qlge: Reduce debug print output.
[safe/jmp/linux-2.6] / drivers / net / qlge / qlge_main.c
1 /*
2  * QLogic qlge NIC HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  * See LICENSE.qlge for copyright and licensing details.
5  * Author:     Linux qlge network device driver by
6  *                      Ron Mercer <ron.mercer@qlogic.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/skbuff.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/if_vlan.h>
39 #include <linux/delay.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <net/ip6_checksum.h>
43
44 #include "qlge.h"
45
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
48
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
53
54 static const u32 default_msg =
55     NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER |    */
57     NETIF_MSG_IFDOWN |
58     NETIF_MSG_IFUP |
59     NETIF_MSG_RX_ERR |
60     NETIF_MSG_TX_ERR |
61 /*  NETIF_MSG_TX_QUEUED | */
62 /*  NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
63 /* NETIF_MSG_PKTDATA | */
64     NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66 static int debug = 0x00007fff;  /* defaults above */
67 module_param(debug, int, 0);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int irq_type = MSIX_IRQ;
74 module_param(irq_type, int, MSIX_IRQ);
75 MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77 static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
78         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
79         /* required last entry */
80         {0,}
81 };
82
83 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
84
85 /* This hardware semaphore causes exclusive access to
86  * resources shared between the NIC driver, MPI firmware,
87  * FCOE firmware and the FC driver.
88  */
89 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
90 {
91         u32 sem_bits = 0;
92
93         switch (sem_mask) {
94         case SEM_XGMAC0_MASK:
95                 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
96                 break;
97         case SEM_XGMAC1_MASK:
98                 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
99                 break;
100         case SEM_ICB_MASK:
101                 sem_bits = SEM_SET << SEM_ICB_SHIFT;
102                 break;
103         case SEM_MAC_ADDR_MASK:
104                 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
105                 break;
106         case SEM_FLASH_MASK:
107                 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
108                 break;
109         case SEM_PROBE_MASK:
110                 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
111                 break;
112         case SEM_RT_IDX_MASK:
113                 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
114                 break;
115         case SEM_PROC_REG_MASK:
116                 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
117                 break;
118         default:
119                 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
120                 return -EINVAL;
121         }
122
123         ql_write32(qdev, SEM, sem_bits | sem_mask);
124         return !(ql_read32(qdev, SEM) & sem_bits);
125 }
126
127 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
128 {
129         unsigned int wait_count = 30;
130         do {
131                 if (!ql_sem_trylock(qdev, sem_mask))
132                         return 0;
133                 udelay(100);
134         } while (--wait_count);
135         return -ETIMEDOUT;
136 }
137
138 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
139 {
140         ql_write32(qdev, SEM, sem_mask);
141         ql_read32(qdev, SEM);   /* flush */
142 }
143
144 /* This function waits for a specific bit to come ready
145  * in a given register.  It is used mostly by the initialize
146  * process, but is also used in kernel thread API such as
147  * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
148  */
149 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
150 {
151         u32 temp;
152         int count = UDELAY_COUNT;
153
154         while (count) {
155                 temp = ql_read32(qdev, reg);
156
157                 /* check for errors */
158                 if (temp & err_bit) {
159                         QPRINTK(qdev, PROBE, ALERT,
160                                 "register 0x%.08x access error, value = 0x%.08x!.\n",
161                                 reg, temp);
162                         return -EIO;
163                 } else if (temp & bit)
164                         return 0;
165                 udelay(UDELAY_DELAY);
166                 count--;
167         }
168         QPRINTK(qdev, PROBE, ALERT,
169                 "Timed out waiting for reg %x to come ready.\n", reg);
170         return -ETIMEDOUT;
171 }
172
173 /* The CFG register is used to download TX and RX control blocks
174  * to the chip. This function waits for an operation to complete.
175  */
176 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
177 {
178         int count = UDELAY_COUNT;
179         u32 temp;
180
181         while (count) {
182                 temp = ql_read32(qdev, CFG);
183                 if (temp & CFG_LE)
184                         return -EIO;
185                 if (!(temp & bit))
186                         return 0;
187                 udelay(UDELAY_DELAY);
188                 count--;
189         }
190         return -ETIMEDOUT;
191 }
192
193
194 /* Used to issue init control blocks to hw. Maps control block,
195  * sets address, triggers download, waits for completion.
196  */
197 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
198                  u16 q_id)
199 {
200         u64 map;
201         int status = 0;
202         int direction;
203         u32 mask;
204         u32 value;
205
206         direction =
207             (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
208             PCI_DMA_FROMDEVICE;
209
210         map = pci_map_single(qdev->pdev, ptr, size, direction);
211         if (pci_dma_mapping_error(qdev->pdev, map)) {
212                 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
213                 return -ENOMEM;
214         }
215
216         status = ql_wait_cfg(qdev, bit);
217         if (status) {
218                 QPRINTK(qdev, IFUP, ERR,
219                         "Timed out waiting for CFG to come ready.\n");
220                 goto exit;
221         }
222
223         status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
224         if (status)
225                 goto exit;
226         ql_write32(qdev, ICB_L, (u32) map);
227         ql_write32(qdev, ICB_H, (u32) (map >> 32));
228         ql_sem_unlock(qdev, SEM_ICB_MASK);      /* does flush too */
229
230         mask = CFG_Q_MASK | (bit << 16);
231         value = bit | (q_id << CFG_Q_SHIFT);
232         ql_write32(qdev, CFG, (mask | value));
233
234         /*
235          * Wait for the bit to clear after signaling hw.
236          */
237         status = ql_wait_cfg(qdev, bit);
238 exit:
239         pci_unmap_single(qdev->pdev, map, size, direction);
240         return status;
241 }
242
243 /* Get a specific MAC address from the CAM.  Used for debug and reg dump. */
244 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
245                         u32 *value)
246 {
247         u32 offset = 0;
248         int status;
249
250         switch (type) {
251         case MAC_ADDR_TYPE_MULTI_MAC:
252         case MAC_ADDR_TYPE_CAM_MAC:
253                 {
254                         status =
255                             ql_wait_reg_rdy(qdev,
256                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
257                         if (status)
258                                 goto exit;
259                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
260                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
261                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
262                         status =
263                             ql_wait_reg_rdy(qdev,
264                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
265                         if (status)
266                                 goto exit;
267                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
268                         status =
269                             ql_wait_reg_rdy(qdev,
270                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
271                         if (status)
272                                 goto exit;
273                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
274                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
275                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
276                         status =
277                             ql_wait_reg_rdy(qdev,
278                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
279                         if (status)
280                                 goto exit;
281                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
282                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
283                                 status =
284                                     ql_wait_reg_rdy(qdev,
285                                         MAC_ADDR_IDX, MAC_ADDR_MW, 0);
286                                 if (status)
287                                         goto exit;
288                                 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
289                                            (index << MAC_ADDR_IDX_SHIFT) | /* index */
290                                            MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
291                                 status =
292                                     ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
293                                                     MAC_ADDR_MR, 0);
294                                 if (status)
295                                         goto exit;
296                                 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
297                         }
298                         break;
299                 }
300         case MAC_ADDR_TYPE_VLAN:
301         case MAC_ADDR_TYPE_MULTI_FLTR:
302         default:
303                 QPRINTK(qdev, IFUP, CRIT,
304                         "Address type %d not yet supported.\n", type);
305                 status = -EPERM;
306         }
307 exit:
308         return status;
309 }
310
311 /* Set up a MAC, multicast or VLAN address for the
312  * inbound frame matching.
313  */
314 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
315                                u16 index)
316 {
317         u32 offset = 0;
318         int status = 0;
319
320         switch (type) {
321         case MAC_ADDR_TYPE_MULTI_MAC:
322         case MAC_ADDR_TYPE_CAM_MAC:
323                 {
324                         u32 cam_output;
325                         u32 upper = (addr[0] << 8) | addr[1];
326                         u32 lower =
327                             (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
328                             (addr[5]);
329
330                         QPRINTK(qdev, IFUP, DEBUG,
331                                 "Adding %s address %pM"
332                                 " at index %d in the CAM.\n",
333                                 ((type ==
334                                   MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
335                                  "UNICAST"), addr, index);
336
337                         status =
338                             ql_wait_reg_rdy(qdev,
339                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
340                         if (status)
341                                 goto exit;
342                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
343                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
344                                    type);       /* type */
345                         ql_write32(qdev, MAC_ADDR_DATA, lower);
346                         status =
347                             ql_wait_reg_rdy(qdev,
348                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
349                         if (status)
350                                 goto exit;
351                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
352                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
353                                    type);       /* type */
354                         ql_write32(qdev, MAC_ADDR_DATA, upper);
355                         status =
356                             ql_wait_reg_rdy(qdev,
357                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
358                         if (status)
359                                 goto exit;
360                         ql_write32(qdev, MAC_ADDR_IDX, (offset) |       /* offset */
361                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
362                                    type);       /* type */
363                         /* This field should also include the queue id
364                            and possibly the function id.  Right now we hardcode
365                            the route field to NIC core.
366                          */
367                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
368                                 cam_output = (CAM_OUT_ROUTE_NIC |
369                                               (qdev->
370                                                func << CAM_OUT_FUNC_SHIFT) |
371                                               (qdev->
372                                                rss_ring_first_cq_id <<
373                                                CAM_OUT_CQ_ID_SHIFT));
374                                 if (qdev->vlgrp)
375                                         cam_output |= CAM_OUT_RV;
376                                 /* route to NIC core */
377                                 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
378                         }
379                         break;
380                 }
381         case MAC_ADDR_TYPE_VLAN:
382                 {
383                         u32 enable_bit = *((u32 *) &addr[0]);
384                         /* For VLAN, the addr actually holds a bit that
385                          * either enables or disables the vlan id we are
386                          * addressing. It's either MAC_ADDR_E on or off.
387                          * That's bit-27 we're talking about.
388                          */
389                         QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
390                                 (enable_bit ? "Adding" : "Removing"),
391                                 index, (enable_bit ? "to" : "from"));
392
393                         status =
394                             ql_wait_reg_rdy(qdev,
395                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
396                         if (status)
397                                 goto exit;
398                         ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
399                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
400                                    type |       /* type */
401                                    enable_bit); /* enable/disable */
402                         break;
403                 }
404         case MAC_ADDR_TYPE_MULTI_FLTR:
405         default:
406                 QPRINTK(qdev, IFUP, CRIT,
407                         "Address type %d not yet supported.\n", type);
408                 status = -EPERM;
409         }
410 exit:
411         return status;
412 }
413
414 /* Get a specific frame routing value from the CAM.
415  * Used for debug and reg dump.
416  */
417 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
418 {
419         int status = 0;
420
421         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
422         if (status)
423                 goto exit;
424
425         ql_write32(qdev, RT_IDX,
426                    RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
427         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
428         if (status)
429                 goto exit;
430         *value = ql_read32(qdev, RT_DATA);
431 exit:
432         return status;
433 }
434
435 /* The NIC function for this chip has 16 routing indexes.  Each one can be used
436  * to route different frame types to various inbound queues.  We send broadcast/
437  * multicast/error frames to the default queue for slow handling,
438  * and CAM hit/RSS frames to the fast handling queues.
439  */
440 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
441                               int enable)
442 {
443         int status = -EINVAL; /* Return error if no mask match. */
444         u32 value = 0;
445
446         QPRINTK(qdev, IFUP, DEBUG,
447                 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
448                 (enable ? "Adding" : "Removing"),
449                 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
450                 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
451                 ((index ==
452                   RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
453                 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
454                 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
455                 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
456                 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
457                 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
458                 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
459                 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
460                 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
461                 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
462                 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
463                 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
464                 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
465                 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
466                 (enable ? "to" : "from"));
467
468         switch (mask) {
469         case RT_IDX_CAM_HIT:
470                 {
471                         value = RT_IDX_DST_CAM_Q |      /* dest */
472                             RT_IDX_TYPE_NICQ |  /* type */
473                             (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
474                         break;
475                 }
476         case RT_IDX_VALID:      /* Promiscuous Mode frames. */
477                 {
478                         value = RT_IDX_DST_DFLT_Q |     /* dest */
479                             RT_IDX_TYPE_NICQ |  /* type */
480                             (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
481                         break;
482                 }
483         case RT_IDX_ERR:        /* Pass up MAC,IP,TCP/UDP error frames. */
484                 {
485                         value = RT_IDX_DST_DFLT_Q |     /* dest */
486                             RT_IDX_TYPE_NICQ |  /* type */
487                             (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
488                         break;
489                 }
490         case RT_IDX_BCAST:      /* Pass up Broadcast frames to default Q. */
491                 {
492                         value = RT_IDX_DST_DFLT_Q |     /* dest */
493                             RT_IDX_TYPE_NICQ |  /* type */
494                             (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
495                         break;
496                 }
497         case RT_IDX_MCAST:      /* Pass up All Multicast frames. */
498                 {
499                         value = RT_IDX_DST_CAM_Q |      /* dest */
500                             RT_IDX_TYPE_NICQ |  /* type */
501                             (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
502                         break;
503                 }
504         case RT_IDX_MCAST_MATCH:        /* Pass up matched Multicast frames. */
505                 {
506                         value = RT_IDX_DST_CAM_Q |      /* dest */
507                             RT_IDX_TYPE_NICQ |  /* type */
508                             (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
509                         break;
510                 }
511         case RT_IDX_RSS_MATCH:  /* Pass up matched RSS frames. */
512                 {
513                         value = RT_IDX_DST_RSS |        /* dest */
514                             RT_IDX_TYPE_NICQ |  /* type */
515                             (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
516                         break;
517                 }
518         case 0:         /* Clear the E-bit on an entry. */
519                 {
520                         value = RT_IDX_DST_DFLT_Q |     /* dest */
521                             RT_IDX_TYPE_NICQ |  /* type */
522                             (index << RT_IDX_IDX_SHIFT);/* index */
523                         break;
524                 }
525         default:
526                 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
527                         mask);
528                 status = -EPERM;
529                 goto exit;
530         }
531
532         if (value) {
533                 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
534                 if (status)
535                         goto exit;
536                 value |= (enable ? RT_IDX_E : 0);
537                 ql_write32(qdev, RT_IDX, value);
538                 ql_write32(qdev, RT_DATA, enable ? mask : 0);
539         }
540 exit:
541         return status;
542 }
543
544 static void ql_enable_interrupts(struct ql_adapter *qdev)
545 {
546         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
547 }
548
549 static void ql_disable_interrupts(struct ql_adapter *qdev)
550 {
551         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
552 }
553
554 /* If we're running with multiple MSI-X vectors then we enable on the fly.
555  * Otherwise, we may have multiple outstanding workers and don't want to
556  * enable until the last one finishes. In this case, the irq_cnt gets
557  * incremented everytime we queue a worker and decremented everytime
558  * a worker finishes.  Once it hits zero we enable the interrupt.
559  */
560 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
561 {
562         u32 var = 0;
563         unsigned long hw_flags = 0;
564         struct intr_context *ctx = qdev->intr_context + intr;
565
566         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
567                 /* Always enable if we're MSIX multi interrupts and
568                  * it's not the default (zeroeth) interrupt.
569                  */
570                 ql_write32(qdev, INTR_EN,
571                            ctx->intr_en_mask);
572                 var = ql_read32(qdev, STS);
573                 return var;
574         }
575
576         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
577         if (atomic_dec_and_test(&ctx->irq_cnt)) {
578                 ql_write32(qdev, INTR_EN,
579                            ctx->intr_en_mask);
580                 var = ql_read32(qdev, STS);
581         }
582         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
583         return var;
584 }
585
586 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
587 {
588         u32 var = 0;
589         unsigned long hw_flags;
590         struct intr_context *ctx;
591
592         /* HW disables for us if we're MSIX multi interrupts and
593          * it's not the default (zeroeth) interrupt.
