b144b6becfeaaf3279410d06893f02975f36edc3
[safe/jmp/linux-2.6] / drivers / net / qlge / qlge_main.c
1 /*
2  * QLogic qlge NIC HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  * See LICENSE.qlge for copyright and licensing details.
5  * Author:     Linux qlge network device driver by
6  *                      Ron Mercer <ron.mercer@qlogic.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/skbuff.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/if_vlan.h>
39 #include <linux/delay.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <net/ip6_checksum.h>
43
44 #include "qlge.h"
45
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
48
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
53
54 static const u32 default_msg =
55     NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER |    */
57     NETIF_MSG_IFDOWN |
58     NETIF_MSG_IFUP |
59     NETIF_MSG_RX_ERR |
60     NETIF_MSG_TX_ERR |
61     NETIF_MSG_TX_QUEUED |
62     NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
63 /* NETIF_MSG_PKTDATA | */
64     NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66 static int debug = 0x00007fff;  /* defaults above */
67 module_param(debug, int, 0);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int irq_type = MSIX_IRQ;
74 module_param(irq_type, int, MSIX_IRQ);
75 MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77 static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
78         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
79         /* required last entry */
80         {0,}
81 };
82
83 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
84
85 /* This hardware semaphore causes exclusive access to
86  * resources shared between the NIC driver, MPI firmware,
87  * FCOE firmware and the FC driver.
88  */
89 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
90 {
91         u32 sem_bits = 0;
92
93         switch (sem_mask) {
94         case SEM_XGMAC0_MASK:
95                 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
96                 break;
97         case SEM_XGMAC1_MASK:
98                 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
99                 break;
100         case SEM_ICB_MASK:
101                 sem_bits = SEM_SET << SEM_ICB_SHIFT;
102                 break;
103         case SEM_MAC_ADDR_MASK:
104                 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
105                 break;
106         case SEM_FLASH_MASK:
107                 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
108                 break;
109         case SEM_PROBE_MASK:
110                 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
111                 break;
112         case SEM_RT_IDX_MASK:
113                 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
114                 break;
115         case SEM_PROC_REG_MASK:
116                 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
117                 break;
118         default:
119                 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
120                 return -EINVAL;
121         }
122
123         ql_write32(qdev, SEM, sem_bits | sem_mask);
124         return !(ql_read32(qdev, SEM) & sem_bits);
125 }
126
127 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
128 {
129         unsigned int wait_count = 30;
130         do {
131                 if (!ql_sem_trylock(qdev, sem_mask))
132                         return 0;
133                 udelay(100);
134         } while (--wait_count);
135         return -ETIMEDOUT;
136 }
137
138 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
139 {
140         ql_write32(qdev, SEM, sem_mask);
141         ql_read32(qdev, SEM);   /* flush */
142 }
143
144 /* This function waits for a specific bit to come ready
145  * in a given register.  It is used mostly by the initialize
146  * process, but is also used in kernel thread API such as
147  * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
148  */
149 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
150 {
151         u32 temp;
152         int count = UDELAY_COUNT;
153
154         while (count) {
155                 temp = ql_read32(qdev, reg);
156
157                 /* check for errors */
158                 if (temp & err_bit) {
159                         QPRINTK(qdev, PROBE, ALERT,
160                                 "register 0x%.08x access error, value = 0x%.08x!.\n",
161                                 reg, temp);
162                         return -EIO;
163                 } else if (temp & bit)
164                         return 0;
165                 udelay(UDELAY_DELAY);
166                 count--;
167         }
168         QPRINTK(qdev, PROBE, ALERT,
169                 "Timed out waiting for reg %x to come ready.\n", reg);
170         return -ETIMEDOUT;
171 }
172
173 /* The CFG register is used to download TX and RX control blocks
174  * to the chip. This function waits for an operation to complete.
175  */
176 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
177 {
178         int count = UDELAY_COUNT;
179         u32 temp;
180
181         while (count) {
182                 temp = ql_read32(qdev, CFG);
183                 if (temp & CFG_LE)
184                         return -EIO;
185                 if (!(temp & bit))
186                         return 0;
187                 udelay(UDELAY_DELAY);
188                 count--;
189         }
190         return -ETIMEDOUT;
191 }
192
193
194 /* Used to issue init control blocks to hw. Maps control block,
195  * sets address, triggers download, waits for completion.
196  */
197 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
198                  u16 q_id)
199 {
200         u64 map;
201         int status = 0;
202         int direction;
203         u32 mask;
204         u32 value;
205
206         direction =
207             (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
208             PCI_DMA_FROMDEVICE;
209
210         map = pci_map_single(qdev->pdev, ptr, size, direction);
211         if (pci_dma_mapping_error(qdev->pdev, map)) {
212                 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
213                 return -ENOMEM;
214         }
215
216         status = ql_wait_cfg(qdev, bit);
217         if (status) {
218                 QPRINTK(qdev, IFUP, ERR,
219                         "Timed out waiting for CFG to come ready.\n");
220                 goto exit;
221         }
222
223         status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
224         if (status)
225                 goto exit;
226         ql_write32(qdev, ICB_L, (u32) map);
227         ql_write32(qdev, ICB_H, (u32) (map >> 32));
228         ql_sem_unlock(qdev, SEM_ICB_MASK);      /* does flush too */
229
230         mask = CFG_Q_MASK | (bit << 16);
231         value = bit | (q_id << CFG_Q_SHIFT);
232         ql_write32(qdev, CFG, (mask | value));
233
234         /*
235          * Wait for the bit to clear after signaling hw.
236          */
237         status = ql_wait_cfg(qdev, bit);
238 exit:
239         pci_unmap_single(qdev->pdev, map, size, direction);
240         return status;
241 }
242
243 /* Get a specific MAC address from the CAM.  Used for debug and reg dump. */
244 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
245                         u32 *value)
246 {
247         u32 offset = 0;
248         int status;
249
250         switch (type) {
251         case MAC_ADDR_TYPE_MULTI_MAC:
252         case MAC_ADDR_TYPE_CAM_MAC:
253                 {
254                         status =
255                             ql_wait_reg_rdy(qdev,
256                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
257                         if (status)
258                                 goto exit;
259                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
260                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
261                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
262                         status =
263                             ql_wait_reg_rdy(qdev,
264                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
265                         if (status)
266                                 goto exit;
267                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
268                         status =
269                             ql_wait_reg_rdy(qdev,
270                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
271                         if (status)
272                                 goto exit;
273                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
274                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
275                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
276                         status =
277                             ql_wait_reg_rdy(qdev,
278                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
279                         if (status)
280                                 goto exit;
281                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
282                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
283                                 status =
284                                     ql_wait_reg_rdy(qdev,
285                                         MAC_ADDR_IDX, MAC_ADDR_MW, 0);
286                                 if (status)
287                                         goto exit;
288                                 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
289                                            (index << MAC_ADDR_IDX_SHIFT) | /* index */
290                                            MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
291                                 status =
292                                     ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
293                                                     MAC_ADDR_MR, 0);
294                                 if (status)
295                                         goto exit;
296                                 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
297                         }
298                         break;
299                 }
300         case MAC_ADDR_TYPE_VLAN:
301         case MAC_ADDR_TYPE_MULTI_FLTR:
302         default:
303                 QPRINTK(qdev, IFUP, CRIT,
304                         "Address type %d not yet supported.\n", type);
305                 status = -EPERM;
306         }
307 exit:
308         return status;
309 }
310
311 /* Set up a MAC, multicast or VLAN address for the
312  * inbound frame matching.
313  */
314 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
315                                u16 index)
316 {
317         u32 offset = 0;
318         int status = 0;
319
320         switch (type) {
321         case MAC_ADDR_TYPE_MULTI_MAC:
322         case MAC_ADDR_TYPE_CAM_MAC:
323                 {
324                         u32 cam_output;
325                         u32 upper = (addr[0] << 8) | addr[1];
326                         u32 lower =
327                             (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
328                             (addr[5]);
329
330                         QPRINTK(qdev, IFUP, INFO,
331                                 "Adding %s address %pM"
332                                 " at index %d in the CAM.\n",
333                                 ((type ==
334                                   MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
335                                  "UNICAST"), addr, index);
336
337                         status =
338                             ql_wait_reg_rdy(qdev,
339                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
340                         if (status)
341                                 goto exit;
342                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
343                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
344                                    type);       /* type */
345                         ql_write32(qdev, MAC_ADDR_DATA, lower);
346                         status =
347                             ql_wait_reg_rdy(qdev,
348                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
349                         if (status)
350                                 goto exit;
351                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
352                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
353                                    type);       /* type */
354                         ql_write32(qdev, MAC_ADDR_DATA, upper);
355                         status =
356                             ql_wait_reg_rdy(qdev,
357                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
358                         if (status)
359                                 goto exit;
360                         ql_write32(qdev, MAC_ADDR_IDX, (offset) |       /* offset */
361                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
362                                    type);       /* type */
363                         /* This field should also include the queue id
364                            and possibly the function id.  Right now we hardcode
365                            the route field to NIC core.
366                          */
367                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
368                                 cam_output = (CAM_OUT_ROUTE_NIC |
369                                               (qdev->
370                                                func << CAM_OUT_FUNC_SHIFT) |
371                                               (qdev->
372                                                rss_ring_first_cq_id <<
373                                                CAM_OUT_CQ_ID_SHIFT));
374                                 if (qdev->vlgrp)
375                                         cam_output |= CAM_OUT_RV;
376                                 /* route to NIC core */
377                                 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
378                         }
379                         break;
380                 }
381         case MAC_ADDR_TYPE_VLAN:
382                 {
383                         u32 enable_bit = *((u32 *) &addr[0]);
384                         /* For VLAN, the addr actually holds a bit that
385                          * either enables or disables the vlan id we are
386                          * addressing. It's either MAC_ADDR_E on or off.
387                          * That's bit-27 we're talking about.
388                          */
389                         QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
390                                 (enable_bit ? "Adding" : "Removing"),
391                                 index, (enable_bit ? "to" : "from"));
392
393                         status =
394                             ql_wait_reg_rdy(qdev,
395                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
396                         if (status)
397                                 goto exit;
398                         ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
399                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
400                                    type |       /* type */
401                                    enable_bit); /* enable/disable */
402                         break;
403                 }
404         case MAC_ADDR_TYPE_MULTI_FLTR:
405         default:
406                 QPRINTK(qdev, IFUP, CRIT,
407                         "Address type %d not yet supported.\n", type);
408                 status = -EPERM;
409         }
410 exit:
411         return status;
412 }
413
414 /* Get a specific frame routing value from the CAM.
415  * Used for debug and reg dump.
416  */
417 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
418 {
419         int status = 0;
420
421         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
422         if (status)
423                 goto exit;
424
425         ql_write32(qdev, RT_IDX,
426                    RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
427         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
428         if (status)
429                 goto exit;
430         *value = ql_read32(qdev, RT_DATA);
431 exit:
432         return status;
433 }
434
435 /* The NIC function for this chip has 16 routing indexes.  Each one can be used
436  * to route different frame types to various inbound queues.  We send broadcast/
437  * multicast/error frames to the default queue for slow handling,
438  * and CAM hit/RSS frames to the fast handling queues.
439  */
440 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
441                               int enable)
442 {
443         int status = -EINVAL; /* Return error if no mask match. */
444         u32 value = 0;
445
446         QPRINTK(qdev, IFUP, DEBUG,
447                 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
448                 (enable ? "Adding" : "Removing"),
449                 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
450                 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
451                 ((index ==
452                   RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
453                 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
454                 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
455                 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
456                 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
457                 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
458                 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
459                 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
460                 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
461                 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
462                 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
463                 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
464                 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
465                 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
466                 (enable ? "to" : "from"));
467
468         switch (mask) {
469         case RT_IDX_CAM_HIT:
470                 {
471                         value = RT_IDX_DST_CAM_Q |      /* dest */
472                             RT_IDX_TYPE_NICQ |  /* type */
473                             (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
474                         break;
475                 }
476         case RT_IDX_VALID:      /* Promiscuous Mode frames. */
477                 {
478                         value = RT_IDX_DST_DFLT_Q |     /* dest */
479                             RT_IDX_TYPE_NICQ |  /* type */
480                             (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
481                         break;
482                 }
483         case RT_IDX_ERR:        /* Pass up MAC,IP,TCP/UDP error frames. */
484                 {
485                         value = RT_IDX_DST_DFLT_Q |     /* dest */
486                             RT_IDX_TYPE_NICQ |  /* type */
487                             (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
488                         break;
489                 }
490         case RT_IDX_BCAST:      /* Pass up Broadcast frames to default Q. */
491                 {
492                         value = RT_IDX_DST_DFLT_Q |     /* dest */
493                             RT_IDX_TYPE_NICQ |  /* type */
494                             (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
495                         break;
496                 }
497         case RT_IDX_MCAST:      /* Pass up All Multicast frames. */
498                 {
499                         value = RT_IDX_DST_CAM_Q |      /* dest */
500                             RT_IDX_TYPE_NICQ |  /* type */
501                             (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
502                         break;
503                 }
504         case RT_IDX_MCAST_MATCH:        /* Pass up matched Multicast frames. */
505                 {
506                         value = RT_IDX_DST_CAM_Q |      /* dest */
507                             RT_IDX_TYPE_NICQ |  /* type */
508                             (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
509                         break;
510                 }
511         case RT_IDX_RSS_MATCH:  /* Pass up matched RSS frames. */
512                 {
513                         value = RT_IDX_DST_RSS |        /* dest */
514                             RT_IDX_TYPE_NICQ |  /* type */
515                             (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
516                         break;
517                 }
518         case 0:         /* Clear the E-bit on an entry. */
519                 {
520                         value = RT_IDX_DST_DFLT_Q |     /* dest */
521                             RT_IDX_TYPE_NICQ |  /* type */
522                             (index << RT_IDX_IDX_SHIFT);/* index */
523                         break;
524                 }
525         default:
526                 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
527                         mask);
528                 status = -EPERM;
529                 goto exit;
530         }
531
532         if (value) {
533                 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
534                 if (status)
535                         goto exit;
536                 value |= (enable ? RT_IDX_E : 0);
537                 ql_write32(qdev, RT_IDX, value);
538                 ql_write32(qdev, RT_DATA, enable ? mask : 0);
539         }
540 exit:
541         return status;
542 }
543
544 static void ql_enable_interrupts(struct ql_adapter *qdev)
545 {
546         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
547 }
548
549 static void ql_disable_interrupts(struct ql_adapter *qdev)
550 {
551         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
552 }
553
554 /* If we're running with multiple MSI-X vectors then we enable on the fly.
555  * Otherwise, we may have multiple outstanding workers and don't want to
556  * enable until the last one finishes. In this case, the irq_cnt gets
557  * incremented everytime we queue a worker and decremented everytime
558  * a worker finishes.  Once it hits zero we enable the interrupt.
559  */
560 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
561 {
562         u32 var = 0;
563         unsigned long hw_flags = 0;
564         struct intr_context *ctx = qdev->intr_context + intr;
565
566         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
567                 /* Always enable if we're MSIX multi interrupts and
568                  * it's not the default (zeroeth) interrupt.
569                  */
570                 ql_write32(qdev, INTR_EN,
571                            ctx->intr_en_mask);
572                 var = ql_read32(qdev, STS);
573                 return var;
574         }
575
576         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
577         if (atomic_dec_and_test(&ctx->irq_cnt)) {
578                 ql_write32(qdev, INTR_EN,
579                            ctx->intr_en_mask);
580                 var = ql_read32(qdev, STS);
581         }
582         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
583         return var;
584 }
585
586 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
587 {
588         u32 var = 0;
589         unsigned long hw_flags;
590         struct intr_context *ctx;
591
592         /* HW disables for us if we're MSIX multi interrupts and
593          * it's not the default (zeroeth) interrupt.
