ipg: per-device max_rxframe_size
[safe/jmp/linux-2.6] / drivers / net / ipg.c
1 /*
2  * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter
3  *
4  * Copyright (C) 2003, 2007  IC Plus Corp
5  *
6  * Original Author:
7  *
8  *   Craig Rich
9  *   Sundance Technology, Inc.
10  *   www.sundanceti.com
11  *   craig_rich@sundanceti.com
12  *
13  * Current Maintainer:
14  *
15  *   Sorbica Shieh.
16  *   http://www.icplus.com.tw
17  *   sorbica@icplus.com.tw
18  *
19  *   Jesse Huang
20  *   http://www.icplus.com.tw
21  *   jesse@icplus.com.tw
22  */
23 #include <linux/crc32.h>
24 #include <linux/ethtool.h>
25 #include <linux/mii.h>
26 #include <linux/mutex.h>
27
28 #include <asm/div64.h>
29
30 #define IPG_RX_RING_BYTES       (sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH)
31 #define IPG_TX_RING_BYTES       (sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH)
32 #define IPG_RESET_MASK \
33         (IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \
34          IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \
35          IPG_AC_AUTO_INIT)
36
37 #define ipg_w32(val32, reg)     iowrite32((val32), ioaddr + (reg))
38 #define ipg_w16(val16, reg)     iowrite16((val16), ioaddr + (reg))
39 #define ipg_w8(val8, reg)       iowrite8((val8), ioaddr + (reg))
40
41 #define ipg_r32(reg)            ioread32(ioaddr + (reg))
42 #define ipg_r16(reg)            ioread16(ioaddr + (reg))
43 #define ipg_r8(reg)             ioread8(ioaddr + (reg))
44
45 #define JUMBO_FRAME_4k_ONLY
46 enum {
47         netdev_io_size = 128
48 };
49
50 #include "ipg.h"
51 #define DRV_NAME        "ipg"
52
53 MODULE_AUTHOR("IC Plus Corp. 2003");
54 MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver");
55 MODULE_LICENSE("GPL");
56
57 /*
58  * Variable record -- index by leading revision/length
59  * Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN
60  */
61 static unsigned short DefaultPhyParam[] = {
62         /* 11/12/03 IP1000A v1-3 rev=0x40 */
63         /*--------------------------------------------------------------------------
64         (0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2,
65                                  27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6,
66                                  31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7,  9, 0x0700,
67           --------------------------------------------------------------------------*/
68         /* 12/17/03 IP1000A v1-4 rev=0x40 */
69         (0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
70             0x0000,
71         30, 0x005e, 9, 0x0700,
72         /* 01/09/04 IP1000A v1-5 rev=0x41 */
73         (0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
74             0x0000,
75         30, 0x005e, 9, 0x0700,
76         0x0000
77 };
78
79 static const char *ipg_brand_name[] = {
80         "IC PLUS IP1000 1000/100/10 based NIC",
81         "Sundance Technology ST2021 based NIC",
82         "Tamarack Microelectronics TC9020/9021 based NIC",
83         "Tamarack Microelectronics TC9020/9021 based NIC",
84         "D-Link NIC",
85         "D-Link NIC IP1000A"
86 };
87
88 static struct pci_device_id ipg_pci_tbl[] __devinitdata = {
89         { PCI_VDEVICE(SUNDANCE, 0x1023), 0 },
90         { PCI_VDEVICE(SUNDANCE, 0x2021), 1 },
91         { PCI_VDEVICE(SUNDANCE, 0x1021), 2 },
92         { PCI_VDEVICE(DLINK,    0x9021), 3 },
93         { PCI_VDEVICE(DLINK,    0x4000), 4 },
94         { PCI_VDEVICE(DLINK,    0x4020), 5 },
95         { 0, }
96 };
97
98 MODULE_DEVICE_TABLE(pci, ipg_pci_tbl);
99
100 static inline void __iomem *ipg_ioaddr(struct net_device *dev)
101 {
102         struct ipg_nic_private *sp = netdev_priv(dev);
103         return sp->ioaddr;
104 }
105
106 #ifdef IPG_DEBUG
107 static void ipg_dump_rfdlist(struct net_device *dev)
108 {
109         struct ipg_nic_private *sp = netdev_priv(dev);
110         void __iomem *ioaddr = sp->ioaddr;
111         unsigned int i;
112         u32 offset;
113
114         IPG_DEBUG_MSG("_dump_rfdlist\n");
115
116         printk(KERN_INFO "rx_current = %2.2x\n", sp->rx_current);
117         printk(KERN_INFO "rx_dirty   = %2.2x\n", sp->rx_dirty);
118         printk(KERN_INFO "RFDList start address = %16.16lx\n",
119                (unsigned long) sp->rxd_map);
120         printk(KERN_INFO "RFDListPtr register   = %8.8x%8.8x\n",
121                ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0));
122
123         for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
124                 offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd;
125                 printk(KERN_INFO "%2.2x %4.4x RFDNextPtr = %16.16lx\n", i,
126                        offset, (unsigned long) sp->rxd[i].next_desc);
127                 offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd;
128                 printk(KERN_INFO "%2.2x %4.4x RFS        = %16.16lx\n", i,
129                        offset, (unsigned long) sp->rxd[i].rfs);
130                 offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd;
131                 printk(KERN_INFO "%2.2x %4.4x frag_info   = %16.16lx\n", i,
132                        offset, (unsigned long) sp->rxd[i].frag_info);
133         }
134 }
135
136 static void ipg_dump_tfdlist(struct net_device *dev)
137 {
138         struct ipg_nic_private *sp = netdev_priv(dev);
139         void __iomem *ioaddr = sp->ioaddr;
140         unsigned int i;
141         u32 offset;
142
143         IPG_DEBUG_MSG("_dump_tfdlist\n");
144
145         printk(KERN_INFO "tx_current         = %2.2x\n", sp->tx_current);
146         printk(KERN_INFO "tx_dirty = %2.2x\n", sp->tx_dirty);
147         printk(KERN_INFO "TFDList start address = %16.16lx\n",
148                (unsigned long) sp->txd_map);
149         printk(KERN_INFO "TFDListPtr register   = %8.8x%8.8x\n",
150                ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0));
151
152         for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
153                 offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd;
154                 printk(KERN_INFO "%2.2x %4.4x TFDNextPtr = %16.16lx\n", i,
155                        offset, (unsigned long) sp->txd[i].next_desc);
156
157                 offset = (u32) &sp->txd[i].tfc - (u32) sp->txd;
158                 printk(KERN_INFO "%2.2x %4.4x TFC        = %16.16lx\n", i,
159                        offset, (unsigned long) sp->txd[i].tfc);
160                 offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd;
161                 printk(KERN_INFO "%2.2x %4.4x frag_info   = %16.16lx\n", i,
162                        offset, (unsigned long) sp->txd[i].frag_info);
163         }
164 }
165 #endif
166
167 static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data)
168 {
169         ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL);
170         ndelay(IPG_PC_PHYCTRLWAIT_NS);
171 }
172
173 static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data)
174 {
175         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data);
176         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data);
177 }
178
179 static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity)
180 {
181         phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR;
182
183         ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity);
184 }
185
186 static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity)
187 {
188         ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR |
189                 phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL);
190 }
191
192 static u16 read_phy_bit(void __iomem *ioaddr, u8 phyctrlpolarity)
193 {
194         u16 bit_data;
195
196         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity);
197
198         bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1;
199
200         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity);
201
202         return bit_data;
203 }
204
205 /*
206  * Read a register from the Physical Layer device located
207  * on the IPG NIC, using the IPG PHYCTRL register.
208  */
209 static int mdio_read(struct net_device *dev, int phy_id, int phy_reg)
210 {
211         void __iomem *ioaddr = ipg_ioaddr(dev);
212         /*
213          * The GMII mangement frame structure for a read is as follows:
214          *
215          * |Preamble|st|op|phyad|regad|ta|      data      |idle|
216          * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
217          *
218          * <32 1s> = 32 consecutive logic 1 values
219          * A = bit of Physical Layer device address (MSB first)
220          * R = bit of register address (MSB first)
221          * z = High impedance state
222          * D = bit of read data (MSB first)
223          *
224          * Transmission order is 'Preamble' field first, bits transmitted
225          * left to right (first to last).
226          */
227         struct {
228                 u32 field;
229                 unsigned int len;
230         } p[] = {
231                 { GMII_PREAMBLE,        32 },   /* Preamble */
232                 { GMII_ST,              2  },   /* ST */
233                 { GMII_READ,            2  },   /* OP */
234                 { phy_id,               5  },   /* PHYAD */
235                 { phy_reg,              5  },   /* REGAD */
236                 { 0x0000,               2  },   /* TA */
237                 { 0x0000,               16 },   /* DATA */
238                 { 0x0000,               1  }    /* IDLE */
239         };
240         unsigned int i, j;
241         u8 polarity, data;
242
243         polarity  = ipg_r8(PHY_CTRL);
244         polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
245
246         /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
247         for (j = 0; j < 5; j++) {
248                 for (i = 0; i < p[j].len; i++) {
249                         /* For each variable length field, the MSB must be
250                          * transmitted first. Rotate through the field bits,
251                          * starting with the MSB, and move each bit into the
252                          * the 1st (2^1) bit position (this is the bit position
253                          * corresponding to the MgmtData bit of the PhyCtrl
254                          * register for the IPG).
255                          *
256                          * Example: ST = 01;
257                          *
258                          *          First write a '0' to bit 1 of the PhyCtrl
259                          *          register, then write a '1' to bit 1 of the
260                          *          PhyCtrl register.
261                          *
262                          * To do this, right shift the MSB of ST by the value:
263                          * [field length - 1 - #ST bits already written]
264                          * then left shift this result by 1.
265                          */
266                         data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
267                         data &= IPG_PC_MGMTDATA;
268                         data |= polarity | IPG_PC_MGMTDIR;
269
270                         ipg_drive_phy_ctl_low_high(ioaddr, data);
271                 }
272         }
273
274         send_three_state(ioaddr, polarity);
275
276         read_phy_bit(ioaddr, polarity);
277
278         /*
279          * For a read cycle, the bits for the next two fields (TA and
280          * DATA) are driven by the PHY (the IPG reads these bits).