594          */
595         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
596                 return 0;
597
598         ctx = qdev->intr_context + intr;
599         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
600         if (!atomic_read(&ctx->irq_cnt)) {
601                 ql_write32(qdev, INTR_EN,
602                 ctx->intr_dis_mask);
603                 var = ql_read32(qdev, STS);
604         }
605         atomic_inc(&ctx->irq_cnt);
606         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
607         return var;
608 }
609
610 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
611 {
612         int i;
613         for (i = 0; i < qdev->intr_count; i++) {
614                 /* The enable call does a atomic_dec_and_test
615                  * and enables only if the result is zero.
616                  * So we precharge it here.
617                  */
618                 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
619                         i == 0))
620                         atomic_set(&qdev->intr_context[i].irq_cnt, 1);
621                 ql_enable_completion_interrupt(qdev, i);
622         }
623
624 }
625
626 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
627 {
628         int status, i;
629         u16 csum = 0;
630         __le16 *flash = (__le16 *)&qdev->flash;
631
632         status = strncmp((char *)&qdev->flash, str, 4);
633         if (status) {
634                 QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n");
635                 return  status;
636         }
637
638         for (i = 0; i < size; i++)
639                 csum += le16_to_cpu(*flash++);
640
641         if (csum)
642                 QPRINTK(qdev, IFUP, ERR,
643                         "Invalid flash checksum, csum = 0x%.04x.\n", csum);
644
645         return csum;
646 }
647
648 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
649 {
650         int status = 0;
651         /* wait for reg to come ready */
652         status = ql_wait_reg_rdy(qdev,
653                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
654         if (status)
655                 goto exit;
656         /* set up for reg read */
657         ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
658         /* wait for reg to come ready */
659         status = ql_wait_reg_rdy(qdev,
660                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
661         if (status)
662                 goto exit;
663          /* This data is stored on flash as an array of
664          * __le32.  Since ql_read32() returns cpu endian
665          * we need to swap it back.
666          */
667         *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
668 exit:
669         return status;
670 }
671
672 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
673 {
674         int i;
675         int status;
676         __le32 *p = (__le32 *)&qdev->flash;
677         u32 offset = 0;
678         u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
679
680         /* Second function's parameters follow the first
681          * function's.
682          */
683         if (qdev->func)
684                 offset = size;
685
686         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
687                 return -ETIMEDOUT;
688
689         for (i = 0; i < size; i++, p++) {
690                 status = ql_read_flash_word(qdev, i+offset, p);
691                 if (status) {
692                         QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
693                         goto exit;
694                 }
695
696         }
697
698         status = ql_validate_flash(qdev,
699                         sizeof(struct flash_params_8012) / sizeof(u16),
700                         "8012");
701         if (status) {
702                 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
703                 status = -EINVAL;
704                 goto exit;
705         }
706
707         if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
708                 status = -EINVAL;
709                 goto exit;
710         }
711
712         memcpy(qdev->ndev->dev_addr,
713                 qdev->flash.flash_params_8012.mac_addr,
714                 qdev->ndev->addr_len);
715
716 exit:
717         ql_sem_unlock(qdev, SEM_FLASH_MASK);
718         return status;
719 }
720
721 /* xgmac register are located behind the xgmac_addr and xgmac_data
722  * register pair.  Each read/write requires us to wait for the ready
723  * bit before reading/writing the data.
724  */
725 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
726 {
727         int status;
728         /* wait for reg to come ready */
729         status = ql_wait_reg_rdy(qdev,
730                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
731         if (status)
732                 return status;
733         /* write the data to the data reg */
734         ql_write32(qdev, XGMAC_DATA, data);
735         /* trigger the write */
736         ql_write32(qdev, XGMAC_ADDR, reg);
737         return status;
738 }
739
740 /* xgmac register are located behind the xgmac_addr and xgmac_data
741  * register pair.  Each read/write requires us to wait for the ready
742  * bit before reading/writing the data.
743  */
744 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
745 {
746         int status = 0;
747         /* wait for reg to come ready */
748         status = ql_wait_reg_rdy(qdev,
749                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
750         if (status)
751                 goto exit;
752         /* set up for reg read */
753         ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
754         /* wait for reg to come ready */
755         status = ql_wait_reg_rdy(qdev,
756                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
757         if (status)
758                 goto exit;
759         /* get the data */
760         *data = ql_read32(qdev, XGMAC_DATA);
761 exit:
762         return status;
763 }
764
765 /* This is used for reading the 64-bit statistics regs. */
766 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
767 {
768         int status = 0;
769         u32 hi = 0;
770         u32 lo = 0;
771
772         status = ql_read_xgmac_reg(qdev, reg, &lo);
773         if (status)
774                 goto exit;
775
776         status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
777         if (status)
778                 goto exit;
779
780         *data = (u64) lo | ((u64) hi << 32);
781
782 exit:
783         return status;
784 }
785
786 /* Take the MAC Core out of reset.
787  * Enable statistics counting.
788  * Take the transmitter/receiver out of reset.
789  * This functionality may be done in the MPI firmware at a
790  * later date.
791  */
792 static int ql_8012_port_initialize(struct ql_adapter *qdev)
793 {
794         int status = 0;
795         u32 data;
796
797         if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
798                 /* Another function has the semaphore, so
799                  * wait for the port init bit to come ready.
800                  */
801                 QPRINTK(qdev, LINK, INFO,
802                         "Another function has the semaphore, so wait for the port init bit to come ready.\n");
803                 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
804                 if (status) {
805                         QPRINTK(qdev, LINK, CRIT,
806                                 "Port initialize timed out.\n");
807                 }
808                 return status;
809         }
810
811         QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
812         /* Set the core reset. */
813         status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
814         if (status)
815                 goto end;
816         data |= GLOBAL_CFG_RESET;
817         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
818         if (status)
819                 goto end;
820
821         /* Clear the core reset and turn on jumbo for receiver. */
822         data &= ~GLOBAL_CFG_RESET;      /* Clear core reset. */
823         data |= GLOBAL_CFG_JUMBO;       /* Turn on jumbo. */
824         data |= GLOBAL_CFG_TX_STAT_EN;
825         data |= GLOBAL_CFG_RX_STAT_EN;
826         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
827         if (status)
828                 goto end;
829
830         /* Enable transmitter, and clear it's reset. */
831         status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
832         if (status)
833                 goto end;
834         data &= ~TX_CFG_RESET;  /* Clear the TX MAC reset. */
835         data |= TX_CFG_EN;      /* Enable the transmitter. */
836         status = ql_write_xgmac_reg(qdev, TX_CFG, data);
837         if (status)
838                 goto end;
839
840         /* Enable receiver and clear it's reset. */
841         status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
842         if (status)
843                 goto end;
844         data &= ~RX_CFG_RESET;  /* Clear the RX MAC reset. */
845         data |= RX_CFG_EN;      /* Enable the receiver. */
846         status = ql_write_xgmac_reg(qdev, RX_CFG, data);
847         if (status)
848                 goto end;
849
850         /* Turn on jumbo. */
851         status =
852             ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
853         if (status)
854                 goto end;
855         status =
856             ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
857         if (status)
858                 goto end;
859
860         /* Signal to the world that the port is enabled.        */
861         ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
862 end:
863         ql_sem_unlock(qdev, qdev->xg_sem_mask);
864         return status;
865 }
866
867 /* Get the next large buffer. */
868 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
869 {
870         struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
871         rx_ring->lbq_curr_idx++;
872         if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
873                 rx_ring->lbq_curr_idx = 0;
874         rx_ring->lbq_free_cnt++;
875         return lbq_desc;
876 }
877
878 /* Get the next small buffer. */
879 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
880 {
881         struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
882         rx_ring->sbq_curr_idx++;
883         if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
884                 rx_ring->sbq_curr_idx = 0;
885         rx_ring->sbq_free_cnt++;
886         return sbq_desc;
887 }
888
889 /* Update an rx ring index. */
890 static void ql_update_cq(struct rx_ring *rx_ring)
891 {
892         rx_ring->cnsmr_idx++;
893         rx_ring->curr_entry++;
894         if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
895                 rx_ring->cnsmr_idx = 0;
896                 rx_ring->curr_entry = rx_ring->cq_base;
897         }
898 }
899
900 static void ql_write_cq_idx(struct rx_ring *rx_ring)
901 {
902         ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
903 }
904
905 /* Process (refill) a large buffer queue. */
906 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
907 {
908         u32 clean_idx = rx_ring->lbq_clean_idx;
909         u32 start_idx = clean_idx;
910         struct bq_desc *lbq_desc;
911         u64 map;
912         int i;
913
914         while (rx_ring->lbq_free_cnt > 16) {
915                 for (i = 0; i < 16; i++) {
916                         QPRINTK(qdev, RX_STATUS, DEBUG,
917                                 "lbq: try cleaning clean_idx = %d.\n",
918                                 clean_idx);
919                         lbq_desc = &rx_ring->lbq[clean_idx];
920                         if (lbq_desc->p.lbq_page == NULL) {
921                                 QPRINTK(qdev, RX_STATUS, DEBUG,
922                                         "lbq: getting new page for index %d.\n",
923                                         lbq_desc->index);
924                                 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
925                                 if (lbq_desc->p.lbq_page == NULL) {
926                                         rx_ring->lbq_clean_idx = clean_idx;
927                                         QPRINTK(qdev, RX_STATUS, ERR,
928                                                 "Couldn't get a page.\n");
929                                         return;
930                                 }
931                                 map = pci_map_page(qdev->pdev,
932                                                    lbq_desc->p.lbq_page,
933                                                    0, PAGE_SIZE,
934                                                    PCI_DMA_FROMDEVICE);
935                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
936                                         rx_ring->lbq_clean_idx = clean_idx;
937                                         put_page(lbq_desc->p.lbq_page);
938                                         lbq_desc->p.lbq_page = NULL;
939                                         QPRINTK(qdev, RX_STATUS, ERR,
940                                                 "PCI mapping failed.\n");
941                                         return;
942                                 }
943                                 pci_unmap_addr_set(lbq_desc, mapaddr, map);
944                                 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
945                                 *lbq_desc->addr = cpu_to_le64(map);
946                         }
947                         clean_idx++;
948                         if (clean_idx == rx_ring->lbq_len)
949                                 clean_idx = 0;
950                 }
951
952                 rx_ring->lbq_clean_idx = clean_idx;
953                 rx_ring->lbq_prod_idx += 16;
954                 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
955                         rx_ring->lbq_prod_idx = 0;
956                 rx_ring->lbq_free_cnt -= 16;
957         }
958
959         if (start_idx != clean_idx) {
960                 QPRINTK(qdev, RX_STATUS, DEBUG,
961                         "lbq: updating prod idx = %d.\n",
962                         rx_ring->lbq_prod_idx);
963                 ql_write_db_reg(rx_ring->lbq_prod_idx,
964                                 rx_ring->lbq_prod_idx_db_reg);
965         }
966 }
967
968 /* Process (refill) a small buffer queue. */
969 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
970 {
971         u32 clean_idx = rx_ring->sbq_clean_idx;
972         u32 start_idx = clean_idx;
973         struct bq_desc *sbq_desc;
974         u64 map;
975         int i;
976
977         while (rx_ring->sbq_free_cnt > 16) {
978                 for (i = 0; i < 16; i++) {
979                         sbq_desc = &rx_ring->sbq[clean_idx];
980                         QPRINTK(qdev, RX_STATUS, DEBUG,
981                                 "sbq: try cleaning clean_idx = %d.\n",
982                                 clean_idx);
983                         if (sbq_desc->p.skb == NULL) {
984                                 QPRINTK(qdev, RX_STATUS, DEBUG,
985                                         "sbq: getting new skb for index %d.\n",
986                                         sbq_desc->index);
987                                 sbq_desc->p.skb =
988                                     netdev_alloc_skb(qdev->ndev,
989                                                      rx_ring->sbq_buf_size);
990                                 if (sbq_desc->p.skb == NULL) {
991                                         QPRINTK(qdev, PROBE, ERR,
992                                                 "Couldn't get an skb.\n");
993                                         rx_ring->sbq_clean_idx = clean_idx;
994                                         return;
995                                 }
996                                 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
997                                 map = pci_map_single(qdev->pdev,
998                                                      sbq_desc->p.skb->data,
999                                                      rx_ring->sbq_buf_size /
1000                                                      2, PCI_DMA_FROMDEVICE);
1001                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
1002                                         QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
1003                                         rx_ring->sbq_clean_idx = clean_idx;
1004                                         dev_kfree_skb_any(sbq_desc->p.skb);
1005                                         sbq_desc->p.skb = NULL;
1006                                         return;
1007                                 }
1008                                 pci_unmap_addr_set(sbq_desc, mapaddr, map);
1009                                 pci_unmap_len_set(sbq_desc, maplen,
1010                                                   rx_ring->sbq_buf_size / 2);
1011                                 *sbq_desc->addr = cpu_to_le64(map);
1012                         }
1013
1014                         clean_idx++;
1015                         if (clean_idx == rx_ring->sbq_len)
1016                                 clean_idx = 0;
1017                 }
1018                 rx_ring->sbq_clean_idx = clean_idx;
1019                 rx_ring->sbq_prod_idx += 16;
1020                 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1021                         rx_ring->sbq_prod_idx = 0;
1022                 rx_ring->sbq_free_cnt -= 16;
1023         }
1024
1025         if (start_idx != clean_idx) {
1026                 QPRINTK(qdev, RX_STATUS, DEBUG,
1027                         "sbq: updating prod idx = %d.\n",
1028                         rx_ring->sbq_prod_idx);
1029                 ql_write_db_reg(rx_ring->sbq_prod_idx,
1030                                 rx_ring->sbq_prod_idx_db_reg);
1031         }
1032 }
1033
1034 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1035                                     struct rx_ring *rx_ring)
1036 {
1037         ql_update_sbq(qdev, rx_ring);
1038         ql_update_lbq(qdev, rx_ring);
1039 }
1040
1041 /* Unmaps tx buffers.  Can be called from send() if a pci mapping
1042  * fails at some stage, or from the interrupt when a tx completes.
1043  */
1044 static void ql_unmap_send(struct ql_adapter *qdev,
1045                           struct tx_ring_desc *tx_ring_desc, int mapped)
1046 {
1047         int i;
1048         for (i = 0; i < mapped; i++) {
1049                 if (i == 0 || (i == 7 && mapped > 7)) {
1050                         /*
1051                          * Unmap the skb->data area, or the
1052                          * external sglist (AKA the Outbound
1053                          * Address List (OAL)).
1054                          * If its the zeroeth element, then it's
1055                          * the skb->data area.  If it's the 7th
1056                          * element and there is more than 6 frags,
1057                          * then its an OAL.
1058                          */
1059                         if (i == 7) {
1060                                 QPRINTK(qdev, TX_DONE, DEBUG,
1061                                         "unmapping OAL area.\n");
1062                         }
1063                         pci_unmap_single(qdev->pdev,
1064                                          pci_unmap_addr(&tx_ring_desc->map[i],
1065                                                         mapaddr),
1066                                          pci_unmap_len(&tx_ring_desc->map[i],
1067                                                        maplen),
1068                                          PCI_DMA_TODEVICE);
1069                 } else {
1070                         QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1071                                 i);
1072                         pci_unmap_page(qdev->pdev,
1073                                        pci_unmap_addr(&tx_ring_desc->map[i],
1074                                                       mapaddr),
1075                                        pci_unmap_len(&tx_ring_desc->map[i],
1076                                                      maplen), PCI_DMA_TODEVICE);
1077                 }
1078         }
1079
1080 }
1081
1082 /* Map the buffers for this transmit.  This will return
1083  * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1084  */
1085 static int ql_map_send(struct ql_adapter *qdev,
1086                        struct ob_mac_iocb_req *mac_iocb_ptr,
1087                        struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1088 {
1089         int len = skb_headlen(skb);
1090         dma_addr_t map;
1091         int frag_idx, err, map_idx = 0;
1092         struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1093         int frag_cnt = skb_shinfo(skb)->nr_frags;
1094
1095         if (frag_cnt) {
1096                 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1097         }
1098         /*
1099          * Map the skb buffer first.
