S2io: Added support set_mac_address driver entry point
[safe/jmp/linux-2.6] / drivers / net / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2007 Neterion Inc.
4
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explaination of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     2(MSI_X). Default value is '2(MSI_X)'
41  * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42  *     Possible values '1' for enable '0' for disable. Default is '0'
43  * lro_max_pkts: This parameter defines maximum number of packets can be
44  *     aggregated as a single large packet
45  * napi: This parameter used to enable/disable NAPI (polling Rx)
46  *     Possible values '1' for enable and '0' for disable. Default is '1'
47  * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48  *      Possible values '1' for enable and '0' for disable. Default is '0'
49  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50  *                 Possible values '1' for enable , '0' for disable.
51  *                 Default is '2' - which means disable in promisc mode
52  *                 and enable in non-promiscuous mode.
53  ************************************************************************/
54
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/stddef.h>
68 #include <linux/ioctl.h>
69 #include <linux/timex.h>
70 #include <linux/ethtool.h>
71 #include <linux/workqueue.h>
72 #include <linux/if_vlan.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <net/tcp.h>
76
77 #include <asm/system.h>
78 #include <asm/uaccess.h>
79 #include <asm/io.h>
80 #include <asm/div64.h>
81 #include <asm/irq.h>
82
83 /* local include */
84 #include "s2io.h"
85 #include "s2io-regs.h"
86
87 #define DRV_VERSION "2.0.26.4"
88
89 /* S2io Driver name & version. */
90 static char s2io_driver_name[] = "Neterion";
91 static char s2io_driver_version[] = DRV_VERSION;
92
93 static int rxd_size[2] = {32,48};
94 static int rxd_count[2] = {127,85};
95
96 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
97 {
98         int ret;
99
100         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
101                 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
102
103         return ret;
104 }
105
106 /*
107  * Cards with following subsystem_id have a link state indication
108  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109  * macro below identifies these cards given the subsystem_id.
110  */
111 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112         (dev_type == XFRAME_I_DEVICE) ?                 \
113                 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114                  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
115
116 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
119 #define PANIC   1
120 #define LOW     2
121 static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
122 {
123         struct mac_info *mac_control;
124
125         mac_control = &sp->mac_control;
126         if (rxb_size <= rxd_count[sp->rxd_mode])
127                 return PANIC;
128         else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
129                 return  LOW;
130         return 0;
131 }
132
133 static inline int is_s2io_card_up(const struct s2io_nic * sp)
134 {
135         return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
136 }
137
138 /* Ethtool related variables and Macros. */
139 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
140         "Register test\t(offline)",
141         "Eeprom test\t(offline)",
142         "Link test\t(online)",
143         "RLDRAM test\t(offline)",
144         "BIST Test\t(offline)"
145 };
146
147 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
148         {"tmac_frms"},
149         {"tmac_data_octets"},
150         {"tmac_drop_frms"},
151         {"tmac_mcst_frms"},
152         {"tmac_bcst_frms"},
153         {"tmac_pause_ctrl_frms"},
154         {"tmac_ttl_octets"},
155         {"tmac_ucst_frms"},
156         {"tmac_nucst_frms"},
157         {"tmac_any_err_frms"},
158         {"tmac_ttl_less_fb_octets"},
159         {"tmac_vld_ip_octets"},
160         {"tmac_vld_ip"},
161         {"tmac_drop_ip"},
162         {"tmac_icmp"},
163         {"tmac_rst_tcp"},
164         {"tmac_tcp"},
165         {"tmac_udp"},
166         {"rmac_vld_frms"},
167         {"rmac_data_octets"},
168         {"rmac_fcs_err_frms"},
169         {"rmac_drop_frms"},
170         {"rmac_vld_mcst_frms"},
171         {"rmac_vld_bcst_frms"},
172         {"rmac_in_rng_len_err_frms"},
173         {"rmac_out_rng_len_err_frms"},
174         {"rmac_long_frms"},
175         {"rmac_pause_ctrl_frms"},
176         {"rmac_unsup_ctrl_frms"},
177         {"rmac_ttl_octets"},
178         {"rmac_accepted_ucst_frms"},
179         {"rmac_accepted_nucst_frms"},
180         {"rmac_discarded_frms"},
181         {"rmac_drop_events"},
182         {"rmac_ttl_less_fb_octets"},
183         {"rmac_ttl_frms"},
184         {"rmac_usized_frms"},
185         {"rmac_osized_frms"},
186         {"rmac_frag_frms"},
187         {"rmac_jabber_frms"},
188         {"rmac_ttl_64_frms"},
189         {"rmac_ttl_65_127_frms"},
190         {"rmac_ttl_128_255_frms"},
191         {"rmac_ttl_256_511_frms"},
192         {"rmac_ttl_512_1023_frms"},
193         {"rmac_ttl_1024_1518_frms"},
194         {"rmac_ip"},
195         {"rmac_ip_octets"},
196         {"rmac_hdr_err_ip"},
197         {"rmac_drop_ip"},
198         {"rmac_icmp"},
199         {"rmac_tcp"},
200         {"rmac_udp"},
201         {"rmac_err_drp_udp"},
202         {"rmac_xgmii_err_sym"},
203         {"rmac_frms_q0"},
204         {"rmac_frms_q1"},
205         {"rmac_frms_q2"},
206         {"rmac_frms_q3"},
207         {"rmac_frms_q4"},
208         {"rmac_frms_q5"},
209         {"rmac_frms_q6"},
210         {"rmac_frms_q7"},
211         {"rmac_full_q0"},
212         {"rmac_full_q1"},
213         {"rmac_full_q2"},
214         {"rmac_full_q3"},
215         {"rmac_full_q4"},
216         {"rmac_full_q5"},
217         {"rmac_full_q6"},
218         {"rmac_full_q7"},
219         {"rmac_pause_cnt"},
220         {"rmac_xgmii_data_err_cnt"},
221         {"rmac_xgmii_ctrl_err_cnt"},
222         {"rmac_accepted_ip"},
223         {"rmac_err_tcp"},
224         {"rd_req_cnt"},
225         {"new_rd_req_cnt"},
226         {"new_rd_req_rtry_cnt"},
227         {"rd_rtry_cnt"},
228         {"wr_rtry_rd_ack_cnt"},
229         {"wr_req_cnt"},
230         {"new_wr_req_cnt"},
231         {"new_wr_req_rtry_cnt"},
232         {"wr_rtry_cnt"},
233         {"wr_disc_cnt"},
234         {"rd_rtry_wr_ack_cnt"},
235         {"txp_wr_cnt"},
236         {"txd_rd_cnt"},
237         {"txd_wr_cnt"},
238         {"rxd_rd_cnt"},
239         {"rxd_wr_cnt"},
240         {"txf_rd_cnt"},
241         {"rxf_wr_cnt"}
242 };
243
244 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
245         {"rmac_ttl_1519_4095_frms"},
246         {"rmac_ttl_4096_8191_frms"},
247         {"rmac_ttl_8192_max_frms"},
248         {"rmac_ttl_gt_max_frms"},
249         {"rmac_osized_alt_frms"},
250         {"rmac_jabber_alt_frms"},
251         {"rmac_gt_max_alt_frms"},
252         {"rmac_vlan_frms"},
253         {"rmac_len_discard"},
254         {"rmac_fcs_discard"},
255         {"rmac_pf_discard"},
256         {"rmac_da_discard"},
257         {"rmac_red_discard"},
258         {"rmac_rts_discard"},
259         {"rmac_ingm_full_discard"},
260         {"link_fault_cnt"}
261 };
262
263 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
264         {"\n DRIVER STATISTICS"},
265         {"single_bit_ecc_errs"},
266         {"double_bit_ecc_errs"},
267         {"parity_err_cnt"},
268         {"serious_err_cnt"},
269         {"soft_reset_cnt"},
270         {"fifo_full_cnt"},
271         {"ring_0_full_cnt"},
272         {"ring_1_full_cnt"},
273         {"ring_2_full_cnt"},
274         {"ring_3_full_cnt"},
275         {"ring_4_full_cnt"},
276         {"ring_5_full_cnt"},
277         {"ring_6_full_cnt"},
278         {"ring_7_full_cnt"},
279         ("alarm_transceiver_temp_high"),
280         ("alarm_transceiver_temp_low"),
281         ("alarm_laser_bias_current_high"),
282         ("alarm_laser_bias_current_low"),
283         ("alarm_laser_output_power_high"),
284         ("alarm_laser_output_power_low"),
285         ("warn_transceiver_temp_high"),
286         ("warn_transceiver_temp_low"),
287         ("warn_laser_bias_current_high"),
288         ("warn_laser_bias_current_low"),
289         ("warn_laser_output_power_high"),
290         ("warn_laser_output_power_low"),
291         ("lro_aggregated_pkts"),
292         ("lro_flush_both_count"),
293         ("lro_out_of_sequence_pkts"),
294         ("lro_flush_due_to_max_pkts"),
295         ("lro_avg_aggr_pkts"),
296         ("mem_alloc_fail_cnt"),
297         ("pci_map_fail_cnt"),
298         ("watchdog_timer_cnt"),
299         ("mem_allocated"),
300         ("mem_freed"),
301         ("link_up_cnt"),
302         ("link_down_cnt"),
303         ("link_up_time"),
304         ("link_down_time"),
305         ("tx_tcode_buf_abort_cnt"),
306         ("tx_tcode_desc_abort_cnt"),
307         ("tx_tcode_parity_err_cnt"),
308         ("tx_tcode_link_loss_cnt"),
309         ("tx_tcode_list_proc_err_cnt"),
310         ("rx_tcode_parity_err_cnt"),
311         ("rx_tcode_abort_cnt"),
312         ("rx_tcode_parity_abort_cnt"),
313         ("rx_tcode_rda_fail_cnt"),
314         ("rx_tcode_unkn_prot_cnt"),
315         ("rx_tcode_fcs_err_cnt"),
316         ("rx_tcode_buf_size_err_cnt"),
317         ("rx_tcode_rxd_corrupt_cnt"),
318         ("rx_tcode_unkn_err_cnt"),
319         {"tda_err_cnt"},
320         {"pfc_err_cnt"},
321         {"pcc_err_cnt"},
322         {"tti_err_cnt"},
323         {"tpa_err_cnt"},
324         {"sm_err_cnt"},
325         {"lso_err_cnt"},
326         {"mac_tmac_err_cnt"},
327         {"mac_rmac_err_cnt"},
328         {"xgxs_txgxs_err_cnt"},
329         {"xgxs_rxgxs_err_cnt"},
330         {"rc_err_cnt"},
331         {"prc_pcix_err_cnt"},
332         {"rpa_err_cnt"},
333         {"rda_err_cnt"},
334         {"rti_err_cnt"},
335         {"mc_err_cnt"}
336 };
337
338 #define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
339 #define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
340                                         ETH_GSTRING_LEN
341 #define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
342
343 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
344 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
345
346 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
347 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
348
349 #define S2IO_TEST_LEN   sizeof(s2io_gstrings) / ETH_GSTRING_LEN
350 #define S2IO_STRINGS_LEN        S2IO_TEST_LEN * ETH_GSTRING_LEN
351
352 #define S2IO_TIMER_CONF(timer, handle, arg, exp)                \
353                         init_timer(&timer);                     \
354                         timer.function = handle;                \
355                         timer.data = (unsigned long) arg;       \
356                         mod_timer(&timer, (jiffies + exp))      \
357
358 /* copy mac addr to def_mac_addr array */
359 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
360 {
361         sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
362         sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
363         sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
364         sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
365         sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
366         sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
367 }
368 /* Add the vlan */
369 static void s2io_vlan_rx_register(struct net_device *dev,
370                                         struct vlan_group *grp)
371 {
372         struct s2io_nic *nic = dev->priv;
373         unsigned long flags;
374
375         spin_lock_irqsave(&nic->tx_lock, flags);
376         nic->vlgrp = grp;
377         spin_unlock_irqrestore(&nic->tx_lock, flags);
378 }
379
380 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
381 static int vlan_strip_flag;
382
383 /*
384  * Constants to be programmed into the Xena's registers, to configure
385  * the XAUI.
386  */
387
388 #define END_SIGN        0x0
389 static const u64 herc_act_dtx_cfg[] = {
390         /* Set address */
391         0x8000051536750000ULL, 0x80000515367500E0ULL,
392         /* Write data */
393         0x8000051536750004ULL, 0x80000515367500E4ULL,
394         /* Set address */
395         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
396         /* Write data */
397         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
398         /* Set address */
399         0x801205150D440000ULL, 0x801205150D4400E0ULL,
400         /* Write data */
401         0x801205150D440004ULL, 0x801205150D4400E4ULL,
402         /* Set address */
403         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
404         /* Write data */
405         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
406         /* Done */
407         END_SIGN
408 };
409
410 static const u64 xena_dtx_cfg[] = {
411         /* Set address */
412         0x8000051500000000ULL, 0x80000515000000E0ULL,
413         /* Write data */
414         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
415         /* Set address */
416         0x8001051500000000ULL, 0x80010515000000E0ULL,
417         /* Write data */
418         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
419         /* Set address */
420         0x8002051500000000ULL, 0x80020515000000E0ULL,
421         /* Write data */
422         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
423         END_SIGN
424 };
425
426 /*
427  * Constants for Fixing the MacAddress problem seen mostly on
428  * Alpha machines.
429  */
430 static const u64 fix_mac[] = {
431         0x0060000000000000ULL, 0x0060600000000000ULL,
432         0x0040600000000000ULL, 0x0000600000000000ULL,
433         0x0020600000000000ULL, 0x0060600000000000ULL,
434         0x0020600000000000ULL, 0x0060600000000000ULL,
435         0x0020600000000000ULL, 0x0060600000000000ULL,
436         0x0020600000000000ULL, 0x0060600000000000ULL,
437         0x0020600000000000ULL, 0x0060600000000000ULL,
438         0x0020600000000000ULL, 0x0060600000000000ULL,
439         0x0020600000000000ULL, 0x0060600000000000ULL,
440         0x0020600000000000ULL, 0x0060600000000000ULL,
441         0x0020600000000000ULL, 0x0060600000000000ULL,
442         0x0020600000000000ULL, 0x0060600000000000ULL,
443         0x0020600000000000ULL, 0x0000600000000000ULL,
444         0x0040600000000000ULL, 0x0060600000000000ULL,
445         END_SIGN
446 };
447
448 MODULE_LICENSE("GPL");
449 MODULE_VERSION(DRV_VERSION);
450
451
452 /* Module Loadable parameters. */
453 S2IO_PARM_INT(tx_fifo_num, 1);
454 S2IO_PARM_INT(rx_ring_num, 1);
455
456
457 S2IO_PARM_INT(rx_ring_mode, 1);
458 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
459 S2IO_PARM_INT(rmac_pause_time, 0x100);
460 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
461 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
462 S2IO_PARM_INT(shared_splits, 0);
463 S2IO_PARM_INT(tmac_util_period, 5);
464 S2IO_PARM_INT(rmac_util_period, 5);
465 S2IO_PARM_INT(l3l4hdr_size, 128);
466 /* Frequency of Rx desc syncs expressed as power of 2 */
467 S2IO_PARM_INT(rxsync_frequency, 3);
468 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
469 S2IO_PARM_INT(intr_type, 2);
470 /* Large receive offload feature */
471 S2IO_PARM_INT(lro, 0);
472 /* Max pkts to be aggregated by LRO at one time. If not specified,
473  * aggregation happens until we hit max IP pkt size(64K)
474  */
475 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
476 S2IO_PARM_INT(indicate_max_pkts, 0);
477
478 S2IO_PARM_INT(napi, 1);
479 S2IO_PARM_INT(ufo, 0);
480 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
481
482 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
483     {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
484 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
485     {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
486 static unsigned int rts_frm_len[MAX_RX_RINGS] =
487     {[0 ...(MAX_RX_RINGS - 1)] = 0 };
488
489 module_param_array(tx_fifo_len, uint, NULL, 0);
490 module_param_array(rx_ring_sz, uint, NULL, 0);
491 module_param_array(rts_frm_len, uint, NULL, 0);
492
493 /*
494  * S2IO device table.
495  * This table lists all the devices that this driver supports.
496  */
497 static struct pci_device_id s2io_tbl[] __devinitdata = {
498         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
499          PCI_ANY_ID, PCI_ANY_ID},
500         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
501          PCI_ANY_ID, PCI_ANY_ID},
502         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
503          PCI_ANY_ID, PCI_ANY_ID},
504         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
505          PCI_ANY_ID, PCI_ANY_ID},
506         {0,}
507 };
508
509 MODULE_DEVICE_TABLE(pci, s2io_tbl);
510
511 static struct pci_error_handlers s2io_err_handler = {
512         .error_detected = s2io_io_error_detected,
513         .slot_reset = s2io_io_slot_reset,
514         .resume = s2io_io_resume,
515 };
516
517 static struct pci_driver s2io_driver = {
518       .name = "S2IO",
519       .id_table = s2io_tbl,
520       .probe = s2io_init_nic,
521       .remove = __devexit_p(s2io_rem_nic),
522       .err_handler = &s2io_err_handler,
523 };
524
525 /* A simplifier macro used both by init and free shared_mem Fns(). */
526 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
527
528 /**
529  * init_shared_mem - Allocation and Initialization of Memory
530  * @nic: Device private variable.
531  * Description: The function allocates all the memory areas shared
532  * between the NIC and the driver. This includes Tx descriptors,
533  * Rx descriptors and the statistics block.
534  */
535
536 static int init_shared_mem(struct s2io_nic *nic)
537 {
538         u32 size;
539         void *tmp_v_addr, *tmp_v_addr_next;
540         dma_addr_t tmp_p_addr, tmp_p_addr_next;
541         struct RxD_block *pre_rxd_blk = NULL;
542         int i, j, blk_cnt;
543         int lst_size, lst_per_page;
544         struct net_device *dev = nic->dev;
545         unsigned long tmp;
546         struct buffAdd *ba;
547
548         struct mac_info *mac_control;
549         struct config_param *config;
550         unsigned long long mem_allocated = 0;
551
552         mac_control = &nic->mac_control;
553         config = &nic->config;
554
555
556         /* Allocation and initialization of TXDLs in FIOFs */
557         size = 0;
558         for (i = 0; i < config->tx_fifo_num; i++) {
559                 size += config->tx_cfg[i].fifo_len;
560         }
561         if (size > MAX_AVAILABLE_TXDS) {
562                 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
563                 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
564                 return -EINVAL;
565         }
566
567         lst_size = (sizeof(struct TxD) * config->max_txds);
568         lst_per_page = PAGE_SIZE / lst_size;
569
570         for (i = 0; i < config->tx_fifo_num; i++) {
571                 int fifo_len = config->tx_cfg[i].fifo_len;
572                 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
573                 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
574                                                           GFP_KERNEL);
575                 if (!mac_control->fifos[i].list_info) {
576                         DBG_PRINT(INFO_DBG,
577                                   "Malloc failed for list_info\n");
578                         return -ENOMEM;
579                 }
580                 mem_allocated += list_holder_size;
581         }
582         for (i = 0; i < config->tx_fifo_num; i++) {
583                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
584                                                 lst_per_page);
585                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
586                 mac_control->fifos[i].tx_curr_put_info.fifo_len =
587                     config->tx_cfg[i].fifo_len - 1;
588                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
589                 mac_control->fifos[i].tx_curr_get_info.fifo_len =
590                     config->tx_cfg[i].fifo_len - 1;
591                 mac_control->fifos[i].fifo_no = i;
592                 mac_control->fifos[i].nic = nic;
593                 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
594
595                 for (j = 0; j < page_num; j++) {
596                         int k = 0;
597                         dma_addr_t tmp_p;
598                         void *tmp_v;
599                         tmp_v = pci_alloc_consistent(nic->pdev,
600                                                      PAGE_SIZE, &tmp_p);
601                         if (!tmp_v) {
602                                 DBG_PRINT(INFO_DBG,
603                                           "pci_alloc_consistent ");
604                                 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
605                                 return -ENOMEM;
606                         }
607                         /* If we got a zero DMA address(can happen on
608                          * certain platforms like PPC), reallocate.
609                          * Store virtual address of page we don't want,
610                          * to be freed later.
611                          */
612                         if (!tmp_p) {
613                                 mac_control->zerodma_virt_addr = tmp_v;
614                                 DBG_PRINT(INIT_DBG,
615                                 "%s: Zero DMA address for TxDL. ", dev->name);
616                                 DBG_PRINT(INIT_DBG,
617                                 "Virtual address %p\n", tmp_v);
618                                 tmp_v = pci_alloc_consistent(nic->pdev,
619                                                      PAGE_SIZE, &tmp_p);
620                                 if (!tmp_v) {
621                                         DBG_PRINT(INFO_DBG,
622                                           "pci_alloc_consistent ");
623                                         DBG_PRINT(INFO_DBG, "failed for TxDL\n");
624                                         return -ENOMEM;
625                                 }
626                                 mem_allocated += PAGE_SIZE;
627                         }
628                         while (k < lst_per_page) {
629                                 int l = (j * lst_per_page) + k;
630                                 if (l == config->tx_cfg[i].fifo_len)
631                                         break;
632                                 mac_control->fifos[i].list_info[l].list_virt_addr =
633                                     tmp_v + (k * lst_size);
634                                 mac_control->fifos[i].list_info[l].list_phy_addr =
635                                     tmp_p + (k * lst_size);
636                                 k++;
637                         }
638                 }
639         }
640
641         nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
642         if (!nic->ufo_in_band_v)
643                 return -ENOMEM;
644          mem_allocated += (size * sizeof(u64));
645
646         /* Allocation and initialization of RXDs in Rings */
647         size = 0;
648         for (i = 0; i < config->rx_ring_num; i++) {
649                 if (config->rx_cfg[i].num_rxd %
650                     (rxd_count[nic->rxd_mode] + 1)) {
651                         DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
652                         DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
653                                   i);
654                         DBG_PRINT(ERR_DBG, "RxDs per Block");
655                         return FAILURE;
656                 }
657                 size += config->rx_cfg[i].num_rxd;
658                 mac_control->rings[i].block_count =
659                         config->rx_cfg[i].num_rxd /
660                         (rxd_count[nic->rxd_mode] + 1 );
661                 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
662                         mac_control->rings[i].block_count;
663         }
664         if (nic->rxd_mode == RXD_MODE_1)
665                 size = (size * (sizeof(struct RxD1)));
666         else
667                 size = (size * (sizeof(struct RxD3)));
668
669         for (i = 0; i < config->rx_ring_num; i++) {
670                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
671                 mac_control->rings[i].rx_curr_get_info.offset = 0;
672                 mac_control->rings[i].rx_curr_get_info.ring_len =
673                     config->rx_cfg[i].num_rxd - 1;
674                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
675                 mac_control->rings[i].rx_curr_put_info.offset = 0;
676                 mac_control->rings[i].rx_curr_put_info.ring_len =
677                     config->rx_cfg[i].num_rxd - 1;
678                 mac_control->rings[i].nic = nic;
679                 mac_control->rings[i].ring_no = i;
680
681                 blk_cnt = config->rx_cfg[i].num_rxd /
682                                 (rxd_count[nic->rxd_mode] + 1);
683                 /*  Allocating all the Rx blocks */
684                 for (j = 0; j < blk_cnt; j++) {
685                         struct rx_block_info *rx_blocks;
686                         int l;
687
688                         rx_blocks = &mac_control->rings[i].rx_blocks[j];
689                         size = SIZE_OF_BLOCK; //size is always page size
690                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
691                                                           &tmp_p_addr);
692                         if (tmp_v_addr == NULL) {
693                                 /*
694                                  * In case of failure, free_shared_mem()
695                                  * is called, which should free any
696                                  * memory that was alloced till the
697                                  * failure happened.
698                                  */
699                                 rx_blocks->block_virt_addr = tmp_v_addr;
700                                 return -ENOMEM;
701                         }
702                         mem_allocated += size;
703                         memset(tmp_v_addr, 0, size);
704                         rx_blocks->block_virt_addr = tmp_v_addr;
705                         rx_blocks->block_dma_addr = tmp_p_addr;
706                         rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
707                                                   rxd_count[nic->rxd_mode],
708                                                   GFP_KERNEL);
709                         if (!rx_blocks->rxds)
710                                 return -ENOMEM;
711                         mem_allocated +=
712                         (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
713                         for (l=0; l<rxd_count[nic->rxd_mode];l++) {
714                                 rx_blocks->rxds[l].virt_addr =
715                                         rx_blocks->block_virt_addr +
716                                         (rxd_size[nic->rxd_mode] * l);
717                                 rx_blocks->rxds[l].dma_addr =
718                                         rx_blocks->block_dma_addr +
719                                         (rxd_size[nic->rxd_mode] * l);
720                         }
721                 }
722                 /* Interlinking all Rx Blocks */
723                 for (j = 0; j < blk_cnt; j++) {
724                         tmp_v_addr =
725                                 mac_control->rings[i].rx_blocks[j].block_virt_addr;
726                         tmp_v_addr_next =
727                                 mac_control->rings[i].rx_blocks[(j + 1) %
728                                               blk_cnt].block_virt_addr;
729                         tmp_p_addr =
730                                 mac_control->rings[i].rx_blocks[j].block_dma_addr;
731                         tmp_p_addr_next =
732                                 mac_control->rings[i].rx_blocks[(j + 1) %
733                                               blk_cnt].block_dma_addr;
734
735                         pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
736                         pre_rxd_blk->reserved_2_pNext_RxD_block =
737                             (unsigned long) tmp_v_addr_next;
738                         pre_rxd_blk->pNext_RxD_Blk_physical =
739                             (u64) tmp_p_addr_next;
740                 }
741         }
742         if (nic->rxd_mode == RXD_MODE_3B) {
743                 /*
744                  * Allocation of Storages for buffer addresses in 2BUFF mode
745                  * and the buffers as well.
746                  */
747                 for (i = 0; i < config->rx_ring_num; i++) {
748                         blk_cnt = config->rx_cfg[i].num_rxd /
749                            (rxd_count[nic->rxd_mode]+ 1);
750                         mac_control->rings[i].ba =
751                                 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
752                                      GFP_KERNEL);
753                         if (!mac_control->rings[i].ba)
754                                 return -ENOMEM;
755                         mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
756                         for (j = 0; j < blk_cnt; j++) {
757                                 int k = 0;
758                                 mac_control->rings[i].ba[j] =
759                                         kmalloc((sizeof(struct buffAdd) *
760                                                 (rxd_count[nic->rxd_mode] + 1)),
761                                                 GFP_KERNEL);
762                                 if (!mac_control->rings[i].ba[j])
763                                         return -ENOMEM;
764                                 mem_allocated += (sizeof(struct buffAdd) *  \
765                                         (rxd_count[nic->rxd_mode] + 1));
766                                 while (k != rxd_count[nic->rxd_mode]) {
767                                         ba = &mac_control->rings[i].ba[j][k];
768
769                                         ba->ba_0_org = (void *) kmalloc
770                                             (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
771                                         if (!ba->ba_0_org)
772                                                 return -ENOMEM;
773                                         mem_allocated +=
774                                                 (BUF0_LEN + ALIGN_SIZE);
775                                         tmp = (unsigned long)ba->ba_0_org;
776                                         tmp += ALIGN_SIZE;
777                                         tmp &= ~((unsigned long) ALIGN_SIZE);
778                                         ba->ba_0 = (void *) tmp;
779
780                                         ba->ba_1_org = (void *) kmalloc
781                                             (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
782                                         if (!ba->ba_1_org)
783                                                 return -ENOMEM;
784                                         mem_allocated
785                                                 += (BUF1_LEN + ALIGN_SIZE);
786                                         tmp = (unsigned long) ba->ba_1_org;
787                                         tmp += ALIGN_SIZE;
788                                         tmp &= ~((unsigned long) ALIGN_SIZE);
789                                         ba->ba_1 = (void *) tmp;
790                                         k++;
791                                 }
792                         }
793                 }
794         }
795
796         /* Allocation and initialization of Statistics block */
797         size = sizeof(struct stat_block);
798         mac_control->stats_mem = pci_alloc_consistent
799             (nic->pdev, size, &mac_control->stats_mem_phy);
800
801         if (!mac_control->stats_mem) {
802                 /*
803                  * In case of failure, free_shared_mem() is called, which
804                  * should free any memory that was alloced till the
805                  * failure happened.
806                  */
807                 return -ENOMEM;
808         }
809         mem_allocated += size;
810         mac_control->stats_mem_sz = size;
811
812         tmp_v_addr = mac_control->stats_mem;
813         mac_control->stats_info = (struct stat_block *) tmp_v_addr;
814         memset(tmp_v_addr, 0, size);
815         DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
816                   (unsigned long long) tmp_p_addr);
817         mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
818         return SUCCESS;
819 }
820
821 /**
822  * free_shared_mem - Free the allocated Memory
823  * @nic:  Device private variable.
824  * Description: This function is to free all memory locations allocated by
825  * the init_shared_mem() function and return it to the kernel.
826  */
827
828 static void free_shared_mem(struct s2io_nic *nic)
829 {
830         int i, j, blk_cnt, size;
831         u32 ufo_size = 0;
832         void *tmp_v_addr;
833         dma_addr_t tmp_p_addr;
834         struct mac_info *mac_control;
835         struct config_param *config;
836         int lst_size, lst_per_page;
837         struct net_device *dev;
838         int page_num = 0;
839
840         if (!nic)
841                 return;
842
843         dev = nic->dev;
844
845         mac_control = &nic->mac_control;
846         config = &nic->config;
847
848         lst_size = (sizeof(struct TxD) * config->max_txds);
849         lst_per_page = PAGE_SIZE / lst_size;
850
851         for (i = 0; i < config->tx_fifo_num; i++) {
852                 ufo_size += config->tx_cfg[i].fifo_len;
853                 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
854                                                         lst_per_page);
855                 for (j = 0; j < page_num; j++) {
856                         int mem_blks = (j * lst_per_page);
857                         if (!mac_control->fifos[i].list_info)
858                                 return;
859                         if (!mac_control->fifos[i].list_info[mem_blks].
860                                  list_virt_addr)
861                                 break;
862                         pci_free_consistent(nic->pdev, PAGE_SIZE,
863                                             mac_control->fifos[i].
864                                             list_info[mem_blks].
865                                             list_virt_addr,
866                                             mac_control->fifos[i].
867                                             list_info[mem_blks].
868                                             list_phy_addr);
869                         nic->mac_control.stats_info->sw_stat.mem_freed
870                                                 += PAGE_SIZE;
871                 }
872                 /* If we got a zero DMA address during allocation,
873                  * free the page now
874                  */
875                 if (mac_control->zerodma_virt_addr) {
876                         pci_free_consistent(nic->pdev, PAGE_SIZE,
877                                             mac_control->zerodma_virt_addr,
878                                             (dma_addr_t)0);
879                         DBG_PRINT(INIT_DBG,
880                                 "%s: Freeing TxDL with zero DMA addr. ",
881                                 dev->name);
882                         DBG_PRINT(INIT_DBG, "Virtual address %p\n",
883                                 mac_control->zerodma_virt_addr);
884                         nic->mac_control.stats_info->sw_stat.mem_freed
885                                                 += PAGE_SIZE;
886                 }
887                 kfree(mac_control->fifos[i].list_info);
888                 nic->mac_control.stats_info->sw_stat.mem_freed +=
889                 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
890         }
891
892         size = SIZE_OF_BLOCK;
893         for (i = 0; i < config->rx_ring_num; i++) {
894                 blk_cnt = mac_control->rings[i].block_count;
895                 for (j = 0; j < blk_cnt; j++) {
896                         tmp_v_addr = mac_control->rings[i].rx_blocks[j].
897                                 block_virt_addr;
898                         tmp_p_addr = mac_control->rings[i].rx_blocks[j].