281          */
282         for (i = 0; i < p[6].len; i++) {
283                 p[6].field |=
284                     (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i));
285         }
286
287         send_three_state(ioaddr, polarity);
288         send_three_state(ioaddr, polarity);
289         send_three_state(ioaddr, polarity);
290         send_end(ioaddr, polarity);
291
292         /* Return the value of the DATA field. */
293         return p[6].field;
294 }
295
296 /*
297  * Write to a register from the Physical Layer device located
298  * on the IPG NIC, using the IPG PHYCTRL register.
299  */
300 static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val)
301 {
302         void __iomem *ioaddr = ipg_ioaddr(dev);
303         /*
304          * The GMII mangement frame structure for a read is as follows:
305          *
306          * |Preamble|st|op|phyad|regad|ta|      data      |idle|
307          * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
308          *
309          * <32 1s> = 32 consecutive logic 1 values
310          * A = bit of Physical Layer device address (MSB first)
311          * R = bit of register address (MSB first)
312          * z = High impedance state
313          * D = bit of write data (MSB first)
314          *
315          * Transmission order is 'Preamble' field first, bits transmitted
316          * left to right (first to last).
317          */
318         struct {
319                 u32 field;
320                 unsigned int len;
321         } p[] = {
322                 { GMII_PREAMBLE,        32 },   /* Preamble */
323                 { GMII_ST,              2  },   /* ST */
324                 { GMII_WRITE,           2  },   /* OP */
325                 { phy_id,               5  },   /* PHYAD */
326                 { phy_reg,              5  },   /* REGAD */
327                 { 0x0002,               2  },   /* TA */
328                 { val & 0xffff,         16 },   /* DATA */
329                 { 0x0000,               1  }    /* IDLE */
330         };
331         unsigned int i, j;
332         u8 polarity, data;
333
334         polarity  = ipg_r8(PHY_CTRL);
335         polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
336
337         /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
338         for (j = 0; j < 7; j++) {
339                 for (i = 0; i < p[j].len; i++) {
340                         /* For each variable length field, the MSB must be
341                          * transmitted first. Rotate through the field bits,
342                          * starting with the MSB, and move each bit into the
343                          * the 1st (2^1) bit position (this is the bit position
344                          * corresponding to the MgmtData bit of the PhyCtrl
345                          * register for the IPG).
346                          *
347                          * Example: ST = 01;
348                          *
349                          *          First write a '0' to bit 1 of the PhyCtrl
350                          *          register, then write a '1' to bit 1 of the
351                          *          PhyCtrl register.
352                          *
353                          * To do this, right shift the MSB of ST by the value:
354                          * [field length - 1 - #ST bits already written]
355                          * then left shift this result by 1.
356                          */
357                         data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
358                         data &= IPG_PC_MGMTDATA;
359                         data |= polarity | IPG_PC_MGMTDIR;
360
361                         ipg_drive_phy_ctl_low_high(ioaddr, data);
362                 }
363         }
364
365         /* The last cycle is a tri-state, so read from the PHY. */
366         for (j = 7; j < 8; j++) {
367                 for (i = 0; i < p[j].len; i++) {
368                         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity);
369
370                         p[j].field |= ((ipg_r8(PHY_CTRL) &
371                                 IPG_PC_MGMTDATA) >> 1) << (p[j].len - 1 - i);
372
373                         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity);
374                 }
375         }
376 }
377
378 static void ipg_set_led_mode(struct net_device *dev)
379 {
380         struct ipg_nic_private *sp = netdev_priv(dev);
381         void __iomem *ioaddr = sp->ioaddr;
382         u32 mode;
383
384         mode = ipg_r32(ASIC_CTRL);
385         mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
386
387         if ((sp->led_mode & 0x03) > 1)
388                 mode |= IPG_AC_LED_MODE_BIT_1;  /* Write Asic Control Bit 29 */
389
390         if ((sp->led_mode & 0x01) == 1)
391                 mode |= IPG_AC_LED_MODE;        /* Write Asic Control Bit 14 */
392
393         if ((sp->led_mode & 0x08) == 8)
394                 mode |= IPG_AC_LED_SPEED;       /* Write Asic Control Bit 27 */
395
396         ipg_w32(mode, ASIC_CTRL);
397 }
398
399 static void ipg_set_phy_set(struct net_device *dev)
400 {
401         struct ipg_nic_private *sp = netdev_priv(dev);
402         void __iomem *ioaddr = sp->ioaddr;
403         int physet;
404
405         physet = ipg_r8(PHY_SET);
406         physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET);
407         physet |= ((sp->led_mode & 0x70) >> 4);
408         ipg_w8(physet, PHY_SET);
409 }
410
411 static int ipg_reset(struct net_device *dev, u32 resetflags)
412 {
413         /* Assert functional resets via the IPG AsicCtrl
414          * register as specified by the 'resetflags' input
415          * parameter.
416          */
417         void __iomem *ioaddr = ipg_ioaddr(dev);
418         unsigned int timeout_count = 0;
419
420         IPG_DEBUG_MSG("_reset\n");
421
422         ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL);
423
424         /* Delay added to account for problem with 10Mbps reset. */
425         mdelay(IPG_AC_RESETWAIT);
426
427         while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) {
428                 mdelay(IPG_AC_RESETWAIT);
429                 if (++timeout_count > IPG_AC_RESET_TIMEOUT)
430                         return -ETIME;
431         }
432         /* Set LED Mode in Asic Control */
433         ipg_set_led_mode(dev);
434
435         /* Set PHYSet Register Value */
436         ipg_set_phy_set(dev);
437         return 0;
438 }
439
440 /* Find the GMII PHY address. */
441 static int ipg_find_phyaddr(struct net_device *dev)
442 {
443         unsigned int phyaddr, i;
444
445         for (i = 0; i < 32; i++) {
446                 u32 status;
447
448                 /* Search for the correct PHY address among 32 possible. */
449                 phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32;
450
451                 /* 10/22/03 Grace change verify from GMII_PHY_STATUS to
452                    GMII_PHY_ID1
453                  */
454
455                 status = mdio_read(dev, phyaddr, MII_BMSR);
456
457                 if ((status != 0xFFFF) && (status != 0))
458                         return phyaddr;
459         }
460
461         return 0x1f;
462 }
463
464 /*
465  * Configure IPG based on result of IEEE 802.3 PHY
466  * auto-negotiation.
467  */
468 static int ipg_config_autoneg(struct net_device *dev)
469 {
470         struct ipg_nic_private *sp = netdev_priv(dev);
471         void __iomem *ioaddr = sp->ioaddr;
472         unsigned int txflowcontrol;
473         unsigned int rxflowcontrol;
474         unsigned int fullduplex;
475         u32 mac_ctrl_val;
476         u32 asicctrl;
477         u8 phyctrl;
478
479         IPG_DEBUG_MSG("_config_autoneg\n");
480
481         asicctrl = ipg_r32(ASIC_CTRL);
482         phyctrl = ipg_r8(PHY_CTRL);
483         mac_ctrl_val = ipg_r32(MAC_CTRL);
484
485         /* Set flags for use in resolving auto-negotation, assuming
486          * non-1000Mbps, half duplex, no flow control.
487          */
488         fullduplex = 0;
489         txflowcontrol = 0;
490         rxflowcontrol = 0;
491
492         /* To accomodate a problem in 10Mbps operation,
493          * set a global flag if PHY running in 10Mbps mode.
494          */
495         sp->tenmbpsmode = 0;
496
497         printk(KERN_INFO "%s: Link speed = ", dev->name);
498
499         /* Determine actual speed of operation. */
500         switch (phyctrl & IPG_PC_LINK_SPEED) {
501         case IPG_PC_LINK_SPEED_10MBPS:
502                 printk("10Mbps.\n");
503                 printk(KERN_INFO "%s: 10Mbps operational mode enabled.\n",
504                        dev->name);
505                 sp->tenmbpsmode = 1;
506                 break;
507         case IPG_PC_LINK_SPEED_100MBPS:
508                 printk("100Mbps.\n");
509                 break;
510         case IPG_PC_LINK_SPEED_1000MBPS:
511                 printk("1000Mbps.\n");
512                 break;
513         default:
514                 printk("undefined!\n");
515                 return 0;
516         }
517
518         if (phyctrl & IPG_PC_DUPLEX_STATUS) {
519                 fullduplex = 1;
520                 txflowcontrol = 1;
521                 rxflowcontrol = 1;
522         }
523
524         /* Configure full duplex, and flow control. */
525         if (fullduplex == 1) {
526                 /* Configure IPG for full duplex operation. */
527                 printk(KERN_INFO "%s: setting full duplex, ", dev->name);
528
529                 mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD;
530
531                 if (txflowcontrol == 1) {
532                         printk("TX flow control");
533                         mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE;
534                 } else {
535                         printk("no TX flow control");
536                         mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE;
537                 }
538
539                 if (rxflowcontrol == 1) {
540                         printk(", RX flow control.");
541                         mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE;
542                 } else {
543                         printk(", no RX flow control.");
544                         mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
545                 }
546
547                 printk("\n");
548         } else {
549                 /* Configure IPG for half duplex operation. */
550                 printk(KERN_INFO "%s: setting half duplex, "
551                        "no TX flow control, no RX flow control.\n", dev->name);
552
553                 mac_ctrl_val &= ~IPG_MC_DUPLEX_SELECT_FD &
554                         ~IPG_MC_TX_FLOW_CONTROL_ENABLE &
555                         ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
556         }
557         ipg_w32(mac_ctrl_val, MAC_CTRL);
558         return 0;
559 }
560
561 /* Determine and configure multicast operation and set
562  * receive mode for IPG.