594          */
595         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
596                 return 0;
597
598         ctx = qdev->intr_context + intr;
599         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
600         if (!atomic_read(&ctx->irq_cnt)) {
601                 ql_write32(qdev, INTR_EN,
602                 ctx->intr_dis_mask);
603                 var = ql_read32(qdev, STS);
604         }
605         atomic_inc(&ctx->irq_cnt);
606         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
607         return var;
608 }
609
610 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
611 {
612         int i;
613         for (i = 0; i < qdev->intr_count; i++) {
614                 /* The enable call does a atomic_dec_and_test
615                  * and enables only if the result is zero.
616                  * So we precharge it here.
617                  */
618                 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
619                         i == 0))
620                         atomic_set(&qdev->intr_context[i].irq_cnt, 1);
621                 ql_enable_completion_interrupt(qdev, i);
622         }
623
624 }
625
626 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
627 {
628         int status = 0;
629         /* wait for reg to come ready */
630         status = ql_wait_reg_rdy(qdev,
631                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
632         if (status)
633                 goto exit;
634         /* set up for reg read */
635         ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
636         /* wait for reg to come ready */
637         status = ql_wait_reg_rdy(qdev,
638                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
639         if (status)
640                 goto exit;
641          /* This data is stored on flash as an array of
642          * __le32.  Since ql_read32() returns cpu endian
643          * we need to swap it back.
644          */
645         *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
646 exit:
647         return status;
648 }
649
650 static int ql_get_flash_params(struct ql_adapter *qdev)
651 {
652         int i;
653         int status;
654         __le32 *p = (__le32 *)&qdev->flash;
655         u32 offset = 0;
656
657         /* Second function's parameters follow the first
658          * function's.
659          */
660         if (qdev->func)
661                 offset = sizeof(qdev->flash) / sizeof(u32);
662
663         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
664                 return -ETIMEDOUT;
665
666         for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) {
667                 status = ql_read_flash_word(qdev, i+offset, p);
668                 if (status) {
669                         QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
670                         goto exit;
671                 }
672
673         }
674 exit:
675         ql_sem_unlock(qdev, SEM_FLASH_MASK);
676         return status;
677 }
678
679 /* xgmac register are located behind the xgmac_addr and xgmac_data
680  * register pair.  Each read/write requires us to wait for the ready
681  * bit before reading/writing the data.
682  */
683 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
684 {
685         int status;
686         /* wait for reg to come ready */
687         status = ql_wait_reg_rdy(qdev,
688                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
689         if (status)
690                 return status;
691         /* write the data to the data reg */
692         ql_write32(qdev, XGMAC_DATA, data);
693         /* trigger the write */
694         ql_write32(qdev, XGMAC_ADDR, reg);
695         return status;
696 }
697
698 /* xgmac register are located behind the xgmac_addr and xgmac_data
699  * register pair.  Each read/write requires us to wait for the ready
700  * bit before reading/writing the data.
701  */
702 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
703 {
704         int status = 0;
705         /* wait for reg to come ready */
706         status = ql_wait_reg_rdy(qdev,
707                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
708         if (status)
709                 goto exit;
710         /* set up for reg read */
711         ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
712         /* wait for reg to come ready */
713         status = ql_wait_reg_rdy(qdev,
714                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
715         if (status)
716                 goto exit;
717         /* get the data */
718         *data = ql_read32(qdev, XGMAC_DATA);
719 exit:
720         return status;
721 }
722
723 /* This is used for reading the 64-bit statistics regs. */
724 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
725 {
726         int status = 0;
727         u32 hi = 0;
728         u32 lo = 0;
729
730         status = ql_read_xgmac_reg(qdev, reg, &lo);
731         if (status)
732                 goto exit;
733
734         status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
735         if (status)
736                 goto exit;
737
738         *data = (u64) lo | ((u64) hi << 32);
739
740 exit:
741         return status;
742 }
743
744 /* Take the MAC Core out of reset.
745  * Enable statistics counting.
746  * Take the transmitter/receiver out of reset.
747  * This functionality may be done in the MPI firmware at a
748  * later date.
749  */
750 static int ql_port_initialize(struct ql_adapter *qdev)
751 {
752         int status = 0;
753         u32 data;
754
755         if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
756                 /* Another function has the semaphore, so
757                  * wait for the port init bit to come ready.
758                  */
759                 QPRINTK(qdev, LINK, INFO,
760                         "Another function has the semaphore, so wait for the port init bit to come ready.\n");
761                 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
762                 if (status) {
763                         QPRINTK(qdev, LINK, CRIT,
764                                 "Port initialize timed out.\n");
765                 }
766                 return status;
767         }
768
769         QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
770         /* Set the core reset. */
771         status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
772         if (status)
773                 goto end;
774         data |= GLOBAL_CFG_RESET;
775         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
776         if (status)
777                 goto end;
778
779         /* Clear the core reset and turn on jumbo for receiver. */
780         data &= ~GLOBAL_CFG_RESET;      /* Clear core reset. */
781         data |= GLOBAL_CFG_JUMBO;       /* Turn on jumbo. */
782         data |= GLOBAL_CFG_TX_STAT_EN;
783         data |= GLOBAL_CFG_RX_STAT_EN;
784         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
785         if (status)
786                 goto end;
787
788         /* Enable transmitter, and clear it's reset. */
789         status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
790         if (status)
791                 goto end;
792         data &= ~TX_CFG_RESET;  /* Clear the TX MAC reset. */
793         data |= TX_CFG_EN;      /* Enable the transmitter. */
794         status = ql_write_xgmac_reg(qdev, TX_CFG, data);
795         if (status)
796                 goto end;
797
798         /* Enable receiver and clear it's reset. */
799         status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
800         if (status)
801                 goto end;
802         data &= ~RX_CFG_RESET;  /* Clear the RX MAC reset. */
803         data |= RX_CFG_EN;      /* Enable the receiver. */
804         status = ql_write_xgmac_reg(qdev, RX_CFG, data);
805         if (status)
806                 goto end;
807
808         /* Turn on jumbo. */
809         status =
810             ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
811         if (status)
812                 goto end;
813         status =
814             ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
815         if (status)
816                 goto end;
817
818         /* Signal to the world that the port is enabled.        */
819         ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
820 end:
821         ql_sem_unlock(qdev, qdev->xg_sem_mask);
822         return status;
823 }
824
825 /* Get the next large buffer. */
826 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
827 {
828         struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
829         rx_ring->lbq_curr_idx++;
830         if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
831                 rx_ring->lbq_curr_idx = 0;
832         rx_ring->lbq_free_cnt++;
833         return lbq_desc;
834 }
835
836 /* Get the next small buffer. */
837 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
838 {
839         struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
840         rx_ring->sbq_curr_idx++;
841         if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
842                 rx_ring->sbq_curr_idx = 0;
843         rx_ring->sbq_free_cnt++;
844         return sbq_desc;
845 }
846
847 /* Update an rx ring index. */
848 static void ql_update_cq(struct rx_ring *rx_ring)
849 {
850         rx_ring->cnsmr_idx++;
851         rx_ring->curr_entry++;
852         if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
853                 rx_ring->cnsmr_idx = 0;
854                 rx_ring->curr_entry = rx_ring->cq_base;
855         }
856 }
857
858 static void ql_write_cq_idx(struct rx_ring *rx_ring)
859 {
860         ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
861 }
862
863 /* Process (refill) a large buffer queue. */
864 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
865 {
866         u32 clean_idx = rx_ring->lbq_clean_idx;
867         u32 start_idx = clean_idx;
868         struct bq_desc *lbq_desc;
869         u64 map;
870         int i;
871
872         while (rx_ring->lbq_free_cnt > 16) {
873                 for (i = 0; i < 16; i++) {
874                         QPRINTK(qdev, RX_STATUS, DEBUG,
875                                 "lbq: try cleaning clean_idx = %d.\n",
876                                 clean_idx);
877                         lbq_desc = &rx_ring->lbq[clean_idx];
878                         if (lbq_desc->p.lbq_page == NULL) {
879                                 QPRINTK(qdev, RX_STATUS, DEBUG,
880                                         "lbq: getting new page for index %d.\n",
881                                         lbq_desc->index);
882                                 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
883                                 if (lbq_desc->p.lbq_page == NULL) {
884                                         rx_ring->lbq_clean_idx = clean_idx;
885                                         QPRINTK(qdev, RX_STATUS, ERR,
886                                                 "Couldn't get a page.\n");
887                                         return;
888                                 }
889                                 map = pci_map_page(qdev->pdev,
890                                                    lbq_desc->p.lbq_page,
891                                                    0, PAGE_SIZE,
892                                                    PCI_DMA_FROMDEVICE);
893                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
894                                         rx_ring->lbq_clean_idx = clean_idx;
895                                         put_page(lbq_desc->p.lbq_page);
896                                         lbq_desc->p.lbq_page = NULL;
897                                         QPRINTK(qdev, RX_STATUS, ERR,
898                                                 "PCI mapping failed.\n");
899                                         return;
900                                 }
901                                 pci_unmap_addr_set(lbq_desc, mapaddr, map);
902                                 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
903                                 *lbq_desc->addr = cpu_to_le64(map);
904                         }
905                         clean_idx++;
906                         if (clean_idx == rx_ring->lbq_len)
907                                 clean_idx = 0;
908                 }
909
910                 rx_ring->lbq_clean_idx = clean_idx;
911                 rx_ring->lbq_prod_idx += 16;
912                 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
913                         rx_ring->lbq_prod_idx = 0;
914                 rx_ring->lbq_free_cnt -= 16;
915         }
916
917         if (start_idx != clean_idx) {
918                 QPRINTK(qdev, RX_STATUS, DEBUG,
919                         "lbq: updating prod idx = %d.\n",
920                         rx_ring->lbq_prod_idx);
921                 ql_write_db_reg(rx_ring->lbq_prod_idx,
922                                 rx_ring->lbq_prod_idx_db_reg);
923         }
924 }
925
926 /* Process (refill) a small buffer queue. */
927 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
928 {
929         u32 clean_idx = rx_ring->sbq_clean_idx;
930         u32 start_idx = clean_idx;
931         struct bq_desc *sbq_desc;
932         u64 map;
933         int i;
934
935         while (rx_ring->sbq_free_cnt > 16) {
936                 for (i = 0; i < 16; i++) {
937                         sbq_desc = &rx_ring->sbq[clean_idx];
938                         QPRINTK(qdev, RX_STATUS, DEBUG,
939                                 "sbq: try cleaning clean_idx = %d.\n",
940                                 clean_idx);
941                         if (sbq_desc->p.skb == NULL) {
942                                 QPRINTK(qdev, RX_STATUS, DEBUG,
943                                         "sbq: getting new skb for index %d.\n",
944                                         sbq_desc->index);
945                                 sbq_desc->p.skb =
946                                     netdev_alloc_skb(qdev->ndev,
947                                                      rx_ring->sbq_buf_size);
948                                 if (sbq_desc->p.skb == NULL) {
949                                         QPRINTK(qdev, PROBE, ERR,
950                                                 "Couldn't get an skb.\n");
951                                         rx_ring->sbq_clean_idx = clean_idx;
952                                         return;
953                                 }
954                                 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
955                                 map = pci_map_single(qdev->pdev,
956                                                      sbq_desc->p.skb->data,
957                                                      rx_ring->sbq_buf_size /
958                                                      2, PCI_DMA_FROMDEVICE);
959                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
960                                         QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
961                                         rx_ring->sbq_clean_idx = clean_idx;
962                                         dev_kfree_skb_any(sbq_desc->p.skb);
963                                         sbq_desc->p.skb = NULL;
964                                         return;
965                                 }
966                                 pci_unmap_addr_set(sbq_desc, mapaddr, map);
967                                 pci_unmap_len_set(sbq_desc, maplen,
968                                                   rx_ring->sbq_buf_size / 2);
969                                 *sbq_desc->addr = cpu_to_le64(map);
970                         }
971
972                         clean_idx++;
973                         if (clean_idx == rx_ring->sbq_len)
974                                 clean_idx = 0;
975                 }
976                 rx_ring->sbq_clean_idx = clean_idx;
977                 rx_ring->sbq_prod_idx += 16;
978                 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
979                         rx_ring->sbq_prod_idx = 0;
980                 rx_ring->sbq_free_cnt -= 16;
981         }
982
983         if (start_idx != clean_idx) {
984                 QPRINTK(qdev, RX_STATUS, DEBUG,
985                         "sbq: updating prod idx = %d.\n",
986                         rx_ring->sbq_prod_idx);
987                 ql_write_db_reg(rx_ring->sbq_prod_idx,
988                                 rx_ring->sbq_prod_idx_db_reg);
989         }
990 }
991
992 static void ql_update_buffer_queues(struct ql_adapter *qdev,
993                                     struct rx_ring *rx_ring)
994 {
995         ql_update_sbq(qdev, rx_ring);
996         ql_update_lbq(qdev, rx_ring);
997 }
998
999 /* Unmaps tx buffers.  Can be called from send() if a pci mapping
1000  * fails at some stage, or from the interrupt when a tx completes.
1001  */
1002 static void ql_unmap_send(struct ql_adapter *qdev,
1003                           struct tx_ring_desc *tx_ring_desc, int mapped)
1004 {
1005         int i;
1006         for (i = 0; i < mapped; i++) {
1007                 if (i == 0 || (i == 7 && mapped > 7)) {
1008                         /*
1009                          * Unmap the skb->data area, or the
1010                          * external sglist (AKA the Outbound
1011                          * Address List (OAL)).
1012                          * If its the zeroeth element, then it's
1013                          * the skb->data area.  If it's the 7th
1014                          * element and there is more than 6 frags,
1015                          * then its an OAL.
1016                          */
1017                         if (i == 7) {
1018                                 QPRINTK(qdev, TX_DONE, DEBUG,
1019                                         "unmapping OAL area.\n");
1020                         }
1021                         pci_unmap_single(qdev->pdev,
1022                                          pci_unmap_addr(&tx_ring_desc->map[i],
1023                                                         mapaddr),
1024                                          pci_unmap_len(&tx_ring_desc->map[i],
1025                                                        maplen),
1026                                          PCI_DMA_TODEVICE);
1027                 } else {
1028                         QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1029                                 i);
1030                         pci_unmap_page(qdev->pdev,
1031                                        pci_unmap_addr(&tx_ring_desc->map[i],
1032                                                       mapaddr),
1033                                        pci_unmap_len(&tx_ring_desc->map[i],
1034                                                      maplen), PCI_DMA_TODEVICE);
1035                 }
1036         }
1037
1038 }
1039
1040 /* Map the buffers for this transmit.  This will return
1041  * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1042  */
1043 static int ql_map_send(struct ql_adapter *qdev,
1044                        struct ob_mac_iocb_req *mac_iocb_ptr,
1045                        struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1046 {
1047         int len = skb_headlen(skb);
1048         dma_addr_t map;
1049         int frag_idx, err, map_idx = 0;
1050         struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1051         int frag_cnt = skb_shinfo(skb)->nr_frags;
1052
1053         if (frag_cnt) {
1054                 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1055         }
1056         /*
1057          * Map the skb buffer first.
1058          */
1059         map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1060
1061         err = pci_dma_mapping_error(qdev->pdev, map);
1062         if (err) {
1063                 QPRINTK(qdev, TX_QUEUED, ERR,
1064                         "PCI mapping failed with error: %d\n", err);
1065
1066                 return NETDEV_TX_BUSY;
1067         }
1068
1069         tbd->len = cpu_to_le32(len);
1070         tbd->addr = cpu_to_le64(map);
1071         pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1072         pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1073         map_idx++;
1074
1075         /*
1076          * This loop fills the remainder of the 8 address descriptors
1077          * in the IOCB.  If there are more than 7 fragments, then the
1078          * eighth address desc will point to an external list (OAL).