1100          */
1101         map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1102
1103         err = pci_dma_mapping_error(qdev->pdev, map);
1104         if (err) {
1105                 QPRINTK(qdev, TX_QUEUED, ERR,
1106                         "PCI mapping failed with error: %d\n", err);
1107
1108                 return NETDEV_TX_BUSY;
1109         }
1110
1111         tbd->len = cpu_to_le32(len);
1112         tbd->addr = cpu_to_le64(map);
1113         pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1114         pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1115         map_idx++;
1116
1117         /*
1118          * This loop fills the remainder of the 8 address descriptors
1119          * in the IOCB.  If there are more than 7 fragments, then the
1120          * eighth address desc will point to an external list (OAL).
1121          * When this happens, the remainder of the frags will be stored
1122          * in this list.
1123          */
1124         for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1125                 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1126                 tbd++;
1127                 if (frag_idx == 6 && frag_cnt > 7) {
1128                         /* Let's tack on an sglist.
1129                          * Our control block will now
1130                          * look like this:
1131                          * iocb->seg[0] = skb->data
1132                          * iocb->seg[1] = frag[0]
1133                          * iocb->seg[2] = frag[1]
1134                          * iocb->seg[3] = frag[2]
1135                          * iocb->seg[4] = frag[3]
1136                          * iocb->seg[5] = frag[4]
1137                          * iocb->seg[6] = frag[5]
1138                          * iocb->seg[7] = ptr to OAL (external sglist)
1139                          * oal->seg[0] = frag[6]
1140                          * oal->seg[1] = frag[7]
1141                          * oal->seg[2] = frag[8]
1142                          * oal->seg[3] = frag[9]
1143                          * oal->seg[4] = frag[10]
1144                          *      etc...
1145                          */
1146                         /* Tack on the OAL in the eighth segment of IOCB. */
1147                         map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1148                                              sizeof(struct oal),
1149                                              PCI_DMA_TODEVICE);
1150                         err = pci_dma_mapping_error(qdev->pdev, map);
1151                         if (err) {
1152                                 QPRINTK(qdev, TX_QUEUED, ERR,
1153                                         "PCI mapping outbound address list with error: %d\n",
1154                                         err);
1155                                 goto map_error;
1156                         }
1157
1158                         tbd->addr = cpu_to_le64(map);
1159                         /*
1160                          * The length is the number of fragments
1161                          * that remain to be mapped times the length
1162                          * of our sglist (OAL).
1163                          */
1164                         tbd->len =
1165                             cpu_to_le32((sizeof(struct tx_buf_desc) *
1166                                          (frag_cnt - frag_idx)) | TX_DESC_C);
1167                         pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1168                                            map);
1169                         pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1170                                           sizeof(struct oal));
1171                         tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1172                         map_idx++;
1173                 }
1174
1175                 map =
1176                     pci_map_page(qdev->pdev, frag->page,
1177                                  frag->page_offset, frag->size,
1178                                  PCI_DMA_TODEVICE);
1179
1180                 err = pci_dma_mapping_error(qdev->pdev, map);
1181                 if (err) {
1182                         QPRINTK(qdev, TX_QUEUED, ERR,
1183                                 "PCI mapping frags failed with error: %d.\n",
1184                                 err);
1185                         goto map_error;
1186                 }
1187
1188                 tbd->addr = cpu_to_le64(map);
1189                 tbd->len = cpu_to_le32(frag->size);
1190                 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1191                 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1192                                   frag->size);
1193
1194         }
1195         /* Save the number of segments we've mapped. */
1196         tx_ring_desc->map_cnt = map_idx;
1197         /* Terminate the last segment. */
1198         tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1199         return NETDEV_TX_OK;
1200
1201 map_error:
1202         /*
1203          * If the first frag mapping failed, then i will be zero.
1204          * This causes the unmap of the skb->data area.  Otherwise
1205          * we pass in the number of frags that mapped successfully
1206          * so they can be umapped.
1207          */
1208         ql_unmap_send(qdev, tx_ring_desc, map_idx);
1209         return NETDEV_TX_BUSY;
1210 }
1211
1212 static void ql_realign_skb(struct sk_buff *skb, int len)
1213 {
1214         void *temp_addr = skb->data;
1215
1216         /* Undo the skb_reserve(skb,32) we did before
1217          * giving to hardware, and realign data on
1218          * a 2-byte boundary.
1219          */
1220         skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1221         skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1222         skb_copy_to_linear_data(skb, temp_addr,
1223                 (unsigned int)len);
1224 }
1225
1226 /*
1227  * This function builds an skb for the given inbound
1228  * completion.  It will be rewritten for readability in the near
1229  * future, but for not it works well.
1230  */
1231 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1232                                        struct rx_ring *rx_ring,
1233                                        struct ib_mac_iocb_rsp *ib_mac_rsp)
1234 {
1235         struct bq_desc *lbq_desc;
1236         struct bq_desc *sbq_desc;
1237         struct sk_buff *skb = NULL;
1238         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1239        u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1240
1241         /*
1242          * Handle the header buffer if present.
1243          */
1244         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1245             ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1246                 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1247                 /*
1248                  * Headers fit nicely into a small buffer.
1249                  */
1250                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1251                 pci_unmap_single(qdev->pdev,
1252                                 pci_unmap_addr(sbq_desc, mapaddr),
1253                                 pci_unmap_len(sbq_desc, maplen),
1254                                 PCI_DMA_FROMDEVICE);
1255                 skb = sbq_desc->p.skb;
1256                 ql_realign_skb(skb, hdr_len);
1257                 skb_put(skb, hdr_len);
1258                 sbq_desc->p.skb = NULL;
1259         }
1260
1261         /*
1262          * Handle the data buffer(s).
1263          */
1264         if (unlikely(!length)) {        /* Is there data too? */
1265                 QPRINTK(qdev, RX_STATUS, DEBUG,
1266                         "No Data buffer in this packet.\n");
1267                 return skb;
1268         }
1269
1270         if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1271                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1272                         QPRINTK(qdev, RX_STATUS, DEBUG,
1273                                 "Headers in small, data of %d bytes in small, combine them.\n", length);
1274                         /*
1275                          * Data is less than small buffer size so it's
1276                          * stuffed in a small buffer.
1277                          * For this case we append the data
1278                          * from the "data" small buffer to the "header" small
1279                          * buffer.
1280                          */
1281                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1282                         pci_dma_sync_single_for_cpu(qdev->pdev,
1283                                                     pci_unmap_addr
1284                                                     (sbq_desc, mapaddr),
1285                                                     pci_unmap_len
1286                                                     (sbq_desc, maplen),
1287                                                     PCI_DMA_FROMDEVICE);
1288                         memcpy(skb_put(skb, length),
1289                                sbq_desc->p.skb->data, length);
1290                         pci_dma_sync_single_for_device(qdev->pdev,
1291                                                        pci_unmap_addr
1292                                                        (sbq_desc,
1293                                                         mapaddr),
1294                                                        pci_unmap_len
1295                                                        (sbq_desc,
1296                                                         maplen),
1297                                                        PCI_DMA_FROMDEVICE);
1298                 } else {
1299                         QPRINTK(qdev, RX_STATUS, DEBUG,
1300                                 "%d bytes in a single small buffer.\n", length);
1301                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1302                         skb = sbq_desc->p.skb;
1303                         ql_realign_skb(skb, length);
1304                         skb_put(skb, length);
1305                         pci_unmap_single(qdev->pdev,
1306                                          pci_unmap_addr(sbq_desc,
1307                                                         mapaddr),
1308                                          pci_unmap_len(sbq_desc,
1309                                                        maplen),
1310                                          PCI_DMA_FROMDEVICE);
1311                         sbq_desc->p.skb = NULL;
1312                 }
1313         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1314                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1315                         QPRINTK(qdev, RX_STATUS, DEBUG,
1316                                 "Header in small, %d bytes in large. Chain large to small!\n", length);
1317                         /*
1318                          * The data is in a single large buffer.  We
1319                          * chain it to the header buffer's skb and let
1320                          * it rip.
1321                          */
1322                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1323                         pci_unmap_page(qdev->pdev,
1324                                        pci_unmap_addr(lbq_desc,
1325                                                       mapaddr),
1326                                        pci_unmap_len(lbq_desc, maplen),
1327                                        PCI_DMA_FROMDEVICE);
1328                         QPRINTK(qdev, RX_STATUS, DEBUG,
1329                                 "Chaining page to skb.\n");
1330                         skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1331                                            0, length);
1332                         skb->len += length;
1333                         skb->data_len += length;
1334                         skb->truesize += length;
1335                         lbq_desc->p.lbq_page = NULL;
1336                 } else {
1337                         /*
1338                          * The headers and data are in a single large buffer. We
1339                          * copy it to a new skb and let it go. This can happen with
1340                          * jumbo mtu on a non-TCP/UDP frame.
1341                          */
1342                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1343                         skb = netdev_alloc_skb(qdev->ndev, length);
1344                         if (skb == NULL) {
1345                                 QPRINTK(qdev, PROBE, DEBUG,
1346                                         "No skb available, drop the packet.\n");
1347                                 return NULL;
1348                         }
1349                         pci_unmap_page(qdev->pdev,
1350                                        pci_unmap_addr(lbq_desc,
1351                                                       mapaddr),
1352                                        pci_unmap_len(lbq_desc, maplen),
1353                                        PCI_DMA_FROMDEVICE);
1354                         skb_reserve(skb, NET_IP_ALIGN);
1355                         QPRINTK(qdev, RX_STATUS, DEBUG,
1356                                 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1357                         skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1358                                            0, length);
1359                         skb->len += length;
1360                         skb->data_len += length;
1361                         skb->truesize += length;
1362                         length -= length;
1363                         lbq_desc->p.lbq_page = NULL;
1364                         __pskb_pull_tail(skb,
1365                                 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1366                                 VLAN_ETH_HLEN : ETH_HLEN);
1367                 }
1368         } else {
1369                 /*
1370                  * The data is in a chain of large buffers
1371                  * pointed to by a small buffer.  We loop
1372                  * thru and chain them to the our small header
1373                  * buffer's skb.
1374                  * frags:  There are 18 max frags and our small
1375                  *         buffer will hold 32 of them. The thing is,
1376                  *         we'll use 3 max for our 9000 byte jumbo
1377                  *         frames.  If the MTU goes up we could
1378                  *          eventually be in trouble.
1379                  */
1380                 int size, offset, i = 0;
1381                 __le64 *bq, bq_array[8];
1382                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1383                 pci_unmap_single(qdev->pdev,
1384                                  pci_unmap_addr(sbq_desc, mapaddr),
1385                                  pci_unmap_len(sbq_desc, maplen),
1386                                  PCI_DMA_FROMDEVICE);
1387                 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1388                         /*
1389                          * This is an non TCP/UDP IP frame, so
1390                          * the headers aren't split into a small
1391                          * buffer.  We have to use the small buffer
1392                          * that contains our sg list as our skb to
1393                          * send upstairs. Copy the sg list here to
1394                          * a local buffer and use it to find the
1395                          * pages to chain.
1396                          */
1397                         QPRINTK(qdev, RX_STATUS, DEBUG,
1398                                 "%d bytes of headers & data in chain of large.\n", length);
1399                         skb = sbq_desc->p.skb;
1400                         bq = &bq_array[0];
1401                         memcpy(bq, skb->data, sizeof(bq_array));
1402                         sbq_desc->p.skb = NULL;
1403                         skb_reserve(skb, NET_IP_ALIGN);
1404                 } else {
1405                         QPRINTK(qdev, RX_STATUS, DEBUG,
1406                                 "Headers in small, %d bytes of data in chain of large.\n", length);
1407                         bq = (__le64 *)sbq_desc->p.skb->data;
1408                 }
1409                 while (length > 0) {
1410                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1411                         pci_unmap_page(qdev->pdev,
1412                                        pci_unmap_addr(lbq_desc,
1413                                                       mapaddr),
1414                                        pci_unmap_len(lbq_desc,
1415                                                      maplen),
1416                                        PCI_DMA_FROMDEVICE);
1417                         size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1418                         offset = 0;
1419
1420                         QPRINTK(qdev, RX_STATUS, DEBUG,
1421                                 "Adding page %d to skb for %d bytes.\n",
1422                                 i, size);
1423                         skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1424                                            offset, size);
1425                         skb->len += size;
1426                         skb->data_len += size;
1427                         skb->truesize += size;
1428                         length -= size;
1429                         lbq_desc->p.lbq_page = NULL;
1430                         bq++;
1431                         i++;
1432                 }
1433                 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1434                                 VLAN_ETH_HLEN : ETH_HLEN);
1435         }
1436         return skb;
1437 }
1438
1439 /* Process an inbound completion from an rx ring. */
1440 static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1441                                    struct rx_ring *rx_ring,
1442                                    struct ib_mac_iocb_rsp *ib_mac_rsp)
1443 {
1444         struct net_device *ndev = qdev->ndev;
1445         struct sk_buff *skb = NULL;
1446
1447         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1448
1449         skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1450         if (unlikely(!skb)) {
1451                 QPRINTK(qdev, RX_STATUS, DEBUG,
1452                         "No skb available, drop packet.\n");
1453                 return;
1454         }
1455
1456         prefetch(skb->data);
1457         skb->dev = ndev;
1458         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1459                 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1460                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1461                         IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1462                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1463                         IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1464                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1465                         IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1466         }
1467         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1468                 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1469         }
1470         if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
1471                 QPRINTK(qdev, RX_STATUS, ERR,
1472                         "Bad checksum for this %s packet.\n",
1473                         ((ib_mac_rsp->
1474                           flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
1475                 skb->ip_summed = CHECKSUM_NONE;
1476         } else if (qdev->rx_csum &&
1477                    ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
1478                     ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1479                      !(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
1480                 QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
1481                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1482         }
1483         qdev->stats.rx_packets++;
1484         qdev->stats.rx_bytes += skb->len;
1485         skb->protocol = eth_type_trans(skb, ndev);
1486         skb_record_rx_queue(skb, rx_ring - &qdev->rx_ring[0]);
1487         if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
1488                 QPRINTK(qdev, RX_STATUS, DEBUG,
1489                         "Passing a VLAN packet upstream.\n");
1490                 vlan_hwaccel_receive_skb(skb, qdev->vlgrp,
1491                                 le16_to_cpu(ib_mac_rsp->vlan_id));
1492         } else {
1493                 QPRINTK(qdev, RX_STATUS, DEBUG,
1494                         "Passing a normal packet upstream.\n");
1495                 netif_receive_skb(skb);
1496         }
1497 }
1498
1499 /* Process an outbound completion from an rx ring. */
1500 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1501                                    struct ob_mac_iocb_rsp *mac_rsp)
1502 {
1503         struct tx_ring *tx_ring;
1504         struct tx_ring_desc *tx_ring_desc;
1505
1506         QL_DUMP_OB_MAC_RSP(mac_rsp);
1507         tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1508         tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1509         ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1510         qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
1511         qdev->stats.tx_packets++;
1512         dev_kfree_skb(tx_ring_desc->skb);
1513         tx_ring_desc->skb = NULL;
1514
1515         if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1516                                         OB_MAC_IOCB_RSP_S |
1517                                         OB_MAC_IOCB_RSP_L |
1518                                         OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1519                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1520                         QPRINTK(qdev, TX_DONE, WARNING,
1521                                 "Total descriptor length did not match transfer length.\n");
1522                 }
1523                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1524                         QPRINTK(qdev, TX_DONE, WARNING,
1525                                 "Frame too short to be legal, not sent.\n");
1526                 }
1527                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1528                         QPRINTK(qdev, TX_DONE, WARNING,
1529                                 "Frame too long, but sent anyway.\n");
1530                 }
1531                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1532                         QPRINTK(qdev, TX_DONE, WARNING,
1533                                 "PCI backplane error. Frame not sent.\n");
1534                 }
1535         }
1536         atomic_inc(&tx_ring->tx_count);
1537 }
1538
1539 /* Fire up a handler to reset the MPI processor. */
1540 void ql_queue_fw_error(struct ql_adapter *qdev)
1541 {
1542         netif_stop_queue(qdev->ndev);
1543         netif_carrier_off(qdev->ndev);
1544         queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1545 }
1546
1547 void ql_queue_asic_error(struct ql_adapter *qdev)
1548 {
1549         netif_stop_queue(qdev->ndev);
1550         netif_carrier_off(qdev->ndev);
1551         ql_disable_interrupts(qdev);
1552         /* Clear adapter up bit to signal the recovery
1553          * process that it shouldn't kill the reset worker
1554          * thread
1555          */
1556         clear_bit(QL_ADAPTER_UP, &qdev->flags);
1557         queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1558 }
1559
1560 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1561                                     struct ib_ae_iocb_rsp *ib_ae_rsp)
1562 {
1563         switch (ib_ae_rsp->event) {
1564         case MGMT_ERR_EVENT:
1565                 QPRINTK(qdev, RX_ERR, ERR,
1566                         "Management Processor Fatal Error.\n");
1567                 ql_queue_fw_error(qdev);
1568                 return;
1569
1570         case CAM_LOOKUP_ERR_EVENT:
1571                 QPRINTK(qdev, LINK, ERR,
1572                         "Multiple CAM hits lookup occurred.\n");
1573                 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1574                 ql_queue_asic_error(qdev);
1575                 return;
1576
1577         case SOFT_ECC_ERROR_EVENT:
1578                 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1579                 ql_queue_asic_error(qdev);
1580                 break;
1581
1582         case PCI_ERR_ANON_BUF_RD:
1583                 QPRINTK(qdev, RX_ERR, ERR,
1584                         "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1585                         ib_ae_rsp->q_id);
1586                 ql_queue_asic_error(qdev);
1587                 break;
1588
1589         default:
1590                 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1591                         ib_ae_rsp->event);
1592                 ql_queue_asic_error(qdev);
1593                 break;
1594         }
1595 }
1596
1597 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1598 {
1599         struct ql_adapter *qdev = rx_ring->qdev;
1600         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1601         struct ob_mac_iocb_rsp *net_rsp = NULL;
1602         int count = 0;
1603
1604         /* While there are entries in the completion queue. */
1605         while (prod != rx_ring->cnsmr_idx) {
1606
1607                 QPRINTK(qdev, RX_STATUS, DEBUG,
1608                         "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1609                         prod, rx_ring->cnsmr_idx);
1610
1611                 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1612                 rmb();
1613                 switch (net_rsp->opcode) {
1614
1615                 case OPCODE_OB_MAC_TSO_IOCB:
1616                 case OPCODE_OB_MAC_IOCB:
1617                         ql_process_mac_tx_intr(qdev, net_rsp);
1618                         break;
1619                 default:
1620                         QPRINTK(qdev, RX_STATUS, DEBUG,
1621                                 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1622                                 net_rsp->opcode);
1623                 }
1624                 count++;
1625                 ql_update_cq(rx_ring);
1626                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1627         }
1628         ql_write_cq_idx(rx_ring);
1629         if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
1630                 struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1631                 if (atomic_read(&tx_ring->queue_stopped) &&
1632                     (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1633                         /*
1634                          * The queue got stopped because the tx_ring was full.
