qlge: bugfix: Add missing put_page() call.
[safe/jmp/linux-2.6] / drivers / net / qlge / qlge_main.c
1 /*
2  * QLogic qlge NIC HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  * See LICENSE.qlge for copyright and licensing details.
5  * Author:     Linux qlge network device driver by
6  *                      Ron Mercer <ron.mercer@qlogic.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/skbuff.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/if_vlan.h>
39 #include <linux/delay.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <net/ip6_checksum.h>
43
44 #include "qlge.h"
45
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
48
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
53
54 static const u32 default_msg =
55     NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER |    */
57     NETIF_MSG_IFDOWN |
58     NETIF_MSG_IFUP |
59     NETIF_MSG_RX_ERR |
60     NETIF_MSG_TX_ERR |
61     NETIF_MSG_TX_QUEUED |
62     NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
63 /* NETIF_MSG_PKTDATA | */
64     NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66 static int debug = 0x00007fff;  /* defaults above */
67 module_param(debug, int, 0);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int irq_type = MSIX_IRQ;
74 module_param(irq_type, int, MSIX_IRQ);
75 MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77 static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
78         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
79         /* required last entry */
80         {0,}
81 };
82
83 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
84
85 /* This hardware semaphore causes exclusive access to
86  * resources shared between the NIC driver, MPI firmware,
87  * FCOE firmware and the FC driver.
88  */
89 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
90 {
91         u32 sem_bits = 0;
92
93         switch (sem_mask) {
94         case SEM_XGMAC0_MASK:
95                 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
96                 break;
97         case SEM_XGMAC1_MASK:
98                 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
99                 break;
100         case SEM_ICB_MASK:
101                 sem_bits = SEM_SET << SEM_ICB_SHIFT;
102                 break;
103         case SEM_MAC_ADDR_MASK:
104                 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
105                 break;
106         case SEM_FLASH_MASK:
107                 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
108                 break;
109         case SEM_PROBE_MASK:
110                 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
111                 break;
112         case SEM_RT_IDX_MASK:
113                 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
114                 break;
115         case SEM_PROC_REG_MASK:
116                 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
117                 break;
118         default:
119                 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
120                 return -EINVAL;
121         }
122
123         ql_write32(qdev, SEM, sem_bits | sem_mask);
124         return !(ql_read32(qdev, SEM) & sem_bits);
125 }
126
127 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
128 {
129         unsigned int wait_count = 30;
130         do {
131                 if (!ql_sem_trylock(qdev, sem_mask))
132                         return 0;
133                 udelay(100);
134         } while (--wait_count);
135         return -ETIMEDOUT;
136 }
137
138 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
139 {
140         ql_write32(qdev, SEM, sem_mask);
141         ql_read32(qdev, SEM);   /* flush */
142 }
143
144 /* This function waits for a specific bit to come ready
145  * in a given register.  It is used mostly by the initialize
146  * process, but is also used in kernel thread API such as
147  * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
148  */
149 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
150 {
151         u32 temp;
152         int count = UDELAY_COUNT;
153
154         while (count) {
155                 temp = ql_read32(qdev, reg);
156
157                 /* check for errors */
158                 if (temp & err_bit) {
159                         QPRINTK(qdev, PROBE, ALERT,
160                                 "register 0x%.08x access error, value = 0x%.08x!.\n",
161                                 reg, temp);
162                         return -EIO;
163                 } else if (temp & bit)
164                         return 0;
165                 udelay(UDELAY_DELAY);
166                 count--;
167         }
168         QPRINTK(qdev, PROBE, ALERT,
169                 "Timed out waiting for reg %x to come ready.\n", reg);
170         return -ETIMEDOUT;
171 }
172
173 /* The CFG register is used to download TX and RX control blocks
174  * to the chip. This function waits for an operation to complete.
175  */
176 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
177 {
178         int count = UDELAY_COUNT;
179         u32 temp;
180
181         while (count) {
182                 temp = ql_read32(qdev, CFG);
183                 if (temp & CFG_LE)
184                         return -EIO;
185                 if (!(temp & bit))
186                         return 0;
187                 udelay(UDELAY_DELAY);
188                 count--;
189         }
190         return -ETIMEDOUT;
191 }
192
193
194 /* Used to issue init control blocks to hw. Maps control block,
195  * sets address, triggers download, waits for completion.
196  */
197 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
198                  u16 q_id)
199 {
200         u64 map;
201         int status = 0;
202         int direction;
203         u32 mask;
204         u32 value;
205
206         direction =
207             (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
208             PCI_DMA_FROMDEVICE;
209
210         map = pci_map_single(qdev->pdev, ptr, size, direction);
211         if (pci_dma_mapping_error(qdev->pdev, map)) {
212                 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
213                 return -ENOMEM;
214         }
215
216         status = ql_wait_cfg(qdev, bit);
217         if (status) {
218                 QPRINTK(qdev, IFUP, ERR,
219                         "Timed out waiting for CFG to come ready.\n");
220                 goto exit;
221         }
222
223         status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
224         if (status)
225                 goto exit;
226         ql_write32(qdev, ICB_L, (u32) map);
227         ql_write32(qdev, ICB_H, (u32) (map >> 32));
228         ql_sem_unlock(qdev, SEM_ICB_MASK);      /* does flush too */
229
230         mask = CFG_Q_MASK | (bit << 16);
231         value = bit | (q_id << CFG_Q_SHIFT);
232         ql_write32(qdev, CFG, (mask | value));
233
234         /*
235          * Wait for the bit to clear after signaling hw.
236          */
237         status = ql_wait_cfg(qdev, bit);
238 exit:
239         pci_unmap_single(qdev->pdev, map, size, direction);
240         return status;
241 }
242
243 /* Get a specific MAC address from the CAM.  Used for debug and reg dump. */
244 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
245                         u32 *value)
246 {
247         u32 offset = 0;
248         int status;
249
250         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
251         if (status)
252                 return status;
253         switch (type) {
254         case MAC_ADDR_TYPE_MULTI_MAC:
255         case MAC_ADDR_TYPE_CAM_MAC:
256                 {
257                         status =
258                             ql_wait_reg_rdy(qdev,
259                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
260                         if (status)
261                                 goto exit;
262                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
263                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
264                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
265                         status =
266                             ql_wait_reg_rdy(qdev,
267                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
268                         if (status)
269                                 goto exit;
270                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
271                         status =
272                             ql_wait_reg_rdy(qdev,
273                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
274                         if (status)
275                                 goto exit;
276                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
277                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
278                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
279                         status =
280                             ql_wait_reg_rdy(qdev,
281                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
282                         if (status)
283                                 goto exit;
284                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
285                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
286                                 status =
287                                     ql_wait_reg_rdy(qdev,
288                                         MAC_ADDR_IDX, MAC_ADDR_MW, 0);
289                                 if (status)
290                                         goto exit;
291                                 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
292                                            (index << MAC_ADDR_IDX_SHIFT) | /* index */
293                                            MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
294                                 status =
295                                     ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
296                                                     MAC_ADDR_MR, 0);
297                                 if (status)
298                                         goto exit;
299                                 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
300                         }
301                         break;
302                 }
303         case MAC_ADDR_TYPE_VLAN:
304         case MAC_ADDR_TYPE_MULTI_FLTR:
305         default:
306                 QPRINTK(qdev, IFUP, CRIT,
307                         "Address type %d not yet supported.\n", type);
308                 status = -EPERM;
309         }
310 exit:
311         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
312         return status;
313 }
314
315 /* Set up a MAC, multicast or VLAN address for the
316  * inbound frame matching.
317  */
318 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
319                                u16 index)
320 {
321         u32 offset = 0;
322         int status = 0;
323
324         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
325         if (status)
326                 return status;
327         switch (type) {
328         case MAC_ADDR_TYPE_MULTI_MAC:
329         case MAC_ADDR_TYPE_CAM_MAC:
330                 {
331                         u32 cam_output;
332                         u32 upper = (addr[0] << 8) | addr[1];
333                         u32 lower =
334                             (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
335                             (addr[5]);
336
337                         QPRINTK(qdev, IFUP, INFO,
338                                 "Adding %s address %pM"
339                                 " at index %d in the CAM.\n",
340                                 ((type ==
341                                   MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
342                                  "UNICAST"), addr, index);
343
344                         status =
345                             ql_wait_reg_rdy(qdev,
346                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
347                         if (status)
348                                 goto exit;
349                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
350                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
351                                    type);       /* type */
352                         ql_write32(qdev, MAC_ADDR_DATA, lower);
353                         status =
354                             ql_wait_reg_rdy(qdev,
355                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
356                         if (status)
357                                 goto exit;
358                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
359                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
360                                    type);       /* type */
361                         ql_write32(qdev, MAC_ADDR_DATA, upper);
362                         status =
363                             ql_wait_reg_rdy(qdev,
364                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
365                         if (status)
366                                 goto exit;
367                         ql_write32(qdev, MAC_ADDR_IDX, (offset) |       /* offset */
368                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
369                                    type);       /* type */
370                         /* This field should also include the queue id
371                            and possibly the function id.  Right now we hardcode
372                            the route field to NIC core.
373                          */
374                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
375                                 cam_output = (CAM_OUT_ROUTE_NIC |
376                                               (qdev->
377                                                func << CAM_OUT_FUNC_SHIFT) |
378                                               (qdev->
379                                                rss_ring_first_cq_id <<
380                                                CAM_OUT_CQ_ID_SHIFT));
381                                 if (qdev->vlgrp)
382                                         cam_output |= CAM_OUT_RV;
383                                 /* route to NIC core */
384                                 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
385                         }
386                         break;
387                 }
388         case MAC_ADDR_TYPE_VLAN:
389                 {
390                         u32 enable_bit = *((u32 *) &addr[0]);
391                         /* For VLAN, the addr actually holds a bit that
392                          * either enables or disables the vlan id we are
393                          * addressing. It's either MAC_ADDR_E on or off.
394                          * That's bit-27 we're talking about.
395                          */
396                         QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
397                                 (enable_bit ? "Adding" : "Removing"),
398                                 index, (enable_bit ? "to" : "from"));
399
400                         status =
401                             ql_wait_reg_rdy(qdev,
402                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
403                         if (status)
404                                 goto exit;
405                         ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
406                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
407                                    type |       /* type */
408                                    enable_bit); /* enable/disable */
409                         break;
410                 }
411         case MAC_ADDR_TYPE_MULTI_FLTR:
412         default:
413                 QPRINTK(qdev, IFUP, CRIT,
414                         "Address type %d not yet supported.\n", type);
415                 status = -EPERM;
416         }
417 exit:
418         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
419         return status;
420 }
421
422 /* Get a specific frame routing value from the CAM.
423  * Used for debug and reg dump.
424  */
425 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
426 {
427         int status = 0;
428
429         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
430         if (status)
431                 goto exit;
432
433         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
434         if (status)
435                 goto exit;
436
437         ql_write32(qdev, RT_IDX,
438                    RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
439         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
440         if (status)
441                 goto exit;
442         *value = ql_read32(qdev, RT_DATA);
443 exit:
444         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
445         return status;
446 }
447
448 /* The NIC function for this chip has 16 routing indexes.  Each one can be used
449  * to route different frame types to various inbound queues.  We send broadcast/
450  * multicast/error frames to the default queue for slow handling,
451  * and CAM hit/RSS frames to the fast handling queues.
452  */
453 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
454                               int enable)
455 {
456         int status;
457         u32 value = 0;
458
459         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
460         if (status)
461                 return status;
462
463         QPRINTK(qdev, IFUP, DEBUG,
464                 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
465                 (enable ? "Adding" : "Removing"),
466                 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
467                 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
468                 ((index ==
469                   RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
470                 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
471                 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
472                 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
473                 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
474                 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
475                 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
476                 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
477                 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
478                 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
479                 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
480                 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
481                 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
482                 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
483                 (enable ? "to" : "from"));
484
485         switch (mask) {
486         case RT_IDX_CAM_HIT:
487                 {
488                         value = RT_IDX_DST_CAM_Q |      /* dest */
489                             RT_IDX_TYPE_NICQ |  /* type */
490                             (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
491                         break;
492                 }
493         case RT_IDX_VALID:      /* Promiscuous Mode frames. */
494                 {
495                         value = RT_IDX_DST_DFLT_Q |     /* dest */
496                             RT_IDX_TYPE_NICQ |  /* type */
497                             (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
498                         break;
499                 }
500         case RT_IDX_ERR:        /* Pass up MAC,IP,TCP/UDP error frames. */
501                 {
502                         value = RT_IDX_DST_DFLT_Q |     /* dest */
503                             RT_IDX_TYPE_NICQ |  /* type */
504                             (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
505                         break;
506                 }
507         case RT_IDX_BCAST:      /* Pass up Broadcast frames to default Q. */
508                 {
509                         value = RT_IDX_DST_DFLT_Q |     /* dest */
510                             RT_IDX_TYPE_NICQ |  /* type */
511                             (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
512                         break;
513                 }
514         case RT_IDX_MCAST:      /* Pass up All Multicast frames. */
515                 {
516                         value = RT_IDX_DST_CAM_Q |      /* dest */
517                             RT_IDX_TYPE_NICQ |  /* type */
518                             (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
519                         break;
520                 }
521         case RT_IDX_MCAST_MATCH:        /* Pass up matched Multicast frames. */
522                 {
523                         value = RT_IDX_DST_CAM_Q |      /* dest */
524                             RT_IDX_TYPE_NICQ |  /* type */
525                             (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
526                         break;
527                 }
528         case RT_IDX_RSS_MATCH:  /* Pass up matched RSS frames. */
529                 {
530                         value = RT_IDX_DST_RSS |        /* dest */
531                             RT_IDX_TYPE_NICQ |  /* type */
532                             (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
533                         break;
534                 }
535         case 0:         /* Clear the E-bit on an entry. */
536                 {
537                         value = RT_IDX_DST_DFLT_Q |     /* dest */
538                             RT_IDX_TYPE_NICQ |  /* type */
539                             (index << RT_IDX_IDX_SHIFT);/* index */
540                         break;
541                 }
542         default:
543                 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
544                         mask);
545                 status = -EPERM;
546                 goto exit;
547         }
548
549         if (value) {
550                 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
551                 if (status)
552                         goto exit;
553                 value |= (enable ? RT_IDX_E : 0);
554                 ql_write32(qdev, RT_IDX, value);
555                 ql_write32(qdev, RT_DATA, enable ? mask : 0);
556         }
557 exit:
558         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
559         return status;
560 }
561
562 static void ql_enable_interrupts(struct ql_adapter *qdev)
563 {
564         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
565 }
566
567 static void ql_disable_interrupts(struct ql_adapter *qdev)
568 {
569         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
570 }
571
572 /* If we're running with multiple MSI-X vectors then we enable on the fly.
573  * Otherwise, we may have multiple outstanding workers and don't want to
574  * enable until the last one finishes. In this case, the irq_cnt gets
575  * incremented everytime we queue a worker and decremented everytime
576  * a worker finishes.  Once it hits zero we enable the interrupt.
577  */
578 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
579 {
580         u32 var = 0;
581         unsigned long hw_flags = 0;
582         struct intr_context *ctx = qdev->intr_context + intr;
583
584         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
585                 /* Always enable if we're MSIX multi interrupts and
586                  * it's not the default (zeroeth) interrupt.
587                  */
588                 ql_write32(qdev, INTR_EN,
589                            ctx->intr_en_mask);
590                 var = ql_read32(qdev, STS);
591                 return var;
592         }
593
594         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
595         if (atomic_dec_and_test(&ctx->irq_cnt)) {
596                 ql_write32(qdev, INTR_EN,
597                            ctx->intr_en_mask);
598                 var = ql_read32(qdev, STS);
599         }
600         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
601         return var;
602 }
603
604 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
605 {
606         u32 var = 0;
607         unsigned long hw_flags;
608         struct intr_context *ctx;
609
610         /* HW disables for us if we're MSIX multi interrupts and
611          * it's not the default (zeroeth) interrupt.