1079          * When this happens, the remainder of the frags will be stored
1080          * in this list.
1081          */
1082         for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1083                 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1084                 tbd++;
1085                 if (frag_idx == 6 && frag_cnt > 7) {
1086                         /* Let's tack on an sglist.
1087                          * Our control block will now
1088                          * look like this:
1089                          * iocb->seg[0] = skb->data
1090                          * iocb->seg[1] = frag[0]
1091                          * iocb->seg[2] = frag[1]
1092                          * iocb->seg[3] = frag[2]
1093                          * iocb->seg[4] = frag[3]
1094                          * iocb->seg[5] = frag[4]
1095                          * iocb->seg[6] = frag[5]
1096                          * iocb->seg[7] = ptr to OAL (external sglist)
1097                          * oal->seg[0] = frag[6]
1098                          * oal->seg[1] = frag[7]
1099                          * oal->seg[2] = frag[8]
1100                          * oal->seg[3] = frag[9]
1101                          * oal->seg[4] = frag[10]
1102                          *      etc...
1103                          */
1104                         /* Tack on the OAL in the eighth segment of IOCB. */
1105                         map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1106                                              sizeof(struct oal),
1107                                              PCI_DMA_TODEVICE);
1108                         err = pci_dma_mapping_error(qdev->pdev, map);
1109                         if (err) {
1110                                 QPRINTK(qdev, TX_QUEUED, ERR,
1111                                         "PCI mapping outbound address list with error: %d\n",
1112                                         err);
1113                                 goto map_error;
1114                         }
1115
1116                         tbd->addr = cpu_to_le64(map);
1117                         /*
1118                          * The length is the number of fragments
1119                          * that remain to be mapped times the length
1120                          * of our sglist (OAL).
1121                          */
1122                         tbd->len =
1123                             cpu_to_le32((sizeof(struct tx_buf_desc) *
1124                                          (frag_cnt - frag_idx)) | TX_DESC_C);
1125                         pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1126                                            map);
1127                         pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1128                                           sizeof(struct oal));
1129                         tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1130                         map_idx++;
1131                 }
1132
1133                 map =
1134                     pci_map_page(qdev->pdev, frag->page,
1135                                  frag->page_offset, frag->size,
1136                                  PCI_DMA_TODEVICE);
1137
1138                 err = pci_dma_mapping_error(qdev->pdev, map);
1139                 if (err) {
1140                         QPRINTK(qdev, TX_QUEUED, ERR,
1141                                 "PCI mapping frags failed with error: %d.\n",
1142                                 err);
1143                         goto map_error;
1144                 }
1145
1146                 tbd->addr = cpu_to_le64(map);
1147                 tbd->len = cpu_to_le32(frag->size);
1148                 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1149                 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1150                                   frag->size);
1151
1152         }
1153         /* Save the number of segments we've mapped. */
1154         tx_ring_desc->map_cnt = map_idx;
1155         /* Terminate the last segment. */
1156         tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1157         return NETDEV_TX_OK;
1158
1159 map_error:
1160         /*
1161          * If the first frag mapping failed, then i will be zero.
1162          * This causes the unmap of the skb->data area.  Otherwise
1163          * we pass in the number of frags that mapped successfully
1164          * so they can be umapped.
1165          */
1166         ql_unmap_send(qdev, tx_ring_desc, map_idx);
1167         return NETDEV_TX_BUSY;
1168 }
1169
1170 static void ql_realign_skb(struct sk_buff *skb, int len)
1171 {
1172         void *temp_addr = skb->data;
1173
1174         /* Undo the skb_reserve(skb,32) we did before
1175          * giving to hardware, and realign data on
1176          * a 2-byte boundary.
1177          */
1178         skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1179         skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1180         skb_copy_to_linear_data(skb, temp_addr,
1181                 (unsigned int)len);
1182 }
1183
1184 /*
1185  * This function builds an skb for the given inbound
1186  * completion.  It will be rewritten for readability in the near
1187  * future, but for not it works well.
1188  */
1189 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1190                                        struct rx_ring *rx_ring,
1191                                        struct ib_mac_iocb_rsp *ib_mac_rsp)
1192 {
1193         struct bq_desc *lbq_desc;
1194         struct bq_desc *sbq_desc;
1195         struct sk_buff *skb = NULL;
1196         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1197        u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1198
1199         /*
1200          * Handle the header buffer if present.
1201          */
1202         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1203             ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1204                 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1205                 /*
1206                  * Headers fit nicely into a small buffer.
1207                  */
1208                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1209                 pci_unmap_single(qdev->pdev,
1210                                 pci_unmap_addr(sbq_desc, mapaddr),
1211                                 pci_unmap_len(sbq_desc, maplen),
1212                                 PCI_DMA_FROMDEVICE);
1213                 skb = sbq_desc->p.skb;
1214                 ql_realign_skb(skb, hdr_len);
1215                 skb_put(skb, hdr_len);
1216                 sbq_desc->p.skb = NULL;
1217         }
1218
1219         /*
1220          * Handle the data buffer(s).
1221          */
1222         if (unlikely(!length)) {        /* Is there data too? */
1223                 QPRINTK(qdev, RX_STATUS, DEBUG,
1224                         "No Data buffer in this packet.\n");
1225                 return skb;
1226         }
1227
1228         if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1229                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1230                         QPRINTK(qdev, RX_STATUS, DEBUG,
1231                                 "Headers in small, data of %d bytes in small, combine them.\n", length);
1232                         /*
1233                          * Data is less than small buffer size so it's
1234                          * stuffed in a small buffer.
1235                          * For this case we append the data
1236                          * from the "data" small buffer to the "header" small
1237                          * buffer.
1238                          */
1239                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1240                         pci_dma_sync_single_for_cpu(qdev->pdev,
1241                                                     pci_unmap_addr
1242                                                     (sbq_desc, mapaddr),
1243                                                     pci_unmap_len
1244                                                     (sbq_desc, maplen),
1245                                                     PCI_DMA_FROMDEVICE);
1246                         memcpy(skb_put(skb, length),
1247                                sbq_desc->p.skb->data, length);
1248                         pci_dma_sync_single_for_device(qdev->pdev,
1249                                                        pci_unmap_addr
1250                                                        (sbq_desc,
1251                                                         mapaddr),
1252                                                        pci_unmap_len
1253                                                        (sbq_desc,
1254                                                         maplen),
1255                                                        PCI_DMA_FROMDEVICE);
1256                 } else {
1257                         QPRINTK(qdev, RX_STATUS, DEBUG,
1258                                 "%d bytes in a single small buffer.\n", length);
1259                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1260                         skb = sbq_desc->p.skb;
1261                         ql_realign_skb(skb, length);
1262                         skb_put(skb, length);
1263                         pci_unmap_single(qdev->pdev,
1264                                          pci_unmap_addr(sbq_desc,
1265                                                         mapaddr),
1266                                          pci_unmap_len(sbq_desc,
1267                                                        maplen),
1268                                          PCI_DMA_FROMDEVICE);
1269                         sbq_desc->p.skb = NULL;
1270                 }
1271         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1272                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1273                         QPRINTK(qdev, RX_STATUS, DEBUG,
1274                                 "Header in small, %d bytes in large. Chain large to small!\n", length);
1275                         /*
1276                          * The data is in a single large buffer.  We
1277                          * chain it to the header buffer's skb and let
1278                          * it rip.
1279                          */
1280                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1281                         pci_unmap_page(qdev->pdev,
1282                                        pci_unmap_addr(lbq_desc,
1283                                                       mapaddr),
1284                                        pci_unmap_len(lbq_desc, maplen),
1285                                        PCI_DMA_FROMDEVICE);
1286                         QPRINTK(qdev, RX_STATUS, DEBUG,
1287                                 "Chaining page to skb.\n");
1288                         skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1289                                            0, length);
1290                         skb->len += length;
1291                         skb->data_len += length;
1292                         skb->truesize += length;
1293                         lbq_desc->p.lbq_page = NULL;
1294                 } else {
1295                         /*
1296                          * The headers and data are in a single large buffer. We
1297                          * copy it to a new skb and let it go. This can happen with
1298                          * jumbo mtu on a non-TCP/UDP frame.
1299                          */
1300                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1301                         skb = netdev_alloc_skb(qdev->ndev, length);
1302                         if (skb == NULL) {
1303                                 QPRINTK(qdev, PROBE, DEBUG,
1304                                         "No skb available, drop the packet.\n");
1305                                 return NULL;
1306                         }
1307                         pci_unmap_page(qdev->pdev,
1308                                        pci_unmap_addr(lbq_desc,
1309                                                       mapaddr),
1310                                        pci_unmap_len(lbq_desc, maplen),
1311                                        PCI_DMA_FROMDEVICE);
1312                         skb_reserve(skb, NET_IP_ALIGN);
1313                         QPRINTK(qdev, RX_STATUS, DEBUG,
1314                                 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1315                         skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1316                                            0, length);
1317                         skb->len += length;
1318                         skb->data_len += length;
1319                         skb->truesize += length;
1320                         length -= length;
1321                         lbq_desc->p.lbq_page = NULL;
1322                         __pskb_pull_tail(skb,
1323                                 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1324                                 VLAN_ETH_HLEN : ETH_HLEN);
1325                 }
1326         } else {
1327                 /*
1328                  * The data is in a chain of large buffers
1329                  * pointed to by a small buffer.  We loop
1330                  * thru and chain them to the our small header
1331                  * buffer's skb.
1332                  * frags:  There are 18 max frags and our small
1333                  *         buffer will hold 32 of them. The thing is,
1334                  *         we'll use 3 max for our 9000 byte jumbo
1335                  *         frames.  If the MTU goes up we could
1336                  *          eventually be in trouble.
1337                  */
1338                 int size, offset, i = 0;
1339                 __le64 *bq, bq_array[8];
1340                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1341                 pci_unmap_single(qdev->pdev,
1342                                  pci_unmap_addr(sbq_desc, mapaddr),
1343                                  pci_unmap_len(sbq_desc, maplen),
1344                                  PCI_DMA_FROMDEVICE);
1345                 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1346                         /*
1347                          * This is an non TCP/UDP IP frame, so
1348                          * the headers aren't split into a small
1349                          * buffer.  We have to use the small buffer
1350                          * that contains our sg list as our skb to
1351                          * send upstairs. Copy the sg list here to
1352                          * a local buffer and use it to find the
1353                          * pages to chain.
1354                          */
1355                         QPRINTK(qdev, RX_STATUS, DEBUG,
1356                                 "%d bytes of headers & data in chain of large.\n", length);
1357                         skb = sbq_desc->p.skb;
1358                         bq = &bq_array[0];
1359                         memcpy(bq, skb->data, sizeof(bq_array));
1360                         sbq_desc->p.skb = NULL;
1361                         skb_reserve(skb, NET_IP_ALIGN);
1362                 } else {
1363                         QPRINTK(qdev, RX_STATUS, DEBUG,
1364                                 "Headers in small, %d bytes of data in chain of large.\n", length);
1365                         bq = (__le64 *)sbq_desc->p.skb->data;
1366                 }
1367                 while (length > 0) {
1368                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1369                         pci_unmap_page(qdev->pdev,
1370                                        pci_unmap_addr(lbq_desc,
1371                                                       mapaddr),
1372                                        pci_unmap_len(lbq_desc,
1373                                                      maplen),
1374                                        PCI_DMA_FROMDEVICE);
1375                         size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1376                         offset = 0;
1377
1378                         QPRINTK(qdev, RX_STATUS, DEBUG,
1379                                 "Adding page %d to skb for %d bytes.\n",
1380                                 i, size);
1381                         skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1382                                            offset, size);
1383                         skb->len += size;
1384                         skb->data_len += size;
1385                         skb->truesize += size;
1386                         length -= size;
1387                         lbq_desc->p.lbq_page = NULL;
1388                         bq++;
1389                         i++;
1390                 }
1391                 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1392                                 VLAN_ETH_HLEN : ETH_HLEN);
1393         }
1394         return skb;
1395 }
1396
1397 /* Process an inbound completion from an rx ring. */
1398 static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1399                                    struct rx_ring *rx_ring,
1400                                    struct ib_mac_iocb_rsp *ib_mac_rsp)
1401 {
1402         struct net_device *ndev = qdev->ndev;
1403         struct sk_buff *skb = NULL;
1404
1405         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1406
1407         skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1408         if (unlikely(!skb)) {
1409                 QPRINTK(qdev, RX_STATUS, DEBUG,
1410                         "No skb available, drop packet.\n");
1411                 return;
1412         }
1413
1414         prefetch(skb->data);
1415         skb->dev = ndev;
1416         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1417                 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1418                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1419                         IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1420                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1421                         IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1422                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1423                         IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1424         }
1425         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1426                 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1427         }
1428         if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
1429                 QPRINTK(qdev, RX_STATUS, ERR,
1430                         "Bad checksum for this %s packet.\n",
1431                         ((ib_mac_rsp->
1432                           flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
1433                 skb->ip_summed = CHECKSUM_NONE;
1434         } else if (qdev->rx_csum &&
1435                    ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
1436                     ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1437                      !(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
1438                 QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
1439                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1440         }
1441         qdev->stats.rx_packets++;
1442         qdev->stats.rx_bytes += skb->len;
1443         skb->protocol = eth_type_trans(skb, ndev);
1444         skb_record_rx_queue(skb, rx_ring - &qdev->rx_ring[0]);
1445         if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
1446                 QPRINTK(qdev, RX_STATUS, DEBUG,
1447                         "Passing a VLAN packet upstream.\n");
1448                 vlan_hwaccel_receive_skb(skb, qdev->vlgrp,
1449                                 le16_to_cpu(ib_mac_rsp->vlan_id));
1450         } else {
1451                 QPRINTK(qdev, RX_STATUS, DEBUG,
1452                         "Passing a normal packet upstream.\n");
1453                 netif_receive_skb(skb);
1454         }
1455 }
1456
1457 /* Process an outbound completion from an rx ring. */
1458 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1459                                    struct ob_mac_iocb_rsp *mac_rsp)
1460 {
1461         struct tx_ring *tx_ring;
1462         struct tx_ring_desc *tx_ring_desc;
1463
1464         QL_DUMP_OB_MAC_RSP(mac_rsp);
1465         tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1466         tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1467         ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1468         qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
1469         qdev->stats.tx_packets++;
1470         dev_kfree_skb(tx_ring_desc->skb);
1471         tx_ring_desc->skb = NULL;
1472
1473         if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1474                                         OB_MAC_IOCB_RSP_S |
1475                                         OB_MAC_IOCB_RSP_L |
1476                                         OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1477                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1478                         QPRINTK(qdev, TX_DONE, WARNING,
1479                                 "Total descriptor length did not match transfer length.\n");
1480                 }
1481                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1482                         QPRINTK(qdev, TX_DONE, WARNING,
1483                                 "Frame too short to be legal, not sent.\n");
1484                 }
1485                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1486                         QPRINTK(qdev, TX_DONE, WARNING,
1487                                 "Frame too long, but sent anyway.\n");
1488                 }
1489                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1490                         QPRINTK(qdev, TX_DONE, WARNING,
1491                                 "PCI backplane error. Frame not sent.\n");
1492                 }
1493         }
1494         atomic_inc(&tx_ring->tx_count);
1495 }
1496
1497 /* Fire up a handler to reset the MPI processor. */
1498 void ql_queue_fw_error(struct ql_adapter *qdev)
1499 {
1500         netif_stop_queue(qdev->ndev);
1501         netif_carrier_off(qdev->ndev);
1502         queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1503 }
1504
1505 void ql_queue_asic_error(struct ql_adapter *qdev)
1506 {
1507         netif_stop_queue(qdev->ndev);
1508         netif_carrier_off(qdev->ndev);
1509         ql_disable_interrupts(qdev);
1510         /* Clear adapter up bit to signal the recovery
1511          * process that it shouldn't kill the reset worker
1512          * thread
1513          */
1514         clear_bit(QL_ADAPTER_UP, &qdev->flags);
1515         queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1516 }
1517
1518 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1519                                     struct ib_ae_iocb_rsp *ib_ae_rsp)
1520 {
1521         switch (ib_ae_rsp->event) {
1522         case MGMT_ERR_EVENT:
1523                 QPRINTK(qdev, RX_ERR, ERR,
1524                         "Management Processor Fatal Error.\n");
1525                 ql_queue_fw_error(qdev);
1526                 return;
1527
1528         case CAM_LOOKUP_ERR_EVENT:
1529                 QPRINTK(qdev, LINK, ERR,
1530                         "Multiple CAM hits lookup occurred.\n");
1531                 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1532                 ql_queue_asic_error(qdev);
1533                 return;
1534
1535         case SOFT_ECC_ERROR_EVENT:
1536                 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1537                 ql_queue_asic_error(qdev);
1538                 break;
1539
1540         case PCI_ERR_ANON_BUF_RD:
1541                 QPRINTK(qdev, RX_ERR, ERR,
1542                         "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1543                         ib_ae_rsp->q_id);
1544                 ql_queue_asic_error(qdev);
1545                 break;
1546
1547         default:
1548                 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1549                         ib_ae_rsp->event);
1550                 ql_queue_asic_error(qdev);
1551                 break;
1552         }
1553 }
1554
1555 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1556 {
1557         struct ql_adapter *qdev = rx_ring->qdev;
1558         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1559         struct ob_mac_iocb_rsp *net_rsp = NULL;
1560         int count = 0;
1561
1562         /* While there are entries in the completion queue. */
1563         while (prod != rx_ring->cnsmr_idx) {
1564
1565                 QPRINTK(qdev, RX_STATUS, DEBUG,
1566                         "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1567                         prod, rx_ring->cnsmr_idx);
1568
1569                 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1570                 rmb();
1571                 switch (net_rsp->opcode) {
1572
1573                 case OPCODE_OB_MAC_TSO_IOCB:
1574                 case OPCODE_OB_MAC_IOCB:
1575                         ql_process_mac_tx_intr(qdev, net_rsp);
1576                         break;
1577                 default:
1578                         QPRINTK(qdev, RX_STATUS, DEBUG,
1579                                 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1580                                 net_rsp->opcode);
1581                 }
1582                 count++;
1583                 ql_update_cq(rx_ring);
1584                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1585         }
1586         ql_write_cq_idx(rx_ring);
1587         if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
1588                 struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1589                 if (atomic_read(&tx_ring->queue_stopped) &&
1590                     (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1591                         /*
1592                          * The queue got stopped because the tx_ring was full.
