ipg: remove some internal comments
[safe/jmp/linux-2.6] / drivers / net / ipg.c
1 /*
2  * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter
3  *
4  * Copyright (C) 2003, 2007  IC Plus Corp
5  *
6  * Original Author:
7  *
8  *   Craig Rich
9  *   Sundance Technology, Inc.
10  *   www.sundanceti.com
11  *   craig_rich@sundanceti.com
12  *
13  * Current Maintainer:
14  *
15  *   Sorbica Shieh.
16  *   http://www.icplus.com.tw
17  *   sorbica@icplus.com.tw
18  *
19  *   Jesse Huang
20  *   http://www.icplus.com.tw
21  *   jesse@icplus.com.tw
22  */
23 #include <linux/crc32.h>
24 #include <linux/ethtool.h>
25 #include <linux/mii.h>
26 #include <linux/mutex.h>
27
28 #include <asm/div64.h>
29
30 #define IPG_RX_RING_BYTES       (sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH)
31 #define IPG_TX_RING_BYTES       (sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH)
32 #define IPG_RESET_MASK \
33         (IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \
34          IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \
35          IPG_AC_AUTO_INIT)
36
37 #define ipg_w32(val32,reg)      iowrite32((val32), ioaddr + (reg))
38 #define ipg_w16(val16,reg)      iowrite16((val16), ioaddr + (reg))
39 #define ipg_w8(val8,reg)        iowrite8((val8), ioaddr + (reg))
40
41 #define ipg_r32(reg)            ioread32(ioaddr + (reg))
42 #define ipg_r16(reg)            ioread16(ioaddr + (reg))
43 #define ipg_r8(reg)             ioread8(ioaddr + (reg))
44
45 #define JUMBO_FRAME_4k_ONLY
46 enum {
47         netdev_io_size = 128
48 };
49
50 #include "ipg.h"
51 #define DRV_NAME        "ipg"
52
53 MODULE_AUTHOR("IC Plus Corp. 2003");
54 MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver");
55 MODULE_LICENSE("GPL");
56
57 //variable record -- index by leading revision/length
58 //Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN
59 static unsigned short DefaultPhyParam[] = {
60         // 11/12/03 IP1000A v1-3 rev=0x40
61         /*--------------------------------------------------------------------------
62         (0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2,
63                                  27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6,
64                                  31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7,  9, 0x0700,
65           --------------------------------------------------------------------------*/
66         // 12/17/03 IP1000A v1-4 rev=0x40
67         (0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
68             0x0000,
69         30, 0x005e, 9, 0x0700,
70         // 01/09/04 IP1000A v1-5 rev=0x41
71         (0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
72             0x0000,
73         30, 0x005e, 9, 0x0700,
74         0x0000
75 };
76
77 static const char *ipg_brand_name[] = {
78         "IC PLUS IP1000 1000/100/10 based NIC",
79         "Sundance Technology ST2021 based NIC",
80         "Tamarack Microelectronics TC9020/9021 based NIC",
81         "Tamarack Microelectronics TC9020/9021 based NIC",
82         "D-Link NIC",
83         "D-Link NIC IP1000A"
84 };
85
86 static struct pci_device_id ipg_pci_tbl[] __devinitdata = {
87         { PCI_VDEVICE(SUNDANCE, 0x1023), 0 },
88         { PCI_VDEVICE(SUNDANCE, 0x2021), 1 },
89         { PCI_VDEVICE(SUNDANCE, 0x1021), 2 },
90         { PCI_VDEVICE(DLINK,    0x9021), 3 },
91         { PCI_VDEVICE(DLINK,    0x4000), 4 },
92         { PCI_VDEVICE(DLINK,    0x4020), 5 },
93         { 0, }
94 };
95
96 MODULE_DEVICE_TABLE(pci, ipg_pci_tbl);
97
98 static inline void __iomem *ipg_ioaddr(struct net_device *dev)
99 {
100         struct ipg_nic_private *sp = netdev_priv(dev);
101         return sp->ioaddr;
102 }
103
104 #ifdef IPG_DEBUG
105 static void ipg_dump_rfdlist(struct net_device *dev)
106 {
107         struct ipg_nic_private *sp = netdev_priv(dev);
108         void __iomem *ioaddr = sp->ioaddr;
109         unsigned int i;
110         u32 offset;
111
112         IPG_DEBUG_MSG("_dump_rfdlist\n");
113
114         printk(KERN_INFO "rx_current = %2.2x\n", sp->rx_current);
115         printk(KERN_INFO "rx_dirty   = %2.2x\n", sp->rx_dirty);
116         printk(KERN_INFO "RFDList start address = %16.16lx\n",
117                (unsigned long) sp->rxd_map);
118         printk(KERN_INFO "RFDListPtr register   = %8.8x%8.8x\n",
119                ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0));
120
121         for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
122                 offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd;
123                 printk(KERN_INFO "%2.2x %4.4x RFDNextPtr = %16.16lx\n", i,
124                        offset, (unsigned long) sp->rxd[i].next_desc);
125                 offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd;
126                 printk(KERN_INFO "%2.2x %4.4x RFS        = %16.16lx\n", i,
127                        offset, (unsigned long) sp->rxd[i].rfs);
128                 offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd;
129                 printk(KERN_INFO "%2.2x %4.4x frag_info   = %16.16lx\n", i,
130                        offset, (unsigned long) sp->rxd[i].frag_info);
131         }
132 }
133
134 static void ipg_dump_tfdlist(struct net_device *dev)
135 {
136         struct ipg_nic_private *sp = netdev_priv(dev);
137         void __iomem *ioaddr = sp->ioaddr;
138         unsigned int i;
139         u32 offset;
140
141         IPG_DEBUG_MSG("_dump_tfdlist\n");
142
143         printk(KERN_INFO "tx_current         = %2.2x\n", sp->tx_current);
144         printk(KERN_INFO "tx_dirty = %2.2x\n", sp->tx_dirty);
145         printk(KERN_INFO "TFDList start address = %16.16lx\n",
146                (unsigned long) sp->txd_map);
147         printk(KERN_INFO "TFDListPtr register   = %8.8x%8.8x\n",
148                ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0));
149
150         for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
151                 offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd;
152                 printk(KERN_INFO "%2.2x %4.4x TFDNextPtr = %16.16lx\n", i,
153                        offset, (unsigned long) sp->txd[i].next_desc);
154
155                 offset = (u32) &sp->txd[i].tfc - (u32) sp->txd;
156                 printk(KERN_INFO "%2.2x %4.4x TFC        = %16.16lx\n", i,
157                        offset, (unsigned long) sp->txd[i].tfc);
158                 offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd;
159                 printk(KERN_INFO "%2.2x %4.4x frag_info   = %16.16lx\n", i,
160                        offset, (unsigned long) sp->txd[i].frag_info);
161         }
162 }
163 #endif
164
165 static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data)
166 {
167         ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL);
168         ndelay(IPG_PC_PHYCTRLWAIT_NS);
169 }
170
171 static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data)
172 {
173         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data);
174         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data);
175 }
176
177 static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity)
178 {
179         phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR;
180
181         ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity);
182 }
183
184 static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity)
185 {
186         ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR |
187                 phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL);
188 }
189
190 static u16 read_phy_bit(void __iomem * ioaddr, u8 phyctrlpolarity)
191 {
192         u16 bit_data;
193
194         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity);
195
196         bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1;
197
198         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity);
199
200         return bit_data;
201 }
202
203 /*
204  * Read a register from the Physical Layer device located
205  * on the IPG NIC, using the IPG PHYCTRL register.
206  */
207 static int mdio_read(struct net_device * dev, int phy_id, int phy_reg)
208 {
209         void __iomem *ioaddr = ipg_ioaddr(dev);
210         /*
211          * The GMII mangement frame structure for a read is as follows:
212          *
213          * |Preamble|st|op|phyad|regad|ta|      data      |idle|
214          * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
215          *
216          * <32 1s> = 32 consecutive logic 1 values
217          * A = bit of Physical Layer device address (MSB first)
218          * R = bit of register address (MSB first)
219          * z = High impedance state
220          * D = bit of read data (MSB first)
221          *
222          * Transmission order is 'Preamble' field first, bits transmitted
223          * left to right (first to last).
224          */
225         struct {
226                 u32 field;
227                 unsigned int len;
228         } p[] = {
229                 { GMII_PREAMBLE,        32 },   /* Preamble */
230                 { GMII_ST,              2  },   /* ST */
231                 { GMII_READ,            2  },   /* OP */
232                 { phy_id,               5  },   /* PHYAD */
233                 { phy_reg,              5  },   /* REGAD */
234                 { 0x0000,               2  },   /* TA */
235                 { 0x0000,               16 },   /* DATA */
236                 { 0x0000,               1  }    /* IDLE */
237         };
238         unsigned int i, j;
239         u8 polarity, data;
240
241         polarity  = ipg_r8(PHY_CTRL);
242         polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
243
244         /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
245         for (j = 0; j < 5; j++) {
246                 for (i = 0; i < p[j].len; i++) {
247                         /* For each variable length field, the MSB must be
248                          * transmitted first. Rotate through the field bits,
249                          * starting with the MSB, and move each bit into the
250                          * the 1st (2^1) bit position (this is the bit position
251                          * corresponding to the MgmtData bit of the PhyCtrl
252                          * register for the IPG).
253                          *
254                          * Example: ST = 01;
255                          *
256                          *          First write a '0' to bit 1 of the PhyCtrl
257                          *          register, then write a '1' to bit 1 of the
258                          *          PhyCtrl register.
259                          *
260                          * To do this, right shift the MSB of ST by the value:
261                          * [field length - 1 - #ST bits already written]
262                          * then left shift this result by 1.
263                          */
264                         data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
265                         data &= IPG_PC_MGMTDATA;
266                         data |= polarity | IPG_PC_MGMTDIR;
267
268                         ipg_drive_phy_ctl_low_high(ioaddr, data);
269                 }
270         }
271
272         send_three_state(ioaddr, polarity);
273
274         read_phy_bit(ioaddr, polarity);
275
276         /*
277          * For a read cycle, the bits for the next two fields (TA and
278          * DATA) are driven by the PHY (the IPG reads these bits).