612          */
613         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
614                 return 0;
615
616         ctx = qdev->intr_context + intr;
617         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
618         if (!atomic_read(&ctx->irq_cnt)) {
619                 ql_write32(qdev, INTR_EN,
620                 ctx->intr_dis_mask);
621                 var = ql_read32(qdev, STS);
622         }
623         atomic_inc(&ctx->irq_cnt);
624         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
625         return var;
626 }
627
628 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
629 {
630         int i;
631         for (i = 0; i < qdev->intr_count; i++) {
632                 /* The enable call does a atomic_dec_and_test
633                  * and enables only if the result is zero.
634                  * So we precharge it here.
635                  */
636                 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
637                         i == 0))
638                         atomic_set(&qdev->intr_context[i].irq_cnt, 1);
639                 ql_enable_completion_interrupt(qdev, i);
640         }
641
642 }
643
644 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
645 {
646         int status = 0;
647         /* wait for reg to come ready */
648         status = ql_wait_reg_rdy(qdev,
649                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
650         if (status)
651                 goto exit;
652         /* set up for reg read */
653         ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
654         /* wait for reg to come ready */
655         status = ql_wait_reg_rdy(qdev,
656                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
657         if (status)
658                 goto exit;
659          /* This data is stored on flash as an array of
660          * __le32.  Since ql_read32() returns cpu endian
661          * we need to swap it back.
662          */
663         *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
664 exit:
665         return status;
666 }
667
668 static int ql_get_flash_params(struct ql_adapter *qdev)
669 {
670         int i;
671         int status;
672         __le32 *p = (__le32 *)&qdev->flash;
673         u32 offset = 0;
674
675         /* Second function's parameters follow the first
676          * function's.
677          */
678         if (qdev->func)
679                 offset = sizeof(qdev->flash) / sizeof(u32);
680
681         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
682                 return -ETIMEDOUT;
683
684         for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) {
685                 status = ql_read_flash_word(qdev, i+offset, p);
686                 if (status) {
687                         QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
688                         goto exit;
689                 }
690
691         }
692 exit:
693         ql_sem_unlock(qdev, SEM_FLASH_MASK);
694         return status;
695 }
696
697 /* xgmac register are located behind the xgmac_addr and xgmac_data
698  * register pair.  Each read/write requires us to wait for the ready
699  * bit before reading/writing the data.
700  */
701 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
702 {
703         int status;
704         /* wait for reg to come ready */
705         status = ql_wait_reg_rdy(qdev,
706                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
707         if (status)
708                 return status;
709         /* write the data to the data reg */
710         ql_write32(qdev, XGMAC_DATA, data);
711         /* trigger the write */
712         ql_write32(qdev, XGMAC_ADDR, reg);
713         return status;
714 }
715
716 /* xgmac register are located behind the xgmac_addr and xgmac_data
717  * register pair.  Each read/write requires us to wait for the ready
718  * bit before reading/writing the data.
719  */
720 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
721 {
722         int status = 0;
723         /* wait for reg to come ready */
724         status = ql_wait_reg_rdy(qdev,
725                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
726         if (status)
727                 goto exit;
728         /* set up for reg read */
729         ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
730         /* wait for reg to come ready */
731         status = ql_wait_reg_rdy(qdev,
732                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
733         if (status)
734                 goto exit;
735         /* get the data */
736         *data = ql_read32(qdev, XGMAC_DATA);
737 exit:
738         return status;
739 }
740
741 /* This is used for reading the 64-bit statistics regs. */
742 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
743 {
744         int status = 0;
745         u32 hi = 0;
746         u32 lo = 0;
747
748         status = ql_read_xgmac_reg(qdev, reg, &lo);
749         if (status)
750                 goto exit;
751
752         status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
753         if (status)
754                 goto exit;
755
756         *data = (u64) lo | ((u64) hi << 32);
757
758 exit:
759         return status;
760 }
761
762 /* Take the MAC Core out of reset.
763  * Enable statistics counting.
764  * Take the transmitter/receiver out of reset.
765  * This functionality may be done in the MPI firmware at a
766  * later date.
767  */
768 static int ql_port_initialize(struct ql_adapter *qdev)
769 {
770         int status = 0;
771         u32 data;
772
773         if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
774                 /* Another function has the semaphore, so
775                  * wait for the port init bit to come ready.
776                  */
777                 QPRINTK(qdev, LINK, INFO,
778                         "Another function has the semaphore, so wait for the port init bit to come ready.\n");
779                 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
780                 if (status) {
781                         QPRINTK(qdev, LINK, CRIT,
782                                 "Port initialize timed out.\n");
783                 }
784                 return status;
785         }
786
787         QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
788         /* Set the core reset. */
789         status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
790         if (status)
791                 goto end;
792         data |= GLOBAL_CFG_RESET;
793         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
794         if (status)
795                 goto end;
796
797         /* Clear the core reset and turn on jumbo for receiver. */
798         data &= ~GLOBAL_CFG_RESET;      /* Clear core reset. */
799         data |= GLOBAL_CFG_JUMBO;       /* Turn on jumbo. */
800         data |= GLOBAL_CFG_TX_STAT_EN;
801         data |= GLOBAL_CFG_RX_STAT_EN;
802         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
803         if (status)
804                 goto end;
805
806         /* Enable transmitter, and clear it's reset. */
807         status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
808         if (status)
809                 goto end;
810         data &= ~TX_CFG_RESET;  /* Clear the TX MAC reset. */
811         data |= TX_CFG_EN;      /* Enable the transmitter. */
812         status = ql_write_xgmac_reg(qdev, TX_CFG, data);
813         if (status)
814                 goto end;
815
816         /* Enable receiver and clear it's reset. */
817         status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
818         if (status)
819                 goto end;
820         data &= ~RX_CFG_RESET;  /* Clear the RX MAC reset. */
821         data |= RX_CFG_EN;      /* Enable the receiver. */
822         status = ql_write_xgmac_reg(qdev, RX_CFG, data);
823         if (status)
824                 goto end;
825
826         /* Turn on jumbo. */
827         status =
828             ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
829         if (status)
830                 goto end;
831         status =
832             ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
833         if (status)
834                 goto end;
835
836         /* Signal to the world that the port is enabled.        */
837         ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
838 end:
839         ql_sem_unlock(qdev, qdev->xg_sem_mask);
840         return status;
841 }
842
843 /* Get the next large buffer. */
844 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
845 {
846         struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
847         rx_ring->lbq_curr_idx++;
848         if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
849                 rx_ring->lbq_curr_idx = 0;
850         rx_ring->lbq_free_cnt++;
851         return lbq_desc;
852 }
853
854 /* Get the next small buffer. */
855 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
856 {
857         struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
858         rx_ring->sbq_curr_idx++;
859         if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
860                 rx_ring->sbq_curr_idx = 0;
861         rx_ring->sbq_free_cnt++;
862         return sbq_desc;
863 }
864
865 /* Update an rx ring index. */
866 static void ql_update_cq(struct rx_ring *rx_ring)
867 {
868         rx_ring->cnsmr_idx++;
869         rx_ring->curr_entry++;
870         if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
871                 rx_ring->cnsmr_idx = 0;
872                 rx_ring->curr_entry = rx_ring->cq_base;
873         }
874 }
875
876 static void ql_write_cq_idx(struct rx_ring *rx_ring)
877 {
878         ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
879 }
880
881 /* Process (refill) a large buffer queue. */
882 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
883 {
884         int clean_idx = rx_ring->lbq_clean_idx;
885         struct bq_desc *lbq_desc;
886         u64 map;
887         int i;
888
889         while (rx_ring->lbq_free_cnt > 16) {
890                 for (i = 0; i < 16; i++) {
891                         QPRINTK(qdev, RX_STATUS, DEBUG,
892                                 "lbq: try cleaning clean_idx = %d.\n",
893                                 clean_idx);
894                         lbq_desc = &rx_ring->lbq[clean_idx];
895                         if (lbq_desc->p.lbq_page == NULL) {
896                                 QPRINTK(qdev, RX_STATUS, DEBUG,
897                                         "lbq: getting new page for index %d.\n",
898                                         lbq_desc->index);
899                                 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
900                                 if (lbq_desc->p.lbq_page == NULL) {
901                                         QPRINTK(qdev, RX_STATUS, ERR,
902                                                 "Couldn't get a page.\n");
903                                         return;
904                                 }
905                                 map = pci_map_page(qdev->pdev,
906                                                    lbq_desc->p.lbq_page,
907                                                    0, PAGE_SIZE,
908                                                    PCI_DMA_FROMDEVICE);
909                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
910                                         put_page(lbq_desc->p.lbq_page);
911                                         lbq_desc->p.lbq_page = NULL;
912                                         QPRINTK(qdev, RX_STATUS, ERR,
913                                                 "PCI mapping failed.\n");
914                                         return;
915                                 }
916                                 pci_unmap_addr_set(lbq_desc, mapaddr, map);
917                                 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
918                                 *lbq_desc->addr = cpu_to_le64(map);
919                         }
920                         clean_idx++;
921                         if (clean_idx == rx_ring->lbq_len)
922                                 clean_idx = 0;
923                 }
924
925                 rx_ring->lbq_clean_idx = clean_idx;
926                 rx_ring->lbq_prod_idx += 16;
927                 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
928                         rx_ring->lbq_prod_idx = 0;
929                 QPRINTK(qdev, RX_STATUS, DEBUG,
930                         "lbq: updating prod idx = %d.\n",
931                         rx_ring->lbq_prod_idx);
932                 ql_write_db_reg(rx_ring->lbq_prod_idx,
933                                 rx_ring->lbq_prod_idx_db_reg);
934                 rx_ring->lbq_free_cnt -= 16;
935         }
936 }
937
938 /* Process (refill) a small buffer queue. */
939 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
940 {
941         int clean_idx = rx_ring->sbq_clean_idx;
942         struct bq_desc *sbq_desc;
943         u64 map;
944         int i;
945
946         while (rx_ring->sbq_free_cnt > 16) {
947                 for (i = 0; i < 16; i++) {
948                         sbq_desc = &rx_ring->sbq[clean_idx];
949                         QPRINTK(qdev, RX_STATUS, DEBUG,
950                                 "sbq: try cleaning clean_idx = %d.\n",
951                                 clean_idx);
952                         if (sbq_desc->p.skb == NULL) {
953                                 QPRINTK(qdev, RX_STATUS, DEBUG,
954                                         "sbq: getting new skb for index %d.\n",
955                                         sbq_desc->index);
956                                 sbq_desc->p.skb =
957                                     netdev_alloc_skb(qdev->ndev,
958                                                      rx_ring->sbq_buf_size);
959                                 if (sbq_desc->p.skb == NULL) {
960                                         QPRINTK(qdev, PROBE, ERR,
961                                                 "Couldn't get an skb.\n");
962                                         rx_ring->sbq_clean_idx = clean_idx;
963                                         return;
964                                 }
965                                 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
966                                 map = pci_map_single(qdev->pdev,
967                                                      sbq_desc->p.skb->data,
968                                                      rx_ring->sbq_buf_size /
969                                                      2, PCI_DMA_FROMDEVICE);
970                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
971                                         QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
972                                         rx_ring->sbq_clean_idx = clean_idx;
973                                         return;
974                                 }
975                                 pci_unmap_addr_set(sbq_desc, mapaddr, map);
976                                 pci_unmap_len_set(sbq_desc, maplen,
977                                                   rx_ring->sbq_buf_size / 2);
978                                 *sbq_desc->addr = cpu_to_le64(map);
979                         }
980
981                         clean_idx++;
982                         if (clean_idx == rx_ring->sbq_len)
983                                 clean_idx = 0;
984                 }
985                 rx_ring->sbq_clean_idx = clean_idx;
986                 rx_ring->sbq_prod_idx += 16;
987                 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
988                         rx_ring->sbq_prod_idx = 0;
989                 QPRINTK(qdev, RX_STATUS, DEBUG,
990                         "sbq: updating prod idx = %d.\n",
991                         rx_ring->sbq_prod_idx);
992                 ql_write_db_reg(rx_ring->sbq_prod_idx,
993                                 rx_ring->sbq_prod_idx_db_reg);
994
995                 rx_ring->sbq_free_cnt -= 16;
996         }
997 }
998
999 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1000                                     struct rx_ring *rx_ring)
1001 {
1002         ql_update_sbq(qdev, rx_ring);
1003         ql_update_lbq(qdev, rx_ring);
1004 }
1005
1006 /* Unmaps tx buffers.  Can be called from send() if a pci mapping
1007  * fails at some stage, or from the interrupt when a tx completes.
1008  */
1009 static void ql_unmap_send(struct ql_adapter *qdev,
1010                           struct tx_ring_desc *tx_ring_desc, int mapped)
1011 {
1012         int i;
1013         for (i = 0; i < mapped; i++) {
1014                 if (i == 0 || (i == 7 && mapped > 7)) {
1015                         /*
1016                          * Unmap the skb->data area, or the
1017                          * external sglist (AKA the Outbound
1018                          * Address List (OAL)).
1019                          * If its the zeroeth element, then it's
1020                          * the skb->data area.  If it's the 7th
1021                          * element and there is more than 6 frags,
1022                          * then its an OAL.
1023                          */
1024                         if (i == 7) {
1025                                 QPRINTK(qdev, TX_DONE, DEBUG,
1026                                         "unmapping OAL area.\n");
1027                         }
1028                         pci_unmap_single(qdev->pdev,
1029                                          pci_unmap_addr(&tx_ring_desc->map[i],
1030                                                         mapaddr),
1031                                          pci_unmap_len(&tx_ring_desc->map[i],
1032                                                        maplen),
1033                                          PCI_DMA_TODEVICE);
1034                 } else {
1035                         QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1036                                 i);
1037                         pci_unmap_page(qdev->pdev,
1038                                        pci_unmap_addr(&tx_ring_desc->map[i],
1039                                                       mapaddr),
1040                                        pci_unmap_len(&tx_ring_desc->map[i],
1041                                                      maplen), PCI_DMA_TODEVICE);
1042                 }
1043         }
1044
1045 }
1046
1047 /* Map the buffers for this transmit.  This will return
1048  * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1049  */
1050 static int ql_map_send(struct ql_adapter *qdev,
1051                        struct ob_mac_iocb_req *mac_iocb_ptr,
1052                        struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1053 {
1054         int len = skb_headlen(skb);
1055         dma_addr_t map;
1056         int frag_idx, err, map_idx = 0;
1057         struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1058         int frag_cnt = skb_shinfo(skb)->nr_frags;
1059
1060         if (frag_cnt) {
1061                 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1062         }
1063         /*
1064          * Map the skb buffer first.
1065          */
1066         map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1067
1068         err = pci_dma_mapping_error(qdev->pdev, map);
1069         if (err) {
1070                 QPRINTK(qdev, TX_QUEUED, ERR,
1071                         "PCI mapping failed with error: %d\n", err);
1072
1073                 return NETDEV_TX_BUSY;
1074         }
1075
1076         tbd->len = cpu_to_le32(len);
1077         tbd->addr = cpu_to_le64(map);
1078         pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1079         pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1080         map_idx++;
1081
1082         /*
1083          * This loop fills the remainder of the 8 address descriptors
1084          * in the IOCB.  If there are more than 7 fragments, then the
1085          * eighth address desc will point to an external list (OAL).
1086          * When this happens, the remainder of the frags will be stored
1087          * in this list.
1088          */
1089         for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1090                 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1091                 tbd++;
1092                 if (frag_idx == 6 && frag_cnt > 7) {
1093                         /* Let's tack on an sglist.
1094                          * Our control block will now
1095                          * look like this:
1096                          * iocb->seg[0] = skb->data
1097                          * iocb->seg[1] = frag[0]
1098                          * iocb->seg[2] = frag[1]
1099                          * iocb->seg[3] = frag[2]
1100                          * iocb->seg[4] = frag[3]
1101                          * iocb->seg[5] = frag[4]
1102                          * iocb->seg[6] = frag[5]
1103                          * iocb->seg[7] = ptr to OAL (external sglist)
1104                          * oal->seg[0] = frag[6]
1105                          * oal->seg[1] = frag[7]
1106                          * oal->seg[2] = frag[8]
1107                          * oal->seg[3] = frag[9]
1108                          * oal->seg[4] = frag[10]
1109                          *      etc...