899                                 block_dma_addr;
900                         if (tmp_v_addr == NULL)
901                                 break;
902                         pci_free_consistent(nic->pdev, size,
903                                             tmp_v_addr, tmp_p_addr);
904                         nic->mac_control.stats_info->sw_stat.mem_freed += size;
905                         kfree(mac_control->rings[i].rx_blocks[j].rxds);
906                         nic->mac_control.stats_info->sw_stat.mem_freed +=
907                         ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
908                 }
909         }
910
911         if (nic->rxd_mode == RXD_MODE_3B) {
912                 /* Freeing buffer storage addresses in 2BUFF mode. */
913                 for (i = 0; i < config->rx_ring_num; i++) {
914                         blk_cnt = config->rx_cfg[i].num_rxd /
915                             (rxd_count[nic->rxd_mode] + 1);
916                         for (j = 0; j < blk_cnt; j++) {
917                                 int k = 0;
918                                 if (!mac_control->rings[i].ba[j])
919                                         continue;
920                                 while (k != rxd_count[nic->rxd_mode]) {
921                                         struct buffAdd *ba =
922                                                 &mac_control->rings[i].ba[j][k];
923                                         kfree(ba->ba_0_org);
924                                         nic->mac_control.stats_info->sw_stat.\
925                                         mem_freed += (BUF0_LEN + ALIGN_SIZE);
926                                         kfree(ba->ba_1_org);
927                                         nic->mac_control.stats_info->sw_stat.\
928                                         mem_freed += (BUF1_LEN + ALIGN_SIZE);
929                                         k++;
930                                 }
931                                 kfree(mac_control->rings[i].ba[j]);
932                                 nic->mac_control.stats_info->sw_stat.mem_freed +=
933                                         (sizeof(struct buffAdd) *
934                                         (rxd_count[nic->rxd_mode] + 1));
935                         }
936                         kfree(mac_control->rings[i].ba);
937                         nic->mac_control.stats_info->sw_stat.mem_freed +=
938                         (sizeof(struct buffAdd *) * blk_cnt);
939                 }
940         }
941
942         if (mac_control->stats_mem) {
943                 pci_free_consistent(nic->pdev,
944                                     mac_control->stats_mem_sz,
945                                     mac_control->stats_mem,
946                                     mac_control->stats_mem_phy);
947                 nic->mac_control.stats_info->sw_stat.mem_freed +=
948                         mac_control->stats_mem_sz;
949         }
950         if (nic->ufo_in_band_v) {
951                 kfree(nic->ufo_in_band_v);
952                 nic->mac_control.stats_info->sw_stat.mem_freed
953                         += (ufo_size * sizeof(u64));
954         }
955 }
956
957 /**
958  * s2io_verify_pci_mode -
959  */
960
961 static int s2io_verify_pci_mode(struct s2io_nic *nic)
962 {
963         struct XENA_dev_config __iomem *bar0 = nic->bar0;
964         register u64 val64 = 0;
965         int     mode;
966
967         val64 = readq(&bar0->pci_mode);
968         mode = (u8)GET_PCI_MODE(val64);
969
970         if ( val64 & PCI_MODE_UNKNOWN_MODE)
971                 return -1;      /* Unknown PCI mode */
972         return mode;
973 }
974
975 #define NEC_VENID   0x1033
976 #define NEC_DEVID   0x0125
977 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
978 {
979         struct pci_dev *tdev = NULL;
980         while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
981                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
982                         if (tdev->bus == s2io_pdev->bus->parent)
983                                 pci_dev_put(tdev);
984                                 return 1;
985                 }
986         }
987         return 0;
988 }
989
990 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
991 /**
992  * s2io_print_pci_mode -
993  */
994 static int s2io_print_pci_mode(struct s2io_nic *nic)
995 {
996         struct XENA_dev_config __iomem *bar0 = nic->bar0;
997         register u64 val64 = 0;
998         int     mode;
999         struct config_param *config = &nic->config;
1000
1001         val64 = readq(&bar0->pci_mode);
1002         mode = (u8)GET_PCI_MODE(val64);
1003
1004         if ( val64 & PCI_MODE_UNKNOWN_MODE)
1005                 return -1;      /* Unknown PCI mode */
1006
1007         config->bus_speed = bus_speed[mode];
1008
1009         if (s2io_on_nec_bridge(nic->pdev)) {
1010                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1011                                                         nic->dev->name);
1012                 return mode;
1013         }
1014
1015         if (val64 & PCI_MODE_32_BITS) {
1016                 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1017         } else {
1018                 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1019         }
1020
1021         switch(mode) {
1022                 case PCI_MODE_PCI_33:
1023                         DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1024                         break;
1025                 case PCI_MODE_PCI_66:
1026                         DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1027                         break;
1028                 case PCI_MODE_PCIX_M1_66:
1029                         DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1030                         break;
1031                 case PCI_MODE_PCIX_M1_100:
1032                         DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1033                         break;
1034                 case PCI_MODE_PCIX_M1_133:
1035                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1036                         break;
1037                 case PCI_MODE_PCIX_M2_66:
1038                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1039                         break;
1040                 case PCI_MODE_PCIX_M2_100:
1041                         DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1042                         break;
1043                 case PCI_MODE_PCIX_M2_133:
1044                         DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1045                         break;
1046                 default:
1047                         return -1;      /* Unsupported bus speed */
1048         }
1049
1050         return mode;
1051 }
1052
1053 /**
1054  *  init_nic - Initialization of hardware
1055  *  @nic: device peivate variable
1056  *  Description: The function sequentially configures every block
1057  *  of the H/W from their reset values.
1058  *  Return Value:  SUCCESS on success and
1059  *  '-1' on failure (endian settings incorrect).
1060  */
1061
1062 static int init_nic(struct s2io_nic *nic)
1063 {
1064         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1065         struct net_device *dev = nic->dev;
1066         register u64 val64 = 0;
1067         void __iomem *add;
1068         u32 time;
1069         int i, j;
1070         struct mac_info *mac_control;
1071         struct config_param *config;
1072         int dtx_cnt = 0;
1073         unsigned long long mem_share;
1074         int mem_size;
1075
1076         mac_control = &nic->mac_control;
1077         config = &nic->config;
1078
1079         /* to set the swapper controle on the card */
1080         if(s2io_set_swapper(nic)) {
1081                 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1082                 return -1;
1083         }
1084
1085         /*
1086          * Herc requires EOI to be removed from reset before XGXS, so..
1087          */
1088         if (nic->device_type & XFRAME_II_DEVICE) {
1089                 val64 = 0xA500000000ULL;
1090                 writeq(val64, &bar0->sw_reset);
1091                 msleep(500);
1092                 val64 = readq(&bar0->sw_reset);
1093         }
1094
1095         /* Remove XGXS from reset state */
1096         val64 = 0;
1097         writeq(val64, &bar0->sw_reset);
1098         msleep(500);
1099         val64 = readq(&bar0->sw_reset);
1100
1101         /*  Enable Receiving broadcasts */
1102         add = &bar0->mac_cfg;
1103         val64 = readq(&bar0->mac_cfg);
1104         val64 |= MAC_RMAC_BCAST_ENABLE;
1105         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1106         writel((u32) val64, add);
1107         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1108         writel((u32) (val64 >> 32), (add + 4));
1109
1110         /* Read registers in all blocks */
1111         val64 = readq(&bar0->mac_int_mask);
1112         val64 = readq(&bar0->mc_int_mask);
1113         val64 = readq(&bar0->xgxs_int_mask);
1114
1115         /*  Set MTU */
1116         val64 = dev->mtu;
1117         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1118
1119         if (nic->device_type & XFRAME_II_DEVICE) {
1120                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1121                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1122                                           &bar0->dtx_control, UF);
1123                         if (dtx_cnt & 0x1)
1124                                 msleep(1); /* Necessary!! */
1125                         dtx_cnt++;
1126                 }
1127         } else {
1128                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1129                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1130                                           &bar0->dtx_control, UF);
1131                         val64 = readq(&bar0->dtx_control);
1132                         dtx_cnt++;
1133                 }
1134         }
1135
1136         /*  Tx DMA Initialization */
1137         val64 = 0;
1138         writeq(val64, &bar0->tx_fifo_partition_0);
1139         writeq(val64, &bar0->tx_fifo_partition_1);
1140         writeq(val64, &bar0->tx_fifo_partition_2);
1141         writeq(val64, &bar0->tx_fifo_partition_3);
1142
1143
1144         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1145                 val64 |=
1146                     vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1147                          13) | vBIT(config->tx_cfg[i].fifo_priority,
1148                                     ((i * 32) + 5), 3);
1149
1150                 if (i == (config->tx_fifo_num - 1)) {
1151                         if (i % 2 == 0)
1152                                 i++;
1153                 }
1154
1155                 switch (i) {
1156                 case 1:
1157                         writeq(val64, &bar0->tx_fifo_partition_0);
1158                         val64 = 0;
1159                         break;
1160                 case 3:
1161                         writeq(val64, &bar0->tx_fifo_partition_1);
1162                         val64 = 0;
1163                         break;
1164                 case 5:
1165                         writeq(val64, &bar0->tx_fifo_partition_2);
1166                         val64 = 0;
1167                         break;
1168                 case 7:
1169                         writeq(val64, &bar0->tx_fifo_partition_3);
1170                         break;
1171                 }
1172         }
1173
1174         /*
1175          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1176          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1177          */
1178         if ((nic->device_type == XFRAME_I_DEVICE) &&
1179                 (nic->pdev->revision < 4))
1180                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1181
1182         val64 = readq(&bar0->tx_fifo_partition_0);
1183         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1184                   &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1185
1186         /*
1187          * Initialization of Tx_PA_CONFIG register to ignore packet
1188          * integrity checking.
1189          */
1190         val64 = readq(&bar0->tx_pa_cfg);
1191         val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1192             TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1193         writeq(val64, &bar0->tx_pa_cfg);
1194
1195         /* Rx DMA intialization. */
1196         val64 = 0;
1197         for (i = 0; i < config->rx_ring_num; i++) {
1198                 val64 |=
1199                     vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1200                          3);
1201         }
1202         writeq(val64, &bar0->rx_queue_priority);
1203
1204         /*
1205          * Allocating equal share of memory to all the
1206          * configured Rings.
1207          */
1208         val64 = 0;
1209         if (nic->device_type & XFRAME_II_DEVICE)
1210                 mem_size = 32;
1211         else
1212                 mem_size = 64;
1213
1214         for (i = 0; i < config->rx_ring_num; i++) {
1215                 switch (i) {
1216                 case 0:
1217                         mem_share = (mem_size / config->rx_ring_num +
1218                                      mem_size % config->rx_ring_num);
1219                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1220                         continue;
1221                 case 1:
1222                         mem_share = (mem_size / config->rx_ring_num);
1223                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1224                         continue;
1225                 case 2:
1226                         mem_share = (mem_size / config->rx_ring_num);
1227                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1228                         continue;
1229                 case 3:
1230                         mem_share = (mem_size / config->rx_ring_num);
1231                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1232                         continue;
1233                 case 4:
1234                         mem_share = (mem_size / config->rx_ring_num);
1235                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1236                         continue;
1237                 case 5:
1238                         mem_share = (mem_size / config->rx_ring_num);
1239                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1240                         continue;
1241                 case 6:
1242                         mem_share = (mem_size / config->rx_ring_num);
1243                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1244                         continue;
1245                 case 7:
1246                         mem_share = (mem_size / config->rx_ring_num);
1247                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1248                         continue;
1249                 }
1250         }
1251         writeq(val64, &bar0->rx_queue_cfg);
1252
1253         /*
1254          * Filling Tx round robin registers
1255          * as per the number of FIFOs
1256          */
1257         switch (config->tx_fifo_num) {
1258         case 1:
1259                 val64 = 0x0000000000000000ULL;
1260                 writeq(val64, &bar0->tx_w_round_robin_0);
1261                 writeq(val64, &bar0->tx_w_round_robin_1);
1262                 writeq(val64, &bar0->tx_w_round_robin_2);
1263                 writeq(val64, &bar0->tx_w_round_robin_3);
1264                 writeq(val64, &bar0->tx_w_round_robin_4);
1265                 break;
1266         case 2:
1267                 val64 = 0x0000010000010000ULL;
1268                 writeq(val64, &bar0->tx_w_round_robin_0);
1269                 val64 = 0x0100000100000100ULL;
1270                 writeq(val64, &bar0->tx_w_round_robin_1);
1271                 val64 = 0x0001000001000001ULL;
1272                 writeq(val64, &bar0->tx_w_round_robin_2);
1273                 val64 = 0x0000010000010000ULL;
1274                 writeq(val64, &bar0->tx_w_round_robin_3);
1275                 val64 = 0x0100000000000000ULL;
1276                 writeq(val64, &bar0->tx_w_round_robin_4);
1277                 break;
1278         case 3:
1279                 val64 = 0x0001000102000001ULL;
1280                 writeq(val64, &bar0->tx_w_round_robin_0);
1281                 val64 = 0x0001020000010001ULL;
1282                 writeq(val64, &bar0->tx_w_round_robin_1);
1283                 val64 = 0x0200000100010200ULL;
1284                 writeq(val64, &bar0->tx_w_round_robin_2);
1285                 val64 = 0x0001000102000001ULL;
1286                 writeq(val64, &bar0->tx_w_round_robin_3);
1287                 val64 = 0x0001020000000000ULL;
1288                 writeq(val64, &bar0->tx_w_round_robin_4);
1289                 break;
1290         case 4:
1291                 val64 = 0x0001020300010200ULL;
1292                 writeq(val64, &bar0->tx_w_round_robin_0);
1293                 val64 = 0x0100000102030001ULL;
1294                 writeq(val64, &bar0->tx_w_round_robin_1);
1295                 val64 = 0x0200010000010203ULL;
1296                 writeq(val64, &bar0->tx_w_round_robin_2);
1297                 val64 = 0x0001020001000001ULL;
1298                 writeq(val64, &bar0->tx_w_round_robin_3);
1299                 val64 = 0x0203000100000000ULL;
1300                 writeq(val64, &bar0->tx_w_round_robin_4);
1301                 break;
1302         case 5:
1303                 val64 = 0x0001000203000102ULL;
1304                 writeq(val64, &bar0->tx_w_round_robin_0);
1305                 val64 = 0x0001020001030004ULL;
1306                 writeq(val64, &bar0->tx_w_round_robin_1);
1307                 val64 = 0x0001000203000102ULL;
1308                 writeq(val64, &bar0->tx_w_round_robin_2);
1309                 val64 = 0x0001020001030004ULL;
1310                 writeq(val64, &bar0->tx_w_round_robin_3);
1311                 val64 = 0x0001000000000000ULL;
1312                 writeq(val64, &bar0->tx_w_round_robin_4);
1313                 break;
1314         case 6:
1315                 val64 = 0x0001020304000102ULL;
1316                 writeq(val64, &bar0->tx_w_round_robin_0);
1317                 val64 = 0x0304050001020001ULL;
1318                 writeq(val64, &bar0->tx_w_round_robin_1);
1319                 val64 = 0x0203000100000102ULL;
1320                 writeq(val64, &bar0->tx_w_round_robin_2);
1321                 val64 = 0x0304000102030405ULL;
1322                 writeq(val64, &bar0->tx_w_round_robin_3);
1323                 val64 = 0x0001000200000000ULL;
1324                 writeq(val64, &bar0->tx_w_round_robin_4);
1325                 break;
1326         case 7:
1327                 val64 = 0x0001020001020300ULL;
1328                 writeq(val64, &bar0->tx_w_round_robin_0);
1329                 val64 = 0x0102030400010203ULL;
1330                 writeq(val64, &bar0->tx_w_round_robin_1);
1331                 val64 = 0x0405060001020001ULL;
1332                 writeq(val64, &bar0->tx_w_round_robin_2);
1333                 val64 = 0x0304050000010200ULL;
1334                 writeq(val64, &bar0->tx_w_round_robin_3);
1335                 val64 = 0x0102030000000000ULL;
1336                 writeq(val64, &bar0->tx_w_round_robin_4);
1337                 break;
1338         case 8:
1339                 val64 = 0x0001020300040105ULL;
1340                 writeq(val64, &bar0->tx_w_round_robin_0);
1341                 val64 = 0x0200030106000204ULL;
1342                 writeq(val64, &bar0->tx_w_round_robin_1);
1343                 val64 = 0x0103000502010007ULL;
1344                 writeq(val64, &bar0->tx_w_round_robin_2);
1345                 val64 = 0x0304010002060500ULL;
1346                 writeq(val64, &bar0->tx_w_round_robin_3);
1347                 val64 = 0x0103020400000000ULL;
1348                 writeq(val64, &bar0->tx_w_round_robin_4);
1349                 break;
1350         }
1351
1352         /* Enable all configured Tx FIFO partitions */
1353         val64 = readq(&bar0->tx_fifo_partition_0);
1354         val64 |= (TX_FIFO_PARTITION_EN);
1355         writeq(val64, &bar0->tx_fifo_partition_0);
1356
1357         /* Filling the Rx round robin registers as per the
1358          * number of Rings and steering based on QoS.
1359          */
1360         switch (config->rx_ring_num) {
1361         case 1:
1362                 val64 = 0x8080808080808080ULL;
1363                 writeq(val64, &bar0->rts_qos_steering);
1364                 break;
1365         case 2:
1366                 val64 = 0x0000010000010000ULL;
1367                 writeq(val64, &bar0->rx_w_round_robin_0);
1368                 val64 = 0x0100000100000100ULL;
1369                 writeq(val64, &bar0->rx_w_round_robin_1);
1370                 val64 = 0x0001000001000001ULL;
1371                 writeq(val64, &bar0->rx_w_round_robin_2);
1372                 val64 = 0x0000010000010000ULL;
1373                 writeq(val64, &bar0->rx_w_round_robin_3);
1374                 val64 = 0x0100000000000000ULL;
1375                 writeq(val64, &bar0->rx_w_round_robin_4);
1376
1377                 val64 = 0x8080808040404040ULL;
1378                 writeq(val64, &bar0->rts_qos_steering);
1379                 break;
1380         case 3:
1381                 val64 = 0x0001000102000001ULL;
1382                 writeq(val64, &bar0->rx_w_round_robin_0);
1383                 val64 = 0x0001020000010001ULL;
1384                 writeq(val64, &bar0->rx_w_round_robin_1);
1385                 val64 = 0x0200000100010200ULL;
1386                 writeq(val64, &bar0->rx_w_round_robin_2);
1387                 val64 = 0x0001000102000001ULL;
1388                 writeq(val64, &bar0->rx_w_round_robin_3);
1389                 val64 = 0x0001020000000000ULL;
1390                 writeq(val64, &bar0->rx_w_round_robin_4);
1391
1392                 val64 = 0x8080804040402020ULL;
1393                 writeq(val64, &bar0->rts_qos_steering);
1394                 break;
1395         case 4:
1396                 val64 = 0x0001020300010200ULL;
1397                 writeq(val64, &bar0->rx_w_round_robin_0);
1398                 val64 = 0x0100000102030001ULL;
1399                 writeq(val64, &bar0->rx_w_round_robin_1);
1400                 val64 = 0x0200010000010203ULL;
1401                 writeq(val64, &bar0->rx_w_round_robin_2);
1402                 val64 = 0x0001020001000001ULL;
1403                 writeq(val64, &bar0->rx_w_round_robin_3);
1404                 val64 = 0x0203000100000000ULL;
1405                 writeq(val64, &bar0->rx_w_round_robin_4);
1406
1407                 val64 = 0x8080404020201010ULL;
1408                 writeq(val64, &bar0->rts_qos_steering);
1409                 break;
1410         case 5:
1411                 val64 = 0x0001000203000102ULL;
1412                 writeq(val64, &bar0->rx_w_round_robin_0);
1413                 val64 = 0x0001020001030004ULL;
1414                 writeq(val64, &bar0->rx_w_round_robin_1);
1415                 val64 = 0x0001000203000102ULL;
1416                 writeq(val64, &bar0->rx_w_round_robin_2);
1417                 val64 = 0x0001020001030004ULL;
1418                 writeq(val64, &bar0->rx_w_round_robin_3);
1419                 val64 = 0x0001000000000000ULL;
1420                 writeq(val64, &bar0->rx_w_round_robin_4);
1421
1422                 val64 = 0x8080404020201008ULL;
1423                 writeq(val64, &bar0->rts_qos_steering);
1424                 break;
1425         case 6:
1426                 val64 = 0x0001020304000102ULL;
1427                 writeq(val64, &bar0->rx_w_round_robin_0);
1428                 val64 = 0x0304050001020001ULL;
1429                 writeq(val64, &bar0->rx_w_round_robin_1);
1430                 val64 = 0x0203000100000102ULL;
1431                 writeq(val64, &bar0->rx_w_round_robin_2);
1432                 val64 = 0x0304000102030405ULL;
1433                 writeq(val64, &bar0->rx_w_round_robin_3);
1434                 val64 = 0x0001000200000000ULL;
1435                 writeq(val64, &bar0->rx_w_round_robin_4);
1436
1437                 val64 = 0x8080404020100804ULL;
1438                 writeq(val64, &bar0->rts_qos_steering);
1439                 break;
1440         case 7:
1441                 val64 = 0x0001020001020300ULL;
1442                 writeq(val64, &bar0->rx_w_round_robin_0);
1443                 val64 = 0x0102030400010203ULL;
1444                 writeq(val64, &bar0->rx_w_round_robin_1);
1445                 val64 = 0x0405060001020001ULL;
1446                 writeq(val64, &bar0->rx_w_round_robin_2);
1447                 val64 = 0x0304050000010200ULL;
1448                 writeq(val64, &bar0->rx_w_round_robin_3);
1449                 val64 = 0x0102030000000000ULL;
1450                 writeq(val64, &bar0->rx_w_round_robin_4);
1451
1452                 val64 = 0x8080402010080402ULL;
1453                 writeq(val64, &bar0->rts_qos_steering);
1454                 break;
1455         case 8:
1456                 val64 = 0x0001020300040105ULL;
1457                 writeq(val64, &bar0->rx_w_round_robin_0);
1458                 val64 = 0x0200030106000204ULL;
1459                 writeq(val64, &bar0->rx_w_round_robin_1);
1460                 val64 = 0x0103000502010007ULL;
1461                 writeq(val64, &bar0->rx_w_round_robin_2);
1462                 val64 = 0x0304010002060500ULL;
1463                 writeq(val64, &bar0->rx_w_round_robin_3);
1464                 val64 = 0x0103020400000000ULL;
1465                 writeq(val64, &bar0->rx_w_round_robin_4);
1466
1467                 val64 = 0x8040201008040201ULL;
1468                 writeq(val64, &bar0->rts_qos_steering);
1469                 break;
1470         }
1471
1472         /* UDP Fix */
1473         val64 = 0;
1474         for (i = 0; i < 8; i++)
1475                 writeq(val64, &bar0->rts_frm_len_n[i]);
1476
1477         /* Set the default rts frame length for the rings configured */
1478         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1479         for (i = 0 ; i < config->rx_ring_num ; i++)
1480                 writeq(val64, &bar0->rts_frm_len_n[i]);
1481
1482         /* Set the frame length for the configured rings
1483          * desired by the user
1484          */
1485         for (i = 0; i < config->rx_ring_num; i++) {
1486                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1487                  * specified frame length steering.
1488                  * If the user provides the frame length then program
1489                  * the rts_frm_len register for those values or else
1490                  * leave it as it is.
1491                  */
1492                 if (rts_frm_len[i] != 0) {
1493                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1494                                 &bar0->rts_frm_len_n[i]);
1495                 }
1496         }
1497
1498         /* Disable differentiated services steering logic */
1499         for (i = 0; i < 64; i++) {
1500                 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1501                         DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1502                                 dev->name);
1503                         DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1504                         return FAILURE;
1505                 }
1506         }
1507
1508         /* Program statistics memory */
1509         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1510
1511         if (nic->device_type == XFRAME_II_DEVICE) {
1512                 val64 = STAT_BC(0x320);
1513                 writeq(val64, &bar0->stat_byte_cnt);
1514         }
1515
1516         /*
1517          * Initializing the sampling rate for the device to calculate the
1518          * bandwidth utilization.
1519          */
1520         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1521             MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1522         writeq(val64, &bar0->mac_link_util);
1523
1524
1525         /*
1526          * Initializing the Transmit and Receive Traffic Interrupt
1527          * Scheme.
1528          */
1529         /*
1530          * TTI Initialization. Default Tx timer gets us about
1531          * 250 interrupts per sec. Continuous interrupts are enabled
1532          * by default.
1533          */
1534         if (nic->device_type == XFRAME_II_DEVICE) {
1535                 int count = (nic->config.bus_speed * 125)/2;
1536                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1537         } else {
1538
1539                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1540         }
1541         val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1542             TTI_DATA1_MEM_TX_URNG_B(0x10) |
1543             TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1544                 if (use_continuous_tx_intrs)
1545                         val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1546         writeq(val64, &bar0->tti_data1_mem);
1547
1548         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1549             TTI_DATA2_MEM_TX_UFC_B(0x20) |
1550             TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1551         writeq(val64, &bar0->tti_data2_mem);
1552
1553         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1554         writeq(val64, &bar0->tti_command_mem);
1555
1556         /*
1557          * Once the operation completes, the Strobe bit of the command
1558          * register will be reset. We poll for this particular condition
1559          * We wait for a maximum of 500ms for the operation to complete,
1560          * if it's not complete by then we return error.
1561          */
1562         time = 0;
1563         while (TRUE) {
1564                 val64 = readq(&bar0->tti_command_mem);
1565                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1566                         break;
1567                 }
1568                 if (time > 10) {
1569                         DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1570                                   dev->name);
1571                         return -1;
1572                 }
1573                 msleep(50);
1574                 time++;
1575         }
1576
1577         /* RTI Initialization */
1578         if (nic->device_type == XFRAME_II_DEVICE) {
1579                 /*
1580                  * Programmed to generate Apprx 500 Intrs per
1581                  * second
1582                  */
1583                 int count = (nic->config.bus_speed * 125)/4;
1584                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1585         } else
1586                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1587         val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1588                  RTI_DATA1_MEM_RX_URNG_B(0x10) |
1589                  RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1590
1591         writeq(val64, &bar0->rti_data1_mem);
1592
1593         val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1594                 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1595         if (nic->config.intr_type == MSI_X)
1596             val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1597                         RTI_DATA2_MEM_RX_UFC_D(0x40));
1598         else
1599             val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1600                         RTI_DATA2_MEM_RX_UFC_D(0x80));
1601         writeq(val64, &bar0->rti_data2_mem);
1602
1603         for (i = 0; i < config->rx_ring_num; i++) {
1604                 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1605                                 | RTI_CMD_MEM_OFFSET(i);
1606                 writeq(val64, &bar0->rti_command_mem);
1607
1608                 /*
1609                  * Once the operation completes, the Strobe bit of the
1610                  * command register will be reset. We poll for this
1611                  * particular condition. We wait for a maximum of 500ms
1612                  * for the operation to complete, if it's not complete
1613                  * by then we return error.
1614                  */
1615                 time = 0;
1616                 while (TRUE) {
1617                         val64 = readq(&bar0->rti_command_mem);
1618                         if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1619                                 break;
1620
1621                         if (time > 10) {
1622                                 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1623                                           dev->name);
1624                                 return -1;
1625                         }
1626                         time++;
1627                         msleep(50);
1628                 }
1629         }
1630
1631         /*
1632          * Initializing proper values as Pause threshold into all
1633          * the 8 Queues on Rx side.
1634          */
1635         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1636         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1637
1638         /* Disable RMAC PAD STRIPPING */
1639         add = &bar0->mac_cfg;
1640         val64 = readq(&bar0->mac_cfg);
1641         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1642         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1643         writel((u32) (val64), add);
1644         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1645         writel((u32) (val64 >> 32), (add + 4));
1646         val64 = readq(&bar0->mac_cfg);
1647
1648         /* Enable FCS stripping by adapter */
1649         add = &bar0->mac_cfg;
1650         val64 = readq(&bar0->mac_cfg);
1651         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1652         if (nic->device_type == XFRAME_II_DEVICE)
1653                 writeq(val64, &bar0->mac_cfg);
1654         else {
1655                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1656                 writel((u32) (val64), add);
1657                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1658                 writel((u32) (val64 >> 32), (add + 4));
1659         }
1660
1661         /*
1662          * Set the time value to be inserted in the pause frame
1663          * generated by xena.
1664          */
1665         val64 = readq(&bar0->rmac_pause_cfg);
1666         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1667         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1668         writeq(val64, &bar0->rmac_pause_cfg);
1669
1670         /*
1671          * Set the Threshold Limit for Generating the pause frame
1672          * If the amount of data in any Queue exceeds ratio of
1673          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1674          * pause frame is generated
1675          */
1676         val64 = 0;
1677         for (i = 0; i < 4; i++) {
1678                 val64 |=
1679                     (((u64) 0xFF00 | nic->mac_control.
1680                       mc_pause_threshold_q0q3)
1681                      << (i * 2 * 8));
1682         }
1683         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1684
1685         val64 = 0;
1686         for (i = 0; i < 4; i++) {
1687                 val64 |=
1688                     (((u64) 0xFF00 | nic->mac_control.
1689                       mc_pause_threshold_q4q7)
1690                      << (i * 2 * 8));
1691         }
1692         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1693
1694         /*
1695          * TxDMA will stop Read request if the number of read split has
1696          * exceeded the limit pointed by shared_splits
1697          */
1698         val64 = readq(&bar0->pic_control);
1699         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1700         writeq(val64, &bar0->pic_control);
1701
1702         if (nic->config.bus_speed == 266) {
1703                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1704                 writeq(0x0, &bar0->read_retry_delay);
1705                 writeq(0x0, &bar0->write_retry_delay);
1706         }
1707
1708         /*
1709          * Programming the Herc to split every write transaction
1710          * that does not start on an ADB to reduce disconnects.
1711          */
1712         if (nic->device_type == XFRAME_II_DEVICE) {
1713                 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1714                         MISC_LINK_STABILITY_PRD(3);
1715                 writeq(val64, &bar0->misc_control);
1716                 val64 = readq(&bar0->pic_control2);
1717                 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1718                 writeq(val64, &bar0->pic_control2);
1719         }
1720         if (strstr(nic->product_name, "CX4")) {
1721                 val64 = TMAC_AVG_IPG(0x17);
1722                 writeq(val64, &bar0->tmac_avg_ipg);
1723         }
1724
1725         return SUCCESS;
1726 }
1727 #define LINK_UP_DOWN_INTERRUPT          1
1728 #define MAC_RMAC_ERR_TIMER              2
1729
1730 static int s2io_link_fault_indication(struct s2io_nic *nic)
1731 {
1732         if (nic->config.intr_type != INTA)
1733                 return MAC_RMAC_ERR_TIMER;
1734         if (nic->device_type == XFRAME_II_DEVICE)
1735                 return LINK_UP_DOWN_INTERRUPT;
1736         else
1737                 return MAC_RMAC_ERR_TIMER;
1738 }
1739
1740 /**
1741  *  do_s2io_write_bits -  update alarm bits in alarm register
1742  *  @value: alarm bits
1743  *  @flag: interrupt status
1744  *  @addr: address value
1745  *  Description: update alarm bits in alarm register
1746  *  Return Value:
1747  *  NONE.
1748  */
1749 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1750 {
1751         u64 temp64;
1752
1753         temp64 = readq(addr);
1754
1755         if(flag == ENABLE_INTRS)
1756                 temp64 &= ~((u64) value);
1757         else
1758                 temp64 |= ((u64) value);
1759         writeq(temp64, addr);
1760 }
1761
1762 void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1763 {
1764         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1765         register u64 gen_int_mask = 0;
1766
1767         if (mask & TX_DMA_INTR) {
1768
1769                 gen_int_mask |= TXDMA_INT_M;
1770
1771                 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1772                                 TXDMA_PCC_INT | TXDMA_TTI_INT |
1773                                 TXDMA_LSO_INT | TXDMA_TPA_INT |
1774                                 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1775
1776                 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1777                                 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1778                                 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1779                                 &bar0->pfc_err_mask);
1780
1781                 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1782                                 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1783                                 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1784
1785                 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1786                                 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1787                                 PCC_N_SERR | PCC_6_COF_OV_ERR |
1788                                 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1789                                 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1790                                 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1791
1792                 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1793                                 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1794
1795                 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1796                                 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1797                                 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1798                                 flag, &bar0->lso_err_mask);
1799
1800                 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1801                                 flag, &bar0->tpa_err_mask);
1802
1803                 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1804
1805         }
1806
1807         if (mask & TX_MAC_INTR) {
1808                 gen_int_mask |= TXMAC_INT_M;
1809                 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1810                                 &bar0->mac_int_mask);
1811                 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1812                                 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1813                                 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1814                                 flag, &bar0->mac_tmac_err_mask);
1815         }
1816
1817         if (mask & TX_XGXS_INTR) {
1818                 gen_int_mask |= TXXGXS_INT_M;
1819                 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1820                                 &bar0->xgxs_int_mask);
1821                 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1822                                 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1823                                 flag, &bar0->xgxs_txgxs_err_mask);
1824         }
1825
1826         if (mask & RX_DMA_INTR) {
1827                 gen_int_mask |= RXDMA_INT_M;
1828                 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1829                                 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1830                                 flag, &bar0->rxdma_int_mask);
1831                 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1832                                 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1833                                 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1834                                 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1835                 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1836                                 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1837                                 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1838                                 &bar0->prc_pcix_err_mask);
1839                 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1840                                 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1841                                 &bar0->rpa_err_mask);
1842                 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1843                                 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1844                                 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1845                                 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
1846                                 flag, &bar0->rda_err_mask);
1847                 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1848                                 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1849                                 flag, &bar0->rti_err_mask);
1850         }
1851
1852         if (mask & RX_MAC_INTR) {
1853                 gen_int_mask |= RXMAC_INT_M;
1854                 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1855                                 &bar0->mac_int_mask);
1856                 do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1857                                 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1858                                 RMAC_DOUBLE_ECC_ERR |
1859                                 RMAC_LINK_STATE_CHANGE_INT,
1860                                 flag, &bar0->mac_rmac_err_mask);
1861         }
1862
1863         if (mask & RX_XGXS_INTR)
1864         {
1865                 gen_int_mask |= RXXGXS_INT_M;
1866                 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1867                                 &bar0->xgxs_int_mask);
1868                 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1869                                 &bar0->xgxs_rxgxs_err_mask);
1870         }
1871
1872         if (mask & MC_INTR) {
1873                 gen_int_mask |= MC_INT_M;
1874                 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
1875                 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1876                                 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1877                                 &bar0->mc_err_mask);
1878         }
1879         nic->general_int_mask = gen_int_mask;
1880
1881         /* Remove this line when alarm interrupts are enabled */
1882         nic->general_int_mask = 0;
1883 }
1884 /**
1885  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1886  *  @nic: device private variable,
1887  *  @mask: A mask indicating which Intr block must be modified and,
1888  *  @flag: A flag indicating whether to enable or disable the Intrs.
1889  *  Description: This function will either disable or enable the interrupts
1890  *  depending on the flag argument. The mask argument can be used to
1891  *  enable/disable any Intr block.
1892  *  Return Value: NONE.
1893  */
1894
1895 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1896 {
1897         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1898         register u64 temp64 = 0, intr_mask = 0;
1899
1900         intr_mask = nic->general_int_mask;
1901
1902         /*  Top level interrupt classification */
1903         /*  PIC Interrupts */
1904         if (mask & TX_PIC_INTR) {
1905                 /*  Enable PIC Intrs in the general intr mask register */
1906                 intr_mask |= TXPIC_INT_M;
1907                 if (flag == ENABLE_INTRS) {
1908                         /*
1909                          * If Hercules adapter enable GPIO otherwise
1910                          * disable all PCIX, Flash, MDIO, IIC and GPIO
1911                          * interrupts for now.