563  */
564 static void ipg_nic_set_multicast_list(struct net_device *dev)
565 {
566         void __iomem *ioaddr = ipg_ioaddr(dev);
567         struct dev_mc_list *mc_list_ptr;
568         unsigned int hashindex;
569         u32 hashtable[2];
570         u8 receivemode;
571
572         IPG_DEBUG_MSG("_nic_set_multicast_list\n");
573
574         receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST;
575
576         if (dev->flags & IFF_PROMISC) {
577                 /* NIC to be configured in promiscuous mode. */
578                 receivemode = IPG_RM_RECEIVEALLFRAMES;
579         } else if ((dev->flags & IFF_ALLMULTI) ||
580                    ((dev->flags & IFF_MULTICAST) &&
581                     (dev->mc_count > IPG_MULTICAST_HASHTABLE_SIZE))) {
582                 /* NIC to be configured to receive all multicast
583                  * frames. */
584                 receivemode |= IPG_RM_RECEIVEMULTICAST;
585         } else if ((dev->flags & IFF_MULTICAST) && (dev->mc_count > 0)) {
586                 /* NIC to be configured to receive selected
587                  * multicast addresses. */
588                 receivemode |= IPG_RM_RECEIVEMULTICASTHASH;
589         }
590
591         /* Calculate the bits to set for the 64 bit, IPG HASHTABLE.
592          * The IPG applies a cyclic-redundancy-check (the same CRC
593          * used to calculate the frame data FCS) to the destination
594          * address all incoming multicast frames whose destination
595          * address has the multicast bit set. The least significant
596          * 6 bits of the CRC result are used as an addressing index
597          * into the hash table. If the value of the bit addressed by
598          * this index is a 1, the frame is passed to the host system.
599          */
600
601         /* Clear hashtable. */
602         hashtable[0] = 0x00000000;
603         hashtable[1] = 0x00000000;
604
605         /* Cycle through all multicast addresses to filter. */
606         for (mc_list_ptr = dev->mc_list;
607              mc_list_ptr != NULL; mc_list_ptr = mc_list_ptr->next) {
608                 /* Calculate CRC result for each multicast address. */
609                 hashindex = crc32_le(0xffffffff, mc_list_ptr->dmi_addr,
610                                      ETH_ALEN);
611
612                 /* Use only the least significant 6 bits. */
613                 hashindex = hashindex & 0x3F;
614
615                 /* Within "hashtable", set bit number "hashindex"
616                  * to a logic 1.
617                  */
618                 set_bit(hashindex, (void *)hashtable);
619         }
620
621         /* Write the value of the hashtable, to the 4, 16 bit
622          * HASHTABLE IPG registers.
623          */
624         ipg_w32(hashtable[0], HASHTABLE_0);
625         ipg_w32(hashtable[1], HASHTABLE_1);
626
627         ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE);
628
629         IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE));
630 }
631
632 static int ipg_io_config(struct net_device *dev)
633 {
634         struct ipg_nic_private *sp = netdev_priv(dev);
635         void __iomem *ioaddr = ipg_ioaddr(dev);
636         u32 origmacctrl;
637         u32 restoremacctrl;
638
639         IPG_DEBUG_MSG("_io_config\n");
640
641         origmacctrl = ipg_r32(MAC_CTRL);
642
643         restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE;
644
645         /* Based on compilation option, determine if FCS is to be
646          * stripped on receive frames by IPG.
647          */
648         if (!IPG_STRIP_FCS_ON_RX)
649                 restoremacctrl |= IPG_MC_RCV_FCS;
650
651         /* Determine if transmitter and/or receiver are
652          * enabled so we may restore MACCTRL correctly.
653          */
654         if (origmacctrl & IPG_MC_TX_ENABLED)
655                 restoremacctrl |= IPG_MC_TX_ENABLE;
656
657         if (origmacctrl & IPG_MC_RX_ENABLED)
658                 restoremacctrl |= IPG_MC_RX_ENABLE;
659
660         /* Transmitter and receiver must be disabled before setting
661          * IFSSelect.
662          */
663         ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) &
664                 IPG_MC_RSVD_MASK, MAC_CTRL);
665
666         /* Now that transmitter and receiver are disabled, write
667          * to IFSSelect.
668          */
669         ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL);
670
671         /* Set RECEIVEMODE register. */
672         ipg_nic_set_multicast_list(dev);
673
674         ipg_w16(sp->max_rxframe_size, MAX_FRAME_SIZE);
675
676         ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE,   RX_DMA_POLL_PERIOD);
677         ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH);
678         ipg_w8(IPG_RXDMABURSTTHRESH_VALUE,  RX_DMA_BURST_THRESH);
679         ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE,   TX_DMA_POLL_PERIOD);
680         ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH);
681         ipg_w8(IPG_TXDMABURSTTHRESH_VALUE,  TX_DMA_BURST_THRESH);
682         ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE |
683                  IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED |
684                  IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT |
685                  IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE);
686         ipg_w16(IPG_FLOWONTHRESH_VALUE,  FLOW_ON_THRESH);
687         ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH);
688
689         /* IPG multi-frag frame bug workaround.
690          * Per silicon revision B3 eratta.
691          */
692         ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL);
693
694         /* IPG TX poll now bug workaround.
695          * Per silicon revision B3 eratta.
696          */
697         ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL);
698
699         /* IPG RX poll now bug workaround.
700          * Per silicon revision B3 eratta.
701          */
702         ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL);
703
704         /* Now restore MACCTRL to original setting. */
705         ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL);
706
707         /* Disable unused RMON statistics. */
708         ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK);
709
710         /* Disable unused MIB statistics. */
711         ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD |
712                 IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES |
713                 IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES |
714                 IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK |
715                 IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS |
716                 IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK);
717
718         return 0;
719 }
720
721 /*
722  * Create a receive buffer within system memory and update
723  * NIC private structure appropriately.
724  */
725 static int ipg_get_rxbuff(struct net_device *dev, int entry)
726 {
727         struct ipg_nic_private *sp = netdev_priv(dev);
728         struct ipg_rx *rxfd = sp->rxd + entry;
729         struct sk_buff *skb;
730         u64 rxfragsize;
731
732         IPG_DEBUG_MSG("_get_rxbuff\n");
733
734         skb = netdev_alloc_skb(dev, sp->rxsupport_size + NET_IP_ALIGN);
735         if (!skb) {
736                 sp->rx_buff[entry] = NULL;
737                 return -ENOMEM;
738         }
739
740         /* Adjust the data start location within the buffer to
741          * align IP address field to a 16 byte boundary.
742          */
743         skb_reserve(skb, NET_IP_ALIGN);
744
745         /* Associate the receive buffer with the IPG NIC. */
746         skb->dev = dev;
747
748         /* Save the address of the sk_buff structure. */
749         sp->rx_buff[entry] = skb;
750
751         rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
752                 sp->rx_buf_sz, PCI_DMA_FROMDEVICE));
753
754         /* Set the RFD fragment length. */
755         rxfragsize = sp->rxfrag_size;
756         rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN);
757
758         return 0;
759 }
760
761 static int init_rfdlist(struct net_device *dev)
762 {
763         struct ipg_nic_private *sp = netdev_priv(dev);
764         void __iomem *ioaddr = sp->ioaddr;
765         unsigned int i;
766
767         IPG_DEBUG_MSG("_init_rfdlist\n");
768
769         for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
770                 struct ipg_rx *rxfd = sp->rxd + i;
771
772                 if (sp->rx_buff[i]) {
773                         pci_unmap_single(sp->pdev,
774                                 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
775                                 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
776                         dev_kfree_skb_irq(sp->rx_buff[i]);
777                         sp->rx_buff[i] = NULL;
778                 }
779
780                 /* Clear out the RFS field. */
781                 rxfd->rfs = 0x0000000000000000;
782
783                 if (ipg_get_rxbuff(dev, i) < 0) {
784                         /*
785                          * A receive buffer was not ready, break the
786                          * RFD list here.
787                          */
788                         IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n");
789
790                         /* Just in case we cannot allocate a single RFD.
791                          * Should not occur.
792                          */
793                         if (i == 0) {
794                                 printk(KERN_ERR "%s: No memory available"
795                                         " for RFD list.\n", dev->name);
796                                 return -ENOMEM;
797                         }
798                 }
799
800                 rxfd->next_desc = cpu_to_le64(sp->rxd_map +
801                         sizeof(struct ipg_rx)*(i + 1));
802         }
803         sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map);
804
805         sp->rx_current = 0;
806         sp->rx_dirty = 0;
807
808         /* Write the location of the RFDList to the IPG. */
809         ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0);
810         ipg_w32(0x00000000, RFD_LIST_PTR_1);
811
812         return 0;
813 }
814
815 static void init_tfdlist(struct net_device *dev)
816 {
817         struct ipg_nic_private *sp = netdev_priv(dev);
818         void __iomem *ioaddr = sp->ioaddr;
819         unsigned int i;
820
821         IPG_DEBUG_MSG("_init_tfdlist\n");
822
823         for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
824                 struct ipg_tx *txfd = sp->txd + i;
825
826                 txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
827
828                 if (sp->tx_buff[i]) {
829                         dev_kfree_skb_irq(sp->tx_buff[i]);
830                         sp->tx_buff[i] = NULL;
831                 }
832
833                 txfd->next_desc = cpu_to_le64(sp->txd_map +
834                         sizeof(struct ipg_tx)*(i + 1));
835         }
836         sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map);
837
838         sp->tx_current = 0;
839         sp->tx_dirty = 0;
840
841         /* Write the location of the TFDList to the IPG. */
842         IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n",
843                        (u32) sp->txd_map);
844         ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0);
845         ipg_w32(0x00000000, TFD_LIST_PTR_1);
846
847         sp->reset_current_tfd = 1;
848 }
849
850 /*
851  * Free all transmit buffers which have already been transfered
852  * via DMA to the IPG.
853  */
854 static void ipg_nic_txfree(struct net_device *dev)
855 {
856         struct ipg_nic_private *sp = netdev_priv(dev);
857         unsigned int released, pending, dirty;
858
859         IPG_DEBUG_MSG("_nic_txfree\n");
860
861         pending = sp->tx_current - sp->tx_dirty;
862         dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH;
863
864         for (released = 0; released < pending; released++) {
865                 struct sk_buff *skb = sp->tx_buff[dirty];
866                 struct ipg_tx *txfd = sp->txd + dirty;
867
868                 IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd->tfc);
869
870                 /* Look at each TFD's TFC field beginning
871                  * at the last freed TFD up to the current TFD.
