ret) {
7364                                         case 3: /* Begin anew */
7365                                                 lro->parent = skb;
7366                                                 goto aggregate;
7367                                         case 1: /* Aggregate */
7368                                         {
7369                                                 lro_append_pkt(sp, lro,
7370                                                         skb, tcp_len);
7371                                                 goto aggregate;
7372                                         }
7373                                         case 4: /* Flush session */
7374                                         {
7375                                                 lro_append_pkt(sp, lro,
7376                                                         skb, tcp_len);
7377                                                 queue_rx_frame(lro->parent);
7378                                                 clear_lro_session(lro);
7379                                                 sp->mac_control.stats_info->
7380                                                     sw_stat.flush_max_pkts++;
7381                                                 goto aggregate;
7382                                         }
7383                                         case 2: /* Flush both */
7384                                                 lro->parent->data_len =
7385                                                         lro->frags_len;
7386                                                 sp->mac_control.stats_info->
7387                                                      sw_stat.sending_both++;
7388                                                 queue_rx_frame(lro->parent);
7389                                                 clear_lro_session(lro);
7390                                                 goto send_up;
7391                                         case 0: /* sessions exceeded */
7392                                         case -1: /* non-TCP or not
7393                                                   * L2 aggregatable
7394                                                   */
7395                                         case 5: /*
7396                                                  * First pkt in session not
7397                                                  * L3/L4 aggregatable
7398                                                  */
7399                                                 break;
7400                                         default:
7401                                                 DBG_PRINT(ERR_DBG,
7402                                                         "%s: Samadhana!!\n",
7403                                                          __FUNCTION__);
7404                                                 BUG();
7405                                 }
7406                         }
7407                 } else {
7408                         /*
7409                          * Packet with erroneous checksum, let the
7410                          * upper layers deal with it.
7411                          */
7412                         skb->ip_summed = CHECKSUM_NONE;
7413                 }
7414         } else {
7415                 skb->ip_summed = CHECKSUM_NONE;
7416         }
7417         sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7418         if (!sp->lro) {
7419                 skb->protocol = eth_type_trans(skb, dev);
7420                 if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
7421                         vlan_strip_flag)) {
7422                         /* Queueing the vlan frame to the upper layer */
7423                         if (napi)
7424                                 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
7425                                         RXD_GET_VLAN_TAG(rxdp->Control_2));
7426                         else
7427                                 vlan_hwaccel_rx(skb, sp->vlgrp,
7428                                         RXD_GET_VLAN_TAG(rxdp->Control_2));
7429                 } else {
7430                         if (napi)
7431                                 netif_receive_skb(skb);
7432                         else
7433                                 netif_rx(skb);
7434                 }
7435         } else {
7436 send_up:
7437                 queue_rx_frame(skb);
7438         }
7439         dev->last_rx = jiffies;
7440 aggregate:
7441         atomic_dec(&sp->rx_bufs_left[ring_no]);
7442         return SUCCESS;
7443 }
7444
7445 /**
7446  *  s2io_link - stops/starts the Tx queue.
7447  *  @sp : private member of the device structure, which is a pointer to the
7448  *  s2io_nic structure.
7449  *  @link : inidicates whether link is UP/DOWN.
7450  *  Description:
7451  *  This function stops/starts the Tx queue depending on whether the link
7452  *  status of the NIC is is down or up. This is called by the Alarm
7453  *  interrupt handler whenever a link change interrupt comes up.
7454  *  Return value:
7455  *  void.
7456  */
7457
7458 static void s2io_link(struct s2io_nic * sp, int link)
7459 {
7460         struct net_device *dev = (struct net_device *) sp->dev;
7461
7462         if (link != sp->last_link_state) {
7463                 init_tti(sp, link);
7464                 if (link == LINK_DOWN) {
7465                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7466                         netif_carrier_off(dev);
7467                         if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7468                         sp->mac_control.stats_info->sw_stat.link_up_time =
7469                                 jiffies - sp->start_time;
7470                         sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7471                 } else {
7472                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7473                         if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7474                         sp->mac_control.stats_info->sw_stat.link_down_time =
7475                                 jiffies - sp->start_time;
7476                         sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7477                         netif_carrier_on(dev);
7478                 }
7479         }
7480         sp->last_link_state = link;
7481         sp->start_time = jiffies;
7482 }
7483
7484 /**
7485  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7486  *  @sp : private member of the device structure, which is a pointer to the
7487  *  s2io_nic structure.