1635                          * Wake it up, because it's now at least 25% empty.
1636                          */
1637                         netif_wake_queue(qdev->ndev);
1638         }
1639
1640         return count;
1641 }
1642
1643 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1644 {
1645         struct ql_adapter *qdev = rx_ring->qdev;
1646         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1647         struct ql_net_rsp_iocb *net_rsp;
1648         int count = 0;
1649
1650         /* While there are entries in the completion queue. */
1651         while (prod != rx_ring->cnsmr_idx) {
1652
1653                 QPRINTK(qdev, RX_STATUS, DEBUG,
1654                         "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1655                         prod, rx_ring->cnsmr_idx);
1656
1657                 net_rsp = rx_ring->curr_entry;
1658                 rmb();
1659                 switch (net_rsp->opcode) {
1660                 case OPCODE_IB_MAC_IOCB:
1661                         ql_process_mac_rx_intr(qdev, rx_ring,
1662                                                (struct ib_mac_iocb_rsp *)
1663                                                net_rsp);
1664                         break;
1665
1666                 case OPCODE_IB_AE_IOCB:
1667                         ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1668                                                 net_rsp);
1669                         break;
1670                 default:
1671                         {
1672                                 QPRINTK(qdev, RX_STATUS, DEBUG,
1673                                         "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1674                                         net_rsp->opcode);
1675                         }
1676                 }
1677                 count++;
1678                 ql_update_cq(rx_ring);
1679                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1680                 if (count == budget)
1681                         break;
1682         }
1683         ql_update_buffer_queues(qdev, rx_ring);
1684         ql_write_cq_idx(rx_ring);
1685         return count;
1686 }
1687
1688 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1689 {
1690         struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1691         struct ql_adapter *qdev = rx_ring->qdev;
1692         int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1693
1694         QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1695                 rx_ring->cq_id);
1696
1697         if (work_done < budget) {
1698                 __napi_complete(napi);
1699                 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1700         }
1701         return work_done;
1702 }
1703
1704 static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1705 {
1706         struct ql_adapter *qdev = netdev_priv(ndev);
1707
1708         qdev->vlgrp = grp;
1709         if (grp) {
1710                 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1711                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1712                            NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1713         } else {
1714                 QPRINTK(qdev, IFUP, DEBUG,
1715                         "Turning off VLAN in NIC_RCV_CFG.\n");
1716                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1717         }
1718 }
1719
1720 static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1721 {
1722         struct ql_adapter *qdev = netdev_priv(ndev);
1723         u32 enable_bit = MAC_ADDR_E;
1724         int status;
1725
1726         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1727         if (status)
1728                 return;
1729         spin_lock(&qdev->hw_lock);
1730         if (ql_set_mac_addr_reg
1731             (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1732                 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1733         }
1734         spin_unlock(&qdev->hw_lock);
1735         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
1736 }
1737
1738 static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1739 {
1740         struct ql_adapter *qdev = netdev_priv(ndev);
1741         u32 enable_bit = 0;
1742         int status;
1743
1744         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1745         if (status)
1746                 return;
1747
1748         spin_lock(&qdev->hw_lock);
1749         if (ql_set_mac_addr_reg
1750             (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1751                 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1752         }
1753         spin_unlock(&qdev->hw_lock);
1754         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
1755
1756 }
1757
1758 /* Worker thread to process a given rx_ring that is dedicated
1759  * to outbound completions.
1760  */
1761 static void ql_tx_clean(struct work_struct *work)
1762 {
1763         struct rx_ring *rx_ring =
1764             container_of(work, struct rx_ring, rx_work.work);
1765         ql_clean_outbound_rx_ring(rx_ring);
1766         ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1767
1768 }
1769
1770 /* Worker thread to process a given rx_ring that is dedicated
1771  * to inbound completions.
1772  */
1773 static void ql_rx_clean(struct work_struct *work)
1774 {
1775         struct rx_ring *rx_ring =
1776             container_of(work, struct rx_ring, rx_work.work);
1777         ql_clean_inbound_rx_ring(rx_ring, 64);
1778         ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1779 }
1780
1781 /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
1782 static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
1783 {
1784         struct rx_ring *rx_ring = dev_id;
1785         queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
1786                               &rx_ring->rx_work, 0);
1787         return IRQ_HANDLED;
1788 }
1789
1790 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1791 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1792 {
1793         struct rx_ring *rx_ring = dev_id;
1794         napi_schedule(&rx_ring->napi);
1795         return IRQ_HANDLED;
1796 }
1797
1798 /* This handles a fatal error, MPI activity, and the default
1799  * rx_ring in an MSI-X multiple vector environment.
1800  * In MSI/Legacy environment it also process the rest of
1801  * the rx_rings.
1802  */
1803 static irqreturn_t qlge_isr(int irq, void *dev_id)
1804 {
1805         struct rx_ring *rx_ring = dev_id;
1806         struct ql_adapter *qdev = rx_ring->qdev;
1807         struct intr_context *intr_context = &qdev->intr_context[0];
1808         u32 var;
1809         int i;
1810         int work_done = 0;
1811
1812         spin_lock(&qdev->hw_lock);
1813         if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
1814                 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
1815                 spin_unlock(&qdev->hw_lock);
1816                 return IRQ_NONE;
1817         }
1818         spin_unlock(&qdev->hw_lock);
1819
1820         var = ql_disable_completion_interrupt(qdev, intr_context->intr);
1821
1822         /*
1823          * Check for fatal error.
1824          */
1825         if (var & STS_FE) {
1826                 ql_queue_asic_error(qdev);
1827                 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
1828                 var = ql_read32(qdev, ERR_STS);
1829                 QPRINTK(qdev, INTR, ERR,
1830                         "Resetting chip. Error Status Register = 0x%x\n", var);
1831                 return IRQ_HANDLED;
1832         }
1833
1834         /*
1835          * Check MPI processor activity.
1836          */
1837         if (var & STS_PI) {
1838                 /*
1839                  * We've got an async event or mailbox completion.
1840                  * Handle it and clear the source of the interrupt.
1841                  */
1842                 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
1843                 ql_disable_completion_interrupt(qdev, intr_context->intr);
1844                 queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
1845                                       &qdev->mpi_work, 0);
1846                 work_done++;
1847         }
1848
1849         /*
1850          * Check the default queue and wake handler if active.
1851          */
1852         rx_ring = &qdev->rx_ring[0];
1853         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
1854                 QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
1855                 ql_disable_completion_interrupt(qdev, intr_context->intr);
1856                 queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
1857                                       &rx_ring->rx_work, 0);
1858                 work_done++;
1859         }
1860
1861         if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
1862                 /*
1863                  * Start the DPC for each active queue.
1864                  */
1865                 for (i = 1; i < qdev->rx_ring_count; i++) {
1866                         rx_ring = &qdev->rx_ring[i];
1867                         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
1868                             rx_ring->cnsmr_idx) {
1869                                 QPRINTK(qdev, INTR, INFO,
1870                                         "Waking handler for rx_ring[%d].\n", i);
1871                                 ql_disable_completion_interrupt(qdev,
1872                                                                 intr_context->
1873                                                                 intr);
1874                                 if (i < qdev->rss_ring_first_cq_id)
1875                                         queue_delayed_work_on(rx_ring->cpu,
1876                                                               qdev->q_workqueue,
1877                                                               &rx_ring->rx_work,
1878                                                               0);
1879                                 else
1880                                         napi_schedule(&rx_ring->napi);
1881                                 work_done++;
1882                         }
1883                 }
1884         }
1885         ql_enable_completion_interrupt(qdev, intr_context->intr);
1886         return work_done ? IRQ_HANDLED : IRQ_NONE;
1887 }
1888
1889 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1890 {
1891
1892         if (skb_is_gso(skb)) {
1893                 int err;
1894                 if (skb_header_cloned(skb)) {
1895                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1896                         if (err)
1897                                 return err;
1898                 }
1899
1900                 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1901                 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
1902                 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1903                 mac_iocb_ptr->total_hdrs_len =
1904                     cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
1905                 mac_iocb_ptr->net_trans_offset =
1906                     cpu_to_le16(skb_network_offset(skb) |
1907                                 skb_transport_offset(skb)
1908                                 << OB_MAC_TRANSPORT_HDR_SHIFT);
1909                 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
1910                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
1911                 if (likely(skb->protocol == htons(ETH_P_IP))) {
1912                         struct iphdr *iph = ip_hdr(skb);
1913                         iph->check = 0;
1914                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1915                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1916                                                                  iph->daddr, 0,
1917                                                                  IPPROTO_TCP,
1918                                                                  0);
1919                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
1920                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
1921                         tcp_hdr(skb)->check =
1922                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1923                                              &ipv6_hdr(skb)->daddr,
1924                                              0, IPPROTO_TCP, 0);
1925                 }
1926                 return 1;
1927         }
1928         return 0;
1929 }
1930
1931 static void ql_hw_csum_setup(struct sk_buff *skb,
1932                              struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1933 {
1934         int len;
1935         struct iphdr *iph = ip_hdr(skb);
1936         __sum16 *check;
1937         mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1938         mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1939         mac_iocb_ptr->net_trans_offset =
1940                 cpu_to_le16(skb_network_offset(skb) |
1941                 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
1942
1943         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1944         len = (ntohs(iph->tot_len) - (iph->ihl << 2));
1945         if (likely(iph->protocol == IPPROTO_TCP)) {
1946                 check = &(tcp_hdr(skb)->check);
1947                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
1948                 mac_iocb_ptr->total_hdrs_len =
1949                     cpu_to_le16(skb_transport_offset(skb) +
1950                                 (tcp_hdr(skb)->doff << 2));
1951         } else {
1952                 check = &(udp_hdr(skb)->check);
1953                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
1954                 mac_iocb_ptr->total_hdrs_len =
1955                     cpu_to_le16(skb_transport_offset(skb) +
1956                                 sizeof(struct udphdr));
1957         }
1958         *check = ~csum_tcpudp_magic(iph->saddr,
1959                                     iph->daddr, len, iph->protocol, 0);
1960 }
1961
1962 static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
1963 {
1964         struct tx_ring_desc *tx_ring_desc;
1965         struct ob_mac_iocb_req *mac_iocb_ptr;
1966         struct ql_adapter *qdev = netdev_priv(ndev);
1967         int tso;
1968         struct tx_ring *tx_ring;
1969         u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
1970
1971         tx_ring = &qdev->tx_ring[tx_ring_idx];
1972
1973         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
1974                 QPRINTK(qdev, TX_QUEUED, INFO,
1975                         "%s: shutting down tx queue %d du to lack of resources.\n",
1976                         __func__, tx_ring_idx);
1977                 netif_stop_queue(ndev);
1978                 atomic_inc(&tx_ring->queue_stopped);
1979                 return NETDEV_TX_BUSY;
1980         }
1981         tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
1982         mac_iocb_ptr = tx_ring_desc->queue_entry;
1983         memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
1984
1985         mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
1986         mac_iocb_ptr->tid = tx_ring_desc->index;
1987         /* We use the upper 32-bits to store the tx queue for this IO.
1988          * When we get the completion we can use it to establish the context.