279          */
280         for (i = 0; i < p[6].len; i++) {
281                 p[6].field |=
282                     (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i));
283         }
284
285         send_three_state(ioaddr, polarity);
286         send_three_state(ioaddr, polarity);
287         send_three_state(ioaddr, polarity);
288         send_end(ioaddr, polarity);
289
290         /* Return the value of the DATA field. */
291         return p[6].field;
292 }
293
294 /*
295  * Write to a register from the Physical Layer device located
296  * on the IPG NIC, using the IPG PHYCTRL register.
297  */
298 static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val)
299 {
300         void __iomem *ioaddr = ipg_ioaddr(dev);
301         /*
302          * The GMII mangement frame structure for a read is as follows:
303          *
304          * |Preamble|st|op|phyad|regad|ta|      data      |idle|
305          * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
306          *
307          * <32 1s> = 32 consecutive logic 1 values
308          * A = bit of Physical Layer device address (MSB first)
309          * R = bit of register address (MSB first)
310          * z = High impedance state
311          * D = bit of write data (MSB first)
312          *
313          * Transmission order is 'Preamble' field first, bits transmitted
314          * left to right (first to last).
315          */
316         struct {
317                 u32 field;
318                 unsigned int len;
319         } p[] = {
320                 { GMII_PREAMBLE,        32 },   /* Preamble */
321                 { GMII_ST,              2  },   /* ST */
322                 { GMII_WRITE,           2  },   /* OP */
323                 { phy_id,               5  },   /* PHYAD */
324                 { phy_reg,              5  },   /* REGAD */
325                 { 0x0002,               2  },   /* TA */
326                 { val & 0xffff,         16 },   /* DATA */
327                 { 0x0000,               1  }    /* IDLE */
328         };
329         unsigned int i, j;
330         u8 polarity, data;
331
332         polarity  = ipg_r8(PHY_CTRL);
333         polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
334
335         /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
336         for (j = 0; j < 7; j++) {
337                 for (i = 0; i < p[j].len; i++) {
338                         /* For each variable length field, the MSB must be
339                          * transmitted first. Rotate through the field bits,
340                          * starting with the MSB, and move each bit into the
341                          * the 1st (2^1) bit position (this is the bit position
342                          * corresponding to the MgmtData bit of the PhyCtrl
343                          * register for the IPG).
344                          *
345                          * Example: ST = 01;
346                          *
347                          *          First write a '0' to bit 1 of the PhyCtrl
348                          *          register, then write a '1' to bit 1 of the
349                          *          PhyCtrl register.
350                          *
351                          * To do this, right shift the MSB of ST by the value:
352                          * [field length - 1 - #ST bits already written]
353                          * then left shift this result by 1.
354                          */
355                         data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
356                         data &= IPG_PC_MGMTDATA;
357                         data |= polarity | IPG_PC_MGMTDIR;
358
359                         ipg_drive_phy_ctl_low_high(ioaddr, data);
360                 }
361         }
362
363         /* The last cycle is a tri-state, so read from the PHY. */
364         for (j = 7; j < 8; j++) {
365                 for (i = 0; i < p[j].len; i++) {
366                         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity);
367
368                         p[j].field |= ((ipg_r8(PHY_CTRL) &
369                                 IPG_PC_MGMTDATA) >> 1) << (p[j].len - 1 - i);
370
371                         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity);
372                 }
373         }
374 }
375
376 static void ipg_set_led_mode(struct net_device *dev)
377 {
378         struct ipg_nic_private *sp = netdev_priv(dev);
379         void __iomem *ioaddr = sp->ioaddr;
380         u32 mode;
381
382         mode = ipg_r32(ASIC_CTRL);
383         mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
384
385         if ((sp->LED_Mode & 0x03) > 1)
386                 mode |= IPG_AC_LED_MODE_BIT_1;  /* Write Asic Control Bit 29 */
387
388         if ((sp->LED_Mode & 0x01) == 1)
389                 mode |= IPG_AC_LED_MODE;        /* Write Asic Control Bit 14 */
390
391         if ((sp->LED_Mode & 0x08) == 8)
392                 mode |= IPG_AC_LED_SPEED;       /* Write Asic Control Bit 27 */
393
394         ipg_w32(mode, ASIC_CTRL);
395 }
396
397 static void ipg_set_phy_set(struct net_device *dev)
398 {
399         struct ipg_nic_private *sp = netdev_priv(dev);
400         void __iomem *ioaddr = sp->ioaddr;
401         int physet;
402
403         physet = ipg_r8(PHY_SET);
404         physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET);
405         physet |= ((sp->LED_Mode & 0x70) >> 4);
406         ipg_w8(physet, PHY_SET);
407 }
408
409 static int ipg_reset(struct net_device *dev, u32 resetflags)
410 {
411         /* Assert functional resets via the IPG AsicCtrl
412          * register as specified by the 'resetflags' input
413          * parameter.
414          */
415         void __iomem *ioaddr = ipg_ioaddr(dev);
416         unsigned int timeout_count = 0;
417
418         IPG_DEBUG_MSG("_reset\n");
419
420         ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL);
421
422         /* Delay added to account for problem with 10Mbps reset. */
423         mdelay(IPG_AC_RESETWAIT);
424
425         while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) {
426                 mdelay(IPG_AC_RESETWAIT);
427                 if (++timeout_count > IPG_AC_RESET_TIMEOUT)
428                         return -ETIME;
429         }
430         /* Set LED Mode in Asic Control */
431         ipg_set_led_mode(dev);
432
433         /* Set PHYSet Register Value */
434         ipg_set_phy_set(dev);
435         return 0;
436 }
437
438 /* Find the GMII PHY address. */
439 static int ipg_find_phyaddr(struct net_device *dev)
440 {
441         unsigned int phyaddr, i;
442
443         for (i = 0; i < 32; i++) {
444                 u32 status;
445
446                 /* Search for the correct PHY address among 32 possible. */
447                 phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32;
448
449                 /* 10/22/03 Grace change verify from GMII_PHY_STATUS to
450                    GMII_PHY_ID1
451                  */
452
453                 status = mdio_read(dev, phyaddr, MII_BMSR);
454
455                 if ((status != 0xFFFF) && (status != 0))
456                         return phyaddr;
457         }
458
459         return 0x1f;
460 }
461
462 /*
463  * Configure IPG based on result of IEEE 802.3 PHY
464  * auto-negotiation.
465  */
466 static int ipg_config_autoneg(struct net_device *dev)
467 {
468         struct ipg_nic_private *sp = netdev_priv(dev);
469         void __iomem *ioaddr = sp->ioaddr;
470         unsigned int txflowcontrol;
471         unsigned int rxflowcontrol;
472         unsigned int fullduplex;
473         unsigned int gig;
474         u32 mac_ctrl_val;
475         u32 asicctrl;
476         u8 phyctrl;
477
478         IPG_DEBUG_MSG("_config_autoneg\n");
479
480         asicctrl = ipg_r32(ASIC_CTRL);
481         phyctrl = ipg_r8(PHY_CTRL);
482         mac_ctrl_val = ipg_r32(MAC_CTRL);
483
484         /* Set flags for use in resolving auto-negotation, assuming
485          * non-1000Mbps, half duplex, no flow control.
486          */
487         fullduplex = 0;
488         txflowcontrol = 0;
489         rxflowcontrol = 0;
490         gig = 0;
491
492         /* To accomodate a problem in 10Mbps operation,
493          * set a global flag if PHY running in 10Mbps mode.
494          */
495         sp->tenmbpsmode = 0;
496
497         printk(KERN_INFO "%s: Link speed = ", dev->name);
498
499         /* Determine actual speed of operation. */
500         switch (phyctrl & IPG_PC_LINK_SPEED) {
501         case IPG_PC_LINK_SPEED_10MBPS:
502                 printk("10Mbps.\n");
503                 printk(KERN_INFO "%s: 10Mbps operational mode enabled.\n",
504                        dev->name);
505                 sp->tenmbpsmode = 1;
506                 break;
507         case IPG_PC_LINK_SPEED_100MBPS:
508                 printk("100Mbps.\n");
509                 break;
510         case IPG_PC_LINK_SPEED_1000MBPS:
511                 printk("1000Mbps.\n");
512                 gig = 1;
513                 break;
514         default:
515                 printk("undefined!\n");
516                 return 0;
517         }
518
519         if (phyctrl & IPG_PC_DUPLEX_STATUS) {
520                 fullduplex = 1;
521                 txflowcontrol = 1;
522                 rxflowcontrol = 1;
523         }
524
525         /* Configure full duplex, and flow control. */
526         if (fullduplex == 1) {
527                 /* Configure IPG for full duplex operation. */
528                 printk(KERN_INFO "%s: setting full duplex, ", dev->name);
529
530                 mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD;
531
532                 if (txflowcontrol == 1) {
533                         printk("TX flow control");
534                         mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE;
535                 } else {
536                         printk("no TX flow control");
537                         mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE;
538                 }
539
540                 if (rxflowcontrol == 1) {
541                         printk(", RX flow control.");
542                         mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE;
543                 } else {
544                         printk(", no RX flow control.");
545                         mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
546                 }
547
548                 printk("\n");
549         } else {
550                 /* Configure IPG for half duplex operation. */
551                 printk(KERN_INFO "%s: setting half duplex, "
552                        "no TX flow control, no RX flow control.\n", dev->name);
553
554                 mac_ctrl_val &= ~IPG_MC_DUPLEX_SELECT_FD &
555                         ~IPG_MC_TX_FLOW_CONTROL_ENABLE &
556                         ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
557         }
558         ipg_w32(mac_ctrl_val, MAC_CTRL);
559         return 0;
560 }
561
562 /* Determine and configure multicast operation and set
563  * receive mode for IPG.