7488  *  Description:
7489  *  This function initializes a few of the PCI and PCI-X configuration registers
7490  *  with recommended values.
7491  *  Return value:
7492  *  void
7493  */
7494
7495 static void s2io_init_pci(struct s2io_nic * sp)
7496 {
7497         u16 pci_cmd = 0, pcix_cmd = 0;
7498
7499         /* Enable Data Parity Error Recovery in PCI-X command register. */
7500         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7501                              &(pcix_cmd));
7502         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7503                               (pcix_cmd | 1));
7504         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7505                              &(pcix_cmd));
7506
7507         /* Set the PErr Response bit in PCI command register. */
7508         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7509         pci_write_config_word(sp->pdev, PCI_COMMAND,
7510                               (pci_cmd | PCI_COMMAND_PARITY));
7511         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7512 }
7513
7514 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
7515 {
7516         if ((tx_fifo_num > MAX_TX_FIFOS) ||
7517                 (tx_fifo_num < FIFO_DEFAULT_NUM)) {
7518                 DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
7519                         "(%d) not supported\n", tx_fifo_num);
7520                 tx_fifo_num =
7521                         ((tx_fifo_num > MAX_TX_FIFOS)? MAX_TX_FIFOS :
7522                         ((tx_fifo_num < FIFO_DEFAULT_NUM) ? FIFO_DEFAULT_NUM :
7523                         tx_fifo_num));
7524                 DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
7525                 DBG_PRINT(ERR_DBG, "tx fifos\n");
7526         }
7527
7528         if ( rx_ring_num > 8) {
7529                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
7530                          "supported\n");
7531                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
7532                 rx_ring_num = 8;
7533         }
7534         if (*dev_intr_type != INTA)
7535                 napi = 0;
7536
7537         if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7538                 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7539                           "Defaulting to INTA\n");
7540                 *dev_intr_type = INTA;
7541         }
7542
7543         if ((*dev_intr_type == MSI_X) &&
7544                         ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7545                         (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7546                 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7547                                         "Defaulting to INTA\n");
7548                 *dev_intr_type = INTA;
7549         }
7550
7551         if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7552                 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7553                 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7554                 rx_ring_mode = 1;
7555         }
7556         return SUCCESS;
7557 }
7558
7559 /**
7560  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7561  * or Traffic class respectively.
7562  * @nic: device private variable
7563  * Description: The function configures the receive steering to
7564  * desired receive ring.
7565  * Return Value:  SUCCESS on success and
7566  * '-1' on failure (endian settings incorrect).
7567  */
7568 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7569 {
7570         struct XENA_dev_config __iomem *bar0 = nic->bar0;
7571         register u64 val64 = 0;
7572
7573         if (ds_codepoint > 63)
7574                 return FAILURE;
7575
7576         val64 = RTS_DS_MEM_DATA(ring);
7577         writeq(val64, &bar0->rts_ds_mem_data);
7578
7579         val64 = RTS_DS_MEM_CTRL_WE |
7580                 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7581                 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7582
7583         writeq(val64, &bar0->rts_ds_mem_ctrl);
7584
7585         return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7586                                 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7587                                 S2IO_BIT_RESET);
7588 }
7589
7590 /**
7591  *  s2io_init_nic - Initialization of the adapter .
7592  *  @pdev : structure containing the PCI related information of the device.
7593  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7594  *  Description:
7595  *  The function initializes an adapter identified by the pci_dec structure.
7596  *  All OS related initialization including memory and device structure and
7597  *  initlaization of the device private variable is done. Also the swapper
7598  *  control register is initialized to enable read and write into the I/O
7599  *  registers of the device.
7600  *  Return value:
7601  *  returns 0 on success and negative on failure.