1912                          * TODO
1913                          */
1914                         if (s2io_link_fault_indication(nic) ==
1915                                         LINK_UP_DOWN_INTERRUPT ) {
1916                                 do_s2io_write_bits(PIC_INT_GPIO, flag,
1917                                                 &bar0->pic_int_mask);
1918                                 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
1919                                                 &bar0->gpio_int_mask);
1920                         } else
1921                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1922                 } else if (flag == DISABLE_INTRS) {
1923                         /*
1924                          * Disable PIC Intrs in the general
1925                          * intr mask register
1926                          */
1927                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1928                 }
1929         }
1930
1931         /*  Tx traffic interrupts */
1932         if (mask & TX_TRAFFIC_INTR) {
1933                 intr_mask |= TXTRAFFIC_INT_M;
1934                 if (flag == ENABLE_INTRS) {
1935                         /*
1936                          * Enable all the Tx side interrupts
1937                          * writing 0 Enables all 64 TX interrupt levels
1938                          */
1939                         writeq(0x0, &bar0->tx_traffic_mask);
1940                 } else if (flag == DISABLE_INTRS) {
1941                         /*
1942                          * Disable Tx Traffic Intrs in the general intr mask
1943                          * register.
1944                          */
1945                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1946                 }
1947         }
1948
1949         /*  Rx traffic interrupts */
1950         if (mask & RX_TRAFFIC_INTR) {
1951                 intr_mask |= RXTRAFFIC_INT_M;
1952                 if (flag == ENABLE_INTRS) {
1953                         /* writing 0 Enables all 8 RX interrupt levels */
1954                         writeq(0x0, &bar0->rx_traffic_mask);
1955                 } else if (flag == DISABLE_INTRS) {
1956                         /*
1957                          * Disable Rx Traffic Intrs in the general intr mask
1958                          * register.
1959                          */
1960                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1961                 }
1962         }
1963
1964         temp64 = readq(&bar0->general_int_mask);
1965         if (flag == ENABLE_INTRS)
1966                 temp64 &= ~((u64) intr_mask);
1967         else
1968                 temp64 = DISABLE_ALL_INTRS;
1969         writeq(temp64, &bar0->general_int_mask);
1970
1971         nic->general_int_mask = readq(&bar0->general_int_mask);
1972 }
1973
1974 /**
1975  *  verify_pcc_quiescent- Checks for PCC quiescent state
1976  *  Return: 1 If PCC is quiescence
1977  *          0 If PCC is not quiescence
1978  */
1979 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
1980 {
1981         int ret = 0, herc;
1982         struct XENA_dev_config __iomem *bar0 = sp->bar0;
1983         u64 val64 = readq(&bar0->adapter_status);
1984
1985         herc = (sp->device_type == XFRAME_II_DEVICE);
1986
1987         if (flag == FALSE) {
1988                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
1989                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
1990                                 ret = 1;
1991                 } else {
1992                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1993                                 ret = 1;
1994                 }
1995         } else {
1996                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
1997                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1998                              ADAPTER_STATUS_RMAC_PCC_IDLE))
1999                                 ret = 1;
2000                 } else {
2001                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2002                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2003                                 ret = 1;
2004                 }
2005         }
2006
2007         return ret;
2008 }
2009 /**
2010  *  verify_xena_quiescence - Checks whether the H/W is ready
2011  *  Description: Returns whether the H/W is ready to go or not. Depending
2012  *  on whether adapter enable bit was written or not the comparison
2013  *  differs and the calling function passes the input argument flag to
2014  *  indicate this.
2015  *  Return: 1 If xena is quiescence
2016  *          0 If Xena is not quiescence
2017  */
2018
2019 static int verify_xena_quiescence(struct s2io_nic *sp)
2020 {
2021         int  mode;
2022         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2023         u64 val64 = readq(&bar0->adapter_status);
2024         mode = s2io_verify_pci_mode(sp);
2025
2026         if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2027                 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2028                 return 0;
2029         }
2030         if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2031         DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2032                 return 0;
2033         }
2034         if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2035                 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2036                 return 0;
2037         }
2038         if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2039                 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2040                 return 0;
2041         }
2042         if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2043                 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2044                 return 0;
2045         }
2046         if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2047                 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2048                 return 0;
2049         }
2050         if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2051                 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2052                 return 0;
2053         }
2054         if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2055                 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2056                 return 0;
2057         }
2058
2059         /*
2060          * In PCI 33 mode, the P_PLL is not used, and therefore,
2061          * the the P_PLL_LOCK bit in the adapter_status register will
2062          * not be asserted.
2063          */
2064         if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2065                 sp->device_type == XFRAME_II_DEVICE && mode !=
2066                 PCI_MODE_PCI_33) {
2067                 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2068                 return 0;
2069         }
2070         if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2071                         ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2072                 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2073                 return 0;
2074         }
2075         return 1;
2076 }
2077
2078 /**
2079  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2080  * @sp: Pointer to device specifc structure
2081  * Description :
2082  * New procedure to clear mac address reading  problems on Alpha platforms
2083  *
2084  */
2085
2086 static void fix_mac_address(struct s2io_nic * sp)
2087 {
2088         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2089         u64 val64;
2090         int i = 0;
2091
2092         while (fix_mac[i] != END_SIGN) {
2093                 writeq(fix_mac[i++], &bar0->gpio_control);
2094                 udelay(10);
2095                 val64 = readq(&bar0->gpio_control);
2096         }
2097 }
2098
2099 /**
2100  *  start_nic - Turns the device on
2101  *  @nic : device private variable.
2102  *  Description:
2103  *  This function actually turns the device on. Before this  function is
2104  *  called,all Registers are configured from their reset states
2105  *  and shared memory is allocated but the NIC is still quiescent. On
2106  *  calling this function, the device interrupts are cleared and the NIC is
2107  *  literally switched on by writing into the adapter control register.
2108  *  Return Value:
2109  *  SUCCESS on success and -1 on failure.
2110  */
2111
2112 static int start_nic(struct s2io_nic *nic)
2113 {
2114         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2115         struct net_device *dev = nic->dev;
2116         register u64 val64 = 0;
2117         u16 subid, i;
2118         struct mac_info *mac_control;
2119         struct config_param *config;
2120
2121         mac_control = &nic->mac_control;
2122         config = &nic->config;
2123
2124         /*  PRC Initialization and configuration */
2125         for (i = 0; i < config->rx_ring_num; i++) {
2126                 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2127                        &bar0->prc_rxd0_n[i]);
2128
2129                 val64 = readq(&bar0->prc_ctrl_n[i]);
2130                 if (nic->rxd_mode == RXD_MODE_1)
2131                         val64 |= PRC_CTRL_RC_ENABLED;
2132                 else
2133                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2134                 if (nic->device_type == XFRAME_II_DEVICE)
2135                         val64 |= PRC_CTRL_GROUP_READS;
2136                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2137                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2138                 writeq(val64, &bar0->prc_ctrl_n[i]);
2139         }
2140
2141         if (nic->rxd_mode == RXD_MODE_3B) {
2142                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2143                 val64 = readq(&bar0->rx_pa_cfg);
2144                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2145                 writeq(val64, &bar0->rx_pa_cfg);
2146         }
2147
2148         if (vlan_tag_strip == 0) {
2149                 val64 = readq(&bar0->rx_pa_cfg);
2150                 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2151                 writeq(val64, &bar0->rx_pa_cfg);
2152                 vlan_strip_flag = 0;
2153         }
2154
2155         /*
2156          * Enabling MC-RLDRAM. After enabling the device, we timeout
2157          * for around 100ms, which is approximately the time required
2158          * for the device to be ready for operation.
2159          */
2160         val64 = readq(&bar0->mc_rldram_mrs);
2161         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2162         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2163         val64 = readq(&bar0->mc_rldram_mrs);
2164
2165         msleep(100);    /* Delay by around 100 ms. */
2166
2167         /* Enabling ECC Protection. */
2168         val64 = readq(&bar0->adapter_control);
2169         val64 &= ~ADAPTER_ECC_EN;
2170         writeq(val64, &bar0->adapter_control);
2171
2172         /*
2173          * Verify if the device is ready to be enabled, if so enable
2174          * it.
2175          */
2176         val64 = readq(&bar0->adapter_status);
2177         if (!verify_xena_quiescence(nic)) {
2178                 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2179                 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2180                           (unsigned long long) val64);
2181                 return FAILURE;
2182         }
2183
2184         /*
2185          * With some switches, link might be already up at this point.
2186          * Because of this weird behavior, when we enable laser,
2187          * we may not get link. We need to handle this. We cannot
2188          * figure out which switch is misbehaving. So we are forced to
2189          * make a global change.
2190          */
2191
2192         /* Enabling Laser. */
2193         val64 = readq(&bar0->adapter_control);
2194         val64 |= ADAPTER_EOI_TX_ON;
2195         writeq(val64, &bar0->adapter_control);
2196
2197         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2198                 /*
2199                  * Dont see link state interrupts initally on some switches,
2200                  * so directly scheduling the link state task here.
2201                  */
2202                 schedule_work(&nic->set_link_task);
2203         }
2204         /* SXE-002: Initialize link and activity LED */
2205         subid = nic->pdev->subsystem_device;
2206         if (((subid & 0xFF) >= 0x07) &&
2207             (nic->device_type == XFRAME_I_DEVICE)) {
2208                 val64 = readq(&bar0->gpio_control);
2209                 val64 |= 0x0000800000000000ULL;
2210                 writeq(val64, &bar0->gpio_control);
2211                 val64 = 0x0411040400000000ULL;
2212                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2213         }
2214
2215         return SUCCESS;
2216 }
2217 /**
2218  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2219  */
2220 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2221                                         TxD *txdlp, int get_off)
2222 {
2223         struct s2io_nic *nic = fifo_data->nic;
2224         struct sk_buff *skb;
2225         struct TxD *txds;
2226         u16 j, frg_cnt;
2227
2228         txds = txdlp;
2229         if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2230                 pci_unmap_single(nic->pdev, (dma_addr_t)
2231                         txds->Buffer_Pointer, sizeof(u64),
2232                         PCI_DMA_TODEVICE);
2233                 txds++;
2234         }
2235
2236         skb = (struct sk_buff *) ((unsigned long)
2237                         txds->Host_Control);
2238         if (!skb) {
2239                 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2240                 return NULL;
2241         }
2242         pci_unmap_single(nic->pdev, (dma_addr_t)
2243                          txds->Buffer_Pointer,
2244                          skb->len - skb->data_len,
2245                          PCI_DMA_TODEVICE);
2246         frg_cnt = skb_shinfo(skb)->nr_frags;
2247         if (frg_cnt) {
2248                 txds++;
2249                 for (j = 0; j < frg_cnt; j++, txds++) {
2250                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2251                         if (!txds->Buffer_Pointer)
2252                                 break;
2253                         pci_unmap_page(nic->pdev, (dma_addr_t)
2254                                         txds->Buffer_Pointer,
2255                                        frag->size, PCI_DMA_TODEVICE);
2256                 }
2257         }
2258         memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2259         return(skb);
2260 }
2261
2262 /**
2263  *  free_tx_buffers - Free all queued Tx buffers
2264  *  @nic : device private variable.
2265  *  Description:
2266  *  Free all queued Tx buffers.
2267  *  Return Value: void
2268 */
2269
2270 static void free_tx_buffers(struct s2io_nic *nic)
2271 {
2272         struct net_device *dev = nic->dev;
2273         struct sk_buff *skb;
2274         struct TxD *txdp;
2275         int i, j;
2276         struct mac_info *mac_control;
2277         struct config_param *config;
2278         int cnt = 0;
2279
2280         mac_control = &nic->mac_control;
2281         config = &nic->config;
2282
2283         for (i = 0; i < config->tx_fifo_num; i++) {
2284                 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2285                         txdp = (struct TxD *) \
2286                         mac_control->fifos[i].list_info[j].list_virt_addr;
2287                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2288                         if (skb) {
2289                                 nic->mac_control.stats_info->sw_stat.mem_freed
2290                                         += skb->truesize;
2291                                 dev_kfree_skb(skb);
2292                                 cnt++;
2293                         }
2294                 }
2295                 DBG_PRINT(INTR_DBG,
2296                           "%s:forcibly freeing %d skbs on FIFO%d\n",
2297                           dev->name, cnt, i);
2298                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2299                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2300         }
2301 }
2302
2303 /**
2304  *   stop_nic -  To stop the nic
2305  *   @nic ; device private variable.
2306  *   Description:
2307  *   This function does exactly the opposite of what the start_nic()
2308  *   function does. This function is called to stop the device.
2309  *   Return Value:
2310  *   void.
2311  */
2312
2313 static void stop_nic(struct s2io_nic *nic)
2314 {
2315         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2316         register u64 val64 = 0;
2317         u16 interruptible;
2318         struct mac_info *mac_control;
2319         struct config_param *config;
2320
2321         mac_control = &nic->mac_control;
2322         config = &nic->config;
2323
2324         /*  Disable all interrupts */
2325         en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2326         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2327         interruptible |= TX_PIC_INTR;
2328         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2329
2330         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2331         val64 = readq(&bar0->adapter_control);
2332         val64 &= ~(ADAPTER_CNTL_EN);
2333         writeq(val64, &bar0->adapter_control);
2334 }
2335
2336 /**
2337  *  fill_rx_buffers - Allocates the Rx side skbs
2338  *  @nic:  device private variable
2339  *  @ring_no: ring number
2340  *  Description:
2341  *  The function allocates Rx side skbs and puts the physical
2342  *  address of these buffers into the RxD buffer pointers, so that the NIC
2343  *  can DMA the received frame into these locations.
2344  *  The NIC supports 3 receive modes, viz
2345  *  1. single buffer,
2346  *  2. three buffer and
2347  *  3. Five buffer modes.
2348  *  Each mode defines how many fragments the received frame will be split
2349  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2350  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2351  *  is split into 3 fragments. As of now only single buffer mode is
2352  *  supported.
2353  *   Return Value:
2354  *  SUCCESS on success or an appropriate -ve value on failure.
2355  */
2356
2357 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2358 {
2359         struct net_device *dev = nic->dev;
2360         struct sk_buff *skb;
2361         struct RxD_t *rxdp;
2362         int off, off1, size, block_no, block_no1;
2363         u32 alloc_tab = 0;
2364         u32 alloc_cnt;
2365         struct mac_info *mac_control;
2366         struct config_param *config;
2367         u64 tmp;
2368         struct buffAdd *ba;
2369         unsigned long flags;
2370         struct RxD_t *first_rxdp = NULL;
2371         u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2372         struct RxD1 *rxdp1;
2373         struct RxD3 *rxdp3;
2374         struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
2375
2376         mac_control = &nic->mac_control;
2377         config = &nic->config;
2378         alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2379             atomic_read(&nic->rx_bufs_left[ring_no]);
2380
2381         block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2382         off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2383         while (alloc_tab < alloc_cnt) {
2384                 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2385                     block_index;
2386                 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2387
2388                 rxdp = mac_control->rings[ring_no].
2389                                 rx_blocks[block_no].rxds[off].virt_addr;
2390
2391                 if ((block_no == block_no1) && (off == off1) &&
2392                                         (rxdp->Host_Control)) {
2393                         DBG_PRINT(INTR_DBG, "%s: Get and Put",
2394                                   dev->name);
2395                         DBG_PRINT(INTR_DBG, " info equated\n");
2396                         goto end;
2397                 }
2398                 if (off && (off == rxd_count[nic->rxd_mode])) {
2399                         mac_control->rings[ring_no].rx_curr_put_info.
2400                             block_index++;
2401                         if (mac_control->rings[ring_no].rx_curr_put_info.
2402                             block_index == mac_control->rings[ring_no].
2403                                         block_count)
2404                                 mac_control->rings[ring_no].rx_curr_put_info.
2405                                         block_index = 0;
2406                         block_no = mac_control->rings[ring_no].
2407                                         rx_curr_put_info.block_index;
2408                         if (off == rxd_count[nic->rxd_mode])
2409                                 off = 0;
2410                         mac_control->rings[ring_no].rx_curr_put_info.
2411                                 offset = off;
2412                         rxdp = mac_control->rings[ring_no].
2413                                 rx_blocks[block_no].block_virt_addr;
2414                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2415                                   dev->name, rxdp);
2416                 }
2417                 if(!napi) {
2418                         spin_lock_irqsave(&nic->put_lock, flags);
2419                         mac_control->rings[ring_no].put_pos =
2420                         (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2421                         spin_unlock_irqrestore(&nic->put_lock, flags);
2422                 } else {
2423                         mac_control->rings[ring_no].put_pos =
2424                         (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2425                 }
2426                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2427                         ((nic->rxd_mode == RXD_MODE_3B) &&
2428                                 (rxdp->Control_2 & BIT(0)))) {
2429                         mac_control->rings[ring_no].rx_curr_put_info.
2430                                         offset = off;
2431                         goto end;
2432                 }
2433                 /* calculate size of skb based on ring mode */
2434                 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2435                                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2436                 if (nic->rxd_mode == RXD_MODE_1)
2437                         size += NET_IP_ALIGN;
2438                 else
2439                         size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2440
2441                 /* allocate skb */
2442                 skb = dev_alloc_skb(size);
2443                 if(!skb) {
2444                         DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2445                         DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2446                         if (first_rxdp) {
2447                                 wmb();
2448                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2449                         }
2450                         nic->mac_control.stats_info->sw_stat. \
2451                                 mem_alloc_fail_cnt++;
2452                         return -ENOMEM ;
2453                 }
2454                 nic->mac_control.stats_info->sw_stat.mem_allocated
2455                         += skb->truesize;
2456                 if (nic->rxd_mode == RXD_MODE_1) {
2457                         /* 1 buffer mode - normal operation mode */
2458                         rxdp1 = (struct RxD1*)rxdp;
2459                         memset(rxdp, 0, sizeof(struct RxD1));
2460                         skb_reserve(skb, NET_IP_ALIGN);
2461                         rxdp1->Buffer0_ptr = pci_map_single
2462                             (nic->pdev, skb->data, size - NET_IP_ALIGN,
2463                                 PCI_DMA_FROMDEVICE);
2464                         if( (rxdp1->Buffer0_ptr == 0) ||
2465                                 (rxdp1->Buffer0_ptr ==
2466                                 DMA_ERROR_CODE))
2467                                 goto pci_map_failed;
2468
2469                         rxdp->Control_2 =
2470                                 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2471
2472                 } else if (nic->rxd_mode == RXD_MODE_3B) {
2473                         /*
2474                          * 2 buffer mode -
2475                          * 2 buffer mode provides 128
2476                          * byte aligned receive buffers.
2477                          */
2478
2479                         rxdp3 = (struct RxD3*)rxdp;
2480                         /* save buffer pointers to avoid frequent dma mapping */
2481                         Buffer0_ptr = rxdp3->Buffer0_ptr;
2482                         Buffer1_ptr = rxdp3->Buffer1_ptr;
2483                         memset(rxdp, 0, sizeof(struct RxD3));
2484                         /* restore the buffer pointers for dma sync*/
2485                         rxdp3->Buffer0_ptr = Buffer0_ptr;
2486                         rxdp3->Buffer1_ptr = Buffer1_ptr;
2487
2488                         ba = &mac_control->rings[ring_no].ba[block_no][off];
2489                         skb_reserve(skb, BUF0_LEN);
2490                         tmp = (u64)(unsigned long) skb->data;
2491                         tmp += ALIGN_SIZE;
2492                         tmp &= ~ALIGN_SIZE;
2493                         skb->data = (void *) (unsigned long)tmp;
2494                         skb_reset_tail_pointer(skb);
2495
2496                         if (!(rxdp3->Buffer0_ptr))
2497                                 rxdp3->Buffer0_ptr =
2498                                    pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2499                                            PCI_DMA_FROMDEVICE);
2500                         else
2501                                 pci_dma_sync_single_for_device(nic->pdev,
2502                                 (dma_addr_t) rxdp3->Buffer0_ptr,
2503                                     BUF0_LEN, PCI_DMA_FROMDEVICE);
2504                         if( (rxdp3->Buffer0_ptr == 0) ||
2505                                 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
2506                                 goto pci_map_failed;
2507
2508                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2509                         if (nic->rxd_mode == RXD_MODE_3B) {
2510                                 /* Two buffer mode */
2511
2512                                 /*
2513                                  * Buffer2 will have L3/L4 header plus
2514                                  * L4 payload
2515                                  */
2516                                 rxdp3->Buffer2_ptr = pci_map_single
2517                                 (nic->pdev, skb->data, dev->mtu + 4,
2518                                                 PCI_DMA_FROMDEVICE);
2519
2520                                 if( (rxdp3->Buffer2_ptr == 0) ||
2521                                         (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
2522                                         goto pci_map_failed;
2523
2524                                 rxdp3->Buffer1_ptr =
2525                                                 pci_map_single(nic->pdev,
2526                                                 ba->ba_1, BUF1_LEN,
2527                                                 PCI_DMA_FROMDEVICE);
2528                                 if( (rxdp3->Buffer1_ptr == 0) ||
2529                                         (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
2530                                         pci_unmap_single
2531                                                 (nic->pdev,
2532                                                 (dma_addr_t)rxdp3->Buffer2_ptr,
2533                                                 dev->mtu + 4,
2534                                                 PCI_DMA_FROMDEVICE);
2535                                         goto pci_map_failed;
2536                                 }
2537                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2538                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2539                                                                 (dev->mtu + 4);
2540                         }
2541                         rxdp->Control_2 |= BIT(0);
2542                 }
2543                 rxdp->Host_Control = (unsigned long) (skb);
2544                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2545                         rxdp->Control_1 |= RXD_OWN_XENA;
2546                 off++;
2547                 if (off == (rxd_count[nic->rxd_mode] + 1))
2548                         off = 0;
2549                 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2550
2551                 rxdp->Control_2 |= SET_RXD_MARKER;
2552                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2553                         if (first_rxdp) {
2554                                 wmb();
2555                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2556                         }
2557                         first_rxdp = rxdp;
2558                 }
2559                 atomic_inc(&nic->rx_bufs_left[ring_no]);
2560                 alloc_tab++;
2561         }
2562
2563       end:
2564         /* Transfer ownership of first descriptor to adapter just before
2565          * exiting. Before that, use memory barrier so that ownership
2566          * and other fields are seen by adapter correctly.
2567          */
2568         if (first_rxdp) {
2569                 wmb();
2570                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2571         }
2572
2573         return SUCCESS;
2574 pci_map_failed:
2575         stats->pci_map_fail_cnt++;
2576         stats->mem_freed += skb->truesize;
2577         dev_kfree_skb_irq(skb);
2578         return -ENOMEM;
2579 }
2580
2581 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2582 {
2583         struct net_device *dev = sp->dev;
2584         int j;
2585         struct sk_buff *skb;
2586         struct RxD_t *rxdp;
2587         struct mac_info *mac_control;
2588         struct buffAdd *ba;
2589         struct RxD1 *rxdp1;
2590         struct RxD3 *rxdp3;
2591
2592         mac_control = &sp->mac_control;
2593         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2594                 rxdp = mac_control->rings[ring_no].
2595                                 rx_blocks[blk].rxds[j].virt_addr;
2596                 skb = (struct sk_buff *)
2597                         ((unsigned long) rxdp->Host_Control);
2598                 if (!skb) {
2599                         continue;
2600                 }
2601                 if (sp->rxd_mode == RXD_MODE_1) {
2602                         rxdp1 = (struct RxD1*)rxdp;
2603                         pci_unmap_single(sp->pdev, (dma_addr_t)
2604                                 rxdp1->Buffer0_ptr,
2605                                 dev->mtu +
2606                                 HEADER_ETHERNET_II_802_3_SIZE
2607                                 + HEADER_802_2_SIZE +
2608                                 HEADER_SNAP_SIZE,
2609                                 PCI_DMA_FROMDEVICE);
2610                         memset(rxdp, 0, sizeof(struct RxD1));
2611                 } else if(sp->rxd_mode == RXD_MODE_3B) {
2612                         rxdp3 = (struct RxD3*)rxdp;
2613                         ba = &mac_control->rings[ring_no].
2614                                 ba[blk][j];
2615                         pci_unmap_single(sp->pdev, (dma_addr_t)
2616                                 rxdp3->Buffer0_ptr,
2617                                 BUF0_LEN,
2618                                 PCI_DMA_FROMDEVICE);
2619                         pci_unmap_single(sp->pdev, (dma_addr_t)
2620                                 rxdp3->Buffer1_ptr,
2621                                 BUF1_LEN,
2622                                 PCI_DMA_FROMDEVICE);
2623                         pci_unmap_single(sp->pdev, (dma_addr_t)
2624                                 rxdp3->Buffer2_ptr,
2625                                 dev->mtu + 4,
2626                                 PCI_DMA_FROMDEVICE);
2627                         memset(rxdp, 0, sizeof(struct RxD3));
2628                 }
2629                 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2630                 dev_kfree_skb(skb);
2631                 atomic_dec(&sp->rx_bufs_left[ring_no]);
2632         }
2633 }
2634
2635 /**
2636  *  free_rx_buffers - Frees all Rx buffers
2637  *  @sp: device private variable.
2638  *  Description:
2639  *  This function will free all Rx buffers allocated by host.
2640  *  Return Value:
2641  *  NONE.
2642  */
2643
2644 static void free_rx_buffers(struct s2io_nic *sp)
2645 {
2646         struct net_device *dev = sp->dev;
2647         int i, blk = 0, buf_cnt = 0;
2648         struct mac_info *mac_control;
2649         struct config_param *config;
2650
2651         mac_control = &sp->mac_control;
2652         config = &sp->config;
2653
2654         for (i = 0; i < config->rx_ring_num; i++) {
2655                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2656                         free_rxd_blk(sp,i,blk);
2657
2658                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2659                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2660                 mac_control->rings[i].rx_curr_put_info.offset = 0;
2661                 mac_control->rings[i].rx_curr_get_info.offset = 0;
2662                 atomic_set(&sp->rx_bufs_left[i], 0);
2663                 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2664                           dev->name, buf_cnt, i);
2665         }
2666 }
2667
2668 /**
2669  * s2io_poll - Rx interrupt handler for NAPI support
2670  * @napi : pointer to the napi structure.
2671  * @budget : The number of packets that were budgeted to be processed
2672  * during  one pass through the 'Poll" function.
2673  * Description:
2674  * Comes into picture only if NAPI support has been incorporated. It does
2675  * the same thing that rx_intr_handler does, but not in a interrupt context
2676  * also It will process only a given number of packets.
2677  * Return value:
2678  * 0 on success and 1 if there are No Rx packets to be processed.
2679  */
2680
2681 static int s2io_poll(struct napi_struct *napi, int budget)
2682 {
2683         struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2684         struct net_device *dev = nic->dev;
2685         int pkt_cnt = 0, org_pkts_to_process;
2686         struct mac_info *mac_control;
2687         struct config_param *config;
2688         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2689         int i;
2690
2691         if (!is_s2io_card_up(nic))
2692                 return 0;
2693
2694         mac_control = &nic->mac_control;
2695         config = &nic->config;
2696
2697         nic->pkts_to_process = budget;
2698         org_pkts_to_process = nic->pkts_to_process;
2699
2700         writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2701         readl(&bar0->rx_traffic_int);
2702
2703         for (i = 0; i < config->rx_ring_num; i++) {
2704                 rx_intr_handler(&mac_control->rings[i]);
2705                 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2706                 if (!nic->pkts_to_process) {
2707                         /* Quota for the current iteration has been met */
2708                         goto no_rx;
2709                 }
2710         }
2711
2712         netif_rx_complete(dev, napi);
2713
2714         for (i = 0; i < config->rx_ring_num; i++) {
2715                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2716                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2717                         DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2718                         break;
2719                 }
2720         }
2721         /* Re enable the Rx interrupts. */
2722         writeq(0x0, &bar0->rx_traffic_mask);
2723         readl(&bar0->rx_traffic_mask);
2724         return pkt_cnt;
2725
2726 no_rx:
2727         for (i = 0; i < config->rx_ring_num; i++) {
2728                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2729                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2730                         DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2731                         break;
2732                 }
2733         }
2734         return pkt_cnt;
2735 }
2736
2737 #ifdef CONFIG_NET_POLL_CONTROLLER
2738 /**
2739  * s2io_netpoll - netpoll event handler entry point
2740  * @dev : pointer to the device structure.
2741  * Description:
2742  *      This function will be called by upper layer to check for events on the
2743  * interface in situations where interrupts are disabled. It is used for
2744  * specific in-kernel networking tasks, such as remote consoles and kernel
2745  * debugging over the network (example netdump in RedHat).
2746  */
2747 static void s2io_netpoll(struct net_device *dev)
2748 {
2749         struct s2io_nic *nic = dev->priv;
2750         struct mac_info *mac_control;
2751         struct config_param *config;
2752         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2753         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2754         int i;
2755
2756         if (pci_channel_offline(nic->pdev))
2757                 return;
2758
2759         disable_irq(dev->irq);
2760
2761         mac_control = &nic->mac_control;
2762         config = &nic->config;
2763
2764         writeq(val64, &bar0->rx_traffic_int);
2765         writeq(val64, &bar0->tx_traffic_int);
2766
2767         /* we need to free up the transmitted skbufs or else netpoll will
2768          * run out of skbs and will fail and eventually netpoll application such
2769          * as netdump will fail.
2770          */
2771         for (i = 0; i < config->tx_fifo_num; i++)
2772                 tx_intr_handler(&mac_control->fifos[i]);
2773
2774         /* check for received packet and indicate up to network */
2775         for (i = 0; i < config->rx_ring_num; i++)
2776                 rx_intr_handler(&mac_control->rings[i]);
2777
2778         for (i = 0; i < config->rx_ring_num; i++) {
2779                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2780                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2781                         DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2782                         break;
2783                 }
2784         }
2785         enable_irq(dev->irq);
2786         return;
2787 }
2788 #endif
2789
2790 /**
2791  *  rx_intr_handler - Rx interrupt handler
2792  *  @nic: device private variable.
2793  *  Description:
2794  *  If the interrupt is because of a received frame or if the
2795  *  receive ring contains fresh as yet un-processed frames,this function is
2796  *  called. It picks out the RxD at which place the last Rx processing had
2797  *  stopped and sends the skb to the OSM's Rx handler and then increments
2798  *  the offset.
2799  *  Return Value:
2800  *  NONE.
2801  */
2802 static void rx_intr_handler(struct ring_info *ring_data)
2803 {
2804         struct s2io_nic *nic = ring_data->nic;
2805         struct net_device *dev = (struct net_device *) nic->dev;
2806         int get_block, put_block, put_offset;
2807         struct rx_curr_get_info get_info, put_info;
2808         struct RxD_t *rxdp;
2809         struct sk_buff *skb;
2810         int pkt_cnt = 0;
2811         int i;
2812         struct RxD1* rxdp1;
2813         struct RxD3* rxdp3;
2814
2815         spin_lock(&nic->rx_lock);
2816
2817         get_info = ring_data->rx_curr_get_info;
2818         get_block = get_info.block_index;
2819         memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2820         put_block = put_info.block_index;
2821         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2822         if (!napi) {
2823                 spin_lock(&nic->put_lock);
2824                 put_offset = ring_data->put_pos;
2825                 spin_unlock(&nic->put_lock);
2826         } else
2827                 put_offset = ring_data->put_pos;
2828
2829         while (RXD_IS_UP2DT(rxdp)) {
2830                 /*
2831                  * If your are next to put index then it's
2832                  * FIFO full condition
2833                  */
2834                 if ((get_block == put_block) &&
2835                     (get_info.offset + 1) == put_info.offset) {
2836                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2837                         break;
2838                 }
2839                 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2840                 if (skb == NULL) {
2841                         DBG_PRINT(ERR_DBG, "%s: The skb is ",
2842                                   dev->name);
2843                         DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2844                         spin_unlock(&nic->rx_lock);
2845                         return;
2846                 }
2847                 if (nic->rxd_mode == RXD_MODE_1) {
2848                         rxdp1 = (struct RxD1*)rxdp;
2849                         pci_unmap_single(nic->pdev, (dma_addr_t)
2850                                 rxdp1->Buffer0_ptr,
2851                                 dev->mtu +
2852                                 HEADER_ETHERNET_II_802_3_SIZE +
2853                                 HEADER_802_2_SIZE +
2854                                 HEADER_SNAP_SIZE,
2855                                 PCI_DMA_FROMDEVICE);
2856                 } else if (nic->rxd_mode == RXD_MODE_3B) {
2857                         rxdp3 = (struct RxD3*)rxdp;
2858                         pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2859                                 rxdp3->Buffer0_ptr,
2860                                 BUF0_LEN, PCI_DMA_FROMDEVICE);
2861                         pci_unmap_single(nic->pdev, (dma_addr_t)
2862                                 rxdp3->Buffer2_ptr,
2863                                 dev->mtu + 4,
2864                                 PCI_DMA_FROMDEVICE);
2865                 }
2866                 prefetch(skb->data);
2867                 rx_osm_handler(ring_data, rxdp);
2868                 get_info.offset++;
2869                 ring_data->rx_curr_get_info.offset = get_info.offset;
2870                 rxdp = ring_data->rx_blocks[get_block].