1989          */
1990         mac_iocb_ptr->txq_idx = tx_ring_idx;
1991         tx_ring_desc->skb = skb;
1992
1993         mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
1994
1995         if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
1996                 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
1997                         vlan_tx_tag_get(skb));
1998                 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
1999                 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2000         }
2001         tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2002         if (tso < 0) {
2003                 dev_kfree_skb_any(skb);
2004                 return NETDEV_TX_OK;
2005         } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2006                 ql_hw_csum_setup(skb,
2007                                  (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2008         }
2009         if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2010                         NETDEV_TX_OK) {
2011                 QPRINTK(qdev, TX_QUEUED, ERR,
2012                                 "Could not map the segments.\n");
2013                 return NETDEV_TX_BUSY;
2014         }
2015         QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2016         tx_ring->prod_idx++;
2017         if (tx_ring->prod_idx == tx_ring->wq_len)
2018                 tx_ring->prod_idx = 0;
2019         wmb();
2020
2021         ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2022         ndev->trans_start = jiffies;
2023         QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
2024                 tx_ring->prod_idx, skb->len);
2025
2026         atomic_dec(&tx_ring->tx_count);
2027         return NETDEV_TX_OK;
2028 }
2029
2030 static void ql_free_shadow_space(struct ql_adapter *qdev)
2031 {
2032         if (qdev->rx_ring_shadow_reg_area) {
2033                 pci_free_consistent(qdev->pdev,
2034                                     PAGE_SIZE,
2035                                     qdev->rx_ring_shadow_reg_area,
2036                                     qdev->rx_ring_shadow_reg_dma);
2037                 qdev->rx_ring_shadow_reg_area = NULL;
2038         }
2039         if (qdev->tx_ring_shadow_reg_area) {
2040                 pci_free_consistent(qdev->pdev,
2041                                     PAGE_SIZE,
2042                                     qdev->tx_ring_shadow_reg_area,
2043                                     qdev->tx_ring_shadow_reg_dma);
2044                 qdev->tx_ring_shadow_reg_area = NULL;
2045         }
2046 }
2047
2048 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2049 {
2050         qdev->rx_ring_shadow_reg_area =
2051             pci_alloc_consistent(qdev->pdev,
2052                                  PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2053         if (qdev->rx_ring_shadow_reg_area == NULL) {
2054                 QPRINTK(qdev, IFUP, ERR,
2055                         "Allocation of RX shadow space failed.\n");
2056                 return -ENOMEM;
2057         }
2058         qdev->tx_ring_shadow_reg_area =
2059             pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2060                                  &qdev->tx_ring_shadow_reg_dma);
2061         if (qdev->tx_ring_shadow_reg_area == NULL) {
2062                 QPRINTK(qdev, IFUP, ERR,
2063                         "Allocation of TX shadow space failed.\n");
2064                 goto err_wqp_sh_area;
2065         }
2066         return 0;
2067
2068 err_wqp_sh_area:
2069         pci_free_consistent(qdev->pdev,
2070                             PAGE_SIZE,
2071                             qdev->rx_ring_shadow_reg_area,
2072                             qdev->rx_ring_shadow_reg_dma);
2073         return -ENOMEM;
2074 }
2075
2076 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2077 {
2078         struct tx_ring_desc *tx_ring_desc;
2079         int i;
2080         struct ob_mac_iocb_req *mac_iocb_ptr;
2081
2082         mac_iocb_ptr = tx_ring->wq_base;
2083         tx_ring_desc = tx_ring->q;
2084         for (i = 0; i < tx_ring->wq_len; i++) {
2085                 tx_ring_desc->index = i;
2086                 tx_ring_desc->skb = NULL;
2087                 tx_ring_desc->queue_entry = mac_iocb_ptr;
2088                 mac_iocb_ptr++;
2089                 tx_ring_desc++;
2090         }
2091         atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2092         atomic_set(&tx_ring->queue_stopped, 0);
2093 }
2094
2095 static void ql_free_tx_resources(struct ql_adapter *qdev,
2096                                  struct tx_ring *tx_ring)
2097 {
2098         if (tx_ring->wq_base) {
2099                 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2100                                     tx_ring->wq_base, tx_ring->wq_base_dma);
2101                 tx_ring->wq_base = NULL;
2102         }
2103         kfree(tx_ring->q);
2104         tx_ring->q = NULL;
2105 }
2106
2107 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2108                                  struct tx_ring *tx_ring)
2109 {
2110         tx_ring->wq_base =
2111             pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2112                                  &tx_ring->wq_base_dma);
2113
2114         if ((tx_ring->wq_base == NULL)
2115             || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
2116                 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2117                 return -ENOMEM;
2118         }
2119         tx_ring->q =
2120             kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2121         if (tx_ring->q == NULL)
2122                 goto err;
2123
2124         return 0;
2125 err:
2126         pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2127                             tx_ring->wq_base, tx_ring->wq_base_dma);
2128         return -ENOMEM;
2129 }
2130
2131 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2132 {
2133         int i;
2134         struct bq_desc *lbq_desc;
2135
2136         for (i = 0; i < rx_ring->lbq_len; i++) {
2137                 lbq_desc = &rx_ring->lbq[i];
2138                 if (lbq_desc->p.lbq_page) {
2139                         pci_unmap_page(qdev->pdev,
2140                                        pci_unmap_addr(lbq_desc, mapaddr),
2141                                        pci_unmap_len(lbq_desc, maplen),
2142                                        PCI_DMA_FROMDEVICE);
2143
2144                         put_page(lbq_desc->p.lbq_page);
2145                         lbq_desc->p.lbq_page = NULL;
2146                 }
2147         }
2148 }
2149
2150 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2151 {
2152         int i;
2153         struct bq_desc *sbq_desc;
2154
2155         for (i = 0; i < rx_ring->sbq_len; i++) {
2156                 sbq_desc = &rx_ring->sbq[i];
2157                 if (sbq_desc == NULL) {
2158                         QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2159                         return;
2160                 }
2161                 if (sbq_desc->p.skb) {
2162                         pci_unmap_single(qdev->pdev,
2163                                          pci_unmap_addr(sbq_desc, mapaddr),
2164                                          pci_unmap_len(sbq_desc, maplen),
2165                                          PCI_DMA_FROMDEVICE);
2166                         dev_kfree_skb(sbq_desc->p.skb);
2167                         sbq_desc->p.skb = NULL;
2168                 }
2169         }
2170 }
2171
2172 /* Free all large and small rx buffers associated
2173  * with the completion queues for this device.
2174  */
2175 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2176 {
2177         int i;
2178         struct rx_ring *rx_ring;
2179
2180         for (i = 0; i < qdev->rx_ring_count; i++) {
2181                 rx_ring = &qdev->rx_ring[i];
2182                 if (rx_ring->lbq)
2183                         ql_free_lbq_buffers(qdev, rx_ring);
2184                 if (rx_ring->sbq)
2185                         ql_free_sbq_buffers(qdev, rx_ring);
2186         }
2187 }
2188
2189 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2190 {
2191         struct rx_ring *rx_ring;
2192         int i;
2193
2194         for (i = 0; i < qdev->rx_ring_count; i++) {
2195                 rx_ring = &qdev->rx_ring[i];
2196                 if (rx_ring->type != TX_Q)
2197                         ql_update_buffer_queues(qdev, rx_ring);
2198         }
2199 }
2200
2201 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2202                                 struct rx_ring *rx_ring)
2203 {
2204         int i;
2205         struct bq_desc *lbq_desc;
2206         __le64 *bq = rx_ring->lbq_base;
2207
2208         memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2209         for (i = 0; i < rx_ring->lbq_len; i++) {
2210                 lbq_desc = &rx_ring->lbq[i];
2211                 memset(lbq_desc, 0, sizeof(*lbq_desc));
2212                 lbq_desc->index = i;
2213                 lbq_desc->addr = bq;
2214                 bq++;
2215         }
2216 }
2217
2218 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2219                                 struct rx_ring *rx_ring)
2220 {
2221         int i;
2222         struct bq_desc *sbq_desc;
2223         __le64 *bq = rx_ring->sbq_base;
2224
2225         memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2226         for (i = 0; i < rx_ring->sbq_len; i++) {
2227                 sbq_desc = &rx_ring->sbq[i];
2228                 memset(sbq_desc, 0, sizeof(*sbq_desc));
2229                 sbq_desc->index = i;
2230                 sbq_desc->addr = bq;
2231                 bq++;
2232         }
2233 }
2234
2235 static void ql_free_rx_resources(struct ql_adapter *qdev,
2236                                  struct rx_ring *rx_ring)
2237 {
2238         /* Free the small buffer queue. */
2239         if (rx_ring->sbq_base) {
2240                 pci_free_consistent(qdev->pdev,
2241                                     rx_ring->sbq_size,
2242                                     rx_ring->sbq_base, rx_ring->sbq_base_dma);
2243                 rx_ring->sbq_base = NULL;
2244         }
2245
2246         /* Free the small buffer queue control blocks. */
2247         kfree(rx_ring->sbq);
2248         rx_ring->sbq = NULL;
2249
2250         /* Free the large buffer queue. */
2251         if (rx_ring->lbq_base) {
2252                 pci_free_consistent(qdev->pdev,
2253                                     rx_ring->lbq_size,
2254                                     rx_ring->lbq_base, rx_ring->lbq_base_dma);
2255                 rx_ring->lbq_base = NULL;
2256         }
2257
2258         /* Free the large buffer queue control blocks. */
2259         kfree(rx_ring->lbq);
2260         rx_ring->lbq = NULL;
2261
2262         /* Free the rx queue. */
2263         if (rx_ring->cq_base) {
2264                 pci_free_consistent(qdev->pdev,
2265                                     rx_ring->cq_size,
2266                                     rx_ring->cq_base, rx_ring->cq_base_dma);
2267                 rx_ring->cq_base = NULL;
2268         }
2269 }
2270
2271 /* Allocate queues and buffers for this completions queue based
2272  * on the values in the parameter structure. */
2273 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2274                                  struct rx_ring *rx_ring)
2275 {
2276
2277         /*
2278          * Allocate the completion queue for this rx_ring.
2279          */
2280         rx_ring->cq_base =
2281             pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2282                                  &rx_ring->cq_base_dma);
2283
2284         if (rx_ring->cq_base == NULL) {
2285                 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2286                 return -ENOMEM;
2287         }
2288
2289         if (rx_ring->sbq_len) {
2290                 /*
2291                  * Allocate small buffer queue.
2292                  */
2293                 rx_ring->sbq_base =
2294                     pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2295                                          &rx_ring->sbq_base_dma);
2296
2297                 if (rx_ring->sbq_base == NULL) {
2298                         QPRINTK(qdev, IFUP, ERR,
2299                                 "Small buffer queue allocation failed.\n");
2300                         goto err_mem;
2301                 }
2302
2303                 /*
2304                  * Allocate small buffer queue control blocks.
2305                  */
2306                 rx_ring->sbq =
2307                     kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2308                             GFP_KERNEL);
2309                 if (rx_ring->sbq == NULL) {
2310                         QPRINTK(qdev, IFUP, ERR,
2311                                 "Small buffer queue control block allocation failed.\n");
2312                         goto err_mem;
2313                 }
2314
2315                 ql_init_sbq_ring(qdev, rx_ring);
2316         }
2317
2318         if (rx_ring->lbq_len) {
2319                 /*
2320                  * Allocate large buffer queue.
2321                  */
2322                 rx_ring->lbq_base =
2323                     pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2324                                          &rx_ring->lbq_base_dma);
2325
2326                 if (rx_ring->lbq_base == NULL) {
2327                         QPRINTK(qdev, IFUP, ERR,
2328                                 "Large buffer queue allocation failed.\n");
2329                         goto err_mem;
2330                 }
2331                 /*
2332                  * Allocate large buffer queue control blocks.
2333                  */
2334                 rx_ring->lbq =
2335                     kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2336                             GFP_KERNEL);
2337                 if (rx_ring->lbq == NULL) {
2338                         QPRINTK(qdev, IFUP, ERR,
2339                                 "Large buffer queue control block allocation failed.\n");
2340                         goto err_mem;
2341                 }
2342
2343                 ql_init_lbq_ring(qdev, rx_ring);
2344         }
2345
2346         return 0;
2347
2348 err_mem:
2349         ql_free_rx_resources(qdev, rx_ring);
2350         return -ENOMEM;
2351 }
2352
2353 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2354 {
2355         struct tx_ring *tx_ring;
2356         struct tx_ring_desc *tx_ring_desc;
2357         int i, j;
2358
2359         /*
2360          * Loop through all queues and free
2361          * any resources.
2362          */
2363         for (j = 0; j < qdev->tx_ring_count; j++) {
2364                 tx_ring = &qdev->tx_ring[j];
2365                 for (i = 0; i < tx_ring->wq_len; i++) {
2366                         tx_ring_desc = &tx_ring->q[i];
2367                         if (tx_ring_desc && tx_ring_desc->skb) {
2368                                 QPRINTK(qdev, IFDOWN, ERR,
2369                                 "Freeing lost SKB %p, from queue %d, index %d.\n",
2370                                         tx_ring_desc->skb, j,
2371                                         tx_ring_desc->index);
2372                                 ql_unmap_send(qdev, tx_ring_desc,
2373                                               tx_ring_desc->map_cnt);
2374                                 dev_kfree_skb(tx_ring_desc->skb);
2375                                 tx_ring_desc->skb = NULL;
2376                         }
2377                 }
2378         }
2379 }
2380
2381 static void ql_free_mem_resources(struct ql_adapter *qdev)
2382 {
2383         int i;
2384
2385         for (i = 0; i < qdev->tx_ring_count; i++)
2386                 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2387         for (i = 0; i < qdev->rx_ring_count; i++)
2388                 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2389         ql_free_shadow_space(qdev);
2390 }
2391
2392 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2393 {
2394         int i;
2395
2396         /* Allocate space for our shadow registers and such. */
2397         if (ql_alloc_shadow_space(qdev))
2398                 return -ENOMEM;
2399
2400         for (i = 0; i < qdev->rx_ring_count; i++) {
2401                 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2402                         QPRINTK(qdev, IFUP, ERR,
2403                                 "RX resource allocation failed.\n");
2404                         goto err_mem;
2405                 }
2406         }
2407         /* Allocate tx queue resources */
2408         for (i = 0; i < qdev->tx_ring_count; i++) {
2409                 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2410                         QPRINTK(qdev, IFUP, ERR,
2411                                 "TX resource allocation failed.\n");
2412                         goto err_mem;
2413                 }
2414         }
2415         return 0;
2416
2417 err_mem:
2418         ql_free_mem_resources(qdev);
2419         return -ENOMEM;
2420 }
2421
2422 /* Set up the rx ring control block and pass it to the chip.
2423  * The control block is defined as
2424  * "Completion Queue Initialization Control Block", or cqicb.
2425  */
2426 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2427 {
2428         struct cqicb *cqicb = &rx_ring->cqicb;
2429         void *shadow_reg = qdev->rx_ring_shadow_reg_area +
2430             (rx_ring->cq_id * sizeof(u64) * 4);
2431         u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
2432             (rx_ring->cq_id * sizeof(u64) * 4);
2433         void __iomem *doorbell_area =
2434             qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2435         int err = 0;
2436         u16 bq_len;
2437
2438         /* Set up the shadow registers for this ring. */
2439         rx_ring->prod_idx_sh_reg = shadow_reg;
2440         rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2441         shadow_reg += sizeof(u64);
2442         shadow_reg_dma += sizeof(u64);
2443         rx_ring->lbq_base_indirect = shadow_reg;
2444         rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
2445         shadow_reg += sizeof(u64);
2446         shadow_reg_dma += sizeof(u64);
2447         rx_ring->sbq_base_indirect = shadow_reg;
2448         rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2449
2450         /* PCI doorbell mem area + 0x00 for consumer index register */
2451         rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
2452         rx_ring->cnsmr_idx = 0;
2453         rx_ring->curr_entry = rx_ring->cq_base;
2454
2455         /* PCI doorbell mem area + 0x04 for valid register */
2456         rx_ring->valid_db_reg = doorbell_area + 0x04;
2457
2458         /* PCI doorbell mem area + 0x18 for large buffer consumer */
2459         rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
2460
2461         /* PCI doorbell mem area + 0x1c */
2462         rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
2463
2464         memset((void *)cqicb, 0, sizeof(struct cqicb));
2465         cqicb->msix_vect = rx_ring->irq;
2466
2467         bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
2468         cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
2469
2470         cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
2471
2472         cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
2473
2474         /*
2475          * Set up the control block load flags.
2476          */
2477         cqicb->flags = FLAGS_LC |       /* Load queue base address */
2478             FLAGS_LV |          /* Load MSI-X vector */
2479             FLAGS_LI;           /* Load irq delay values */
2480         if (rx_ring->lbq_len) {
2481                 cqicb->flags |= FLAGS_LL;       /* Load lbq values */
2482                 *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
2483                 cqicb->lbq_addr =
2484                     cpu_to_le64(rx_ring->lbq_base_indirect_dma);
2485                 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
2486                         (u16) rx_ring->lbq_buf_size;
2487                 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
2488                 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
2489                         (u16) rx_ring->lbq_len;
2490                 cqicb->lbq_len = cpu_to_le16(bq_len);
2491                 rx_ring->lbq_prod_idx = 0;
2492                 rx_ring->lbq_curr_idx = 0;
2493                 rx_ring->lbq_clean_idx = 0;
2494                 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
2495         }
2496         if (rx_ring->sbq_len) {
2497                 cqicb->flags |= FLAGS_LS;       /* Load sbq values */
2498                 *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
2499                 cqicb->sbq_addr =
2500                     cpu_to_le64(rx_ring->sbq_base_indirect_dma);
2501                 cqicb->sbq_buf_size =
2502                     cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
2503                 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
2504                         (u16) rx_ring->sbq_len;
2505                 cqicb->sbq_len = cpu_to_le16(bq_len);
2506                 rx_ring->sbq_prod_idx = 0;
2507                 rx_ring->sbq_curr_idx = 0;
2508                 rx_ring->sbq_clean_idx = 0;
2509                 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
2510         }
2511         switch (rx_ring->type) {
2512         case TX_Q:
2513                 /* If there's only one interrupt, then we use
2514                  * worker threads to process the outbound
2515                  * completion handling rx_rings. We do this so
2516                  * they can be run on multiple CPUs. There is
2517                  * room to play with this more where we would only
2518                  * run in a worker if there are more than x number
2519                  * of outbound completions on the queue and more
2520                  * than one queue active.  Some threshold that
2521                  * would indicate a benefit in spite of the cost
2522                  * of a context switch.