1593                          * Wake it up, because it's now at least 25% empty.
1594                          */
1595                         netif_wake_queue(qdev->ndev);
1596         }
1597
1598         return count;
1599 }
1600
1601 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1602 {
1603         struct ql_adapter *qdev = rx_ring->qdev;
1604         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1605         struct ql_net_rsp_iocb *net_rsp;
1606         int count = 0;
1607
1608         /* While there are entries in the completion queue. */
1609         while (prod != rx_ring->cnsmr_idx) {
1610
1611                 QPRINTK(qdev, RX_STATUS, DEBUG,
1612                         "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1613                         prod, rx_ring->cnsmr_idx);
1614
1615                 net_rsp = rx_ring->curr_entry;
1616                 rmb();
1617                 switch (net_rsp->opcode) {
1618                 case OPCODE_IB_MAC_IOCB:
1619                         ql_process_mac_rx_intr(qdev, rx_ring,
1620                                                (struct ib_mac_iocb_rsp *)
1621                                                net_rsp);
1622                         break;
1623
1624                 case OPCODE_IB_AE_IOCB:
1625                         ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1626                                                 net_rsp);
1627                         break;
1628                 default:
1629                         {
1630                                 QPRINTK(qdev, RX_STATUS, DEBUG,
1631                                         "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1632                                         net_rsp->opcode);
1633                         }
1634                 }
1635                 count++;
1636                 ql_update_cq(rx_ring);
1637                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1638                 if (count == budget)
1639                         break;
1640         }
1641         ql_update_buffer_queues(qdev, rx_ring);
1642         ql_write_cq_idx(rx_ring);
1643         return count;
1644 }
1645
1646 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1647 {
1648         struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1649         struct ql_adapter *qdev = rx_ring->qdev;
1650         int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1651
1652         QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1653                 rx_ring->cq_id);
1654
1655         if (work_done < budget) {
1656                 __napi_complete(napi);
1657                 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1658         }
1659         return work_done;
1660 }
1661
1662 static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1663 {
1664         struct ql_adapter *qdev = netdev_priv(ndev);
1665
1666         qdev->vlgrp = grp;
1667         if (grp) {
1668                 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1669                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1670                            NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1671         } else {
1672                 QPRINTK(qdev, IFUP, DEBUG,
1673                         "Turning off VLAN in NIC_RCV_CFG.\n");
1674                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1675         }
1676 }
1677
1678 static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1679 {
1680         struct ql_adapter *qdev = netdev_priv(ndev);
1681         u32 enable_bit = MAC_ADDR_E;
1682         int status;
1683
1684         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1685         if (status)
1686                 return;
1687         spin_lock(&qdev->hw_lock);
1688         if (ql_set_mac_addr_reg
1689             (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1690                 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1691         }
1692         spin_unlock(&qdev->hw_lock);
1693         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
1694 }
1695
1696 static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1697 {
1698         struct ql_adapter *qdev = netdev_priv(ndev);
1699         u32 enable_bit = 0;
1700         int status;
1701
1702         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1703         if (status)
1704                 return;
1705
1706         spin_lock(&qdev->hw_lock);
1707         if (ql_set_mac_addr_reg
1708             (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1709                 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1710         }
1711         spin_unlock(&qdev->hw_lock);
1712         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
1713
1714 }
1715
1716 /* Worker thread to process a given rx_ring that is dedicated
1717  * to outbound completions.
1718  */
1719 static void ql_tx_clean(struct work_struct *work)
1720 {
1721         struct rx_ring *rx_ring =
1722             container_of(work, struct rx_ring, rx_work.work);
1723         ql_clean_outbound_rx_ring(rx_ring);
1724         ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1725
1726 }
1727
1728 /* Worker thread to process a given rx_ring that is dedicated
1729  * to inbound completions.
1730  */
1731 static void ql_rx_clean(struct work_struct *work)
1732 {
1733         struct rx_ring *rx_ring =
1734             container_of(work, struct rx_ring, rx_work.work);
1735         ql_clean_inbound_rx_ring(rx_ring, 64);
1736         ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1737 }
1738
1739 /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
1740 static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
1741 {
1742         struct rx_ring *rx_ring = dev_id;
1743         queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
1744                               &rx_ring->rx_work, 0);
1745         return IRQ_HANDLED;
1746 }
1747
1748 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1749 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1750 {
1751         struct rx_ring *rx_ring = dev_id;
1752         napi_schedule(&rx_ring->napi);
1753         return IRQ_HANDLED;
1754 }
1755
1756 /* This handles a fatal error, MPI activity, and the default
1757  * rx_ring in an MSI-X multiple vector environment.
1758  * In MSI/Legacy environment it also process the rest of
1759  * the rx_rings.
1760  */
1761 static irqreturn_t qlge_isr(int irq, void *dev_id)
1762 {
1763         struct rx_ring *rx_ring = dev_id;
1764         struct ql_adapter *qdev = rx_ring->qdev;
1765         struct intr_context *intr_context = &qdev->intr_context[0];
1766         u32 var;
1767         int i;
1768         int work_done = 0;
1769
1770         spin_lock(&qdev->hw_lock);
1771         if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
1772                 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
1773                 spin_unlock(&qdev->hw_lock);
1774                 return IRQ_NONE;
1775         }
1776         spin_unlock(&qdev->hw_lock);
1777
1778         var = ql_disable_completion_interrupt(qdev, intr_context->intr);
1779
1780         /*
1781          * Check for fatal error.
1782          */
1783         if (var & STS_FE) {
1784                 ql_queue_asic_error(qdev);
1785                 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
1786                 var = ql_read32(qdev, ERR_STS);
1787                 QPRINTK(qdev, INTR, ERR,
1788                         "Resetting chip. Error Status Register = 0x%x\n", var);
1789                 return IRQ_HANDLED;
1790         }
1791
1792         /*
1793          * Check MPI processor activity.
1794          */
1795         if (var & STS_PI) {
1796                 /*
1797                  * We've got an async event or mailbox completion.
1798                  * Handle it and clear the source of the interrupt.
1799                  */
1800                 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
1801                 ql_disable_completion_interrupt(qdev, intr_context->intr);
1802                 queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
1803                                       &qdev->mpi_work, 0);
1804                 work_done++;
1805         }
1806
1807         /*
1808          * Check the default queue and wake handler if active.
1809          */
1810         rx_ring = &qdev->rx_ring[0];
1811         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
1812                 QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
1813                 ql_disable_completion_interrupt(qdev, intr_context->intr);
1814                 queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
1815                                       &rx_ring->rx_work, 0);
1816                 work_done++;
1817         }
1818
1819         if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
1820                 /*
1821                  * Start the DPC for each active queue.
1822                  */
1823                 for (i = 1; i < qdev->rx_ring_count; i++) {
1824                         rx_ring = &qdev->rx_ring[i];
1825                         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
1826                             rx_ring->cnsmr_idx) {
1827                                 QPRINTK(qdev, INTR, INFO,
1828                                         "Waking handler for rx_ring[%d].\n", i);
1829                                 ql_disable_completion_interrupt(qdev,
1830                                                                 intr_context->
1831                                                                 intr);
1832                                 if (i < qdev->rss_ring_first_cq_id)
1833                                         queue_delayed_work_on(rx_ring->cpu,
1834                                                               qdev->q_workqueue,
1835                                                               &rx_ring->rx_work,
1836                                                               0);
1837                                 else
1838                                         napi_schedule(&rx_ring->napi);
1839                                 work_done++;
1840                         }
1841                 }
1842         }
1843         ql_enable_completion_interrupt(qdev, intr_context->intr);
1844         return work_done ? IRQ_HANDLED : IRQ_NONE;
1845 }
1846
1847 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1848 {
1849
1850         if (skb_is_gso(skb)) {
1851                 int err;
1852                 if (skb_header_cloned(skb)) {
1853                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1854                         if (err)
1855                                 return err;
1856                 }
1857
1858                 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1859                 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
1860                 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1861                 mac_iocb_ptr->total_hdrs_len =
1862                     cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
1863                 mac_iocb_ptr->net_trans_offset =
1864                     cpu_to_le16(skb_network_offset(skb) |
1865                                 skb_transport_offset(skb)
1866                                 << OB_MAC_TRANSPORT_HDR_SHIFT);
1867                 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
1868                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
1869                 if (likely(skb->protocol == htons(ETH_P_IP))) {
1870                         struct iphdr *iph = ip_hdr(skb);
1871                         iph->check = 0;
1872                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1873                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1874                                                                  iph->daddr, 0,
1875                                                                  IPPROTO_TCP,
1876                                                                  0);
1877                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
1878                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
1879                         tcp_hdr(skb)->check =
1880                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1881                                              &ipv6_hdr(skb)->daddr,
1882                                              0, IPPROTO_TCP, 0);
1883                 }
1884                 return 1;
1885         }
1886         return 0;
1887 }
1888
1889 static void ql_hw_csum_setup(struct sk_buff *skb,
1890                              struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1891 {
1892         int len;
1893         struct iphdr *iph = ip_hdr(skb);
1894         __sum16 *check;
1895         mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1896         mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1897         mac_iocb_ptr->net_trans_offset =
1898                 cpu_to_le16(skb_network_offset(skb) |
1899                 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
1900
1901         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1902         len = (ntohs(iph->tot_len) - (iph->ihl << 2));
1903         if (likely(iph->protocol == IPPROTO_TCP)) {
1904                 check = &(tcp_hdr(skb)->check);
1905                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
1906                 mac_iocb_ptr->total_hdrs_len =
1907                     cpu_to_le16(skb_transport_offset(skb) +
1908                                 (tcp_hdr(skb)->doff << 2));
1909         } else {
1910                 check = &(udp_hdr(skb)->check);
1911                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
1912                 mac_iocb_ptr->total_hdrs_len =
1913                     cpu_to_le16(skb_transport_offset(skb) +
1914                                 sizeof(struct udphdr));
1915         }
1916         *check = ~csum_tcpudp_magic(iph->saddr,
1917                                     iph->daddr, len, iph->protocol, 0);
1918 }
1919
1920 static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
1921 {
1922         struct tx_ring_desc *tx_ring_desc;
1923         struct ob_mac_iocb_req *mac_iocb_ptr;
1924         struct ql_adapter *qdev = netdev_priv(ndev);
1925         int tso;
1926         struct tx_ring *tx_ring;
1927         u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
1928
1929         tx_ring = &qdev->tx_ring[tx_ring_idx];
1930
1931         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
1932                 QPRINTK(qdev, TX_QUEUED, INFO,
1933                         "%s: shutting down tx queue %d du to lack of resources.\n",
1934                         __func__, tx_ring_idx);
1935                 netif_stop_queue(ndev);
1936                 atomic_inc(&tx_ring->queue_stopped);
1937                 return NETDEV_TX_BUSY;
1938         }
1939         tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
1940         mac_iocb_ptr = tx_ring_desc->queue_entry;
1941         memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
1942
1943         mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
1944         mac_iocb_ptr->tid = tx_ring_desc->index;
1945         /* We use the upper 32-bits to store the tx queue for this IO.
1946          * When we get the completion we can use it to establish the context.