2871                                 rxds[get_info.offset].virt_addr;
2872                 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2873                         get_info.offset = 0;
2874                         ring_data->rx_curr_get_info.offset = get_info.offset;
2875                         get_block++;
2876                         if (get_block == ring_data->block_count)
2877                                 get_block = 0;
2878                         ring_data->rx_curr_get_info.block_index = get_block;
2879                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2880                 }
2881
2882                 nic->pkts_to_process -= 1;
2883                 if ((napi) && (!nic->pkts_to_process))
2884                         break;
2885                 pkt_cnt++;
2886                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2887                         break;
2888         }
2889         if (nic->lro) {
2890                 /* Clear all LRO sessions before exiting */
2891                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2892                         struct lro *lro = &nic->lro0_n[i];
2893                         if (lro->in_use) {
2894                                 update_L3L4_header(nic, lro);
2895                                 queue_rx_frame(lro->parent);
2896                                 clear_lro_session(lro);
2897                         }
2898                 }
2899         }
2900
2901         spin_unlock(&nic->rx_lock);
2902 }
2903
2904 /**
2905  *  tx_intr_handler - Transmit interrupt handler
2906  *  @nic : device private variable
2907  *  Description:
2908  *  If an interrupt was raised to indicate DMA complete of the
2909  *  Tx packet, this function is called. It identifies the last TxD
2910  *  whose buffer was freed and frees all skbs whose data have already
2911  *  DMA'ed into the NICs internal memory.
2912  *  Return Value:
2913  *  NONE
2914  */
2915
2916 static void tx_intr_handler(struct fifo_info *fifo_data)
2917 {
2918         struct s2io_nic *nic = fifo_data->nic;
2919         struct net_device *dev = (struct net_device *) nic->dev;
2920         struct tx_curr_get_info get_info, put_info;
2921         struct sk_buff *skb;
2922         struct TxD *txdlp;
2923         u8 err_mask;
2924
2925         get_info = fifo_data->tx_curr_get_info;
2926         memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2927         txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
2928             list_virt_addr;
2929         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2930                (get_info.offset != put_info.offset) &&
2931                (txdlp->Host_Control)) {
2932                 /* Check for TxD errors */
2933                 if (txdlp->Control_1 & TXD_T_CODE) {
2934                         unsigned long long err;
2935                         err = txdlp->Control_1 & TXD_T_CODE;
2936                         if (err & 0x1) {
2937                                 nic->mac_control.stats_info->sw_stat.
2938                                                 parity_err_cnt++;
2939                         }
2940
2941                         /* update t_code statistics */
2942                         err_mask = err >> 48;
2943                         switch(err_mask) {
2944                                 case 2:
2945                                         nic->mac_control.stats_info->sw_stat.
2946                                                         tx_buf_abort_cnt++;
2947                                 break;
2948
2949                                 case 3:
2950                                         nic->mac_control.stats_info->sw_stat.
2951                                                         tx_desc_abort_cnt++;
2952                                 break;
2953
2954                                 case 7:
2955                                         nic->mac_control.stats_info->sw_stat.
2956                                                         tx_parity_err_cnt++;
2957                                 break;
2958
2959                                 case 10:
2960                                         nic->mac_control.stats_info->sw_stat.
2961                                                         tx_link_loss_cnt++;
2962                                 break;
2963
2964                                 case 15:
2965                                         nic->mac_control.stats_info->sw_stat.
2966                                                         tx_list_proc_err_cnt++;
2967                                 break;
2968                         }
2969                 }
2970
2971                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2972                 if (skb == NULL) {
2973                         DBG_PRINT(ERR_DBG, "%s: Null skb ",
2974                         __FUNCTION__);
2975                         DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2976                         return;
2977                 }
2978
2979                 /* Updating the statistics block */
2980                 nic->stats.tx_bytes += skb->len;
2981                 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2982                 dev_kfree_skb_irq(skb);
2983
2984                 get_info.offset++;
2985                 if (get_info.offset == get_info.fifo_len + 1)
2986                         get_info.offset = 0;
2987                 txdlp = (struct TxD *) fifo_data->list_info
2988                     [get_info.offset].list_virt_addr;
2989                 fifo_data->tx_curr_get_info.offset =
2990                     get_info.offset;
2991         }
2992
2993         spin_lock(&nic->tx_lock);
2994         if (netif_queue_stopped(dev))
2995                 netif_wake_queue(dev);
2996         spin_unlock(&nic->tx_lock);
2997 }
2998
2999 /**
3000  *  s2io_mdio_write - Function to write in to MDIO registers
3001  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3002  *  @addr     : address value
3003  *  @value    : data value
3004  *  @dev      : pointer to net_device structure
3005  *  Description:
3006  *  This function is used to write values to the MDIO registers
3007  *  NONE
3008  */
3009 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3010 {
3011         u64 val64 = 0x0;
3012         struct s2io_nic *sp = dev->priv;
3013         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3014
3015         //address transaction
3016         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3017                         | MDIO_MMD_DEV_ADDR(mmd_type)
3018                         | MDIO_MMS_PRT_ADDR(0x0);
3019         writeq(val64, &bar0->mdio_control);
3020         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3021         writeq(val64, &bar0->mdio_control);
3022         udelay(100);
3023
3024         //Data transaction
3025         val64 = 0x0;
3026         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3027                         | MDIO_MMD_DEV_ADDR(mmd_type)
3028                         | MDIO_MMS_PRT_ADDR(0x0)
3029                         | MDIO_MDIO_DATA(value)
3030                         | MDIO_OP(MDIO_OP_WRITE_TRANS);
3031         writeq(val64, &bar0->mdio_control);
3032         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3033         writeq(val64, &bar0->mdio_control);
3034         udelay(100);
3035
3036         val64 = 0x0;
3037         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3038         | MDIO_MMD_DEV_ADDR(mmd_type)
3039         | MDIO_MMS_PRT_ADDR(0x0)
3040         | MDIO_OP(MDIO_OP_READ_TRANS);
3041         writeq(val64, &bar0->mdio_control);
3042         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3043         writeq(val64, &bar0->mdio_control);
3044         udelay(100);
3045
3046 }
3047
3048 /**
3049  *  s2io_mdio_read - Function to write in to MDIO registers
3050  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3051  *  @addr     : address value
3052  *  @dev      : pointer to net_device structure
3053  *  Description:
3054  *  This function is used to read values to the MDIO registers
3055  *  NONE
3056  */
3057 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3058 {
3059         u64 val64 = 0x0;
3060         u64 rval64 = 0x0;
3061         struct s2io_nic *sp = dev->priv;
3062         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3063
3064         /* address transaction */
3065         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3066                         | MDIO_MMD_DEV_ADDR(mmd_type)
3067                         | MDIO_MMS_PRT_ADDR(0x0);
3068         writeq(val64, &bar0->mdio_control);
3069         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3070         writeq(val64, &bar0->mdio_control);
3071         udelay(100);
3072
3073         /* Data transaction */
3074         val64 = 0x0;
3075         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3076                         | MDIO_MMD_DEV_ADDR(mmd_type)
3077                         | MDIO_MMS_PRT_ADDR(0x0)
3078                         | MDIO_OP(MDIO_OP_READ_TRANS);
3079         writeq(val64, &bar0->mdio_control);
3080         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3081         writeq(val64, &bar0->mdio_control);
3082         udelay(100);
3083
3084         /* Read the value from regs */
3085         rval64 = readq(&bar0->mdio_control);
3086         rval64 = rval64 & 0xFFFF0000;
3087         rval64 = rval64 >> 16;
3088         return rval64;
3089 }
3090 /**
3091  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3092  *  @counter      : couter value to be updated
3093  *  @flag         : flag to indicate the status
3094  *  @type         : counter type
3095  *  Description:
3096  *  This function is to check the status of the xpak counters value
3097  *  NONE
3098  */
3099
3100 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3101 {
3102         u64 mask = 0x3;
3103         u64 val64;
3104         int i;
3105         for(i = 0; i <index; i++)
3106                 mask = mask << 0x2;
3107
3108         if(flag > 0)
3109         {
3110                 *counter = *counter + 1;
3111                 val64 = *regs_stat & mask;
3112                 val64 = val64 >> (index * 0x2);
3113                 val64 = val64 + 1;
3114                 if(val64 == 3)
3115                 {
3116                         switch(type)
3117                         {
3118                         case 1:
3119                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3120                                           "service. Excessive temperatures may "
3121                                           "result in premature transceiver "
3122                                           "failure \n");
3123                         break;
3124                         case 2:
3125                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3126                                           "service Excessive bias currents may "
3127                                           "indicate imminent laser diode "
3128                                           "failure \n");
3129                         break;
3130                         case 3:
3131                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3132                                           "service Excessive laser output "
3133                                           "power may saturate far-end "
3134                                           "receiver\n");
3135                         break;
3136                         default:
3137                                 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3138                                           "type \n");
3139                         }
3140                         val64 = 0x0;
3141                 }
3142                 val64 = val64 << (index * 0x2);
3143                 *regs_stat = (*regs_stat & (~mask)) | (val64);
3144
3145         } else {
3146                 *regs_stat = *regs_stat & (~mask);
3147         }
3148 }
3149
3150 /**
3151  *  s2io_updt_xpak_counter - Function to update the xpak counters
3152  *  @dev         : pointer to net_device struct
3153  *  Description:
3154  *  This function is to upate the status of the xpak counters value
3155  *  NONE
3156  */
3157 static void s2io_updt_xpak_counter(struct net_device *dev)
3158 {
3159         u16 flag  = 0x0;
3160         u16 type  = 0x0;
3161         u16 val16 = 0x0;
3162         u64 val64 = 0x0;
3163         u64 addr  = 0x0;
3164
3165         struct s2io_nic *sp = dev->priv;
3166         struct stat_block *stat_info = sp->mac_control.stats_info;
3167
3168         /* Check the communication with the MDIO slave */
3169         addr = 0x0000;
3170         val64 = 0x0;
3171         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3172         if((val64 == 0xFFFF) || (val64 == 0x0000))
3173         {
3174                 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3175                           "Returned %llx\n", (unsigned long long)val64);
3176                 return;
3177         }
3178
3179         /* Check for the expecte value of 2040 at PMA address 0x0000 */
3180         if(val64 != 0x2040)
3181         {
3182                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3183                 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3184                           (unsigned long long)val64);
3185                 return;
3186         }
3187
3188         /* Loading the DOM register to MDIO register */
3189         addr = 0xA100;
3190         s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3191         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3192
3193         /* Reading the Alarm flags */
3194         addr = 0xA070;
3195         val64 = 0x0;
3196         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3197
3198         flag = CHECKBIT(val64, 0x7);
3199         type = 1;
3200         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3201                                 &stat_info->xpak_stat.xpak_regs_stat,
3202                                 0x0, flag, type);
3203
3204         if(CHECKBIT(val64, 0x6))
3205                 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3206
3207         flag = CHECKBIT(val64, 0x3);
3208         type = 2;
3209         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3210                                 &stat_info->xpak_stat.xpak_regs_stat,
3211                                 0x2, flag, type);
3212
3213         if(CHECKBIT(val64, 0x2))
3214                 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3215
3216         flag = CHECKBIT(val64, 0x1);
3217         type = 3;
3218         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3219                                 &stat_info->xpak_stat.xpak_regs_stat,
3220                                 0x4, flag, type);
3221
3222         if(CHECKBIT(val64, 0x0))
3223                 stat_info->xpak_stat.alarm_laser_output_power_low++;
3224
3225         /* Reading the Warning flags */
3226         addr = 0xA074;
3227         val64 = 0x0;
3228         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3229
3230         if(CHECKBIT(val64, 0x7))
3231                 stat_info->xpak_stat.warn_transceiver_temp_high++;
3232
3233         if(CHECKBIT(val64, 0x6))
3234                 stat_info->xpak_stat.warn_transceiver_temp_low++;
3235
3236         if(CHECKBIT(val64, 0x3))
3237                 stat_info->xpak_stat.warn_laser_bias_current_high++;
3238
3239         if(CHECKBIT(val64, 0x2))
3240                 stat_info->xpak_stat.warn_laser_bias_current_low++;
3241
3242         if(CHECKBIT(val64, 0x1))
3243                 stat_info->xpak_stat.warn_laser_output_power_high++;
3244
3245         if(CHECKBIT(val64, 0x0))
3246                 stat_info->xpak_stat.warn_laser_output_power_low++;
3247 }
3248
3249 /**
3250  *  wait_for_cmd_complete - waits for a command to complete.
3251  *  @sp : private member of the device structure, which is a pointer to the
3252  *  s2io_nic structure.
3253  *  Description: Function that waits for a command to Write into RMAC
3254  *  ADDR DATA registers to be completed and returns either success or
3255  *  error depending on whether the command was complete or not.
3256  *  Return value:
3257  *   SUCCESS on success and FAILURE on failure.
3258  */
3259
3260 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3261                                 int bit_state)
3262 {
3263         int ret = FAILURE, cnt = 0, delay = 1;
3264         u64 val64;
3265
3266         if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3267                 return FAILURE;
3268
3269         do {
3270                 val64 = readq(addr);
3271                 if (bit_state == S2IO_BIT_RESET) {
3272                         if (!(val64 & busy_bit)) {
3273                                 ret = SUCCESS;
3274                                 break;
3275                         }
3276                 } else {
3277                         if (!(val64 & busy_bit)) {
3278                                 ret = SUCCESS;
3279                                 break;
3280                         }
3281                 }
3282
3283                 if(in_interrupt())
3284                         mdelay(delay);
3285                 else
3286                         msleep(delay);
3287
3288                 if (++cnt >= 10)
3289                         delay = 50;
3290         } while (cnt < 20);
3291         return ret;
3292 }
3293 /*
3294  * check_pci_device_id - Checks if the device id is supported
3295  * @id : device id
3296  * Description: Function to check if the pci device id is supported by driver.
3297  * Return value: Actual device id if supported else PCI_ANY_ID
3298  */
3299 static u16 check_pci_device_id(u16 id)
3300 {
3301         switch (id) {
3302         case PCI_DEVICE_ID_HERC_WIN:
3303         case PCI_DEVICE_ID_HERC_UNI:
3304                 return XFRAME_II_DEVICE;
3305         case PCI_DEVICE_ID_S2IO_UNI:
3306         case PCI_DEVICE_ID_S2IO_WIN:
3307                 return XFRAME_I_DEVICE;
3308         default:
3309                 return PCI_ANY_ID;
3310         }
3311 }
3312
3313 /**
3314  *  s2io_reset - Resets the card.
3315  *  @sp : private member of the device structure.
3316  *  Description: Function to Reset the card. This function then also
3317  *  restores the previously saved PCI configuration space registers as
3318  *  the card reset also resets the configuration space.
3319  *  Return value:
3320  *  void.
3321  */
3322
3323 static void s2io_reset(struct s2io_nic * sp)
3324 {
3325         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3326         u64 val64;
3327         u16 subid, pci_cmd;
3328         int i;
3329         u16 val16;
3330         unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3331         unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3332
3333         DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3334                         __FUNCTION__, sp->dev->name);
3335
3336         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3337         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3338
3339         val64 = SW_RESET_ALL;
3340         writeq(val64, &bar0->sw_reset);
3341         if (strstr(sp->product_name, "CX4")) {
3342                 msleep(750);
3343         }
3344         msleep(250);
3345         for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3346
3347                 /* Restore the PCI state saved during initialization. */
3348                 pci_restore_state(sp->pdev);
3349                 pci_read_config_word(sp->pdev, 0x2, &val16);
3350                 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3351                         break;
3352                 msleep(200);
3353         }
3354
3355         if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3356                 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3357         }
3358
3359         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3360
3361         s2io_init_pci(sp);
3362
3363         /* Set swapper to enable I/O register access */
3364         s2io_set_swapper(sp);
3365
3366         /* Restore the MSIX table entries from local variables */
3367         restore_xmsi_data(sp);
3368
3369         /* Clear certain PCI/PCI-X fields after reset */
3370         if (sp->device_type == XFRAME_II_DEVICE) {
3371                 /* Clear "detected parity error" bit */
3372                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3373
3374                 /* Clearing PCIX Ecc status register */
3375                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3376
3377                 /* Clearing PCI_STATUS error reflected here */
3378                 writeq(BIT(62), &bar0->txpic_int_reg);
3379         }
3380
3381         /* Reset device statistics maintained by OS */
3382         memset(&sp->stats, 0, sizeof (struct net_device_stats));
3383
3384         up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3385         down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3386         up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3387         down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3388         reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3389         mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3390         mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3391         watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3392         /* save link up/down time/cnt, reset/memory/watchdog cnt */
3393         memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3394         /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3395         sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3396         sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3397         sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3398         sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3399         sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3400         sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3401         sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3402         sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3403
3404         /* SXE-002: Configure link and activity LED to turn it off */
3405         subid = sp->pdev->subsystem_device;
3406         if (((subid & 0xFF) >= 0x07) &&
3407             (sp->device_type == XFRAME_I_DEVICE)) {
3408                 val64 = readq(&bar0->gpio_control);
3409                 val64 |= 0x0000800000000000ULL;
3410                 writeq(val64, &bar0->gpio_control);
3411                 val64 = 0x0411040400000000ULL;
3412                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3413         }
3414
3415         /*
3416          * Clear spurious ECC interrupts that would have occured on
3417          * XFRAME II cards after reset.
3418          */
3419         if (sp->device_type == XFRAME_II_DEVICE) {
3420                 val64 = readq(&bar0->pcc_err_reg);
3421                 writeq(val64, &bar0->pcc_err_reg);
3422         }
3423
3424         /* restore the previously assigned mac address */
3425         do_s2io_prog_unicast(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
3426
3427         sp->device_enabled_once = FALSE;
3428 }
3429
3430 /**
3431  *  s2io_set_swapper - to set the swapper controle on the card
3432  *  @sp : private member of the device structure,
3433  *  pointer to the s2io_nic structure.
3434  *  Description: Function to set the swapper control on the card
3435  *  correctly depending on the 'endianness' of the system.
3436  *  Return value:
3437  *  SUCCESS on success and FAILURE on failure.
3438  */
3439
3440 static int s2io_set_swapper(struct s2io_nic * sp)
3441 {
3442         struct net_device *dev = sp->dev;
3443         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3444         u64 val64, valt, valr;
3445
3446         /*
3447          * Set proper endian settings and verify the same by reading
3448          * the PIF Feed-back register.
3449          */
3450
3451         val64 = readq(&bar0->pif_rd_swapper_fb);
3452         if (val64 != 0x0123456789ABCDEFULL) {
3453                 int i = 0;
3454                 u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */
3455                                 0x8100008181000081ULL,  /* FE=1, SE=0 */
3456                                 0x4200004242000042ULL,  /* FE=0, SE=1 */
3457                                 0};                     /* FE=0, SE=0 */
3458
3459                 while(i<4) {
3460                         writeq(value[i], &bar0->swapper_ctrl);
3461                         val64 = readq(&bar0->pif_rd_swapper_fb);
3462                         if (val64 == 0x0123456789ABCDEFULL)
3463                                 break;
3464                         i++;
3465                 }
3466                 if (i == 4) {
3467                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3468                                 dev->name);
3469                         DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3470                                 (unsigned long long) val64);
3471                         return FAILURE;
3472                 }
3473                 valr = value[i];
3474         } else {
3475                 valr = readq(&bar0->swapper_ctrl);
3476         }
3477
3478         valt = 0x0123456789ABCDEFULL;
3479         writeq(valt, &bar0->xmsi_address);
3480         val64 = readq(&bar0->xmsi_address);
3481
3482         if(val64 != valt) {
3483                 int i = 0;
3484                 u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3485                                 0x0081810000818100ULL,  /* FE=1, SE=0 */
3486                                 0x0042420000424200ULL,  /* FE=0, SE=1 */
3487                                 0};                     /* FE=0, SE=0 */
3488
3489                 while(i<4) {
3490                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3491                         writeq(valt, &bar0->xmsi_address);
3492                         val64 = readq(&bar0->xmsi_address);
3493                         if(val64 == valt)
3494                                 break;
3495                         i++;
3496                 }
3497                 if(i == 4) {
3498                         unsigned long long x = val64;
3499                         DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3500                         DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3501                         return FAILURE;
3502                 }
3503         }
3504         val64 = readq(&bar0->swapper_ctrl);
3505         val64 &= 0xFFFF000000000000ULL;
3506
3507 #ifdef  __BIG_ENDIAN
3508         /*
3509          * The device by default set to a big endian format, so a
3510          * big endian driver need not set anything.
3511          */
3512         val64 |= (SWAPPER_CTRL_TXP_FE |
3513                  SWAPPER_CTRL_TXP_SE |
3514                  SWAPPER_CTRL_TXD_R_FE |
3515                  SWAPPER_CTRL_TXD_W_FE |
3516                  SWAPPER_CTRL_TXF_R_FE |
3517                  SWAPPER_CTRL_RXD_R_FE |
3518                  SWAPPER_CTRL_RXD_W_FE |
3519                  SWAPPER_CTRL_RXF_W_FE |
3520                  SWAPPER_CTRL_XMSI_FE |
3521                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3522         if (sp->config.intr_type == INTA)
3523                 val64 |= SWAPPER_CTRL_XMSI_SE;
3524         writeq(val64, &bar0->swapper_ctrl);
3525 #else
3526         /*
3527          * Initially we enable all bits to make it accessible by the
3528          * driver, then we selectively enable only those bits that
3529          * we want to set.
3530          */
3531         val64 |= (SWAPPER_CTRL_TXP_FE |
3532                  SWAPPER_CTRL_TXP_SE |
3533                  SWAPPER_CTRL_TXD_R_FE |
3534                  SWAPPER_CTRL_TXD_R_SE |
3535                  SWAPPER_CTRL_TXD_W_FE |
3536                  SWAPPER_CTRL_TXD_W_SE |
3537                  SWAPPER_CTRL_TXF_R_FE |
3538                  SWAPPER_CTRL_RXD_R_FE |
3539                  SWAPPER_CTRL_RXD_R_SE |
3540                  SWAPPER_CTRL_RXD_W_FE |
3541                  SWAPPER_CTRL_RXD_W_SE |
3542                  SWAPPER_CTRL_RXF_W_FE |
3543                  SWAPPER_CTRL_XMSI_FE |
3544                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3545         if (sp->config.intr_type == INTA)
3546                 val64 |= SWAPPER_CTRL_XMSI_SE;
3547         writeq(val64, &bar0->swapper_ctrl);
3548 #endif
3549         val64 = readq(&bar0->swapper_ctrl);
3550
3551         /*
3552          * Verifying if endian settings are accurate by reading a
3553          * feedback register.
3554          */
3555         val64 = readq(&bar0->pif_rd_swapper_fb);
3556         if (val64 != 0x0123456789ABCDEFULL) {
3557                 /* Endian settings are incorrect, calls for another dekko. */
3558                 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3559                           dev->name);
3560                 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3561                           (unsigned long long) val64);
3562                 return FAILURE;
3563         }
3564
3565         return SUCCESS;
3566 }
3567
3568 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3569 {
3570         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3571         u64 val64;
3572         int ret = 0, cnt = 0;
3573
3574         do {
3575                 val64 = readq(&bar0->xmsi_access);
3576                 if (!(val64 & BIT(15)))
3577                         break;
3578                 mdelay(1);
3579                 cnt++;
3580         } while(cnt < 5);
3581         if (cnt == 5) {
3582                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3583                 ret = 1;
3584         }
3585
3586         return ret;
3587 }
3588
3589 static void restore_xmsi_data(struct s2io_nic *nic)
3590 {
3591         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3592         u64 val64;
3593         int i;
3594
3595         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3596                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3597                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3598                 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3599                 writeq(val64, &bar0->xmsi_access);
3600                 if (wait_for_msix_trans(nic, i)) {
3601                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3602                         continue;
3603                 }
3604         }
3605 }
3606
3607 static void store_xmsi_data(struct s2io_nic *nic)
3608 {
3609         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3610         u64 val64, addr, data;
3611         int i;
3612
3613         /* Store and display */
3614         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3615                 val64 = (BIT(15) | vBIT(i, 26, 6));
3616                 writeq(val64, &bar0->xmsi_access);
3617                 if (wait_for_msix_trans(nic, i)) {
3618                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3619                         continue;
3620                 }
3621                 addr = readq(&bar0->xmsi_address);
3622                 data = readq(&bar0->xmsi_data);
3623                 if (addr && data) {
3624                         nic->msix_info[i].addr = addr;
3625                         nic->msix_info[i].data = data;
3626                 }
3627         }
3628 }
3629
3630 static int s2io_enable_msi_x(struct s2io_nic *nic)
3631 {
3632         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3633         u64 tx_mat, rx_mat;
3634         u16 msi_control; /* Temp variable */
3635         int ret, i, j, msix_indx = 1;
3636
3637         nic->entries = kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct msix_entry),
3638                                GFP_KERNEL);
3639         if (!nic->entries) {
3640                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3641                         __FUNCTION__);
3642                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3643                 return -ENOMEM;
3644         }
3645         nic->mac_control.stats_info->sw_stat.mem_allocated
3646                 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3647
3648         nic->s2io_entries =
3649                 kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct s2io_msix_entry),
3650                                    GFP_KERNEL);
3651         if (!nic->s2io_entries) {
3652                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3653                         __FUNCTION__);
3654                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3655                 kfree(nic->entries);
3656                 nic->mac_control.stats_info->sw_stat.mem_freed
3657                         += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3658                 return -ENOMEM;
3659         }
3660          nic->mac_control.stats_info->sw_stat.mem_allocated
3661                 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3662
3663         for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3664                 nic->entries[i].entry = i;
3665                 nic->s2io_entries[i].entry = i;
3666                 nic->s2io_entries[i].arg = NULL;
3667                 nic->s2io_entries[i].in_use = 0;
3668         }
3669
3670         tx_mat = readq(&bar0->tx_mat0_n[0]);
3671         for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3672                 tx_mat |= TX_MAT_SET(i, msix_indx);
3673                 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3674                 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3675                 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3676         }
3677         writeq(tx_mat, &bar0->tx_mat0_n[0]);
3678
3679         rx_mat = readq(&bar0->rx_mat);
3680         for (j = 0; j < nic->config.rx_ring_num; j++, msix_indx++) {
3681                 rx_mat |= RX_MAT_SET(j, msix_indx);
3682                 nic->s2io_entries[msix_indx].arg
3683                         = &nic->mac_control.rings[j];
3684                 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3685                 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3686         }
3687         writeq(rx_mat, &bar0->rx_mat);
3688
3689         nic->avail_msix_vectors = 0;
3690         ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3691         /* We fail init if error or we get less vectors than min required */
3692         if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3693                 nic->avail_msix_vectors = ret;
3694                 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3695         }
3696         if (ret) {
3697                 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3698                 kfree(nic->entries);
3699                 nic->mac_control.stats_info->sw_stat.mem_freed
3700                         += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3701                 kfree(nic->s2io_entries);
3702                 nic->mac_control.stats_info->sw_stat.mem_freed
3703                 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3704                 nic->entries = NULL;
3705                 nic->s2io_entries = NULL;
3706                 nic->avail_msix_vectors = 0;
3707                 return -ENOMEM;
3708         }
3709         if (!nic->avail_msix_vectors)
3710                 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3711
3712         /*
3713          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3714          * in the herc NIC. (Temp change, needs to be removed later)
3715          */
3716         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3717         msi_control |= 0x1; /* Enable MSI */
3718         pci_write_config_word(nic->pdev, 0x42, msi_control);
3719
3720         return 0;
3721 }
3722
3723 /* Handle software interrupt used during MSI(X) test */
3724 static irqreturn_t __devinit s2io_test_intr(int irq, void *dev_id)
3725 {
3726         struct s2io_nic *sp = dev_id;
3727
3728         sp->msi_detected = 1;
3729         wake_up(&sp->msi_wait);
3730
3731         return IRQ_HANDLED;
3732 }
3733
3734 /* Test interrupt path by forcing a a software IRQ */
3735 static int __devinit s2io_test_msi(struct s2io_nic *sp)
3736 {
3737         struct pci_dev *pdev = sp->pdev;
3738         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3739         int err;
3740         u64 val64, saved64;
3741
3742         err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3743                         sp->name, sp);
3744         if (err) {
3745                 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3746                        sp->dev->name, pci_name(pdev), pdev->irq);
3747                 return err;
3748         }
3749
3750         init_waitqueue_head (&sp->msi_wait);
3751         sp->msi_detected = 0;
3752
3753         saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3754         val64 |= SCHED_INT_CTRL_ONE_SHOT;
3755         val64 |= SCHED_INT_CTRL_TIMER_EN;
3756         val64 |= SCHED_INT_CTRL_INT2MSI(1);
3757         writeq(val64, &bar0->scheduled_int_ctrl);
3758
3759         wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3760
3761         if (!sp->msi_detected) {
3762                 /* MSI(X) test failed, go back to INTx mode */
3763                 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated"
3764                         "using MSI(X) during test\n", sp->dev->name,
3765                         pci_name(pdev));
3766
3767                 err = -EOPNOTSUPP;
3768         }
3769
3770         free_irq(sp->entries[1].vector, sp);
3771
3772         writeq(saved64, &bar0->scheduled_int_ctrl);
3773
3774         return err;
3775 }
3776 /* ********************************************************* *
3777  * Functions defined below concern the OS part of the driver *
3778  * ********************************************************* */
3779
3780 /**
3781  *  s2io_open - open entry point of the driver
3782  *  @dev : pointer to the device structure.
3783  *  Description:
3784  *  This function is the open entry point of the driver. It mainly calls a
3785  *  function to allocate Rx buffers and inserts them into the buffer
3786  *  descriptors and then enables the Rx part of the NIC.
3787  *  Return value:
3788  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3789  *   file on failure.
3790  */
3791
3792 static int s2io_open(struct net_device *dev)
3793 {
3794         struct s2io_nic *sp = dev->priv;
3795         int err = 0;
3796
3797         /*
3798          * Make sure you have link off by default every time
3799          * Nic is initialized
3800          */
3801         netif_carrier_off(dev);
3802         sp->last_link_state = 0;
3803
3804         napi_enable(&sp->napi);
3805
3806         if (sp->config.intr_type == MSI_X) {
3807                 int ret = s2io_enable_msi_x(sp);
3808
3809                 if (!ret) {
3810                         u16 msi_control;
3811
3812                         ret = s2io_test_msi(sp);
3813
3814                         /* rollback MSI-X, will re-enable during add_isr() */
3815                         kfree(sp->entries);
3816                         sp->mac_control.stats_info->sw_stat.mem_freed +=
3817                                 (MAX_REQUESTED_MSI_X *
3818                                 sizeof(struct msix_entry));
3819                         kfree(sp->s2io_entries);
3820                         sp->mac_control.stats_info->sw_stat.mem_freed +=
3821                                 (MAX_REQUESTED_MSI_X *
3822                                 sizeof(struct s2io_msix_entry));
3823                         sp->entries = NULL;
3824                         sp->s2io_entries = NULL;
3825
3826                         pci_read_config_word(sp->pdev, 0x42, &msi_control);
3827                         msi_control &= 0xFFFE; /* Disable MSI */
3828                         pci_write_config_word(sp->pdev, 0x42, msi_control);
3829
3830                         pci_disable_msix(sp->pdev);
3831
3832                 }
3833                 if (ret) {
3834
3835                         DBG_PRINT(ERR_DBG,
3836                           "%s: MSI-X requested but failed to enable\n",
3837                           dev->name);
3838                         sp->config.intr_type = INTA;
3839                 }
3840         }
3841
3842         /* NAPI doesn't work well with MSI(X) */
3843          if (sp->config.intr_type != INTA) {
3844                 if(sp->config.napi)
3845                         sp->config.napi = 0;
3846         }
3847
3848         /* Initialize H/W and enable interrupts */
3849         err = s2io_card_up(sp);
3850         if (err) {
3851                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3852                           dev->name);
3853                 goto hw_init_failed;
3854         }
3855
3856         if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3857                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3858                 s2io_card_down(sp);
3859                 err = -ENODEV;
3860                 goto hw_init_failed;
3861         }
3862
3863         netif_start_queue(dev);
3864         return 0;
3865
3866 hw_init_failed:
3867         napi_disable(&sp->napi);
3868         if (sp->config.intr_type == MSI_X) {
3869                 if (sp->entries) {
3870                         kfree(sp->entries);
3871                         sp->mac_control.stats_info->sw_stat.mem_freed
3872                         += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3873                 }
3874                 if (sp->s2io_entries) {
3875                         kfree(sp->s2io_entries);
3876                         sp->mac_control.stats_info->sw_stat.mem_freed
3877                         += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3878                 }
3879         }
3880         return err;
3881 }
3882
3883 /**
3884  *  s2io_close -close entry point of the driver
3885  *  @dev : device pointer.
3886  *  Description:
3887  *  This is the stop entry point of the driver. It needs to undo exactly
3888  *  whatever was done by the open entry point,thus it's usually referred to
3889  *  as the close function.Among other things this function mainly stops the
3890  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3891  *  Return value:
3892  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3893  *  file on failure.
3894  */
3895
3896 static int s2io_close(struct net_device *dev)
3897 {
3898         struct s2io_nic *sp = dev->priv;
3899
3900         netif_stop_queue(dev);
3901         napi_disable(&sp->napi);
3902         /* Reset card, kill tasklet and free Tx and Rx buffers. */
3903         s2io_card_down(sp);
3904
3905         return 0;
3906 }
3907
3908 /**
3909  *  s2io_xmit - Tx entry point of te driver
3910  *  @skb : the socket buffer containing the Tx data.
3911  *  @dev : device pointer.
3912  *  Description :
3913  *  This function is the Tx entry point of the driver. S2IO NIC supports
3914  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
3915  *  NOTE: when device cant queue the pkt,just the trans_start variable will
3916  *  not be upadted.
3917  *  Return value:
3918  *  0 on success & 1 on failure.