7602  */
7603
7604 static int __devinit
7605 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7606 {
7607         struct s2io_nic *sp;
7608         struct net_device *dev;
7609         int i, j, ret;
7610         int dma_flag = FALSE;
7611         u32 mac_up, mac_down;
7612         u64 val64 = 0, tmp64 = 0;
7613         struct XENA_dev_config __iomem *bar0 = NULL;
7614         u16 subid;
7615         struct mac_info *mac_control;
7616         struct config_param *config;
7617         int mode;
7618         u8 dev_intr_type = intr_type;
7619         DECLARE_MAC_BUF(mac);
7620
7621         if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
7622                 return ret;
7623
7624         if ((ret = pci_enable_device(pdev))) {
7625                 DBG_PRINT(ERR_DBG,
7626                           "s2io_init_nic: pci_enable_device failed\n");
7627                 return ret;
7628         }
7629
7630         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7631                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7632                 dma_flag = TRUE;
7633                 if (pci_set_consistent_dma_mask
7634                     (pdev, DMA_64BIT_MASK)) {
7635                         DBG_PRINT(ERR_DBG,
7636                                   "Unable to obtain 64bit DMA for \
7637                                         consistent allocations\n");
7638                         pci_disable_device(pdev);
7639                         return -ENOMEM;
7640                 }
7641         } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7642                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7643         } else {
7644                 pci_disable_device(pdev);
7645                 return -ENOMEM;
7646         }
7647         if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7648                 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7649                 pci_disable_device(pdev);
7650                 return -ENODEV;
7651         }
7652
7653         dev = alloc_etherdev(sizeof(struct s2io_nic));
7654         if (dev == NULL) {
7655                 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7656                 pci_disable_device(pdev);
7657                 pci_release_regions(pdev);
7658                 return -ENODEV;
7659         }
7660
7661         pci_set_master(pdev);
7662         pci_set_drvdata(pdev, dev);
7663         SET_NETDEV_DEV(dev, &pdev->dev);
7664
7665         /*  Private member variable initialized to s2io NIC structure */
7666         sp = dev->priv;
7667         memset(sp, 0, sizeof(struct s2io_nic));
7668         sp->dev = dev;
7669         sp->pdev = pdev;
7670         sp->high_dma_flag = dma_flag;
7671         sp->device_enabled_once = FALSE;
7672         if (rx_ring_mode == 1)
7673                 sp->rxd_mode = RXD_MODE_1;
7674         if (rx_ring_mode == 2)
7675                 sp->rxd_mode = RXD_MODE_3B;
7676
7677         sp->config.intr_type = dev_intr_type;
7678
7679         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7680                 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7681                 sp->device_type = XFRAME_II_DEVICE;
7682         else
7683                 sp->device_type = XFRAME_I_DEVICE;
7684
7685         sp->lro = lro_enable;
7686
7687         /* Initialize some PCI/PCI-X fields of the NIC. */
7688         s2io_init_pci(sp);
7689
7690         /*
7691          * Setting the device configuration parameters.
7692          * Most of these parameters can be specified by the user during
7693          * module insertion as they are module loadable parameters. If
7694          * these parameters are not not specified during load time, they
7695          * are initialized with default values.
7696          */
7697         mac_control = &sp->mac_control;
7698         config = &sp->config;
7699
7700         config->napi = napi;
7701
7702         /* Tx side parameters. */
7703         config->tx_fifo_num = tx_fifo_num;
7704         for (i = 0; i < MAX_TX_FIFOS; i++) {
7705                 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7706                 config->tx_cfg[i].fifo_priority = i;
7707         }
7708
7709         /* mapping the QoS priority to the configured fifos */
7710         for (i = 0; i < MAX_TX_FIFOS; i++)
7711                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
7712
7713         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7714         for (i = 0; i < config->tx_fifo_num; i++) {
7715                 config->tx_cfg[i].f_no_snoop =
7716                     (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7717                 if (config->tx_cfg[i].fifo_len < 65) {
7718                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7719                         break;
7720                 }
7721         }
7722         /* + 2 because one Txd for skb->data and one Txd for UFO */
7723         config->max_txds = MAX_SKB_FRAGS + 2;
7724
7725         /* Rx side parameters. */
7726         config->rx_ring_num = rx_ring_num;
7727         for (i = 0; i < MAX_RX_RINGS; i++) {
7728                 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7729                     (rxd_count[sp->rxd_mode] + 1);