1110                          */
1111                         /* Tack on the OAL in the eighth segment of IOCB. */
1112                         map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1113                                              sizeof(struct oal),
1114                                              PCI_DMA_TODEVICE);
1115                         err = pci_dma_mapping_error(qdev->pdev, map);
1116                         if (err) {
1117                                 QPRINTK(qdev, TX_QUEUED, ERR,
1118                                         "PCI mapping outbound address list with error: %d\n",
1119                                         err);
1120                                 goto map_error;
1121                         }
1122
1123                         tbd->addr = cpu_to_le64(map);
1124                         /*
1125                          * The length is the number of fragments
1126                          * that remain to be mapped times the length
1127                          * of our sglist (OAL).
1128                          */
1129                         tbd->len =
1130                             cpu_to_le32((sizeof(struct tx_buf_desc) *
1131                                          (frag_cnt - frag_idx)) | TX_DESC_C);
1132                         pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1133                                            map);
1134                         pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1135                                           sizeof(struct oal));
1136                         tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1137                         map_idx++;
1138                 }
1139
1140                 map =
1141                     pci_map_page(qdev->pdev, frag->page,
1142                                  frag->page_offset, frag->size,
1143                                  PCI_DMA_TODEVICE);
1144
1145                 err = pci_dma_mapping_error(qdev->pdev, map);
1146                 if (err) {
1147                         QPRINTK(qdev, TX_QUEUED, ERR,
1148                                 "PCI mapping frags failed with error: %d.\n",
1149                                 err);
1150                         goto map_error;
1151                 }
1152
1153                 tbd->addr = cpu_to_le64(map);
1154                 tbd->len = cpu_to_le32(frag->size);
1155                 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1156                 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1157                                   frag->size);
1158
1159         }
1160         /* Save the number of segments we've mapped. */
1161         tx_ring_desc->map_cnt = map_idx;
1162         /* Terminate the last segment. */
1163         tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1164         return NETDEV_TX_OK;
1165
1166 map_error:
1167         /*
1168          * If the first frag mapping failed, then i will be zero.
1169          * This causes the unmap of the skb->data area.  Otherwise
1170          * we pass in the number of frags that mapped successfully
1171          * so they can be umapped.
1172          */
1173         ql_unmap_send(qdev, tx_ring_desc, map_idx);
1174         return NETDEV_TX_BUSY;
1175 }
1176
1177 static void ql_realign_skb(struct sk_buff *skb, int len)
1178 {
1179         void *temp_addr = skb->data;
1180
1181         /* Undo the skb_reserve(skb,32) we did before
1182          * giving to hardware, and realign data on
1183          * a 2-byte boundary.
1184          */
1185         skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1186         skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1187         skb_copy_to_linear_data(skb, temp_addr,
1188                 (unsigned int)len);
1189 }
1190
1191 /*
1192  * This function builds an skb for the given inbound
1193  * completion.  It will be rewritten for readability in the near
1194  * future, but for not it works well.
1195  */
1196 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1197                                        struct rx_ring *rx_ring,
1198                                        struct ib_mac_iocb_rsp *ib_mac_rsp)
1199 {
1200         struct bq_desc *lbq_desc;
1201         struct bq_desc *sbq_desc;
1202         struct sk_buff *skb = NULL;
1203         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1204        u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1205
1206         /*
1207          * Handle the header buffer if present.
1208          */
1209         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1210             ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1211                 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1212                 /*
1213                  * Headers fit nicely into a small buffer.
1214                  */
1215                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1216                 pci_unmap_single(qdev->pdev,
1217                                 pci_unmap_addr(sbq_desc, mapaddr),
1218                                 pci_unmap_len(sbq_desc, maplen),
1219                                 PCI_DMA_FROMDEVICE);
1220                 skb = sbq_desc->p.skb;
1221                 ql_realign_skb(skb, hdr_len);
1222                 skb_put(skb, hdr_len);
1223                 sbq_desc->p.skb = NULL;
1224         }
1225
1226         /*
1227          * Handle the data buffer(s).
1228          */
1229         if (unlikely(!length)) {        /* Is there data too? */
1230                 QPRINTK(qdev, RX_STATUS, DEBUG,
1231                         "No Data buffer in this packet.\n");
1232                 return skb;
1233         }
1234
1235         if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1236                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1237                         QPRINTK(qdev, RX_STATUS, DEBUG,
1238                                 "Headers in small, data of %d bytes in small, combine them.\n", length);
1239                         /*
1240                          * Data is less than small buffer size so it's
1241                          * stuffed in a small buffer.
1242                          * For this case we append the data
1243                          * from the "data" small buffer to the "header" small
1244                          * buffer.
1245                          */
1246                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1247                         pci_dma_sync_single_for_cpu(qdev->pdev,
1248                                                     pci_unmap_addr
1249                                                     (sbq_desc, mapaddr),
1250                                                     pci_unmap_len
1251                                                     (sbq_desc, maplen),
1252                                                     PCI_DMA_FROMDEVICE);
1253                         memcpy(skb_put(skb, length),
1254                                sbq_desc->p.skb->data, length);
1255                         pci_dma_sync_single_for_device(qdev->pdev,
1256                                                        pci_unmap_addr
1257                                                        (sbq_desc,
1258                                                         mapaddr),
1259                                                        pci_unmap_len
1260                                                        (sbq_desc,
1261                                                         maplen),
1262                                                        PCI_DMA_FROMDEVICE);
1263                 } else {
1264                         QPRINTK(qdev, RX_STATUS, DEBUG,
1265                                 "%d bytes in a single small buffer.\n", length);
1266                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1267                         skb = sbq_desc->p.skb;
1268                         ql_realign_skb(skb, length);
1269                         skb_put(skb, length);
1270                         pci_unmap_single(qdev->pdev,
1271                                          pci_unmap_addr(sbq_desc,
1272                                                         mapaddr),
1273                                          pci_unmap_len(sbq_desc,
1274                                                        maplen),
1275                                          PCI_DMA_FROMDEVICE);
1276                         sbq_desc->p.skb = NULL;
1277                 }
1278         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1279                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1280                         QPRINTK(qdev, RX_STATUS, DEBUG,
1281                                 "Header in small, %d bytes in large. Chain large to small!\n", length);
1282                         /*
1283                          * The data is in a single large buffer.  We
1284                          * chain it to the header buffer's skb and let
1285                          * it rip.
1286                          */
1287                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1288                         pci_unmap_page(qdev->pdev,
1289                                        pci_unmap_addr(lbq_desc,
1290                                                       mapaddr),
1291                                        pci_unmap_len(lbq_desc, maplen),
1292                                        PCI_DMA_FROMDEVICE);
1293                         QPRINTK(qdev, RX_STATUS, DEBUG,
1294                                 "Chaining page to skb.\n");
1295                         skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1296                                            0, length);
1297                         skb->len += length;
1298                         skb->data_len += length;
1299                         skb->truesize += length;
1300                         lbq_desc->p.lbq_page = NULL;
1301                 } else {
1302                         /*
1303                          * The headers and data are in a single large buffer. We
1304                          * copy it to a new skb and let it go. This can happen with
1305                          * jumbo mtu on a non-TCP/UDP frame.
1306                          */
1307                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1308                         skb = netdev_alloc_skb(qdev->ndev, length);
1309                         if (skb == NULL) {
1310                                 QPRINTK(qdev, PROBE, DEBUG,
1311                                         "No skb available, drop the packet.\n");
1312                                 return NULL;
1313                         }
1314                         pci_unmap_page(qdev->pdev,
1315                                        pci_unmap_addr(lbq_desc,
1316                                                       mapaddr),
1317                                        pci_unmap_len(lbq_desc, maplen),
1318                                        PCI_DMA_FROMDEVICE);
1319                         skb_reserve(skb, NET_IP_ALIGN);
1320                         QPRINTK(qdev, RX_STATUS, DEBUG,
1321                                 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1322                         skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1323                                            0, length);
1324                         skb->len += length;
1325                         skb->data_len += length;
1326                         skb->truesize += length;
1327                         length -= length;
1328                         lbq_desc->p.lbq_page = NULL;
1329                         __pskb_pull_tail(skb,
1330                                 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1331                                 VLAN_ETH_HLEN : ETH_HLEN);
1332                 }
1333         } else {
1334                 /*
1335                  * The data is in a chain of large buffers
1336                  * pointed to by a small buffer.  We loop
1337                  * thru and chain them to the our small header
1338                  * buffer's skb.
1339                  * frags:  There are 18 max frags and our small
1340                  *         buffer will hold 32 of them. The thing is,
1341                  *         we'll use 3 max for our 9000 byte jumbo
1342                  *         frames.  If the MTU goes up we could
1343                  *          eventually be in trouble.
1344                  */
1345                 int size, offset, i = 0;
1346                 __le64 *bq, bq_array[8];
1347                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1348                 pci_unmap_single(qdev->pdev,
1349                                  pci_unmap_addr(sbq_desc, mapaddr),
1350                                  pci_unmap_len(sbq_desc, maplen),
1351                                  PCI_DMA_FROMDEVICE);
1352                 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1353                         /*
1354                          * This is an non TCP/UDP IP frame, so
1355                          * the headers aren't split into a small
1356                          * buffer.  We have to use the small buffer
1357                          * that contains our sg list as our skb to
1358                          * send upstairs. Copy the sg list here to
1359                          * a local buffer and use it to find the
1360                          * pages to chain.
1361                          */
1362                         QPRINTK(qdev, RX_STATUS, DEBUG,
1363                                 "%d bytes of headers & data in chain of large.\n", length);
1364                         skb = sbq_desc->p.skb;
1365                         bq = &bq_array[0];
1366                         memcpy(bq, skb->data, sizeof(bq_array));
1367                         sbq_desc->p.skb = NULL;
1368                         skb_reserve(skb, NET_IP_ALIGN);
1369                 } else {
1370                         QPRINTK(qdev, RX_STATUS, DEBUG,
1371                                 "Headers in small, %d bytes of data in chain of large.\n", length);
1372                         bq = (__le64 *)sbq_desc->p.skb->data;
1373                 }
1374                 while (length > 0) {
1375                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1376                         pci_unmap_page(qdev->pdev,
1377                                        pci_unmap_addr(lbq_desc,
1378                                                       mapaddr),
1379                                        pci_unmap_len(lbq_desc,
1380                                                      maplen),
1381                                        PCI_DMA_FROMDEVICE);
1382                         size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1383                         offset = 0;
1384
1385                         QPRINTK(qdev, RX_STATUS, DEBUG,
1386                                 "Adding page %d to skb for %d bytes.\n",
1387                                 i, size);
1388                         skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1389                                            offset, size);
1390                         skb->len += size;
1391                         skb->data_len += size;
1392                         skb->truesize += size;
1393                         length -= size;
1394                         lbq_desc->p.lbq_page = NULL;
1395                         bq++;
1396                         i++;
1397                 }
1398                 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1399                                 VLAN_ETH_HLEN : ETH_HLEN);
1400         }
1401         return skb;
1402 }
1403
1404 /* Process an inbound completion from an rx ring. */
1405 static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1406                                    struct rx_ring *rx_ring,
1407                                    struct ib_mac_iocb_rsp *ib_mac_rsp)
1408 {
1409         struct net_device *ndev = qdev->ndev;
1410         struct sk_buff *skb = NULL;
1411
1412         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1413
1414         skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1415         if (unlikely(!skb)) {
1416                 QPRINTK(qdev, RX_STATUS, DEBUG,
1417                         "No skb available, drop packet.\n");
1418                 return;
1419         }
1420
1421         prefetch(skb->data);
1422         skb->dev = ndev;
1423         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1424                 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1425                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1426                         IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1427                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1428                         IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1429                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1430                         IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1431         }
1432         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1433                 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1434         }
1435         if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
1436                 QPRINTK(qdev, RX_STATUS, ERR,
1437                         "Bad checksum for this %s packet.\n",
1438                         ((ib_mac_rsp->
1439                           flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
1440                 skb->ip_summed = CHECKSUM_NONE;
1441         } else if (qdev->rx_csum &&
1442                    ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
1443                     ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1444                      !(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
1445                 QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
1446                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1447         }
1448         qdev->stats.rx_packets++;
1449         qdev->stats.rx_bytes += skb->len;
1450         skb->protocol = eth_type_trans(skb, ndev);
1451         if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
1452                 QPRINTK(qdev, RX_STATUS, DEBUG,
1453                         "Passing a VLAN packet upstream.\n");
1454                 vlan_hwaccel_receive_skb(skb, qdev->vlgrp,
1455                                 le16_to_cpu(ib_mac_rsp->vlan_id));
1456         } else {
1457                 QPRINTK(qdev, RX_STATUS, DEBUG,
1458                         "Passing a normal packet upstream.\n");
1459                 netif_receive_skb(skb);
1460         }
1461 }
1462
1463 /* Process an outbound completion from an rx ring. */
1464 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1465                                    struct ob_mac_iocb_rsp *mac_rsp)
1466 {
1467         struct tx_ring *tx_ring;
1468         struct tx_ring_desc *tx_ring_desc;
1469
1470         QL_DUMP_OB_MAC_RSP(mac_rsp);
1471         tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1472         tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1473         ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1474         qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
1475         qdev->stats.tx_packets++;
1476         dev_kfree_skb(tx_ring_desc->skb);
1477         tx_ring_desc->skb = NULL;
1478
1479         if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1480                                         OB_MAC_IOCB_RSP_S |
1481                                         OB_MAC_IOCB_RSP_L |
1482                                         OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1483                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1484                         QPRINTK(qdev, TX_DONE, WARNING,
1485                                 "Total descriptor length did not match transfer length.\n");
1486                 }
1487                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1488                         QPRINTK(qdev, TX_DONE, WARNING,
1489                                 "Frame too short to be legal, not sent.\n");
1490                 }
1491                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1492                         QPRINTK(qdev, TX_DONE, WARNING,
1493                                 "Frame too long, but sent anyway.\n");
1494                 }
1495                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1496                         QPRINTK(qdev, TX_DONE, WARNING,
1497                                 "PCI backplane error. Frame not sent.\n");
1498                 }
1499         }
1500         atomic_inc(&tx_ring->tx_count);
1501 }
1502
1503 /* Fire up a handler to reset the MPI processor. */
1504 void ql_queue_fw_error(struct ql_adapter *qdev)
1505 {
1506         netif_stop_queue(qdev->ndev);
1507         netif_carrier_off(qdev->ndev);
1508         queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1509 }
1510
1511 void ql_queue_asic_error(struct ql_adapter *qdev)
1512 {
1513         netif_stop_queue(qdev->ndev);
1514         netif_carrier_off(qdev->ndev);
1515         ql_disable_interrupts(qdev);
1516         /* Clear adapter up bit to signal the recovery
1517          * process that it shouldn't kill the reset worker
1518          * thread
1519          */
1520         clear_bit(QL_ADAPTER_UP, &qdev->flags);
1521         queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1522 }
1523
1524 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1525                                     struct ib_ae_iocb_rsp *ib_ae_rsp)
1526 {
1527         switch (ib_ae_rsp->event) {
1528         case MGMT_ERR_EVENT:
1529                 QPRINTK(qdev, RX_ERR, ERR,
1530                         "Management Processor Fatal Error.\n");
1531                 ql_queue_fw_error(qdev);
1532                 return;
1533
1534         case CAM_LOOKUP_ERR_EVENT:
1535                 QPRINTK(qdev, LINK, ERR,
1536                         "Multiple CAM hits lookup occurred.\n");
1537                 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1538                 ql_queue_asic_error(qdev);
1539                 return;
1540
1541         case SOFT_ECC_ERROR_EVENT:
1542                 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1543                 ql_queue_asic_error(qdev);
1544                 break;
1545
1546         case PCI_ERR_ANON_BUF_RD:
1547                 QPRINTK(qdev, RX_ERR, ERR,
1548                         "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1549                         ib_ae_rsp->q_id);
1550                 ql_queue_asic_error(qdev);
1551                 break;
1552
1553         default:
1554                 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1555                         ib_ae_rsp->event);
1556                 ql_queue_asic_error(qdev);
1557                 break;
1558         }
1559 }
1560
1561 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1562 {
1563         struct ql_adapter *qdev = rx_ring->qdev;
1564         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1565         struct ob_mac_iocb_rsp *net_rsp = NULL;
1566         int count = 0;
1567
1568         /* While there are entries in the completion queue. */
1569         while (prod != rx_ring->cnsmr_idx) {
1570
1571                 QPRINTK(qdev, RX_STATUS, DEBUG,
1572                         "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1573                         prod, rx_ring->cnsmr_idx);
1574
1575                 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1576                 rmb();
1577                 switch (net_rsp->opcode) {
1578
1579                 case OPCODE_OB_MAC_TSO_IOCB:
1580                 case OPCODE_OB_MAC_IOCB:
1581                         ql_process_mac_tx_intr(qdev, net_rsp);
1582                         break;
1583                 default:
1584                         QPRINTK(qdev, RX_STATUS, DEBUG,
1585                                 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1586                                 net_rsp->opcode);
1587                 }
1588                 count++;
1589                 ql_update_cq(rx_ring);
1590                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1591         }
1592         ql_write_cq_idx(rx_ring);
1593         if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
1594                 struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1595                 if (atomic_read(&tx_ring->queue_stopped) &&
1596                     (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1597                         /*
1598                          * The queue got stopped because the tx_ring was full.