3919  */
3920
3921 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3922 {
3923         struct s2io_nic *sp = dev->priv;
3924         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3925         register u64 val64;
3926         struct TxD *txdp;
3927         struct TxFIFO_element __iomem *tx_fifo;
3928         unsigned long flags;
3929         u16 vlan_tag = 0;
3930         int vlan_priority = 0;
3931         struct mac_info *mac_control;
3932         struct config_param *config;
3933         int offload_type;
3934         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
3935
3936         mac_control = &sp->mac_control;
3937         config = &sp->config;
3938
3939         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3940
3941         if (unlikely(skb->len <= 0)) {
3942                 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3943                 dev_kfree_skb_any(skb);
3944                 return 0;
3945 }
3946
3947         spin_lock_irqsave(&sp->tx_lock, flags);
3948         if (!is_s2io_card_up(sp)) {
3949                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3950                           dev->name);
3951                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3952                 dev_kfree_skb(skb);
3953                 return 0;
3954         }
3955
3956         queue = 0;
3957         /* Get Fifo number to Transmit based on vlan priority */
3958         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3959                 vlan_tag = vlan_tx_tag_get(skb);
3960                 vlan_priority = vlan_tag >> 13;
3961                 queue = config->fifo_mapping[vlan_priority];
3962         }
3963
3964         put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3965         get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3966         txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
3967                 list_virt_addr;
3968
3969         queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3970         /* Avoid "put" pointer going beyond "get" pointer */
3971         if (txdp->Host_Control ||
3972                    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3973                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3974                 netif_stop_queue(dev);
3975                 dev_kfree_skb(skb);
3976                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3977                 return 0;
3978         }
3979
3980         offload_type = s2io_offload_type(skb);
3981         if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3982                 txdp->Control_1 |= TXD_TCP_LSO_EN;
3983                 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
3984         }
3985         if (skb->ip_summed == CHECKSUM_PARTIAL) {
3986                 txdp->Control_2 |=
3987                     (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3988                      TXD_TX_CKO_UDP_EN);
3989         }
3990         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
3991         txdp->Control_1 |= TXD_LIST_OWN_XENA;
3992         txdp->Control_2 |= config->tx_intr_type;
3993
3994         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3995                 txdp->Control_2 |= TXD_VLAN_ENABLE;
3996                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3997         }
3998
3999         frg_len = skb->len - skb->data_len;
4000         if (offload_type == SKB_GSO_UDP) {
4001                 int ufo_size;
4002
4003                 ufo_size = s2io_udp_mss(skb);
4004                 ufo_size &= ~7;
4005                 txdp->Control_1 |= TXD_UFO_EN;
4006                 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4007                 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4008 #ifdef __BIG_ENDIAN
4009                 sp->ufo_in_band_v[put_off] =
4010                                 (u64)skb_shinfo(skb)->ip6_frag_id;
4011 #else
4012                 sp->ufo_in_band_v[put_off] =
4013                                 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
4014 #endif
4015                 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
4016                 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4017                                         sp->ufo_in_band_v,
4018                                         sizeof(u64), PCI_DMA_TODEVICE);
4019                 if((txdp->Buffer_Pointer == 0) ||
4020                         (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4021                         goto pci_map_failed;
4022                 txdp++;
4023         }
4024
4025         txdp->Buffer_Pointer = pci_map_single
4026             (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4027         if((txdp->Buffer_Pointer == 0) ||
4028                 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4029                 goto pci_map_failed;
4030
4031         txdp->Host_Control = (unsigned long) skb;
4032         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4033         if (offload_type == SKB_GSO_UDP)
4034                 txdp->Control_1 |= TXD_UFO_EN;
4035
4036         frg_cnt = skb_shinfo(skb)->nr_frags;
4037         /* For fragmented SKB. */
4038         for (i = 0; i < frg_cnt; i++) {
4039                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4040                 /* A '0' length fragment will be ignored */
4041                 if (!frag->size)
4042                         continue;
4043                 txdp++;
4044                 txdp->Buffer_Pointer = (u64) pci_map_page
4045                     (sp->pdev, frag->page, frag->page_offset,
4046                      frag->size, PCI_DMA_TODEVICE);
4047                 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4048                 if (offload_type == SKB_GSO_UDP)
4049                         txdp->Control_1 |= TXD_UFO_EN;
4050         }
4051         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4052
4053         if (offload_type == SKB_GSO_UDP)
4054                 frg_cnt++; /* as Txd0 was used for inband header */
4055
4056         tx_fifo = mac_control->tx_FIFO_start[queue];
4057         val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
4058         writeq(val64, &tx_fifo->TxDL_Pointer);
4059
4060         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4061                  TX_FIFO_LAST_LIST);
4062         if (offload_type)
4063                 val64 |= TX_FIFO_SPECIAL_FUNC;
4064
4065         writeq(val64, &tx_fifo->List_Control);
4066
4067         mmiowb();
4068
4069         put_off++;
4070         if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
4071                 put_off = 0;
4072         mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
4073
4074         /* Avoid "put" pointer going beyond "get" pointer */
4075         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4076                 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4077                 DBG_PRINT(TX_DBG,
4078                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4079                           put_off, get_off);
4080                 netif_stop_queue(dev);
4081         }
4082         mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4083         dev->trans_start = jiffies;
4084         spin_unlock_irqrestore(&sp->tx_lock, flags);
4085
4086         return 0;
4087 pci_map_failed:
4088         stats->pci_map_fail_cnt++;
4089         netif_stop_queue(dev);
4090         stats->mem_freed += skb->truesize;
4091         dev_kfree_skb(skb);
4092         spin_unlock_irqrestore(&sp->tx_lock, flags);
4093         return 0;
4094 }
4095
4096 static void
4097 s2io_alarm_handle(unsigned long data)
4098 {
4099         struct s2io_nic *sp = (struct s2io_nic *)data;
4100         struct net_device *dev = sp->dev;
4101
4102         s2io_handle_errors(dev);
4103         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4104 }
4105
4106 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
4107 {
4108         int rxb_size, level;
4109
4110         if (!sp->lro) {
4111                 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4112                 level = rx_buffer_level(sp, rxb_size, rng_n);
4113
4114                 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4115                         int ret;
4116                         DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4117                         DBG_PRINT(INTR_DBG, "PANIC levels\n");
4118                         if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4119                                 DBG_PRINT(INFO_DBG, "Out of memory in %s",
4120                                           __FUNCTION__);
4121                                 clear_bit(0, (&sp->tasklet_status));
4122                                 return -1;
4123                         }
4124                         clear_bit(0, (&sp->tasklet_status));
4125                 } else if (level == LOW)
4126                         tasklet_schedule(&sp->task);
4127
4128         } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4129                         DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4130                         DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
4131         }
4132         return 0;
4133 }
4134
4135 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4136 {
4137         struct ring_info *ring = (struct ring_info *)dev_id;
4138         struct s2io_nic *sp = ring->nic;
4139
4140         if (!is_s2io_card_up(sp))
4141                 return IRQ_HANDLED;
4142
4143         rx_intr_handler(ring);
4144         s2io_chk_rx_buffers(sp, ring->ring_no);
4145
4146         return IRQ_HANDLED;
4147 }
4148
4149 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4150 {
4151         struct fifo_info *fifo = (struct fifo_info *)dev_id;
4152         struct s2io_nic *sp = fifo->nic;
4153
4154         if (!is_s2io_card_up(sp))
4155                 return IRQ_HANDLED;
4156
4157         tx_intr_handler(fifo);
4158         return IRQ_HANDLED;
4159 }
4160 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4161 {
4162         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4163         u64 val64;
4164
4165         val64 = readq(&bar0->pic_int_status);
4166         if (val64 & PIC_INT_GPIO) {
4167                 val64 = readq(&bar0->gpio_int_reg);
4168                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4169                     (val64 & GPIO_INT_REG_LINK_UP)) {
4170                         /*
4171                          * This is unstable state so clear both up/down
4172                          * interrupt and adapter to re-evaluate the link state.
4173                          */
4174                         val64 |=  GPIO_INT_REG_LINK_DOWN;
4175                         val64 |= GPIO_INT_REG_LINK_UP;
4176                         writeq(val64, &bar0->gpio_int_reg);
4177                         val64 = readq(&bar0->gpio_int_mask);
4178                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4179                                    GPIO_INT_MASK_LINK_DOWN);
4180                         writeq(val64, &bar0->gpio_int_mask);
4181                 }
4182                 else if (val64 & GPIO_INT_REG_LINK_UP) {
4183                         val64 = readq(&bar0->adapter_status);
4184                                 /* Enable Adapter */
4185                         val64 = readq(&bar0->adapter_control);
4186                         val64 |= ADAPTER_CNTL_EN;
4187                         writeq(val64, &bar0->adapter_control);
4188                         val64 |= ADAPTER_LED_ON;
4189                         writeq(val64, &bar0->adapter_control);
4190                         if (!sp->device_enabled_once)
4191                                 sp->device_enabled_once = 1;
4192
4193                         s2io_link(sp, LINK_UP);
4194                         /*
4195                          * unmask link down interrupt and mask link-up
4196                          * intr
4197                          */
4198                         val64 = readq(&bar0->gpio_int_mask);
4199                         val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4200                         val64 |= GPIO_INT_MASK_LINK_UP;
4201                         writeq(val64, &bar0->gpio_int_mask);
4202
4203                 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4204                         val64 = readq(&bar0->adapter_status);
4205                         s2io_link(sp, LINK_DOWN);
4206                         /* Link is down so unmaks link up interrupt */
4207                         val64 = readq(&bar0->gpio_int_mask);
4208                         val64 &= ~GPIO_INT_MASK_LINK_UP;
4209                         val64 |= GPIO_INT_MASK_LINK_DOWN;
4210                         writeq(val64, &bar0->gpio_int_mask);
4211
4212                         /* turn off LED */
4213                         val64 = readq(&bar0->adapter_control);
4214                         val64 = val64 &(~ADAPTER_LED_ON);
4215                         writeq(val64, &bar0->adapter_control);
4216                 }
4217         }
4218         val64 = readq(&bar0->gpio_int_mask);
4219 }
4220
4221 /**
4222  *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4223  *  @value: alarm bits
4224  *  @addr: address value
4225  *  @cnt: counter variable
4226  *  Description: Check for alarm and increment the counter
4227  *  Return Value:
4228  *  1 - if alarm bit set
4229  *  0 - if alarm bit is not set
4230  */
4231 int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
4232                           unsigned long long *cnt)
4233 {
4234         u64 val64;
4235         val64 = readq(addr);
4236         if ( val64 & value ) {
4237                 writeq(val64, addr);
4238                 (*cnt)++;
4239                 return 1;
4240         }
4241         return 0;
4242
4243 }
4244
4245 /**
4246  *  s2io_handle_errors - Xframe error indication handler
4247  *  @nic: device private variable
4248  *  Description: Handle alarms such as loss of link, single or
4249  *  double ECC errors, critical and serious errors.
4250  *  Return Value:
4251  *  NONE
4252  */
4253 static void s2io_handle_errors(void * dev_id)
4254 {
4255         struct net_device *dev = (struct net_device *) dev_id;
4256         struct s2io_nic *sp = dev->priv;
4257         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4258         u64 temp64 = 0,val64=0;
4259         int i = 0;
4260
4261         struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4262         struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4263
4264         if (!is_s2io_card_up(sp))
4265                 return;
4266
4267         if (pci_channel_offline(sp->pdev))
4268                 return;
4269
4270         memset(&sw_stat->ring_full_cnt, 0,
4271                 sizeof(sw_stat->ring_full_cnt));
4272
4273         /* Handling the XPAK counters update */
4274         if(stats->xpak_timer_count < 72000) {
4275                 /* waiting for an hour */
4276                 stats->xpak_timer_count++;
4277         } else {
4278                 s2io_updt_xpak_counter(dev);
4279                 /* reset the count to zero */
4280                 stats->xpak_timer_count = 0;
4281         }
4282
4283         /* Handling link status change error Intr */
4284         if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4285                 val64 = readq(&bar0->mac_rmac_err_reg);
4286                 writeq(val64, &bar0->mac_rmac_err_reg);
4287                 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4288                         schedule_work(&sp->set_link_task);
4289         }
4290
4291         /* In case of a serious error, the device will be Reset. */
4292         if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4293                                 &sw_stat->serious_err_cnt))
4294                 goto reset;
4295
4296         /* Check for data parity error */
4297         if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4298                                 &sw_stat->parity_err_cnt))
4299                 goto reset;
4300
4301         /* Check for ring full counter */
4302         if (sp->device_type == XFRAME_II_DEVICE) {
4303                 val64 = readq(&bar0->ring_bump_counter1);
4304                 for (i=0; i<4; i++) {
4305                         temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4306                         temp64 >>= 64 - ((i+1)*16);
4307                         sw_stat->ring_full_cnt[i] += temp64;
4308                 }
4309
4310                 val64 = readq(&bar0->ring_bump_counter2);
4311                 for (i=0; i<4; i++) {
4312                         temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4313                         temp64 >>= 64 - ((i+1)*16);
4314                          sw_stat->ring_full_cnt[i+4] += temp64;
4315                 }
4316         }
4317
4318         val64 = readq(&bar0->txdma_int_status);
4319         /*check for pfc_err*/
4320         if (val64 & TXDMA_PFC_INT) {
4321                 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4322                                 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4323                                 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4324                                 &sw_stat->pfc_err_cnt))
4325                         goto reset;
4326                 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4327                                 &sw_stat->pfc_err_cnt);
4328         }
4329
4330         /*check for tda_err*/
4331         if (val64 & TXDMA_TDA_INT) {
4332                 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4333                                 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4334                                 &sw_stat->tda_err_cnt))
4335                         goto reset;
4336                 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4337                                 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4338         }
4339         /*check for pcc_err*/
4340         if (val64 & TXDMA_PCC_INT) {
4341                 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4342                                 | PCC_N_SERR | PCC_6_COF_OV_ERR
4343                                 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4344                                 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4345                                 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4346                                 &sw_stat->pcc_err_cnt))
4347                         goto reset;
4348                 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4349                                 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4350         }
4351
4352         /*check for tti_err*/
4353         if (val64 & TXDMA_TTI_INT) {
4354                 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4355                                 &sw_stat->tti_err_cnt))
4356                         goto reset;
4357                 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4358                                 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4359         }
4360
4361         /*check for lso_err*/
4362         if (val64 & TXDMA_LSO_INT) {
4363                 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4364                                 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4365                                 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4366                         goto reset;
4367                 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4368                                 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4369         }
4370
4371         /*check for tpa_err*/
4372         if (val64 & TXDMA_TPA_INT) {
4373                 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4374                         &sw_stat->tpa_err_cnt))
4375                         goto reset;
4376                 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4377                         &sw_stat->tpa_err_cnt);
4378         }
4379
4380         /*check for sm_err*/
4381         if (val64 & TXDMA_SM_INT) {
4382                 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4383                         &sw_stat->sm_err_cnt))
4384                         goto reset;
4385         }
4386
4387         val64 = readq(&bar0->mac_int_status);
4388         if (val64 & MAC_INT_STATUS_TMAC_INT) {
4389                 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4390                                 &bar0->mac_tmac_err_reg,
4391                                 &sw_stat->mac_tmac_err_cnt))
4392                         goto reset;
4393                 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4394                                 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4395                                 &bar0->mac_tmac_err_reg,
4396                                 &sw_stat->mac_tmac_err_cnt);
4397         }
4398
4399         val64 = readq(&bar0->xgxs_int_status);
4400         if (val64 & XGXS_INT_STATUS_TXGXS) {
4401                 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4402                                 &bar0->xgxs_txgxs_err_reg,
4403                                 &sw_stat->xgxs_txgxs_err_cnt))
4404                         goto reset;
4405                 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4406                                 &bar0->xgxs_txgxs_err_reg,
4407                                 &sw_stat->xgxs_txgxs_err_cnt);
4408         }
4409
4410         val64 = readq(&bar0->rxdma_int_status);
4411         if (val64 & RXDMA_INT_RC_INT_M) {
4412                 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4413                                 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4414                                 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4415                         goto reset;
4416                 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4417                                 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4418                                 &sw_stat->rc_err_cnt);
4419                 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4420                                 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4421                                 &sw_stat->prc_pcix_err_cnt))
4422                         goto reset;
4423                 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4424                                 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4425                                 &sw_stat->prc_pcix_err_cnt);
4426         }
4427
4428         if (val64 & RXDMA_INT_RPA_INT_M) {
4429                 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4430                                 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4431                         goto reset;
4432                 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4433                                 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4434         }
4435
4436         if (val64 & RXDMA_INT_RDA_INT_M) {
4437                 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4438                                 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4439                                 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4440                                 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4441                         goto reset;
4442                 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4443                                 | RDA_MISC_ERR | RDA_PCIX_ERR,
4444                                 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4445         }
4446
4447         if (val64 & RXDMA_INT_RTI_INT_M) {
4448                 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4449                                 &sw_stat->rti_err_cnt))
4450                         goto reset;
4451                 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4452                                 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4453         }
4454
4455         val64 = readq(&bar0->mac_int_status);
4456         if (val64 & MAC_INT_STATUS_RMAC_INT) {
4457                 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4458                                 &bar0->mac_rmac_err_reg,
4459                                 &sw_stat->mac_rmac_err_cnt))
4460                         goto reset;
4461                 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4462                                 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4463                                 &sw_stat->mac_rmac_err_cnt);
4464         }
4465
4466         val64 = readq(&bar0->xgxs_int_status);
4467         if (val64 & XGXS_INT_STATUS_RXGXS) {
4468                 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4469                                 &bar0->xgxs_rxgxs_err_reg,
4470                                 &sw_stat->xgxs_rxgxs_err_cnt))
4471                         goto reset;
4472         }
4473
4474         val64 = readq(&bar0->mc_int_status);
4475         if(val64 & MC_INT_STATUS_MC_INT) {
4476                 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4477                                 &sw_stat->mc_err_cnt))
4478                         goto reset;
4479
4480                 /* Handling Ecc errors */
4481                 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4482                         writeq(val64, &bar0->mc_err_reg);
4483                         if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4484                                 sw_stat->double_ecc_errs++;
4485                                 if (sp->device_type != XFRAME_II_DEVICE) {
4486                                         /*
4487                                          * Reset XframeI only if critical error
4488                                          */
4489                                         if (val64 &
4490                                                 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4491                                                 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4492                                                                 goto reset;
4493                                         }
4494                         } else
4495                                 sw_stat->single_ecc_errs++;
4496                 }
4497         }
4498         return;
4499
4500 reset:
4501         netif_stop_queue(dev);
4502         schedule_work(&sp->rst_timer_task);
4503         sw_stat->soft_reset_cnt++;
4504         return;
4505 }
4506
4507 /**
4508  *  s2io_isr - ISR handler of the device .
4509  *  @irq: the irq of the device.
4510  *  @dev_id: a void pointer to the dev structure of the NIC.
4511  *  Description:  This function is the ISR handler of the device. It
4512  *  identifies the reason for the interrupt and calls the relevant
4513  *  service routines. As a contongency measure, this ISR allocates the
4514  *  recv buffers, if their numbers are below the panic value which is
4515  *  presently set to 25% of the original number of rcv buffers allocated.
4516  *  Return value:
4517  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4518  *   IRQ_NONE: will be returned if interrupt is not from our device
4519  */
4520 static irqreturn_t s2io_isr(int irq, void *dev_id)
4521 {
4522         struct net_device *dev = (struct net_device *) dev_id;
4523         struct s2io_nic *sp = dev->priv;
4524         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4525         int i;
4526         u64 reason = 0;
4527         struct mac_info *mac_control;
4528         struct config_param *config;
4529
4530         /* Pretend we handled any irq's from a disconnected card */
4531         if (pci_channel_offline(sp->pdev))
4532                 return IRQ_NONE;
4533
4534         if (!is_s2io_card_up(sp))
4535                 return IRQ_NONE;
4536
4537         mac_control = &sp->mac_control;
4538         config = &sp->config;
4539
4540         /*
4541          * Identify the cause for interrupt and call the appropriate
4542          * interrupt handler. Causes for the interrupt could be;
4543          * 1. Rx of packet.
4544          * 2. Tx complete.
4545          * 3. Link down.
4546          */
4547         reason = readq(&bar0->general_int_status);
4548
4549         if (unlikely(reason == S2IO_MINUS_ONE) ) {
4550                 /* Nothing much can be done. Get out */
4551                 return IRQ_HANDLED;
4552         }
4553
4554         if (reason & (GEN_INTR_RXTRAFFIC |
4555                 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4556         {
4557                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4558
4559                 if (config->napi) {
4560                         if (reason & GEN_INTR_RXTRAFFIC) {
4561                                 if (likely(netif_rx_schedule_prep(dev,
4562                                                         &sp->napi))) {
4563                                         __netif_rx_schedule(dev, &sp->napi);
4564                                         writeq(S2IO_MINUS_ONE,
4565                                                &bar0->rx_traffic_mask);
4566                                 } else
4567                                         writeq(S2IO_MINUS_ONE,
4568                                                &bar0->rx_traffic_int);
4569                         }
4570                 } else {
4571                         /*
4572                          * rx_traffic_int reg is an R1 register, writing all 1's
4573                          * will ensure that the actual interrupt causing bit
4574                          * get's cleared and hence a read can be avoided.
4575                          */
4576                         if (reason & GEN_INTR_RXTRAFFIC)
4577                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4578
4579                         for (i = 0; i < config->rx_ring_num; i++)
4580                                 rx_intr_handler(&mac_control->rings[i]);
4581                 }
4582
4583                 /*
4584                  * tx_traffic_int reg is an R1 register, writing all 1's
4585                  * will ensure that the actual interrupt causing bit get's
4586                  * cleared and hence a read can be avoided.
4587                  */
4588                 if (reason & GEN_INTR_TXTRAFFIC)
4589                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4590
4591                 for (i = 0; i < config->tx_fifo_num; i++)
4592                         tx_intr_handler(&mac_control->fifos[i]);
4593
4594                 if (reason & GEN_INTR_TXPIC)
4595                         s2io_txpic_intr_handle(sp);
4596
4597                 /*
4598                  * Reallocate the buffers from the interrupt handler itself.
4599                  */
4600                 if (!config->napi) {
4601                         for (i = 0; i < config->rx_ring_num; i++)
4602                                 s2io_chk_rx_buffers(sp, i);
4603                 }
4604                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4605                 readl(&bar0->general_int_status);
4606
4607                 return IRQ_HANDLED;
4608
4609         }
4610         else if (!reason) {
4611                 /* The interrupt was not raised by us */
4612                 return IRQ_NONE;
4613         }
4614
4615         return IRQ_HANDLED;
4616 }
4617
4618 /**
4619  * s2io_updt_stats -
4620  */
4621 static void s2io_updt_stats(struct s2io_nic *sp)
4622 {
4623         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4624         u64 val64;
4625         int cnt = 0;
4626
4627         if (is_s2io_card_up(sp)) {
4628                 /* Apprx 30us on a 133 MHz bus */
4629                 val64 = SET_UPDT_CLICKS(10) |
4630                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4631                 writeq(val64, &bar0->stat_cfg);
4632                 do {
4633                         udelay(100);
4634                         val64 = readq(&bar0->stat_cfg);
4635                         if (!(val64 & BIT(0)))
4636                                 break;
4637                         cnt++;
4638                         if (cnt == 5)
4639                                 break; /* Updt failed */
4640                 } while(1);
4641         }
4642 }
4643
4644 /**
4645  *  s2io_get_stats - Updates the device statistics structure.
4646  *  @dev : pointer to the device structure.
4647  *  Description:
4648  *  This function updates the device statistics structure in the s2io_nic
4649  *  structure and returns a pointer to the same.
4650  *  Return value:
4651  *  pointer to the updated net_device_stats structure.
4652  */
4653
4654 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4655 {
4656         struct s2io_nic *sp = dev->priv;
4657         struct mac_info *mac_control;
4658         struct config_param *config;
4659
4660
4661         mac_control = &sp->mac_control;
4662         config = &sp->config;
4663
4664         /* Configure Stats for immediate updt */
4665         s2io_updt_stats(sp);
4666
4667         sp->stats.tx_packets =
4668                 le32_to_cpu(mac_control->stats_info->tmac_frms);
4669         sp->stats.tx_errors =
4670                 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4671         sp->stats.rx_errors =
4672                 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4673         sp->stats.multicast =
4674                 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4675         sp->stats.rx_length_errors =
4676                 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4677
4678         return (&sp->stats);
4679 }
4680
4681 /**
4682  *  s2io_set_multicast - entry point for multicast address enable/disable.
4683  *  @dev : pointer to the device structure
4684  *  Description:
4685  *  This function is a driver entry point which gets called by the kernel
4686  *  whenever multicast addresses must be enabled/disabled. This also gets
4687  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4688  *  determine, if multicast address must be enabled or if promiscuous mode
4689  *  is to be disabled etc.
4690  *  Return value:
4691  *  void.
4692  */
4693
4694 static void s2io_set_multicast(struct net_device *dev)
4695 {
4696         int i, j, prev_cnt;
4697         struct dev_mc_list *mclist;
4698         struct s2io_nic *sp = dev->priv;
4699         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4700         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4701             0xfeffffffffffULL;
4702         u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4703         void __iomem *add;
4704
4705         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4706                 /*  Enable all Multicast addresses */
4707                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4708                        &bar0->rmac_addr_data0_mem);
4709                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4710                        &bar0->rmac_addr_data1_mem);
4711                 val64 = RMAC_ADDR_CMD_MEM_WE |
4712                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4713                     RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4714                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4715                 /* Wait till command completes */
4716                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4717                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4718                                         S2IO_BIT_RESET);
4719
4720                 sp->m_cast_flg = 1;
4721                 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4722         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4723                 /*  Disable all Multicast addresses */
4724                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4725                        &bar0->rmac_addr_data0_mem);
4726                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4727                        &bar0->rmac_addr_data1_mem);
4728                 val64 = RMAC_ADDR_CMD_MEM_WE |
4729                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4730                     RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4731                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4732                 /* Wait till command completes */
4733                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4734                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4735                                         S2IO_BIT_RESET);
4736
4737                 sp->m_cast_flg = 0;
4738                 sp->all_multi_pos = 0;
4739         }
4740
4741         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4742                 /*  Put the NIC into promiscuous mode */
4743                 add = &bar0->mac_cfg;
4744                 val64 = readq(&bar0->mac_cfg);
4745                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4746
4747                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4748                 writel((u32) val64, add);
4749                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4750                 writel((u32) (val64 >> 32), (add + 4));
4751
4752                 if (vlan_tag_strip != 1) {
4753                         val64 = readq(&bar0->rx_pa_cfg);
4754                         val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4755                         writeq(val64, &bar0->rx_pa_cfg);
4756                         vlan_strip_flag = 0;
4757                 }
4758
4759                 val64 = readq(&bar0->mac_cfg);
4760                 sp->promisc_flg = 1;
4761                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4762                           dev->name);
4763         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4764                 /*  Remove the NIC from promiscuous mode */
4765                 add = &bar0->mac_cfg;
4766                 val64 = readq(&bar0->mac_cfg);
4767                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4768
4769                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4770                 writel((u32) val64, add);
4771                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4772                 writel((u32) (val64 >> 32), (add + 4));
4773
4774                 if (vlan_tag_strip != 0) {
4775                         val64 = readq(&bar0->rx_pa_cfg);
4776                         val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4777                         writeq(val64, &bar0->rx_pa_cfg);
4778                         vlan_strip_flag = 1;
4779                 }
4780
4781                 val64 = readq(&bar0->mac_cfg);
4782                 sp->promisc_flg = 0;
4783                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4784                           dev->name);
4785         }
4786
4787         /*  Update individual M_CAST address list */
4788         if ((!sp->m_cast_flg) && dev->mc_count) {
4789                 if (dev->mc_count >
4790                     (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4791                         DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4792                                   dev->name);
4793                         DBG_PRINT(ERR_DBG, "can be added, please enable ");
4794                         DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4795                         return;
4796                 }
4797
4798                 prev_cnt = sp->mc_addr_count;
4799                 sp->mc_addr_count = dev->mc_count;
4800
4801                 /* Clear out the previous list of Mc in the H/W. */
4802                 for (i = 0; i < prev_cnt; i++) {
4803                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4804                                &bar0->rmac_addr_data0_mem);
4805                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4806                                 &bar0->rmac_addr_data1_mem);
4807                         val64 = RMAC_ADDR_CMD_MEM_WE |
4808                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4809                             RMAC_ADDR_CMD_MEM_OFFSET
4810                             (MAC_MC_ADDR_START_OFFSET + i);
4811                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4812
4813                         /* Wait for command completes */
4814                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4815                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4816                                         S2IO_BIT_RESET)) {
4817                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4818                                           dev->name);
4819                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4820                                 return;
4821                         }
4822                 }
4823
4824                 /* Create the new Rx filter list and update the same in H/W. */
4825                 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4826                      i++, mclist = mclist->next) {
4827                         memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4828                                ETH_ALEN);
4829                         mac_addr = 0;
4830                         for (j = 0; j < ETH_ALEN; j++) {
4831                                 mac_addr |= mclist->dmi_addr[j];
4832                                 mac_addr <<= 8;
4833                         }
4834                         mac_addr >>= 8;
4835                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4836                                &bar0->rmac_addr_data0_mem);
4837                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4838                                 &bar0->rmac_addr_data1_mem);
4839                         val64 = RMAC_ADDR_CMD_MEM_WE |
4840                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4841                             RMAC_ADDR_CMD_MEM_OFFSET
4842                             (i + MAC_MC_ADDR_START_OFFSET);
4843                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4844
4845                         /* Wait for command completes */
4846                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4847                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4848                                         S2IO_BIT_RESET)) {
4849                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4850                                           dev->name);
4851                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4852                                 return;
4853                         }
4854                 }
4855         }
4856 }
4857
4858 /* add unicast MAC address to CAM */
4859 static int do_s2io_add_unicast(struct s2io_nic *sp, u64 addr, int off)
4860 {
4861         u64 val64;
4862         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4863
4864         writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
4865                 &bar0->rmac_addr_data0_mem);
4866
4867         val64 =
4868                 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4869                 RMAC_ADDR_CMD_MEM_OFFSET(off);
4870         writeq(val64, &bar0->rmac_addr_cmd_mem);
4871
4872         /* Wait till command completes */
4873         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4874                 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4875                 S2IO_BIT_RESET)) {
4876                 DBG_PRINT(INFO_DBG, "add_mac_addr failed\n");
4877                 return FAILURE;
4878         }
4879         return SUCCESS;
4880 }
4881
4882 /**
4883  * s2io_set_mac_addr driver entry point
4884  */
4885 static int s2io_set_mac_addr(struct net_device *dev, void *p)
4886 {
4887         struct sockaddr *addr = p;
4888
4889         if (!is_valid_ether_addr(addr->sa_data))
4890                 return -EINVAL;
4891
4892         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4893
4894         /* store the MAC address in CAM */
4895         return (do_s2io_prog_unicast(dev, dev->dev_addr));
4896 }
4897
4898 /**
4899  *  do_s2io_prog_unicast - Programs the Xframe mac address
4900  *  @dev : pointer to the device structure.
4901  *  @addr: a uchar pointer to the new mac address which is to be set.
4902  *  Description : This procedure will program the Xframe to receive
4903  *  frames with new Mac Address
4904  *  Return value: SUCCESS on success and an appropriate (-)ve integer
4905  *  as defined in errno.h file on failure.
4906  */
4907 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
4908 {
4909         struct s2io_nic *sp = dev->priv;
4910         register u64 mac_addr = 0, perm_addr = 0;
4911         int i;
4912
4913         /*
4914         * Set the new MAC address as the new unicast filter and reflect this
4915         * change on the device address registered with the OS. It will be
4916         * at offset 0.
4917         */
4918         for (i = 0; i < ETH_ALEN; i++) {
4919                 mac_addr <<= 8;
4920                 mac_addr |= addr[i];
4921                 perm_addr <<= 8;
4922                 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
4923         }
4924
4925         /* check if the dev_addr is different than perm_addr */
4926         if (mac_addr == perm_addr)
4927                 return SUCCESS;
4928
4929         /* Update the internal structure with this new mac address */
4930         do_s2io_copy_mac_addr(sp, 0, mac_addr);
4931         return (do_s2io_add_unicast(sp, mac_addr, 0));
4932 }
4933
4934 /**
4935  * s2io_ethtool_sset - Sets different link parameters.
4936  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
4937  * @info: pointer to the structure with parameters given by ethtool to set
4938  * link information.
4939  * Description:
4940  * The function sets different link parameters provided by the user onto
4941  * the NIC.
4942  * Return value:
4943  * 0 on success.
4944 */
4945
4946 static int s2io_ethtool_sset(struct net_device *dev,
4947                              struct ethtool_cmd *info)
4948 {
4949         struct s2io_nic *sp = dev->priv;
4950         if ((info->autoneg == AUTONEG_ENABLE) ||
4951             (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4952                 return -EINVAL;
4953         else {
4954                 s2io_close(sp->dev);
4955                 s2io_open(sp->dev);
4956         }
4957
4958         return 0;
4959 }
4960
4961 /**
4962  * s2io_ethtol_gset - Return link specific information.
4963  * @sp : private member of the device structure, pointer to the
4964  *      s2io_nic structure.
4965  * @info : pointer to the structure with parameters given by ethtool
4966  * to return link information.
4967  * Description:
4968  * Returns link specific information like speed, duplex etc.. to ethtool.
4969  * Return value :
4970  * return 0 on success.
4971  */
4972
4973 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4974 {
4975         struct s2io_nic *sp = dev->priv;
4976         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4977         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4978         info->port = PORT_FIBRE;
4979         /* info->transceiver?? TODO */
4980
4981         if (netif_carrier_ok(sp->dev)) {
4982                 info->speed = 10000;
4983                 info->duplex = DUPLEX_FULL;
4984         } else {
4985                 info->speed = -1;
4986                 info->duplex = -1;
4987         }
4988
4989         info->autoneg = AUTONEG_DISABLE;
4990         return 0;
4991 }
4992
4993 /**
4994  * s2io_ethtool_gdrvinfo - Returns driver specific information.