872                  * If the TFDDone bit is set, free the associated
873                  * buffer.
874                  */
875                 if (!(txfd->tfc & cpu_to_le64(IPG_TFC_TFDDONE)))
876                         break;
877
878                 /* Free the transmit buffer. */
879                 if (skb) {
880                         pci_unmap_single(sp->pdev,
881                                 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
882                                 skb->len, PCI_DMA_TODEVICE);
883
884                         dev_kfree_skb_irq(skb);
885
886                         sp->tx_buff[dirty] = NULL;
887                 }
888                 dirty = (dirty + 1) % IPG_TFDLIST_LENGTH;
889         }
890
891         sp->tx_dirty += released;
892
893         if (netif_queue_stopped(dev) &&
894             (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) {
895                 netif_wake_queue(dev);
896         }
897 }
898
899 static void ipg_tx_timeout(struct net_device *dev)
900 {
901         struct ipg_nic_private *sp = netdev_priv(dev);
902         void __iomem *ioaddr = sp->ioaddr;
903
904         ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK |
905                   IPG_AC_FIFO);
906
907         spin_lock_irq(&sp->lock);
908
909         /* Re-configure after DMA reset. */
910         if (ipg_io_config(dev) < 0) {
911                 printk(KERN_INFO "%s: Error during re-configuration.\n",
912                        dev->name);
913         }
914
915         init_tfdlist(dev);
916
917         spin_unlock_irq(&sp->lock);
918
919         ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK,
920                 MAC_CTRL);
921 }
922
923 /*
924  * For TxComplete interrupts, free all transmit
925  * buffers which have already been transfered via DMA
926  * to the IPG.
927  */
928 static void ipg_nic_txcleanup(struct net_device *dev)
929 {
930         struct ipg_nic_private *sp = netdev_priv(dev);
931         void __iomem *ioaddr = sp->ioaddr;
932         unsigned int i;
933
934         IPG_DEBUG_MSG("_nic_txcleanup\n");
935
936         for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
937                 /* Reading the TXSTATUS register clears the
938                  * TX_COMPLETE interrupt.
939                  */
940                 u32 txstatusdword = ipg_r32(TX_STATUS);
941
942                 IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword);
943
944                 /* Check for Transmit errors. Error bits only valid if
945                  * TX_COMPLETE bit in the TXSTATUS register is a 1.
946                  */
947                 if (!(txstatusdword & IPG_TS_TX_COMPLETE))
948                         break;
949
950                 /* If in 10Mbps mode, indicate transmit is ready. */
951                 if (sp->tenmbpsmode) {
952                         netif_wake_queue(dev);
953                 }
954
955                 /* Transmit error, increment stat counters. */
956                 if (txstatusdword & IPG_TS_TX_ERROR) {
957                         IPG_DEBUG_MSG("Transmit error.\n");
958                         sp->stats.tx_errors++;
959                 }
960
961                 /* Late collision, re-enable transmitter. */
962                 if (txstatusdword & IPG_TS_LATE_COLLISION) {
963                         IPG_DEBUG_MSG("Late collision on transmit.\n");
964                         ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
965                                 IPG_MC_RSVD_MASK, MAC_CTRL);
966                 }
967
968                 /* Maximum collisions, re-enable transmitter. */
969                 if (txstatusdword & IPG_TS_TX_MAX_COLL) {
970                         IPG_DEBUG_MSG("Maximum collisions on transmit.\n");
971                         ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
972                                 IPG_MC_RSVD_MASK, MAC_CTRL);
973                 }
974
975                 /* Transmit underrun, reset and re-enable
976                  * transmitter.
977                  */
978                 if (txstatusdword & IPG_TS_TX_UNDERRUN) {
979                         IPG_DEBUG_MSG("Transmitter underrun.\n");
980                         sp->stats.tx_fifo_errors++;
981                         ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA |
982                                   IPG_AC_NETWORK | IPG_AC_FIFO);
983
984                         /* Re-configure after DMA reset. */
985                         if (ipg_io_config(dev) < 0) {
986                                 printk(KERN_INFO
987                                        "%s: Error during re-configuration.\n",
988                                        dev->name);
989                         }
990                         init_tfdlist(dev);
991
992                         ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
993                                 IPG_MC_RSVD_MASK, MAC_CTRL);
994                 }
995         }
996
997         ipg_nic_txfree(dev);
998 }
999
1000 /* Provides statistical information about the IPG NIC. */
1001 static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev)
1002 {
1003         struct ipg_nic_private *sp = netdev_priv(dev);
1004         void __iomem *ioaddr = sp->ioaddr;
1005         u16 temp1;
1006         u16 temp2;
1007
1008         IPG_DEBUG_MSG("_nic_get_stats\n");
1009
1010         /* Check to see if the NIC has been initialized via nic_open,
1011          * before trying to read statistic registers.
1012          */
1013         if (!test_bit(__LINK_STATE_START, &dev->state))
1014                 return &sp->stats;
1015
1016         sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK);
1017         sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK);
1018         sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK);
1019         sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK);
1020         temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS);
1021         sp->stats.rx_errors += temp1;
1022         sp->stats.rx_missed_errors += temp1;
1023         temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) +
1024                 ipg_r32(IPG_LATECOLLISIONS);
1025         temp2 = ipg_r16(IPG_CARRIERSENSEERRORS);
1026         sp->stats.collisions += temp1;
1027         sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS);
1028         sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) +
1029                 ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2;
1030         sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK);
1031
1032         /* detailed tx_errors */
1033         sp->stats.tx_carrier_errors += temp2;
1034
1035         /* detailed rx_errors */
1036         sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) +
1037                 ipg_r16(IPG_FRAMETOOLONGERRRORS);
1038         sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS);
1039
1040         /* Unutilized IPG statistic registers. */
1041         ipg_r32(IPG_MCSTFRAMESRCVDOK);
1042
1043         return &sp->stats;
1044 }
1045
1046 /* Restore used receive buffers. */
1047 static int ipg_nic_rxrestore(struct net_device *dev)
1048 {
1049         struct ipg_nic_private *sp = netdev_priv(dev);
1050         const unsigned int curr = sp->rx_current;
1051         unsigned int dirty = sp->rx_dirty;
1052
1053         IPG_DEBUG_MSG("_nic_rxrestore\n");
1054
1055         for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) {
1056                 unsigned int entry = dirty % IPG_RFDLIST_LENGTH;
1057
1058                 /* rx_copybreak may poke hole here and there. */
1059                 if (sp->rx_buff[entry])
1060                         continue;
1061
1062                 /* Generate a new receive buffer to replace the
1063                  * current buffer (which will be released by the
1064                  * Linux system).
1065                  */
1066                 if (ipg_get_rxbuff(dev, entry) < 0) {
1067                         IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n");
1068
1069                         break;
1070                 }
1071
1072                 /* Reset the RFS field. */
1073                 sp->rxd[entry].rfs = 0x0000000000000000;
1074         }
1075         sp->rx_dirty = dirty;
1076
1077         return 0;
1078 }
1079
1080 /* use jumboindex and jumbosize to control jumbo frame status
1081  * initial status is jumboindex=-1 and jumbosize=0
1082  * 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
1083  * 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving
1084  * 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump
1085  *               previous receiving and need to continue dumping the current one
1086  */
1087 enum {
1088         NORMAL_PACKET,
1089         ERROR_PACKET
1090 };
1091
1092 enum {
1093         FRAME_NO_START_NO_END   = 0,
1094         FRAME_WITH_START                = 1,
1095         FRAME_WITH_END          = 10,
1096         FRAME_WITH_START_WITH_END = 11
1097 };
1098
1099 static void ipg_nic_rx_free_skb(struct net_device *dev)
1100 {
1101         struct ipg_nic_private *sp = netdev_priv(dev);
1102         unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1103
1104         if (sp->rx_buff[entry]) {
1105                 struct ipg_rx *rxfd = sp->rxd + entry;
1106
1107                 pci_unmap_single(sp->pdev,
1108                         le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
1109                         sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1110                 dev_kfree_skb_irq(sp->rx_buff[entry]);
1111                 sp->rx_buff[entry] = NULL;
1112         }
1113 }
1114
1115 static int ipg_nic_rx_check_frame_type(struct net_device *dev)
1116 {
1117         struct ipg_nic_private *sp = netdev_priv(dev);
1118         struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH);
1119         int type = FRAME_NO_START_NO_END;
1120
1121         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART)
1122                 type += FRAME_WITH_START;
1123         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND)
1124                 type += FRAME_WITH_END;
1125         return type;
1126 }
1127
1128 static int ipg_nic_rx_check_error(struct net_device *dev)
1129 {
1130         struct ipg_nic_private *sp = netdev_priv(dev);
1131         unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1132         struct ipg_rx *rxfd = sp->rxd + entry;
1133
1134         if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1135              (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1136               IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1137               IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) {
1138                 IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
1139                               (unsigned long) rxfd->rfs);
1140
1141                 /* Increment general receive error statistic. */
1142                 sp->stats.rx_errors++;
1143
1144                 /* Increment detailed receive error statistics. */
1145                 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1146                         IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
1147
1148                         sp->stats.rx_fifo_errors++;
1149                 }
1150
1151                 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1152                         IPG_DEBUG_MSG("RX runt occured.\n");
1153                         sp->stats.rx_length_errors++;
1154                 }
1155
1156                 /* Do nothing for IPG_RFS_RXOVERSIZEDFRAME,
1157                  * error count handled by a IPG statistic register.
1158                  */
1159
1160                 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1161                         IPG_DEBUG_MSG("RX alignment error occured.\n");
1162                         sp->stats.rx_frame_errors++;
1163                 }
1164
1165                 /* Do nothing for IPG_RFS_RXFCSERROR, error count
1166                  * handled by a IPG statistic register.
1167                  */
1168
1169                 /* Free the memory associated with the RX
1170                  * buffer since it is erroneous and we will
1171                  * not pass it to higher layer processes.