1599                          * Wake it up, because it's now at least 25% empty.
1600                          */
1601                         netif_wake_queue(qdev->ndev);
1602         }
1603
1604         return count;
1605 }
1606
1607 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1608 {
1609         struct ql_adapter *qdev = rx_ring->qdev;
1610         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1611         struct ql_net_rsp_iocb *net_rsp;
1612         int count = 0;
1613
1614         /* While there are entries in the completion queue. */
1615         while (prod != rx_ring->cnsmr_idx) {
1616
1617                 QPRINTK(qdev, RX_STATUS, DEBUG,
1618                         "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1619                         prod, rx_ring->cnsmr_idx);
1620
1621                 net_rsp = rx_ring->curr_entry;
1622                 rmb();
1623                 switch (net_rsp->opcode) {
1624                 case OPCODE_IB_MAC_IOCB:
1625                         ql_process_mac_rx_intr(qdev, rx_ring,
1626                                                (struct ib_mac_iocb_rsp *)
1627                                                net_rsp);
1628                         break;
1629
1630                 case OPCODE_IB_AE_IOCB:
1631                         ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1632                                                 net_rsp);
1633                         break;
1634                 default:
1635                         {
1636                                 QPRINTK(qdev, RX_STATUS, DEBUG,
1637                                         "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1638                                         net_rsp->opcode);
1639                         }
1640                 }
1641                 count++;
1642                 ql_update_cq(rx_ring);
1643                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1644                 if (count == budget)
1645                         break;
1646         }
1647         ql_update_buffer_queues(qdev, rx_ring);
1648         ql_write_cq_idx(rx_ring);
1649         return count;
1650 }
1651
1652 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1653 {
1654         struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1655         struct ql_adapter *qdev = rx_ring->qdev;
1656         int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1657
1658         QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1659                 rx_ring->cq_id);
1660
1661         if (work_done < budget) {
1662                 __netif_rx_complete(napi);
1663                 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1664         }
1665         return work_done;
1666 }
1667
1668 static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1669 {
1670         struct ql_adapter *qdev = netdev_priv(ndev);
1671
1672         qdev->vlgrp = grp;
1673         if (grp) {
1674                 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1675                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1676                            NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1677         } else {
1678                 QPRINTK(qdev, IFUP, DEBUG,
1679                         "Turning off VLAN in NIC_RCV_CFG.\n");
1680                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1681         }
1682 }
1683
1684 static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1685 {
1686         struct ql_adapter *qdev = netdev_priv(ndev);
1687         u32 enable_bit = MAC_ADDR_E;
1688
1689         spin_lock(&qdev->hw_lock);
1690         if (ql_set_mac_addr_reg
1691             (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1692                 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1693         }
1694         spin_unlock(&qdev->hw_lock);
1695 }
1696
1697 static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1698 {
1699         struct ql_adapter *qdev = netdev_priv(ndev);
1700         u32 enable_bit = 0;
1701
1702         spin_lock(&qdev->hw_lock);
1703         if (ql_set_mac_addr_reg
1704             (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1705                 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1706         }
1707         spin_unlock(&qdev->hw_lock);
1708
1709 }
1710
1711 /* Worker thread to process a given rx_ring that is dedicated
1712  * to outbound completions.
1713  */
1714 static void ql_tx_clean(struct work_struct *work)
1715 {
1716         struct rx_ring *rx_ring =
1717             container_of(work, struct rx_ring, rx_work.work);
1718         ql_clean_outbound_rx_ring(rx_ring);
1719         ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1720
1721 }
1722
1723 /* Worker thread to process a given rx_ring that is dedicated
1724  * to inbound completions.
1725  */
1726 static void ql_rx_clean(struct work_struct *work)
1727 {
1728         struct rx_ring *rx_ring =
1729             container_of(work, struct rx_ring, rx_work.work);
1730         ql_clean_inbound_rx_ring(rx_ring, 64);
1731         ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1732 }
1733
1734 /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
1735 static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
1736 {
1737         struct rx_ring *rx_ring = dev_id;
1738         queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
1739                               &rx_ring->rx_work, 0);
1740         return IRQ_HANDLED;
1741 }
1742
1743 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1744 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1745 {
1746         struct rx_ring *rx_ring = dev_id;
1747         netif_rx_schedule(&rx_ring->napi);
1748         return IRQ_HANDLED;
1749 }
1750
1751 /* This handles a fatal error, MPI activity, and the default
1752  * rx_ring in an MSI-X multiple vector environment.
1753  * In MSI/Legacy environment it also process the rest of
1754  * the rx_rings.
1755  */
1756 static irqreturn_t qlge_isr(int irq, void *dev_id)
1757 {
1758         struct rx_ring *rx_ring = dev_id;
1759         struct ql_adapter *qdev = rx_ring->qdev;
1760         struct intr_context *intr_context = &qdev->intr_context[0];
1761         u32 var;
1762         int i;
1763         int work_done = 0;
1764
1765         spin_lock(&qdev->hw_lock);
1766         if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
1767                 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
1768                 spin_unlock(&qdev->hw_lock);
1769                 return IRQ_NONE;
1770         }
1771         spin_unlock(&qdev->hw_lock);
1772
1773         var = ql_disable_completion_interrupt(qdev, intr_context->intr);
1774
1775         /*
1776          * Check for fatal error.
1777          */
1778         if (var & STS_FE) {
1779                 ql_queue_asic_error(qdev);
1780                 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
1781                 var = ql_read32(qdev, ERR_STS);
1782                 QPRINTK(qdev, INTR, ERR,
1783                         "Resetting chip. Error Status Register = 0x%x\n", var);
1784                 return IRQ_HANDLED;
1785         }
1786
1787         /*
1788          * Check MPI processor activity.
1789          */
1790         if (var & STS_PI) {
1791                 /*
1792                  * We've got an async event or mailbox completion.
1793                  * Handle it and clear the source of the interrupt.
1794                  */
1795                 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
1796                 ql_disable_completion_interrupt(qdev, intr_context->intr);
1797                 queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
1798                                       &qdev->mpi_work, 0);
1799                 work_done++;
1800         }
1801
1802         /*
1803          * Check the default queue and wake handler if active.
1804          */
1805         rx_ring = &qdev->rx_ring[0];
1806         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
1807                 QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
1808                 ql_disable_completion_interrupt(qdev, intr_context->intr);
1809                 queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
1810                                       &rx_ring->rx_work, 0);
1811                 work_done++;
1812         }
1813
1814         if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
1815                 /*
1816                  * Start the DPC for each active queue.
1817                  */
1818                 for (i = 1; i < qdev->rx_ring_count; i++) {
1819                         rx_ring = &qdev->rx_ring[i];
1820                         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
1821                             rx_ring->cnsmr_idx) {
1822                                 QPRINTK(qdev, INTR, INFO,
1823                                         "Waking handler for rx_ring[%d].\n", i);
1824                                 ql_disable_completion_interrupt(qdev,
1825                                                                 intr_context->
1826                                                                 intr);
1827                                 if (i < qdev->rss_ring_first_cq_id)
1828                                         queue_delayed_work_on(rx_ring->cpu,
1829                                                               qdev->q_workqueue,
1830                                                               &rx_ring->rx_work,
1831                                                               0);
1832                                 else
1833                                         netif_rx_schedule(&rx_ring->napi);
1834                                 work_done++;
1835                         }
1836                 }
1837         }
1838         ql_enable_completion_interrupt(qdev, intr_context->intr);
1839         return work_done ? IRQ_HANDLED : IRQ_NONE;
1840 }
1841
1842 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1843 {
1844
1845         if (skb_is_gso(skb)) {
1846                 int err;
1847                 if (skb_header_cloned(skb)) {
1848                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1849                         if (err)
1850                                 return err;
1851                 }
1852
1853                 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1854                 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
1855                 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1856                 mac_iocb_ptr->total_hdrs_len =
1857                     cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
1858                 mac_iocb_ptr->net_trans_offset =
1859                     cpu_to_le16(skb_network_offset(skb) |
1860                                 skb_transport_offset(skb)
1861                                 << OB_MAC_TRANSPORT_HDR_SHIFT);
1862                 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
1863                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
1864                 if (likely(skb->protocol == htons(ETH_P_IP))) {
1865                         struct iphdr *iph = ip_hdr(skb);
1866                         iph->check = 0;
1867                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1868                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1869                                                                  iph->daddr, 0,
1870                                                                  IPPROTO_TCP,
1871                                                                  0);
1872                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
1873                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
1874                         tcp_hdr(skb)->check =
1875                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1876                                              &ipv6_hdr(skb)->daddr,
1877                                              0, IPPROTO_TCP, 0);
1878                 }
1879                 return 1;
1880         }
1881         return 0;
1882 }
1883
1884 static void ql_hw_csum_setup(struct sk_buff *skb,
1885                              struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1886 {
1887         int len;
1888         struct iphdr *iph = ip_hdr(skb);
1889         __sum16 *check;
1890         mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1891         mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1892         mac_iocb_ptr->net_trans_offset =
1893                 cpu_to_le16(skb_network_offset(skb) |
1894                 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
1895
1896         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1897         len = (ntohs(iph->tot_len) - (iph->ihl << 2));
1898         if (likely(iph->protocol == IPPROTO_TCP)) {
1899                 check = &(tcp_hdr(skb)->check);
1900                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
1901                 mac_iocb_ptr->total_hdrs_len =
1902                     cpu_to_le16(skb_transport_offset(skb) +
1903                                 (tcp_hdr(skb)->doff << 2));
1904         } else {
1905                 check = &(udp_hdr(skb)->check);
1906                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
1907                 mac_iocb_ptr->total_hdrs_len =
1908                     cpu_to_le16(skb_transport_offset(skb) +
1909                                 sizeof(struct udphdr));
1910         }
1911         *check = ~csum_tcpudp_magic(iph->saddr,
1912                                     iph->daddr, len, iph->protocol, 0);
1913 }
1914
1915 static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
1916 {
1917         struct tx_ring_desc *tx_ring_desc;
1918         struct ob_mac_iocb_req *mac_iocb_ptr;
1919         struct ql_adapter *qdev = netdev_priv(ndev);
1920         int tso;
1921         struct tx_ring *tx_ring;
1922         u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
1923
1924         tx_ring = &qdev->tx_ring[tx_ring_idx];
1925
1926         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
1927                 QPRINTK(qdev, TX_QUEUED, INFO,
1928                         "%s: shutting down tx queue %d du to lack of resources.\n",
1929                         __func__, tx_ring_idx);
1930                 netif_stop_queue(ndev);
1931                 atomic_inc(&tx_ring->queue_stopped);
1932                 return NETDEV_TX_BUSY;
1933         }
1934         tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
1935         mac_iocb_ptr = tx_ring_desc->queue_entry;
1936         memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
1937         if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) != NETDEV_TX_OK) {
1938                 QPRINTK(qdev, TX_QUEUED, ERR, "Could not map the segments.\n");
1939                 return NETDEV_TX_BUSY;
1940         }
1941
1942         mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
1943         mac_iocb_ptr->tid = tx_ring_desc->index;
1944         /* We use the upper 32-bits to store the tx queue for this IO.
1945          * When we get the completion we can use it to establish the context.
1946          */
1947         mac_iocb_ptr->txq_idx = tx_ring_idx;
1948         tx_ring_desc->skb = skb;
1949
1950         mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
1951
1952         if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
1953                 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
1954                         vlan_tx_tag_get(skb));
1955                 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
1956                 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
1957         }
1958         tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1959         if (tso < 0) {
1960                 dev_kfree_skb_any(skb);
1961                 return NETDEV_TX_OK;
1962         } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
1963                 ql_hw_csum_setup(skb,
1964                                  (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1965         }
1966         QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
1967         tx_ring->prod_idx++;
1968         if (tx_ring->prod_idx == tx_ring->wq_len)
1969                 tx_ring->prod_idx = 0;
1970         wmb();
1971
1972         ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
1973         ndev->trans_start = jiffies;
1974         QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
1975                 tx_ring->prod_idx, skb->len);
1976
1977         atomic_dec(&tx_ring->tx_count);
1978         return NETDEV_TX_OK;
1979 }
1980
1981 static void ql_free_shadow_space(struct ql_adapter *qdev)
1982 {
1983         if (qdev->rx_ring_shadow_reg_area) {
1984                 pci_free_consistent(qdev->pdev,
1985                                     PAGE_SIZE,
1986                                     qdev->rx_ring_shadow_reg_area,
1987                                     qdev->rx_ring_shadow_reg_dma);
1988                 qdev->rx_ring_shadow_reg_area = NULL;
1989         }
1990         if (qdev->tx_ring_shadow_reg_area) {
1991                 pci_free_consistent(qdev->pdev,
1992                                     PAGE_SIZE,
1993                                     qdev->tx_ring_shadow_reg_area,
1994                                     qdev->tx_ring_shadow_reg_dma);
1995                 qdev->tx_ring_shadow_reg_area = NULL;
1996         }
1997 }
1998
1999 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2000 {
2001         qdev->rx_ring_shadow_reg_area =
2002             pci_alloc_consistent(qdev->pdev,
2003                                  PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2004         if (qdev->rx_ring_shadow_reg_area == NULL) {
2005                 QPRINTK(qdev, IFUP, ERR,
2006                         "Allocation of RX shadow space failed.\n");
2007                 return -ENOMEM;
2008         }
2009         qdev->tx_ring_shadow_reg_area =
2010             pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2011                                  &qdev->tx_ring_shadow_reg_dma);
2012         if (qdev->tx_ring_shadow_reg_area == NULL) {
2013                 QPRINTK(qdev, IFUP, ERR,
2014                         "Allocation of TX shadow space failed.\n");
2015                 goto err_wqp_sh_area;
2016         }
2017         return 0;
2018
2019 err_wqp_sh_area:
2020         pci_free_consistent(qdev->pdev,
2021                             PAGE_SIZE,
2022                             qdev->rx_ring_shadow_reg_area,
2023                             qdev->rx_ring_shadow_reg_dma);
2024         return -ENOMEM;
2025 }
2026
2027 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2028 {
2029         struct tx_ring_desc *tx_ring_desc;
2030         int i;
2031         struct ob_mac_iocb_req *mac_iocb_ptr;
2032
2033         mac_iocb_ptr = tx_ring->wq_base;
2034         tx_ring_desc = tx_ring->q;
2035         for (i = 0; i < tx_ring->wq_len; i++) {
2036                 tx_ring_desc->index = i;
2037                 tx_ring_desc->skb = NULL;
2038                 tx_ring_desc->queue_entry = mac_iocb_ptr;
2039                 mac_iocb_ptr++;
2040                 tx_ring_desc++;
2041         }
2042         atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2043         atomic_set(&tx_ring->queue_stopped, 0);
2044 }
2045
2046 static void ql_free_tx_resources(struct ql_adapter *qdev,
2047                                  struct tx_ring *tx_ring)
2048 {
2049         if (tx_ring->wq_base) {
2050                 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2051                                     tx_ring->wq_base, tx_ring->wq_base_dma);
2052                 tx_ring->wq_base = NULL;
2053         }
2054         kfree(tx_ring->q);
2055         tx_ring->q = NULL;
2056 }
2057
2058 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2059                                  struct tx_ring *tx_ring)
2060 {
2061         tx_ring->wq_base =
2062             pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2063                                  &tx_ring->wq_base_dma);
2064
2065         if ((tx_ring->wq_base == NULL)
2066             || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
2067                 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2068                 return -ENOMEM;
2069         }
2070         tx_ring->q =
2071             kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2072         if (tx_ring->q == NULL)
2073                 goto err;
2074
2075         return 0;
2076 err:
2077         pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2078                             tx_ring->wq_base, tx_ring->wq_base_dma);
2079         return -ENOMEM;
2080 }
2081
2082 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2083 {
2084         int i;
2085         struct bq_desc *lbq_desc;
2086
2087         for (i = 0; i < rx_ring->lbq_len; i++) {
2088                 lbq_desc = &rx_ring->lbq[i];
2089                 if (lbq_desc->p.lbq_page) {
2090                         pci_unmap_page(qdev->pdev,
2091                                        pci_unmap_addr(lbq_desc, mapaddr),
2092                                        pci_unmap_len(lbq_desc, maplen),
2093                                        PCI_DMA_FROMDEVICE);
2094
2095                         put_page(lbq_desc->p.lbq_page);
2096                         lbq_desc->p.lbq_page = NULL;
2097                 }
2098         }
2099 }
2100
2101 /*
2102  * Allocate and map a page for each element of the lbq.