4995  * @sp : private member of the device structure, which is a pointer to the
4996  * s2io_nic structure.
4997  * @info : pointer to the structure with parameters given by ethtool to
4998  * return driver information.
4999  * Description:
5000  * Returns driver specefic information like name, version etc.. to ethtool.
5001  * Return value:
5002  *  void
5003  */
5004
5005 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5006                                   struct ethtool_drvinfo *info)
5007 {
5008         struct s2io_nic *sp = dev->priv;
5009
5010         strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5011         strncpy(info->version, s2io_driver_version, sizeof(info->version));
5012         strncpy(info->fw_version, "", sizeof(info->fw_version));
5013         strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5014         info->regdump_len = XENA_REG_SPACE;
5015         info->eedump_len = XENA_EEPROM_SPACE;
5016 }
5017
5018 /**
5019  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5020  *  @sp: private member of the device structure, which is a pointer to the
5021  *  s2io_nic structure.
5022  *  @regs : pointer to the structure with parameters given by ethtool for
5023  *  dumping the registers.
5024  *  @reg_space: The input argumnet into which all the registers are dumped.
5025  *  Description:
5026  *  Dumps the entire register space of xFrame NIC into the user given
5027  *  buffer area.
5028  * Return value :
5029  * void .
5030 */
5031
5032 static void s2io_ethtool_gregs(struct net_device *dev,
5033                                struct ethtool_regs *regs, void *space)
5034 {
5035         int i;
5036         u64 reg;
5037         u8 *reg_space = (u8 *) space;
5038         struct s2io_nic *sp = dev->priv;
5039
5040         regs->len = XENA_REG_SPACE;
5041         regs->version = sp->pdev->subsystem_device;
5042
5043         for (i = 0; i < regs->len; i += 8) {
5044                 reg = readq(sp->bar0 + i);
5045                 memcpy((reg_space + i), &reg, 8);
5046         }
5047 }
5048
5049 /**
5050  *  s2io_phy_id  - timer function that alternates adapter LED.
5051  *  @data : address of the private member of the device structure, which
5052  *  is a pointer to the s2io_nic structure, provided as an u32.
5053  * Description: This is actually the timer function that alternates the
5054  * adapter LED bit of the adapter control bit to set/reset every time on
5055  * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5056  *  once every second.
5057 */
5058 static void s2io_phy_id(unsigned long data)
5059 {
5060         struct s2io_nic *sp = (struct s2io_nic *) data;
5061         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5062         u64 val64 = 0;
5063         u16 subid;
5064
5065         subid = sp->pdev->subsystem_device;
5066         if ((sp->device_type == XFRAME_II_DEVICE) ||
5067                    ((subid & 0xFF) >= 0x07)) {
5068                 val64 = readq(&bar0->gpio_control);
5069                 val64 ^= GPIO_CTRL_GPIO_0;
5070                 writeq(val64, &bar0->gpio_control);
5071         } else {
5072                 val64 = readq(&bar0->adapter_control);
5073                 val64 ^= ADAPTER_LED_ON;
5074                 writeq(val64, &bar0->adapter_control);
5075         }
5076
5077         mod_timer(&sp->id_timer, jiffies + HZ / 2);
5078 }
5079
5080 /**
5081  * s2io_ethtool_idnic - To physically identify the nic on the system.
5082  * @sp : private member of the device structure, which is a pointer to the
5083  * s2io_nic structure.
5084  * @id : pointer to the structure with identification parameters given by
5085  * ethtool.
5086  * Description: Used to physically identify the NIC on the system.
5087  * The Link LED will blink for a time specified by the user for
5088  * identification.
5089  * NOTE: The Link has to be Up to be able to blink the LED. Hence
5090  * identification is possible only if it's link is up.
5091  * Return value:
5092  * int , returns 0 on success
5093  */
5094
5095 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5096 {
5097         u64 val64 = 0, last_gpio_ctrl_val;
5098         struct s2io_nic *sp = dev->priv;
5099         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5100         u16 subid;
5101
5102         subid = sp->pdev->subsystem_device;
5103         last_gpio_ctrl_val = readq(&bar0->gpio_control);
5104         if ((sp->device_type == XFRAME_I_DEVICE) &&
5105                 ((subid & 0xFF) < 0x07)) {
5106                 val64 = readq(&bar0->adapter_control);
5107                 if (!(val64 & ADAPTER_CNTL_EN)) {
5108                         printk(KERN_ERR
5109                                "Adapter Link down, cannot blink LED\n");
5110                         return -EFAULT;
5111                 }
5112         }
5113         if (sp->id_timer.function == NULL) {
5114                 init_timer(&sp->id_timer);
5115                 sp->id_timer.function = s2io_phy_id;
5116                 sp->id_timer.data = (unsigned long) sp;
5117         }
5118         mod_timer(&sp->id_timer, jiffies);
5119         if (data)
5120                 msleep_interruptible(data * HZ);
5121         else
5122                 msleep_interruptible(MAX_FLICKER_TIME);
5123         del_timer_sync(&sp->id_timer);
5124
5125         if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5126                 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5127                 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5128         }
5129
5130         return 0;
5131 }
5132
5133 static void s2io_ethtool_gringparam(struct net_device *dev,
5134                                     struct ethtool_ringparam *ering)
5135 {
5136         struct s2io_nic *sp = dev->priv;
5137         int i,tx_desc_count=0,rx_desc_count=0;
5138
5139         if (sp->rxd_mode == RXD_MODE_1)
5140                 ering->rx_max_pending = MAX_RX_DESC_1;
5141         else if (sp->rxd_mode == RXD_MODE_3B)
5142                 ering->rx_max_pending = MAX_RX_DESC_2;
5143
5144         ering->tx_max_pending = MAX_TX_DESC;
5145         for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5146                 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5147
5148         DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5149         ering->tx_pending = tx_desc_count;
5150         rx_desc_count = 0;
5151         for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5152                 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5153
5154         ering->rx_pending = rx_desc_count;
5155
5156         ering->rx_mini_max_pending = 0;
5157         ering->rx_mini_pending = 0;
5158         if(sp->rxd_mode == RXD_MODE_1)
5159                 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5160         else if (sp->rxd_mode == RXD_MODE_3B)
5161                 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5162         ering->rx_jumbo_pending = rx_desc_count;
5163 }
5164
5165 /**
5166  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5167  * @sp : private member of the device structure, which is a pointer to the
5168  *      s2io_nic structure.
5169  * @ep : pointer to the structure with pause parameters given by ethtool.
5170  * Description:
5171  * Returns the Pause frame generation and reception capability of the NIC.
5172  * Return value:
5173  *  void
5174  */
5175 static void s2io_ethtool_getpause_data(struct net_device *dev,
5176                                        struct ethtool_pauseparam *ep)
5177 {
5178         u64 val64;
5179         struct s2io_nic *sp = dev->priv;
5180         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5181
5182         val64 = readq(&bar0->rmac_pause_cfg);
5183         if (val64 & RMAC_PAUSE_GEN_ENABLE)
5184                 ep->tx_pause = TRUE;
5185         if (val64 & RMAC_PAUSE_RX_ENABLE)
5186                 ep->rx_pause = TRUE;
5187         ep->autoneg = FALSE;
5188 }
5189
5190 /**
5191  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5192  * @sp : private member of the device structure, which is a pointer to the
5193  *      s2io_nic structure.
5194  * @ep : pointer to the structure with pause parameters given by ethtool.
5195  * Description:
5196  * It can be used to set or reset Pause frame generation or reception
5197  * support of the NIC.
5198  * Return value:
5199  * int, returns 0 on Success
5200  */
5201
5202 static int s2io_ethtool_setpause_data(struct net_device *dev,
5203                                struct ethtool_pauseparam *ep)
5204 {
5205         u64 val64;
5206         struct s2io_nic *sp = dev->priv;
5207         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5208
5209         val64 = readq(&bar0->rmac_pause_cfg);
5210         if (ep->tx_pause)
5211                 val64 |= RMAC_PAUSE_GEN_ENABLE;
5212         else
5213                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5214         if (ep->rx_pause)
5215                 val64 |= RMAC_PAUSE_RX_ENABLE;
5216         else
5217                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5218         writeq(val64, &bar0->rmac_pause_cfg);
5219         return 0;
5220 }
5221
5222 /**
5223  * read_eeprom - reads 4 bytes of data from user given offset.
5224  * @sp : private member of the device structure, which is a pointer to the
5225  *      s2io_nic structure.
5226  * @off : offset at which the data must be written
5227  * @data : Its an output parameter where the data read at the given
5228  *      offset is stored.
5229  * Description:
5230  * Will read 4 bytes of data from the user given offset and return the
5231  * read data.
5232  * NOTE: Will allow to read only part of the EEPROM visible through the
5233  *   I2C bus.
5234  * Return value:
5235  *  -1 on failure and 0 on success.
5236  */
5237
5238 #define S2IO_DEV_ID             5
5239 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5240 {
5241         int ret = -1;
5242         u32 exit_cnt = 0;
5243         u64 val64;
5244         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5245
5246         if (sp->device_type == XFRAME_I_DEVICE) {
5247                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5248                     I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5249                     I2C_CONTROL_CNTL_START;
5250                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5251
5252                 while (exit_cnt < 5) {
5253                         val64 = readq(&bar0->i2c_control);
5254                         if (I2C_CONTROL_CNTL_END(val64)) {
5255                                 *data = I2C_CONTROL_GET_DATA(val64);
5256                                 ret = 0;
5257                                 break;
5258                         }
5259                         msleep(50);
5260                         exit_cnt++;
5261                 }
5262         }
5263
5264         if (sp->device_type == XFRAME_II_DEVICE) {
5265                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5266                         SPI_CONTROL_BYTECNT(0x3) |
5267                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5268                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5269                 val64 |= SPI_CONTROL_REQ;
5270                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5271                 while (exit_cnt < 5) {
5272                         val64 = readq(&bar0->spi_control);
5273                         if (val64 & SPI_CONTROL_NACK) {
5274                                 ret = 1;
5275                                 break;
5276                         } else if (val64 & SPI_CONTROL_DONE) {
5277                                 *data = readq(&bar0->spi_data);
5278                                 *data &= 0xffffff;
5279                                 ret = 0;
5280                                 break;
5281                         }
5282                         msleep(50);
5283                         exit_cnt++;
5284                 }
5285         }
5286         return ret;
5287 }
5288
5289 /**
5290  *  write_eeprom - actually writes the relevant part of the data value.
5291  *  @sp : private member of the device structure, which is a pointer to the
5292  *       s2io_nic structure.
5293  *  @off : offset at which the data must be written
5294  *  @data : The data that is to be written
5295  *  @cnt : Number of bytes of the data that are actually to be written into
5296  *  the Eeprom. (max of 3)
5297  * Description:
5298  *  Actually writes the relevant part of the data value into the Eeprom
5299  *  through the I2C bus.
5300  * Return value:
5301  *  0 on success, -1 on failure.
5302  */
5303
5304 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5305 {
5306         int exit_cnt = 0, ret = -1;
5307         u64 val64;
5308         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5309
5310         if (sp->device_type == XFRAME_I_DEVICE) {
5311                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5312                     I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5313                     I2C_CONTROL_CNTL_START;
5314                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5315
5316                 while (exit_cnt < 5) {
5317                         val64 = readq(&bar0->i2c_control);
5318                         if (I2C_CONTROL_CNTL_END(val64)) {
5319                                 if (!(val64 & I2C_CONTROL_NACK))
5320                                         ret = 0;
5321                                 break;
5322                         }
5323                         msleep(50);
5324                         exit_cnt++;
5325                 }
5326         }
5327
5328         if (sp->device_type == XFRAME_II_DEVICE) {
5329                 int write_cnt = (cnt == 8) ? 0 : cnt;
5330                 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5331
5332                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5333                         SPI_CONTROL_BYTECNT(write_cnt) |
5334                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5335                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5336                 val64 |= SPI_CONTROL_REQ;
5337                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5338                 while (exit_cnt < 5) {
5339                         val64 = readq(&bar0->spi_control);
5340                         if (val64 & SPI_CONTROL_NACK) {
5341                                 ret = 1;
5342                                 break;
5343                         } else if (val64 & SPI_CONTROL_DONE) {
5344                                 ret = 0;
5345                                 break;
5346                         }
5347                         msleep(50);
5348                         exit_cnt++;
5349                 }
5350         }
5351         return ret;
5352 }
5353 static void s2io_vpd_read(struct s2io_nic *nic)
5354 {
5355         u8 *vpd_data;
5356         u8 data;
5357         int i=0, cnt, fail = 0;
5358         int vpd_addr = 0x80;
5359
5360         if (nic->device_type == XFRAME_II_DEVICE) {
5361                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5362                 vpd_addr = 0x80;
5363         }
5364         else {
5365                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5366                 vpd_addr = 0x50;
5367         }
5368         strcpy(nic->serial_num, "NOT AVAILABLE");
5369
5370         vpd_data = kmalloc(256, GFP_KERNEL);
5371         if (!vpd_data) {
5372                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5373                 return;
5374         }
5375         nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5376
5377         for (i = 0; i < 256; i +=4 ) {
5378                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5379                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5380                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5381                 for (cnt = 0; cnt <5; cnt++) {
5382                         msleep(2);
5383                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5384                         if (data == 0x80)
5385                                 break;
5386                 }
5387                 if (cnt >= 5) {
5388                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5389                         fail = 1;
5390                         break;
5391                 }
5392                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5393                                       (u32 *)&vpd_data[i]);
5394         }
5395
5396         if(!fail) {
5397                 /* read serial number of adapter */
5398                 for (cnt = 0; cnt < 256; cnt++) {
5399                 if ((vpd_data[cnt] == 'S') &&
5400                         (vpd_data[cnt+1] == 'N') &&
5401                         (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5402                                 memset(nic->serial_num, 0, VPD_STRING_LEN);
5403                                 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5404                                         vpd_data[cnt+2]);
5405                                 break;
5406                         }
5407                 }
5408         }
5409
5410         if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5411                 memset(nic->product_name, 0, vpd_data[1]);
5412                 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5413         }
5414         kfree(vpd_data);
5415         nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5416 }
5417
5418 /**
5419  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5420  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5421  *  @eeprom : pointer to the user level structure provided by ethtool,
5422  *  containing all relevant information.
5423  *  @data_buf : user defined value to be written into Eeprom.
5424  *  Description: Reads the values stored in the Eeprom at given offset
5425  *  for a given length. Stores these values int the input argument data
5426  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5427  *  Return value:
5428  *  int  0 on success
5429  */
5430
5431 static int s2io_ethtool_geeprom(struct net_device *dev,
5432                          struct ethtool_eeprom *eeprom, u8 * data_buf)
5433 {
5434         u32 i, valid;
5435         u64 data;
5436         struct s2io_nic *sp = dev->priv;
5437
5438         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5439
5440         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5441                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5442
5443         for (i = 0; i < eeprom->len; i += 4) {
5444                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5445                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5446                         return -EFAULT;
5447                 }
5448                 valid = INV(data);
5449                 memcpy((data_buf + i), &valid, 4);
5450         }
5451         return 0;
5452 }
5453
5454 /**
5455  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5456  *  @sp : private member of the device structure, which is a pointer to the
5457  *  s2io_nic structure.
5458  *  @eeprom : pointer to the user level structure provided by ethtool,
5459  *  containing all relevant information.
5460  *  @data_buf ; user defined value to be written into Eeprom.
5461  *  Description:
5462  *  Tries to write the user provided value in the Eeprom, at the offset
5463  *  given by the user.
5464  *  Return value:
5465  *  0 on success, -EFAULT on failure.
5466  */
5467
5468 static int s2io_ethtool_seeprom(struct net_device *dev,
5469                                 struct ethtool_eeprom *eeprom,
5470                                 u8 * data_buf)
5471 {
5472         int len = eeprom->len, cnt = 0;
5473         u64 valid = 0, data;
5474         struct s2io_nic *sp = dev->priv;
5475
5476         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5477                 DBG_PRINT(ERR_DBG,
5478                           "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5479                 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5480                           eeprom->magic);
5481                 return -EFAULT;
5482         }
5483
5484         while (len) {
5485                 data = (u32) data_buf[cnt] & 0x000000FF;
5486                 if (data) {
5487                         valid = (u32) (data << 24);
5488                 } else
5489                         valid = data;
5490
5491                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5492                         DBG_PRINT(ERR_DBG,
5493                                   "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5494                         DBG_PRINT(ERR_DBG,
5495                                   "write into the specified offset\n");
5496                         return -EFAULT;
5497                 }
5498                 cnt++;
5499                 len--;
5500         }
5501
5502         return 0;
5503 }
5504
5505 /**
5506  * s2io_register_test - reads and writes into all clock domains.
5507  * @sp : private member of the device structure, which is a pointer to the
5508  * s2io_nic structure.
5509  * @data : variable that returns the result of each of the test conducted b
5510  * by the driver.
5511  * Description:
5512  * Read and write into all clock domains. The NIC has 3 clock domains,
5513  * see that registers in all the three regions are accessible.
5514  * Return value:
5515  * 0 on success.
5516  */
5517
5518 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5519 {
5520         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5521         u64 val64 = 0, exp_val;
5522         int fail = 0;
5523
5524         val64 = readq(&bar0->pif_rd_swapper_fb);
5525         if (val64 != 0x123456789abcdefULL) {
5526                 fail = 1;
5527                 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5528         }
5529
5530         val64 = readq(&bar0->rmac_pause_cfg);
5531         if (val64 != 0xc000ffff00000000ULL) {
5532                 fail = 1;
5533                 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5534         }
5535
5536         val64 = readq(&bar0->rx_queue_cfg);
5537         if (sp->device_type == XFRAME_II_DEVICE)
5538                 exp_val = 0x0404040404040404ULL;
5539         else
5540                 exp_val = 0x0808080808080808ULL;
5541         if (val64 != exp_val) {
5542                 fail = 1;
5543                 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5544         }
5545
5546         val64 = readq(&bar0->xgxs_efifo_cfg);
5547         if (val64 != 0x000000001923141EULL) {
5548                 fail = 1;
5549                 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5550         }
5551
5552         val64 = 0x5A5A5A5A5A5A5A5AULL;
5553         writeq(val64, &bar0->xmsi_data);
5554         val64 = readq(&bar0->xmsi_data);
5555         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5556                 fail = 1;
5557                 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5558         }
5559
5560         val64 = 0xA5A5A5A5A5A5A5A5ULL;
5561         writeq(val64, &bar0->xmsi_data);
5562         val64 = readq(&bar0->xmsi_data);
5563         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5564                 fail = 1;
5565                 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5566         }
5567
5568         *data = fail;
5569         return fail;
5570 }
5571
5572 /**
5573  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5574  * @sp : private member of the device structure, which is a pointer to the
5575  * s2io_nic structure.
5576  * @data:variable that returns the result of each of the test conducted by
5577  * the driver.
5578  * Description:
5579  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5580  * register.
5581  * Return value:
5582  * 0 on success.
5583  */
5584
5585 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5586 {
5587         int fail = 0;
5588         u64 ret_data, org_4F0, org_7F0;
5589         u8 saved_4F0 = 0, saved_7F0 = 0;
5590         struct net_device *dev = sp->dev;
5591
5592         /* Test Write Error at offset 0 */
5593         /* Note that SPI interface allows write access to all areas
5594          * of EEPROM. Hence doing all negative testing only for Xframe I.
5595          */
5596         if (sp->device_type == XFRAME_I_DEVICE)
5597                 if (!write_eeprom(sp, 0, 0, 3))
5598                         fail = 1;
5599
5600         /* Save current values at offsets 0x4F0 and 0x7F0 */
5601         if (!read_eeprom(sp, 0x4F0, &org_4F0))
5602                 saved_4F0 = 1;
5603         if (!read_eeprom(sp, 0x7F0, &org_7F0))
5604                 saved_7F0 = 1;
5605
5606         /* Test Write at offset 4f0 */
5607         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5608                 fail = 1;
5609         if (read_eeprom(sp, 0x4F0, &ret_data))
5610                 fail = 1;
5611
5612         if (ret_data != 0x012345) {
5613                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5614                         "Data written %llx Data read %llx\n",
5615                         dev->name, (unsigned long long)0x12345,
5616                         (unsigned long long)ret_data);
5617                 fail = 1;
5618         }
5619
5620         /* Reset the EEPROM data go FFFF */
5621         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5622
5623         /* Test Write Request Error at offset 0x7c */
5624         if (sp->device_type == XFRAME_I_DEVICE)
5625                 if (!write_eeprom(sp, 0x07C, 0, 3))
5626                         fail = 1;
5627
5628         /* Test Write Request at offset 0x7f0 */
5629         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5630                 fail = 1;
5631         if (read_eeprom(sp, 0x7F0, &ret_data))
5632                 fail = 1;
5633
5634         if (ret_data != 0x012345) {
5635                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5636                         "Data written %llx Data read %llx\n",
5637                         dev->name, (unsigned long long)0x12345,
5638                         (unsigned long long)ret_data);
5639                 fail = 1;
5640         }
5641
5642         /* Reset the EEPROM data go FFFF */
5643         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5644
5645         if (sp->device_type == XFRAME_I_DEVICE) {
5646                 /* Test Write Error at offset 0x80 */
5647                 if (!write_eeprom(sp, 0x080, 0, 3))
5648                         fail = 1;
5649
5650                 /* Test Write Error at offset 0xfc */
5651                 if (!write_eeprom(sp, 0x0FC, 0, 3))
5652                         fail = 1;
5653
5654                 /* Test Write Error at offset 0x100 */
5655                 if (!write_eeprom(sp, 0x100, 0, 3))
5656                         fail = 1;
5657
5658                 /* Test Write Error at offset 4ec */
5659                 if (!write_eeprom(sp, 0x4EC, 0, 3))
5660                         fail = 1;
5661         }
5662
5663         /* Restore values at offsets 0x4F0 and 0x7F0 */
5664         if (saved_4F0)
5665                 write_eeprom(sp, 0x4F0, org_4F0, 3);
5666         if (saved_7F0)
5667                 write_eeprom(sp, 0x7F0, org_7F0, 3);
5668
5669         *data = fail;
5670         return fail;
5671 }
5672
5673 /**
5674  * s2io_bist_test - invokes the MemBist test of the card .
5675  * @sp : private member of the device structure, which is a pointer to the
5676  * s2io_nic structure.
5677  * @data:variable that returns the result of each of the test conducted by
5678  * the driver.
5679  * Description:
5680  * This invokes the MemBist test of the card. We give around
5681  * 2 secs time for the Test to complete. If it's still not complete
5682  * within this peiod, we consider that the test failed.
5683  * Return value:
5684  * 0 on success and -1 on failure.
5685  */
5686
5687 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
5688 {
5689         u8 bist = 0;
5690         int cnt = 0, ret = -1;
5691
5692         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5693         bist |= PCI_BIST_START;
5694         pci_write_config_word(sp->pdev, PCI_BIST, bist);
5695
5696         while (cnt < 20) {
5697                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5698                 if (!(bist & PCI_BIST_START)) {
5699                         *data = (bist & PCI_BIST_CODE_MASK);
5700                         ret = 0;
5701                         break;
5702                 }
5703                 msleep(100);
5704                 cnt++;
5705         }
5706
5707         return ret;
5708 }
5709
5710 /**
5711  * s2io-link_test - verifies the link state of the nic
5712  * @sp ; private member of the device structure, which is a pointer to the
5713  * s2io_nic structure.
5714  * @data: variable that returns the result of each of the test conducted by
5715  * the driver.
5716  * Description:
5717  * The function verifies the link state of the NIC and updates the input
5718  * argument 'data' appropriately.
5719  * Return value:
5720  * 0 on success.
5721  */
5722
5723 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
5724 {
5725         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5726         u64 val64;
5727
5728         val64 = readq(&bar0->adapter_status);
5729         if(!(LINK_IS_UP(val64)))
5730                 *data = 1;
5731         else
5732                 *data = 0;
5733
5734         return *data;
5735 }
5736
5737 /**
5738  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5739  * @sp - private member of the device structure, which is a pointer to the
5740  * s2io_nic structure.
5741  * @data - variable that returns the result of each of the test
5742  * conducted by the driver.
5743  * Description:
5744  *  This is one of the offline test that tests the read and write
5745  *  access to the RldRam chip on the NIC.
5746  * Return value:
5747  *  0 on success.
5748  */
5749
5750 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
5751 {
5752         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5753         u64 val64;
5754         int cnt, iteration = 0, test_fail = 0;
5755
5756         val64 = readq(&bar0->adapter_control);
5757         val64 &= ~ADAPTER_ECC_EN;
5758         writeq(val64, &bar0->adapter_control);
5759
5760         val64 = readq(&bar0->mc_rldram_test_ctrl);
5761         val64 |= MC_RLDRAM_TEST_MODE;
5762         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5763
5764         val64 = readq(&bar0->mc_rldram_mrs);
5765         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5766         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5767
5768         val64 |= MC_RLDRAM_MRS_ENABLE;
5769         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5770
5771         while (iteration < 2) {
5772                 val64 = 0x55555555aaaa0000ULL;
5773                 if (iteration == 1) {
5774                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5775                 }
5776                 writeq(val64, &bar0->mc_rldram_test_d0);
5777
5778                 val64 = 0xaaaa5a5555550000ULL;
5779                 if (iteration == 1) {
5780                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5781                 }
5782                 writeq(val64, &bar0->mc_rldram_test_d1);
5783
5784                 val64 = 0x55aaaaaaaa5a0000ULL;
5785                 if (iteration == 1) {
5786                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5787                 }
5788                 writeq(val64, &bar0->mc_rldram_test_d2);
5789
5790                 val64 = (u64) (0x0000003ffffe0100ULL);
5791                 writeq(val64, &bar0->mc_rldram_test_add);
5792
5793                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5794                         MC_RLDRAM_TEST_GO;
5795                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5796
5797                 for (cnt = 0; cnt < 5; cnt++) {
5798                         val64 = readq(&bar0->mc_rldram_test_ctrl);
5799                         if (val64 & MC_RLDRAM_TEST_DONE)
5800                                 break;
5801                         msleep(200);
5802                 }
5803
5804                 if (cnt == 5)
5805                         break;
5806
5807                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5808                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5809
5810                 for (cnt = 0; cnt < 5; cnt++) {
5811                         val64 = readq(&bar0->mc_rldram_test_ctrl);
5812                         if (val64 & MC_RLDRAM_TEST_DONE)
5813                                 break;
5814                         msleep(500);
5815                 }
5816
5817                 if (cnt == 5)
5818                         break;
5819
5820                 val64 = readq(&bar0->mc_rldram_test_ctrl);
5821                 if (!(val64 & MC_RLDRAM_TEST_PASS))
5822                         test_fail = 1;
5823
5824                 iteration++;
5825         }
5826
5827         *data = test_fail;
5828
5829         /* Bring the adapter out of test mode */
5830         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5831
5832         return test_fail;
5833 }
5834
5835 /**
5836  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5837  *  @sp : private member of the device structure, which is a pointer to the
5838  *  s2io_nic structure.
5839  *  @ethtest : pointer to a ethtool command specific structure that will be
5840  *  returned to the user.
5841  *  @data : variable that returns the result of each of the test
5842  * conducted by the driver.
5843  * Description:
5844  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
5845  *  the health of the card.
5846  * Return value:
5847  *  void
5848  */
5849
5850 static void s2io_ethtool_test(struct net_device *dev,
5851                               struct ethtool_test *ethtest,
5852                               uint64_t * data)
5853 {
5854         struct s2io_nic *sp = dev->priv;
5855         int orig_state = netif_running(sp->dev);
5856
5857         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5858                 /* Offline Tests. */
5859                 if (orig_state)
5860                         s2io_close(sp->dev);
5861
5862                 if (s2io_register_test(sp, &data[0]))
5863                         ethtest->flags |= ETH_TEST_FL_FAILED;
5864
5865                 s2io_reset(sp);
5866
5867                 if (s2io_rldram_test(sp, &data[3]))
5868                         ethtest->flags |= ETH_TEST_FL_FAILED;
5869
5870                 s2io_reset(sp);
5871
5872                 if (s2io_eeprom_test(sp, &data[1]))
5873                         ethtest->flags |= ETH_TEST_FL_FAILED;
5874
5875                 if (s2io_bist_test(sp, &data[4]))
5876                         ethtest->flags |= ETH_TEST_FL_FAILED;
5877
5878                 if (orig_state)
5879                         s2io_open(sp->dev);
5880
5881                 data[2] = 0;
5882         } else {
5883                 /* Online Tests. */
5884                 if (!orig_state) {
5885                         DBG_PRINT(ERR_DBG,
5886                                   "%s: is not up, cannot run test\n",
5887                                   dev->name);
5888                         data[0] = -1;
5889                         data[1] = -1;
5890                         data[2] = -1;
5891                         data[3] = -1;
5892                         data[4] = -1;
5893                 }
5894
5895                 if (s2io_link_test(sp, &data[2]))
5896                         ethtest->flags |= ETH_TEST_FL_FAILED;
5897
5898                 data[0] = 0;
5899                 data[1] = 0;
5900                 data[3] = 0;
5901                 data[4] = 0;
5902         }
5903 }
5904
5905 static void s2io_get_ethtool_stats(struct net_device *dev,
5906                                    struct ethtool_stats *estats,
5907                                    u64 * tmp_stats)
5908 {
5909         int i = 0, k;
5910         struct s2io_nic *sp = dev->priv;
5911         struct stat_block *stat_info = sp->mac_control.stats_info;
5912
5913         s2io_updt_stats(sp);
5914         tmp_stats[i++] =
5915                 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32  |
5916                 le32_to_cpu(stat_info->tmac_frms);
5917         tmp_stats[i++] =
5918                 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5919                 le32_to_cpu(stat_info->tmac_data_octets);
5920         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5921         tmp_stats[i++] =
5922                 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5923                 le32_to_cpu(stat_info->tmac_mcst_frms);
5924         tmp_stats[i++] =
5925                 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5926                 le32_to_cpu(stat_info->tmac_bcst_frms);
5927         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5928         tmp_stats[i++] =
5929                 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5930                 le32_to_cpu(stat_info->tmac_ttl_octets);
5931         tmp_stats[i++] =
5932                 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5933                 le32_to_cpu(stat_info->tmac_ucst_frms);
5934         tmp_stats[i++] =
5935                 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5936                 le32_to_cpu(stat_info->tmac_nucst_frms);
5937         tmp_stats[i++] =
5938                 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5939                 le32_to_cpu(stat_info->tmac_any_err_frms);
5940         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5941         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5942         tmp_stats[i++] =
5943                 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5944                 le32_to_cpu(stat_info->tmac_vld_ip);
5945         tmp_stats[i++] =
5946                 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5947                 le32_to_cpu(stat_info->tmac_drop_ip);
5948         tmp_stats[i++] =
5949                 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5950                 le32_to_cpu(stat_info->tmac_icmp);
5951         tmp_stats[i++] =
5952                 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5953                 le32_to_cpu(stat_info->tmac_rst_tcp);
5954         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5955         tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5956                 le32_to_cpu(stat_info->tmac_udp);
5957         tmp_stats[i++] =
5958                 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5959                 le32_to_cpu(stat_info->rmac_vld_frms);
5960         tmp_stats[i++] =
5961                 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5962                 le32_to_cpu(stat_info->rmac_data_octets);
5963         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5964         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5965         tmp_stats[i++] =
5966                 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5967                 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5968         tmp_stats[i++] =
5969                 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5970                 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5971         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5972         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5973         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5974         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5975         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5976         tmp_stats[i++] =
5977                 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5978                 le32_to_cpu(stat_info->rmac_ttl_octets);
5979         tmp_stats[i++] =
5980                 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5981                 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5982         tmp_stats[i++] =
5983                 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5984                  << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
5985         tmp_stats[i++] =
5986                 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5987                 le32_to_cpu(stat_info->rmac_discarded_frms);
5988         tmp_stats[i++] =
5989                 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5990                  << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5991         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5992         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
5993         tmp_stats[i++] =
5994                 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5995                 le32_to_cpu(stat_info->rmac_usized_frms);
5996         tmp_stats[i++] =
5997                 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5998                 le32_to_cpu(stat_info->rmac_osized_frms);
5999         tmp_stats[i++] =
6000                 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6001                 le32_to_cpu(stat_info->rmac_frag_frms);
6002         tmp_stats[i++] =
6003                 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6004                 le32_to_cpu(stat_info->rmac_jabber_frms);
6005         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6006         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6007         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6008         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6009         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6010         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6011         tmp_stats[i++] =
6012                 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
6013                 le32_to_cpu(stat_info->rmac_ip);
6014         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6015         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
6016         tmp_stats[i++] =
6017                 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
6018                 le32_to_cpu(stat_info->rmac_drop_ip);
6019         tmp_stats[i++] =
6020                 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
6021                 le32_to_cpu(stat_info->rmac_icmp);
6022         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
6023         tmp_stats[i++] =
6024                 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
6025                 le32_to_cpu(stat_info->rmac_udp);
6026         tmp_stats[i++] =
6027                 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6028                 le32_to_cpu(stat_info->rmac_err_drp_udp);
6029         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6030         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6031         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6032         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6033         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6034         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6035         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6036         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6037         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6038         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6039         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6040         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6041         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6042         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6043         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6044         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6045         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
6046         tmp_stats[i++] =
6047                 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6048                 le32_to_cpu(stat_info->rmac_pause_cnt);
6049         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6050         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
6051         tmp_stats[i++] =
6052                 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6053                 le32_to_cpu(stat_info->rmac_accepted_ip);
6054         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
6055         tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6056         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6057         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6058         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6059         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6060         tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6061         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6062         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6063         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6064         tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6065         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6066         tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6067         tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6068         tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6069         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6070         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6071         tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6072         tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
6073
6074         /* Enhanced statistics exist only for Hercules */
6075         if(sp->device_type == XFRAME_II_DEVICE) {
6076                 tmp_stats[i++] =
6077                                 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6078                 tmp_stats[i++] =
6079                                 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6080                 tmp_stats[i++] =
6081                                 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6082                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6083                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6084                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6085                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6086                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6087                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6088                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6089                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6090                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6091                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6092                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6093                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6094                 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6095         }
6096
6097         tmp_stats[i++] = 0;
6098         tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6099         tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
6100         tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6101         tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6102         tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6103         tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
6104         for (k = 0; k < MAX_RX_RINGS; k++)
6105                 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
6106         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6107         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6108         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6109         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6110         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6111         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6112         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6113         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6114         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6115         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6116         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6117         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
6118         tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6119         tmp_stats[i++] = stat_info->sw_stat.sending_both;
6120         tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6121         tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
6122         if (stat_info->sw_stat.num_aggregations) {
6123                 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6124                 int count = 0;
6125                 /*
6126                  * Since 64-bit divide does not work on all platforms,
6127                  * do repeated subtraction.