7730                 config->rx_cfg[i].ring_priority = i;
7731         }
7732
7733         for (i = 0; i < rx_ring_num; i++) {
7734                 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7735                 config->rx_cfg[i].f_no_snoop =
7736                     (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7737         }
7738
7739         /*  Setting Mac Control parameters */
7740         mac_control->rmac_pause_time = rmac_pause_time;
7741         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7742         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7743
7744
7745         /* Initialize Ring buffer parameters. */
7746         for (i = 0; i < config->rx_ring_num; i++)
7747                 atomic_set(&sp->rx_bufs_left[i], 0);
7748
7749         /*  initialize the shared memory used by the NIC and the host */
7750         if (init_shared_mem(sp)) {
7751                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7752                           dev->name);
7753                 ret = -ENOMEM;
7754                 goto mem_alloc_failed;
7755         }
7756
7757         sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7758                                      pci_resource_len(pdev, 0));
7759         if (!sp->bar0) {
7760                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7761                           dev->name);
7762                 ret = -ENOMEM;
7763                 goto bar0_remap_failed;
7764         }
7765
7766         sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7767                                      pci_resource_len(pdev, 2));
7768         if (!sp->bar1) {
7769                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7770                           dev->name);
7771                 ret = -ENOMEM;
7772                 goto bar1_remap_failed;
7773         }
7774
7775         dev->irq = pdev->irq;
7776         dev->base_addr = (unsigned long) sp->bar0;
7777
7778         /* Initializing the BAR1 address as the start of the FIFO pointer. */
7779         for (j = 0; j < MAX_TX_FIFOS; j++) {
7780                 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7781                     (sp->bar1 + (j * 0x00020000));
7782         }
7783
7784         /*  Driver entry points */
7785         dev->open = &s2io_open;
7786         dev->stop = &s2io_close;
7787         dev->hard_start_xmit = &s2io_xmit;
7788         dev->get_stats = &s2io_get_stats;
7789         dev->set_multicast_list = &s2io_set_multicast;
7790         dev->do_ioctl = &s2io_ioctl;
7791         dev->set_mac_address = &s2io_set_mac_addr;
7792         dev->change_mtu = &s2io_change_mtu;
7793         SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7794         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7795         dev->vlan_rx_register = s2io_vlan_rx_register;
7796
7797         /*
7798          * will use eth_mac_addr() for  dev->set_mac_address
7799          * mac address will be set every time dev->open() is called
7800          */
7801         netif_napi_add(dev, &sp->napi, s2io_poll, 32);
7802
7803 #ifdef CONFIG_NET_POLL_CONTROLLER
7804         dev->poll_controller = s2io_netpoll;
7805 #endif
7806
7807         dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7808         if (sp->high_dma_flag == TRUE)
7809                 dev->features |= NETIF_F_HIGHDMA;
7810         dev->features |= NETIF_F_TSO;
7811         dev->features |= NETIF_F_TSO6;
7812         if ((sp->device_type & XFRAME_II_DEVICE) && (ufo))  {
7813                 dev->features |= NETIF_F_UFO;
7814                 dev->features |= NETIF_F_HW_CSUM;
7815         }
7816
7817         dev->tx_timeout = &s2io_tx_watchdog;
7818         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7819         INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7820         INIT_WORK(&sp->set_link_task, s2io_set_link);
7821
7822         pci_save_state(sp->pdev);
7823
7824         /* Setting swapper control on the NIC, for proper reset operation */
7825         if (s2io_set_swapper(sp)) {
7826                 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7827                           dev->name);
7828                 ret = -EAGAIN;
7829                 goto set_swap_failed;
7830         }
7831
7832         /* Verify if the Herc works on the slot its placed into */
7833         if (sp->device_type & XFRAME_II_DEVICE) {
7834                 mode = s2io_verify_pci_mode(sp);
7835                 if (mode < 0) {
7836                         DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7837                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7838                         ret = -EBADSLT;
7839                         goto set_swap_failed;
7840                 }
7841         }
7842
7843         /* Not needed for Herc */
7844         if (sp->device_type & XFRAME_I_DEVICE) {
7845                 /*
7846                  * Fix for all "FFs" MAC address problems observed on
7847                  * Alpha platforms
7848                  */
7849                 fix_mac_address(sp);
7850                 s2io_reset(sp);
7851         }
7852
7853         /*
7854          * MAC address initialization.
7855          * For now only one mac address will be read and used.