2103  */
2104 static int ql_alloc_lbq_buffers(struct ql_adapter *qdev,
2105                                 struct rx_ring *rx_ring)
2106 {
2107         int i;
2108         struct bq_desc *lbq_desc;
2109         u64 map;
2110         __le64 *bq = rx_ring->lbq_base;
2111
2112         for (i = 0; i < rx_ring->lbq_len; i++) {
2113                 lbq_desc = &rx_ring->lbq[i];
2114                 memset(lbq_desc, 0, sizeof(lbq_desc));
2115                 lbq_desc->addr = bq;
2116                 lbq_desc->index = i;
2117                 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
2118                 if (unlikely(!lbq_desc->p.lbq_page)) {
2119                         QPRINTK(qdev, IFUP, ERR, "failed alloc_page().\n");
2120                         goto mem_error;
2121                 } else {
2122                         map = pci_map_page(qdev->pdev,
2123                                            lbq_desc->p.lbq_page,
2124                                            0, PAGE_SIZE, PCI_DMA_FROMDEVICE);
2125                         if (pci_dma_mapping_error(qdev->pdev, map)) {
2126                                 QPRINTK(qdev, IFUP, ERR,
2127                                         "PCI mapping failed.\n");
2128                                 goto mem_error;
2129                         }
2130                         pci_unmap_addr_set(lbq_desc, mapaddr, map);
2131                         pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
2132                         *lbq_desc->addr = cpu_to_le64(map);
2133                 }
2134                 bq++;
2135         }
2136         return 0;
2137 mem_error:
2138         ql_free_lbq_buffers(qdev, rx_ring);
2139         return -ENOMEM;
2140 }
2141
2142 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2143 {
2144         int i;
2145         struct bq_desc *sbq_desc;
2146
2147         for (i = 0; i < rx_ring->sbq_len; i++) {
2148                 sbq_desc = &rx_ring->sbq[i];
2149                 if (sbq_desc == NULL) {
2150                         QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2151                         return;
2152                 }
2153                 if (sbq_desc->p.skb) {
2154                         pci_unmap_single(qdev->pdev,
2155                                          pci_unmap_addr(sbq_desc, mapaddr),
2156                                          pci_unmap_len(sbq_desc, maplen),
2157                                          PCI_DMA_FROMDEVICE);
2158                         dev_kfree_skb(sbq_desc->p.skb);
2159                         sbq_desc->p.skb = NULL;
2160                 }
2161         }
2162 }
2163
2164 /* Allocate and map an skb for each element of the sbq. */
2165 static int ql_alloc_sbq_buffers(struct ql_adapter *qdev,
2166                                 struct rx_ring *rx_ring)
2167 {
2168         int i;
2169         struct bq_desc *sbq_desc;
2170         struct sk_buff *skb;
2171         u64 map;
2172         __le64 *bq = rx_ring->sbq_base;
2173
2174         for (i = 0; i < rx_ring->sbq_len; i++) {
2175                 sbq_desc = &rx_ring->sbq[i];
2176                 memset(sbq_desc, 0, sizeof(sbq_desc));
2177                 sbq_desc->index = i;
2178                 sbq_desc->addr = bq;
2179                 skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size);
2180                 if (unlikely(!skb)) {
2181                         /* Better luck next round */
2182                         QPRINTK(qdev, IFUP, ERR,
2183                                 "small buff alloc failed for %d bytes at index %d.\n",
2184                                 rx_ring->sbq_buf_size, i);
2185                         goto mem_err;
2186                 }
2187                 skb_reserve(skb, QLGE_SB_PAD);
2188                 sbq_desc->p.skb = skb;
2189                 /*
2190                  * Map only half the buffer. Because the
2191                  * other half may get some data copied to it
2192                  * when the completion arrives.
2193                  */
2194                 map = pci_map_single(qdev->pdev,
2195                                      skb->data,
2196                                      rx_ring->sbq_buf_size / 2,
2197                                      PCI_DMA_FROMDEVICE);
2198                 if (pci_dma_mapping_error(qdev->pdev, map)) {
2199                         QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
2200                         goto mem_err;
2201                 }
2202                 pci_unmap_addr_set(sbq_desc, mapaddr, map);
2203                 pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2);
2204                 *sbq_desc->addr = cpu_to_le64(map);
2205                 bq++;
2206         }
2207         return 0;
2208 mem_err:
2209         ql_free_sbq_buffers(qdev, rx_ring);
2210         return -ENOMEM;
2211 }
2212
2213 static void ql_free_rx_resources(struct ql_adapter *qdev,
2214                                  struct rx_ring *rx_ring)
2215 {
2216         if (rx_ring->sbq_len)
2217                 ql_free_sbq_buffers(qdev, rx_ring);
2218         if (rx_ring->lbq_len)
2219                 ql_free_lbq_buffers(qdev, rx_ring);
2220
2221         /* Free the small buffer queue. */
2222         if (rx_ring->sbq_base) {
2223                 pci_free_consistent(qdev->pdev,
2224                                     rx_ring->sbq_size,
2225                                     rx_ring->sbq_base, rx_ring->sbq_base_dma);
2226                 rx_ring->sbq_base = NULL;
2227         }
2228
2229         /* Free the small buffer queue control blocks. */
2230         kfree(rx_ring->sbq);
2231         rx_ring->sbq = NULL;
2232
2233         /* Free the large buffer queue. */
2234         if (rx_ring->lbq_base) {
2235                 pci_free_consistent(qdev->pdev,
2236                                     rx_ring->lbq_size,
2237                                     rx_ring->lbq_base, rx_ring->lbq_base_dma);
2238                 rx_ring->lbq_base = NULL;
2239         }
2240
2241         /* Free the large buffer queue control blocks. */
2242         kfree(rx_ring->lbq);
2243         rx_ring->lbq = NULL;
2244
2245         /* Free the rx queue. */
2246         if (rx_ring->cq_base) {
2247                 pci_free_consistent(qdev->pdev,
2248                                     rx_ring->cq_size,
2249                                     rx_ring->cq_base, rx_ring->cq_base_dma);
2250                 rx_ring->cq_base = NULL;
2251         }
2252 }
2253
2254 /* Allocate queues and buffers for this completions queue based
2255  * on the values in the parameter structure. */
2256 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2257                                  struct rx_ring *rx_ring)
2258 {
2259
2260         /*
2261          * Allocate the completion queue for this rx_ring.
2262          */
2263         rx_ring->cq_base =
2264             pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2265                                  &rx_ring->cq_base_dma);
2266
2267         if (rx_ring->cq_base == NULL) {
2268                 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2269                 return -ENOMEM;
2270         }
2271
2272         if (rx_ring->sbq_len) {
2273                 /*
2274                  * Allocate small buffer queue.
2275                  */
2276                 rx_ring->sbq_base =
2277                     pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2278                                          &rx_ring->sbq_base_dma);
2279
2280                 if (rx_ring->sbq_base == NULL) {
2281                         QPRINTK(qdev, IFUP, ERR,
2282                                 "Small buffer queue allocation failed.\n");
2283                         goto err_mem;
2284                 }
2285
2286                 /*
2287                  * Allocate small buffer queue control blocks.
2288                  */
2289                 rx_ring->sbq =
2290                     kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2291                             GFP_KERNEL);
2292                 if (rx_ring->sbq == NULL) {
2293                         QPRINTK(qdev, IFUP, ERR,
2294                                 "Small buffer queue control block allocation failed.\n");
2295                         goto err_mem;
2296                 }
2297
2298                 if (ql_alloc_sbq_buffers(qdev, rx_ring)) {
2299                         QPRINTK(qdev, IFUP, ERR,
2300                                 "Small buffer allocation failed.\n");
2301                         goto err_mem;
2302                 }
2303         }
2304
2305         if (rx_ring->lbq_len) {
2306                 /*
2307                  * Allocate large buffer queue.
2308                  */
2309                 rx_ring->lbq_base =
2310                     pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2311                                          &rx_ring->lbq_base_dma);
2312
2313                 if (rx_ring->lbq_base == NULL) {
2314                         QPRINTK(qdev, IFUP, ERR,
2315                                 "Large buffer queue allocation failed.\n");
2316                         goto err_mem;
2317                 }
2318                 /*
2319                  * Allocate large buffer queue control blocks.
2320                  */
2321                 rx_ring->lbq =
2322                     kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2323                             GFP_KERNEL);
2324                 if (rx_ring->lbq == NULL) {
2325                         QPRINTK(qdev, IFUP, ERR,
2326                                 "Large buffer queue control block allocation failed.\n");
2327                         goto err_mem;
2328                 }
2329
2330                 /*
2331                  * Allocate the buffers.
2332                  */
2333                 if (ql_alloc_lbq_buffers(qdev, rx_ring)) {
2334                         QPRINTK(qdev, IFUP, ERR,
2335                                 "Large buffer allocation failed.\n");
2336                         goto err_mem;
2337                 }
2338         }
2339
2340         return 0;
2341
2342 err_mem:
2343         ql_free_rx_resources(qdev, rx_ring);
2344         return -ENOMEM;
2345 }
2346
2347 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2348 {
2349         struct tx_ring *tx_ring;
2350         struct tx_ring_desc *tx_ring_desc;
2351         int i, j;
2352
2353         /*
2354          * Loop through all queues and free
2355          * any resources.
2356          */
2357         for (j = 0; j < qdev->tx_ring_count; j++) {
2358                 tx_ring = &qdev->tx_ring[j];
2359                 for (i = 0; i < tx_ring->wq_len; i++) {
2360                         tx_ring_desc = &tx_ring->q[i];
2361                         if (tx_ring_desc && tx_ring_desc->skb) {
2362                                 QPRINTK(qdev, IFDOWN, ERR,
2363                                 "Freeing lost SKB %p, from queue %d, index %d.\n",
2364                                         tx_ring_desc->skb, j,
2365                                         tx_ring_desc->index);
2366                                 ql_unmap_send(qdev, tx_ring_desc,
2367                                               tx_ring_desc->map_cnt);
2368                                 dev_kfree_skb(tx_ring_desc->skb);
2369                                 tx_ring_desc->skb = NULL;
2370                         }
2371                 }
2372         }
2373 }
2374
2375 static void ql_free_mem_resources(struct ql_adapter *qdev)
2376 {
2377         int i;
2378
2379         for (i = 0; i < qdev->tx_ring_count; i++)
2380                 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2381         for (i = 0; i < qdev->rx_ring_count; i++)
2382                 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2383         ql_free_shadow_space(qdev);
2384 }
2385
2386 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2387 {
2388         int i;
2389
2390         /* Allocate space for our shadow registers and such. */
2391         if (ql_alloc_shadow_space(qdev))
2392                 return -ENOMEM;
2393
2394         for (i = 0; i < qdev->rx_ring_count; i++) {
2395                 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2396                         QPRINTK(qdev, IFUP, ERR,
2397                                 "RX resource allocation failed.\n");
2398                         goto err_mem;
2399                 }
2400         }
2401         /* Allocate tx queue resources */
2402         for (i = 0; i < qdev->tx_ring_count; i++) {
2403                 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2404                         QPRINTK(qdev, IFUP, ERR,
2405                                 "TX resource allocation failed.\n");
2406                         goto err_mem;
2407                 }
2408         }
2409         return 0;
2410
2411 err_mem:
2412         ql_free_mem_resources(qdev);
2413         return -ENOMEM;
2414 }
2415
2416 /* Set up the rx ring control block and pass it to the chip.
2417  * The control block is defined as
2418  * "Completion Queue Initialization Control Block", or cqicb.
2419  */
2420 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2421 {
2422         struct cqicb *cqicb = &rx_ring->cqicb;
2423         void *shadow_reg = qdev->rx_ring_shadow_reg_area +
2424             (rx_ring->cq_id * sizeof(u64) * 4);
2425         u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
2426             (rx_ring->cq_id * sizeof(u64) * 4);
2427         void __iomem *doorbell_area =
2428             qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2429         int err = 0;
2430         u16 bq_len;
2431
2432         /* Set up the shadow registers for this ring. */
2433         rx_ring->prod_idx_sh_reg = shadow_reg;
2434         rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2435         shadow_reg += sizeof(u64);
2436         shadow_reg_dma += sizeof(u64);
2437         rx_ring->lbq_base_indirect = shadow_reg;
2438         rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
2439         shadow_reg += sizeof(u64);
2440         shadow_reg_dma += sizeof(u64);
2441         rx_ring->sbq_base_indirect = shadow_reg;
2442         rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2443
2444         /* PCI doorbell mem area + 0x00 for consumer index register */
2445         rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
2446         rx_ring->cnsmr_idx = 0;
2447         rx_ring->curr_entry = rx_ring->cq_base;
2448
2449         /* PCI doorbell mem area + 0x04 for valid register */
2450         rx_ring->valid_db_reg = doorbell_area + 0x04;
2451
2452         /* PCI doorbell mem area + 0x18 for large buffer consumer */
2453         rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
2454
2455         /* PCI doorbell mem area + 0x1c */
2456         rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
2457
2458         memset((void *)cqicb, 0, sizeof(struct cqicb));
2459         cqicb->msix_vect = rx_ring->irq;
2460
2461         bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
2462         cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
2463
2464         cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
2465
2466         cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
2467
2468         /*
2469          * Set up the control block load flags.