1172                  */
1173                 if (sp->rx_buff[entry]) {
1174                         pci_unmap_single(sp->pdev,
1175                                 le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
1176                                 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1177
1178                         dev_kfree_skb_irq(sp->rx_buff[entry]);
1179                         sp->rx_buff[entry] = NULL;
1180                 }
1181                 return ERROR_PACKET;
1182         }
1183         return NORMAL_PACKET;
1184 }
1185
1186 static void ipg_nic_rx_with_start_and_end(struct net_device *dev,
1187                                           struct ipg_nic_private *sp,
1188                                           struct ipg_rx *rxfd, unsigned entry)
1189 {
1190         struct ipg_jumbo *jumbo = &sp->jumbo;
1191         struct sk_buff *skb;
1192         int framelen;
1193
1194         if (jumbo->found_start) {
1195                 dev_kfree_skb_irq(jumbo->skb);
1196                 jumbo->found_start = 0;
1197                 jumbo->current_size = 0;
1198                 jumbo->skb = NULL;
1199         }
1200
1201         /* 1: found error, 0 no error */
1202         if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
1203                 return;
1204
1205         skb = sp->rx_buff[entry];
1206         if (!skb)
1207                 return;
1208
1209         /* accept this frame and send to upper layer */
1210         framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1211         if (framelen > sp->rxfrag_size)
1212                 framelen = sp->rxfrag_size;
1213
1214         skb_put(skb, framelen);
1215         skb->protocol = eth_type_trans(skb, dev);
1216         skb->ip_summed = CHECKSUM_NONE;
1217         netif_rx(skb);
1218         dev->last_rx = jiffies;
1219         sp->rx_buff[entry] = NULL;
1220 }
1221
1222 static void ipg_nic_rx_with_start(struct net_device *dev,
1223                                   struct ipg_nic_private *sp,
1224                                   struct ipg_rx *rxfd, unsigned entry)
1225 {
1226         struct ipg_jumbo *jumbo = &sp->jumbo;
1227         struct pci_dev *pdev = sp->pdev;
1228         struct sk_buff *skb;
1229
1230         /* 1: found error, 0 no error */
1231         if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
1232                 return;
1233
1234         /* accept this frame and send to upper layer */
1235         skb = sp->rx_buff[entry];
1236         if (!skb)
1237                 return;
1238
1239         if (jumbo->found_start)
1240                 dev_kfree_skb_irq(jumbo->skb);
1241
1242         pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
1243                          sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1244
1245         skb_put(skb, sp->rxfrag_size);
1246
1247         jumbo->found_start = 1;
1248         jumbo->current_size = sp->rxfrag_size;
1249         jumbo->skb = skb;
1250
1251         sp->rx_buff[entry] = NULL;
1252         dev->last_rx = jiffies;
1253 }
1254
1255 static void ipg_nic_rx_with_end(struct net_device *dev,
1256                                 struct ipg_nic_private *sp,
1257                                 struct ipg_rx *rxfd, unsigned entry)
1258 {
1259         struct ipg_jumbo *jumbo = &sp->jumbo;
1260
1261         /* 1: found error, 0 no error */
1262         if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
1263                 struct sk_buff *skb = sp->rx_buff[entry];
1264
1265                 if (!skb)
1266                         return;
1267
1268                 if (jumbo->found_start) {
1269                         int framelen, endframelen;
1270
1271                         framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1272
1273                         endframelen = framelen - jumbo->current_size;
1274                         if (framelen > sp->rxsupport_size)
1275                                 dev_kfree_skb_irq(jumbo->skb);
1276                         else {
1277                                 memcpy(skb_put(jumbo->skb, endframelen),
1278                                        skb->data, endframelen);
1279
1280                                 jumbo->skb->protocol =
1281                                     eth_type_trans(jumbo->skb, dev);
1282
1283                                 jumbo->skb->ip_summed = CHECKSUM_NONE;
1284                                 netif_rx(jumbo->skb);
1285                         }
1286                 }
1287
1288                 dev->last_rx = jiffies;
1289                 jumbo->found_start = 0;
1290                 jumbo->current_size = 0;
1291                 jumbo->skb = NULL;
1292
1293                 ipg_nic_rx_free_skb(dev);
1294         } else {
1295                 dev_kfree_skb_irq(jumbo->skb);
1296                 jumbo->found_start = 0;
1297                 jumbo->current_size = 0;
1298                 jumbo->skb = NULL;
1299         }
1300 }
1301
1302 static void ipg_nic_rx_no_start_no_end(struct net_device *dev,
1303                                        struct ipg_nic_private *sp,
1304                                        struct ipg_rx *rxfd, unsigned entry)
1305 {
1306         struct ipg_jumbo *jumbo = &sp->jumbo;
1307
1308         /* 1: found error, 0 no error */
1309         if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
1310                 struct sk_buff *skb = sp->rx_buff[entry];
1311
1312                 if (skb) {
1313                         if (jumbo->found_start) {
1314                                 jumbo->current_size += sp->rxfrag_size;
1315                                 if (jumbo->current_size <= sp->rxsupport_size) {
1316                                         memcpy(skb_put(jumbo->skb,
1317                                                        sp->rxfrag_size),
1318                                                skb->data, sp->rxfrag_size);
1319                                 }
1320                         }
1321                         dev->last_rx = jiffies;
1322                         ipg_nic_rx_free_skb(dev);
1323                 }
1324         } else {
1325                 dev_kfree_skb_irq(jumbo->skb);
1326                 jumbo->found_start = 0;
1327                 jumbo->current_size = 0;
1328                 jumbo->skb = NULL;
1329         }
1330 }
1331
1332 static int ipg_nic_rx_jumbo(struct net_device *dev)
1333 {
1334         struct ipg_nic_private *sp = netdev_priv(dev);
1335         unsigned int curr = sp->rx_current;
1336         void __iomem *ioaddr = sp->ioaddr;
1337         unsigned int i;
1338
1339         IPG_DEBUG_MSG("_nic_rx\n");
1340
1341         for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1342                 unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1343                 struct ipg_rx *rxfd = sp->rxd + entry;
1344
1345                 if (!(rxfd->rfs & le64_to_cpu(IPG_RFS_RFDDONE)))
1346                         break;
1347
1348                 switch (ipg_nic_rx_check_frame_type(dev)) {
1349                 case FRAME_WITH_START_WITH_END:
1350                         ipg_nic_rx_with_start_and_end(dev, sp, rxfd, entry);
1351                         break;
1352                 case FRAME_WITH_START:
1353                         ipg_nic_rx_with_start(dev, sp, rxfd, entry);
1354                         break;
1355                 case FRAME_WITH_END:
1356                         ipg_nic_rx_with_end(dev, sp, rxfd, entry);
1357                         break;
1358                 case FRAME_NO_START_NO_END:
1359                         ipg_nic_rx_no_start_no_end(dev, sp, rxfd, entry);
1360                         break;
1361                 }
1362         }
1363
1364         sp->rx_current = curr;
1365
1366         if (i == IPG_MAXRFDPROCESS_COUNT) {
1367                 /* There are more RFDs to process, however the
1368                  * allocated amount of RFD processing time has
1369                  * expired. Assert Interrupt Requested to make
1370                  * sure we come back to process the remaining RFDs.
1371                  */
1372                 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1373         }
1374
1375         ipg_nic_rxrestore(dev);
1376
1377         return 0;
1378 }
1379
1380 static int ipg_nic_rx(struct net_device *dev)
1381 {
1382         /* Transfer received Ethernet frames to higher network layers. */
1383         struct ipg_nic_private *sp = netdev_priv(dev);
1384         unsigned int curr = sp->rx_current;
1385         void __iomem *ioaddr = sp->ioaddr;
1386         struct ipg_rx *rxfd;
1387         unsigned int i;
1388
1389         IPG_DEBUG_MSG("_nic_rx\n");
1390
1391 #define __RFS_MASK \
1392         cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND)
1393
1394         for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1395                 unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1396                 struct sk_buff *skb = sp->rx_buff[entry];
1397                 unsigned int framelen;
1398
1399                 rxfd = sp->rxd + entry;
1400
1401                 if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb)
1402                         break;
1403
1404                 /* Get received frame length. */
1405                 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1406
1407                 /* Check for jumbo frame arrival with too small
1408                  * RXFRAG_SIZE.
1409                  */
1410                 if (framelen > sp->rxfrag_size) {
1411                         IPG_DEBUG_MSG
1412                             ("RFS FrameLen > allocated fragment size.\n");
1413
1414                         framelen = sp->rxfrag_size;
1415                 }
1416
1417                 if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1418                        (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1419                         IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1420                         IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) {
1421
1422                         IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
1423                                       (unsigned long int) rxfd->rfs);
1424
1425                         /* Increment general receive error statistic. */
1426                         sp->stats.rx_errors++;
1427
1428                         /* Increment detailed receive error statistics. */
1429                         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1430                                 IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
1431                                 sp->stats.rx_fifo_errors++;
1432                         }
1433
1434                         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1435                                 IPG_DEBUG_MSG("RX runt occured.\n");
1436                                 sp->stats.rx_length_errors++;
1437                         }
1438
1439                         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ;
1440                         /* Do nothing, error count handled by a IPG
1441                          * statistic register.
1442                          */
1443
1444                         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1445                                 IPG_DEBUG_MSG("RX alignment error occured.\n");
1446                                 sp->stats.rx_frame_errors++;
1447                         }
1448
1449                         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ;
1450                         /* Do nothing, error count handled by a IPG
1451                          * statistic register.
1452                          */
1453
1454                         /* Free the memory associated with the RX
1455                          * buffer since it is erroneous and we will
1456                          * not pass it to higher layer processes.
1457                          */
1458                         if (skb) {
1459                                 __le64 info = rxfd->frag_info;
1460
1461                                 pci_unmap_single(sp->pdev,
1462                                         le64_to_cpu(info) & ~IPG_RFI_FRAGLEN,
1463                                         sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1464
1465                                 dev_kfree_skb_irq(skb);
1466                         }
1467                 } else {
1468
1469                         /* Adjust the new buffer length to accomodate the size
1470                          * of the received frame.