7856          */
7857         bar0 = sp->bar0;
7858         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7859             RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
7860         writeq(val64, &bar0->rmac_addr_cmd_mem);
7861         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7862                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
7863         tmp64 = readq(&bar0->rmac_addr_data0_mem);
7864         mac_down = (u32) tmp64;
7865         mac_up = (u32) (tmp64 >> 32);
7866
7867         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7868         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7869         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7870         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7871         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7872         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7873
7874         /*  Set the factory defined MAC address initially   */
7875         dev->addr_len = ETH_ALEN;
7876         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7877         memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
7878
7879         /* initialize number of multicast & unicast MAC entries variables */
7880         if (sp->device_type == XFRAME_I_DEVICE) {
7881                 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
7882                 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
7883                 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
7884         } else if (sp->device_type == XFRAME_II_DEVICE) {
7885                 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
7886                 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
7887                 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
7888         }
7889
7890         /* store mac addresses from CAM to s2io_nic structure */
7891         do_s2io_store_unicast_mc(sp);
7892
7893          /* Store the values of the MSIX table in the s2io_nic structure */
7894         store_xmsi_data(sp);
7895         /* reset Nic and bring it to known state */
7896         s2io_reset(sp);
7897
7898         /*
7899          * Initialize the tasklet status and link state flags
7900          * and the card state parameter
7901          */
7902         sp->tasklet_status = 0;
7903         sp->state = 0;
7904
7905         /* Initialize spinlocks */
7906         for (i = 0; i < sp->config.tx_fifo_num; i++)
7907                 spin_lock_init(&mac_control->fifos[i].tx_lock);
7908
7909         if (!napi)
7910                 spin_lock_init(&sp->put_lock);
7911         spin_lock_init(&sp->rx_lock);
7912
7913         /*
7914          * SXE-002: Configure link and activity LED to init state
7915          * on driver load.
7916          */
7917         subid = sp->pdev->subsystem_device;
7918         if ((subid & 0xFF) >= 0x07) {
7919                 val64 = readq(&bar0->gpio_control);
7920                 val64 |= 0x0000800000000000ULL;
7921                 writeq(val64, &bar0->gpio_control);
7922                 val64 = 0x0411040400000000ULL;
7923                 writeq(val64, (void __iomem *) bar0 + 0x2700);
7924                 val64 = readq(&bar0->gpio_control);
7925         }
7926
7927         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
7928
7929         if (register_netdev(dev)) {
7930                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7931                 ret = -ENODEV;
7932                 goto register_failed;
7933         }
7934         s2io_vpd_read(sp);
7935         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
7936         DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7937                   sp->product_name, pdev->revision);
7938         DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7939                   s2io_driver_version);
7940         DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
7941                   dev->name, print_mac(mac, dev->dev_addr));
7942         DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
7943         if (sp->device_type & XFRAME_II_DEVICE) {
7944                 mode = s2io_print_pci_mode(sp);
7945                 if (mode < 0) {
7946                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7947                         ret = -EBADSLT;
7948                         unregister_netdev(dev);
7949                         goto set_swap_failed;
7950                 }
7951         }
7952         switch(sp->rxd_mode) {
7953                 case RXD_MODE_1:
7954                     DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7955                                                 dev->name);
7956                     break;
7957                 case RXD_MODE_3B:
7958                     DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7959                                                 dev->name);
7960                     break;
7961         }
7962
7963         if (napi)
7964                 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7965         switch(sp->config.intr_type) {
7966                 case INTA:
7967                     DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7968                     break;
7969                 case MSI_X:
7970                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7971                     break;
7972         }
7973         if (sp->lro)
7974                 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7975                           dev->name);
7976         if (ufo)
7977                 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7978                                         " enabled\n", dev->name);
7979         /* Initialize device name */
7980         sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7981
7982         /*
7983          * Make Link state as off at this point, when the Link change
7984          * interrupt comes the state will be automatically changed to
7985          * the right state.
7986          */
7987         netif_carrier_off(dev);
7988
7989         return 0;
7990
7991       register_failed:
7992       set_swap_failed:
7993         iounmap(sp->bar1);
7994       bar1_remap_failed:
7995         iounmap(sp->bar0);
7996       bar0_remap_failed:
7997       mem_alloc_failed:
7998         free_shared_mem(sp);
7999         pci_disable_device(pdev);
8000         pci_release_regions(pdev);
8001         pci_set_drvdata(pdev, NULL);
8002         free_netdev(dev);
8003
8004         return ret;
8005 }
8006
8007 /**
8008  * s2io_rem_nic - Free the PCI device
8009  * @pdev: structure containing the PCI related information of the device.
8010  * Description: This function is called by the Pci subsystem to release a
8011  * PCI device and free up all resource held up by the device. This could
8012  * be in response to a Hot plug event or when the driver is to be removed
8013  * from memory.