2470          */
2471         cqicb->flags = FLAGS_LC |       /* Load queue base address */
2472             FLAGS_LV |          /* Load MSI-X vector */
2473             FLAGS_LI;           /* Load irq delay values */
2474         if (rx_ring->lbq_len) {
2475                 cqicb->flags |= FLAGS_LL;       /* Load lbq values */
2476                 *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
2477                 cqicb->lbq_addr =
2478                     cpu_to_le64(rx_ring->lbq_base_indirect_dma);
2479                 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
2480                         (u16) rx_ring->lbq_buf_size;
2481                 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
2482                 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
2483                         (u16) rx_ring->lbq_len;
2484                 cqicb->lbq_len = cpu_to_le16(bq_len);
2485                 rx_ring->lbq_prod_idx = rx_ring->lbq_len - 16;
2486                 rx_ring->lbq_curr_idx = 0;
2487                 rx_ring->lbq_clean_idx = rx_ring->lbq_prod_idx;
2488                 rx_ring->lbq_free_cnt = 16;
2489         }
2490         if (rx_ring->sbq_len) {
2491                 cqicb->flags |= FLAGS_LS;       /* Load sbq values */
2492                 *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
2493                 cqicb->sbq_addr =
2494                     cpu_to_le64(rx_ring->sbq_base_indirect_dma);
2495                 cqicb->sbq_buf_size =
2496                     cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
2497                 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
2498                         (u16) rx_ring->sbq_len;
2499                 cqicb->sbq_len = cpu_to_le16(bq_len);
2500                 rx_ring->sbq_prod_idx = rx_ring->sbq_len - 16;
2501                 rx_ring->sbq_curr_idx = 0;
2502                 rx_ring->sbq_clean_idx = rx_ring->sbq_prod_idx;
2503                 rx_ring->sbq_free_cnt = 16;
2504         }
2505         switch (rx_ring->type) {
2506         case TX_Q:
2507                 /* If there's only one interrupt, then we use
2508                  * worker threads to process the outbound
2509                  * completion handling rx_rings. We do this so
2510                  * they can be run on multiple CPUs. There is
2511                  * room to play with this more where we would only
2512                  * run in a worker if there are more than x number
2513                  * of outbound completions on the queue and more
2514                  * than one queue active.  Some threshold that
2515                  * would indicate a benefit in spite of the cost
2516                  * of a context switch.
2517                  * If there's more than one interrupt, then the
2518                  * outbound completions are processed in the ISR.
2519                  */
2520                 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
2521                         INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2522                 else {
2523                         /* With all debug warnings on we see a WARN_ON message
2524                          * when we free the skb in the interrupt context.
2525                          */
2526                         INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2527                 }
2528                 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2529                 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2530                 break;
2531         case DEFAULT_Q:
2532                 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
2533                 cqicb->irq_delay = 0;
2534                 cqicb->pkt_delay = 0;
2535                 break;
2536         case RX_Q:
2537                 /* Inbound completion handling rx_rings run in
2538                  * separate NAPI contexts.
2539                  */
2540                 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2541                                64);
2542                 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2543                 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2544                 break;
2545         default:
2546                 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2547                         rx_ring->type);
2548         }
2549         QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
2550         err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2551                            CFG_LCQ, rx_ring->cq_id);
2552         if (err) {
2553                 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2554                 return err;
2555         }
2556         QPRINTK(qdev, IFUP, INFO, "Successfully loaded CQICB.\n");
2557         /*
2558          * Advance the producer index for the buffer queues.
2559          */
2560         wmb();
2561         if (rx_ring->lbq_len)
2562                 ql_write_db_reg(rx_ring->lbq_prod_idx,
2563                                 rx_ring->lbq_prod_idx_db_reg);
2564         if (rx_ring->sbq_len)
2565                 ql_write_db_reg(rx_ring->sbq_prod_idx,
2566                                 rx_ring->sbq_prod_idx_db_reg);
2567         return err;
2568 }
2569
2570 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2571 {
2572         struct wqicb *wqicb = (struct wqicb *)tx_ring;
2573         void __iomem *doorbell_area =
2574             qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2575         void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2576             (tx_ring->wq_id * sizeof(u64));
2577         u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2578             (tx_ring->wq_id * sizeof(u64));
2579         int err = 0;
2580
2581         /*
2582          * Assign doorbell registers for this tx_ring.
2583          */
2584         /* TX PCI doorbell mem area for tx producer index */
2585         tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
2586         tx_ring->prod_idx = 0;
2587         /* TX PCI doorbell mem area + 0x04 */
2588         tx_ring->valid_db_reg = doorbell_area + 0x04;
2589
2590         /*
2591          * Assign shadow registers for this tx_ring.
2592          */
2593         tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2594         tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2595
2596         wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2597         wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2598                                    Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2599         wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2600         wqicb->rid = 0;
2601         wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
2602
2603         wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
2604
2605         ql_init_tx_ring(qdev, tx_ring);
2606
2607         err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
2608                            (u16) tx_ring->wq_id);
2609         if (err) {
2610                 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2611                 return err;
2612         }
2613         QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
2614         return err;
2615 }
2616
2617 static void ql_disable_msix(struct ql_adapter *qdev)
2618 {
2619         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2620                 pci_disable_msix(qdev->pdev);
2621                 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2622                 kfree(qdev->msi_x_entry);
2623                 qdev->msi_x_entry = NULL;
2624         } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2625                 pci_disable_msi(qdev->pdev);
2626                 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2627         }
2628 }
2629
2630 static void ql_enable_msix(struct ql_adapter *qdev)
2631 {
2632         int i;
2633
2634         qdev->intr_count = 1;
2635         /* Get the MSIX vectors. */
2636         if (irq_type == MSIX_IRQ) {
2637                 /* Try to alloc space for the msix struct,
2638                  * if it fails then go to MSI/legacy.
2639                  */
2640                 qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
2641                                             sizeof(struct msix_entry),
2642                                             GFP_KERNEL);
2643                 if (!qdev->msi_x_entry) {
2644                         irq_type = MSI_IRQ;
2645                         goto msi;
2646                 }
2647
2648                 for (i = 0; i < qdev->rx_ring_count; i++)
2649                         qdev->msi_x_entry[i].entry = i;
2650
2651                 if (!pci_enable_msix
2652                     (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
2653                         set_bit(QL_MSIX_ENABLED, &qdev->flags);
2654                         qdev->intr_count = qdev->rx_ring_count;
2655                         QPRINTK(qdev, IFUP, INFO,
2656                                 "MSI-X Enabled, got %d vectors.\n",
2657                                 qdev->intr_count);
2658                         return;
2659                 } else {
2660                         kfree(qdev->msi_x_entry);
2661                         qdev->msi_x_entry = NULL;
2662                         QPRINTK(qdev, IFUP, WARNING,
2663                                 "MSI-X Enable failed, trying MSI.\n");
2664                         irq_type = MSI_IRQ;
2665                 }
2666         }
2667 msi:
2668         if (irq_type == MSI_IRQ) {
2669                 if (!pci_enable_msi(qdev->pdev)) {
2670                         set_bit(QL_MSI_ENABLED, &qdev->flags);
2671                         QPRINTK(qdev, IFUP, INFO,
2672                                 "Running with MSI interrupts.\n");
2673                         return;
2674                 }
2675         }
2676         irq_type = LEG_IRQ;
2677         QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2678 }
2679
2680 /*
2681  * Here we build the intr_context structures based on
2682  * our rx_ring count and intr vector count.
2683  * The intr_context structure is used to hook each vector
2684  * to possibly different handlers.
2685  */
2686 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2687 {
2688         int i = 0;
2689         struct intr_context *intr_context = &qdev->intr_context[0];
2690
2691         ql_enable_msix(qdev);
2692
2693         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2694                 /* Each rx_ring has it's
2695                  * own intr_context since we have separate
2696                  * vectors for each queue.
2697                  * This only true when MSI-X is enabled.
2698                  */
2699                 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2700                         qdev->rx_ring[i].irq = i;
2701                         intr_context->intr = i;
2702                         intr_context->qdev = qdev;
2703                         /*
2704                          * We set up each vectors enable/disable/read bits so
2705                          * there's no bit/mask calculations in the critical path.
2706                          */
2707                         intr_context->intr_en_mask =
2708                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2709                             INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2710                             | i;
2711                         intr_context->intr_dis_mask =
2712                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2713                             INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2714                             INTR_EN_IHD | i;
2715                         intr_context->intr_read_mask =
2716                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2717                             INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2718                             i;
2719
2720                         if (i == 0) {
2721                                 /*
2722                                  * Default queue handles bcast/mcast plus
2723                                  * async events.  Needs buffers.
2724                                  */
2725                                 intr_context->handler = qlge_isr;
2726                                 sprintf(intr_context->name, "%s-default-queue",
2727                                         qdev->ndev->name);
2728                         } else if (i < qdev->rss_ring_first_cq_id) {
2729                                 /*
2730                                  * Outbound queue is for outbound completions only.
2731                                  */
2732                                 intr_context->handler = qlge_msix_tx_isr;
2733                                 sprintf(intr_context->name, "%s-tx-%d",
2734                                         qdev->ndev->name, i);
2735                         } else {
2736                                 /*
2737                                  * Inbound queues handle unicast frames only.
2738                                  */
2739                                 intr_context->handler = qlge_msix_rx_isr;
2740                                 sprintf(intr_context->name, "%s-rx-%d",
2741                                         qdev->ndev->name, i);
2742                         }
2743                 }
2744         } else {
2745                 /*
2746                  * All rx_rings use the same intr_context since
2747                  * there is only one vector.
2748                  */
2749                 intr_context->intr = 0;
2750                 intr_context->qdev = qdev;
2751                 /*
2752                  * We set up each vectors enable/disable/read bits so
2753                  * there's no bit/mask calculations in the critical path.
2754                  */
2755                 intr_context->intr_en_mask =
2756                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2757                 intr_context->intr_dis_mask =
2758                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2759                     INTR_EN_TYPE_DISABLE;
2760                 intr_context->intr_read_mask =
2761                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2762                 /*
2763                  * Single interrupt means one handler for all rings.
2764                  */
2765                 intr_context->handler = qlge_isr;
2766                 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
2767                 for (i = 0; i < qdev->rx_ring_count; i++)
2768                         qdev->rx_ring[i].irq = 0;
2769         }
2770 }
2771
2772 static void ql_free_irq(struct ql_adapter *qdev)
2773 {
2774         int i;
2775         struct intr_context *intr_context = &qdev->intr_context[0];
2776
2777         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2778                 if (intr_context->hooked) {
2779                         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2780                                 free_irq(qdev->msi_x_entry[i].vector,
2781                                          &qdev->rx_ring[i]);
2782                                 QPRINTK(qdev, IFDOWN, ERR,
2783                                         "freeing msix interrupt %d.\n", i);
2784                         } else {
2785                                 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
2786                                 QPRINTK(qdev, IFDOWN, ERR,
2787                                         "freeing msi interrupt %d.\n", i);
2788                         }
2789                 }
2790         }
2791         ql_disable_msix(qdev);
2792 }
2793
2794 static int ql_request_irq(struct ql_adapter *qdev)
2795 {
2796         int i;
2797         int status = 0;
2798         struct pci_dev *pdev = qdev->pdev;
2799         struct intr_context *intr_context = &qdev->intr_context[0];
2800
2801         ql_resolve_queues_to_irqs(qdev);
2802
2803         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2804                 atomic_set(&intr_context->irq_cnt, 0);
2805                 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2806                         status = request_irq(qdev->msi_x_entry[i].vector,
2807                                              intr_context->handler,
2808                                              0,
2809                                              intr_context->name,
2810                                              &qdev->rx_ring[i]);
2811                         if (status) {
2812                                 QPRINTK(qdev, IFUP, ERR,
2813                                         "Failed request for MSIX interrupt %d.\n",
2814                                         i);
2815                                 goto err_irq;
2816                         } else {
2817                                 QPRINTK(qdev, IFUP, INFO,
2818                                         "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2819                                         i,
2820                                         qdev->rx_ring[i].type ==
2821                                         DEFAULT_Q ? "DEFAULT_Q" : "",
2822                                         qdev->rx_ring[i].type ==
2823                                         TX_Q ? "TX_Q" : "",
2824                                         qdev->rx_ring[i].type ==
2825                                         RX_Q ? "RX_Q" : "", intr_context->name);
2826                         }
2827                 } else {
2828                         QPRINTK(qdev, IFUP, DEBUG,
2829                                 "trying msi or legacy interrupts.\n");
2830                         QPRINTK(qdev, IFUP, DEBUG,
2831                                 "%s: irq = %d.\n", __func__, pdev->irq);
2832                         QPRINTK(qdev, IFUP, DEBUG,
2833                                 "%s: context->name = %s.\n", __func__,
2834                                intr_context->name);
2835                         QPRINTK(qdev, IFUP, DEBUG,
2836                                 "%s: dev_id = 0x%p.\n", __func__,
2837                                &qdev->rx_ring[0]);
2838                         status =
2839                             request_irq(pdev->irq, qlge_isr,
2840                                         test_bit(QL_MSI_ENABLED,
2841                                                  &qdev->
2842                                                  flags) ? 0 : IRQF_SHARED,
2843                                         intr_context->name, &qdev->rx_ring[0]);
2844                         if (status)
2845                                 goto err_irq;
2846
2847                         QPRINTK(qdev, IFUP, ERR,
2848                                 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2849                                 i,
2850                                 qdev->rx_ring[0].type ==
2851                                 DEFAULT_Q ? "DEFAULT_Q" : "",
2852                                 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
2853                                 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
2854                                 intr_context->name);
2855                 }
2856                 intr_context->hooked = 1;
2857         }
2858         return status;
2859 err_irq:
2860         QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
2861         ql_free_irq(qdev);
2862         return status;
2863 }
2864
2865 static int ql_start_rss(struct ql_adapter *qdev)
2866 {
2867         struct ricb *ricb = &qdev->ricb;
2868         int status = 0;
2869         int i;
2870         u8 *hash_id = (u8 *) ricb->hash_cq_id;
2871
2872         memset((void *)ricb, 0, sizeof(ricb));
2873
2874         ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
2875         ricb->flags =
2876             (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
2877              RSS_RT6);
2878         ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
2879
2880         /*
2881          * Fill out the Indirection Table.
2882          */
2883         for (i = 0; i < 32; i++)
2884                 hash_id[i] = i & 1;
2885
2886         /*
2887          * Random values for the IPv6 and IPv4 Hash Keys.
2888          */
2889         get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
2890         get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
2891
2892         QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
2893
2894         status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
2895         if (status) {
2896                 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
2897                 return status;
2898         }
2899         QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
2900         return status;
2901 }
2902
2903 /* Initialize the frame-to-queue routing. */
2904 static int ql_route_initialize(struct ql_adapter *qdev)
2905 {
2906         int status = 0;
2907         int i;
2908
2909         /* Clear all the entries in the routing table. */
2910         for (i = 0; i < 16; i++) {
2911                 status = ql_set_routing_reg(qdev, i, 0, 0);
2912                 if (status) {
2913                         QPRINTK(qdev, IFUP, ERR,
2914                                 "Failed to init routing register for CAM packets.\n");
2915                         return status;
2916                 }
2917         }
2918
2919         status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
2920         if (status) {
2921                 QPRINTK(qdev, IFUP, ERR,
2922                         "Failed to init routing register for error packets.\n");
2923                 return status;
2924         }
2925         status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
2926         if (status) {
2927                 QPRINTK(qdev, IFUP, ERR,
2928                         "Failed to init routing register for broadcast packets.\n");
2929                 return status;
2930         }
2931         /* If we have more than one inbound queue, then turn on RSS in the
2932          * routing block.
2933          */
2934         if (qdev->rss_ring_count > 1) {
2935                 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
2936                                         RT_IDX_RSS_MATCH, 1);
2937                 if (status) {
2938                         QPRINTK(qdev, IFUP, ERR,
2939                                 "Failed to init routing register for MATCH RSS packets.\n");
2940                         return status;
2941                 }
2942         }
2943
2944         status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
2945                                     RT_IDX_CAM_HIT, 1);
2946         if (status) {
2947                 QPRINTK(qdev, IFUP, ERR,
2948                         "Failed to init routing register for CAM packets.\n");
2949                 return status;
2950         }
2951         return status;
2952 }
2953
2954 static int ql_adapter_initialize(struct ql_adapter *qdev)
2955 {
2956         u32 value, mask;
2957         int i;
2958         int status = 0;
2959
2960         /*
2961          * Set up the System register to halt on errors.