1471                          */
1472                         skb_put(skb, framelen);
1473
1474                         /* Set the buffer's protocol field to Ethernet. */
1475                         skb->protocol = eth_type_trans(skb, dev);
1476
1477                         /* The IPG encountered an error with (or
1478                          * there were no) IP/TCP/UDP checksums.
1479                          * This may or may not indicate an invalid
1480                          * IP/TCP/UDP frame was received. Let the
1481                          * upper layer decide.
1482                          */
1483                         skb->ip_summed = CHECKSUM_NONE;
1484
1485                         /* Hand off frame for higher layer processing.
1486                          * The function netif_rx() releases the sk_buff
1487                          * when processing completes.
1488                          */
1489                         netif_rx(skb);
1490
1491                         /* Record frame receive time (jiffies = Linux
1492                          * kernel current time stamp).
1493                          */
1494                         dev->last_rx = jiffies;
1495                 }
1496
1497                 /* Assure RX buffer is not reused by IPG. */
1498                 sp->rx_buff[entry] = NULL;
1499         }
1500
1501         /*
1502          * If there are more RFDs to proces and the allocated amount of RFD
1503          * processing time has expired, assert Interrupt Requested to make
1504          * sure we come back to process the remaining RFDs.
1505          */
1506         if (i == IPG_MAXRFDPROCESS_COUNT)
1507                 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1508
1509 #ifdef IPG_DEBUG
1510         /* Check if the RFD list contained no receive frame data. */
1511         if (!i)
1512                 sp->EmptyRFDListCount++;
1513 #endif
1514         while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) &&
1515                !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) &&
1516                  (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) {
1517                 unsigned int entry = curr++ % IPG_RFDLIST_LENGTH;
1518
1519                 rxfd = sp->rxd + entry;
1520
1521                 IPG_DEBUG_MSG("Frame requires multiple RFDs.\n");
1522
1523                 /* An unexpected event, additional code needed to handle
1524                  * properly. So for the time being, just disregard the
1525                  * frame.
1526                  */
1527
1528                 /* Free the memory associated with the RX
1529                  * buffer since it is erroneous and we will
1530                  * not pass it to higher layer processes.
1531                  */
1532                 if (sp->rx_buff[entry]) {
1533                         pci_unmap_single(sp->pdev,
1534                                 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1535                                 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1536                         dev_kfree_skb_irq(sp->rx_buff[entry]);
1537                 }
1538
1539                 /* Assure RX buffer is not reused by IPG. */
1540                 sp->rx_buff[entry] = NULL;
1541         }
1542
1543         sp->rx_current = curr;
1544
1545         /* Check to see if there are a minimum number of used
1546          * RFDs before restoring any (should improve performance.)
1547          */
1548         if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE)
1549                 ipg_nic_rxrestore(dev);
1550
1551         return 0;
1552 }
1553
1554 static void ipg_reset_after_host_error(struct work_struct *work)
1555 {
1556         struct ipg_nic_private *sp =
1557                 container_of(work, struct ipg_nic_private, task.work);
1558         struct net_device *dev = sp->dev;
1559
1560         IPG_DDEBUG_MSG("DMACtrl = %8.8x\n", ioread32(sp->ioaddr + IPG_DMACTRL));
1561
1562         /*
1563          * Acknowledge HostError interrupt by resetting
1564          * IPG DMA and HOST.
1565          */
1566         ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1567
1568         init_rfdlist(dev);
1569         init_tfdlist(dev);
1570
1571         if (ipg_io_config(dev) < 0) {
1572                 printk(KERN_INFO "%s: Cannot recover from PCI error.\n",
1573                        dev->name);
1574                 schedule_delayed_work(&sp->task, HZ);
1575         }
1576 }
1577
1578 static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst)
1579 {
1580         struct net_device *dev = dev_inst;
1581         struct ipg_nic_private *sp = netdev_priv(dev);
1582         void __iomem *ioaddr = sp->ioaddr;
1583         unsigned int handled = 0;
1584         u16 status;
1585
1586         IPG_DEBUG_MSG("_interrupt_handler\n");
1587
1588         if (sp->is_jumbo)
1589                 ipg_nic_rxrestore(dev);
1590
1591         spin_lock(&sp->lock);
1592
1593         /* Get interrupt source information, and acknowledge
1594          * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly,
1595          * IntRequested, MacControlFrame, LinkEvent) interrupts
1596          * if issued. Also, all IPG interrupts are disabled by
1597          * reading IntStatusAck.
1598          */
1599         status = ipg_r16(INT_STATUS_ACK);
1600
1601         IPG_DEBUG_MSG("IntStatusAck = %4.4x\n", status);
1602
1603         /* Shared IRQ of remove event. */
1604         if (!(status & IPG_IS_RSVD_MASK))
1605                 goto out_enable;
1606
1607         handled = 1;
1608
1609         if (unlikely(!netif_running(dev)))
1610                 goto out_unlock;
1611
1612         /* If RFDListEnd interrupt, restore all used RFDs. */
1613         if (status & IPG_IS_RFD_LIST_END) {
1614                 IPG_DEBUG_MSG("RFDListEnd Interrupt.\n");
1615
1616                 /* The RFD list end indicates an RFD was encountered
1617                  * with a 0 NextPtr, or with an RFDDone bit set to 1
1618                  * (indicating the RFD is not read for use by the
1619                  * IPG.) Try to restore all RFDs.
1620                  */
1621                 ipg_nic_rxrestore(dev);
1622
1623 #ifdef IPG_DEBUG
1624                 /* Increment the RFDlistendCount counter. */
1625                 sp->RFDlistendCount++;
1626 #endif
1627         }
1628
1629         /* If RFDListEnd, RxDMAPriority, RxDMAComplete, or
1630          * IntRequested interrupt, process received frames. */
1631         if ((status & IPG_IS_RX_DMA_PRIORITY) ||
1632             (status & IPG_IS_RFD_LIST_END) ||
1633             (status & IPG_IS_RX_DMA_COMPLETE) ||
1634             (status & IPG_IS_INT_REQUESTED)) {
1635 #ifdef IPG_DEBUG
1636                 /* Increment the RFD list checked counter if interrupted
1637                  * only to check the RFD list. */
1638                 if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END |
1639                                 IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) &
1640                                (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE |
1641                                 IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE |
1642                                 IPG_IS_UPDATE_STATS)))
1643                         sp->RFDListCheckedCount++;
1644 #endif
1645
1646                 if (sp->is_jumbo)
1647                         ipg_nic_rx_jumbo(dev);
1648                 else
1649                         ipg_nic_rx(dev);
1650         }
1651
1652         /* If TxDMAComplete interrupt, free used TFDs. */
1653         if (status & IPG_IS_TX_DMA_COMPLETE)
1654                 ipg_nic_txfree(dev);
1655
1656         /* TxComplete interrupts indicate one of numerous actions.
1657          * Determine what action to take based on TXSTATUS register.
1658          */
1659         if (status & IPG_IS_TX_COMPLETE)
1660                 ipg_nic_txcleanup(dev);
1661
1662         /* If UpdateStats interrupt, update Linux Ethernet statistics */
1663         if (status & IPG_IS_UPDATE_STATS)
1664                 ipg_nic_get_stats(dev);
1665
1666         /* If HostError interrupt, reset IPG. */
1667         if (status & IPG_IS_HOST_ERROR) {
1668                 IPG_DDEBUG_MSG("HostError Interrupt\n");
1669
1670                 schedule_delayed_work(&sp->task, 0);
1671         }
1672
1673         /* If LinkEvent interrupt, resolve autonegotiation. */
1674         if (status & IPG_IS_LINK_EVENT) {
1675                 if (ipg_config_autoneg(dev) < 0)
1676                         printk(KERN_INFO "%s: Auto-negotiation error.\n",
1677                                dev->name);
1678         }
1679
1680         /* If MACCtrlFrame interrupt, do nothing. */
1681         if (status & IPG_IS_MAC_CTRL_FRAME)
1682                 IPG_DEBUG_MSG("MACCtrlFrame interrupt.\n");
1683
1684         /* If RxComplete interrupt, do nothing. */
1685         if (status & IPG_IS_RX_COMPLETE)
1686                 IPG_DEBUG_MSG("RxComplete interrupt.\n");
1687
1688         /* If RxEarly interrupt, do nothing. */
1689         if (status & IPG_IS_RX_EARLY)
1690                 IPG_DEBUG_MSG("RxEarly interrupt.\n");
1691
1692 out_enable:
1693         /* Re-enable IPG interrupts. */
1694         ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE |
1695                 IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE |
1696                 IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE);
1697 out_unlock:
1698         spin_unlock(&sp->lock);
1699
1700         return IRQ_RETVAL(handled);
1701 }
1702
1703 static void ipg_rx_clear(struct ipg_nic_private *sp)
1704 {
1705         unsigned int i;
1706
1707         for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
1708                 if (sp->rx_buff[i]) {
1709                         struct ipg_rx *rxfd = sp->rxd + i;
1710
1711                         dev_kfree_skb_irq(sp->rx_buff[i]);
1712                         sp->rx_buff[i] = NULL;
1713                         pci_unmap_single(sp->pdev,
1714                                 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1715                                 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1716                 }
1717         }
1718 }
1719
1720 static void ipg_tx_clear(struct ipg_nic_private *sp)
1721 {
1722         unsigned int i;
1723
1724         for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
1725                 if (sp->tx_buff[i]) {
1726                         struct ipg_tx *txfd = sp->txd + i;
1727
1728                         pci_unmap_single(sp->pdev,
1729                                 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
1730                                 sp->tx_buff[i]->len, PCI_DMA_TODEVICE);
1731
1732                         dev_kfree_skb_irq(sp->tx_buff[i]);
1733
1734                         sp->tx_buff[i] = NULL;
1735                 }
1736         }
1737 }
1738
1739 static int ipg_nic_open(struct net_device *dev)
1740 {
1741         struct ipg_nic_private *sp = netdev_priv(dev);
1742         void __iomem *ioaddr = sp->ioaddr;
1743         struct pci_dev *pdev = sp->pdev;
1744         int rc;
1745
1746         IPG_DEBUG_MSG("_nic_open\n");
1747
1748         sp->rx_buf_sz = sp->rxsupport_size;
1749
1750         /* Check for interrupt line conflicts, and request interrupt
1751          * line for IPG.