8014  */
8015
8016 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8017 {
8018         struct net_device *dev =
8019             (struct net_device *) pci_get_drvdata(pdev);
8020         struct s2io_nic *sp;
8021
8022         if (dev == NULL) {
8023                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8024                 return;
8025         }
8026
8027         flush_scheduled_work();
8028
8029         sp = dev->priv;
8030         unregister_netdev(dev);
8031
8032         free_shared_mem(sp);
8033         iounmap(sp->bar0);
8034         iounmap(sp->bar1);
8035         pci_release_regions(pdev);
8036         pci_set_drvdata(pdev, NULL);
8037         free_netdev(dev);
8038         pci_disable_device(pdev);
8039 }
8040
8041 /**
8042  * s2io_starter - Entry point for the driver
8043  * Description: This function is the entry point for the driver. It verifies
8044  * the module loadable parameters and initializes PCI configuration space.
8045  */
8046
8047 static int __init s2io_starter(void)
8048 {
8049         return pci_register_driver(&s2io_driver);
8050 }
8051
8052 /**
8053  * s2io_closer - Cleanup routine for the driver
8054  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8055  */
8056
8057 static __exit void s2io_closer(void)
8058 {
8059         pci_unregister_driver(&s2io_driver);
8060         DBG_PRINT(INIT_DBG, "cleanup done\n");
8061 }
8062
8063 module_init(s2io_starter);
8064 module_exit(s2io_closer);
8065
8066 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8067                 struct tcphdr **tcp, struct RxD_t *rxdp)
8068 {
8069         int ip_off;
8070         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8071
8072         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8073                 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
8074                           __FUNCTION__);
8075                 return -1;
8076         }
8077
8078         /* TODO:
8079          * By default the VLAN field in the MAC is stripped by the card, if this
8080          * feature is turned off in rx_pa_cfg register, then the ip_off field
8081          * has to be shifted by a further 2 bytes
8082          */
8083         switch (l2_type) {
8084                 case 0: /* DIX type */
8085                 case 4: /* DIX type with VLAN */
8086                         ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8087                         break;
8088                 /* LLC, SNAP etc are considered non-mergeable */
8089                 default:
8090                         return -1;
8091         }
8092
8093         *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8094         ip_len = (u8)((*ip)->ihl);
8095         ip_len <<= 2;
8096         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8097
8098         return 0;
8099 }
8100
8101 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8102                                   struct tcphdr *tcp)
8103 {
8104         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8105         if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
8106            (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
8107                 return -1;
8108         return 0;
8109 }
8110
8111 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8112 {
8113         return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
8114 }
8115
8116 static void initiate_new_session(struct lro *lro, u8 *l2h,
8117                      struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
8118 {
8119         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8120         lro->l2h = l2h;
8121         lro->iph = ip;
8122         lro->tcph = tcp;
8123         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8124         lro->tcp_ack = tcp->ack_seq;
8125         lro->sg_num = 1;
8126         lro->total_len = ntohs(ip->tot_len);
8127         lro->frags_len = 0;
8128         /*
8129          * check if we saw TCP timestamp. Other consistency checks have
8130          * already been done.
8131          */
8132         if (tcp->doff == 8) {
8133                 __be32 *ptr;
8134                 ptr = (__be32 *)(tcp+1);
8135                 lro->saw_ts = 1;
8136                 lro->cur_tsval = ntohl(*(ptr+1));
8137                 lro->cur_tsecr = *(ptr+2);
8138         }
8139         lro->in_use = 1;
8140 }
8141
8142 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8143 {
8144         struct iphdr *ip = lro->iph;
8145         struct tcphdr *tcp = lro->tcph;
8146         __sum16 nchk;
8147         struct stat_block *statinfo = sp->mac_control.stats_info;
8148         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8149
8150         /* Update L3 header */
8151         ip->tot_len = htons(lro->total_len);
8152         ip->check = 0;
8153         nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8154         ip->check = nchk;
8155
8156         /* Update L4 header */
8157         tcp->ack_seq = lro->tcp_ack;
8158         tcp->window = lro->window;
8159
8160         /* Update tsecr field if this session has timestamps enabled */
8161         if (lro->saw_ts) {
8162                 __be32 *ptr = (__be32 *)(tcp + 1);
8163                 *(ptr+2) = lro->cur_tsecr;
8164         }
8165
8166         /* Update counters required for calculation of
8167          * average no. of packets aggregated.