564  */
565 static void ipg_nic_set_multicast_list(struct net_device *dev)
566 {
567         void __iomem *ioaddr = ipg_ioaddr(dev);
568         struct dev_mc_list *mc_list_ptr;
569         unsigned int hashindex;
570         u32 hashtable[2];
571         u8 receivemode;
572
573         IPG_DEBUG_MSG("_nic_set_multicast_list\n");
574
575         receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST;
576
577         if (dev->flags & IFF_PROMISC) {
578                 /* NIC to be configured in promiscuous mode. */
579                 receivemode = IPG_RM_RECEIVEALLFRAMES;
580         } else if ((dev->flags & IFF_ALLMULTI) ||
581                    (dev->flags & IFF_MULTICAST &
582                     (dev->mc_count > IPG_MULTICAST_HASHTABLE_SIZE))) {
583                 /* NIC to be configured to receive all multicast
584                  * frames. */
585                 receivemode |= IPG_RM_RECEIVEMULTICAST;
586         } else if (dev->flags & IFF_MULTICAST & (dev->mc_count > 0)) {
587                 /* NIC to be configured to receive selected
588                  * multicast addresses. */
589                 receivemode |= IPG_RM_RECEIVEMULTICASTHASH;
590         }
591
592         /* Calculate the bits to set for the 64 bit, IPG HASHTABLE.
593          * The IPG applies a cyclic-redundancy-check (the same CRC
594          * used to calculate the frame data FCS) to the destination
595          * address all incoming multicast frames whose destination
596          * address has the multicast bit set. The least significant
597          * 6 bits of the CRC result are used as an addressing index
598          * into the hash table. If the value of the bit addressed by
599          * this index is a 1, the frame is passed to the host system.
600          */
601
602         /* Clear hashtable. */
603         hashtable[0] = 0x00000000;
604         hashtable[1] = 0x00000000;
605
606         /* Cycle through all multicast addresses to filter. */
607         for (mc_list_ptr = dev->mc_list;
608              mc_list_ptr != NULL; mc_list_ptr = mc_list_ptr->next) {
609                 /* Calculate CRC result for each multicast address. */
610                 hashindex = crc32_le(0xffffffff, mc_list_ptr->dmi_addr,
611                                      ETH_ALEN);
612
613                 /* Use only the least significant 6 bits. */
614                 hashindex = hashindex & 0x3F;
615
616                 /* Within "hashtable", set bit number "hashindex"
617                  * to a logic 1.
618                  */
619                 set_bit(hashindex, (void *)hashtable);
620         }
621
622         /* Write the value of the hashtable, to the 4, 16 bit
623          * HASHTABLE IPG registers.
624          */
625         ipg_w32(hashtable[0], HASHTABLE_0);
626         ipg_w32(hashtable[1], HASHTABLE_1);
627
628         ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE);
629
630         IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE));
631 }
632
633 static int ipg_io_config(struct net_device *dev)
634 {
635         void __iomem *ioaddr = ipg_ioaddr(dev);
636         u32 origmacctrl;
637         u32 restoremacctrl;
638
639         IPG_DEBUG_MSG("_io_config\n");
640
641         origmacctrl = ipg_r32(MAC_CTRL);
642
643         restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE;
644
645         /* Based on compilation option, determine if FCS is to be
646          * stripped on receive frames by IPG.
647          */
648         if (!IPG_STRIP_FCS_ON_RX)
649                 restoremacctrl |= IPG_MC_RCV_FCS;
650
651         /* Determine if transmitter and/or receiver are
652          * enabled so we may restore MACCTRL correctly.
653          */
654         if (origmacctrl & IPG_MC_TX_ENABLED)
655                 restoremacctrl |= IPG_MC_TX_ENABLE;
656
657         if (origmacctrl & IPG_MC_RX_ENABLED)
658                 restoremacctrl |= IPG_MC_RX_ENABLE;
659
660         /* Transmitter and receiver must be disabled before setting
661          * IFSSelect.
662          */
663         ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) &
664                 IPG_MC_RSVD_MASK, MAC_CTRL);
665
666         /* Now that transmitter and receiver are disabled, write
667          * to IFSSelect.
668          */
669         ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL);
670
671         /* Set RECEIVEMODE register. */
672         ipg_nic_set_multicast_list(dev);
673
674         ipg_w16(IPG_MAX_RXFRAME_SIZE, MAX_FRAME_SIZE);
675
676         ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE,   RX_DMA_POLL_PERIOD);
677         ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH);
678         ipg_w8(IPG_RXDMABURSTTHRESH_VALUE,  RX_DMA_BURST_THRESH);
679         ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE,   TX_DMA_POLL_PERIOD);
680         ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH);
681         ipg_w8(IPG_TXDMABURSTTHRESH_VALUE,  TX_DMA_BURST_THRESH);
682         ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE |
683                  IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED |
684                  IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT |
685                  IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE);
686         ipg_w16(IPG_FLOWONTHRESH_VALUE,  FLOW_ON_THRESH);
687         ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH);
688
689         /* IPG multi-frag frame bug workaround.
690          * Per silicon revision B3 eratta.
691          */
692         ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL);
693
694         /* IPG TX poll now bug workaround.
695          * Per silicon revision B3 eratta.
696          */
697         ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL);
698
699         /* IPG RX poll now bug workaround.
700          * Per silicon revision B3 eratta.
701          */
702         ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL);
703
704         /* Now restore MACCTRL to original setting. */
705         ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL);
706
707         /* Disable unused RMON statistics. */
708         ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK);
709
710         /* Disable unused MIB statistics. */
711         ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD |
712                 IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES |
713                 IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES |
714                 IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK |
715                 IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS |
716                 IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK);
717
718         return 0;
719 }
720
721 /*
722  * Create a receive buffer within system memory and update
723  * NIC private structure appropriately.
724  */
725 static int ipg_get_rxbuff(struct net_device *dev, int entry)
726 {
727         struct ipg_nic_private *sp = netdev_priv(dev);
728         struct ipg_rx *rxfd = sp->rxd + entry;
729         struct sk_buff *skb;
730         u64 rxfragsize;
731
732         IPG_DEBUG_MSG("_get_rxbuff\n");
733
734         skb = netdev_alloc_skb(dev, IPG_RXSUPPORT_SIZE + NET_IP_ALIGN);
735         if (!skb) {
736                 sp->RxBuff[entry] = NULL;
737                 return -ENOMEM;
738         }
739
740         /* Adjust the data start location within the buffer to
741          * align IP address field to a 16 byte boundary.
742          */
743         skb_reserve(skb, NET_IP_ALIGN);
744
745         /* Associate the receive buffer with the IPG NIC. */
746         skb->dev = dev;
747
748         /* Save the address of the sk_buff structure. */
749         sp->RxBuff[entry] = skb;
750
751         rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
752                 sp->rx_buf_sz, PCI_DMA_FROMDEVICE));
753
754         /* Set the RFD fragment length. */
755         rxfragsize = IPG_RXFRAG_SIZE;
756         rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN);
757
758         return 0;
759 }
760
761 static int init_rfdlist(struct net_device *dev)
762 {
763         struct ipg_nic_private *sp = netdev_priv(dev);
764         void __iomem *ioaddr = sp->ioaddr;
765         unsigned int i;
766
767         IPG_DEBUG_MSG("_init_rfdlist\n");
768
769         for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
770                 struct ipg_rx *rxfd = sp->rxd + i;
771
772                 if (sp->RxBuff[i]) {
773                         pci_unmap_single(sp->pdev,
774                                 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
775                                 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
776                         dev_kfree_skb_irq(sp->RxBuff[i]);
777                         sp->RxBuff[i] = NULL;
778                 }
779
780                 /* Clear out the RFS field. */
781                 rxfd->rfs = 0x0000000000000000;
782
783                 if (ipg_get_rxbuff(dev, i) < 0) {
784                         /*
785                          * A receive buffer was not ready, break the
786                          * RFD list here.
787                          */
788                         IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n");
789
790                         /* Just in case we cannot allocate a single RFD.
791                          * Should not occur.
792                          */
793                         if (i == 0) {
794                                 printk(KERN_ERR "%s: No memory available"
795                                         " for RFD list.\n", dev->name);
796                                 return -ENOMEM;
797                         }
798                 }
799
800                 rxfd->next_desc = cpu_to_le64(sp->rxd_map +
801                         sizeof(struct ipg_rx)*(i + 1));
802         }
803         sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map);
804
805         sp->rx_current = 0;
806         sp->rx_dirty = 0;
807
808         /* Write the location of the RFDList to the IPG. */
809         ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0);
810         ipg_w32(0x00000000, RFD_LIST_PTR_1);
811
812         return 0;
813 }
814
815 static void init_tfdlist(struct net_device *dev)
816 {
817         struct ipg_nic_private *sp = netdev_priv(dev);
818         void __iomem *ioaddr = sp->ioaddr;
819         unsigned int i;
820
821         IPG_DEBUG_MSG("_init_tfdlist\n");
822
823         for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
824                 struct ipg_tx *txfd = sp->txd + i;
825
826                 txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
827
828                 if (sp->TxBuff[i]) {
829                         dev_kfree_skb_irq(sp->TxBuff[i]);
830                         sp->TxBuff[i] = NULL;
831                 }
832
833                 txfd->next_desc = cpu_to_le64(sp->txd_map +
834                         sizeof(struct ipg_tx)*(i + 1));
835         }
836         sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map);
837
838         sp->tx_current = 0;
839         sp->tx_dirty = 0;
840
841         /* Write the location of the TFDList to the IPG. */
842         IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n",
843                        (u32) sp->txd_map);
844         ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0);
845         ipg_w32(0x00000000, TFD_LIST_PTR_1);
846
847         sp->ResetCurrentTFD = 1;
848 }
849
850 /*
851  * Free all transmit buffers which have already been transfered
852  * via DMA to the IPG.
853  */
854 static void ipg_nic_txfree(struct net_device *dev)
855 {
856         struct ipg_nic_private *sp = netdev_priv(dev);
857         unsigned int released, pending, dirty;
858
859         IPG_DEBUG_MSG("_nic_txfree\n");
860
861         pending = sp->tx_current - sp->tx_dirty;
862         dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH;
863
864         for (released = 0; released < pending; released++) {
865                 struct sk_buff *skb = sp->TxBuff[dirty];
866                 struct ipg_tx *txfd = sp->txd + dirty;
867
868                 IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd->tfc);
869
870                 /* Look at each TFD's TFC field beginning
871                  * at the last freed TFD up to the current TFD.