2962          */
2963         value = SYS_EFE | SYS_FAE;
2964         mask = value << 16;
2965         ql_write32(qdev, SYS, mask | value);
2966
2967         /* Set the default queue. */
2968         value = NIC_RCV_CFG_DFQ;
2969         mask = NIC_RCV_CFG_DFQ_MASK;
2970         ql_write32(qdev, NIC_RCV_CFG, (mask | value));
2971
2972         /* Set the MPI interrupt to enabled. */
2973         ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
2974
2975         /* Enable the function, set pagesize, enable error checking. */
2976         value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
2977             FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
2978
2979         /* Set/clear header splitting. */
2980         mask = FSC_VM_PAGESIZE_MASK |
2981             FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
2982         ql_write32(qdev, FSC, mask | value);
2983
2984         ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
2985                 min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
2986
2987         /* Start up the rx queues. */
2988         for (i = 0; i < qdev->rx_ring_count; i++) {
2989                 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
2990                 if (status) {
2991                         QPRINTK(qdev, IFUP, ERR,
2992                                 "Failed to start rx ring[%d].\n", i);
2993                         return status;
2994                 }
2995         }
2996
2997         /* If there is more than one inbound completion queue
2998          * then download a RICB to configure RSS.
2999          */
3000         if (qdev->rss_ring_count > 1) {
3001                 status = ql_start_rss(qdev);
3002                 if (status) {
3003                         QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
3004                         return status;
3005                 }
3006         }
3007
3008         /* Start up the tx queues. */
3009         for (i = 0; i < qdev->tx_ring_count; i++) {
3010                 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3011                 if (status) {
3012                         QPRINTK(qdev, IFUP, ERR,
3013                                 "Failed to start tx ring[%d].\n", i);
3014                         return status;
3015                 }
3016         }
3017
3018         status = ql_port_initialize(qdev);
3019         if (status) {
3020                 QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3021                 return status;
3022         }
3023
3024         status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
3025                                      MAC_ADDR_TYPE_CAM_MAC, qdev->func);
3026         if (status) {
3027                 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
3028                 return status;
3029         }
3030
3031         status = ql_route_initialize(qdev);
3032         if (status) {
3033                 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
3034                 return status;
3035         }
3036
3037         /* Start NAPI for the RSS queues. */
3038         for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
3039                 QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
3040                         i);
3041                 napi_enable(&qdev->rx_ring[i].napi);
3042         }
3043
3044         return status;
3045 }
3046
3047 /* Issue soft reset to chip. */
3048 static int ql_adapter_reset(struct ql_adapter *qdev)
3049 {
3050         u32 value;
3051         int max_wait_time;
3052         int status = 0;
3053         int resetCnt = 0;
3054
3055 #define MAX_RESET_CNT   1
3056 issueReset:
3057         resetCnt++;
3058         QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
3059         ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3060         /* Wait for reset to complete. */
3061         max_wait_time = 3;
3062         QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
3063                 max_wait_time);
3064         do {
3065                 value = ql_read32(qdev, RST_FO);
3066                 if ((value & RST_FO_FR) == 0)
3067                         break;
3068
3069                 ssleep(1);
3070         } while ((--max_wait_time));
3071         if (value & RST_FO_FR) {
3072                 QPRINTK(qdev, IFDOWN, ERR,
3073                         "Stuck in SoftReset:  FSC_SR:0x%08x\n", value);
3074                 if (resetCnt < MAX_RESET_CNT)
3075                         goto issueReset;
3076         }
3077         if (max_wait_time == 0) {
3078                 status = -ETIMEDOUT;
3079                 QPRINTK(qdev, IFDOWN, ERR,
3080                         "ETIMEOUT!!! errored out of resetting the chip!\n");
3081         }
3082
3083         return status;
3084 }
3085
3086 static void ql_display_dev_info(struct net_device *ndev)
3087 {
3088         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3089
3090         QPRINTK(qdev, PROBE, INFO,
3091                 "Function #%d, NIC Roll %d, NIC Rev = %d, "
3092                 "XG Roll = %d, XG Rev = %d.\n",
3093                 qdev->func,
3094                 qdev->chip_rev_id & 0x0000000f,
3095                 qdev->chip_rev_id >> 4 & 0x0000000f,
3096                 qdev->chip_rev_id >> 8 & 0x0000000f,
3097                 qdev->chip_rev_id >> 12 & 0x0000000f);
3098         QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
3099 }
3100
3101 static int ql_adapter_down(struct ql_adapter *qdev)
3102 {
3103         struct net_device *ndev = qdev->ndev;
3104         int i, status = 0;
3105         struct rx_ring *rx_ring;
3106
3107         netif_stop_queue(ndev);
3108         netif_carrier_off(ndev);
3109
3110         /* Don't kill the reset worker thread if we
3111          * are in the process of recovery.
3112          */
3113         if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3114                 cancel_delayed_work_sync(&qdev->asic_reset_work);
3115         cancel_delayed_work_sync(&qdev->mpi_reset_work);
3116         cancel_delayed_work_sync(&qdev->mpi_work);
3117
3118         /* The default queue at index 0 is always processed in
3119          * a workqueue.
3120          */
3121         cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
3122
3123         /* The rest of the rx_rings are processed in
3124          * a workqueue only if it's a single interrupt
3125          * environment (MSI/Legacy).
3126          */
3127         for (i = 1; i < qdev->rx_ring_count; i++) {
3128                 rx_ring = &qdev->rx_ring[i];
3129                 /* Only the RSS rings use NAPI on multi irq
3130                  * environment.  Outbound completion processing
3131                  * is done in interrupt context.
3132                  */
3133                 if (i >= qdev->rss_ring_first_cq_id) {
3134                         napi_disable(&rx_ring->napi);
3135                 } else {
3136                         cancel_delayed_work_sync(&rx_ring->rx_work);
3137                 }
3138         }
3139
3140         clear_bit(QL_ADAPTER_UP, &qdev->flags);
3141
3142         ql_disable_interrupts(qdev);
3143
3144         ql_tx_ring_clean(qdev);
3145
3146         spin_lock(&qdev->hw_lock);
3147         status = ql_adapter_reset(qdev);
3148         if (status)
3149                 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3150                         qdev->func);
3151         spin_unlock(&qdev->hw_lock);
3152         return status;
3153 }
3154
3155 static int ql_adapter_up(struct ql_adapter *qdev)
3156 {
3157         int err = 0;
3158
3159         spin_lock(&qdev->hw_lock);
3160         err = ql_adapter_initialize(qdev);
3161         if (err) {
3162                 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
3163                 spin_unlock(&qdev->hw_lock);
3164                 goto err_init;
3165         }
3166         spin_unlock(&qdev->hw_lock);
3167         set_bit(QL_ADAPTER_UP, &qdev->flags);
3168         ql_enable_interrupts(qdev);
3169         ql_enable_all_completion_interrupts(qdev);
3170         if ((ql_read32(qdev, STS) & qdev->port_init)) {
3171                 netif_carrier_on(qdev->ndev);
3172                 netif_start_queue(qdev->ndev);
3173         }
3174
3175         return 0;
3176 err_init:
3177         ql_adapter_reset(qdev);
3178         return err;
3179 }
3180
3181 static int ql_cycle_adapter(struct ql_adapter *qdev)
3182 {
3183         int status;
3184
3185         status = ql_adapter_down(qdev);
3186         if (status)
3187                 goto error;
3188
3189         status = ql_adapter_up(qdev);
3190         if (status)
3191                 goto error;
3192
3193         return status;
3194 error:
3195         QPRINTK(qdev, IFUP, ALERT,
3196                 "Driver up/down cycle failed, closing device\n");
3197         rtnl_lock();
3198         dev_close(qdev->ndev);
3199         rtnl_unlock();
3200         return status;
3201 }
3202
3203 static void ql_release_adapter_resources(struct ql_adapter *qdev)
3204 {
3205         ql_free_mem_resources(qdev);
3206         ql_free_irq(qdev);
3207 }
3208
3209 static int ql_get_adapter_resources(struct ql_adapter *qdev)
3210 {
3211         int status = 0;
3212
3213         if (ql_alloc_mem_resources(qdev)) {
3214                 QPRINTK(qdev, IFUP, ERR, "Unable to  allocate memory.\n");
3215                 return -ENOMEM;
3216         }
3217         status = ql_request_irq(qdev);
3218         if (status)
3219                 goto err_irq;
3220         return status;
3221 err_irq:
3222         ql_free_mem_resources(qdev);
3223         return status;
3224 }
3225
3226 static int qlge_close(struct net_device *ndev)
3227 {
3228         struct ql_adapter *qdev = netdev_priv(ndev);
3229
3230         /*
3231          * Wait for device to recover from a reset.
3232          * (Rarely happens, but possible.)
3233          */
3234         while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3235                 msleep(1);
3236         ql_adapter_down(qdev);
3237         ql_release_adapter_resources(qdev);
3238         return 0;
3239 }
3240
3241 static int ql_configure_rings(struct ql_adapter *qdev)
3242 {
3243         int i;
3244         struct rx_ring *rx_ring;
3245         struct tx_ring *tx_ring;
3246         int cpu_cnt = num_online_cpus();
3247
3248         /*
3249          * For each processor present we allocate one
3250          * rx_ring for outbound completions, and one
3251          * rx_ring for inbound completions.  Plus there is
3252          * always the one default queue.  For the CPU
3253          * counts we end up with the following rx_rings:
3254          * rx_ring count =
3255          *  one default queue +
3256          *  (CPU count * outbound completion rx_ring) +
3257          *  (CPU count * inbound (RSS) completion rx_ring)
3258          * To keep it simple we limit the total number of
3259          * queues to < 32, so we truncate CPU to 8.
3260          * This limitation can be removed when requested.
3261          */
3262
3263         if (cpu_cnt > MAX_CPUS)
3264                 cpu_cnt = MAX_CPUS;
3265
3266         /*
3267          * rx_ring[0] is always the default queue.
3268          */
3269         /* Allocate outbound completion ring for each CPU. */
3270         qdev->tx_ring_count = cpu_cnt;
3271         /* Allocate inbound completion (RSS) ring for each CPU. */
3272         qdev->rss_ring_count = cpu_cnt;
3273         /* cq_id for the first inbound ring handler. */
3274         qdev->rss_ring_first_cq_id = cpu_cnt + 1;
3275         /*
3276          * qdev->rx_ring_count:
3277          * Total number of rx_rings.  This includes the one
3278          * default queue, a number of outbound completion
3279          * handler rx_rings, and the number of inbound
3280          * completion handler rx_rings.
3281          */
3282         qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
3283
3284         for (i = 0; i < qdev->tx_ring_count; i++) {
3285                 tx_ring = &qdev->tx_ring[i];
3286                 memset((void *)tx_ring, 0, sizeof(tx_ring));
3287                 tx_ring->qdev = qdev;
3288                 tx_ring->wq_id = i;
3289                 tx_ring->wq_len = qdev->tx_ring_size;
3290                 tx_ring->wq_size =
3291                     tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3292
3293                 /*
3294                  * The completion queue ID for the tx rings start
3295                  * immediately after the default Q ID, which is zero.
3296                  */
3297                 tx_ring->cq_id = i + 1;
3298         }
3299
3300         for (i = 0; i < qdev->rx_ring_count; i++) {
3301                 rx_ring = &qdev->rx_ring[i];
3302                 memset((void *)rx_ring, 0, sizeof(rx_ring));
3303                 rx_ring->qdev = qdev;
3304                 rx_ring->cq_id = i;
3305                 rx_ring->cpu = i % cpu_cnt;     /* CPU to run handler on. */
3306                 if (i == 0) {   /* Default queue at index 0. */
3307                         /*
3308                          * Default queue handles bcast/mcast plus
3309                          * async events.  Needs buffers.
3310                          */
3311                         rx_ring->cq_len = qdev->rx_ring_size;
3312                         rx_ring->cq_size =
3313                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3314                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3315                         rx_ring->lbq_size =
3316                             rx_ring->lbq_len * sizeof(__le64);
3317                         rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3318                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3319                         rx_ring->sbq_size =
3320                             rx_ring->sbq_len * sizeof(__le64);
3321                         rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3322                         rx_ring->type = DEFAULT_Q;
3323                 } else if (i < qdev->rss_ring_first_cq_id) {
3324                         /*
3325                          * Outbound queue handles outbound completions only.
3326                          */
3327                         /* outbound cq is same size as tx_ring it services. */
3328                         rx_ring->cq_len = qdev->tx_ring_size;
3329                         rx_ring->cq_size =
3330                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3331                         rx_ring->lbq_len = 0;
3332                         rx_ring->lbq_size = 0;
3333                         rx_ring->lbq_buf_size = 0;
3334                         rx_ring->sbq_len = 0;
3335                         rx_ring->sbq_size = 0;
3336                         rx_ring->sbq_buf_size = 0;
3337                         rx_ring->type = TX_Q;
3338                 } else {        /* Inbound completions (RSS) queues */
3339                         /*
3340                          * Inbound queues handle unicast frames only.
3341                          */
3342                         rx_ring->cq_len = qdev->rx_ring_size;
3343                         rx_ring->cq_size =
3344                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3345                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3346                         rx_ring->lbq_size =
3347                             rx_ring->lbq_len * sizeof(__le64);
3348                         rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3349                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3350                         rx_ring->sbq_size =
3351                             rx_ring->sbq_len * sizeof(__le64);
3352                         rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3353                         rx_ring->type = RX_Q;
3354                 }
3355         }
3356         return 0;
3357 }
3358
3359 static int qlge_open(struct net_device *ndev)
3360 {
3361         int err = 0;
3362         struct ql_adapter *qdev = netdev_priv(ndev);
3363
3364         err = ql_configure_rings(qdev);
3365         if (err)
3366                 return err;
3367
3368         err = ql_get_adapter_resources(qdev);
3369         if (err)
3370                 goto error_up;
3371
3372         err = ql_adapter_up(qdev);
3373         if (err)
3374                 goto error_up;
3375
3376         return err;
3377
3378 error_up:
3379         ql_release_adapter_resources(qdev);
3380         return err;
3381 }
3382
3383 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3384 {
3385         struct ql_adapter *qdev = netdev_priv(ndev);
3386
3387         if (ndev->mtu == 1500 && new_mtu == 9000) {
3388                 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
3389         } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3390                 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3391         } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3392                    (ndev->mtu == 9000 && new_mtu == 9000)) {
3393                 return 0;
3394         } else
3395                 return -EINVAL;
3396         ndev->mtu = new_mtu;
3397         return 0;
3398 }
3399
3400 static struct net_device_stats *qlge_get_stats(struct net_device
3401                                                *ndev)
3402 {
3403         struct ql_adapter *qdev = netdev_priv(ndev);
3404         return &qdev->stats;
3405 }
3406
3407 static void qlge_set_multicast_list(struct net_device *ndev)
3408 {
3409         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3410         struct dev_mc_list *mc_ptr;
3411         int i;
3412
3413         spin_lock(&qdev->hw_lock);
3414         /*
3415          * Set or clear promiscuous mode if a
3416          * transition is taking place.
3417          */
3418         if (ndev->flags & IFF_PROMISC) {
3419                 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3420                         if (ql_set_routing_reg
3421                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3422                                 QPRINTK(qdev, HW, ERR,
3423                                         "Failed to set promiscous mode.\n");
3424                         } else {
3425                                 set_bit(QL_PROMISCUOUS, &qdev->flags);
3426                         }
3427                 }
3428         } else {
3429                 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3430                         if (ql_set_routing_reg
3431                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3432                                 QPRINTK(qdev, HW, ERR,
3433                                         "Failed to clear promiscous mode.\n");
3434                         } else {
3435                                 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3436                         }
3437                 }
3438         }
3439
3440         /*
3441          * Set or clear all multicast mode if a
3442          * transition is taking place.