8168          */
8169         statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
8170         statinfo->sw_stat.num_aggregations++;
8171 }
8172
8173 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8174                 struct tcphdr *tcp, u32 l4_pyld)
8175 {
8176         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8177         lro->total_len += l4_pyld;
8178         lro->frags_len += l4_pyld;
8179         lro->tcp_next_seq += l4_pyld;
8180         lro->sg_num++;
8181
8182         /* Update ack seq no. and window ad(from this pkt) in LRO object */
8183         lro->tcp_ack = tcp->ack_seq;
8184         lro->window = tcp->window;
8185
8186         if (lro->saw_ts) {
8187                 __be32 *ptr;
8188                 /* Update tsecr and tsval from this packet */
8189                 ptr = (__be32 *)(tcp+1);
8190                 lro->cur_tsval = ntohl(*(ptr+1));
8191                 lro->cur_tsecr = *(ptr + 2);
8192         }
8193 }
8194
8195 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8196                                     struct tcphdr *tcp, u32 tcp_pyld_len)
8197 {
8198         u8 *ptr;
8199
8200         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8201
8202         if (!tcp_pyld_len) {
8203                 /* Runt frame or a pure ack */
8204                 return -1;
8205         }
8206
8207         if (ip->ihl != 5) /* IP has options */
8208                 return -1;
8209
8210         /* If we see CE codepoint in IP header, packet is not mergeable */
8211         if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8212                 return -1;
8213
8214         /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8215         if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
8216                                     tcp->ece || tcp->cwr || !tcp->ack) {
8217                 /*
8218                  * Currently recognize only the ack control word and
8219                  * any other control field being set would result in
8220                  * flushing the LRO session
8221                  */
8222                 return -1;
8223         }
8224
8225         /*
8226          * Allow only one TCP timestamp option. Don't aggregate if
8227          * any other options are detected.
8228          */
8229         if (tcp->doff != 5 && tcp->doff != 8)
8230                 return -1;
8231
8232         if (tcp->doff == 8) {
8233                 ptr = (u8 *)(tcp + 1);
8234                 while (*ptr == TCPOPT_NOP)
8235                         ptr++;
8236                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8237                         return -1;
8238
8239                 /* Ensure timestamp value increases monotonically */
8240                 if (l_lro)
8241                         if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8242                                 return -1;
8243
8244                 /* timestamp echo reply should be non-zero */
8245                 if (*((__be32 *)(ptr+6)) == 0)
8246                         return -1;
8247         }
8248
8249         return 0;
8250 }
8251
8252 static int
8253 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
8254                       struct RxD_t *rxdp, struct s2io_nic *sp)
8255 {
8256         struct iphdr *ip;
8257         struct tcphdr *tcph;
8258         int ret = 0, i;
8259
8260         if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8261                                          rxdp))) {
8262                 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8263                           ip->saddr, ip->daddr);
8264         } else {
8265                 return ret;
8266         }
8267
8268         tcph = (struct tcphdr *)*tcp;
8269         *tcp_len = get_l4_pyld_length(ip, tcph);
8270         for (i=0; i<MAX_LRO_SESSIONS; i++) {
8271                 struct lro *l_lro = &sp->lro0_n[i];
8272                 if (l_lro->in_use) {
8273                         if (check_for_socket_match(l_lro, ip, tcph))
8274                                 continue;
8275                         /* Sock pair matched */
8276                         *lro = l_lro;
8277
8278                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8279                                 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8280                                           "0x%x, actual 0x%x\n", __FUNCTION__,
8281                                           (*lro)->tcp_next_seq,
8282                                           ntohl(tcph->seq));
8283
8284                                 sp->mac_control.stats_info->
8285                                    sw_stat.outof_sequence_pkts++;
8286                                 ret = 2;
8287                                 break;
8288                         }
8289
8290                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8291                                 ret = 1; /* Aggregate */
8292                         else
8293                                 ret = 2; /* Flush both */
8294                         break;
8295                 }
8296         }
8297
8298         if (ret == 0) {
8299                 /* Before searching for available LRO objects,
8300                  * check if the pkt is L3/L4 aggregatable. If not
8301                  * don't create new LRO session. Just send this
8302                  * packet up.