872                  * If the TFDDone bit is set, free the associated
873                  * buffer.
874                  */
875                 if (!(txfd->tfc & cpu_to_le64(IPG_TFC_TFDDONE)))
876                         break;
877
878                 /* Free the transmit buffer. */
879                 if (skb) {
880                         pci_unmap_single(sp->pdev,
881                                 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
882                                 skb->len, PCI_DMA_TODEVICE);
883
884                         dev_kfree_skb_irq(skb);
885
886                         sp->TxBuff[dirty] = NULL;
887                 }
888                 dirty = (dirty + 1) % IPG_TFDLIST_LENGTH;
889         }
890
891         sp->tx_dirty += released;
892
893         if (netif_queue_stopped(dev) &&
894             (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) {
895                 netif_wake_queue(dev);
896         }
897 }
898
899 static void ipg_tx_timeout(struct net_device *dev)
900 {
901         struct ipg_nic_private *sp = netdev_priv(dev);
902         void __iomem *ioaddr = sp->ioaddr;
903
904         ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK |
905                   IPG_AC_FIFO);
906
907         spin_lock_irq(&sp->lock);
908
909         /* Re-configure after DMA reset. */
910         if (ipg_io_config(dev) < 0) {
911                 printk(KERN_INFO "%s: Error during re-configuration.\n",
912                        dev->name);
913         }
914
915         init_tfdlist(dev);
916
917         spin_unlock_irq(&sp->lock);
918
919         ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK,
920                 MAC_CTRL);
921 }
922
923 /*
924  * For TxComplete interrupts, free all transmit
925  * buffers which have already been transfered via DMA
926  * to the IPG.
927  */
928 static void ipg_nic_txcleanup(struct net_device *dev)
929 {
930         struct ipg_nic_private *sp = netdev_priv(dev);
931         void __iomem *ioaddr = sp->ioaddr;
932         unsigned int i;
933
934         IPG_DEBUG_MSG("_nic_txcleanup\n");
935
936         for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
937                 /* Reading the TXSTATUS register clears the
938                  * TX_COMPLETE interrupt.
939                  */
940                 u32 txstatusdword = ipg_r32(TX_STATUS);
941
942                 IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword);
943
944                 /* Check for Transmit errors. Error bits only valid if
945                  * TX_COMPLETE bit in the TXSTATUS register is a 1.
946                  */
947                 if (!(txstatusdword & IPG_TS_TX_COMPLETE))
948                         break;
949
950                 /* If in 10Mbps mode, indicate transmit is ready. */
951                 if (sp->tenmbpsmode) {
952                         netif_wake_queue(dev);
953                 }
954
955                 /* Transmit error, increment stat counters. */
956                 if (txstatusdword & IPG_TS_TX_ERROR) {
957                         IPG_DEBUG_MSG("Transmit error.\n");
958                         sp->stats.tx_errors++;
959                 }
960
961                 /* Late collision, re-enable transmitter. */
962                 if (txstatusdword & IPG_TS_LATE_COLLISION) {
963                         IPG_DEBUG_MSG("Late collision on transmit.\n");
964                         ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
965                                 IPG_MC_RSVD_MASK, MAC_CTRL);
966                 }
967
968                 /* Maximum collisions, re-enable transmitter. */
969                 if (txstatusdword & IPG_TS_TX_MAX_COLL) {
970                         IPG_DEBUG_MSG("Maximum collisions on transmit.\n");
971                         ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
972                                 IPG_MC_RSVD_MASK, MAC_CTRL);
973                 }
974
975                 /* Transmit underrun, reset and re-enable
976                  * transmitter.
977                  */
978                 if (txstatusdword & IPG_TS_TX_UNDERRUN) {
979                         IPG_DEBUG_MSG("Transmitter underrun.\n");
980                         sp->stats.tx_fifo_errors++;
981                         ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA |
982                                   IPG_AC_NETWORK | IPG_AC_FIFO);
983
984                         /* Re-configure after DMA reset. */
985                         if (ipg_io_config(dev) < 0) {
986                                 printk(KERN_INFO
987                                        "%s: Error during re-configuration.\n",
988                                        dev->name);
989                         }
990                         init_tfdlist(dev);
991
992                         ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
993                                 IPG_MC_RSVD_MASK, MAC_CTRL);
994                 }
995         }
996
997         ipg_nic_txfree(dev);
998 }
999
1000 /* Provides statistical information about the IPG NIC. */
1001 static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev)
1002 {
1003         struct ipg_nic_private *sp = netdev_priv(dev);
1004         void __iomem *ioaddr = sp->ioaddr;
1005         u16 temp1;
1006         u16 temp2;
1007
1008         IPG_DEBUG_MSG("_nic_get_stats\n");
1009
1010         /* Check to see if the NIC has been initialized via nic_open,
1011          * before trying to read statistic registers.
1012          */
1013         if (!test_bit(__LINK_STATE_START, &dev->state))
1014                 return &sp->stats;
1015
1016         sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK);
1017         sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK);
1018         sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK);
1019         sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK);
1020         temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS);
1021         sp->stats.rx_errors += temp1;
1022         sp->stats.rx_missed_errors += temp1;
1023         temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) +
1024                 ipg_r32(IPG_LATECOLLISIONS);
1025         temp2 = ipg_r16(IPG_CARRIERSENSEERRORS);
1026         sp->stats.collisions += temp1;
1027         sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS);
1028         sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) +
1029                 ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2;
1030         sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK);
1031
1032         /* detailed tx_errors */
1033         sp->stats.tx_carrier_errors += temp2;
1034
1035         /* detailed rx_errors */
1036         sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) +
1037                 ipg_r16(IPG_FRAMETOOLONGERRRORS);
1038         sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS);
1039
1040         /* Unutilized IPG statistic registers. */
1041         ipg_r32(IPG_MCSTFRAMESRCVDOK);
1042
1043         return &sp->stats;
1044 }
1045
1046 /* Restore used receive buffers. */
1047 static int ipg_nic_rxrestore(struct net_device *dev)
1048 {
1049         struct ipg_nic_private *sp = netdev_priv(dev);
1050         const unsigned int curr = sp->rx_current;
1051         unsigned int dirty = sp->rx_dirty;
1052
1053         IPG_DEBUG_MSG("_nic_rxrestore\n");
1054
1055         for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) {
1056                 unsigned int entry = dirty % IPG_RFDLIST_LENGTH;
1057
1058                 /* rx_copybreak may poke hole here and there. */
1059                 if (sp->RxBuff[entry])
1060                         continue;
1061
1062                 /* Generate a new receive buffer to replace the
1063                  * current buffer (which will be released by the
1064                  * Linux system).
1065                  */
1066                 if (ipg_get_rxbuff(dev, entry) < 0) {
1067                         IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n");
1068
1069                         break;
1070                 }
1071
1072                 /* Reset the RFS field. */
1073                 sp->rxd[entry].rfs = 0x0000000000000000;
1074         }
1075         sp->rx_dirty = dirty;
1076
1077         return 0;
1078 }
1079
1080 #ifdef JUMBO_FRAME
1081
1082 /* use jumboindex and jumbosize to control jumbo frame status
1083    initial status is jumboindex=-1 and jumbosize=0
1084    1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
1085    2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving
1086    3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump
1087                 previous receiving and need to continue dumping the current one
1088 */
1089 enum {
1090         NormalPacket,
1091         ErrorPacket
1092 };
1093
1094 enum {
1095         Frame_NoStart_NoEnd     = 0,
1096         Frame_WithStart         = 1,
1097         Frame_WithEnd           = 10,
1098         Frame_WithStart_WithEnd = 11
1099 };
1100
1101 inline void ipg_nic_rx_free_skb(struct net_device *dev)
1102 {
1103         struct ipg_nic_private *sp = netdev_priv(dev);
1104         unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1105
1106         if (sp->RxBuff[entry]) {
1107                 struct ipg_rx *rxfd = sp->rxd + entry;
1108
1109                 pci_unmap_single(sp->pdev,
1110                         le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
1111                         sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1112                 dev_kfree_skb_irq(sp->RxBuff[entry]);
1113                 sp->RxBuff[entry] = NULL;
1114         }
1115 }
1116
1117 inline int ipg_nic_rx_check_frame_type(struct net_device *dev)
1118 {
1119         struct ipg_nic_private *sp = netdev_priv(dev);
1120         struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH);
1121         int type = Frame_NoStart_NoEnd;
1122
1123         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART)
1124                 type += Frame_WithStart;
1125         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND)
1126                 type += Frame_WithEnd;
1127         return type;
1128 }
1129
1130 inline int ipg_nic_rx_check_error(struct net_device *dev)
1131 {
1132         struct ipg_nic_private *sp = netdev_priv(dev);
1133         unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1134         struct ipg_rx *rxfd = sp->rxd + entry;
1135
1136         if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1137              (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1138               IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1139               IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) {
1140                 IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
1141                               (unsigned long) rxfd->rfs);
1142
1143                 /* Increment general receive error statistic. */
1144                 sp->stats.rx_errors++;
1145
1146                 /* Increment detailed receive error statistics. */
1147                 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1148                         IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
1149
1150                         sp->stats.rx_fifo_errors++;
1151                 }
1152
1153                 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1154                         IPG_DEBUG_MSG("RX runt occured.\n");
1155                         sp->stats.rx_length_errors++;
1156                 }
1157
1158                 /* Do nothing for IPG_RFS_RXOVERSIZEDFRAME,
1159                  * error count handled by a IPG statistic register.
1160                  */
1161
1162                 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1163                         IPG_DEBUG_MSG("RX alignment error occured.\n");
1164                         sp->stats.rx_frame_errors++;
1165                 }
1166
1167                 /* Do nothing for IPG_RFS_RXFCSERROR, error count
1168                  * handled by a IPG statistic register.
1169                  */
1170
1171                 /* Free the memory associated with the RX
1172                  * buffer since it is erroneous and we will
1173                  * not pass it to higher layer processes.