3443          */
3444         if ((ndev->flags & IFF_ALLMULTI) ||
3445             (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3446                 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3447                         if (ql_set_routing_reg
3448                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3449                                 QPRINTK(qdev, HW, ERR,
3450                                         "Failed to set all-multi mode.\n");
3451                         } else {
3452                                 set_bit(QL_ALLMULTI, &qdev->flags);
3453                         }
3454                 }
3455         } else {
3456                 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3457                         if (ql_set_routing_reg
3458                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3459                                 QPRINTK(qdev, HW, ERR,
3460                                         "Failed to clear all-multi mode.\n");
3461                         } else {
3462                                 clear_bit(QL_ALLMULTI, &qdev->flags);
3463                         }
3464                 }
3465         }
3466
3467         if (ndev->mc_count) {
3468                 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3469                      i++, mc_ptr = mc_ptr->next)
3470                         if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3471                                                 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3472                                 QPRINTK(qdev, HW, ERR,
3473                                         "Failed to loadmulticast address.\n");
3474                                 goto exit;
3475                         }
3476                 if (ql_set_routing_reg
3477                     (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3478                         QPRINTK(qdev, HW, ERR,
3479                                 "Failed to set multicast match mode.\n");
3480                 } else {
3481                         set_bit(QL_ALLMULTI, &qdev->flags);
3482                 }
3483         }
3484 exit:
3485         spin_unlock(&qdev->hw_lock);
3486 }
3487
3488 static int qlge_set_mac_address(struct net_device *ndev, void *p)
3489 {
3490         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3491         struct sockaddr *addr = p;
3492         int ret = 0;
3493
3494         if (netif_running(ndev))
3495                 return -EBUSY;
3496
3497         if (!is_valid_ether_addr(addr->sa_data))
3498                 return -EADDRNOTAVAIL;
3499         memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3500
3501         spin_lock(&qdev->hw_lock);
3502         if (ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3503                         MAC_ADDR_TYPE_CAM_MAC, qdev->func)) {/* Unicast */
3504                 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
3505                 ret = -1;
3506         }
3507         spin_unlock(&qdev->hw_lock);
3508
3509         return ret;
3510 }
3511
3512 static void qlge_tx_timeout(struct net_device *ndev)
3513 {
3514         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3515         ql_queue_asic_error(qdev);
3516 }
3517
3518 static void ql_asic_reset_work(struct work_struct *work)
3519 {
3520         struct ql_adapter *qdev =
3521             container_of(work, struct ql_adapter, asic_reset_work.work);
3522         ql_cycle_adapter(qdev);
3523 }
3524
3525 static void ql_get_board_info(struct ql_adapter *qdev)
3526 {
3527         qdev->func =
3528             (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
3529         if (qdev->func) {
3530                 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3531                 qdev->port_link_up = STS_PL1;
3532                 qdev->port_init = STS_PI1;
3533                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3534                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3535         } else {
3536                 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3537                 qdev->port_link_up = STS_PL0;
3538                 qdev->port_init = STS_PI0;
3539                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3540                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3541         }
3542         qdev->chip_rev_id = ql_read32(qdev, REV_ID);
3543 }
3544
3545 static void ql_release_all(struct pci_dev *pdev)
3546 {
3547         struct net_device *ndev = pci_get_drvdata(pdev);
3548         struct ql_adapter *qdev = netdev_priv(ndev);
3549
3550         if (qdev->workqueue) {
3551                 destroy_workqueue(qdev->workqueue);
3552                 qdev->workqueue = NULL;
3553         }
3554         if (qdev->q_workqueue) {
3555                 destroy_workqueue(qdev->q_workqueue);
3556                 qdev->q_workqueue = NULL;
3557         }
3558         if (qdev->reg_base)
3559                 iounmap(qdev->reg_base);
3560         if (qdev->doorbell_area)
3561                 iounmap(qdev->doorbell_area);
3562         pci_release_regions(pdev);
3563         pci_set_drvdata(pdev, NULL);
3564 }
3565
3566 static int __devinit ql_init_device(struct pci_dev *pdev,
3567                                     struct net_device *ndev, int cards_found)
3568 {
3569         struct ql_adapter *qdev = netdev_priv(ndev);
3570         int pos, err = 0;
3571         u16 val16;
3572
3573         memset((void *)qdev, 0, sizeof(qdev));
3574         err = pci_enable_device(pdev);
3575         if (err) {
3576                 dev_err(&pdev->dev, "PCI device enable failed.\n");
3577                 return err;
3578         }
3579
3580         pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3581         if (pos <= 0) {
3582                 dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3583                         "aborting.\n");
3584                 goto err_out;
3585         } else {
3586                 pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3587                 val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3588                 val16 |= (PCI_EXP_DEVCTL_CERE |
3589                           PCI_EXP_DEVCTL_NFERE |
3590                           PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3591                 pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3592         }
3593
3594         err = pci_request_regions(pdev, DRV_NAME);
3595         if (err) {
3596                 dev_err(&pdev->dev, "PCI region request failed.\n");
3597                 goto err_out;
3598         }
3599
3600         pci_set_master(pdev);
3601         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3602                 set_bit(QL_DMA64, &qdev->flags);
3603                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3604         } else {
3605                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3606                 if (!err)
3607                        err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3608         }
3609
3610         if (err) {
3611                 dev_err(&pdev->dev, "No usable DMA configuration.\n");
3612                 goto err_out;
3613         }
3614
3615         pci_set_drvdata(pdev, ndev);
3616         qdev->reg_base =
3617             ioremap_nocache(pci_resource_start(pdev, 1),
3618                             pci_resource_len(pdev, 1));
3619         if (!qdev->reg_base) {
3620                 dev_err(&pdev->dev, "Register mapping failed.\n");
3621                 err = -ENOMEM;
3622                 goto err_out;
3623         }
3624
3625         qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3626         qdev->doorbell_area =
3627             ioremap_nocache(pci_resource_start(pdev, 3),
3628                             pci_resource_len(pdev, 3));
3629         if (!qdev->doorbell_area) {
3630                 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3631                 err = -ENOMEM;
3632                 goto err_out;
3633         }
3634
3635         ql_get_board_info(qdev);
3636         qdev->ndev = ndev;
3637         qdev->pdev = pdev;
3638         qdev->msg_enable = netif_msg_init(debug, default_msg);
3639         spin_lock_init(&qdev->hw_lock);
3640         spin_lock_init(&qdev->stats_lock);
3641
3642         /* make sure the EEPROM is good */
3643         err = ql_get_flash_params(qdev);
3644         if (err) {
3645                 dev_err(&pdev->dev, "Invalid FLASH.\n");
3646                 goto err_out;
3647         }
3648
3649         if (!is_valid_ether_addr(qdev->flash.mac_addr))
3650                 goto err_out;
3651
3652         memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len);
3653         memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3654
3655         /* Set up the default ring sizes. */
3656         qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3657         qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3658
3659         /* Set up the coalescing parameters. */
3660         qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3661         qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3662         qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3663         qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3664
3665         /*
3666          * Set up the operating parameters.
3667          */
3668         qdev->rx_csum = 1;
3669
3670         qdev->q_workqueue = create_workqueue(ndev->name);
3671         qdev->workqueue = create_singlethread_workqueue(ndev->name);
3672         INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3673         INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3674         INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
3675
3676         if (!cards_found) {
3677                 dev_info(&pdev->dev, "%s\n", DRV_STRING);
3678                 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3679                          DRV_NAME, DRV_VERSION);
3680         }
3681         return 0;
3682 err_out:
3683         ql_release_all(pdev);
3684         pci_disable_device(pdev);
3685         return err;
3686 }
3687
3688
3689 static const struct net_device_ops qlge_netdev_ops = {
3690         .ndo_open               = qlge_open,
3691         .ndo_stop               = qlge_close,
3692         .ndo_start_xmit         = qlge_send,
3693         .ndo_change_mtu         = qlge_change_mtu,
3694         .ndo_get_stats          = qlge_get_stats,
3695         .ndo_set_multicast_list = qlge_set_multicast_list,
3696         .ndo_set_mac_address    = qlge_set_mac_address,
3697         .ndo_validate_addr      = eth_validate_addr,
3698         .ndo_tx_timeout         = qlge_tx_timeout,
3699         .ndo_vlan_rx_register   = ql_vlan_rx_register,
3700         .ndo_vlan_rx_add_vid    = ql_vlan_rx_add_vid,
3701         .ndo_vlan_rx_kill_vid   = ql_vlan_rx_kill_vid,
3702 };
3703
3704 static int __devinit qlge_probe(struct pci_dev *pdev,
3705                                 const struct pci_device_id *pci_entry)
3706 {
3707         struct net_device *ndev = NULL;
3708         struct ql_adapter *qdev = NULL;
3709         static int cards_found = 0;
3710         int err = 0;
3711
3712         ndev = alloc_etherdev(sizeof(struct ql_adapter));
3713         if (!ndev)
3714                 return -ENOMEM;
3715
3716         err = ql_init_device(pdev, ndev, cards_found);
3717         if (err < 0) {
3718                 free_netdev(ndev);
3719                 return err;
3720         }
3721
3722         qdev = netdev_priv(ndev);
3723         SET_NETDEV_DEV(ndev, &pdev->dev);
3724         ndev->features = (0
3725                           | NETIF_F_IP_CSUM
3726                           | NETIF_F_SG
3727                           | NETIF_F_TSO
3728                           | NETIF_F_TSO6
3729                           | NETIF_F_TSO_ECN
3730                           | NETIF_F_HW_VLAN_TX
3731                           | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
3732
3733         if (test_bit(QL_DMA64, &qdev->flags))
3734                 ndev->features |= NETIF_F_HIGHDMA;
3735
3736         /*
3737          * Set up net_device structure.
3738          */
3739         ndev->tx_queue_len = qdev->tx_ring_size;
3740         ndev->irq = pdev->irq;
3741
3742         ndev->netdev_ops = &qlge_netdev_ops;
3743         SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
3744         ndev->watchdog_timeo = 10 * HZ;
3745
3746         err = register_netdev(ndev);
3747         if (err) {
3748                 dev_err(&pdev->dev, "net device registration failed.\n");
3749                 ql_release_all(pdev);
3750                 pci_disable_device(pdev);
3751                 return err;
3752         }
3753         netif_carrier_off(ndev);
3754         netif_stop_queue(ndev);
3755         ql_display_dev_info(ndev);
3756         cards_found++;
3757         return 0;
3758 }
3759
3760 static void __devexit qlge_remove(struct pci_dev *pdev)
3761 {
3762         struct net_device *ndev = pci_get_drvdata(pdev);
3763         unregister_netdev(ndev);
3764         ql_release_all(pdev);
3765         pci_disable_device(pdev);
3766         free_netdev(ndev);
3767 }
3768
3769 /*
3770  * This callback is called by the PCI subsystem whenever
3771  * a PCI bus error is detected.
3772  */
3773 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
3774                                                enum pci_channel_state state)
3775 {
3776         struct net_device *ndev = pci_get_drvdata(pdev);
3777         struct ql_adapter *qdev = netdev_priv(ndev);
3778
3779         if (netif_running(ndev))
3780                 ql_adapter_down(qdev);
3781
3782         pci_disable_device(pdev);
3783
3784         /* Request a slot reset. */
3785         return PCI_ERS_RESULT_NEED_RESET;
3786 }
3787
3788 /*
3789  * This callback is called after the PCI buss has been reset.
3790  * Basically, this tries to restart the card from scratch.
3791  * This is a shortened version of the device probe/discovery code,
3792  * it resembles the first-half of the () routine.
3793  */
3794 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
3795 {
3796         struct net_device *ndev = pci_get_drvdata(pdev);
3797         struct ql_adapter *qdev = netdev_priv(ndev);
3798
3799         if (pci_enable_device(pdev)) {
3800                 QPRINTK(qdev, IFUP, ERR,
3801                         "Cannot re-enable PCI device after reset.\n");
3802                 return PCI_ERS_RESULT_DISCONNECT;
3803         }
3804
3805         pci_set_master(pdev);
3806
3807         netif_carrier_off(ndev);
3808         netif_stop_queue(ndev);
3809         ql_adapter_reset(qdev);
3810
3811         /* Make sure the EEPROM is good */
3812         memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3813
3814         if (!is_valid_ether_addr(ndev->perm_addr)) {
3815                 QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
3816                 return PCI_ERS_RESULT_DISCONNECT;
3817         }
3818
3819         return PCI_ERS_RESULT_RECOVERED;
3820 }
3821
3822 static void qlge_io_resume(struct pci_dev *pdev)
3823 {
3824         struct net_device *ndev = pci_get_drvdata(pdev);
3825         struct ql_adapter *qdev = netdev_priv(ndev);
3826
3827         pci_set_master(pdev);
3828
3829         if (netif_running(ndev)) {
3830                 if (ql_adapter_up(qdev)) {
3831                         QPRINTK(qdev, IFUP, ERR,
3832                                 "Device initialization failed after reset.\n");
3833                         return;
3834                 }
3835         }
3836
3837         netif_device_attach(ndev);
3838 }
3839
3840 static struct pci_error_handlers qlge_err_handler = {
3841         .error_detected = qlge_io_error_detected,
3842         .slot_reset = qlge_io_slot_reset,
3843         .resume = qlge_io_resume,
3844 };
3845
3846 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
3847 {
3848         struct net_device *ndev = pci_get_drvdata(pdev);
3849         struct ql_adapter *qdev = netdev_priv(ndev);
3850         int err, i;
3851
3852         netif_device_detach(ndev);
3853
3854         if (netif_running(ndev)) {
3855                 err = ql_adapter_down(qdev);
3856                 if (!err)
3857                         return err;
3858         }
3859
3860         for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++)
3861                 netif_napi_del(&qdev->rx_ring[i].napi);
3862
3863         err = pci_save_state(pdev);
3864         if (err)
3865                 return err;
3866
3867         pci_disable_device(pdev);
3868
3869         pci_set_power_state(pdev, pci_choose_state(pdev, state));
3870
3871         return 0;
3872 }
3873
3874 #ifdef CONFIG_PM
3875 static int qlge_resume(struct pci_dev *pdev)
3876 {
3877         struct net_device *ndev = pci_get_drvdata(pdev);
3878         struct ql_adapter *qdev = netdev_priv(ndev);
3879         int err;
3880
3881         pci_set_power_state(pdev, PCI_D0);
3882         pci_restore_state(pdev);
3883         err = pci_enable_device(pdev);
3884         if (err) {
3885                 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
3886                 return err;
3887         }
3888         pci_set_master(pdev);
3889
3890         pci_enable_wake(pdev, PCI_D3hot, 0);
3891         pci_enable_wake(pdev, PCI_D3cold, 0);
3892
3893         if (netif_running(ndev)) {
3894                 err = ql_adapter_up(qdev);
3895                 if (err)
3896                         return err;
3897         }
3898
3899         netif_device_attach(ndev);
3900
3901         return 0;
3902 }
3903 #endif /* CONFIG_PM */
3904
3905 static void qlge_shutdown(struct pci_dev *pdev)
3906 {
3907         qlge_suspend(pdev, PMSG_SUSPEND);
3908 }
3909
3910 static struct pci_driver qlge_driver = {
3911         .name = DRV_NAME,
3912         .id_table = qlge_pci_tbl,
3913         .probe = qlge_probe,
3914         .remove = __devexit_p(qlge_remove),
3915 #ifdef CONFIG_PM
3916         .suspend = qlge_suspend,
3917         .resume = qlge_resume,
3918 #endif
3919         .shutdown = qlge_shutdown,
3920         .err_handler = &qlge_err_handler
3921 };
3922
3923 static int __init qlge_init_module(void)
3924 {
3925         return pci_register_driver(&qlge_driver);
3926 }
3927
3928 static void __exit qlge_exit(void)
3929 {
3930         pci_unregister_driver(&qlge_driver);
3931 }
3932
3933 module_init(qlge_init_module);
3934 module_exit(qlge_exit);