1947          */
1948         mac_iocb_ptr->txq_idx = tx_ring_idx;
1949         tx_ring_desc->skb = skb;
1950
1951         mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
1952
1953         if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
1954                 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
1955                         vlan_tx_tag_get(skb));
1956                 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
1957                 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
1958         }
1959         tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1960         if (tso < 0) {
1961                 dev_kfree_skb_any(skb);
1962                 return NETDEV_TX_OK;
1963         } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
1964                 ql_hw_csum_setup(skb,
1965                                  (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1966         }
1967         if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
1968                         NETDEV_TX_OK) {
1969                 QPRINTK(qdev, TX_QUEUED, ERR,
1970                                 "Could not map the segments.\n");
1971                 return NETDEV_TX_BUSY;
1972         }
1973         QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
1974         tx_ring->prod_idx++;
1975         if (tx_ring->prod_idx == tx_ring->wq_len)
1976                 tx_ring->prod_idx = 0;
1977         wmb();
1978
1979         ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
1980         ndev->trans_start = jiffies;
1981         QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
1982                 tx_ring->prod_idx, skb->len);
1983
1984         atomic_dec(&tx_ring->tx_count);
1985         return NETDEV_TX_OK;
1986 }
1987
1988 static void ql_free_shadow_space(struct ql_adapter *qdev)
1989 {
1990         if (qdev->rx_ring_shadow_reg_area) {
1991                 pci_free_consistent(qdev->pdev,
1992                                     PAGE_SIZE,
1993                                     qdev->rx_ring_shadow_reg_area,
1994                                     qdev->rx_ring_shadow_reg_dma);
1995                 qdev->rx_ring_shadow_reg_area = NULL;
1996         }
1997         if (qdev->tx_ring_shadow_reg_area) {
1998                 pci_free_consistent(qdev->pdev,
1999                                     PAGE_SIZE,
2000                                     qdev->tx_ring_shadow_reg_area,
2001                                     qdev->tx_ring_shadow_reg_dma);
2002                 qdev->tx_ring_shadow_reg_area = NULL;
2003         }
2004 }
2005
2006 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2007 {
2008         qdev->rx_ring_shadow_reg_area =
2009             pci_alloc_consistent(qdev->pdev,
2010                                  PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2011         if (qdev->rx_ring_shadow_reg_area == NULL) {
2012                 QPRINTK(qdev, IFUP, ERR,
2013                         "Allocation of RX shadow space failed.\n");
2014                 return -ENOMEM;
2015         }
2016         qdev->tx_ring_shadow_reg_area =
2017             pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2018                                  &qdev->tx_ring_shadow_reg_dma);
2019         if (qdev->tx_ring_shadow_reg_area == NULL) {
2020                 QPRINTK(qdev, IFUP, ERR,
2021                         "Allocation of TX shadow space failed.\n");
2022                 goto err_wqp_sh_area;
2023         }
2024         return 0;
2025
2026 err_wqp_sh_area:
2027         pci_free_consistent(qdev->pdev,
2028                             PAGE_SIZE,
2029                             qdev->rx_ring_shadow_reg_area,
2030                             qdev->rx_ring_shadow_reg_dma);
2031         return -ENOMEM;
2032 }
2033
2034 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2035 {
2036         struct tx_ring_desc *tx_ring_desc;
2037         int i;
2038         struct ob_mac_iocb_req *mac_iocb_ptr;
2039
2040         mac_iocb_ptr = tx_ring->wq_base;
2041         tx_ring_desc = tx_ring->q;
2042         for (i = 0; i < tx_ring->wq_len; i++) {
2043                 tx_ring_desc->index = i;
2044                 tx_ring_desc->skb = NULL;
2045                 tx_ring_desc->queue_entry = mac_iocb_ptr;
2046                 mac_iocb_ptr++;
2047                 tx_ring_desc++;
2048         }
2049         atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2050         atomic_set(&tx_ring->queue_stopped, 0);
2051 }
2052
2053 static void ql_free_tx_resources(struct ql_adapter *qdev,
2054                                  struct tx_ring *tx_ring)
2055 {
2056         if (tx_ring->wq_base) {
2057                 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2058                                     tx_ring->wq_base, tx_ring->wq_base_dma);
2059                 tx_ring->wq_base = NULL;
2060         }
2061         kfree(tx_ring->q);
2062         tx_ring->q = NULL;
2063 }
2064
2065 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2066                                  struct tx_ring *tx_ring)
2067 {
2068         tx_ring->wq_base =
2069             pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2070                                  &tx_ring->wq_base_dma);
2071
2072         if ((tx_ring->wq_base == NULL)
2073             || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
2074                 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2075                 return -ENOMEM;
2076         }
2077         tx_ring->q =
2078             kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2079         if (tx_ring->q == NULL)
2080                 goto err;
2081
2082         return 0;
2083 err:
2084         pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2085                             tx_ring->wq_base, tx_ring->wq_base_dma);
2086         return -ENOMEM;
2087 }
2088
2089 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2090 {
2091         int i;
2092         struct bq_desc *lbq_desc;
2093
2094         for (i = 0; i < rx_ring->lbq_len; i++) {
2095                 lbq_desc = &rx_ring->lbq[i];
2096                 if (lbq_desc->p.lbq_page) {
2097                         pci_unmap_page(qdev->pdev,
2098                                        pci_unmap_addr(lbq_desc, mapaddr),
2099                                        pci_unmap_len(lbq_desc, maplen),
2100                                        PCI_DMA_FROMDEVICE);
2101
2102                         put_page(lbq_desc->p.lbq_page);
2103                         lbq_desc->p.lbq_page = NULL;
2104                 }
2105         }
2106 }
2107
2108 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2109 {
2110         int i;
2111         struct bq_desc *sbq_desc;
2112
2113         for (i = 0; i < rx_ring->sbq_len; i++) {
2114                 sbq_desc = &rx_ring->sbq[i];
2115                 if (sbq_desc == NULL) {
2116                         QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2117                         return;
2118                 }
2119                 if (sbq_desc->p.skb) {
2120                         pci_unmap_single(qdev->pdev,
2121                                          pci_unmap_addr(sbq_desc, mapaddr),
2122                                          pci_unmap_len(sbq_desc, maplen),
2123                                          PCI_DMA_FROMDEVICE);
2124                         dev_kfree_skb(sbq_desc->p.skb);
2125                         sbq_desc->p.skb = NULL;
2126                 }
2127         }
2128 }
2129
2130 /* Free all large and small rx buffers associated
2131  * with the completion queues for this device.
2132  */
2133 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2134 {
2135         int i;
2136         struct rx_ring *rx_ring;
2137
2138         for (i = 0; i < qdev->rx_ring_count; i++) {
2139                 rx_ring = &qdev->rx_ring[i];
2140                 if (rx_ring->lbq)
2141                         ql_free_lbq_buffers(qdev, rx_ring);
2142                 if (rx_ring->sbq)
2143                         ql_free_sbq_buffers(qdev, rx_ring);
2144         }
2145 }
2146
2147 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2148 {
2149         struct rx_ring *rx_ring;
2150         int i;
2151
2152         for (i = 0; i < qdev->rx_ring_count; i++) {
2153                 rx_ring = &qdev->rx_ring[i];
2154                 if (rx_ring->type != TX_Q)
2155                         ql_update_buffer_queues(qdev, rx_ring);
2156         }
2157 }
2158
2159 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2160                                 struct rx_ring *rx_ring)
2161 {
2162         int i;
2163         struct bq_desc *lbq_desc;
2164         __le64 *bq = rx_ring->lbq_base;
2165
2166         memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2167         for (i = 0; i < rx_ring->lbq_len; i++) {
2168                 lbq_desc = &rx_ring->lbq[i];
2169                 memset(lbq_desc, 0, sizeof(*lbq_desc));
2170                 lbq_desc->index = i;
2171                 lbq_desc->addr = bq;
2172                 bq++;
2173         }
2174 }
2175
2176 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2177                                 struct rx_ring *rx_ring)
2178 {
2179         int i;
2180         struct bq_desc *sbq_desc;
2181         __le64 *bq = rx_ring->sbq_base;
2182
2183         memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2184         for (i = 0; i < rx_ring->sbq_len; i++) {
2185                 sbq_desc = &rx_ring->sbq[i];
2186                 memset(sbq_desc, 0, sizeof(*sbq_desc));
2187                 sbq_desc->index = i;
2188                 sbq_desc->addr = bq;
2189                 bq++;
2190         }
2191 }
2192
2193 static void ql_free_rx_resources(struct ql_adapter *qdev,
2194                                  struct rx_ring *rx_ring)
2195 {
2196         /* Free the small buffer queue. */
2197         if (rx_ring->sbq_base) {
2198                 pci_free_consistent(qdev->pdev,
2199                                     rx_ring->sbq_size,
2200                                     rx_ring->sbq_base, rx_ring->sbq_base_dma);
2201                 rx_ring->sbq_base = NULL;
2202         }
2203
2204         /* Free the small buffer queue control blocks. */
2205         kfree(rx_ring->sbq);
2206         rx_ring->sbq = NULL;
2207
2208         /* Free the large buffer queue. */
2209         if (rx_ring->lbq_base) {
2210                 pci_free_consistent(qdev->pdev,
2211                                     rx_ring->lbq_size,
2212                                     rx_ring->lbq_base, rx_ring->lbq_base_dma);
2213                 rx_ring->lbq_base = NULL;
2214         }
2215
2216         /* Free the large buffer queue control blocks. */
2217         kfree(rx_ring->lbq);
2218         rx_ring->lbq = NULL;
2219
2220         /* Free the rx queue. */
2221         if (rx_ring->cq_base) {
2222                 pci_free_consistent(qdev->pdev,
2223                                     rx_ring->cq_size,
2224                                     rx_ring->cq_base, rx_ring->cq_base_dma);
2225                 rx_ring->cq_base = NULL;
2226         }
2227 }
2228
2229 /* Allocate queues and buffers for this completions queue based
2230  * on the values in the parameter structure. */
2231 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2232                                  struct rx_ring *rx_ring)
2233 {
2234
2235         /*
2236          * Allocate the completion queue for this rx_ring.
2237          */
2238         rx_ring->cq_base =
2239             pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2240                                  &rx_ring->cq_base_dma);
2241
2242         if (rx_ring->cq_base == NULL) {
2243                 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2244                 return -ENOMEM;
2245         }
2246
2247         if (rx_ring->sbq_len) {
2248                 /*
2249                  * Allocate small buffer queue.
2250                  */
2251                 rx_ring->sbq_base =
2252                     pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2253                                          &rx_ring->sbq_base_dma);
2254
2255                 if (rx_ring->sbq_base == NULL) {
2256                         QPRINTK(qdev, IFUP, ERR,
2257                                 "Small buffer queue allocation failed.\n");
2258                         goto err_mem;
2259                 }
2260
2261                 /*
2262                  * Allocate small buffer queue control blocks.
2263                  */
2264                 rx_ring->sbq =
2265                     kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2266                             GFP_KERNEL);
2267                 if (rx_ring->sbq == NULL) {
2268                         QPRINTK(qdev, IFUP, ERR,
2269                                 "Small buffer queue control block allocation failed.\n");
2270                         goto err_mem;
2271                 }
2272
2273                 ql_init_sbq_ring(qdev, rx_ring);
2274         }
2275
2276         if (rx_ring->lbq_len) {
2277                 /*
2278                  * Allocate large buffer queue.
2279                  */
2280                 rx_ring->lbq_base =
2281                     pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2282                                          &rx_ring->lbq_base_dma);
2283
2284                 if (rx_ring->lbq_base == NULL) {
2285                         QPRINTK(qdev, IFUP, ERR,
2286                                 "Large buffer queue allocation failed.\n");
2287                         goto err_mem;
2288                 }
2289                 /*
2290                  * Allocate large buffer queue control blocks.
2291                  */
2292                 rx_ring->lbq =
2293                     kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2294                             GFP_KERNEL);
2295                 if (rx_ring->lbq == NULL) {
2296                         QPRINTK(qdev, IFUP, ERR,
2297                                 "Large buffer queue control block allocation failed.\n");
2298                         goto err_mem;
2299                 }
2300
2301                 ql_init_lbq_ring(qdev, rx_ring);
2302         }
2303
2304         return 0;
2305
2306 err_mem:
2307         ql_free_rx_resources(qdev, rx_ring);
2308         return -ENOMEM;
2309 }
2310
2311 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2312 {
2313         struct tx_ring *tx_ring;
2314         struct tx_ring_desc *tx_ring_desc;
2315         int i, j;
2316
2317         /*
2318          * Loop through all queues and free
2319          * any resources.
2320          */
2321         for (j = 0; j < qdev->tx_ring_count; j++) {
2322                 tx_ring = &qdev->tx_ring[j];
2323                 for (i = 0; i < tx_ring->wq_len; i++) {
2324                         tx_ring_desc = &tx_ring->q[i];
2325                         if (tx_ring_desc && tx_ring_desc->skb) {
2326                                 QPRINTK(qdev, IFDOWN, ERR,
2327                                 "Freeing lost SKB %p, from queue %d, index %d.\n",
2328                                         tx_ring_desc->skb, j,
2329                                         tx_ring_desc->index);
2330                                 ql_unmap_send(qdev, tx_ring_desc,
2331                                               tx_ring_desc->map_cnt);
2332                                 dev_kfree_skb(tx_ring_desc->skb);
2333                                 tx_ring_desc->skb = NULL;
2334                         }
2335                 }
2336         }
2337 }
2338
2339 static void ql_free_mem_resources(struct ql_adapter *qdev)
2340 {
2341         int i;
2342
2343         for (i = 0; i < qdev->tx_ring_count; i++)
2344                 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2345         for (i = 0; i < qdev->rx_ring_count; i++)
2346                 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2347         ql_free_shadow_space(qdev);
2348 }
2349
2350 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2351 {
2352         int i;
2353
2354         /* Allocate space for our shadow registers and such. */
2355         if (ql_alloc_shadow_space(qdev))
2356                 return -ENOMEM;
2357
2358         for (i = 0; i < qdev->rx_ring_count; i++) {
2359                 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2360                         QPRINTK(qdev, IFUP, ERR,
2361                                 "RX resource allocation failed.\n");
2362                         goto err_mem;
2363                 }
2364         }
2365         /* Allocate tx queue resources */
2366         for (i = 0; i < qdev->tx_ring_count; i++) {
2367                 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2368                         QPRINTK(qdev, IFUP, ERR,
2369                                 "TX resource allocation failed.\n");
2370                         goto err_mem;
2371                 }
2372         }
2373         return 0;
2374
2375 err_mem:
2376         ql_free_mem_resources(qdev);
2377         return -ENOMEM;
2378 }
2379
2380 /* Set up the rx ring control block and pass it to the chip.
2381  * The control block is defined as
2382  * "Completion Queue Initialization Control Block", or cqicb.
2383  */
2384 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2385 {
2386         struct cqicb *cqicb = &rx_ring->cqicb;
2387         void *shadow_reg = qdev->rx_ring_shadow_reg_area +
2388             (rx_ring->cq_id * sizeof(u64) * 4);
2389         u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
2390             (rx_ring->cq_id * sizeof(u64) * 4);
2391         void __iomem *doorbell_area =
2392             qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2393         int err = 0;
2394         u16 bq_len;
2395
2396         /* Set up the shadow registers for this ring. */
2397         rx_ring->prod_idx_sh_reg = shadow_reg;
2398         rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2399         shadow_reg += sizeof(u64);
2400         shadow_reg_dma += sizeof(u64);
2401         rx_ring->lbq_base_indirect = shadow_reg;
2402         rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
2403         shadow_reg += sizeof(u64);
2404         shadow_reg_dma += sizeof(u64);
2405         rx_ring->sbq_base_indirect = shadow_reg;
2406         rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2407
2408         /* PCI doorbell mem area + 0x00 for consumer index register */
2409         rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
2410         rx_ring->cnsmr_idx = 0;
2411         rx_ring->curr_entry = rx_ring->cq_base;
2412
2413         /* PCI doorbell mem area + 0x04 for valid register */
2414         rx_ring->valid_db_reg = doorbell_area + 0x04;
2415
2416         /* PCI doorbell mem area + 0x18 for large buffer consumer */
2417         rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
2418
2419         /* PCI doorbell mem area + 0x1c */
2420         rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
2421
2422         memset((void *)cqicb, 0, sizeof(struct cqicb));
2423         cqicb->msix_vect = rx_ring->irq;
2424
2425         bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
2426         cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
2427
2428         cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
2429
2430         cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
2431
2432         /*
2433          * Set up the control block load flags.