2523                  * If there's more than one interrupt, then the
2524                  * outbound completions are processed in the ISR.
2525                  */
2526                 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
2527                         INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2528                 else {
2529                         /* With all debug warnings on we see a WARN_ON message
2530                          * when we free the skb in the interrupt context.
2531                          */
2532                         INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2533                 }
2534                 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2535                 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2536                 break;
2537         case DEFAULT_Q:
2538                 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
2539                 cqicb->irq_delay = 0;
2540                 cqicb->pkt_delay = 0;
2541                 break;
2542         case RX_Q:
2543                 /* Inbound completion handling rx_rings run in
2544                  * separate NAPI contexts.
2545                  */
2546                 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2547                                64);
2548                 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2549                 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2550                 break;
2551         default:
2552                 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2553                         rx_ring->type);
2554         }
2555         QPRINTK(qdev, IFUP, DEBUG, "Initializing rx work queue.\n");
2556         err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2557                            CFG_LCQ, rx_ring->cq_id);
2558         if (err) {
2559                 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2560                 return err;
2561         }
2562         return err;
2563 }
2564
2565 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2566 {
2567         struct wqicb *wqicb = (struct wqicb *)tx_ring;
2568         void __iomem *doorbell_area =
2569             qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2570         void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2571             (tx_ring->wq_id * sizeof(u64));
2572         u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2573             (tx_ring->wq_id * sizeof(u64));
2574         int err = 0;
2575
2576         /*
2577          * Assign doorbell registers for this tx_ring.
2578          */
2579         /* TX PCI doorbell mem area for tx producer index */
2580         tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
2581         tx_ring->prod_idx = 0;
2582         /* TX PCI doorbell mem area + 0x04 */
2583         tx_ring->valid_db_reg = doorbell_area + 0x04;
2584
2585         /*
2586          * Assign shadow registers for this tx_ring.
2587          */
2588         tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2589         tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2590
2591         wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2592         wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2593                                    Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2594         wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2595         wqicb->rid = 0;
2596         wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
2597
2598         wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
2599
2600         ql_init_tx_ring(qdev, tx_ring);
2601
2602         err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
2603                            (u16) tx_ring->wq_id);
2604         if (err) {
2605                 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2606                 return err;
2607         }
2608         QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded WQICB.\n");
2609         return err;
2610 }
2611
2612 static void ql_disable_msix(struct ql_adapter *qdev)
2613 {
2614         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2615                 pci_disable_msix(qdev->pdev);
2616                 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2617                 kfree(qdev->msi_x_entry);
2618                 qdev->msi_x_entry = NULL;
2619         } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2620                 pci_disable_msi(qdev->pdev);
2621                 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2622         }
2623 }
2624
2625 static void ql_enable_msix(struct ql_adapter *qdev)
2626 {
2627         int i;
2628
2629         qdev->intr_count = 1;
2630         /* Get the MSIX vectors. */
2631         if (irq_type == MSIX_IRQ) {
2632                 /* Try to alloc space for the msix struct,
2633                  * if it fails then go to MSI/legacy.
2634                  */
2635                 qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
2636                                             sizeof(struct msix_entry),
2637                                             GFP_KERNEL);
2638                 if (!qdev->msi_x_entry) {
2639                         irq_type = MSI_IRQ;
2640                         goto msi;
2641                 }
2642
2643                 for (i = 0; i < qdev->rx_ring_count; i++)
2644                         qdev->msi_x_entry[i].entry = i;
2645
2646                 if (!pci_enable_msix
2647                     (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
2648                         set_bit(QL_MSIX_ENABLED, &qdev->flags);
2649                         qdev->intr_count = qdev->rx_ring_count;
2650                         QPRINTK(qdev, IFUP, DEBUG,
2651                                 "MSI-X Enabled, got %d vectors.\n",
2652                                 qdev->intr_count);
2653                         return;
2654                 } else {
2655                         kfree(qdev->msi_x_entry);
2656                         qdev->msi_x_entry = NULL;
2657                         QPRINTK(qdev, IFUP, WARNING,
2658                                 "MSI-X Enable failed, trying MSI.\n");
2659                         irq_type = MSI_IRQ;
2660                 }
2661         }
2662 msi:
2663         if (irq_type == MSI_IRQ) {
2664                 if (!pci_enable_msi(qdev->pdev)) {
2665                         set_bit(QL_MSI_ENABLED, &qdev->flags);
2666                         QPRINTK(qdev, IFUP, INFO,
2667                                 "Running with MSI interrupts.\n");
2668                         return;
2669                 }
2670         }
2671         irq_type = LEG_IRQ;
2672         QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2673 }
2674
2675 /*
2676  * Here we build the intr_context structures based on
2677  * our rx_ring count and intr vector count.
2678  * The intr_context structure is used to hook each vector
2679  * to possibly different handlers.
2680  */
2681 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2682 {
2683         int i = 0;
2684         struct intr_context *intr_context = &qdev->intr_context[0];
2685
2686         ql_enable_msix(qdev);
2687
2688         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2689                 /* Each rx_ring has it's
2690                  * own intr_context since we have separate
2691                  * vectors for each queue.
2692                  * This only true when MSI-X is enabled.
2693                  */
2694                 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2695                         qdev->rx_ring[i].irq = i;
2696                         intr_context->intr = i;
2697                         intr_context->qdev = qdev;
2698                         /*
2699                          * We set up each vectors enable/disable/read bits so
2700                          * there's no bit/mask calculations in the critical path.
2701                          */
2702                         intr_context->intr_en_mask =
2703                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2704                             INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2705                             | i;
2706                         intr_context->intr_dis_mask =
2707                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2708                             INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2709                             INTR_EN_IHD | i;
2710                         intr_context->intr_read_mask =
2711                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2712                             INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2713                             i;
2714
2715                         if (i == 0) {
2716                                 /*
2717                                  * Default queue handles bcast/mcast plus
2718                                  * async events.  Needs buffers.
2719                                  */
2720                                 intr_context->handler = qlge_isr;
2721                                 sprintf(intr_context->name, "%s-default-queue",
2722                                         qdev->ndev->name);
2723                         } else if (i < qdev->rss_ring_first_cq_id) {
2724                                 /*
2725                                  * Outbound queue is for outbound completions only.
2726                                  */
2727                                 intr_context->handler = qlge_msix_tx_isr;
2728                                 sprintf(intr_context->name, "%s-tx-%d",
2729                                         qdev->ndev->name, i);
2730                         } else {
2731                                 /*
2732                                  * Inbound queues handle unicast frames only.
2733                                  */
2734                                 intr_context->handler = qlge_msix_rx_isr;
2735                                 sprintf(intr_context->name, "%s-rx-%d",
2736                                         qdev->ndev->name, i);
2737                         }
2738                 }
2739         } else {
2740                 /*
2741                  * All rx_rings use the same intr_context since
2742                  * there is only one vector.
2743                  */
2744                 intr_context->intr = 0;
2745                 intr_context->qdev = qdev;
2746                 /*
2747                  * We set up each vectors enable/disable/read bits so
2748                  * there's no bit/mask calculations in the critical path.
2749                  */
2750                 intr_context->intr_en_mask =
2751                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2752                 intr_context->intr_dis_mask =
2753                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2754                     INTR_EN_TYPE_DISABLE;
2755                 intr_context->intr_read_mask =
2756                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2757                 /*
2758                  * Single interrupt means one handler for all rings.
2759                  */
2760                 intr_context->handler = qlge_isr;
2761                 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
2762                 for (i = 0; i < qdev->rx_ring_count; i++)
2763                         qdev->rx_ring[i].irq = 0;
2764         }
2765 }
2766
2767 static void ql_free_irq(struct ql_adapter *qdev)
2768 {
2769         int i;
2770         struct intr_context *intr_context = &qdev->intr_context[0];
2771
2772         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2773                 if (intr_context->hooked) {
2774                         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2775                                 free_irq(qdev->msi_x_entry[i].vector,
2776                                          &qdev->rx_ring[i]);
2777                                 QPRINTK(qdev, IFDOWN, DEBUG,
2778                                         "freeing msix interrupt %d.\n", i);
2779                         } else {
2780                                 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
2781                                 QPRINTK(qdev, IFDOWN, DEBUG,
2782                                         "freeing msi interrupt %d.\n", i);
2783                         }
2784                 }
2785         }
2786         ql_disable_msix(qdev);
2787 }
2788
2789 static int ql_request_irq(struct ql_adapter *qdev)
2790 {
2791         int i;
2792         int status = 0;
2793         struct pci_dev *pdev = qdev->pdev;
2794         struct intr_context *intr_context = &qdev->intr_context[0];
2795
2796         ql_resolve_queues_to_irqs(qdev);
2797
2798         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2799                 atomic_set(&intr_context->irq_cnt, 0);
2800                 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2801                         status = request_irq(qdev->msi_x_entry[i].vector,
2802                                              intr_context->handler,
2803                                              0,
2804                                              intr_context->name,
2805                                              &qdev->rx_ring[i]);
2806                         if (status) {
2807                                 QPRINTK(qdev, IFUP, ERR,
2808                                         "Failed request for MSIX interrupt %d.\n",
2809                                         i);
2810                                 goto err_irq;
2811                         } else {
2812                                 QPRINTK(qdev, IFUP, DEBUG,
2813                                         "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2814                                         i,
2815                                         qdev->rx_ring[i].type ==
2816                                         DEFAULT_Q ? "DEFAULT_Q" : "",
2817                                         qdev->rx_ring[i].type ==
2818                                         TX_Q ? "TX_Q" : "",
2819                                         qdev->rx_ring[i].type ==
2820                                         RX_Q ? "RX_Q" : "", intr_context->name);
2821                         }
2822                 } else {
2823                         QPRINTK(qdev, IFUP, DEBUG,
2824                                 "trying msi or legacy interrupts.\n");
2825                         QPRINTK(qdev, IFUP, DEBUG,
2826                                 "%s: irq = %d.\n", __func__, pdev->irq);
2827                         QPRINTK(qdev, IFUP, DEBUG,
2828                                 "%s: context->name = %s.\n", __func__,
2829                                intr_context->name);
2830                         QPRINTK(qdev, IFUP, DEBUG,
2831                                 "%s: dev_id = 0x%p.\n", __func__,
2832                                &qdev->rx_ring[0]);
2833                         status =
2834                             request_irq(pdev->irq, qlge_isr,
2835                                         test_bit(QL_MSI_ENABLED,
2836                                                  &qdev->
2837                                                  flags) ? 0 : IRQF_SHARED,
2838                                         intr_context->name, &qdev->rx_ring[0]);
2839                         if (status)
2840                                 goto err_irq;
2841
2842                         QPRINTK(qdev, IFUP, ERR,
2843                                 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2844                                 i,
2845                                 qdev->rx_ring[0].type ==
2846                                 DEFAULT_Q ? "DEFAULT_Q" : "",
2847                                 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
2848                                 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
2849                                 intr_context->name);
2850                 }
2851                 intr_context->hooked = 1;
2852         }
2853         return status;
2854 err_irq:
2855         QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
2856         ql_free_irq(qdev);
2857         return status;
2858 }
2859
2860 static int ql_start_rss(struct ql_adapter *qdev)
2861 {
2862         struct ricb *ricb = &qdev->ricb;
2863         int status = 0;
2864         int i;
2865         u8 *hash_id = (u8 *) ricb->hash_cq_id;
2866
2867         memset((void *)ricb, 0, sizeof(ricb));
2868
2869         ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
2870         ricb->flags =
2871             (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
2872              RSS_RT6);
2873         ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
2874
2875         /*
2876          * Fill out the Indirection Table.
2877          */
2878         for (i = 0; i < 256; i++)
2879                 hash_id[i] = i & (qdev->rss_ring_count - 1);
2880
2881         /*
2882          * Random values for the IPv6 and IPv4 Hash Keys.
2883          */
2884         get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
2885         get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
2886
2887         QPRINTK(qdev, IFUP, DEBUG, "Initializing RSS.\n");
2888
2889         status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
2890         if (status) {
2891                 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
2892                 return status;
2893         }
2894         QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded RICB.\n");
2895         return status;
2896 }
2897
2898 /* Initialize the frame-to-queue routing. */
2899 static int ql_route_initialize(struct ql_adapter *qdev)
2900 {
2901         int status = 0;
2902         int i;
2903
2904         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
2905         if (status)
2906                 return status;
2907
2908         /* Clear all the entries in the routing table. */
2909         for (i = 0; i < 16; i++) {
2910                 status = ql_set_routing_reg(qdev, i, 0, 0);
2911                 if (status) {
2912                         QPRINTK(qdev, IFUP, ERR,
2913                                 "Failed to init routing register for CAM packets.\n");
2914                         goto exit;
2915                 }
2916         }
2917
2918         status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
2919         if (status) {
2920                 QPRINTK(qdev, IFUP, ERR,
2921                         "Failed to init routing register for error packets.\n");
2922                 goto exit;
2923         }
2924         status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
2925         if (status) {
2926                 QPRINTK(qdev, IFUP, ERR,
2927                         "Failed to init routing register for broadcast packets.\n");
2928                 goto exit;
2929         }
2930         /* If we have more than one inbound queue, then turn on RSS in the
2931          * routing block.
2932          */
2933         if (qdev->rss_ring_count > 1) {
2934                 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
2935                                         RT_IDX_RSS_MATCH, 1);
2936                 if (status) {
2937                         QPRINTK(qdev, IFUP, ERR,
2938                                 "Failed to init routing register for MATCH RSS packets.\n");
2939                         goto exit;
2940                 }
2941         }
2942
2943         status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
2944                                     RT_IDX_CAM_HIT, 1);
2945         if (status)
2946                 QPRINTK(qdev, IFUP, ERR,
2947                         "Failed to init routing register for CAM packets.\n");
2948 exit:
2949         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
2950         return status;
2951 }
2952
2953 static int ql_cam_route_initialize(struct ql_adapter *qdev)
2954 {
2955         int status;
2956
2957         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2958         if (status)
2959                 return status;
2960         status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
2961                              MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
2962         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2963         if (status) {
2964                 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
2965                 return status;
2966         }
2967
2968         status = ql_route_initialize(qdev);
2969         if (status)
2970                 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
2971
2972         return status;
2973 }
2974
2975 static int ql_adapter_initialize(struct ql_adapter *qdev)
2976 {
2977         u32 value, mask;
2978         int i;
2979         int status = 0;
2980
2981         /*
2982          * Set up the System register to halt on errors.