1752          *
1753          * IMPORTANT: Disable IPG interrupts prior to registering
1754          *            IRQ.
1755          */
1756         ipg_w16(0x0000, INT_ENABLE);
1757
1758         /* Register the interrupt line to be used by the IPG within
1759          * the Linux system.
1760          */
1761         rc = request_irq(pdev->irq, &ipg_interrupt_handler, IRQF_SHARED,
1762                          dev->name, dev);
1763         if (rc < 0) {
1764                 printk(KERN_INFO "%s: Error when requesting interrupt.\n",
1765                        dev->name);
1766                 goto out;
1767         }
1768
1769         dev->irq = pdev->irq;
1770
1771         rc = -ENOMEM;
1772
1773         sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES,
1774                                      &sp->rxd_map, GFP_KERNEL);
1775         if (!sp->rxd)
1776                 goto err_free_irq_0;
1777
1778         sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES,
1779                                      &sp->txd_map, GFP_KERNEL);
1780         if (!sp->txd)
1781                 goto err_free_rx_1;
1782
1783         rc = init_rfdlist(dev);
1784         if (rc < 0) {
1785                 printk(KERN_INFO "%s: Error during configuration.\n",
1786                        dev->name);
1787                 goto err_free_tx_2;
1788         }
1789
1790         init_tfdlist(dev);
1791
1792         rc = ipg_io_config(dev);
1793         if (rc < 0) {
1794                 printk(KERN_INFO "%s: Error during configuration.\n",
1795                        dev->name);
1796                 goto err_release_tfdlist_3;
1797         }
1798
1799         /* Resolve autonegotiation. */
1800         if (ipg_config_autoneg(dev) < 0)
1801                 printk(KERN_INFO "%s: Auto-negotiation error.\n", dev->name);
1802
1803         /* initialize JUMBO Frame control variable */
1804         sp->jumbo.found_start = 0;
1805         sp->jumbo.current_size = 0;
1806         sp->jumbo.skb = NULL;
1807
1808         if (IPG_TXFRAG_SIZE)
1809                 dev->mtu = IPG_TXFRAG_SIZE;
1810
1811         /* Enable transmit and receive operation of the IPG. */
1812         ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) &
1813                  IPG_MC_RSVD_MASK, MAC_CTRL);
1814
1815         netif_start_queue(dev);
1816 out:
1817         return rc;
1818
1819 err_release_tfdlist_3:
1820         ipg_tx_clear(sp);
1821         ipg_rx_clear(sp);
1822 err_free_tx_2:
1823         dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1824 err_free_rx_1:
1825         dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1826 err_free_irq_0:
1827         free_irq(pdev->irq, dev);
1828         goto out;
1829 }
1830
1831 static int ipg_nic_stop(struct net_device *dev)
1832 {
1833         struct ipg_nic_private *sp = netdev_priv(dev);
1834         void __iomem *ioaddr = sp->ioaddr;
1835         struct pci_dev *pdev = sp->pdev;
1836
1837         IPG_DEBUG_MSG("_nic_stop\n");
1838
1839         netif_stop_queue(dev);
1840
1841         IPG_DDEBUG_MSG("RFDlistendCount = %i\n", sp->RFDlistendCount);
1842         IPG_DDEBUG_MSG("RFDListCheckedCount = %i\n", sp->rxdCheckedCount);
1843         IPG_DDEBUG_MSG("EmptyRFDListCount = %i\n", sp->EmptyRFDListCount);
1844         IPG_DUMPTFDLIST(dev);
1845
1846         do {
1847                 (void) ipg_r16(INT_STATUS_ACK);
1848
1849                 ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1850
1851                 synchronize_irq(pdev->irq);
1852         } while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK);
1853
1854         ipg_rx_clear(sp);
1855
1856         ipg_tx_clear(sp);
1857
1858         pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1859         pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1860
1861         free_irq(pdev->irq, dev);
1862
1863         return 0;
1864 }
1865
1866 static int ipg_nic_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1867 {
1868         struct ipg_nic_private *sp = netdev_priv(dev);
1869         void __iomem *ioaddr = sp->ioaddr;
1870         unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH;
1871         unsigned long flags;
1872         struct ipg_tx *txfd;
1873
1874         IPG_DDEBUG_MSG("_nic_hard_start_xmit\n");
1875
1876         /* If in 10Mbps mode, stop the transmit queue so
1877          * no more transmit frames are accepted.
1878          */
1879         if (sp->tenmbpsmode)
1880                 netif_stop_queue(dev);
1881
1882         if (sp->reset_current_tfd) {
1883                 sp->reset_current_tfd = 0;
1884                 entry = 0;
1885         }
1886
1887         txfd = sp->txd + entry;
1888
1889         sp->tx_buff[entry] = skb;
1890
1891         /* Clear all TFC fields, except TFDDONE. */
1892         txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
1893
1894         /* Specify the TFC field within the TFD. */
1895         txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED |
1896                 (IPG_TFC_FRAMEID & sp->tx_current) |
1897                 (IPG_TFC_FRAGCOUNT & (1 << 24)));
1898         /*
1899          * 16--17 (WordAlign) <- 3 (disable),
1900          * 0--15 (FrameId) <- sp->tx_current,
1901          * 24--27 (FragCount) <- 1
1902          */
1903
1904         /* Request TxComplete interrupts at an interval defined
1905          * by the constant IPG_FRAMESBETWEENTXCOMPLETES.
1906          * Request TxComplete interrupt for every frame
1907          * if in 10Mbps mode to accomodate problem with 10Mbps
1908          * processing.
1909          */
1910         if (sp->tenmbpsmode)
1911                 txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE);
1912         txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE);
1913         /* Based on compilation option, determine if FCS is to be
1914          * appended to transmit frame by IPG.
1915          */
1916         if (!(IPG_APPEND_FCS_ON_TX))
1917                 txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE);
1918
1919         /* Based on compilation option, determine if IP, TCP and/or
1920          * UDP checksums are to be added to transmit frame by IPG.
1921          */
1922         if (IPG_ADD_IPCHECKSUM_ON_TX)
1923                 txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE);
1924
1925         if (IPG_ADD_TCPCHECKSUM_ON_TX)
1926                 txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE);
1927
1928         if (IPG_ADD_UDPCHECKSUM_ON_TX)
1929                 txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE);
1930
1931         /* Based on compilation option, determine if VLAN tag info is to be
1932          * inserted into transmit frame by IPG.
1933          */
1934         if (IPG_INSERT_MANUAL_VLAN_TAG) {
1935                 txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT |
1936                         ((u64) IPG_MANUAL_VLAN_VID << 32) |
1937                         ((u64) IPG_MANUAL_VLAN_CFI << 44) |
1938                         ((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45));
1939         }
1940
1941         /* The fragment start location within system memory is defined
1942          * by the sk_buff structure's data field. The physical address
1943          * of this location within the system's virtual memory space
1944          * is determined using the IPG_HOST2BUS_MAP function.
1945          */
1946         txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
1947                 skb->len, PCI_DMA_TODEVICE));
1948
1949         /* The length of the fragment within system memory is defined by
1950          * the sk_buff structure's len field.
1951          */
1952         txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN &
1953                 ((u64) (skb->len & 0xffff) << 48));
1954
1955         /* Clear the TFDDone bit last to indicate the TFD is ready
1956          * for transfer to the IPG.
1957          */
1958         txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE);
1959
1960         spin_lock_irqsave(&sp->lock, flags);
1961
1962         sp->tx_current++;
1963
1964         mmiowb();
1965
1966         ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL);
1967
1968         if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH))
1969                 netif_stop_queue(dev);
1970
1971         spin_unlock_irqrestore(&sp->lock, flags);
1972
1973         return NETDEV_TX_OK;
1974 }
1975
1976 static void ipg_set_phy_default_param(unsigned char rev,
1977                                       struct net_device *dev, int phy_address)
1978 {
1979         unsigned short length;
1980         unsigned char revision;
1981         unsigned short *phy_param;
1982         unsigned short address, value;
1983
1984         phy_param = &DefaultPhyParam[0];
1985         length = *phy_param & 0x00FF;
1986         revision = (unsigned char)((*phy_param) >> 8);
1987         phy_param++;
1988         while (length != 0) {
1989                 if (rev == revision) {
1990                         while (length > 1) {
1991                                 address = *phy_param;
1992                                 value = *(phy_param + 1);
1993                                 phy_param += 2;
1994                                 mdio_write(dev, phy_address, address, value);
1995                                 length -= 4;
1996                         }
1997                         break;
1998                 } else {
1999                         phy_param += length / 2;
2000                         length = *phy_param & 0x00FF;
2001                         revision = (unsigned char)((*phy_param) >> 8);
2002                         phy_param++;
2003                 }
2004         }
2005 }
2006
2007 static int read_eeprom(struct net_device *dev, int eep_addr)
2008 {
2009         void __iomem *ioaddr = ipg_ioaddr(dev);
2010         unsigned int i;
2011         int ret = 0;
2012         u16 value;
2013
2014         value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff);
2015         ipg_w16(value, EEPROM_CTRL);
2016
2017         for (i = 0; i < 1000; i++) {
2018                 u16 data;
2019
2020                 mdelay(10);
2021                 data = ipg_r16(EEPROM_CTRL);
2022                 if (!(data & IPG_EC_EEPROM_BUSY)) {
2023                         ret = ipg_r16(EEPROM_DATA);
2024                         break;
2025                 }
2026         }
2027         return ret;
2028 }
2029
2030 static void ipg_init_mii(struct net_device *dev)
2031 {
2032         struct ipg_nic_private *sp = netdev_priv(dev);
2033         struct mii_if_info *mii_if = &sp->mii_if;
2034         int phyaddr;
2035
2036         mii_if->dev          = dev;
2037         mii_if->mdio_read    = mdio_read;
2038         mii_if->mdio_write   = mdio_write;
2039         mii_if->phy_id_mask  = 0x1f;
2040         mii_if->reg_num_mask = 0x1f;
2041
2042         mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev);
2043
2044         if (phyaddr != 0x1f) {
2045                 u16 mii_phyctrl, mii_1000cr;
2046                 u8 revisionid = 0;
2047
2048                 mii_1000cr  = mdio_read(dev, phyaddr, MII_CTRL1000);
2049                 mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF |
2050                         GMII_PHY_1000BASETCONTROL_PreferMaster;
2051                 mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr);
2052
2053                 mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR);
2054
2055                 /* Set default phyparam */
2056                 pci_read_config_byte(sp->pdev, PCI_REVISION_ID, &revisionid);
2057                 ipg_set_phy_default_param(revisionid, dev, phyaddr);
2058
2059                 /* Reset PHY */
2060                 mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART;
2061                 mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl);
2062
2063         }
2064 }
2065
2066 static int ipg_hw_init(struct net_device *dev)
2067 {
2068         struct ipg_nic_private *sp = netdev_priv(dev);
2069         void __iomem *ioaddr = sp->ioaddr;
2070         unsigned int i;
2071         int rc;
2072
2073         /* Read/Write and Reset EEPROM Value */
2074         /* Read LED Mode Configuration from EEPROM */
2075         sp->led_mode = read_eeprom(dev, 6);
2076
2077         /* Reset all functions within the IPG. Do not assert
2078          * RST_OUT as not compatible with some PHYs.