2434          */
2435         cqicb->flags = FLAGS_LC |       /* Load queue base address */
2436             FLAGS_LV |          /* Load MSI-X vector */
2437             FLAGS_LI;           /* Load irq delay values */
2438         if (rx_ring->lbq_len) {
2439                 cqicb->flags |= FLAGS_LL;       /* Load lbq values */
2440                 *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
2441                 cqicb->lbq_addr =
2442                     cpu_to_le64(rx_ring->lbq_base_indirect_dma);
2443                 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
2444                         (u16) rx_ring->lbq_buf_size;
2445                 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
2446                 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
2447                         (u16) rx_ring->lbq_len;
2448                 cqicb->lbq_len = cpu_to_le16(bq_len);
2449                 rx_ring->lbq_prod_idx = 0;
2450                 rx_ring->lbq_curr_idx = 0;
2451                 rx_ring->lbq_clean_idx = 0;
2452                 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
2453         }
2454         if (rx_ring->sbq_len) {
2455                 cqicb->flags |= FLAGS_LS;       /* Load sbq values */
2456                 *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
2457                 cqicb->sbq_addr =
2458                     cpu_to_le64(rx_ring->sbq_base_indirect_dma);
2459                 cqicb->sbq_buf_size =
2460                     cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
2461                 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
2462                         (u16) rx_ring->sbq_len;
2463                 cqicb->sbq_len = cpu_to_le16(bq_len);
2464                 rx_ring->sbq_prod_idx = 0;
2465                 rx_ring->sbq_curr_idx = 0;
2466                 rx_ring->sbq_clean_idx = 0;
2467                 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
2468         }
2469         switch (rx_ring->type) {
2470         case TX_Q:
2471                 /* If there's only one interrupt, then we use
2472                  * worker threads to process the outbound
2473                  * completion handling rx_rings. We do this so
2474                  * they can be run on multiple CPUs. There is
2475                  * room to play with this more where we would only
2476                  * run in a worker if there are more than x number
2477                  * of outbound completions on the queue and more
2478                  * than one queue active.  Some threshold that
2479                  * would indicate a benefit in spite of the cost
2480                  * of a context switch.
2481                  * If there's more than one interrupt, then the
2482                  * outbound completions are processed in the ISR.
2483                  */
2484                 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
2485                         INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2486                 else {
2487                         /* With all debug warnings on we see a WARN_ON message
2488                          * when we free the skb in the interrupt context.
2489                          */
2490                         INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2491                 }
2492                 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2493                 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2494                 break;
2495         case DEFAULT_Q:
2496                 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
2497                 cqicb->irq_delay = 0;
2498                 cqicb->pkt_delay = 0;
2499                 break;
2500         case RX_Q:
2501                 /* Inbound completion handling rx_rings run in
2502                  * separate NAPI contexts.
2503                  */
2504                 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2505                                64);
2506                 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2507                 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2508                 break;
2509         default:
2510                 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2511                         rx_ring->type);
2512         }
2513         QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
2514         err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2515                            CFG_LCQ, rx_ring->cq_id);
2516         if (err) {
2517                 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2518                 return err;
2519         }
2520         return err;
2521 }
2522
2523 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2524 {
2525         struct wqicb *wqicb = (struct wqicb *)tx_ring;
2526         void __iomem *doorbell_area =
2527             qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2528         void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2529             (tx_ring->wq_id * sizeof(u64));
2530         u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2531             (tx_ring->wq_id * sizeof(u64));
2532         int err = 0;
2533
2534         /*
2535          * Assign doorbell registers for this tx_ring.
2536          */
2537         /* TX PCI doorbell mem area for tx producer index */
2538         tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
2539         tx_ring->prod_idx = 0;
2540         /* TX PCI doorbell mem area + 0x04 */
2541         tx_ring->valid_db_reg = doorbell_area + 0x04;
2542
2543         /*
2544          * Assign shadow registers for this tx_ring.
2545          */
2546         tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2547         tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2548
2549         wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2550         wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2551                                    Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2552         wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2553         wqicb->rid = 0;
2554         wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
2555
2556         wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
2557
2558         ql_init_tx_ring(qdev, tx_ring);
2559
2560         err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
2561                            (u16) tx_ring->wq_id);
2562         if (err) {
2563                 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2564                 return err;
2565         }
2566         QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
2567         return err;
2568 }
2569
2570 static void ql_disable_msix(struct ql_adapter *qdev)
2571 {
2572         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2573                 pci_disable_msix(qdev->pdev);
2574                 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2575                 kfree(qdev->msi_x_entry);
2576                 qdev->msi_x_entry = NULL;
2577         } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2578                 pci_disable_msi(qdev->pdev);
2579                 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2580         }
2581 }
2582
2583 static void ql_enable_msix(struct ql_adapter *qdev)
2584 {
2585         int i;
2586
2587         qdev->intr_count = 1;
2588         /* Get the MSIX vectors. */
2589         if (irq_type == MSIX_IRQ) {
2590                 /* Try to alloc space for the msix struct,
2591                  * if it fails then go to MSI/legacy.
2592                  */
2593                 qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
2594                                             sizeof(struct msix_entry),
2595                                             GFP_KERNEL);
2596                 if (!qdev->msi_x_entry) {
2597                         irq_type = MSI_IRQ;
2598                         goto msi;
2599                 }
2600
2601                 for (i = 0; i < qdev->rx_ring_count; i++)
2602                         qdev->msi_x_entry[i].entry = i;
2603
2604                 if (!pci_enable_msix
2605                     (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
2606                         set_bit(QL_MSIX_ENABLED, &qdev->flags);
2607                         qdev->intr_count = qdev->rx_ring_count;
2608                         QPRINTK(qdev, IFUP, INFO,
2609                                 "MSI-X Enabled, got %d vectors.\n",
2610                                 qdev->intr_count);
2611                         return;
2612                 } else {
2613                         kfree(qdev->msi_x_entry);
2614                         qdev->msi_x_entry = NULL;
2615                         QPRINTK(qdev, IFUP, WARNING,
2616                                 "MSI-X Enable failed, trying MSI.\n");
2617                         irq_type = MSI_IRQ;
2618                 }
2619         }
2620 msi:
2621         if (irq_type == MSI_IRQ) {
2622                 if (!pci_enable_msi(qdev->pdev)) {
2623                         set_bit(QL_MSI_ENABLED, &qdev->flags);
2624                         QPRINTK(qdev, IFUP, INFO,
2625                                 "Running with MSI interrupts.\n");
2626                         return;
2627                 }
2628         }
2629         irq_type = LEG_IRQ;
2630         QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2631 }
2632
2633 /*
2634  * Here we build the intr_context structures based on
2635  * our rx_ring count and intr vector count.
2636  * The intr_context structure is used to hook each vector
2637  * to possibly different handlers.
2638  */
2639 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2640 {
2641         int i = 0;
2642         struct intr_context *intr_context = &qdev->intr_context[0];
2643
2644         ql_enable_msix(qdev);
2645
2646         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2647                 /* Each rx_ring has it's
2648                  * own intr_context since we have separate
2649                  * vectors for each queue.
2650                  * This only true when MSI-X is enabled.
2651                  */
2652                 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2653                         qdev->rx_ring[i].irq = i;
2654                         intr_context->intr = i;
2655                         intr_context->qdev = qdev;
2656                         /*
2657                          * We set up each vectors enable/disable/read bits so
2658                          * there's no bit/mask calculations in the critical path.
2659                          */
2660                         intr_context->intr_en_mask =
2661                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2662                             INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2663                             | i;
2664                         intr_context->intr_dis_mask =
2665                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2666                             INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2667                             INTR_EN_IHD | i;
2668                         intr_context->intr_read_mask =
2669                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2670                             INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2671                             i;
2672
2673                         if (i == 0) {
2674                                 /*
2675                                  * Default queue handles bcast/mcast plus
2676                                  * async events.  Needs buffers.
2677                                  */
2678                                 intr_context->handler = qlge_isr;
2679                                 sprintf(intr_context->name, "%s-default-queue",
2680                                         qdev->ndev->name);
2681                         } else if (i < qdev->rss_ring_first_cq_id) {
2682                                 /*
2683                                  * Outbound queue is for outbound completions only.
2684                                  */
2685                                 intr_context->handler = qlge_msix_tx_isr;
2686                                 sprintf(intr_context->name, "%s-tx-%d",
2687                                         qdev->ndev->name, i);
2688                         } else {
2689                                 /*
2690                                  * Inbound queues handle unicast frames only.
2691                                  */
2692                                 intr_context->handler = qlge_msix_rx_isr;
2693                                 sprintf(intr_context->name, "%s-rx-%d",
2694                                         qdev->ndev->name, i);
2695                         }
2696                 }
2697         } else {
2698                 /*
2699                  * All rx_rings use the same intr_context since
2700                  * there is only one vector.
2701                  */
2702                 intr_context->intr = 0;
2703                 intr_context->qdev = qdev;
2704                 /*
2705                  * We set up each vectors enable/disable/read bits so
2706                  * there's no bit/mask calculations in the critical path.
2707                  */
2708                 intr_context->intr_en_mask =
2709                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2710                 intr_context->intr_dis_mask =
2711                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2712                     INTR_EN_TYPE_DISABLE;
2713                 intr_context->intr_read_mask =
2714                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2715                 /*
2716                  * Single interrupt means one handler for all rings.
2717                  */
2718                 intr_context->handler = qlge_isr;
2719                 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
2720                 for (i = 0; i < qdev->rx_ring_count; i++)
2721                         qdev->rx_ring[i].irq = 0;
2722         }
2723 }
2724
2725 static void ql_free_irq(struct ql_adapter *qdev)
2726 {
2727         int i;
2728         struct intr_context *intr_context = &qdev->intr_context[0];
2729
2730         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2731                 if (intr_context->hooked) {
2732                         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2733                                 free_irq(qdev->msi_x_entry[i].vector,
2734                                          &qdev->rx_ring[i]);
2735                                 QPRINTK(qdev, IFDOWN, ERR,
2736                                         "freeing msix interrupt %d.\n", i);
2737                         } else {
2738                                 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
2739                                 QPRINTK(qdev, IFDOWN, ERR,
2740                                         "freeing msi interrupt %d.\n", i);
2741                         }
2742                 }
2743         }
2744         ql_disable_msix(qdev);
2745 }
2746
2747 static int ql_request_irq(struct ql_adapter *qdev)
2748 {
2749         int i;
2750         int status = 0;
2751         struct pci_dev *pdev = qdev->pdev;
2752         struct intr_context *intr_context = &qdev->intr_context[0];
2753
2754         ql_resolve_queues_to_irqs(qdev);
2755
2756         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2757                 atomic_set(&intr_context->irq_cnt, 0);
2758                 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2759                         status = request_irq(qdev->msi_x_entry[i].vector,
2760                                              intr_context->handler,
2761                                              0,
2762                                              intr_context->name,
2763                                              &qdev->rx_ring[i]);
2764                         if (status) {
2765                                 QPRINTK(qdev, IFUP, ERR,
2766                                         "Failed request for MSIX interrupt %d.\n",
2767                                         i);
2768                                 goto err_irq;
2769                         } else {
2770                                 QPRINTK(qdev, IFUP, INFO,
2771                                         "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2772                                         i,
2773                                         qdev->rx_ring[i].type ==
2774                                         DEFAULT_Q ? "DEFAULT_Q" : "",
2775                                         qdev->rx_ring[i].type ==
2776                                         TX_Q ? "TX_Q" : "",
2777                                         qdev->rx_ring[i].type ==
2778                                         RX_Q ? "RX_Q" : "", intr_context->name);
2779                         }
2780                 } else {
2781                         QPRINTK(qdev, IFUP, DEBUG,
2782                                 "trying msi or legacy interrupts.\n");
2783                         QPRINTK(qdev, IFUP, DEBUG,
2784                                 "%s: irq = %d.\n", __func__, pdev->irq);
2785                         QPRINTK(qdev, IFUP, DEBUG,
2786                                 "%s: context->name = %s.\n", __func__,
2787                                intr_context->name);
2788                         QPRINTK(qdev, IFUP, DEBUG,
2789                                 "%s: dev_id = 0x%p.\n", __func__,
2790                                &qdev->rx_ring[0]);
2791                         status =
2792                             request_irq(pdev->irq, qlge_isr,
2793                                         test_bit(QL_MSI_ENABLED,
2794                                                  &qdev->
2795                                                  flags) ? 0 : IRQF_SHARED,
2796                                         intr_context->name, &qdev->rx_ring[0]);
2797                         if (status)
2798                                 goto err_irq;
2799
2800                         QPRINTK(qdev, IFUP, ERR,
2801                                 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2802                                 i,
2803                                 qdev->rx_ring[0].type ==
2804                                 DEFAULT_Q ? "DEFAULT_Q" : "",
2805                                 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
2806                                 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
2807                                 intr_context->name);
2808                 }
2809                 intr_context->hooked = 1;
2810         }
2811         return status;
2812 err_irq:
2813         QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
2814         ql_free_irq(qdev);
2815         return status;
2816 }
2817
2818 static int ql_start_rss(struct ql_adapter *qdev)
2819 {
2820         struct ricb *ricb = &qdev->ricb;
2821         int status = 0;
2822         int i;
2823         u8 *hash_id = (u8 *) ricb->hash_cq_id;
2824
2825         memset((void *)ricb, 0, sizeof(ricb));
2826
2827         ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
2828         ricb->flags =
2829             (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
2830              RSS_RT6);
2831         ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
2832
2833         /*
2834          * Fill out the Indirection Table.
2835          */
2836         for (i = 0; i < 256; i++)
2837                 hash_id[i] = i & (qdev->rss_ring_count - 1);
2838
2839         /*
2840          * Random values for the IPv6 and IPv4 Hash Keys.
2841          */
2842         get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
2843         get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
2844
2845         QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
2846
2847         status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
2848         if (status) {
2849                 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
2850                 return status;
2851         }
2852         QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
2853         return status;
2854 }
2855
2856 /* Initialize the frame-to-queue routing. */
2857 static int ql_route_initialize(struct ql_adapter *qdev)
2858 {
2859         int status = 0;
2860         int i;
2861
2862         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
2863         if (status)
2864                 return status;
2865
2866         /* Clear all the entries in the routing table. */
2867         for (i = 0; i < 16; i++) {
2868                 status = ql_set_routing_reg(qdev, i, 0, 0);
2869                 if (status) {
2870                         QPRINTK(qdev, IFUP, ERR,
2871                                 "Failed to init routing register for CAM packets.\n");
2872                         goto exit;
2873                 }
2874         }
2875
2876         status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
2877         if (status) {
2878                 QPRINTK(qdev, IFUP, ERR,
2879                         "Failed to init routing register for error packets.\n");
2880                 goto exit;
2881         }
2882         status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
2883         if (status) {
2884                 QPRINTK(qdev, IFUP, ERR,
2885                         "Failed to init routing register for broadcast packets.\n");
2886                 goto exit;
2887         }
2888         /* If we have more than one inbound queue, then turn on RSS in the
2889          * routing block.
2890          */
2891         if (qdev->rss_ring_count > 1) {
2892                 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
2893                                         RT_IDX_RSS_MATCH, 1);
2894                 if (status) {
2895                         QPRINTK(qdev, IFUP, ERR,
2896                                 "Failed to init routing register for MATCH RSS packets.\n");
2897                         goto exit;
2898                 }
2899         }
2900
2901         status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
2902                                     RT_IDX_CAM_HIT, 1);
2903         if (status)
2904                 QPRINTK(qdev, IFUP, ERR,
2905                         "Failed to init routing register for CAM packets.\n");
2906 exit:
2907         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
2908         return status;
2909 }
2910
2911 static int ql_cam_route_initialize(struct ql_adapter *qdev)
2912 {
2913         int status;
2914
2915         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2916         if (status)
2917                 return status;
2918         status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
2919                              MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
2920         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2921         if (status) {
2922                 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
2923                 return status;
2924         }
2925
2926         status = ql_route_initialize(qdev);
2927         if (status)
2928                 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
2929
2930         return status;
2931 }
2932
2933 static int ql_adapter_initialize(struct ql_adapter *qdev)
2934 {
2935         u32 value, mask;
2936         int i;
2937         int status = 0;
2938
2939         /*
2940          * Set up the System register to halt on errors.