2983          */
2984         value = SYS_EFE | SYS_FAE;
2985         mask = value << 16;
2986         ql_write32(qdev, SYS, mask | value);
2987
2988         /* Set the default queue. */
2989         value = NIC_RCV_CFG_DFQ;
2990         mask = NIC_RCV_CFG_DFQ_MASK;
2991         ql_write32(qdev, NIC_RCV_CFG, (mask | value));
2992
2993         /* Set the MPI interrupt to enabled. */
2994         ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
2995
2996         /* Enable the function, set pagesize, enable error checking. */
2997         value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
2998             FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
2999
3000         /* Set/clear header splitting. */
3001         mask = FSC_VM_PAGESIZE_MASK |
3002             FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3003         ql_write32(qdev, FSC, mask | value);
3004
3005         ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
3006                 min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
3007
3008         /* Start up the rx queues. */
3009         for (i = 0; i < qdev->rx_ring_count; i++) {
3010                 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3011                 if (status) {
3012                         QPRINTK(qdev, IFUP, ERR,
3013                                 "Failed to start rx ring[%d].\n", i);
3014                         return status;
3015                 }
3016         }
3017
3018         /* If there is more than one inbound completion queue
3019          * then download a RICB to configure RSS.
3020          */
3021         if (qdev->rss_ring_count > 1) {
3022                 status = ql_start_rss(qdev);
3023                 if (status) {
3024                         QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
3025                         return status;
3026                 }
3027         }
3028
3029         /* Start up the tx queues. */
3030         for (i = 0; i < qdev->tx_ring_count; i++) {
3031                 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3032                 if (status) {
3033                         QPRINTK(qdev, IFUP, ERR,
3034                                 "Failed to start tx ring[%d].\n", i);
3035                         return status;
3036                 }
3037         }
3038
3039         /* Initialize the port and set the max framesize. */
3040         status = qdev->nic_ops->port_initialize(qdev);
3041        if (status) {
3042               QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3043               return status;
3044        }
3045
3046         /* Set up the MAC address and frame routing filter. */
3047         status = ql_cam_route_initialize(qdev);
3048         if (status) {
3049                 QPRINTK(qdev, IFUP, ERR,
3050                                 "Failed to init CAM/Routing tables.\n");
3051                 return status;
3052         }
3053
3054         /* Start NAPI for the RSS queues. */
3055         for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
3056                 QPRINTK(qdev, IFUP, DEBUG, "Enabling NAPI for rx_ring[%d].\n",
3057                         i);
3058                 napi_enable(&qdev->rx_ring[i].napi);
3059         }
3060
3061         return status;
3062 }
3063
3064 /* Issue soft reset to chip. */
3065 static int ql_adapter_reset(struct ql_adapter *qdev)
3066 {
3067         u32 value;
3068         int max_wait_time;
3069         int status = 0;
3070         int resetCnt = 0;
3071
3072 #define MAX_RESET_CNT   1
3073 issueReset:
3074         resetCnt++;
3075         QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
3076         ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3077         /* Wait for reset to complete. */
3078         max_wait_time = 3;
3079         QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
3080                 max_wait_time);
3081         do {
3082                 value = ql_read32(qdev, RST_FO);
3083                 if ((value & RST_FO_FR) == 0)
3084                         break;
3085
3086                 ssleep(1);
3087         } while ((--max_wait_time));
3088         if (value & RST_FO_FR) {
3089                 QPRINTK(qdev, IFDOWN, ERR,
3090                         "Stuck in SoftReset:  FSC_SR:0x%08x\n", value);
3091                 if (resetCnt < MAX_RESET_CNT)
3092                         goto issueReset;
3093         }
3094         if (max_wait_time == 0) {
3095                 status = -ETIMEDOUT;
3096                 QPRINTK(qdev, IFDOWN, ERR,
3097                         "ETIMEOUT!!! errored out of resetting the chip!\n");
3098         }
3099
3100         return status;
3101 }
3102
3103 static void ql_display_dev_info(struct net_device *ndev)
3104 {
3105         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3106
3107         QPRINTK(qdev, PROBE, INFO,
3108                 "Function #%d, NIC Roll %d, NIC Rev = %d, "
3109                 "XG Roll = %d, XG Rev = %d.\n",
3110                 qdev->func,
3111                 qdev->chip_rev_id & 0x0000000f,
3112                 qdev->chip_rev_id >> 4 & 0x0000000f,
3113                 qdev->chip_rev_id >> 8 & 0x0000000f,
3114                 qdev->chip_rev_id >> 12 & 0x0000000f);
3115         QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
3116 }
3117
3118 static int ql_adapter_down(struct ql_adapter *qdev)
3119 {
3120         struct net_device *ndev = qdev->ndev;
3121         int i, status = 0;
3122         struct rx_ring *rx_ring;
3123
3124         netif_stop_queue(ndev);
3125         netif_carrier_off(ndev);
3126
3127         /* Don't kill the reset worker thread if we
3128          * are in the process of recovery.
3129          */
3130         if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3131                 cancel_delayed_work_sync(&qdev->asic_reset_work);
3132         cancel_delayed_work_sync(&qdev->mpi_reset_work);
3133         cancel_delayed_work_sync(&qdev->mpi_work);
3134
3135         /* The default queue at index 0 is always processed in
3136          * a workqueue.
3137          */
3138         cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
3139
3140         /* The rest of the rx_rings are processed in
3141          * a workqueue only if it's a single interrupt
3142          * environment (MSI/Legacy).
3143          */
3144         for (i = 1; i < qdev->rx_ring_count; i++) {
3145                 rx_ring = &qdev->rx_ring[i];
3146                 /* Only the RSS rings use NAPI on multi irq
3147                  * environment.  Outbound completion processing
3148                  * is done in interrupt context.
3149                  */
3150                 if (i >= qdev->rss_ring_first_cq_id) {
3151                         napi_disable(&rx_ring->napi);
3152                 } else {
3153                         cancel_delayed_work_sync(&rx_ring->rx_work);
3154                 }
3155         }
3156
3157         clear_bit(QL_ADAPTER_UP, &qdev->flags);
3158
3159         ql_disable_interrupts(qdev);
3160
3161         ql_tx_ring_clean(qdev);
3162
3163         ql_free_rx_buffers(qdev);
3164         spin_lock(&qdev->hw_lock);
3165         status = ql_adapter_reset(qdev);
3166         if (status)
3167                 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3168                         qdev->func);
3169         spin_unlock(&qdev->hw_lock);
3170         return status;
3171 }
3172
3173 static int ql_adapter_up(struct ql_adapter *qdev)
3174 {
3175         int err = 0;
3176
3177         spin_lock(&qdev->hw_lock);
3178         err = ql_adapter_initialize(qdev);
3179         if (err) {
3180                 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
3181                 spin_unlock(&qdev->hw_lock);
3182                 goto err_init;
3183         }
3184         spin_unlock(&qdev->hw_lock);
3185         set_bit(QL_ADAPTER_UP, &qdev->flags);
3186         ql_alloc_rx_buffers(qdev);
3187         ql_enable_interrupts(qdev);
3188         ql_enable_all_completion_interrupts(qdev);
3189         if ((ql_read32(qdev, STS) & qdev->port_init)) {
3190                 netif_carrier_on(qdev->ndev);
3191                 netif_start_queue(qdev->ndev);
3192         }
3193
3194         return 0;
3195 err_init:
3196         ql_adapter_reset(qdev);
3197         return err;
3198 }
3199
3200 static int ql_cycle_adapter(struct ql_adapter *qdev)
3201 {
3202         int status;
3203
3204         status = ql_adapter_down(qdev);
3205         if (status)
3206                 goto error;
3207
3208         status = ql_adapter_up(qdev);
3209         if (status)
3210                 goto error;
3211
3212         return status;
3213 error:
3214         QPRINTK(qdev, IFUP, ALERT,
3215                 "Driver up/down cycle failed, closing device\n");
3216         rtnl_lock();
3217         dev_close(qdev->ndev);
3218         rtnl_unlock();
3219         return status;
3220 }
3221
3222 static void ql_release_adapter_resources(struct ql_adapter *qdev)
3223 {
3224         ql_free_mem_resources(qdev);
3225         ql_free_irq(qdev);
3226 }
3227
3228 static int ql_get_adapter_resources(struct ql_adapter *qdev)
3229 {
3230         int status = 0;
3231
3232         if (ql_alloc_mem_resources(qdev)) {
3233                 QPRINTK(qdev, IFUP, ERR, "Unable to  allocate memory.\n");
3234                 return -ENOMEM;
3235         }
3236         status = ql_request_irq(qdev);
3237         if (status)
3238                 goto err_irq;
3239         return status;
3240 err_irq:
3241         ql_free_mem_resources(qdev);
3242         return status;
3243 }
3244
3245 static int qlge_close(struct net_device *ndev)
3246 {
3247         struct ql_adapter *qdev = netdev_priv(ndev);
3248
3249         /*
3250          * Wait for device to recover from a reset.
3251          * (Rarely happens, but possible.)
3252          */
3253         while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3254                 msleep(1);
3255         ql_adapter_down(qdev);
3256         ql_release_adapter_resources(qdev);
3257         return 0;
3258 }
3259
3260 static int ql_configure_rings(struct ql_adapter *qdev)
3261 {
3262         int i;
3263         struct rx_ring *rx_ring;
3264         struct tx_ring *tx_ring;
3265         int cpu_cnt = num_online_cpus();
3266
3267         /*
3268          * For each processor present we allocate one
3269          * rx_ring for outbound completions, and one
3270          * rx_ring for inbound completions.  Plus there is
3271          * always the one default queue.  For the CPU
3272          * counts we end up with the following rx_rings:
3273          * rx_ring count =
3274          *  one default queue +
3275          *  (CPU count * outbound completion rx_ring) +
3276          *  (CPU count * inbound (RSS) completion rx_ring)
3277          * To keep it simple we limit the total number of
3278          * queues to < 32, so we truncate CPU to 8.
3279          * This limitation can be removed when requested.
3280          */
3281
3282         if (cpu_cnt > MAX_CPUS)
3283                 cpu_cnt = MAX_CPUS;
3284
3285         /*
3286          * rx_ring[0] is always the default queue.
3287          */
3288         /* Allocate outbound completion ring for each CPU. */
3289         qdev->tx_ring_count = cpu_cnt;
3290         /* Allocate inbound completion (RSS) ring for each CPU. */
3291         qdev->rss_ring_count = cpu_cnt;
3292         /* cq_id for the first inbound ring handler. */
3293         qdev->rss_ring_first_cq_id = cpu_cnt + 1;
3294         /*
3295          * qdev->rx_ring_count:
3296          * Total number of rx_rings.  This includes the one
3297          * default queue, a number of outbound completion
3298          * handler rx_rings, and the number of inbound
3299          * completion handler rx_rings.
3300          */
3301         qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
3302
3303         for (i = 0; i < qdev->tx_ring_count; i++) {
3304                 tx_ring = &qdev->tx_ring[i];
3305                 memset((void *)tx_ring, 0, sizeof(tx_ring));
3306                 tx_ring->qdev = qdev;
3307                 tx_ring->wq_id = i;
3308                 tx_ring->wq_len = qdev->tx_ring_size;
3309                 tx_ring->wq_size =
3310                     tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3311
3312                 /*
3313                  * The completion queue ID for the tx rings start
3314                  * immediately after the default Q ID, which is zero.
3315                  */
3316                 tx_ring->cq_id = i + 1;
3317         }
3318
3319         for (i = 0; i < qdev->rx_ring_count; i++) {
3320                 rx_ring = &qdev->rx_ring[i];
3321                 memset((void *)rx_ring, 0, sizeof(rx_ring));
3322                 rx_ring->qdev = qdev;
3323                 rx_ring->cq_id = i;
3324                 rx_ring->cpu = i % cpu_cnt;     /* CPU to run handler on. */
3325                 if (i == 0) {   /* Default queue at index 0. */
3326                         /*
3327                          * Default queue handles bcast/mcast plus
3328                          * async events.  Needs buffers.
3329                          */
3330                         rx_ring->cq_len = qdev->rx_ring_size;
3331                         rx_ring->cq_size =
3332                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3333                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3334                         rx_ring->lbq_size =
3335                             rx_ring->lbq_len * sizeof(__le64);
3336                         rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3337                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3338                         rx_ring->sbq_size =
3339                             rx_ring->sbq_len * sizeof(__le64);
3340                         rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3341                         rx_ring->type = DEFAULT_Q;
3342                 } else if (i < qdev->rss_ring_first_cq_id) {
3343                         /*
3344                          * Outbound queue handles outbound completions only.
3345                          */
3346                         /* outbound cq is same size as tx_ring it services. */
3347                         rx_ring->cq_len = qdev->tx_ring_size;
3348                         rx_ring->cq_size =
3349                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3350                         rx_ring->lbq_len = 0;
3351                         rx_ring->lbq_size = 0;
3352                         rx_ring->lbq_buf_size = 0;
3353                         rx_ring->sbq_len = 0;
3354                         rx_ring->sbq_size = 0;
3355                         rx_ring->sbq_buf_size = 0;
3356                         rx_ring->type = TX_Q;
3357                 } else {        /* Inbound completions (RSS) queues */
3358                         /*
3359                          * Inbound queues handle unicast frames only.
3360                          */
3361                         rx_ring->cq_len = qdev->rx_ring_size;
3362                         rx_ring->cq_size =
3363                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3364                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3365                         rx_ring->lbq_size =
3366                             rx_ring->lbq_len * sizeof(__le64);
3367                         rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3368                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3369                         rx_ring->sbq_size =
3370                             rx_ring->sbq_len * sizeof(__le64);
3371                         rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3372                         rx_ring->type = RX_Q;
3373                 }
3374         }
3375         return 0;
3376 }
3377
3378 static int qlge_open(struct net_device *ndev)
3379 {
3380         int err = 0;
3381         struct ql_adapter *qdev = netdev_priv(ndev);
3382
3383         err = ql_configure_rings(qdev);
3384         if (err)
3385                 return err;
3386
3387         err = ql_get_adapter_resources(qdev);
3388         if (err)
3389                 goto error_up;
3390
3391         err = ql_adapter_up(qdev);
3392         if (err)
3393                 goto error_up;
3394
3395         return err;
3396
3397 error_up:
3398         ql_release_adapter_resources(qdev);
3399         return err;
3400 }
3401
3402 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3403 {
3404         struct ql_adapter *qdev = netdev_priv(ndev);
3405
3406         if (ndev->mtu == 1500 && new_mtu == 9000) {
3407                 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
3408         } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3409                 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3410         } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3411                    (ndev->mtu == 9000 && new_mtu == 9000)) {
3412                 return 0;
3413         } else
3414                 return -EINVAL;
3415         ndev->mtu = new_mtu;
3416         return 0;
3417 }
3418
3419 static struct net_device_stats *qlge_get_stats(struct net_device
3420                                                *ndev)
3421 {
3422         struct ql_adapter *qdev = netdev_priv(ndev);
3423         return &qdev->stats;
3424 }
3425
3426 static void qlge_set_multicast_list(struct net_device *ndev)
3427 {
3428         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3429         struct dev_mc_list *mc_ptr;
3430         int i, status;
3431
3432         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3433         if (status)
3434                 return;
3435         spin_lock(&qdev->hw_lock);
3436         /*
3437          * Set or clear promiscuous mode if a
3438          * transition is taking place.
3439          */
3440         if (ndev->flags & IFF_PROMISC) {
3441                 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3442                         if (ql_set_routing_reg
3443                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3444                                 QPRINTK(qdev, HW, ERR,
3445                                         "Failed to set promiscous mode.\n");
3446                         } else {
3447                                 set_bit(QL_PROMISCUOUS, &qdev->flags);
3448                         }
3449                 }
3450         } else {
3451                 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3452                         if (ql_set_routing_reg
3453                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3454                                 QPRINTK(qdev, HW, ERR,
3455                                         "Failed to clear promiscous mode.\n");
3456                         } else {
3457                                 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3458                         }
3459                 }
3460         }
3461
3462         /*
3463          * Set or clear all multicast mode if a
3464          * transition is taking place.