1174                  */
1175                 if (sp->RxBuff[entry]) {
1176                         pci_unmap_single(sp->pdev,
1177                                 le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
1178                                 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1179
1180                         dev_kfree_skb_irq(sp->RxBuff[entry]);
1181                         sp->RxBuff[entry] = NULL;
1182                 }
1183                 return ErrorPacket;
1184         }
1185         return NormalPacket;
1186 }
1187
1188 static void ipg_nic_rx_with_start_and_end(struct net_device *dev,
1189                                           struct ipg_nic_private *sp,
1190                                           struct ipg_rx *rxfd, unsigned entry)
1191 {
1192         struct SJumbo *jumbo = &sp->Jumbo;
1193         struct sk_buff *skb;
1194         int framelen;
1195
1196         if (jumbo->FoundStart) {
1197                 dev_kfree_skb_irq(jumbo->skb);
1198                 jumbo->FoundStart = 0;
1199                 jumbo->CurrentSize = 0;
1200                 jumbo->skb = NULL;
1201         }
1202
1203         // 1: found error, 0 no error
1204         if (ipg_nic_rx_check_error(dev) != NormalPacket)
1205                 return;
1206
1207         skb = sp->RxBuff[entry];
1208         if (!skb)
1209                 return;
1210
1211         // accept this frame and send to upper layer
1212         framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1213         if (framelen > IPG_RXFRAG_SIZE)
1214                 framelen = IPG_RXFRAG_SIZE;
1215
1216         skb_put(skb, framelen);
1217         skb->protocol = eth_type_trans(skb, dev);
1218         skb->ip_summed = CHECKSUM_NONE;
1219         netif_rx(skb);
1220         dev->last_rx = jiffies;
1221         sp->RxBuff[entry] = NULL;
1222 }
1223
1224 static void ipg_nic_rx_with_start(struct net_device *dev,
1225                                   struct ipg_nic_private *sp,
1226                                   struct ipg_rx *rxfd, unsigned entry)
1227 {
1228         struct SJumbo *jumbo = &sp->Jumbo;
1229         struct pci_dev *pdev = sp->pdev;
1230         struct sk_buff *skb;
1231
1232         // 1: found error, 0 no error
1233         if (ipg_nic_rx_check_error(dev) != NormalPacket)
1234                 return;
1235
1236         // accept this frame and send to upper layer
1237         skb = sp->RxBuff[entry];
1238         if (!skb)
1239                 return;
1240
1241         if (jumbo->FoundStart)
1242                 dev_kfree_skb_irq(jumbo->skb);
1243
1244         pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
1245                          sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1246
1247         skb_put(skb, IPG_RXFRAG_SIZE);
1248
1249         jumbo->FoundStart = 1;
1250         jumbo->CurrentSize = IPG_RXFRAG_SIZE;
1251         jumbo->skb = skb;
1252
1253         sp->RxBuff[entry] = NULL;
1254         dev->last_rx = jiffies;
1255 }
1256
1257 static void ipg_nic_rx_with_end(struct net_device *dev,
1258                                 struct ipg_nic_private *sp,
1259                                 struct ipg_rx *rxfd, unsigned entry)
1260 {
1261         struct SJumbo *jumbo = &sp->Jumbo;
1262
1263         //1: found error, 0 no error
1264         if (ipg_nic_rx_check_error(dev) == NormalPacket) {
1265                 struct sk_buff *skb = sp->RxBuff[entry];
1266
1267                 if (!skb)
1268                         return;
1269
1270                 if (jumbo->FoundStart) {
1271                         int framelen, endframelen;
1272
1273                         framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1274
1275                         endframeLen = framelen - jumbo->CurrentSize;
1276                         /*
1277                         if (framelen > IPG_RXFRAG_SIZE)
1278                                 framelen=IPG_RXFRAG_SIZE;
1279                          */
1280                         if (framelen > IPG_RXSUPPORT_SIZE)
1281                                 dev_kfree_skb_irq(jumbo->skb);
1282                         else {
1283                                 memcpy(skb_put(jumbo->skb, endframeLen),
1284                                        skb->data, endframeLen);
1285
1286                                 jumbo->skb->protocol =
1287                                     eth_type_trans(jumbo->skb, dev);
1288
1289                                 jumbo->skb->ip_summed = CHECKSUM_NONE;
1290                                 netif_rx(jumbo->skb);
1291                         }
1292                 }
1293
1294                 dev->last_rx = jiffies;
1295                 jumbo->FoundStart = 0;
1296                 jumbo->CurrentSize = 0;
1297                 jumbo->skb = NULL;
1298
1299                 ipg_nic_rx_free_skb(dev);
1300         } else {
1301                 dev_kfree_skb_irq(jumbo->skb);
1302                 jumbo->FoundStart = 0;
1303                 jumbo->CurrentSize = 0;
1304                 jumbo->skb = NULL;
1305         }
1306 }
1307
1308 static void ipg_nic_rx_no_start_no_end(struct net_device *dev,
1309                                        struct ipg_nic_private *sp,
1310                                        struct ipg_rx *rxfd, unsigned entry)
1311 {
1312         struct SJumbo *jumbo = &sp->Jumbo;
1313
1314         //1: found error, 0 no error
1315         if (ipg_nic_rx_check_error(dev) == NormalPacket) {
1316                 struct sk_buff *skb = sp->RxBuff[entry];
1317
1318                 if (skb) {
1319                         if (jumbo->FoundStart) {
1320                                 jumbo->CurrentSize += IPG_RXFRAG_SIZE;
1321                                 if (jumbo->CurrentSize <= IPG_RXSUPPORT_SIZE) {
1322                                         memcpy(skb_put(jumbo->skb,
1323                                                        IPG_RXFRAG_SIZE),
1324                                                skb->data, IPG_RXFRAG_SIZE);
1325                                 }
1326                         }
1327                         dev->last_rx = jiffies;
1328                         ipg_nic_rx_free_skb(dev);
1329                 }
1330         } else {
1331                 dev_kfree_skb_irq(jumbo->skb);
1332                 jumbo->FoundStart = 0;
1333                 jumbo->CurrentSize = 0;
1334                 jumbo->skb = NULL;
1335         }
1336 }
1337
1338 static int ipg_nic_rx(struct net_device *dev)
1339 {
1340         struct ipg_nic_private *sp = netdev_priv(dev);
1341         unsigned int curr = sp->rx_current;
1342         void __iomem *ioaddr = sp->ioaddr;
1343         unsigned int i;
1344
1345         IPG_DEBUG_MSG("_nic_rx\n");
1346
1347         for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1348                 unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1349                 struct ipg_rx *rxfd = sp->rxd + entry;
1350
1351                 if (!(rxfd->rfs & le64_to_cpu(IPG_RFS_RFDDONE)))
1352                         break;
1353
1354                 switch (ipg_nic_rx_check_frame_type(dev)) {
1355                 case Frame_WithStart_WithEnd:
1356                         ipg_nic_rx_with_start_and_end(dev, tp, rxfd, entry);
1357                         break;
1358                 case Frame_WithStart:
1359                         ipg_nic_rx_with_start(dev, tp, rxfd, entry);
1360                         break;
1361                 case Frame_WithEnd:
1362                         ipg_nic_rx_with_end(dev, tp, rxfd, entry);
1363                         break;
1364                 case Frame_NoStart_NoEnd:
1365                         ipg_nic_rx_no_start_no_end(dev, tp, rxfd, entry);
1366                         break;
1367                 }
1368         }
1369
1370         sp->rx_current = curr;
1371
1372         if (i == IPG_MAXRFDPROCESS_COUNT) {
1373                 /* There are more RFDs to process, however the
1374                  * allocated amount of RFD processing time has
1375                  * expired. Assert Interrupt Requested to make
1376                  * sure we come back to process the remaining RFDs.
1377                  */
1378                 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1379         }
1380
1381         ipg_nic_rxrestore(dev);
1382
1383         return 0;
1384 }
1385
1386 #else
1387 static int ipg_nic_rx(struct net_device *dev)
1388 {
1389         /* Transfer received Ethernet frames to higher network layers. */
1390         struct ipg_nic_private *sp = netdev_priv(dev);
1391         unsigned int curr = sp->rx_current;
1392         void __iomem *ioaddr = sp->ioaddr;
1393         struct ipg_rx *rxfd;
1394         unsigned int i;
1395
1396         IPG_DEBUG_MSG("_nic_rx\n");
1397
1398 #define __RFS_MASK \
1399         cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND)
1400
1401         for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1402                 unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1403                 struct sk_buff *skb = sp->RxBuff[entry];
1404                 unsigned int framelen;
1405
1406                 rxfd = sp->rxd + entry;
1407
1408                 if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb)
1409                         break;
1410
1411                 /* Get received frame length. */
1412                 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1413
1414                 /* Check for jumbo frame arrival with too small
1415                  * RXFRAG_SIZE.
1416                  */
1417                 if (framelen > IPG_RXFRAG_SIZE) {
1418                         IPG_DEBUG_MSG
1419                             ("RFS FrameLen > allocated fragment size.\n");
1420
1421                         framelen = IPG_RXFRAG_SIZE;
1422                 }
1423
1424                 if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1425                        (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1426                         IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1427                         IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) {
1428
1429                         IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
1430                                       (unsigned long int) rxfd->rfs);
1431
1432                         /* Increment general receive error statistic. */
1433                         sp->stats.rx_errors++;
1434
1435                         /* Increment detailed receive error statistics. */
1436                         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1437                                 IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
1438                                 sp->stats.rx_fifo_errors++;
1439                         }
1440
1441                         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1442                                 IPG_DEBUG_MSG("RX runt occured.\n");
1443                                 sp->stats.rx_length_errors++;
1444                         }
1445
1446                         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ;
1447                         /* Do nothing, error count handled by a IPG
1448                          * statistic register.
1449                          */
1450
1451                         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1452                                 IPG_DEBUG_MSG("RX alignment error occured.\n");
1453                                 sp->stats.rx_frame_errors++;
1454                         }
1455
1456                         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ;
1457                         /* Do nothing, error count handled by a IPG
1458                          * statistic register.