6128                  */
6129                 while (tmp >= stat_info->sw_stat.num_aggregations) {
6130                         tmp -= stat_info->sw_stat.num_aggregations;
6131                         count++;
6132                 }
6133                 tmp_stats[i++] = count;
6134         }
6135         else
6136                 tmp_stats[i++] = 0;
6137         tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
6138         tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
6139         tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
6140         tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6141         tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6142         tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6143         tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6144         tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6145         tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6146
6147         tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6148         tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6149         tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6150         tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6151         tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6152
6153         tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6154         tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6155         tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6156         tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6157         tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6158         tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6159         tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6160         tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6161         tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
6162         tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6163         tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6164         tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6165         tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6166         tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6167         tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6168         tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6169         tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6170         tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6171         tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6172         tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6173         tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6174         tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6175         tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6176         tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6177         tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6178         tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
6179 }
6180
6181 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6182 {
6183         return (XENA_REG_SPACE);
6184 }
6185
6186
6187 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
6188 {
6189         struct s2io_nic *sp = dev->priv;
6190
6191         return (sp->rx_csum);
6192 }
6193
6194 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6195 {
6196         struct s2io_nic *sp = dev->priv;
6197
6198         if (data)
6199                 sp->rx_csum = 1;
6200         else
6201                 sp->rx_csum = 0;
6202
6203         return 0;
6204 }
6205
6206 static int s2io_get_eeprom_len(struct net_device *dev)
6207 {
6208         return (XENA_EEPROM_SPACE);
6209 }
6210
6211 static int s2io_get_sset_count(struct net_device *dev, int sset)
6212 {
6213         struct s2io_nic *sp = dev->priv;
6214
6215         switch (sset) {
6216         case ETH_SS_TEST:
6217                 return S2IO_TEST_LEN;
6218         case ETH_SS_STATS:
6219                 switch(sp->device_type) {
6220                 case XFRAME_I_DEVICE:
6221                         return XFRAME_I_STAT_LEN;
6222                 case XFRAME_II_DEVICE:
6223                         return XFRAME_II_STAT_LEN;
6224                 default:
6225                         return 0;
6226                 }
6227         default:
6228                 return -EOPNOTSUPP;
6229         }
6230 }
6231
6232 static void s2io_ethtool_get_strings(struct net_device *dev,
6233                                      u32 stringset, u8 * data)
6234 {
6235         int stat_size = 0;
6236         struct s2io_nic *sp = dev->priv;
6237
6238         switch (stringset) {
6239         case ETH_SS_TEST:
6240                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6241                 break;
6242         case ETH_SS_STATS:
6243                 stat_size = sizeof(ethtool_xena_stats_keys);
6244                 memcpy(data, &ethtool_xena_stats_keys,stat_size);
6245                 if(sp->device_type == XFRAME_II_DEVICE) {
6246                         memcpy(data + stat_size,
6247                                 &ethtool_enhanced_stats_keys,
6248                                 sizeof(ethtool_enhanced_stats_keys));
6249                         stat_size += sizeof(ethtool_enhanced_stats_keys);
6250                 }
6251
6252                 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6253                         sizeof(ethtool_driver_stats_keys));
6254         }
6255 }
6256
6257 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6258 {
6259         if (data)
6260                 dev->features |= NETIF_F_IP_CSUM;
6261         else
6262                 dev->features &= ~NETIF_F_IP_CSUM;
6263
6264         return 0;
6265 }
6266
6267 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6268 {
6269         return (dev->features & NETIF_F_TSO) != 0;
6270 }
6271 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6272 {
6273         if (data)
6274                 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6275         else
6276                 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6277
6278         return 0;
6279 }
6280
6281 static const struct ethtool_ops netdev_ethtool_ops = {
6282         .get_settings = s2io_ethtool_gset,
6283         .set_settings = s2io_ethtool_sset,
6284         .get_drvinfo = s2io_ethtool_gdrvinfo,
6285         .get_regs_len = s2io_ethtool_get_regs_len,
6286         .get_regs = s2io_ethtool_gregs,
6287         .get_link = ethtool_op_get_link,
6288         .get_eeprom_len = s2io_get_eeprom_len,
6289         .get_eeprom = s2io_ethtool_geeprom,
6290         .set_eeprom = s2io_ethtool_seeprom,
6291         .get_ringparam = s2io_ethtool_gringparam,
6292         .get_pauseparam = s2io_ethtool_getpause_data,
6293         .set_pauseparam = s2io_ethtool_setpause_data,
6294         .get_rx_csum = s2io_ethtool_get_rx_csum,
6295         .set_rx_csum = s2io_ethtool_set_rx_csum,
6296         .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6297         .set_sg = ethtool_op_set_sg,
6298         .get_tso = s2io_ethtool_op_get_tso,
6299         .set_tso = s2io_ethtool_op_set_tso,
6300         .set_ufo = ethtool_op_set_ufo,
6301         .self_test = s2io_ethtool_test,
6302         .get_strings = s2io_ethtool_get_strings,
6303         .phys_id = s2io_ethtool_idnic,
6304         .get_ethtool_stats = s2io_get_ethtool_stats,
6305         .get_sset_count = s2io_get_sset_count,
6306 };
6307
6308 /**
6309  *  s2io_ioctl - Entry point for the Ioctl
6310  *  @dev :  Device pointer.
6311  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
6312  *  a proprietary structure used to pass information to the driver.
6313  *  @cmd :  This is used to distinguish between the different commands that
6314  *  can be passed to the IOCTL functions.
6315  *  Description:
6316  *  Currently there are no special functionality supported in IOCTL, hence
6317  *  function always return EOPNOTSUPPORTED
6318  */
6319
6320 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6321 {
6322         return -EOPNOTSUPP;
6323 }
6324
6325 /**
6326  *  s2io_change_mtu - entry point to change MTU size for the device.
6327  *   @dev : device pointer.
6328  *   @new_mtu : the new MTU size for the device.
6329  *   Description: A driver entry point to change MTU size for the device.
6330  *   Before changing the MTU the device must be stopped.
6331  *  Return value:
6332  *   0 on success and an appropriate (-)ve integer as defined in errno.h
6333  *   file on failure.
6334  */
6335
6336 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6337 {
6338         struct s2io_nic *sp = dev->priv;
6339
6340         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6341                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6342                           dev->name);
6343                 return -EPERM;
6344         }
6345
6346         dev->mtu = new_mtu;
6347         if (netif_running(dev)) {
6348                 s2io_card_down(sp);
6349                 netif_stop_queue(dev);
6350                 if (s2io_card_up(sp)) {
6351                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6352                                   __FUNCTION__);
6353                 }
6354                 if (netif_queue_stopped(dev))
6355                         netif_wake_queue(dev);
6356         } else { /* Device is down */
6357                 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6358                 u64 val64 = new_mtu;
6359
6360                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6361         }
6362
6363         return 0;
6364 }
6365
6366 /**
6367  *  s2io_tasklet - Bottom half of the ISR.
6368  *  @dev_adr : address of the device structure in dma_addr_t format.
6369  *  Description:
6370  *  This is the tasklet or the bottom half of the ISR. This is
6371  *  an extension of the ISR which is scheduled by the scheduler to be run
6372  *  when the load on the CPU is low. All low priority tasks of the ISR can
6373  *  be pushed into the tasklet. For now the tasklet is used only to
6374  *  replenish the Rx buffers in the Rx buffer descriptors.
6375  *  Return value:
6376  *  void.
6377  */
6378
6379 static void s2io_tasklet(unsigned long dev_addr)
6380 {
6381         struct net_device *dev = (struct net_device *) dev_addr;
6382         struct s2io_nic *sp = dev->priv;
6383         int i, ret;
6384         struct mac_info *mac_control;
6385         struct config_param *config;
6386
6387         mac_control = &sp->mac_control;
6388         config = &sp->config;
6389
6390         if (!TASKLET_IN_USE) {
6391                 for (i = 0; i < config->rx_ring_num; i++) {
6392                         ret = fill_rx_buffers(sp, i);
6393                         if (ret == -ENOMEM) {
6394                                 DBG_PRINT(INFO_DBG, "%s: Out of ",
6395                                           dev->name);
6396                                 DBG_PRINT(INFO_DBG, "memory in tasklet\n");
6397                                 break;
6398                         } else if (ret == -EFILL) {
6399                                 DBG_PRINT(INFO_DBG,
6400                                           "%s: Rx Ring %d is full\n",
6401                                           dev->name, i);
6402                                 break;
6403                         }
6404                 }
6405                 clear_bit(0, (&sp->tasklet_status));
6406         }
6407 }
6408
6409 /**
6410  * s2io_set_link - Set the LInk status
6411  * @data: long pointer to device private structue
6412  * Description: Sets the link status for the adapter
6413  */
6414
6415 static void s2io_set_link(struct work_struct *work)
6416 {
6417         struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6418         struct net_device *dev = nic->dev;
6419         struct XENA_dev_config __iomem *bar0 = nic->bar0;
6420         register u64 val64;
6421         u16 subid;
6422
6423         rtnl_lock();
6424
6425         if (!netif_running(dev))
6426                 goto out_unlock;
6427
6428         if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6429                 /* The card is being reset, no point doing anything */
6430                 goto out_unlock;
6431         }
6432
6433         subid = nic->pdev->subsystem_device;
6434         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6435                 /*
6436                  * Allow a small delay for the NICs self initiated
6437                  * cleanup to complete.
6438                  */
6439                 msleep(100);
6440         }
6441
6442         val64 = readq(&bar0->adapter_status);
6443         if (LINK_IS_UP(val64)) {
6444                 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6445                         if (verify_xena_quiescence(nic)) {
6446                                 val64 = readq(&bar0->adapter_control);
6447                                 val64 |= ADAPTER_CNTL_EN;
6448                                 writeq(val64, &bar0->adapter_control);
6449                                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6450                                         nic->device_type, subid)) {
6451                                         val64 = readq(&bar0->gpio_control);
6452                                         val64 |= GPIO_CTRL_GPIO_0;
6453                                         writeq(val64, &bar0->gpio_control);
6454                                         val64 = readq(&bar0->gpio_control);
6455                                 } else {
6456                                         val64 |= ADAPTER_LED_ON;
6457                                         writeq(val64, &bar0->adapter_control);
6458                                 }
6459                                 nic->device_enabled_once = TRUE;
6460                         } else {
6461                                 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6462                                 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6463                                 netif_stop_queue(dev);
6464                         }
6465                 }
6466                 val64 = readq(&bar0->adapter_control);
6467                 val64 |= ADAPTER_LED_ON;
6468                 writeq(val64, &bar0->adapter_control);
6469                 s2io_link(nic, LINK_UP);
6470         } else {
6471                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6472                                                       subid)) {
6473                         val64 = readq(&bar0->gpio_control);
6474                         val64 &= ~GPIO_CTRL_GPIO_0;
6475                         writeq(val64, &bar0->gpio_control);
6476                         val64 = readq(&bar0->gpio_control);
6477                 }
6478                 /* turn off LED */
6479                 val64 = readq(&bar0->adapter_control);
6480                 val64 = val64 &(~ADAPTER_LED_ON);
6481                 writeq(val64, &bar0->adapter_control);
6482                 s2io_link(nic, LINK_DOWN);
6483         }
6484         clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6485
6486 out_unlock:
6487         rtnl_unlock();
6488 }
6489
6490 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6491                                 struct buffAdd *ba,
6492                                 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6493                                 u64 *temp2, int size)
6494 {
6495         struct net_device *dev = sp->dev;
6496         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6497
6498         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6499                 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6500                 /* allocate skb */
6501                 if (*skb) {
6502                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6503                         /*
6504                          * As Rx frame are not going to be processed,
6505                          * using same mapped address for the Rxd
6506                          * buffer pointer
6507                          */
6508                         rxdp1->Buffer0_ptr = *temp0;
6509                 } else {
6510                         *skb = dev_alloc_skb(size);
6511                         if (!(*skb)) {
6512                                 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6513                                 DBG_PRINT(INFO_DBG, "memory to allocate ");
6514                                 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6515                                 sp->mac_control.stats_info->sw_stat. \
6516                                         mem_alloc_fail_cnt++;
6517                                 return -ENOMEM ;
6518                         }
6519                         sp->mac_control.stats_info->sw_stat.mem_allocated
6520                                 += (*skb)->truesize;
6521                         /* storing the mapped addr in a temp variable
6522                          * such it will be used for next rxd whose
6523                          * Host Control is NULL
6524                          */
6525                         rxdp1->Buffer0_ptr = *temp0 =
6526                                 pci_map_single( sp->pdev, (*skb)->data,
6527                                         size - NET_IP_ALIGN,
6528                                         PCI_DMA_FROMDEVICE);
6529                         if( (rxdp1->Buffer0_ptr == 0) ||
6530                                 (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
6531                                 goto memalloc_failed;
6532                         }
6533                         rxdp->Host_Control = (unsigned long) (*skb);
6534                 }
6535         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6536                 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6537                 /* Two buffer Mode */
6538                 if (*skb) {
6539                         rxdp3->Buffer2_ptr = *temp2;
6540                         rxdp3->Buffer0_ptr = *temp0;
6541                         rxdp3->Buffer1_ptr = *temp1;
6542                 } else {
6543                         *skb = dev_alloc_skb(size);
6544                         if (!(*skb)) {
6545                                 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6546                                 DBG_PRINT(INFO_DBG, "memory to allocate ");
6547                                 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6548                                 sp->mac_control.stats_info->sw_stat. \
6549                                         mem_alloc_fail_cnt++;
6550                                 return -ENOMEM;
6551                         }
6552                         sp->mac_control.stats_info->sw_stat.mem_allocated
6553                                 += (*skb)->truesize;
6554                         rxdp3->Buffer2_ptr = *temp2 =
6555                                 pci_map_single(sp->pdev, (*skb)->data,
6556                                                dev->mtu + 4,
6557                                                PCI_DMA_FROMDEVICE);
6558                         if( (rxdp3->Buffer2_ptr == 0) ||
6559                                 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
6560                                 goto memalloc_failed;
6561                         }
6562                         rxdp3->Buffer0_ptr = *temp0 =
6563                                 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6564                                                 PCI_DMA_FROMDEVICE);
6565                         if( (rxdp3->Buffer0_ptr == 0) ||
6566                                 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
6567                                 pci_unmap_single (sp->pdev,
6568                                         (dma_addr_t)rxdp3->Buffer2_ptr,
6569                                         dev->mtu + 4, PCI_DMA_FROMDEVICE);
6570                                 goto memalloc_failed;
6571                         }
6572                         rxdp->Host_Control = (unsigned long) (*skb);
6573
6574                         /* Buffer-1 will be dummy buffer not used */
6575                         rxdp3->Buffer1_ptr = *temp1 =
6576                                 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6577                                                 PCI_DMA_FROMDEVICE);
6578                         if( (rxdp3->Buffer1_ptr == 0) ||
6579                                 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
6580                                 pci_unmap_single (sp->pdev,
6581                                         (dma_addr_t)rxdp3->Buffer0_ptr,
6582                                         BUF0_LEN, PCI_DMA_FROMDEVICE);
6583                                 pci_unmap_single (sp->pdev,
6584                                         (dma_addr_t)rxdp3->Buffer2_ptr,
6585                                         dev->mtu + 4, PCI_DMA_FROMDEVICE);
6586                                 goto memalloc_failed;
6587                         }
6588                 }
6589         }
6590         return 0;
6591         memalloc_failed:
6592                 stats->pci_map_fail_cnt++;
6593                 stats->mem_freed += (*skb)->truesize;
6594                 dev_kfree_skb(*skb);
6595                 return -ENOMEM;
6596 }
6597
6598 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6599                                 int size)
6600 {
6601         struct net_device *dev = sp->dev;
6602         if (sp->rxd_mode == RXD_MODE_1) {
6603                 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6604         } else if (sp->rxd_mode == RXD_MODE_3B) {
6605                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6606                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6607                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6608         }
6609 }
6610
6611 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6612 {
6613         int i, j, k, blk_cnt = 0, size;
6614         struct mac_info * mac_control = &sp->mac_control;
6615         struct config_param *config = &sp->config;
6616         struct net_device *dev = sp->dev;
6617         struct RxD_t *rxdp = NULL;
6618         struct sk_buff *skb = NULL;
6619         struct buffAdd *ba = NULL;
6620         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6621
6622         /* Calculate the size based on ring mode */
6623         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6624                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6625         if (sp->rxd_mode == RXD_MODE_1)
6626                 size += NET_IP_ALIGN;
6627         else if (sp->rxd_mode == RXD_MODE_3B)
6628                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6629
6630         for (i = 0; i < config->rx_ring_num; i++) {
6631                 blk_cnt = config->rx_cfg[i].num_rxd /
6632                         (rxd_count[sp->rxd_mode] +1);
6633
6634                 for (j = 0; j < blk_cnt; j++) {
6635                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6636                                 rxdp = mac_control->rings[i].
6637                                         rx_blocks[j].rxds[k].virt_addr;
6638                                 if(sp->rxd_mode == RXD_MODE_3B)
6639                                         ba = &mac_control->rings[i].ba[j][k];
6640                                 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6641                                                        &skb,(u64 *)&temp0_64,
6642                                                        (u64 *)&temp1_64,
6643                                                        (u64 *)&temp2_64,
6644                                                         size) == ENOMEM) {
6645                                         return 0;
6646                                 }
6647
6648                                 set_rxd_buffer_size(sp, rxdp, size);
6649                                 wmb();
6650                                 /* flip the Ownership bit to Hardware */
6651                                 rxdp->Control_1 |= RXD_OWN_XENA;
6652                         }
6653                 }
6654         }
6655         return 0;
6656
6657 }
6658
6659 static int s2io_add_isr(struct s2io_nic * sp)
6660 {
6661         int ret = 0;
6662         struct net_device *dev = sp->dev;
6663         int err = 0;
6664
6665         if (sp->config.intr_type == MSI_X)
6666                 ret = s2io_enable_msi_x(sp);
6667         if (ret) {
6668                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6669                 sp->config.intr_type = INTA;
6670         }
6671
6672         /* Store the values of the MSIX table in the struct s2io_nic structure */
6673         store_xmsi_data(sp);
6674
6675         /* After proper initialization of H/W, register ISR */
6676         if (sp->config.intr_type == MSI_X) {
6677                 int i, msix_tx_cnt=0,msix_rx_cnt=0;
6678
6679                 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6680                         if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6681                                 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6682                                         dev->name, i);
6683                                 err = request_irq(sp->entries[i].vector,
6684                                           s2io_msix_fifo_handle, 0, sp->desc[i],
6685                                                   sp->s2io_entries[i].arg);
6686                                 /* If either data or addr is zero print it */
6687                                 if(!(sp->msix_info[i].addr &&
6688                                         sp->msix_info[i].data)) {
6689                                         DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6690                                                 "Data:0x%lx\n",sp->desc[i],
6691                                                 (unsigned long long)
6692                                                 sp->msix_info[i].addr,
6693                                                 (unsigned long)
6694                                                 ntohl(sp->msix_info[i].data));
6695                                 } else {
6696                                         msix_tx_cnt++;
6697                                 }
6698                         } else {
6699                                 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6700                                         dev->name, i);
6701                                 err = request_irq(sp->entries[i].vector,
6702                                           s2io_msix_ring_handle, 0, sp->desc[i],
6703                                                   sp->s2io_entries[i].arg);
6704                                 /* If either data or addr is zero print it */
6705                                 if(!(sp->msix_info[i].addr &&
6706                                         sp->msix_info[i].data)) {
6707                                         DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6708                                                 "Data:0x%lx\n",sp->desc[i],
6709                                                 (unsigned long long)
6710                                                 sp->msix_info[i].addr,
6711                                                 (unsigned long)
6712                                                 ntohl(sp->msix_info[i].data));
6713                                 } else {
6714                                         msix_rx_cnt++;
6715                                 }
6716                         }
6717                         if (err) {
6718                                 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6719                                           "failed\n", dev->name, i);
6720                                 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6721                                 return -1;
6722                         }
6723                         sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6724                 }
6725                 printk("MSI-X-TX %d entries enabled\n",msix_tx_cnt);
6726                 printk("MSI-X-RX %d entries enabled\n",msix_rx_cnt);
6727         }
6728         if (sp->config.intr_type == INTA) {
6729                 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6730                                 sp->name, dev);
6731                 if (err) {
6732                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6733                                   dev->name);
6734                         return -1;
6735                 }
6736         }
6737         return 0;
6738 }
6739 static void s2io_rem_isr(struct s2io_nic * sp)
6740 {
6741         struct net_device *dev = sp->dev;
6742         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6743
6744         if (sp->config.intr_type == MSI_X) {
6745                 int i;
6746                 u16 msi_control;
6747
6748                 for (i=1; (sp->s2io_entries[i].in_use ==
6749                         MSIX_REGISTERED_SUCCESS); i++) {
6750                         int vector = sp->entries[i].vector;
6751                         void *arg = sp->s2io_entries[i].arg;
6752
6753                         synchronize_irq(vector);
6754                         free_irq(vector, arg);
6755                 }
6756
6757                 kfree(sp->entries);
6758                 stats->mem_freed +=
6759                         (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
6760                 kfree(sp->s2io_entries);
6761                 stats->mem_freed +=
6762                         (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
6763                 sp->entries = NULL;
6764                 sp->s2io_entries = NULL;
6765
6766                 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6767                 msi_control &= 0xFFFE; /* Disable MSI */
6768                 pci_write_config_word(sp->pdev, 0x42, msi_control);
6769
6770                 pci_disable_msix(sp->pdev);
6771         } else {
6772                 synchronize_irq(sp->pdev->irq);
6773                 free_irq(sp->pdev->irq, dev);
6774         }
6775 }
6776
6777 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
6778 {
6779         int cnt = 0;
6780         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6781         unsigned long flags;
6782         register u64 val64 = 0;
6783
6784         del_timer_sync(&sp->alarm_timer);
6785         /* If s2io_set_link task is executing, wait till it completes. */
6786         while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
6787                 msleep(50);
6788         }
6789         clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
6790
6791         /* disable Tx and Rx traffic on the NIC */
6792         if (do_io)
6793                 stop_nic(sp);
6794
6795         s2io_rem_isr(sp);
6796
6797         /* Kill tasklet. */
6798         tasklet_kill(&sp->task);
6799
6800         /* Check if the device is Quiescent and then Reset the NIC */
6801         while(do_io) {
6802                 /* As per the HW requirement we need to replenish the
6803                  * receive buffer to avoid the ring bump. Since there is
6804                  * no intention of processing the Rx frame at this pointwe are
6805                  * just settting the ownership bit of rxd in Each Rx
6806                  * ring to HW and set the appropriate buffer size
6807                  * based on the ring mode
6808                  */
6809                 rxd_owner_bit_reset(sp);
6810
6811                 val64 = readq(&bar0->adapter_status);
6812                 if (verify_xena_quiescence(sp)) {
6813                         if(verify_pcc_quiescent(sp, sp->device_enabled_once))
6814                         break;
6815                 }
6816
6817                 msleep(50);
6818                 cnt++;
6819                 if (cnt == 10) {
6820                         DBG_PRINT(ERR_DBG,
6821                                   "s2io_close:Device not Quiescent ");
6822                         DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6823                                   (unsigned long long) val64);
6824                         break;
6825                 }
6826         }
6827         if (do_io)
6828                 s2io_reset(sp);
6829
6830         spin_lock_irqsave(&sp->tx_lock, flags);
6831         /* Free all Tx buffers */
6832         free_tx_buffers(sp);
6833         spin_unlock_irqrestore(&sp->tx_lock, flags);
6834
6835         /* Free all Rx buffers */
6836         spin_lock_irqsave(&sp->rx_lock, flags);
6837         free_rx_buffers(sp);
6838         spin_unlock_irqrestore(&sp->rx_lock, flags);
6839
6840         clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
6841 }
6842
6843 static void s2io_card_down(struct s2io_nic * sp)
6844 {
6845         do_s2io_card_down(sp, 1);
6846 }
6847
6848 static int s2io_card_up(struct s2io_nic * sp)
6849 {
6850         int i, ret = 0;
6851         struct mac_info *mac_control;
6852         struct config_param *config;
6853         struct net_device *dev = (struct net_device *) sp->dev;
6854         u16 interruptible;
6855
6856         /* Initialize the H/W I/O registers */
6857         if (init_nic(sp) != 0) {
6858                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6859                           dev->name);
6860                 s2io_reset(sp);
6861                 return -ENODEV;
6862         }
6863
6864         /*
6865          * Initializing the Rx buffers. For now we are considering only 1
6866          * Rx ring and initializing buffers into 30 Rx blocks
6867          */
6868         mac_control = &sp->mac_control;
6869         config = &sp->config;
6870
6871         for (i = 0; i < config->rx_ring_num; i++) {
6872                 if ((ret = fill_rx_buffers(sp, i))) {
6873                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6874                                   dev->name);
6875                         s2io_reset(sp);
6876                         free_rx_buffers(sp);
6877                         return -ENOMEM;
6878                 }
6879                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6880                           atomic_read(&sp->rx_bufs_left[i]));
6881         }
6882         /* Maintain the state prior to the open */
6883         if (sp->promisc_flg)
6884                 sp->promisc_flg = 0;
6885         if (sp->m_cast_flg) {
6886                 sp->m_cast_flg = 0;
6887                 sp->all_multi_pos= 0;
6888         }
6889
6890         /* Setting its receive mode */
6891         s2io_set_multicast(dev);
6892
6893         if (sp->lro) {
6894                 /* Initialize max aggregatable pkts per session based on MTU */
6895                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6896                 /* Check if we can use(if specified) user provided value */
6897                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6898                         sp->lro_max_aggr_per_sess = lro_max_pkts;
6899         }
6900
6901         /* Enable Rx Traffic and interrupts on the NIC */
6902         if (start_nic(sp)) {
6903                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6904                 s2io_reset(sp);
6905                 free_rx_buffers(sp);
6906                 return -ENODEV;
6907         }
6908
6909         /* Add interrupt service routine */
6910         if (s2io_add_isr(sp) != 0) {
6911                 if (sp->config.intr_type == MSI_X)
6912                         s2io_rem_isr(sp);
6913                 s2io_reset(sp);
6914                 free_rx_buffers(sp);
6915                 return -ENODEV;
6916         }
6917
6918         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6919
6920         /* Enable tasklet for the device */
6921         tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6922
6923         /*  Enable select interrupts */
6924         en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
6925         if (sp->config.intr_type != INTA)
6926                 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6927         else {
6928                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6929                 interruptible |= TX_PIC_INTR;
6930                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6931         }
6932
6933         set_bit(__S2IO_STATE_CARD_UP, &sp->state);
6934         return 0;
6935 }
6936
6937 /**
6938  * s2io_restart_nic - Resets the NIC.
6939  * @data : long pointer to the device private structure
6940  * Description:
6941  * This function is scheduled to be run by the s2io_tx_watchdog
6942  * function after 0.5 secs to reset the NIC. The idea is to reduce
6943  * the run time of the watch dog routine which is run holding a
6944  * spin lock.
6945  */
6946
6947 static void s2io_restart_nic(struct work_struct *work)
6948 {
6949         struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
6950         struct net_device *dev = sp->dev;
6951
6952         rtnl_lock();
6953
6954         if (!netif_running(dev))
6955                 goto out_unlock;
6956
6957         s2io_card_down(sp);
6958         if (s2io_card_up(sp)) {
6959                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6960                           dev->name);
6961         }
6962         netif_wake_queue(dev);
6963         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6964                   dev->name);
6965 out_unlock:
6966         rtnl_unlock();
6967 }
6968
6969 /**
6970  *  s2io_tx_watchdog - Watchdog for transmit side.
6971  *  @dev : Pointer to net device structure
6972  *  Description:
6973  *  This function is triggered if the Tx Queue is stopped
6974  *  for a pre-defined amount of time when the Interface is still up.
6975  *  If the Interface is jammed in such a situation, the hardware is
6976  *  reset (by s2io_close) and restarted again (by s2io_open) to
6977  *  overcome any problem that might have been caused in the hardware.
6978  *  Return value:
6979  *  void
6980  */
6981
6982 static void s2io_tx_watchdog(struct net_device *dev)
6983 {
6984         struct s2io_nic *sp = dev->priv;
6985
6986         if (netif_carrier_ok(dev)) {
6987                 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
6988                 schedule_work(&sp->rst_timer_task);
6989                 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
6990         }
6991 }
6992
6993 /**
6994  *   rx_osm_handler - To perform some OS related operations on SKB.
6995  *   @sp: private member of the device structure,pointer to s2io_nic structure.
6996  *   @skb : the socket buffer pointer.
6997  *   @len : length of the packet
6998  *   @cksum : FCS checksum of the frame.
6999  *   @ring_no : the ring from which this RxD was extracted.
7000  *   Description:
7001  *   This function is called by the Rx interrupt serivce routine to perform
7002  *   some OS related operations on the SKB before passing it to the upper
7003  *   layers. It mainly checks if the checksum is OK, if so adds it to the
7004  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7005  *   to the upper layer. If the checksum is wrong, it increments the Rx
7006  *   packet error count, frees the SKB and returns error.
7007  *   Return value:
7008  *   SUCCESS on success and -1 on failure.
7009  */
7010 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7011 {
7012         struct s2io_nic *sp = ring_data->nic;
7013         struct net_device *dev = (struct net_device *) sp->dev;
7014         struct sk_buff *skb = (struct sk_buff *)
7015                 ((unsigned long) rxdp->Host_Control);
7016         int ring_no = ring_data->ring_no;
7017         u16 l3_csum, l4_csum;
7018         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7019         struct lro *lro;
7020         u8 err_mask;
7021
7022         skb->dev = dev;
7023
7024         if (err) {
7025                 /* Check for parity error */
7026                 if (err & 0x1) {
7027                         sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7028                 }
7029                 err_mask = err >> 48;
7030                 switch(err_mask) {
7031                         case 1:
7032                                 sp->mac_control.stats_info->sw_stat.
7033                                 rx_parity_err_cnt++;
7034                         break;
7035
7036                         case 2:
7037                                 sp->mac_control.stats_info->sw_stat.
7038                                 rx_abort_cnt++;
7039                         break;
7040
7041                         case 3:
7042                                 sp->mac_control.stats_info->sw_stat.
7043                                 rx_parity_abort_cnt++;
7044                         break;
7045
7046                         case 4:
7047                                 sp->mac_control.stats_info->sw_stat.
7048                                 rx_rda_fail_cnt++;
7049                         break;
7050
7051                         case 5:
7052                                 sp->mac_control.stats_info->sw_stat.
7053                                 rx_unkn_prot_cnt++;
7054                         break;
7055
7056                         case 6:
7057                                 sp->mac_control.stats_info->sw_stat.
7058                                 rx_fcs_err_cnt++;
7059                         break;
7060
7061                         case 7:
7062                                 sp->mac_control.stats_info->sw_stat.
7063                                 rx_buf_size_err_cnt++;
7064                         break;
7065
7066                         case 8:
7067                                 sp->mac_control.stats_info->sw_stat.
7068                                 rx_rxd_corrupt_cnt++;
7069                         break;
7070
7071                         case 15:
7072                                 sp->mac_control.stats_info->sw_stat.
7073                                 rx_unkn_err_cnt++;
7074                         break;
7075                 }
7076                 /*
7077                 * Drop the packet if bad transfer code. Exception being
7078                 * 0x5, which could be due to unsupported IPv6 extension header.
7079                 * In this case, we let stack handle the packet.
7080                 * Note that in this case, since checksum will be incorrect,
7081                 * stack will validate the same.
7082                 */
7083                 if (err_mask != 0x5) {
7084                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7085                                 dev->name, err_mask);
7086                         sp->stats.rx_crc_errors++;
7087                         sp->mac_control.stats_info->sw_stat.mem_freed
7088                                 += skb->truesize;
7089                         dev_kfree_skb(skb);
7090                         atomic_dec(&sp->rx_bufs_left[ring_no]);
7091                         rxdp->Host_Control = 0;
7092                         return 0;
7093                 }
7094         }
7095
7096         /* Updating statistics */
7097         sp->stats.rx_packets++;
7098         rxdp->Host_Control = 0;
7099         if (sp->rxd_mode == RXD_MODE_1) {
7100                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7101
7102                 sp->stats.rx_bytes += len;
7103                 skb_put(skb, len);
7104
7105         } else if (sp->rxd_mode == RXD_MODE_3B) {
7106                 int get_block = ring_data->rx_curr_get_info.block_index;
7107                 int get_off = ring_data->rx_curr_get_info.offset;
7108                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7109                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7110                 unsigned char *buff = skb_push(skb, buf0_len);
7111
7112                 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7113                 sp->stats.rx_bytes += buf0_len + buf2_len;
7114                 memcpy(buff, ba->ba_0, buf0_len);
7115                 skb_put(skb, buf2_len);
7116         }
7117
7118         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
7119             (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7120             (sp->rx_csum)) {
7121                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7122                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7123                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7124                         /*
7125                          * NIC verifies if the Checksum of the received
7126                          * frame is Ok or not and accordingly returns
7127                          * a flag in the RxD.