2941          */
2942         value = SYS_EFE | SYS_FAE;
2943         mask = value << 16;
2944         ql_write32(qdev, SYS, mask | value);
2945
2946         /* Set the default queue. */
2947         value = NIC_RCV_CFG_DFQ;
2948         mask = NIC_RCV_CFG_DFQ_MASK;
2949         ql_write32(qdev, NIC_RCV_CFG, (mask | value));
2950
2951         /* Set the MPI interrupt to enabled. */
2952         ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
2953
2954         /* Enable the function, set pagesize, enable error checking. */
2955         value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
2956             FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
2957
2958         /* Set/clear header splitting. */
2959         mask = FSC_VM_PAGESIZE_MASK |
2960             FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
2961         ql_write32(qdev, FSC, mask | value);
2962
2963         ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
2964                 min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
2965
2966         /* Start up the rx queues. */
2967         for (i = 0; i < qdev->rx_ring_count; i++) {
2968                 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
2969                 if (status) {
2970                         QPRINTK(qdev, IFUP, ERR,
2971                                 "Failed to start rx ring[%d].\n", i);
2972                         return status;
2973                 }
2974         }
2975
2976         /* If there is more than one inbound completion queue
2977          * then download a RICB to configure RSS.
2978          */
2979         if (qdev->rss_ring_count > 1) {
2980                 status = ql_start_rss(qdev);
2981                 if (status) {
2982                         QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
2983                         return status;
2984                 }
2985         }
2986
2987         /* Start up the tx queues. */
2988         for (i = 0; i < qdev->tx_ring_count; i++) {
2989                 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
2990                 if (status) {
2991                         QPRINTK(qdev, IFUP, ERR,
2992                                 "Failed to start tx ring[%d].\n", i);
2993                         return status;
2994                 }
2995         }
2996
2997         status = ql_port_initialize(qdev);
2998         if (status) {
2999                 QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3000                 return status;
3001         }
3002
3003         /* Set up the MAC address and frame routing filter. */
3004         status = ql_cam_route_initialize(qdev);
3005         if (status) {
3006                 QPRINTK(qdev, IFUP, ERR,
3007                                 "Failed to init CAM/Routing tables.\n");
3008                 return status;
3009         }
3010
3011         /* Start NAPI for the RSS queues. */
3012         for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
3013                 QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
3014                         i);
3015                 napi_enable(&qdev->rx_ring[i].napi);
3016         }
3017
3018         return status;
3019 }
3020
3021 /* Issue soft reset to chip. */
3022 static int ql_adapter_reset(struct ql_adapter *qdev)
3023 {
3024         u32 value;
3025         int max_wait_time;
3026         int status = 0;
3027         int resetCnt = 0;
3028
3029 #define MAX_RESET_CNT   1
3030 issueReset:
3031         resetCnt++;
3032         QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
3033         ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3034         /* Wait for reset to complete. */
3035         max_wait_time = 3;
3036         QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
3037                 max_wait_time);
3038         do {
3039                 value = ql_read32(qdev, RST_FO);
3040                 if ((value & RST_FO_FR) == 0)
3041                         break;
3042
3043                 ssleep(1);
3044         } while ((--max_wait_time));
3045         if (value & RST_FO_FR) {
3046                 QPRINTK(qdev, IFDOWN, ERR,
3047                         "Stuck in SoftReset:  FSC_SR:0x%08x\n", value);
3048                 if (resetCnt < MAX_RESET_CNT)
3049                         goto issueReset;
3050         }
3051         if (max_wait_time == 0) {
3052                 status = -ETIMEDOUT;
3053                 QPRINTK(qdev, IFDOWN, ERR,
3054                         "ETIMEOUT!!! errored out of resetting the chip!\n");
3055         }
3056
3057         return status;
3058 }
3059
3060 static void ql_display_dev_info(struct net_device *ndev)
3061 {
3062         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3063
3064         QPRINTK(qdev, PROBE, INFO,
3065                 "Function #%d, NIC Roll %d, NIC Rev = %d, "
3066                 "XG Roll = %d, XG Rev = %d.\n",
3067                 qdev->func,
3068                 qdev->chip_rev_id & 0x0000000f,
3069                 qdev->chip_rev_id >> 4 & 0x0000000f,
3070                 qdev->chip_rev_id >> 8 & 0x0000000f,
3071                 qdev->chip_rev_id >> 12 & 0x0000000f);
3072         QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
3073 }
3074
3075 static int ql_adapter_down(struct ql_adapter *qdev)
3076 {
3077         struct net_device *ndev = qdev->ndev;
3078         int i, status = 0;
3079         struct rx_ring *rx_ring;
3080
3081         netif_stop_queue(ndev);
3082         netif_carrier_off(ndev);
3083
3084         /* Don't kill the reset worker thread if we
3085          * are in the process of recovery.
3086          */
3087         if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3088                 cancel_delayed_work_sync(&qdev->asic_reset_work);
3089         cancel_delayed_work_sync(&qdev->mpi_reset_work);
3090         cancel_delayed_work_sync(&qdev->mpi_work);
3091
3092         /* The default queue at index 0 is always processed in
3093          * a workqueue.
3094          */
3095         cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
3096
3097         /* The rest of the rx_rings are processed in
3098          * a workqueue only if it's a single interrupt
3099          * environment (MSI/Legacy).
3100          */
3101         for (i = 1; i < qdev->rx_ring_count; i++) {
3102                 rx_ring = &qdev->rx_ring[i];
3103                 /* Only the RSS rings use NAPI on multi irq
3104                  * environment.  Outbound completion processing
3105                  * is done in interrupt context.
3106                  */
3107                 if (i >= qdev->rss_ring_first_cq_id) {
3108                         napi_disable(&rx_ring->napi);
3109                 } else {
3110                         cancel_delayed_work_sync(&rx_ring->rx_work);
3111                 }
3112         }
3113
3114         clear_bit(QL_ADAPTER_UP, &qdev->flags);
3115
3116         ql_disable_interrupts(qdev);
3117
3118         ql_tx_ring_clean(qdev);
3119
3120         ql_free_rx_buffers(qdev);
3121         spin_lock(&qdev->hw_lock);
3122         status = ql_adapter_reset(qdev);
3123         if (status)
3124                 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3125                         qdev->func);
3126         spin_unlock(&qdev->hw_lock);
3127         return status;
3128 }
3129
3130 static int ql_adapter_up(struct ql_adapter *qdev)
3131 {
3132         int err = 0;
3133
3134         spin_lock(&qdev->hw_lock);
3135         err = ql_adapter_initialize(qdev);
3136         if (err) {
3137                 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
3138                 spin_unlock(&qdev->hw_lock);
3139                 goto err_init;
3140         }
3141         spin_unlock(&qdev->hw_lock);
3142         set_bit(QL_ADAPTER_UP, &qdev->flags);
3143         ql_alloc_rx_buffers(qdev);
3144         ql_enable_interrupts(qdev);
3145         ql_enable_all_completion_interrupts(qdev);
3146         if ((ql_read32(qdev, STS) & qdev->port_init)) {
3147                 netif_carrier_on(qdev->ndev);
3148                 netif_start_queue(qdev->ndev);
3149         }
3150
3151         return 0;
3152 err_init:
3153         ql_adapter_reset(qdev);
3154         return err;
3155 }
3156
3157 static int ql_cycle_adapter(struct ql_adapter *qdev)
3158 {
3159         int status;
3160
3161         status = ql_adapter_down(qdev);
3162         if (status)
3163                 goto error;
3164
3165         status = ql_adapter_up(qdev);
3166         if (status)
3167                 goto error;
3168
3169         return status;
3170 error:
3171         QPRINTK(qdev, IFUP, ALERT,
3172                 "Driver up/down cycle failed, closing device\n");
3173         rtnl_lock();
3174         dev_close(qdev->ndev);
3175         rtnl_unlock();
3176         return status;
3177 }
3178
3179 static void ql_release_adapter_resources(struct ql_adapter *qdev)
3180 {
3181         ql_free_mem_resources(qdev);
3182         ql_free_irq(qdev);
3183 }
3184
3185 static int ql_get_adapter_resources(struct ql_adapter *qdev)
3186 {
3187         int status = 0;
3188
3189         if (ql_alloc_mem_resources(qdev)) {
3190                 QPRINTK(qdev, IFUP, ERR, "Unable to  allocate memory.\n");
3191                 return -ENOMEM;
3192         }
3193         status = ql_request_irq(qdev);
3194         if (status)
3195                 goto err_irq;
3196         return status;
3197 err_irq:
3198         ql_free_mem_resources(qdev);
3199         return status;
3200 }
3201
3202 static int qlge_close(struct net_device *ndev)
3203 {
3204         struct ql_adapter *qdev = netdev_priv(ndev);
3205
3206         /*
3207          * Wait for device to recover from a reset.
3208          * (Rarely happens, but possible.)
3209          */
3210         while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3211                 msleep(1);
3212         ql_adapter_down(qdev);
3213         ql_release_adapter_resources(qdev);
3214         return 0;
3215 }
3216
3217 static int ql_configure_rings(struct ql_adapter *qdev)
3218 {
3219         int i;
3220         struct rx_ring *rx_ring;
3221         struct tx_ring *tx_ring;
3222         int cpu_cnt = num_online_cpus();
3223
3224         /*
3225          * For each processor present we allocate one
3226          * rx_ring for outbound completions, and one
3227          * rx_ring for inbound completions.  Plus there is
3228          * always the one default queue.  For the CPU
3229          * counts we end up with the following rx_rings:
3230          * rx_ring count =
3231          *  one default queue +
3232          *  (CPU count * outbound completion rx_ring) +
3233          *  (CPU count * inbound (RSS) completion rx_ring)
3234          * To keep it simple we limit the total number of
3235          * queues to < 32, so we truncate CPU to 8.
3236          * This limitation can be removed when requested.
3237          */
3238
3239         if (cpu_cnt > MAX_CPUS)
3240                 cpu_cnt = MAX_CPUS;
3241
3242         /*
3243          * rx_ring[0] is always the default queue.
3244          */
3245         /* Allocate outbound completion ring for each CPU. */
3246         qdev->tx_ring_count = cpu_cnt;
3247         /* Allocate inbound completion (RSS) ring for each CPU. */
3248         qdev->rss_ring_count = cpu_cnt;
3249         /* cq_id for the first inbound ring handler. */
3250         qdev->rss_ring_first_cq_id = cpu_cnt + 1;
3251         /*
3252          * qdev->rx_ring_count:
3253          * Total number of rx_rings.  This includes the one
3254          * default queue, a number of outbound completion
3255          * handler rx_rings, and the number of inbound
3256          * completion handler rx_rings.
3257          */
3258         qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
3259
3260         for (i = 0; i < qdev->tx_ring_count; i++) {
3261                 tx_ring = &qdev->tx_ring[i];
3262                 memset((void *)tx_ring, 0, sizeof(tx_ring));
3263                 tx_ring->qdev = qdev;
3264                 tx_ring->wq_id = i;
3265                 tx_ring->wq_len = qdev->tx_ring_size;
3266                 tx_ring->wq_size =
3267                     tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3268
3269                 /*
3270                  * The completion queue ID for the tx rings start
3271                  * immediately after the default Q ID, which is zero.
3272                  */
3273                 tx_ring->cq_id = i + 1;
3274         }
3275
3276         for (i = 0; i < qdev->rx_ring_count; i++) {
3277                 rx_ring = &qdev->rx_ring[i];
3278                 memset((void *)rx_ring, 0, sizeof(rx_ring));
3279                 rx_ring->qdev = qdev;
3280                 rx_ring->cq_id = i;
3281                 rx_ring->cpu = i % cpu_cnt;     /* CPU to run handler on. */
3282                 if (i == 0) {   /* Default queue at index 0. */
3283                         /*
3284                          * Default queue handles bcast/mcast plus
3285                          * async events.  Needs buffers.
3286                          */
3287                         rx_ring->cq_len = qdev->rx_ring_size;
3288                         rx_ring->cq_size =
3289                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3290                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3291                         rx_ring->lbq_size =
3292                             rx_ring->lbq_len * sizeof(__le64);
3293                         rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3294                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3295                         rx_ring->sbq_size =
3296                             rx_ring->sbq_len * sizeof(__le64);
3297                         rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3298                         rx_ring->type = DEFAULT_Q;
3299                 } else if (i < qdev->rss_ring_first_cq_id) {
3300                         /*
3301                          * Outbound queue handles outbound completions only.
3302                          */
3303                         /* outbound cq is same size as tx_ring it services. */
3304                         rx_ring->cq_len = qdev->tx_ring_size;
3305                         rx_ring->cq_size =
3306                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3307                         rx_ring->lbq_len = 0;
3308                         rx_ring->lbq_size = 0;
3309                         rx_ring->lbq_buf_size = 0;
3310                         rx_ring->sbq_len = 0;
3311                         rx_ring->sbq_size = 0;
3312                         rx_ring->sbq_buf_size = 0;
3313                         rx_ring->type = TX_Q;
3314                 } else {        /* Inbound completions (RSS) queues */
3315                         /*
3316                          * Inbound queues handle unicast frames only.
3317                          */
3318                         rx_ring->cq_len = qdev->rx_ring_size;
3319                         rx_ring->cq_size =
3320                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3321                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3322                         rx_ring->lbq_size =
3323                             rx_ring->lbq_len * sizeof(__le64);
3324                         rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3325                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3326                         rx_ring->sbq_size =
3327                             rx_ring->sbq_len * sizeof(__le64);
3328                         rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3329                         rx_ring->type = RX_Q;
3330                 }
3331         }
3332         return 0;
3333 }
3334
3335 static int qlge_open(struct net_device *ndev)
3336 {
3337         int err = 0;
3338         struct ql_adapter *qdev = netdev_priv(ndev);
3339
3340         err = ql_configure_rings(qdev);
3341         if (err)
3342                 return err;
3343
3344         err = ql_get_adapter_resources(qdev);
3345         if (err)
3346                 goto error_up;
3347
3348         err = ql_adapter_up(qdev);
3349         if (err)
3350                 goto error_up;
3351
3352         return err;
3353
3354 error_up:
3355         ql_release_adapter_resources(qdev);
3356         return err;
3357 }
3358
3359 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3360 {
3361         struct ql_adapter *qdev = netdev_priv(ndev);
3362
3363         if (ndev->mtu == 1500 && new_mtu == 9000) {
3364                 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
3365         } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3366                 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3367         } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3368                    (ndev->mtu == 9000 && new_mtu == 9000)) {
3369                 return 0;
3370         } else
3371                 return -EINVAL;
3372         ndev->mtu = new_mtu;
3373         return 0;
3374 }
3375
3376 static struct net_device_stats *qlge_get_stats(struct net_device
3377                                                *ndev)
3378 {
3379         struct ql_adapter *qdev = netdev_priv(ndev);
3380         return &qdev->stats;
3381 }
3382
3383 static void qlge_set_multicast_list(struct net_device *ndev)
3384 {
3385         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3386         struct dev_mc_list *mc_ptr;
3387         int i, status;
3388
3389         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3390         if (status)
3391                 return;
3392         spin_lock(&qdev->hw_lock);
3393         /*
3394          * Set or clear promiscuous mode if a
3395          * transition is taking place.
3396          */
3397         if (ndev->flags & IFF_PROMISC) {
3398                 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3399                         if (ql_set_routing_reg
3400                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3401                                 QPRINTK(qdev, HW, ERR,
3402                                         "Failed to set promiscous mode.\n");
3403                         } else {
3404                                 set_bit(QL_PROMISCUOUS, &qdev->flags);
3405                         }
3406                 }
3407         } else {
3408                 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3409                         if (ql_set_routing_reg
3410                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3411                                 QPRINTK(qdev, HW, ERR,
3412                                         "Failed to clear promiscous mode.\n");
3413                         } else {
3414                                 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3415                         }
3416                 }
3417         }
3418
3419         /*
3420          * Set or clear all multicast mode if a
3421          * transition is taking place.