8303                  */
8304                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8305                         return 5;
8306                 }
8307
8308                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8309                         struct lro *l_lro = &sp->lro0_n[i];
8310                         if (!(l_lro->in_use)) {
8311                                 *lro = l_lro;
8312                                 ret = 3; /* Begin anew */
8313                                 break;
8314                         }
8315                 }
8316         }
8317
8318         if (ret == 0) { /* sessions exceeded */
8319                 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8320                           __FUNCTION__);
8321                 *lro = NULL;
8322                 return ret;
8323         }
8324
8325         switch (ret) {
8326                 case 3:
8327                         initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
8328                         break;
8329                 case 2:
8330                         update_L3L4_header(sp, *lro);
8331                         break;
8332                 case 1:
8333                         aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8334                         if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8335                                 update_L3L4_header(sp, *lro);
8336                                 ret = 4; /* Flush the LRO */
8337                         }
8338                         break;
8339                 default:
8340                         DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8341                                 __FUNCTION__);
8342                         break;
8343         }
8344
8345         return ret;
8346 }
8347
8348 static void clear_lro_session(struct lro *lro)
8349 {
8350         static u16 lro_struct_size = sizeof(struct lro);
8351
8352         memset(lro, 0, lro_struct_size);
8353 }
8354
8355 static void queue_rx_frame(struct sk_buff *skb)
8356 {
8357         struct net_device *dev = skb->dev;
8358
8359         skb->protocol = eth_type_trans(skb, dev);
8360         if (napi)
8361                 netif_receive_skb(skb);
8362         else
8363                 netif_rx(skb);
8364 }
8365
8366 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8367                            struct sk_buff *skb,
8368                            u32 tcp_len)
8369 {
8370         struct sk_buff *first = lro->parent;
8371
8372         first->len += tcp_len;
8373         first->data_len = lro->frags_len;
8374         skb_pull(skb, (skb->len - tcp_len));
8375         if (skb_shinfo(first)->frag_list)
8376                 lro->last_frag->next = skb;
8377         else
8378                 skb_shinfo(first)->frag_list = skb;
8379         first->truesize += skb->truesize;
8380         lro->last_frag = skb;
8381         sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8382         return;
8383 }
8384
8385 /**
8386  * s2io_io_error_detected - called when PCI error is detected
8387  * @pdev: Pointer to PCI device
8388  * @state: The current pci connection state
8389  *
8390  * This function is called after a PCI bus error affecting
8391  * this device has been detected.
8392  */
8393 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8394                                                pci_channel_state_t state)
8395 {
8396         struct net_device *netdev = pci_get_drvdata(pdev);
8397         struct s2io_nic *sp = netdev->priv;
8398
8399         netif_device_detach(netdev);
8400
8401         if (netif_running(netdev)) {
8402                 /* Bring down the card, while avoiding PCI I/O */
8403                 do_s2io_card_down(sp, 0);
8404         }
8405         pci_disable_device(pdev);
8406
8407         return PCI_ERS_RESULT_NEED_RESET;
8408 }
8409
8410 /**
8411  * s2io_io_slot_reset - called after the pci bus has been reset.
8412  * @pdev: Pointer to PCI device
8413  *
8414  * Restart the card from scratch, as if from a cold-boot.
8415  * At this point, the card has exprienced a hard reset,
8416  * followed by fixups by BIOS, and has its config space
8417  * set up identically to what it was at cold boot.
8418  */
8419 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8420 {
8421         struct net_device *netdev = pci_get_drvdata(pdev);
8422         struct s2io_nic *sp = netdev->priv;
8423
8424         if (pci_enable_device(pdev)) {
8425                 printk(KERN_ERR "s2io: "
8426                        "Cannot re-enable PCI device after reset.\n");
8427                 return PCI_ERS_RESULT_DISCONNECT;
8428         }
8429
8430         pci_set_master(pdev);
8431         s2io_reset(sp);
8432
8433         return PCI_ERS_RESULT_RECOVERED;
8434 }
8435
8436 /**
8437  * s2io_io_resume - called when traffic can start flowing again.
8438  * @pdev: Pointer to PCI device
8439  *
8440  * This callback is called when the error recovery driver tells
8441  * us that its OK to resume normal operation.
8442  */
8443 static void s2io_io_resume(struct pci_dev *pdev)
8444 {
8445         struct net_device *netdev = pci_get_drvdata(pdev);
8446         struct s2io_nic *sp = netdev->priv;
8447
8448         if (netif_running(netdev)) {
8449                 if (s2io_card_up(sp)) {
8450                         printk(KERN_ERR "s2io: "
8451                                "Can't bring device back up after reset.\n");
8452                         return;
8453                 }
8454
8455                 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8456                         s2io_card_down(sp);
8457                         printk(KERN_ERR "s2io: "
8458                                "Can't resetore mac addr after reset.\n");
8459                         return;
8460                 }
8461         }
8462
8463         netif_device_attach(netdev);
8464         netif_wake_queue(netdev);
8465 }