1459                          */
1460
1461                         /* Free the memory associated with the RX
1462                          * buffer since it is erroneous and we will
1463                          * not pass it to higher layer processes.
1464                          */
1465                         if (skb) {
1466                                 __le64 info = rxfd->frag_info;
1467
1468                                 pci_unmap_single(sp->pdev,
1469                                         le64_to_cpu(info) & ~IPG_RFI_FRAGLEN,
1470                                         sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1471
1472                                 dev_kfree_skb_irq(skb);
1473                         }
1474                 } else {
1475
1476                         /* Adjust the new buffer length to accomodate the size
1477                          * of the received frame.
1478                          */
1479                         skb_put(skb, framelen);
1480
1481                         /* Set the buffer's protocol field to Ethernet. */
1482                         skb->protocol = eth_type_trans(skb, dev);
1483
1484                         /* The IPG encountered an error with (or
1485                          * there were no) IP/TCP/UDP checksums.
1486                          * This may or may not indicate an invalid
1487                          * IP/TCP/UDP frame was received. Let the
1488                          * upper layer decide.
1489                          */
1490                         skb->ip_summed = CHECKSUM_NONE;
1491
1492                         /* Hand off frame for higher layer processing.
1493                          * The function netif_rx() releases the sk_buff
1494                          * when processing completes.
1495                          */
1496                         netif_rx(skb);
1497
1498                         /* Record frame receive time (jiffies = Linux
1499                          * kernel current time stamp).
1500                          */
1501                         dev->last_rx = jiffies;
1502                 }
1503
1504                 /* Assure RX buffer is not reused by IPG. */
1505                 sp->RxBuff[entry] = NULL;
1506         }
1507
1508         /*
1509          * If there are more RFDs to proces and the allocated amount of RFD
1510          * processing time has expired, assert Interrupt Requested to make
1511          * sure we come back to process the remaining RFDs.
1512          */
1513         if (i == IPG_MAXRFDPROCESS_COUNT)
1514                 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1515
1516 #ifdef IPG_DEBUG
1517         /* Check if the RFD list contained no receive frame data. */
1518         if (!i)
1519                 sp->EmptyRFDListCount++;
1520 #endif
1521         while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) &&
1522                !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) &&
1523                  (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) {
1524                 unsigned int entry = curr++ % IPG_RFDLIST_LENGTH;
1525
1526                 rxfd = sp->rxd + entry;
1527
1528                 IPG_DEBUG_MSG("Frame requires multiple RFDs.\n");
1529
1530                 /* An unexpected event, additional code needed to handle
1531                  * properly. So for the time being, just disregard the
1532                  * frame.
1533                  */
1534
1535                 /* Free the memory associated with the RX
1536                  * buffer since it is erroneous and we will
1537                  * not pass it to higher layer processes.
1538                  */
1539                 if (sp->RxBuff[entry]) {
1540                         pci_unmap_single(sp->pdev,
1541                                 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1542                                 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1543                         dev_kfree_skb_irq(sp->RxBuff[entry]);
1544                 }
1545
1546                 /* Assure RX buffer is not reused by IPG. */
1547                 sp->RxBuff[entry] = NULL;
1548         }
1549
1550         sp->rx_current = curr;
1551
1552         /* Check to see if there are a minimum number of used
1553          * RFDs before restoring any (should improve performance.)
1554          */
1555         if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE)
1556                 ipg_nic_rxrestore(dev);
1557
1558         return 0;
1559 }
1560 #endif
1561
1562 static void ipg_reset_after_host_error(struct work_struct *work)
1563 {
1564         struct ipg_nic_private *sp =
1565                 container_of(work, struct ipg_nic_private, task.work);
1566         struct net_device *dev = sp->dev;
1567
1568         IPG_DDEBUG_MSG("DMACtrl = %8.8x\n", ioread32(sp->ioaddr + IPG_DMACTRL));
1569
1570         /*
1571          * Acknowledge HostError interrupt by resetting
1572          * IPG DMA and HOST.
1573          */
1574         ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1575
1576         init_rfdlist(dev);
1577         init_tfdlist(dev);
1578
1579         if (ipg_io_config(dev) < 0) {
1580                 printk(KERN_INFO "%s: Cannot recover from PCI error.\n",
1581                        dev->name);
1582                 schedule_delayed_work(&sp->task, HZ);
1583         }
1584 }
1585
1586 static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst)
1587 {
1588         struct net_device *dev = dev_inst;
1589         struct ipg_nic_private *sp = netdev_priv(dev);
1590         void __iomem *ioaddr = sp->ioaddr;
1591         unsigned int handled = 0;
1592         u16 status;
1593
1594         IPG_DEBUG_MSG("_interrupt_handler\n");
1595
1596 #ifdef JUMBO_FRAME
1597         ipg_nic_rxrestore(dev);
1598 #endif
1599         spin_lock(&sp->lock);
1600
1601         /* Get interrupt source information, and acknowledge
1602          * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly,
1603          * IntRequested, MacControlFrame, LinkEvent) interrupts
1604          * if issued. Also, all IPG interrupts are disabled by
1605          * reading IntStatusAck.
1606          */
1607         status = ipg_r16(INT_STATUS_ACK);
1608
1609         IPG_DEBUG_MSG("IntStatusAck = %4.4x\n", status);
1610
1611         /* Shared IRQ of remove event. */
1612         if (!(status & IPG_IS_RSVD_MASK))
1613                 goto out_enable;
1614
1615         handled = 1;
1616
1617         if (unlikely(!netif_running(dev)))
1618                 goto out_unlock;
1619
1620         /* If RFDListEnd interrupt, restore all used RFDs. */
1621         if (status & IPG_IS_RFD_LIST_END) {
1622                 IPG_DEBUG_MSG("RFDListEnd Interrupt.\n");
1623
1624                 /* The RFD list end indicates an RFD was encountered
1625                  * with a 0 NextPtr, or with an RFDDone bit set to 1
1626                  * (indicating the RFD is not read for use by the
1627                  * IPG.) Try to restore all RFDs.
1628                  */
1629                 ipg_nic_rxrestore(dev);
1630
1631 #ifdef IPG_DEBUG
1632                 /* Increment the RFDlistendCount counter. */
1633                 sp->RFDlistendCount++;
1634 #endif
1635         }
1636
1637         /* If RFDListEnd, RxDMAPriority, RxDMAComplete, or
1638          * IntRequested interrupt, process received frames. */
1639         if ((status & IPG_IS_RX_DMA_PRIORITY) ||
1640             (status & IPG_IS_RFD_LIST_END) ||
1641             (status & IPG_IS_RX_DMA_COMPLETE) ||
1642             (status & IPG_IS_INT_REQUESTED)) {
1643 #ifdef IPG_DEBUG
1644                 /* Increment the RFD list checked counter if interrupted
1645                  * only to check the RFD list. */
1646                 if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END |
1647                                 IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) &
1648                                (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE |
1649                                 IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE |
1650                                 IPG_IS_UPDATE_STATS)))
1651                         sp->RFDListCheckedCount++;
1652 #endif
1653
1654                 ipg_nic_rx(dev);
1655         }
1656
1657         /* If TxDMAComplete interrupt, free used TFDs. */
1658         if (status & IPG_IS_TX_DMA_COMPLETE)
1659                 ipg_nic_txfree(dev);
1660
1661         /* TxComplete interrupts indicate one of numerous actions.
1662          * Determine what action to take based on TXSTATUS register.
1663          */
1664         if (status & IPG_IS_TX_COMPLETE)
1665                 ipg_nic_txcleanup(dev);
1666
1667         /* If UpdateStats interrupt, update Linux Ethernet statistics */
1668         if (status & IPG_IS_UPDATE_STATS)
1669                 ipg_nic_get_stats(dev);
1670
1671         /* If HostError interrupt, reset IPG. */
1672         if (status & IPG_IS_HOST_ERROR) {
1673                 IPG_DDEBUG_MSG("HostError Interrupt\n");
1674
1675                 schedule_delayed_work(&sp->task, 0);
1676         }
1677
1678         /* If LinkEvent interrupt, resolve autonegotiation. */
1679         if (status & IPG_IS_LINK_EVENT) {
1680                 if (ipg_config_autoneg(dev) < 0)
1681                         printk(KERN_INFO "%s: Auto-negotiation error.\n",
1682                                dev->name);
1683         }
1684
1685         /* If MACCtrlFrame interrupt, do nothing. */
1686         if (status & IPG_IS_MAC_CTRL_FRAME)
1687                 IPG_DEBUG_MSG("MACCtrlFrame interrupt.\n");
1688
1689         /* If RxComplete interrupt, do nothing. */
1690         if (status & IPG_IS_RX_COMPLETE)
1691                 IPG_DEBUG_MSG("RxComplete interrupt.\n");
1692
1693         /* If RxEarly interrupt, do nothing. */
1694         if (status & IPG_IS_RX_EARLY)
1695                 IPG_DEBUG_MSG("RxEarly interrupt.\n");
1696
1697 out_enable:
1698         /* Re-enable IPG interrupts. */
1699         ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE |
1700                 IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE |
1701                 IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE);
1702 out_unlock:
1703         spin_unlock(&sp->lock);
1704
1705         return IRQ_RETVAL(handled);
1706 }
1707
1708 static void ipg_rx_clear(struct ipg_nic_private *sp)
1709 {
1710         unsigned int i;
1711
1712         for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
1713                 if (sp->RxBuff[i]) {
1714                         struct ipg_rx *rxfd = sp->rxd + i;
1715
1716                         dev_kfree_skb_irq(sp->RxBuff[i]);
1717                         sp->RxBuff[i] = NULL;
1718                         pci_unmap_single(sp->pdev,
1719                                 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1720                                 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1721                 }
1722         }
1723 }
1724
1725 static void ipg_tx_clear(struct ipg_nic_private *sp)
1726 {
1727         unsigned int i;
1728
1729         for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
1730                 if (sp->TxBuff[i]) {
1731                         struct ipg_tx *txfd = sp->txd + i;
1732
1733                         pci_unmap_single(sp->pdev,
1734                                 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
1735                                 sp->TxBuff[i]->len, PCI_DMA_TODEVICE);
1736
1737                         dev_kfree_skb_irq(sp->TxBuff[i]);
1738
1739                         sp->TxBuff[i] = NULL;
1740                 }
1741         }
1742 }
1743
1744 static int ipg_nic_open(struct net_device *dev)
1745 {
1746         struct ipg_nic_private *sp = netdev_priv(dev);
1747         void __iomem *ioaddr = sp->ioaddr;
1748         struct pci_dev *pdev = sp->pdev;
1749         int rc;
1750
1751         IPG_DEBUG_MSG("_nic_open\n");
1752
1753         sp->rx_buf_sz = IPG_RXSUPPORT_SIZE;
1754
1755         /* Check for interrupt line conflicts, and request interrupt
1756          * line for IPG.