3465          */
3466         if ((ndev->flags & IFF_ALLMULTI) ||
3467             (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3468                 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3469                         if (ql_set_routing_reg
3470                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3471                                 QPRINTK(qdev, HW, ERR,
3472                                         "Failed to set all-multi mode.\n");
3473                         } else {
3474                                 set_bit(QL_ALLMULTI, &qdev->flags);
3475                         }
3476                 }
3477         } else {
3478                 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3479                         if (ql_set_routing_reg
3480                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3481                                 QPRINTK(qdev, HW, ERR,
3482                                         "Failed to clear all-multi mode.\n");
3483                         } else {
3484                                 clear_bit(QL_ALLMULTI, &qdev->flags);
3485                         }
3486                 }
3487         }
3488
3489         if (ndev->mc_count) {
3490                 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3491                 if (status)
3492                         goto exit;
3493                 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3494                      i++, mc_ptr = mc_ptr->next)
3495                         if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3496                                                 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3497                                 QPRINTK(qdev, HW, ERR,
3498                                         "Failed to loadmulticast address.\n");
3499                                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3500                                 goto exit;
3501                         }
3502                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3503                 if (ql_set_routing_reg
3504                     (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3505                         QPRINTK(qdev, HW, ERR,
3506                                 "Failed to set multicast match mode.\n");
3507                 } else {
3508                         set_bit(QL_ALLMULTI, &qdev->flags);
3509                 }
3510         }
3511 exit:
3512         spin_unlock(&qdev->hw_lock);
3513         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3514 }
3515
3516 static int qlge_set_mac_address(struct net_device *ndev, void *p)
3517 {
3518         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3519         struct sockaddr *addr = p;
3520         int status;
3521
3522         if (netif_running(ndev))
3523                 return -EBUSY;
3524
3525         if (!is_valid_ether_addr(addr->sa_data))
3526                 return -EADDRNOTAVAIL;
3527         memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3528
3529         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3530         if (status)
3531                 return status;
3532         spin_lock(&qdev->hw_lock);
3533         status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3534                         MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
3535         spin_unlock(&qdev->hw_lock);
3536         if (status)
3537                 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
3538         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3539         return status;
3540 }
3541
3542 static void qlge_tx_timeout(struct net_device *ndev)
3543 {
3544         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3545         ql_queue_asic_error(qdev);
3546 }
3547
3548 static void ql_asic_reset_work(struct work_struct *work)
3549 {
3550         struct ql_adapter *qdev =
3551             container_of(work, struct ql_adapter, asic_reset_work.work);
3552         ql_cycle_adapter(qdev);
3553 }
3554
3555 static struct nic_operations qla8012_nic_ops = {
3556         .get_flash              = ql_get_8012_flash_params,
3557         .port_initialize        = ql_8012_port_initialize,
3558 };
3559
3560
3561 static void ql_get_board_info(struct ql_adapter *qdev)
3562 {
3563         qdev->func =
3564             (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
3565         if (qdev->func) {
3566                 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3567                 qdev->port_link_up = STS_PL1;
3568                 qdev->port_init = STS_PI1;
3569                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3570                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3571         } else {
3572                 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3573                 qdev->port_link_up = STS_PL0;
3574                 qdev->port_init = STS_PI0;
3575                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3576                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3577         }
3578         qdev->chip_rev_id = ql_read32(qdev, REV_ID);
3579         qdev->device_id = qdev->pdev->device;
3580         if (qdev->device_id == QLGE_DEVICE_ID_8012)
3581                 qdev->nic_ops = &qla8012_nic_ops;
3582 }
3583
3584 static void ql_release_all(struct pci_dev *pdev)
3585 {
3586         struct net_device *ndev = pci_get_drvdata(pdev);
3587         struct ql_adapter *qdev = netdev_priv(ndev);
3588
3589         if (qdev->workqueue) {
3590                 destroy_workqueue(qdev->workqueue);
3591                 qdev->workqueue = NULL;
3592         }
3593         if (qdev->q_workqueue) {
3594                 destroy_workqueue(qdev->q_workqueue);
3595                 qdev->q_workqueue = NULL;
3596         }
3597         if (qdev->reg_base)
3598                 iounmap(qdev->reg_base);
3599         if (qdev->doorbell_area)
3600                 iounmap(qdev->doorbell_area);
3601         pci_release_regions(pdev);
3602         pci_set_drvdata(pdev, NULL);
3603 }
3604
3605 static int __devinit ql_init_device(struct pci_dev *pdev,
3606                                     struct net_device *ndev, int cards_found)
3607 {
3608         struct ql_adapter *qdev = netdev_priv(ndev);
3609         int pos, err = 0;
3610         u16 val16;
3611
3612         memset((void *)qdev, 0, sizeof(qdev));
3613         err = pci_enable_device(pdev);
3614         if (err) {
3615                 dev_err(&pdev->dev, "PCI device enable failed.\n");
3616                 return err;
3617         }
3618
3619         pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3620         if (pos <= 0) {
3621                 dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3622                         "aborting.\n");
3623                 goto err_out;
3624         } else {
3625                 pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3626                 val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3627                 val16 |= (PCI_EXP_DEVCTL_CERE |
3628                           PCI_EXP_DEVCTL_NFERE |
3629                           PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3630                 pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3631         }
3632
3633         err = pci_request_regions(pdev, DRV_NAME);
3634         if (err) {
3635                 dev_err(&pdev->dev, "PCI region request failed.\n");
3636                 goto err_out;
3637         }
3638
3639         pci_set_master(pdev);
3640         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3641                 set_bit(QL_DMA64, &qdev->flags);
3642                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3643         } else {
3644                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3645                 if (!err)
3646                        err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3647         }
3648
3649         if (err) {
3650                 dev_err(&pdev->dev, "No usable DMA configuration.\n");
3651                 goto err_out;
3652         }
3653
3654         pci_set_drvdata(pdev, ndev);
3655         qdev->reg_base =
3656             ioremap_nocache(pci_resource_start(pdev, 1),
3657                             pci_resource_len(pdev, 1));
3658         if (!qdev->reg_base) {
3659                 dev_err(&pdev->dev, "Register mapping failed.\n");
3660                 err = -ENOMEM;
3661                 goto err_out;
3662         }
3663
3664         qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3665         qdev->doorbell_area =
3666             ioremap_nocache(pci_resource_start(pdev, 3),
3667                             pci_resource_len(pdev, 3));
3668         if (!qdev->doorbell_area) {
3669                 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3670                 err = -ENOMEM;
3671                 goto err_out;
3672         }
3673
3674         qdev->ndev = ndev;
3675         qdev->pdev = pdev;
3676         ql_get_board_info(qdev);
3677         qdev->msg_enable = netif_msg_init(debug, default_msg);
3678         spin_lock_init(&qdev->hw_lock);
3679         spin_lock_init(&qdev->stats_lock);
3680
3681         /* make sure the EEPROM is good */
3682         err = qdev->nic_ops->get_flash(qdev);
3683         if (err) {
3684                 dev_err(&pdev->dev, "Invalid FLASH.\n");
3685                 goto err_out;
3686         }
3687
3688         memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3689
3690         /* Set up the default ring sizes. */
3691         qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3692         qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3693
3694         /* Set up the coalescing parameters. */
3695         qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3696         qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3697         qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3698         qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3699
3700         /*
3701          * Set up the operating parameters.
3702          */
3703         qdev->rx_csum = 1;
3704
3705         qdev->q_workqueue = create_workqueue(ndev->name);
3706         qdev->workqueue = create_singlethread_workqueue(ndev->name);
3707         INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3708         INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3709         INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
3710         mutex_init(&qdev->mpi_mutex);
3711
3712         if (!cards_found) {
3713                 dev_info(&pdev->dev, "%s\n", DRV_STRING);
3714                 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3715                          DRV_NAME, DRV_VERSION);
3716         }
3717         return 0;
3718 err_out:
3719         ql_release_all(pdev);
3720         pci_disable_device(pdev);
3721         return err;
3722 }
3723
3724
3725 static const struct net_device_ops qlge_netdev_ops = {
3726         .ndo_open               = qlge_open,
3727         .ndo_stop               = qlge_close,
3728         .ndo_start_xmit         = qlge_send,
3729         .ndo_change_mtu         = qlge_change_mtu,
3730         .ndo_get_stats          = qlge_get_stats,
3731         .ndo_set_multicast_list = qlge_set_multicast_list,
3732         .ndo_set_mac_address    = qlge_set_mac_address,
3733         .ndo_validate_addr      = eth_validate_addr,
3734         .ndo_tx_timeout         = qlge_tx_timeout,
3735         .ndo_vlan_rx_register   = ql_vlan_rx_register,
3736         .ndo_vlan_rx_add_vid    = ql_vlan_rx_add_vid,
3737         .ndo_vlan_rx_kill_vid   = ql_vlan_rx_kill_vid,
3738 };
3739
3740 static int __devinit qlge_probe(struct pci_dev *pdev,
3741                                 const struct pci_device_id *pci_entry)
3742 {
3743         struct net_device *ndev = NULL;
3744         struct ql_adapter *qdev = NULL;
3745         static int cards_found = 0;
3746         int err = 0;
3747
3748         ndev = alloc_etherdev(sizeof(struct ql_adapter));
3749         if (!ndev)
3750                 return -ENOMEM;
3751
3752         err = ql_init_device(pdev, ndev, cards_found);
3753         if (err < 0) {
3754                 free_netdev(ndev);
3755                 return err;
3756         }
3757
3758         qdev = netdev_priv(ndev);
3759         SET_NETDEV_DEV(ndev, &pdev->dev);
3760         ndev->features = (0
3761                           | NETIF_F_IP_CSUM
3762                           | NETIF_F_SG
3763                           | NETIF_F_TSO
3764                           | NETIF_F_TSO6
3765                           | NETIF_F_TSO_ECN
3766                           | NETIF_F_HW_VLAN_TX
3767                           | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
3768
3769         if (test_bit(QL_DMA64, &qdev->flags))
3770                 ndev->features |= NETIF_F_HIGHDMA;
3771
3772         /*
3773          * Set up net_device structure.
3774          */
3775         ndev->tx_queue_len = qdev->tx_ring_size;
3776         ndev->irq = pdev->irq;
3777
3778         ndev->netdev_ops = &qlge_netdev_ops;
3779         SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
3780         ndev->watchdog_timeo = 10 * HZ;
3781
3782         err = register_netdev(ndev);
3783         if (err) {
3784                 dev_err(&pdev->dev, "net device registration failed.\n");
3785                 ql_release_all(pdev);
3786                 pci_disable_device(pdev);
3787                 return err;
3788         }
3789         netif_carrier_off(ndev);
3790         netif_stop_queue(ndev);
3791         ql_display_dev_info(ndev);
3792         cards_found++;
3793         return 0;
3794 }
3795
3796 static void __devexit qlge_remove(struct pci_dev *pdev)
3797 {
3798         struct net_device *ndev = pci_get_drvdata(pdev);
3799         unregister_netdev(ndev);
3800         ql_release_all(pdev);
3801         pci_disable_device(pdev);
3802         free_netdev(ndev);
3803 }
3804
3805 /*
3806  * This callback is called by the PCI subsystem whenever
3807  * a PCI bus error is detected.
3808  */
3809 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
3810                                                enum pci_channel_state state)
3811 {
3812         struct net_device *ndev = pci_get_drvdata(pdev);
3813         struct ql_adapter *qdev = netdev_priv(ndev);
3814
3815         if (netif_running(ndev))
3816                 ql_adapter_down(qdev);
3817
3818         pci_disable_device(pdev);
3819
3820         /* Request a slot reset. */
3821         return PCI_ERS_RESULT_NEED_RESET;
3822 }
3823
3824 /*
3825  * This callback is called after the PCI buss has been reset.
3826  * Basically, this tries to restart the card from scratch.
3827  * This is a shortened version of the device probe/discovery code,
3828  * it resembles the first-half of the () routine.
3829  */
3830 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
3831 {
3832         struct net_device *ndev = pci_get_drvdata(pdev);
3833         struct ql_adapter *qdev = netdev_priv(ndev);
3834
3835         if (pci_enable_device(pdev)) {
3836                 QPRINTK(qdev, IFUP, ERR,
3837                         "Cannot re-enable PCI device after reset.\n");
3838                 return PCI_ERS_RESULT_DISCONNECT;
3839         }
3840
3841         pci_set_master(pdev);
3842
3843         netif_carrier_off(ndev);
3844         netif_stop_queue(ndev);
3845         ql_adapter_reset(qdev);
3846
3847         /* Make sure the EEPROM is good */
3848         memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3849
3850         if (!is_valid_ether_addr(ndev->perm_addr)) {
3851                 QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
3852                 return PCI_ERS_RESULT_DISCONNECT;
3853         }
3854
3855         return PCI_ERS_RESULT_RECOVERED;
3856 }
3857
3858 static void qlge_io_resume(struct pci_dev *pdev)
3859 {
3860         struct net_device *ndev = pci_get_drvdata(pdev);
3861         struct ql_adapter *qdev = netdev_priv(ndev);
3862
3863         pci_set_master(pdev);
3864
3865         if (netif_running(ndev)) {
3866                 if (ql_adapter_up(qdev)) {
3867                         QPRINTK(qdev, IFUP, ERR,
3868                                 "Device initialization failed after reset.\n");
3869                         return;
3870                 }
3871         }
3872
3873         netif_device_attach(ndev);
3874 }
3875
3876 static struct pci_error_handlers qlge_err_handler = {
3877         .error_detected = qlge_io_error_detected,
3878         .slot_reset = qlge_io_slot_reset,
3879         .resume = qlge_io_resume,
3880 };
3881
3882 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
3883 {
3884         struct net_device *ndev = pci_get_drvdata(pdev);
3885         struct ql_adapter *qdev = netdev_priv(ndev);
3886         int err, i;
3887
3888         netif_device_detach(ndev);
3889
3890         if (netif_running(ndev)) {
3891                 err = ql_adapter_down(qdev);
3892                 if (!err)
3893                         return err;
3894         }
3895
3896         for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++)
3897                 netif_napi_del(&qdev->rx_ring[i].napi);
3898
3899         err = pci_save_state(pdev);
3900         if (err)
3901                 return err;
3902
3903         pci_disable_device(pdev);
3904
3905         pci_set_power_state(pdev, pci_choose_state(pdev, state));
3906
3907         return 0;
3908 }
3909
3910 #ifdef CONFIG_PM
3911 static int qlge_resume(struct pci_dev *pdev)
3912 {
3913         struct net_device *ndev = pci_get_drvdata(pdev);
3914         struct ql_adapter *qdev = netdev_priv(ndev);
3915         int err;
3916
3917         pci_set_power_state(pdev, PCI_D0);
3918         pci_restore_state(pdev);
3919         err = pci_enable_device(pdev);
3920         if (err) {
3921                 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
3922                 return err;
3923         }
3924         pci_set_master(pdev);
3925
3926         pci_enable_wake(pdev, PCI_D3hot, 0);
3927         pci_enable_wake(pdev, PCI_D3cold, 0);
3928
3929         if (netif_running(ndev)) {
3930                 err = ql_adapter_up(qdev);
3931                 if (err)
3932                         return err;
3933         }
3934
3935         netif_device_attach(ndev);
3936
3937         return 0;
3938 }
3939 #endif /* CONFIG_PM */
3940
3941 static void qlge_shutdown(struct pci_dev *pdev)
3942 {
3943         qlge_suspend(pdev, PMSG_SUSPEND);
3944 }
3945
3946 static struct pci_driver qlge_driver = {
3947         .name = DRV_NAME,
3948         .id_table = qlge_pci_tbl,
3949         .probe = qlge_probe,
3950         .remove = __devexit_p(qlge_remove),
3951 #ifdef CONFIG_PM
3952         .suspend = qlge_suspend,
3953         .resume = qlge_resume,
3954 #endif
3955         .shutdown = qlge_shutdown,
3956         .err_handler = &qlge_err_handler
3957 };
3958
3959 static int __init qlge_init_module(void)
3960 {
3961         return pci_register_driver(&qlge_driver);
3962 }
3963
3964 static void __exit qlge_exit(void)
3965 {
3966         pci_unregister_driver(&qlge_driver);
3967 }
3968
3969 module_init(qlge_init_module);
3970 module_exit(qlge_exit);