2079          */
2080         rc = ipg_reset(dev, IPG_RESET_MASK);
2081         if (rc < 0)
2082                 goto out;
2083
2084         ipg_init_mii(dev);
2085
2086         /* Read MAC Address from EEPROM */
2087         for (i = 0; i < 3; i++)
2088                 sp->station_addr[i] = read_eeprom(dev, 16 + i);
2089
2090         for (i = 0; i < 3; i++)
2091                 ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i);
2092
2093         /* Set station address in ethernet_device structure. */
2094         dev->dev_addr[0] =  ipg_r16(STATION_ADDRESS_0) & 0x00ff;
2095         dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8;
2096         dev->dev_addr[2] =  ipg_r16(STATION_ADDRESS_1) & 0x00ff;
2097         dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8;
2098         dev->dev_addr[4] =  ipg_r16(STATION_ADDRESS_2) & 0x00ff;
2099         dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8;
2100 out:
2101         return rc;
2102 }
2103
2104 static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2105 {
2106         struct ipg_nic_private *sp = netdev_priv(dev);
2107         int rc;
2108
2109         mutex_lock(&sp->mii_mutex);
2110         rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL);
2111         mutex_unlock(&sp->mii_mutex);
2112
2113         return rc;
2114 }
2115
2116 static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu)
2117 {
2118         struct ipg_nic_private *sp = netdev_priv(dev);
2119
2120         /* Function to accomodate changes to Maximum Transfer Unit
2121          * (or MTU) of IPG NIC. Cannot use default function since
2122          * the default will not allow for MTU > 1500 bytes.
2123          */
2124
2125         IPG_DEBUG_MSG("_nic_change_mtu\n");
2126
2127         /* Check that the new MTU value is between 68 (14 byte header, 46
2128          * byte payload, 4 byte FCS) and IPG_MAX_RXFRAME_SIZE, which
2129          * corresponds to the MAXFRAMESIZE register in the IPG.
2130          */
2131         if ((new_mtu < 68) || (new_mtu > sp->max_rxframe_size))
2132                 return -EINVAL;
2133
2134         dev->mtu = new_mtu;
2135
2136         return 0;
2137 }
2138
2139 static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2140 {
2141         struct ipg_nic_private *sp = netdev_priv(dev);
2142         int rc;
2143
2144         mutex_lock(&sp->mii_mutex);
2145         rc = mii_ethtool_gset(&sp->mii_if, cmd);
2146         mutex_unlock(&sp->mii_mutex);
2147
2148         return rc;
2149 }
2150
2151 static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2152 {
2153         struct ipg_nic_private *sp = netdev_priv(dev);
2154         int rc;
2155
2156         mutex_lock(&sp->mii_mutex);
2157         rc = mii_ethtool_sset(&sp->mii_if, cmd);
2158         mutex_unlock(&sp->mii_mutex);
2159
2160         return rc;
2161 }
2162
2163 static int ipg_nway_reset(struct net_device *dev)
2164 {
2165         struct ipg_nic_private *sp = netdev_priv(dev);
2166         int rc;
2167
2168         mutex_lock(&sp->mii_mutex);
2169         rc = mii_nway_restart(&sp->mii_if);
2170         mutex_unlock(&sp->mii_mutex);
2171
2172         return rc;
2173 }
2174
2175 static struct ethtool_ops ipg_ethtool_ops = {
2176         .get_settings = ipg_get_settings,
2177         .set_settings = ipg_set_settings,
2178         .nway_reset   = ipg_nway_reset,
2179 };
2180
2181 static void __devexit ipg_remove(struct pci_dev *pdev)
2182 {
2183         struct net_device *dev = pci_get_drvdata(pdev);
2184         struct ipg_nic_private *sp = netdev_priv(dev);
2185
2186         IPG_DEBUG_MSG("_remove\n");
2187
2188         /* Un-register Ethernet device. */
2189         unregister_netdev(dev);
2190
2191         pci_iounmap(pdev, sp->ioaddr);
2192
2193         pci_release_regions(pdev);
2194
2195         free_netdev(dev);
2196         pci_disable_device(pdev);
2197         pci_set_drvdata(pdev, NULL);
2198 }
2199
2200 static int __devinit ipg_probe(struct pci_dev *pdev,
2201                                const struct pci_device_id *id)
2202 {
2203         unsigned int i = id->driver_data;
2204         struct ipg_nic_private *sp;
2205         struct net_device *dev;
2206         void __iomem *ioaddr;
2207         int rc;
2208
2209         rc = pci_enable_device(pdev);
2210         if (rc < 0)
2211                 goto out;
2212
2213         printk(KERN_INFO "%s: %s\n", pci_name(pdev), ipg_brand_name[i]);
2214
2215         pci_set_master(pdev);
2216
2217         rc = pci_set_dma_mask(pdev, DMA_40BIT_MASK);
2218         if (rc < 0) {
2219                 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2220                 if (rc < 0) {
2221                         printk(KERN_ERR "%s: DMA config failed.\n",
2222                                pci_name(pdev));
2223                         goto err_disable_0;
2224                 }
2225         }
2226
2227         /*
2228          * Initialize net device.
2229          */
2230         dev = alloc_etherdev(sizeof(struct ipg_nic_private));
2231         if (!dev) {
2232                 printk(KERN_ERR "%s: alloc_etherdev failed\n", pci_name(pdev));
2233                 rc = -ENOMEM;
2234                 goto err_disable_0;
2235         }
2236
2237         sp = netdev_priv(dev);
2238         spin_lock_init(&sp->lock);
2239         mutex_init(&sp->mii_mutex);
2240
2241         sp->is_jumbo = IPG_JUMBO;
2242         sp->rxfrag_size = IPG_RXFRAG_SIZE;
2243         sp->rxsupport_size = IPG_RXSUPPORT_SIZE;
2244         sp->max_rxframe_size = IPG_MAX_RXFRAME_SIZE;
2245
2246         /* Declare IPG NIC functions for Ethernet device methods.
2247          */
2248         dev->open = &ipg_nic_open;
2249         dev->stop = &ipg_nic_stop;
2250         dev->hard_start_xmit = &ipg_nic_hard_start_xmit;
2251         dev->get_stats = &ipg_nic_get_stats;
2252         dev->set_multicast_list = &ipg_nic_set_multicast_list;
2253         dev->do_ioctl = ipg_ioctl;
2254         dev->tx_timeout = ipg_tx_timeout;
2255         dev->change_mtu = &ipg_nic_change_mtu;
2256
2257         SET_NETDEV_DEV(dev, &pdev->dev);
2258         SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops);
2259
2260         rc = pci_request_regions(pdev, DRV_NAME);
2261         if (rc)
2262                 goto err_free_dev_1;
2263
2264         ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1));
2265         if (!ioaddr) {
2266                 printk(KERN_ERR "%s cannot map MMIO\n", pci_name(pdev));
2267                 rc = -EIO;
2268                 goto err_release_regions_2;
2269         }
2270
2271         /* Save the pointer to the PCI device information. */
2272         sp->ioaddr = ioaddr;
2273         sp->pdev = pdev;
2274         sp->dev = dev;
2275
2276         INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error);
2277
2278         pci_set_drvdata(pdev, dev);
2279
2280         rc = ipg_hw_init(dev);
2281         if (rc < 0)
2282                 goto err_unmap_3;
2283
2284         rc = register_netdev(dev);
2285         if (rc < 0)
2286                 goto err_unmap_3;
2287
2288         printk(KERN_INFO "Ethernet device registered as: %s\n", dev->name);
2289 out:
2290         return rc;
2291
2292 err_unmap_3:
2293         pci_iounmap(pdev, ioaddr);
2294 err_release_regions_2:
2295         pci_release_regions(pdev);
2296 err_free_dev_1:
2297         free_netdev(dev);
2298 err_disable_0:
2299         pci_disable_device(pdev);
2300         goto out;
2301 }
2302
2303 static struct pci_driver ipg_pci_driver = {
2304         .name           = IPG_DRIVER_NAME,
2305         .id_table       = ipg_pci_tbl,
2306         .probe          = ipg_probe,
2307         .remove         = __devexit_p(ipg_remove),
2308 };
2309
2310 static int __init ipg_init_module(void)
2311 {
2312         return pci_register_driver(&ipg_pci_driver);
2313 }
2314
2315 static void __exit ipg_exit_module(void)
2316 {
2317         pci_unregister_driver(&ipg_pci_driver);
2318 }
2319
2320 module_init(ipg_init_module);
2321 module_exit(ipg_exit_module);