7128                          */
7129                         skb->ip_summed = CHECKSUM_UNNECESSARY;
7130                         if (sp->lro) {
7131                                 u32 tcp_len;
7132                                 u8 *tcp;
7133                                 int ret = 0;
7134
7135                                 ret = s2io_club_tcp_session(skb->data, &tcp,
7136                                                 &tcp_len, &lro, rxdp, sp);
7137                                 switch (ret) {
7138                                         case 3: /* Begin anew */
7139                                                 lro->parent = skb;
7140                                                 goto aggregate;
7141                                         case 1: /* Aggregate */
7142                                         {
7143                                                 lro_append_pkt(sp, lro,
7144                                                         skb, tcp_len);
7145                                                 goto aggregate;
7146                                         }
7147                                         case 4: /* Flush session */
7148                                         {
7149                                                 lro_append_pkt(sp, lro,
7150                                                         skb, tcp_len);
7151                                                 queue_rx_frame(lro->parent);
7152                                                 clear_lro_session(lro);
7153                                                 sp->mac_control.stats_info->
7154                                                     sw_stat.flush_max_pkts++;
7155                                                 goto aggregate;
7156                                         }
7157                                         case 2: /* Flush both */
7158                                                 lro->parent->data_len =
7159                                                         lro->frags_len;
7160                                                 sp->mac_control.stats_info->
7161                                                      sw_stat.sending_both++;
7162                                                 queue_rx_frame(lro->parent);
7163                                                 clear_lro_session(lro);
7164                                                 goto send_up;
7165                                         case 0: /* sessions exceeded */
7166                                         case -1: /* non-TCP or not
7167                                                   * L2 aggregatable
7168                                                   */
7169                                         case 5: /*
7170                                                  * First pkt in session not
7171                                                  * L3/L4 aggregatable
7172                                                  */
7173                                                 break;
7174                                         default:
7175                                                 DBG_PRINT(ERR_DBG,
7176                                                         "%s: Samadhana!!\n",
7177                                                          __FUNCTION__);
7178                                                 BUG();
7179                                 }
7180                         }
7181                 } else {
7182                         /*
7183                          * Packet with erroneous checksum, let the
7184                          * upper layers deal with it.
7185                          */
7186                         skb->ip_summed = CHECKSUM_NONE;
7187                 }
7188         } else {
7189                 skb->ip_summed = CHECKSUM_NONE;
7190         }
7191         sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7192         if (!sp->lro) {
7193                 skb->protocol = eth_type_trans(skb, dev);
7194                 if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
7195                         vlan_strip_flag)) {
7196                         /* Queueing the vlan frame to the upper layer */
7197                         if (napi)
7198                                 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
7199                                         RXD_GET_VLAN_TAG(rxdp->Control_2));
7200                         else
7201                                 vlan_hwaccel_rx(skb, sp->vlgrp,
7202                                         RXD_GET_VLAN_TAG(rxdp->Control_2));
7203                 } else {
7204                         if (napi)
7205                                 netif_receive_skb(skb);
7206                         else
7207                                 netif_rx(skb);
7208                 }
7209         } else {
7210 send_up:
7211                 queue_rx_frame(skb);
7212         }
7213         dev->last_rx = jiffies;
7214 aggregate:
7215         atomic_dec(&sp->rx_bufs_left[ring_no]);
7216         return SUCCESS;
7217 }
7218
7219 /**
7220  *  s2io_link - stops/starts the Tx queue.
7221  *  @sp : private member of the device structure, which is a pointer to the
7222  *  s2io_nic structure.
7223  *  @link : inidicates whether link is UP/DOWN.
7224  *  Description:
7225  *  This function stops/starts the Tx queue depending on whether the link
7226  *  status of the NIC is is down or up. This is called by the Alarm
7227  *  interrupt handler whenever a link change interrupt comes up.
7228  *  Return value:
7229  *  void.
7230  */
7231
7232 static void s2io_link(struct s2io_nic * sp, int link)
7233 {
7234         struct net_device *dev = (struct net_device *) sp->dev;
7235
7236         if (link != sp->last_link_state) {
7237                 if (link == LINK_DOWN) {
7238                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7239                         netif_carrier_off(dev);
7240                         if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7241                         sp->mac_control.stats_info->sw_stat.link_up_time =
7242                                 jiffies - sp->start_time;
7243                         sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7244                 } else {
7245                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7246                         if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7247                         sp->mac_control.stats_info->sw_stat.link_down_time =
7248                                 jiffies - sp->start_time;
7249                         sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7250                         netif_carrier_on(dev);
7251                 }
7252         }
7253         sp->last_link_state = link;
7254         sp->start_time = jiffies;
7255 }
7256
7257 /**
7258  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7259  *  @sp : private member of the device structure, which is a pointer to the
7260  *  s2io_nic structure.
7261  *  Description:
7262  *  This function initializes a few of the PCI and PCI-X configuration registers
7263  *  with recommended values.
7264  *  Return value:
7265  *  void
7266  */
7267
7268 static void s2io_init_pci(struct s2io_nic * sp)
7269 {
7270         u16 pci_cmd = 0, pcix_cmd = 0;
7271
7272         /* Enable Data Parity Error Recovery in PCI-X command register. */
7273         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7274                              &(pcix_cmd));
7275         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7276                               (pcix_cmd | 1));
7277         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7278                              &(pcix_cmd));
7279
7280         /* Set the PErr Response bit in PCI command register. */
7281         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7282         pci_write_config_word(sp->pdev, PCI_COMMAND,
7283                               (pci_cmd | PCI_COMMAND_PARITY));
7284         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7285 }
7286
7287 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
7288 {
7289         if ( tx_fifo_num > 8) {
7290                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
7291                          "supported\n");
7292                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
7293                 tx_fifo_num = 8;
7294         }
7295         if ( rx_ring_num > 8) {
7296                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
7297                          "supported\n");
7298                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
7299                 rx_ring_num = 8;
7300         }
7301         if (*dev_intr_type != INTA)
7302                 napi = 0;
7303
7304         if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7305                 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7306                           "Defaulting to INTA\n");
7307                 *dev_intr_type = INTA;
7308         }
7309
7310         if ((*dev_intr_type == MSI_X) &&
7311                         ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7312                         (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7313                 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7314                                         "Defaulting to INTA\n");
7315                 *dev_intr_type = INTA;
7316         }
7317
7318         if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7319                 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7320                 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7321                 rx_ring_mode = 1;
7322         }
7323         return SUCCESS;
7324 }
7325
7326 /**
7327  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7328  * or Traffic class respectively.
7329  * @nic: device peivate variable
7330  * Description: The function configures the receive steering to
7331  * desired receive ring.
7332  * Return Value:  SUCCESS on success and
7333  * '-1' on failure (endian settings incorrect).
7334  */
7335 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7336 {
7337         struct XENA_dev_config __iomem *bar0 = nic->bar0;
7338         register u64 val64 = 0;
7339
7340         if (ds_codepoint > 63)
7341                 return FAILURE;
7342
7343         val64 = RTS_DS_MEM_DATA(ring);
7344         writeq(val64, &bar0->rts_ds_mem_data);
7345
7346         val64 = RTS_DS_MEM_CTRL_WE |
7347                 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7348                 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7349
7350         writeq(val64, &bar0->rts_ds_mem_ctrl);
7351
7352         return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7353                                 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7354                                 S2IO_BIT_RESET);
7355 }
7356
7357 /**
7358  *  s2io_init_nic - Initialization of the adapter .
7359  *  @pdev : structure containing the PCI related information of the device.
7360  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7361  *  Description:
7362  *  The function initializes an adapter identified by the pci_dec structure.
7363  *  All OS related initialization including memory and device structure and
7364  *  initlaization of the device private variable is done. Also the swapper
7365  *  control register is initialized to enable read and write into the I/O
7366  *  registers of the device.
7367  *  Return value:
7368  *  returns 0 on success and negative on failure.
7369  */
7370
7371 static int __devinit
7372 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7373 {
7374         struct s2io_nic *sp;
7375         struct net_device *dev;
7376         int i, j, ret;
7377         int dma_flag = FALSE;
7378         u32 mac_up, mac_down;
7379         u64 val64 = 0, tmp64 = 0;
7380         struct XENA_dev_config __iomem *bar0 = NULL;
7381         u16 subid;
7382         struct mac_info *mac_control;
7383         struct config_param *config;
7384         int mode;
7385         u8 dev_intr_type = intr_type;
7386         DECLARE_MAC_BUF(mac);
7387
7388         if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
7389                 return ret;
7390
7391         if ((ret = pci_enable_device(pdev))) {
7392                 DBG_PRINT(ERR_DBG,
7393                           "s2io_init_nic: pci_enable_device failed\n");
7394                 return ret;
7395         }
7396
7397         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7398                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7399                 dma_flag = TRUE;
7400                 if (pci_set_consistent_dma_mask
7401                     (pdev, DMA_64BIT_MASK)) {
7402                         DBG_PRINT(ERR_DBG,
7403                                   "Unable to obtain 64bit DMA for \
7404                                         consistent allocations\n");
7405                         pci_disable_device(pdev);
7406                         return -ENOMEM;
7407                 }
7408         } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7409                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7410         } else {
7411                 pci_disable_device(pdev);
7412                 return -ENOMEM;
7413         }
7414         if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7415                 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7416                 pci_disable_device(pdev);
7417                 return -ENODEV;
7418         }
7419
7420         dev = alloc_etherdev(sizeof(struct s2io_nic));
7421         if (dev == NULL) {
7422                 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7423                 pci_disable_device(pdev);
7424                 pci_release_regions(pdev);
7425                 return -ENODEV;
7426         }
7427
7428         pci_set_master(pdev);
7429         pci_set_drvdata(pdev, dev);
7430         SET_NETDEV_DEV(dev, &pdev->dev);
7431
7432         /*  Private member variable initialized to s2io NIC structure */
7433         sp = dev->priv;
7434         memset(sp, 0, sizeof(struct s2io_nic));
7435         sp->dev = dev;
7436         sp->pdev = pdev;
7437         sp->high_dma_flag = dma_flag;
7438         sp->device_enabled_once = FALSE;
7439         if (rx_ring_mode == 1)
7440                 sp->rxd_mode = RXD_MODE_1;
7441         if (rx_ring_mode == 2)
7442                 sp->rxd_mode = RXD_MODE_3B;
7443
7444         sp->config.intr_type = dev_intr_type;
7445
7446         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7447                 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7448                 sp->device_type = XFRAME_II_DEVICE;
7449         else
7450                 sp->device_type = XFRAME_I_DEVICE;
7451
7452         sp->lro = lro;
7453
7454         /* Initialize some PCI/PCI-X fields of the NIC. */
7455         s2io_init_pci(sp);
7456
7457         /*
7458          * Setting the device configuration parameters.
7459          * Most of these parameters can be specified by the user during
7460          * module insertion as they are module loadable parameters. If
7461          * these parameters are not not specified during load time, they
7462          * are initialized with default values.
7463          */
7464         mac_control = &sp->mac_control;
7465         config = &sp->config;
7466
7467         config->napi = napi;
7468
7469         /* Tx side parameters. */
7470         config->tx_fifo_num = tx_fifo_num;
7471         for (i = 0; i < MAX_TX_FIFOS; i++) {
7472                 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7473                 config->tx_cfg[i].fifo_priority = i;
7474         }
7475
7476         /* mapping the QoS priority to the configured fifos */
7477         for (i = 0; i < MAX_TX_FIFOS; i++)
7478                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
7479
7480         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7481         for (i = 0; i < config->tx_fifo_num; i++) {
7482                 config->tx_cfg[i].f_no_snoop =
7483                     (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7484                 if (config->tx_cfg[i].fifo_len < 65) {
7485                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7486                         break;
7487                 }
7488         }
7489         /* + 2 because one Txd for skb->data and one Txd for UFO */
7490         config->max_txds = MAX_SKB_FRAGS + 2;
7491
7492         /* Rx side parameters. */
7493         config->rx_ring_num = rx_ring_num;
7494         for (i = 0; i < MAX_RX_RINGS; i++) {
7495                 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7496                     (rxd_count[sp->rxd_mode] + 1);
7497                 config->rx_cfg[i].ring_priority = i;
7498         }
7499
7500         for (i = 0; i < rx_ring_num; i++) {
7501                 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7502                 config->rx_cfg[i].f_no_snoop =
7503                     (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7504         }
7505
7506         /*  Setting Mac Control parameters */
7507         mac_control->rmac_pause_time = rmac_pause_time;
7508         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7509         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7510
7511
7512         /* Initialize Ring buffer parameters. */
7513         for (i = 0; i < config->rx_ring_num; i++)
7514                 atomic_set(&sp->rx_bufs_left[i], 0);
7515
7516         /*  initialize the shared memory used by the NIC and the host */
7517         if (init_shared_mem(sp)) {
7518                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7519                           dev->name);
7520                 ret = -ENOMEM;
7521                 goto mem_alloc_failed;
7522         }
7523
7524         sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7525                                      pci_resource_len(pdev, 0));
7526         if (!sp->bar0) {
7527                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7528                           dev->name);
7529                 ret = -ENOMEM;
7530                 goto bar0_remap_failed;
7531         }
7532
7533         sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7534                                      pci_resource_len(pdev, 2));
7535         if (!sp->bar1) {
7536                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7537                           dev->name);
7538                 ret = -ENOMEM;
7539                 goto bar1_remap_failed;
7540         }
7541
7542         dev->irq = pdev->irq;
7543         dev->base_addr = (unsigned long) sp->bar0;
7544
7545         /* Initializing the BAR1 address as the start of the FIFO pointer. */
7546         for (j = 0; j < MAX_TX_FIFOS; j++) {
7547                 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7548                     (sp->bar1 + (j * 0x00020000));
7549         }
7550
7551         /*  Driver entry points */
7552         dev->open = &s2io_open;
7553         dev->stop = &s2io_close;
7554         dev->hard_start_xmit = &s2io_xmit;
7555         dev->get_stats = &s2io_get_stats;
7556         dev->set_multicast_list = &s2io_set_multicast;
7557         dev->do_ioctl = &s2io_ioctl;
7558         dev->set_mac_address = &s2io_set_mac_addr;
7559         dev->change_mtu = &s2io_change_mtu;
7560         SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7561         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7562         dev->vlan_rx_register = s2io_vlan_rx_register;
7563
7564         /*
7565          * will use eth_mac_addr() for  dev->set_mac_address
7566          * mac address will be set every time dev->open() is called
7567          */
7568         netif_napi_add(dev, &sp->napi, s2io_poll, 32);
7569
7570 #ifdef CONFIG_NET_POLL_CONTROLLER
7571         dev->poll_controller = s2io_netpoll;
7572 #endif
7573
7574         dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7575         if (sp->high_dma_flag == TRUE)
7576                 dev->features |= NETIF_F_HIGHDMA;
7577         dev->features |= NETIF_F_TSO;
7578         dev->features |= NETIF_F_TSO6;
7579         if ((sp->device_type & XFRAME_II_DEVICE) && (ufo))  {
7580                 dev->features |= NETIF_F_UFO;
7581                 dev->features |= NETIF_F_HW_CSUM;
7582         }
7583
7584         dev->tx_timeout = &s2io_tx_watchdog;
7585         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7586         INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7587         INIT_WORK(&sp->set_link_task, s2io_set_link);
7588
7589         pci_save_state(sp->pdev);
7590
7591         /* Setting swapper control on the NIC, for proper reset operation */
7592         if (s2io_set_swapper(sp)) {
7593                 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7594                           dev->name);
7595                 ret = -EAGAIN;
7596                 goto set_swap_failed;
7597         }
7598
7599         /* Verify if the Herc works on the slot its placed into */
7600         if (sp->device_type & XFRAME_II_DEVICE) {
7601                 mode = s2io_verify_pci_mode(sp);
7602                 if (mode < 0) {
7603                         DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7604                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7605                         ret = -EBADSLT;
7606                         goto set_swap_failed;
7607                 }
7608         }
7609
7610         /* Not needed for Herc */
7611         if (sp->device_type & XFRAME_I_DEVICE) {
7612                 /*
7613                  * Fix for all "FFs" MAC address problems observed on
7614                  * Alpha platforms
7615                  */
7616                 fix_mac_address(sp);
7617                 s2io_reset(sp);
7618         }
7619
7620         /*
7621          * MAC address initialization.
7622          * For now only one mac address will be read and used.
7623          */
7624         bar0 = sp->bar0;
7625         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7626             RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7627         writeq(val64, &bar0->rmac_addr_cmd_mem);
7628         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7629                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
7630         tmp64 = readq(&bar0->rmac_addr_data0_mem);
7631         mac_down = (u32) tmp64;
7632         mac_up = (u32) (tmp64 >> 32);
7633
7634         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7635         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7636         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7637         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7638         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7639         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7640
7641         /*  Set the factory defined MAC address initially   */
7642         dev->addr_len = ETH_ALEN;
7643         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7644         memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
7645
7646          /* Store the values of the MSIX table in the s2io_nic structure */
7647         store_xmsi_data(sp);
7648         /* reset Nic and bring it to known state */
7649         s2io_reset(sp);
7650
7651         /*
7652          * Initialize the tasklet status and link state flags
7653          * and the card state parameter
7654          */
7655         sp->tasklet_status = 0;
7656         sp->state = 0;
7657
7658         /* Initialize spinlocks */
7659         spin_lock_init(&sp->tx_lock);
7660
7661         if (!napi)
7662                 spin_lock_init(&sp->put_lock);
7663         spin_lock_init(&sp->rx_lock);
7664
7665         /*
7666          * SXE-002: Configure link and activity LED to init state
7667          * on driver load.
7668          */
7669         subid = sp->pdev->subsystem_device;
7670         if ((subid & 0xFF) >= 0x07) {
7671                 val64 = readq(&bar0->gpio_control);
7672                 val64 |= 0x0000800000000000ULL;
7673                 writeq(val64, &bar0->gpio_control);
7674                 val64 = 0x0411040400000000ULL;
7675                 writeq(val64, (void __iomem *) bar0 + 0x2700);
7676                 val64 = readq(&bar0->gpio_control);
7677         }
7678
7679         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
7680
7681         if (register_netdev(dev)) {
7682                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7683                 ret = -ENODEV;
7684                 goto register_failed;
7685         }
7686         s2io_vpd_read(sp);
7687         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
7688         DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7689                   sp->product_name, pdev->revision);
7690         DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7691                   s2io_driver_version);
7692         DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
7693                   dev->name, print_mac(mac, dev->dev_addr));
7694         DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
7695         if (sp->device_type & XFRAME_II_DEVICE) {
7696                 mode = s2io_print_pci_mode(sp);
7697                 if (mode < 0) {
7698                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7699                         ret = -EBADSLT;
7700                         unregister_netdev(dev);
7701                         goto set_swap_failed;
7702                 }
7703         }
7704         switch(sp->rxd_mode) {
7705                 case RXD_MODE_1:
7706                     DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7707                                                 dev->name);
7708                     break;
7709                 case RXD_MODE_3B:
7710                     DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7711                                                 dev->name);
7712                     break;
7713         }
7714
7715         if (napi)
7716                 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7717         switch(sp->config.intr_type) {
7718                 case INTA:
7719                     DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7720                     break;
7721                 case MSI_X:
7722                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7723                     break;
7724         }
7725         if (sp->lro)
7726                 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7727                           dev->name);
7728         if (ufo)
7729                 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7730                                         " enabled\n", dev->name);
7731         /* Initialize device name */
7732         sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7733
7734         /*
7735          * Make Link state as off at this point, when the Link change
7736          * interrupt comes the state will be automatically changed to
7737          * the right state.
7738          */
7739         netif_carrier_off(dev);
7740
7741         return 0;
7742
7743       register_failed:
7744       set_swap_failed:
7745         iounmap(sp->bar1);
7746       bar1_remap_failed:
7747         iounmap(sp->bar0);
7748       bar0_remap_failed:
7749       mem_alloc_failed:
7750         free_shared_mem(sp);
7751         pci_disable_device(pdev);
7752         pci_release_regions(pdev);
7753         pci_set_drvdata(pdev, NULL);
7754         free_netdev(dev);
7755
7756         return ret;
7757 }
7758
7759 /**
7760  * s2io_rem_nic - Free the PCI device
7761  * @pdev: structure containing the PCI related information of the device.
7762  * Description: This function is called by the Pci subsystem to release a
7763  * PCI device and free up all resource held up by the device. This could
7764  * be in response to a Hot plug event or when the driver is to be removed
7765  * from memory.
7766  */
7767
7768 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7769 {
7770         struct net_device *dev =
7771             (struct net_device *) pci_get_drvdata(pdev);
7772         struct s2io_nic *sp;
7773
7774         if (dev == NULL) {
7775                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7776                 return;
7777         }
7778
7779         flush_scheduled_work();
7780
7781         sp = dev->priv;
7782         unregister_netdev(dev);
7783
7784         free_shared_mem(sp);
7785         iounmap(sp->bar0);
7786         iounmap(sp->bar1);
7787         pci_release_regions(pdev);
7788         pci_set_drvdata(pdev, NULL);
7789         free_netdev(dev);
7790         pci_disable_device(pdev);
7791 }
7792
7793 /**
7794  * s2io_starter - Entry point for the driver
7795  * Description: This function is the entry point for the driver. It verifies
7796  * the module loadable parameters and initializes PCI configuration space.
7797  */
7798
7799 int __init s2io_starter(void)
7800 {
7801         return pci_register_driver(&s2io_driver);
7802 }
7803
7804 /**
7805  * s2io_closer - Cleanup routine for the driver
7806  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7807  */
7808
7809 static __exit void s2io_closer(void)
7810 {
7811         pci_unregister_driver(&s2io_driver);
7812         DBG_PRINT(INIT_DBG, "cleanup done\n");
7813 }
7814
7815 module_init(s2io_starter);
7816 module_exit(s2io_closer);
7817
7818 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7819                 struct tcphdr **tcp, struct RxD_t *rxdp)
7820 {
7821         int ip_off;
7822         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7823
7824         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7825                 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7826                           __FUNCTION__);
7827                 return -1;
7828         }
7829
7830         /* TODO:
7831          * By default the VLAN field in the MAC is stripped by the card, if this
7832          * feature is turned off in rx_pa_cfg register, then the ip_off field
7833          * has to be shifted by a further 2 bytes
7834          */
7835         switch (l2_type) {
7836                 case 0: /* DIX type */
7837                 case 4: /* DIX type with VLAN */
7838                         ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7839                         break;
7840                 /* LLC, SNAP etc are considered non-mergeable */
7841                 default:
7842                         return -1;
7843         }
7844
7845         *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7846         ip_len = (u8)((*ip)->ihl);
7847         ip_len <<= 2;
7848         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7849
7850         return 0;
7851 }
7852
7853 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7854                                   struct tcphdr *tcp)
7855 {
7856         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7857         if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7858            (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7859                 return -1;
7860         return 0;
7861 }
7862
7863 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7864 {
7865         return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7866 }
7867
7868 static void initiate_new_session(struct lro *lro, u8 *l2h,
7869                      struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7870 {
7871         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7872         lro->l2h = l2h;
7873         lro->iph = ip;
7874         lro->tcph = tcp;
7875         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7876         lro->tcp_ack = ntohl(tcp->ack_seq);
7877         lro->sg_num = 1;
7878         lro->total_len = ntohs(ip->tot_len);
7879         lro->frags_len = 0;
7880         /*
7881          * check if we saw TCP timestamp. Other consistency checks have
7882          * already been done.
7883          */
7884         if (tcp->doff == 8) {
7885                 u32 *ptr;
7886                 ptr = (u32 *)(tcp+1);
7887                 lro->saw_ts = 1;
7888                 lro->cur_tsval = *(ptr+1);
7889                 lro->cur_tsecr = *(ptr+2);
7890         }
7891         lro->in_use = 1;
7892 }
7893
7894 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7895 {
7896         struct iphdr *ip = lro->iph;
7897         struct tcphdr *tcp = lro->tcph;
7898         __sum16 nchk;
7899         struct stat_block *statinfo = sp->mac_control.stats_info;
7900         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7901
7902         /* Update L3 header */
7903         ip->tot_len = htons(lro->total_len);
7904         ip->check = 0;
7905         nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7906         ip->check = nchk;
7907
7908         /* Update L4 header */
7909         tcp->ack_seq = lro->tcp_ack;
7910         tcp->window = lro->window;
7911
7912         /* Update tsecr field if this session has timestamps enabled */
7913         if (lro->saw_ts) {
7914                 u32 *ptr = (u32 *)(tcp + 1);
7915                 *(ptr+2) = lro->cur_tsecr;
7916         }
7917
7918         /* Update counters required for calculation of
7919          * average no. of packets aggregated.
7920          */
7921         statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7922         statinfo->sw_stat.num_aggregations++;
7923 }
7924
7925 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7926                 struct tcphdr *tcp, u32 l4_pyld)
7927 {
7928         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7929         lro->total_len += l4_pyld;
7930         lro->frags_len += l4_pyld;
7931         lro->tcp_next_seq += l4_pyld;
7932         lro->sg_num++;
7933
7934         /* Update ack seq no. and window ad(from this pkt) in LRO object */
7935         lro->tcp_ack = tcp->ack_seq;
7936         lro->window = tcp->window;
7937
7938         if (lro->saw_ts) {
7939                 u32 *ptr;
7940                 /* Update tsecr and tsval from this packet */
7941                 ptr = (u32 *) (tcp + 1);
7942                 lro->cur_tsval = *(ptr + 1);
7943                 lro->cur_tsecr = *(ptr + 2);
7944         }
7945 }
7946
7947 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7948                                     struct tcphdr *tcp, u32 tcp_pyld_len)
7949 {
7950         u8 *ptr;
7951
7952         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7953
7954         if (!tcp_pyld_len) {
7955                 /* Runt frame or a pure ack */
7956                 return -1;
7957         }
7958
7959         if (ip->ihl != 5) /* IP has options */
7960                 return -1;
7961
7962         /* If we see CE codepoint in IP header, packet is not mergeable */
7963         if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7964                 return -1;
7965
7966         /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7967         if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7968                                     tcp->ece || tcp->cwr || !tcp->ack) {
7969                 /*
7970                  * Currently recognize only the ack control word and
7971                  * any other control field being set would result in
7972                  * flushing the LRO session
7973                  */
7974                 return -1;
7975         }
7976
7977         /*
7978          * Allow only one TCP timestamp option. Don't aggregate if
7979          * any other options are detected.
7980          */
7981         if (tcp->doff != 5 && tcp->doff != 8)
7982                 return -1;
7983
7984         if (tcp->doff == 8) {
7985                 ptr = (u8 *)(tcp + 1);
7986                 while (*ptr == TCPOPT_NOP)
7987                         ptr++;
7988                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7989                         return -1;
7990
7991                 /* Ensure timestamp value increases monotonically */
7992                 if (l_lro)
7993                         if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7994                                 return -1;
7995
7996                 /* timestamp echo reply should be non-zero */
7997                 if (*((u32 *)(ptr+6)) == 0)
7998                         return -1;
7999         }
8000
8001         return 0;
8002 }
8003
8004 static int
8005 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
8006                       struct RxD_t *rxdp, struct s2io_nic *sp)
8007 {
8008         struct iphdr *ip;
8009         struct tcphdr *tcph;
8010         int ret = 0, i;
8011
8012         if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8013                                          rxdp))) {
8014                 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8015                           ip->saddr, ip->daddr);
8016         } else {
8017                 return ret;
8018         }
8019
8020         tcph = (struct tcphdr *)*tcp;
8021         *tcp_len = get_l4_pyld_length(ip, tcph);
8022         for (i=0; i<MAX_LRO_SESSIONS; i++) {
8023                 struct lro *l_lro = &sp->lro0_n[i];
8024                 if (l_lro->in_use) {
8025                         if (check_for_socket_match(l_lro, ip, tcph))
8026                                 continue;
8027                         /* Sock pair matched */
8028                         *lro = l_lro;
8029
8030                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8031                                 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8032                                           "0x%x, actual 0x%x\n", __FUNCTION__,
8033                                           (*lro)->tcp_next_seq,
8034                                           ntohl(tcph->seq));
8035
8036                                 sp->mac_control.stats_info->
8037                                    sw_stat.outof_sequence_pkts++;
8038                                 ret = 2;
8039                                 break;
8040                         }
8041
8042                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8043                                 ret = 1; /* Aggregate */
8044                         else
8045                                 ret = 2; /* Flush both */
8046                         break;
8047                 }
8048         }
8049
8050         if (ret == 0) {
8051                 /* Before searching for available LRO objects,
8052                  * check if the pkt is L3/L4 aggregatable. If not
8053                  * don't create new LRO session. Just send this
8054                  * packet up.
8055                  */
8056                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8057                         return 5;
8058                 }
8059
8060                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8061                         struct lro *l_lro = &sp->lro0_n[i];
8062                         if (!(l_lro->in_use)) {
8063                                 *lro = l_lro;
8064                                 ret = 3; /* Begin anew */
8065                                 break;
8066                         }
8067                 }
8068         }
8069
8070         if (ret == 0) { /* sessions exceeded */
8071                 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8072                           __FUNCTION__);
8073                 *lro = NULL;
8074                 return ret;
8075         }
8076
8077         switch (ret) {
8078                 case 3:
8079                         initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
8080                         break;
8081                 case 2:
8082                         update_L3L4_header(sp, *lro);
8083                         break;
8084                 case 1:
8085                         aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8086                         if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8087                                 update_L3L4_header(sp, *lro);
8088                                 ret = 4; /* Flush the LRO */
8089                         }
8090                         break;
8091                 default:
8092                         DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8093                                 __FUNCTION__);
8094                         break;
8095         }
8096
8097         return ret;
8098 }
8099
8100 static void clear_lro_session(struct lro *lro)
8101 {
8102         static u16 lro_struct_size = sizeof(struct lro);
8103
8104         memset(lro, 0, lro_struct_size);
8105 }
8106
8107 static void queue_rx_frame(struct sk_buff *skb)
8108 {
8109         struct net_device *dev = skb->dev;
8110
8111         skb->protocol = eth_type_trans(skb, dev);
8112         if (napi)
8113                 netif_receive_skb(skb);
8114         else
8115                 netif_rx(skb);
8116 }
8117
8118 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8119                            struct sk_buff *skb,
8120                            u32 tcp_len)
8121 {
8122         struct sk_buff *first = lro->parent;
8123
8124         first->len += tcp_len;
8125         first->data_len = lro->frags_len;
8126         skb_pull(skb, (skb->len - tcp_len));
8127         if (skb_shinfo(first)->frag_list)
8128                 lro->last_frag->next = skb;
8129         else
8130                 skb_shinfo(first)->frag_list = skb;
8131         first->truesize += skb->truesize;
8132         lro->last_frag = skb;
8133         sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8134         return;
8135 }
8136
8137 /**
8138  * s2io_io_error_detected - called when PCI error is detected
8139  * @pdev: Pointer to PCI device
8140  * @state: The current pci connection state
8141  *
8142  * This function is called after a PCI bus error affecting
8143  * this device has been detected.
8144  */
8145 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8146                                                pci_channel_state_t state)
8147 {
8148         struct net_device *netdev = pci_get_drvdata(pdev);
8149         struct s2io_nic *sp = netdev->priv;
8150
8151         netif_device_detach(netdev);
8152
8153         if (netif_running(netdev)) {
8154                 /* Bring down the card, while avoiding PCI I/O */
8155                 do_s2io_card_down(sp, 0);
8156         }
8157         pci_disable_device(pdev);
8158
8159         return PCI_ERS_RESULT_NEED_RESET;
8160 }
8161
8162 /**
8163  * s2io_io_slot_reset - called after the pci bus has been reset.
8164  * @pdev: Pointer to PCI device
8165  *
8166  * Restart the card from scratch, as if from a cold-boot.
8167  * At this point, the card has exprienced a hard reset,
8168  * followed by fixups by BIOS, and has its config space
8169  * set up identically to what it was at cold boot.
8170  */
8171 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8172 {
8173         struct net_device *netdev = pci_get_drvdata(pdev);
8174         struct s2io_nic *sp = netdev->priv;
8175
8176         if (pci_enable_device(pdev)) {
8177                 printk(KERN_ERR "s2io: "
8178                        "Cannot re-enable PCI device after reset.\n");
8179                 return PCI_ERS_RESULT_DISCONNECT;
8180         }
8181
8182         pci_set_master(pdev);
8183         s2io_reset(sp);
8184
8185         return PCI_ERS_RESULT_RECOVERED;
8186 }
8187
8188 /**
8189  * s2io_io_resume - called when traffic can start flowing again.
8190  * @pdev: Pointer to PCI device
8191  *
8192  * This callback is called when the error recovery driver tells
8193  * us that its OK to resume normal operation.
8194  */
8195 static void s2io_io_resume(struct pci_dev *pdev)
8196 {
8197         struct net_device *netdev = pci_get_drvdata(pdev);
8198         struct s2io_nic *sp = netdev->priv;
8199
8200         if (netif_running(netdev)) {
8201                 if (s2io_card_up(sp)) {
8202                         printk(KERN_ERR "s2io: "
8203                                "Can't bring device back up after reset.\n");
8204                         return;
8205                 }
8206
8207                 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8208                         s2io_card_down(sp);
8209                         printk(KERN_ERR "s2io: "
8210                                "Can't resetore mac addr after reset.\n");
8211                         return;
8212                 }
8213         }
8214
8215         netif_device_attach(netdev);
8216         netif_wake_queue(netdev);
8217 }