3422          */
3423         if ((ndev->flags & IFF_ALLMULTI) ||
3424             (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3425                 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3426                         if (ql_set_routing_reg
3427                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3428                                 QPRINTK(qdev, HW, ERR,
3429                                         "Failed to set all-multi mode.\n");
3430                         } else {
3431                                 set_bit(QL_ALLMULTI, &qdev->flags);
3432                         }
3433                 }
3434         } else {
3435                 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3436                         if (ql_set_routing_reg
3437                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3438                                 QPRINTK(qdev, HW, ERR,
3439                                         "Failed to clear all-multi mode.\n");
3440                         } else {
3441                                 clear_bit(QL_ALLMULTI, &qdev->flags);
3442                         }
3443                 }
3444         }
3445
3446         if (ndev->mc_count) {
3447                 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3448                 if (status)
3449                         goto exit;
3450                 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3451                      i++, mc_ptr = mc_ptr->next)
3452                         if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3453                                                 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3454                                 QPRINTK(qdev, HW, ERR,
3455                                         "Failed to loadmulticast address.\n");
3456                                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3457                                 goto exit;
3458                         }
3459                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3460                 if (ql_set_routing_reg
3461                     (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3462                         QPRINTK(qdev, HW, ERR,
3463                                 "Failed to set multicast match mode.\n");
3464                 } else {
3465                         set_bit(QL_ALLMULTI, &qdev->flags);
3466                 }
3467         }
3468 exit:
3469         spin_unlock(&qdev->hw_lock);
3470         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3471 }
3472
3473 static int qlge_set_mac_address(struct net_device *ndev, void *p)
3474 {
3475         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3476         struct sockaddr *addr = p;
3477         int status;
3478
3479         if (netif_running(ndev))
3480                 return -EBUSY;
3481
3482         if (!is_valid_ether_addr(addr->sa_data))
3483                 return -EADDRNOTAVAIL;
3484         memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3485
3486         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3487         if (status)
3488                 return status;
3489         spin_lock(&qdev->hw_lock);
3490         status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3491                         MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
3492         spin_unlock(&qdev->hw_lock);
3493         if (status)
3494                 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
3495         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3496         return status;
3497 }
3498
3499 static void qlge_tx_timeout(struct net_device *ndev)
3500 {
3501         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3502         ql_queue_asic_error(qdev);
3503 }
3504
3505 static void ql_asic_reset_work(struct work_struct *work)
3506 {
3507         struct ql_adapter *qdev =
3508             container_of(work, struct ql_adapter, asic_reset_work.work);
3509         ql_cycle_adapter(qdev);
3510 }
3511
3512 static void ql_get_board_info(struct ql_adapter *qdev)
3513 {
3514         qdev->func =
3515             (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
3516         if (qdev->func) {
3517                 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3518                 qdev->port_link_up = STS_PL1;
3519                 qdev->port_init = STS_PI1;
3520                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3521                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3522         } else {
3523                 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3524                 qdev->port_link_up = STS_PL0;
3525                 qdev->port_init = STS_PI0;
3526                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3527                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3528         }
3529         qdev->chip_rev_id = ql_read32(qdev, REV_ID);
3530 }
3531
3532 static void ql_release_all(struct pci_dev *pdev)
3533 {
3534         struct net_device *ndev = pci_get_drvdata(pdev);
3535         struct ql_adapter *qdev = netdev_priv(ndev);
3536
3537         if (qdev->workqueue) {
3538                 destroy_workqueue(qdev->workqueue);
3539                 qdev->workqueue = NULL;
3540         }
3541         if (qdev->q_workqueue) {
3542                 destroy_workqueue(qdev->q_workqueue);
3543                 qdev->q_workqueue = NULL;
3544         }
3545         if (qdev->reg_base)
3546                 iounmap(qdev->reg_base);
3547         if (qdev->doorbell_area)
3548                 iounmap(qdev->doorbell_area);
3549         pci_release_regions(pdev);
3550         pci_set_drvdata(pdev, NULL);
3551 }
3552
3553 static int __devinit ql_init_device(struct pci_dev *pdev,
3554                                     struct net_device *ndev, int cards_found)
3555 {
3556         struct ql_adapter *qdev = netdev_priv(ndev);
3557         int pos, err = 0;
3558         u16 val16;
3559
3560         memset((void *)qdev, 0, sizeof(qdev));
3561         err = pci_enable_device(pdev);
3562         if (err) {
3563                 dev_err(&pdev->dev, "PCI device enable failed.\n");
3564                 return err;
3565         }
3566
3567         pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3568         if (pos <= 0) {
3569                 dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3570                         "aborting.\n");
3571                 goto err_out;
3572         } else {
3573                 pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3574                 val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3575                 val16 |= (PCI_EXP_DEVCTL_CERE |
3576                           PCI_EXP_DEVCTL_NFERE |
3577                           PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3578                 pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3579         }
3580
3581         err = pci_request_regions(pdev, DRV_NAME);
3582         if (err) {
3583                 dev_err(&pdev->dev, "PCI region request failed.\n");
3584                 goto err_out;
3585         }
3586
3587         pci_set_master(pdev);
3588         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3589                 set_bit(QL_DMA64, &qdev->flags);
3590                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3591         } else {
3592                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3593                 if (!err)
3594                        err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3595         }
3596
3597         if (err) {
3598                 dev_err(&pdev->dev, "No usable DMA configuration.\n");
3599                 goto err_out;
3600         }
3601
3602         pci_set_drvdata(pdev, ndev);
3603         qdev->reg_base =
3604             ioremap_nocache(pci_resource_start(pdev, 1),
3605                             pci_resource_len(pdev, 1));
3606         if (!qdev->reg_base) {
3607                 dev_err(&pdev->dev, "Register mapping failed.\n");
3608                 err = -ENOMEM;
3609                 goto err_out;
3610         }
3611
3612         qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3613         qdev->doorbell_area =
3614             ioremap_nocache(pci_resource_start(pdev, 3),
3615                             pci_resource_len(pdev, 3));
3616         if (!qdev->doorbell_area) {
3617                 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3618                 err = -ENOMEM;
3619                 goto err_out;
3620         }
3621
3622         ql_get_board_info(qdev);
3623         qdev->ndev = ndev;
3624         qdev->pdev = pdev;
3625         qdev->msg_enable = netif_msg_init(debug, default_msg);
3626         spin_lock_init(&qdev->hw_lock);
3627         spin_lock_init(&qdev->stats_lock);
3628
3629         /* make sure the EEPROM is good */
3630         err = ql_get_flash_params(qdev);
3631         if (err) {
3632                 dev_err(&pdev->dev, "Invalid FLASH.\n");
3633                 goto err_out;
3634         }
3635
3636         if (!is_valid_ether_addr(qdev->flash.mac_addr))
3637                 goto err_out;
3638
3639         memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len);
3640         memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3641
3642         /* Set up the default ring sizes. */
3643         qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3644         qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3645
3646         /* Set up the coalescing parameters. */
3647         qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3648         qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3649         qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3650         qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3651
3652         /*
3653          * Set up the operating parameters.
3654          */
3655         qdev->rx_csum = 1;
3656
3657         qdev->q_workqueue = create_workqueue(ndev->name);
3658         qdev->workqueue = create_singlethread_workqueue(ndev->name);
3659         INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3660         INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3661         INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
3662         mutex_init(&qdev->mpi_mutex);
3663
3664         if (!cards_found) {
3665                 dev_info(&pdev->dev, "%s\n", DRV_STRING);
3666                 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3667                          DRV_NAME, DRV_VERSION);
3668         }
3669         return 0;
3670 err_out:
3671         ql_release_all(pdev);
3672         pci_disable_device(pdev);
3673         return err;
3674 }
3675
3676
3677 static const struct net_device_ops qlge_netdev_ops = {
3678         .ndo_open               = qlge_open,
3679         .ndo_stop               = qlge_close,
3680         .ndo_start_xmit         = qlge_send,
3681         .ndo_change_mtu         = qlge_change_mtu,
3682         .ndo_get_stats          = qlge_get_stats,
3683         .ndo_set_multicast_list = qlge_set_multicast_list,
3684         .ndo_set_mac_address    = qlge_set_mac_address,
3685         .ndo_validate_addr      = eth_validate_addr,
3686         .ndo_tx_timeout         = qlge_tx_timeout,
3687         .ndo_vlan_rx_register   = ql_vlan_rx_register,
3688         .ndo_vlan_rx_add_vid    = ql_vlan_rx_add_vid,
3689         .ndo_vlan_rx_kill_vid   = ql_vlan_rx_kill_vid,
3690 };
3691
3692 static int __devinit qlge_probe(struct pci_dev *pdev,
3693                                 const struct pci_device_id *pci_entry)
3694 {
3695         struct net_device *ndev = NULL;
3696         struct ql_adapter *qdev = NULL;
3697         static int cards_found = 0;
3698         int err = 0;
3699
3700         ndev = alloc_etherdev(sizeof(struct ql_adapter));
3701         if (!ndev)
3702                 return -ENOMEM;
3703
3704         err = ql_init_device(pdev, ndev, cards_found);
3705         if (err < 0) {
3706                 free_netdev(ndev);
3707                 return err;
3708         }
3709
3710         qdev = netdev_priv(ndev);
3711         SET_NETDEV_DEV(ndev, &pdev->dev);
3712         ndev->features = (0
3713                           | NETIF_F_IP_CSUM
3714                           | NETIF_F_SG
3715                           | NETIF_F_TSO
3716                           | NETIF_F_TSO6
3717                           | NETIF_F_TSO_ECN
3718                           | NETIF_F_HW_VLAN_TX
3719                           | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
3720
3721         if (test_bit(QL_DMA64, &qdev->flags))
3722                 ndev->features |= NETIF_F_HIGHDMA;
3723
3724         /*
3725          * Set up net_device structure.
3726          */
3727         ndev->tx_queue_len = qdev->tx_ring_size;
3728         ndev->irq = pdev->irq;
3729
3730         ndev->netdev_ops = &qlge_netdev_ops;
3731         SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
3732         ndev->watchdog_timeo = 10 * HZ;
3733
3734         err = register_netdev(ndev);
3735         if (err) {
3736                 dev_err(&pdev->dev, "net device registration failed.\n");
3737                 ql_release_all(pdev);
3738                 pci_disable_device(pdev);
3739                 return err;
3740         }
3741         netif_carrier_off(ndev);
3742         netif_stop_queue(ndev);
3743         ql_display_dev_info(ndev);
3744         cards_found++;
3745         return 0;
3746 }
3747
3748 static void __devexit qlge_remove(struct pci_dev *pdev)
3749 {
3750         struct net_device *ndev = pci_get_drvdata(pdev);
3751         unregister_netdev(ndev);
3752         ql_release_all(pdev);
3753         pci_disable_device(pdev);
3754         free_netdev(ndev);
3755 }
3756
3757 /*
3758  * This callback is called by the PCI subsystem whenever
3759  * a PCI bus error is detected.
3760  */
3761 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
3762                                                enum pci_channel_state state)
3763 {
3764         struct net_device *ndev = pci_get_drvdata(pdev);
3765         struct ql_adapter *qdev = netdev_priv(ndev);
3766
3767         if (netif_running(ndev))
3768                 ql_adapter_down(qdev);
3769
3770         pci_disable_device(pdev);
3771
3772         /* Request a slot reset. */
3773         return PCI_ERS_RESULT_NEED_RESET;
3774 }
3775
3776 /*
3777  * This callback is called after the PCI buss has been reset.
3778  * Basically, this tries to restart the card from scratch.
3779  * This is a shortened version of the device probe/discovery code,
3780  * it resembles the first-half of the () routine.
3781  */
3782 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
3783 {
3784         struct net_device *ndev = pci_get_drvdata(pdev);
3785         struct ql_adapter *qdev = netdev_priv(ndev);
3786
3787         if (pci_enable_device(pdev)) {
3788                 QPRINTK(qdev, IFUP, ERR,
3789                         "Cannot re-enable PCI device after reset.\n");
3790                 return PCI_ERS_RESULT_DISCONNECT;
3791         }
3792
3793         pci_set_master(pdev);
3794
3795         netif_carrier_off(ndev);
3796         netif_stop_queue(ndev);
3797         ql_adapter_reset(qdev);
3798
3799         /* Make sure the EEPROM is good */
3800         memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3801
3802         if (!is_valid_ether_addr(ndev->perm_addr)) {
3803                 QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
3804                 return PCI_ERS_RESULT_DISCONNECT;
3805         }
3806
3807         return PCI_ERS_RESULT_RECOVERED;
3808 }
3809
3810 static void qlge_io_resume(struct pci_dev *pdev)
3811 {
3812         struct net_device *ndev = pci_get_drvdata(pdev);
3813         struct ql_adapter *qdev = netdev_priv(ndev);
3814
3815         pci_set_master(pdev);
3816
3817         if (netif_running(ndev)) {
3818                 if (ql_adapter_up(qdev)) {
3819                         QPRINTK(qdev, IFUP, ERR,
3820                                 "Device initialization failed after reset.\n");
3821                         return;
3822                 }
3823         }
3824
3825         netif_device_attach(ndev);
3826 }
3827
3828 static struct pci_error_handlers qlge_err_handler = {
3829         .error_detected = qlge_io_error_detected,
3830         .slot_reset = qlge_io_slot_reset,
3831         .resume = qlge_io_resume,
3832 };
3833
3834 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
3835 {
3836         struct net_device *ndev = pci_get_drvdata(pdev);
3837         struct ql_adapter *qdev = netdev_priv(ndev);
3838         int err, i;
3839
3840         netif_device_detach(ndev);
3841
3842         if (netif_running(ndev)) {
3843                 err = ql_adapter_down(qdev);
3844                 if (!err)
3845                         return err;
3846         }
3847
3848         for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++)
3849                 netif_napi_del(&qdev->rx_ring[i].napi);
3850
3851         err = pci_save_state(pdev);
3852         if (err)
3853                 return err;
3854
3855         pci_disable_device(pdev);
3856
3857         pci_set_power_state(pdev, pci_choose_state(pdev, state));
3858
3859         return 0;
3860 }
3861
3862 #ifdef CONFIG_PM
3863 static int qlge_resume(struct pci_dev *pdev)
3864 {
3865         struct net_device *ndev = pci_get_drvdata(pdev);
3866         struct ql_adapter *qdev = netdev_priv(ndev);
3867         int err;
3868
3869         pci_set_power_state(pdev, PCI_D0);
3870         pci_restore_state(pdev);
3871         err = pci_enable_device(pdev);
3872         if (err) {
3873                 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
3874                 return err;
3875         }
3876         pci_set_master(pdev);
3877
3878         pci_enable_wake(pdev, PCI_D3hot, 0);
3879         pci_enable_wake(pdev, PCI_D3cold, 0);
3880
3881         if (netif_running(ndev)) {
3882                 err = ql_adapter_up(qdev);
3883                 if (err)
3884                         return err;
3885         }
3886
3887         netif_device_attach(ndev);
3888
3889         return 0;
3890 }
3891 #endif /* CONFIG_PM */
3892
3893 static void qlge_shutdown(struct pci_dev *pdev)
3894 {
3895         qlge_suspend(pdev, PMSG_SUSPEND);
3896 }
3897
3898 static struct pci_driver qlge_driver = {
3899         .name = DRV_NAME,
3900         .id_table = qlge_pci_tbl,
3901         .probe = qlge_probe,
3902         .remove = __devexit_p(qlge_remove),
3903 #ifdef CONFIG_PM
3904         .suspend = qlge_suspend,
3905         .resume = qlge_resume,
3906 #endif
3907         .shutdown = qlge_shutdown,
3908         .err_handler = &qlge_err_handler
3909 };
3910
3911 static int __init qlge_init_module(void)
3912 {
3913         return pci_register_driver(&qlge_driver);
3914 }
3915
3916 static void __exit qlge_exit(void)
3917 {
3918         pci_unregister_driver(&qlge_driver);
3919 }
3920
3921 module_init(qlge_init_module);
3922 module_exit(qlge_exit);