1757          *
1758          * IMPORTANT: Disable IPG interrupts prior to registering
1759          *            IRQ.
1760          */
1761         ipg_w16(0x0000, INT_ENABLE);
1762
1763         /* Register the interrupt line to be used by the IPG within
1764          * the Linux system.
1765          */
1766         rc = request_irq(pdev->irq, &ipg_interrupt_handler, IRQF_SHARED,
1767                          dev->name, dev);
1768         if (rc < 0) {
1769                 printk(KERN_INFO "%s: Error when requesting interrupt.\n",
1770                        dev->name);
1771                 goto out;
1772         }
1773
1774         dev->irq = pdev->irq;
1775
1776         rc = -ENOMEM;
1777
1778         sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES,
1779                                      &sp->rxd_map, GFP_KERNEL);
1780         if (!sp->rxd)
1781                 goto err_free_irq_0;
1782
1783         sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES,
1784                                      &sp->txd_map, GFP_KERNEL);
1785         if (!sp->txd)
1786                 goto err_free_rx_1;
1787
1788         rc = init_rfdlist(dev);
1789         if (rc < 0) {
1790                 printk(KERN_INFO "%s: Error during configuration.\n",
1791                        dev->name);
1792                 goto err_free_tx_2;
1793         }
1794
1795         init_tfdlist(dev);
1796
1797         rc = ipg_io_config(dev);
1798         if (rc < 0) {
1799                 printk(KERN_INFO "%s: Error during configuration.\n",
1800                        dev->name);
1801                 goto err_release_tfdlist_3;
1802         }
1803
1804         /* Resolve autonegotiation. */
1805         if (ipg_config_autoneg(dev) < 0)
1806                 printk(KERN_INFO "%s: Auto-negotiation error.\n", dev->name);
1807
1808 #ifdef JUMBO_FRAME
1809         /* initialize JUMBO Frame control variable */
1810         sp->Jumbo.FoundStart = 0;
1811         sp->Jumbo.CurrentSize = 0;
1812         sp->Jumbo.skb = 0;
1813         dev->mtu = IPG_TXFRAG_SIZE;
1814 #endif
1815
1816         /* Enable transmit and receive operation of the IPG. */
1817         ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) &
1818                  IPG_MC_RSVD_MASK, MAC_CTRL);
1819
1820         netif_start_queue(dev);
1821 out:
1822         return rc;
1823
1824 err_release_tfdlist_3:
1825         ipg_tx_clear(sp);
1826         ipg_rx_clear(sp);
1827 err_free_tx_2:
1828         dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1829 err_free_rx_1:
1830         dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1831 err_free_irq_0:
1832         free_irq(pdev->irq, dev);
1833         goto out;
1834 }
1835
1836 static int ipg_nic_stop(struct net_device *dev)
1837 {
1838         struct ipg_nic_private *sp = netdev_priv(dev);
1839         void __iomem *ioaddr = sp->ioaddr;
1840         struct pci_dev *pdev = sp->pdev;
1841
1842         IPG_DEBUG_MSG("_nic_stop\n");
1843
1844         netif_stop_queue(dev);
1845
1846         IPG_DDEBUG_MSG("RFDlistendCount = %i\n", sp->RFDlistendCount);
1847         IPG_DDEBUG_MSG("RFDListCheckedCount = %i\n", sp->rxdCheckedCount);
1848         IPG_DDEBUG_MSG("EmptyRFDListCount = %i\n", sp->EmptyRFDListCount);
1849         IPG_DUMPTFDLIST(dev);
1850
1851         do {
1852                 (void) ipg_r16(INT_STATUS_ACK);
1853
1854                 ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1855
1856                 synchronize_irq(pdev->irq);
1857         } while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK);
1858
1859         ipg_rx_clear(sp);
1860
1861         ipg_tx_clear(sp);
1862
1863         pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1864         pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1865
1866         free_irq(pdev->irq, dev);
1867
1868         return 0;
1869 }
1870
1871 static int ipg_nic_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1872 {
1873         struct ipg_nic_private *sp = netdev_priv(dev);
1874         void __iomem *ioaddr = sp->ioaddr;
1875         unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH;
1876         unsigned long flags;
1877         struct ipg_tx *txfd;
1878
1879         IPG_DDEBUG_MSG("_nic_hard_start_xmit\n");
1880
1881         /* If in 10Mbps mode, stop the transmit queue so
1882          * no more transmit frames are accepted.
1883          */
1884         if (sp->tenmbpsmode)
1885                 netif_stop_queue(dev);
1886
1887         if (sp->ResetCurrentTFD) {
1888                 sp->ResetCurrentTFD = 0;
1889                 entry = 0;
1890         }
1891
1892         txfd = sp->txd + entry;
1893
1894         sp->TxBuff[entry] = skb;
1895
1896         /* Clear all TFC fields, except TFDDONE. */
1897         txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
1898
1899         /* Specify the TFC field within the TFD. */
1900         txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED |
1901                 (IPG_TFC_FRAMEID & cpu_to_le64(sp->tx_current)) |
1902                 (IPG_TFC_FRAGCOUNT & (1 << 24)));
1903
1904         /* Request TxComplete interrupts at an interval defined
1905          * by the constant IPG_FRAMESBETWEENTXCOMPLETES.
1906          * Request TxComplete interrupt for every frame
1907          * if in 10Mbps mode to accomodate problem with 10Mbps
1908          * processing.
1909          */
1910         if (sp->tenmbpsmode)
1911                 txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE);
1912         txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE);
1913         /* Based on compilation option, determine if FCS is to be
1914          * appended to transmit frame by IPG.
1915          */
1916         if (!(IPG_APPEND_FCS_ON_TX))
1917                 txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE);
1918
1919         /* Based on compilation option, determine if IP, TCP and/or
1920          * UDP checksums are to be added to transmit frame by IPG.
1921          */
1922         if (IPG_ADD_IPCHECKSUM_ON_TX)
1923                 txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE);
1924
1925         if (IPG_ADD_TCPCHECKSUM_ON_TX)
1926                 txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE);
1927
1928         if (IPG_ADD_UDPCHECKSUM_ON_TX)
1929                 txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE);
1930
1931         /* Based on compilation option, determine if VLAN tag info is to be
1932          * inserted into transmit frame by IPG.
1933          */
1934         if (IPG_INSERT_MANUAL_VLAN_TAG) {
1935                 txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT |
1936                         ((u64) IPG_MANUAL_VLAN_VID << 32) |
1937                         ((u64) IPG_MANUAL_VLAN_CFI << 44) |
1938                         ((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45));
1939         }
1940
1941         /* The fragment start location within system memory is defined
1942          * by the sk_buff structure's data field. The physical address
1943          * of this location within the system's virtual memory space
1944          * is determined using the IPG_HOST2BUS_MAP function.
1945          */
1946         txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
1947                 skb->len, PCI_DMA_TODEVICE));
1948
1949         /* The length of the fragment within system memory is defined by
1950          * the sk_buff structure's len field.
1951          */
1952         txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN &
1953                 ((u64) (skb->len & 0xffff) << 48));
1954
1955         /* Clear the TFDDone bit last to indicate the TFD is ready
1956          * for transfer to the IPG.
1957          */
1958         txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE);
1959
1960         spin_lock_irqsave(&sp->lock, flags);
1961
1962         sp->tx_current++;
1963
1964         mmiowb();
1965
1966         ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL);
1967
1968         if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH))
1969                 netif_stop_queue(dev);
1970
1971         spin_unlock_irqrestore(&sp->lock, flags);
1972
1973         return NETDEV_TX_OK;
1974 }
1975
1976 static void ipg_set_phy_default_param(unsigned char rev,
1977                                       struct net_device *dev, int phy_address)
1978 {
1979         unsigned short length;
1980         unsigned char revision;
1981         unsigned short *phy_param;
1982         unsigned short address, value;
1983
1984         phy_param = &DefaultPhyParam[0];
1985         length = *phy_param & 0x00FF;
1986         revision = (unsigned char)((*phy_param) >> 8);
1987         phy_param++;
1988         while (length != 0) {
1989                 if (rev == revision) {
1990                         while (length > 1) {
1991                                 address = *phy_param;
1992                                 value = *(phy_param + 1);
1993                                 phy_param += 2;
1994                                 mdio_write(dev, phy_address, address, value);
1995                                 length -= 4;
1996                         }
1997                         break;
1998                 } else {
1999                         phy_param += length / 2;
2000                         length = *phy_param & 0x00FF;
2001                         revision = (unsigned char)((*phy_param) >> 8);
2002                         phy_param++;
2003                 }
2004         }
2005 }
2006
2007 static int read_eeprom(struct net_device *dev, int eep_addr)
2008 {
2009         void __iomem *ioaddr = ipg_ioaddr(dev);
2010         unsigned int i;
2011         int ret = 0;
2012         u16 value;
2013
2014         value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff);
2015         ipg_w16(value, EEPROM_CTRL);
2016
2017         for (i = 0; i < 1000; i++) {
2018                 u16 data;
2019
2020                 mdelay(10);
2021                 data = ipg_r16(EEPROM_CTRL);
2022                 if (!(data & IPG_EC_EEPROM_BUSY)) {
2023                         ret = ipg_r16(EEPROM_DATA);
2024                         break;
2025                 }
2026         }
2027         return ret;
2028 }
2029
2030 static void ipg_init_mii(struct net_device *dev)
2031 {
2032         struct ipg_nic_private *sp = netdev_priv(dev);
2033         struct mii_if_info *mii_if = &sp->mii_if;
2034         int phyaddr;
2035
2036         mii_if->dev          = dev;
2037         mii_if->mdio_read    = mdio_read;
2038         mii_if->mdio_write   = mdio_write;
2039         mii_if->phy_id_mask  = 0x1f;
2040         mii_if->reg_num_mask = 0x1f;
2041
2042         mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev);
2043
2044         if (phyaddr != 0x1f) {
2045                 u16 mii_phyctrl, mii_1000cr;
2046                 u8 revisionid = 0;
2047
2048                 mii_1000cr  = mdio_read(dev, phyaddr, MII_CTRL1000);
2049                 mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF |
2050                         GMII_PHY_1000BASETCONTROL_PreferMaster;
2051                 mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr);
2052
2053                 mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR);
2054
2055                 /* Set default phyparam */
2056                 pci_read_config_byte(sp->pdev, PCI_REVISION_ID, &revisionid);
2057                 ipg_set_phy_default_param(revisionid, dev, phyaddr);
2058
2059                 /* Reset PHY */
2060                 mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART;
2061                 mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl);
2062
2063         }
2064 }
2065
2066 static int ipg_hw_init(struct net_device *dev)
2067 {
2068         struct ipg_nic_private *sp = netdev_priv(dev);
2069         void __iomem *ioaddr = sp->ioaddr;
2070         unsigned int i;
2071         int rc;
2072
2073         /* Read/Write and Reset EEPROM Value */
2074         /* Read LED Mode Configuration from EEPROM */
2075         sp->LED_Mode = read_eeprom(dev, 6);
2076
2077         /* Reset all functions within the IPG. Do not assert
2078          * RST_OUT as not compatible with some PHYs.
2079          */
2080         rc = ipg_reset(dev, IPG_RESET_MASK);
2081         if (rc < 0)
2082                 goto out;
2083
2084         ipg_init_mii(dev);
2085
2086         /* Read MAC Address from EEPROM */
2087         for (i = 0; i < 3; i++)
2088                 sp->station_addr[i] = read_eeprom(dev, 16 + i);
2089
2090         for (i = 0; i < 3; i++)
2091                 ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i);
2092
2093         /* Set station address in ethernet_device structure. */
2094         dev->dev_addr[0] =  ipg_r16(STATION_ADDRESS_0) & 0x00ff;
2095         dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8;
2096         dev->dev_addr[2] =  ipg_r16(STATION_ADDRESS_1) & 0x00ff;
2097         dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8;
2098         dev->dev_addr[4] =  ipg_r16(STATION_ADDRESS_2) & 0x00ff;
2099         dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8;
2100 out:
2101         return rc;
2102 }
2103
2104 static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2105 {
2106         struct ipg_nic_private *sp = netdev_priv(dev);
2107         int rc;
2108
2109         mutex_lock(&sp->mii_mutex);
2110         rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL);
2111         mutex_unlock(&sp->mii_mutex);
2112
2113         return rc;
2114 }
2115
2116 static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu)
2117 {
2118         /* Function to accomodate changes to Maximum Transfer Unit
2119          * (or MTU) of IPG NIC. Cannot use default function since
2120          * the default will not allow for MTU > 1500 bytes.
2121          */
2122
2123         IPG_DEBUG_MSG("_nic_change_mtu\n");
2124
2125         /* Check that the new MTU value is between 68 (14 byte header, 46
2126          * byte payload, 4 byte FCS) and IPG_MAX_RXFRAME_SIZE, which
2127          * corresponds to the MAXFRAMESIZE register in the IPG.
2128          */
2129         if ((new_mtu < 68) || (new_mtu > IPG_MAX_RXFRAME_SIZE))
2130                 return -EINVAL;
2131
2132         dev->mtu = new_mtu;
2133
2134         return 0;
2135 }
2136
2137 static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2138 {
2139         struct ipg_nic_private *sp = netdev_priv(dev);
2140         int rc;
2141
2142         mutex_lock(&sp->mii_mutex);
2143         rc = mii_ethtool_gset(&sp->mii_if, cmd);
2144         mutex_unlock(&sp->mii_mutex);
2145
2146         return rc;
2147 }
2148
2149 static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2150 {
2151         struct ipg_nic_private *sp = netdev_priv(dev);
2152         int rc;
2153
2154         mutex_lock(&sp->mii_mutex);
2155         rc = mii_ethtool_sset(&sp->mii_if, cmd);
2156         mutex_unlock(&sp->mii_mutex);
2157
2158         return rc;
2159 }
2160
2161 static int ipg_nway_reset(struct net_device *dev)
2162 {
2163         struct ipg_nic_private *sp = netdev_priv(dev);
2164         int rc;
2165
2166         mutex_lock(&sp->mii_mutex);
2167         rc = mii_nway_restart(&sp->mii_if);
2168         mutex_unlock(&sp->mii_mutex);
2169
2170         return rc;
2171 }
2172
2173 static struct ethtool_ops ipg_ethtool_ops = {
2174         .get_settings = ipg_get_settings,
2175         .set_settings = ipg_set_settings,
2176         .nway_reset   = ipg_nway_reset,
2177 };
2178
2179 static void ipg_remove(struct pci_dev *pdev)
2180 {
2181         struct net_device *dev = pci_get_drvdata(pdev);
2182         struct ipg_nic_private *sp = netdev_priv(dev);
2183
2184         IPG_DEBUG_MSG("_remove\n");
2185
2186         /* Un-register Ethernet device. */
2187         unregister_netdev(dev);
2188
2189         pci_iounmap(pdev, sp->ioaddr);
2190
2191         pci_release_regions(pdev);
2192
2193         free_netdev(dev);
2194         pci_disable_device(pdev);
2195         pci_set_drvdata(pdev, NULL);
2196 }
2197
2198 static int __devinit ipg_probe(struct pci_dev *pdev,
2199                                const struct pci_device_id *id)
2200 {
2201         unsigned int i = id->driver_data;
2202         struct ipg_nic_private *sp;
2203         struct net_device *dev;
2204         void __iomem *ioaddr;
2205         int rc;
2206
2207         rc = pci_enable_device(pdev);
2208         if (rc < 0)
2209                 goto out;
2210
2211         printk(KERN_INFO "%s: %s\n", pci_name(pdev), ipg_brand_name[i]);
2212
2213         pci_set_master(pdev);
2214
2215         rc = pci_set_dma_mask(pdev, DMA_40BIT_MASK);
2216         if (rc < 0) {
2217                 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2218                 if (rc < 0) {
2219                         printk(KERN_ERR "%s: DMA config failed.\n",
2220                                pci_name(pdev));
2221                         goto err_disable_0;
2222                 }
2223         }
2224
2225         /*
2226          * Initialize net device.
2227          */
2228         dev = alloc_etherdev(sizeof(struct ipg_nic_private));
2229         if (!dev) {
2230                 printk(KERN_ERR "%s: alloc_etherdev failed\n", pci_name(pdev));
2231                 rc = -ENOMEM;
2232                 goto err_disable_0;
2233         }
2234
2235         sp = netdev_priv(dev);
2236         spin_lock_init(&sp->lock);
2237         mutex_init(&sp->mii_mutex);
2238
2239         /* Declare IPG NIC functions for Ethernet device methods.
2240          */
2241         dev->open = &ipg_nic_open;
2242         dev->stop = &ipg_nic_stop;
2243         dev->hard_start_xmit = &ipg_nic_hard_start_xmit;
2244         dev->get_stats = &ipg_nic_get_stats;
2245         dev->set_multicast_list = &ipg_nic_set_multicast_list;
2246         dev->do_ioctl = ipg_ioctl;
2247         dev->tx_timeout = ipg_tx_timeout;
2248         dev->change_mtu = &ipg_nic_change_mtu;
2249
2250         SET_NETDEV_DEV(dev, &pdev->dev);
2251         SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops);
2252
2253         rc = pci_request_regions(pdev, DRV_NAME);
2254         if (rc)
2255                 goto err_free_dev_1;
2256
2257         ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1));
2258         if (!ioaddr) {
2259                 printk(KERN_ERR "%s cannot map MMIO\n", pci_name(pdev));
2260                 rc = -EIO;
2261                 goto err_release_regions_2;
2262         }
2263
2264         /* Save the pointer to the PCI device information. */
2265         sp->ioaddr = ioaddr;
2266         sp->pdev = pdev;
2267         sp->dev = dev;
2268
2269         INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error);
2270
2271         pci_set_drvdata(pdev, dev);
2272
2273         rc = ipg_hw_init(dev);
2274         if (rc < 0)
2275                 goto err_unmap_3;
2276
2277         rc = register_netdev(dev);
2278         if (rc < 0)
2279                 goto err_unmap_3;
2280
2281         printk(KERN_INFO "Ethernet device registered as: %s\n", dev->name);
2282 out:
2283         return rc;
2284
2285 err_unmap_3:
2286         pci_iounmap(pdev, ioaddr);
2287 err_release_regions_2:
2288         pci_release_regions(pdev);
2289 err_free_dev_1:
2290         free_netdev(dev);
2291 err_disable_0:
2292         pci_disable_device(pdev);
2293         goto out;
2294 }
2295
2296 static struct pci_driver ipg_pci_driver = {
2297         .name           = IPG_DRIVER_NAME,
2298         .id_table       = ipg_pci_tbl,
2299         .probe          = ipg_probe,
2300         .remove         = __devexit_p(ipg_remove),
2301 };
2302
2303 static int __init ipg_init_module(void)
2304 {
2305         return pci_register_driver(&ipg_pci_driver);
2306 }
2307
2308 static void __exit ipg_exit_module(void)
2309 {
2310         pci_unregister_driver(&ipg_pci_driver);
2311 }
2312
2313 module_init(ipg_init_module);
2314 module_exit(ipg_exit_module);