igb: change queue ordering for 82576 based adapters
[safe/jmp/linux-2.6] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/pci-aspm.h>
43 #include <linux/delay.h>
44 #include <linux/interrupt.h>
45 #include <linux/if_ether.h>
46 #include <linux/aer.h>
47 #ifdef CONFIG_IGB_DCA
48 #include <linux/dca.h>
49 #endif
50 #include "igb.h"
51
52 #define DRV_VERSION "1.3.16-k2"
53 char igb_driver_name[] = "igb";
54 char igb_driver_version[] = DRV_VERSION;
55 static const char igb_driver_string[] =
56                                 "Intel(R) Gigabit Ethernet Network Driver";
57 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60         [board_82575] = &e1000_82575_info,
61 };
62
63 static struct pci_device_id igb_pci_tbl[] = {
64         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
65         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
66         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
67         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
68         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
69         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
70         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
71         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
72         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
73         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
74         /* required last entry */
75         {0, }
76 };
77
78 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
79
80 void igb_reset(struct igb_adapter *);
81 static int igb_setup_all_tx_resources(struct igb_adapter *);
82 static int igb_setup_all_rx_resources(struct igb_adapter *);
83 static void igb_free_all_tx_resources(struct igb_adapter *);
84 static void igb_free_all_rx_resources(struct igb_adapter *);
85 static void igb_setup_mrqc(struct igb_adapter *);
86 void igb_update_stats(struct igb_adapter *);
87 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
88 static void __devexit igb_remove(struct pci_dev *pdev);
89 static int igb_sw_init(struct igb_adapter *);
90 static int igb_open(struct net_device *);
91 static int igb_close(struct net_device *);
92 static void igb_configure_tx(struct igb_adapter *);
93 static void igb_configure_rx(struct igb_adapter *);
94 static void igb_clean_all_tx_rings(struct igb_adapter *);
95 static void igb_clean_all_rx_rings(struct igb_adapter *);
96 static void igb_clean_tx_ring(struct igb_ring *);
97 static void igb_clean_rx_ring(struct igb_ring *);
98 static void igb_set_rx_mode(struct net_device *);
99 static void igb_update_phy_info(unsigned long);
100 static void igb_watchdog(unsigned long);
101 static void igb_watchdog_task(struct work_struct *);
102 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
103 static struct net_device_stats *igb_get_stats(struct net_device *);
104 static int igb_change_mtu(struct net_device *, int);
105 static int igb_set_mac(struct net_device *, void *);
106 static void igb_set_uta(struct igb_adapter *adapter);
107 static irqreturn_t igb_intr(int irq, void *);
108 static irqreturn_t igb_intr_msi(int irq, void *);
109 static irqreturn_t igb_msix_other(int irq, void *);
110 static irqreturn_t igb_msix_ring(int irq, void *);
111 #ifdef CONFIG_IGB_DCA
112 static void igb_update_dca(struct igb_q_vector *);
113 static void igb_setup_dca(struct igb_adapter *);
114 #endif /* CONFIG_IGB_DCA */
115 static bool igb_clean_tx_irq(struct igb_q_vector *);
116 static int igb_poll(struct napi_struct *, int);
117 static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
118 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
119 static void igb_tx_timeout(struct net_device *);
120 static void igb_reset_task(struct work_struct *);
121 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
122 static void igb_vlan_rx_add_vid(struct net_device *, u16);
123 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
124 static void igb_restore_vlan(struct igb_adapter *);
125 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
126 static void igb_ping_all_vfs(struct igb_adapter *);
127 static void igb_msg_task(struct igb_adapter *);
128 static void igb_vmm_control(struct igb_adapter *);
129 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
130 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
131
132 #ifdef CONFIG_PM
133 static int igb_suspend(struct pci_dev *, pm_message_t);
134 static int igb_resume(struct pci_dev *);
135 #endif
136 static void igb_shutdown(struct pci_dev *);
137 #ifdef CONFIG_IGB_DCA
138 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
139 static struct notifier_block dca_notifier = {
140         .notifier_call  = igb_notify_dca,
141         .next           = NULL,
142         .priority       = 0
143 };
144 #endif
145 #ifdef CONFIG_NET_POLL_CONTROLLER
146 /* for netdump / net console */
147 static void igb_netpoll(struct net_device *);
148 #endif
149 #ifdef CONFIG_PCI_IOV
150 static unsigned int max_vfs = 0;
151 module_param(max_vfs, uint, 0);
152 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
153                  "per physical function");
154 #endif /* CONFIG_PCI_IOV */
155
156 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
157                      pci_channel_state_t);
158 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
159 static void igb_io_resume(struct pci_dev *);
160
161 static struct pci_error_handlers igb_err_handler = {
162         .error_detected = igb_io_error_detected,
163         .slot_reset = igb_io_slot_reset,
164         .resume = igb_io_resume,
165 };
166
167
168 static struct pci_driver igb_driver = {
169         .name     = igb_driver_name,
170         .id_table = igb_pci_tbl,
171         .probe    = igb_probe,
172         .remove   = __devexit_p(igb_remove),
173 #ifdef CONFIG_PM
174         /* Power Managment Hooks */
175         .suspend  = igb_suspend,
176         .resume   = igb_resume,
177 #endif
178         .shutdown = igb_shutdown,
179         .err_handler = &igb_err_handler
180 };
181
182 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
183 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
184 MODULE_LICENSE("GPL");
185 MODULE_VERSION(DRV_VERSION);
186
187 /**
188  * igb_read_clock - read raw cycle counter (to be used by time counter)
189  */
190 static cycle_t igb_read_clock(const struct cyclecounter *tc)
191 {
192         struct igb_adapter *adapter =
193                 container_of(tc, struct igb_adapter, cycles);
194         struct e1000_hw *hw = &adapter->hw;
195         u64 stamp = 0;
196         int shift = 0;
197
198         stamp |= (u64)rd32(E1000_SYSTIML) << shift;
199         stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
200         return stamp;
201 }
202
203 #ifdef DEBUG
204 /**
205  * igb_get_hw_dev_name - return device name string
206  * used by hardware layer to print debugging information
207  **/
208 char *igb_get_hw_dev_name(struct e1000_hw *hw)
209 {
210         struct igb_adapter *adapter = hw->back;
211         return adapter->netdev->name;
212 }
213
214 /**
215  * igb_get_time_str - format current NIC and system time as string
216  */
217 static char *igb_get_time_str(struct igb_adapter *adapter,
218                               char buffer[160])
219 {
220         cycle_t hw = adapter->cycles.read(&adapter->cycles);
221         struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
222         struct timespec sys;
223         struct timespec delta;
224         getnstimeofday(&sys);
225
226         delta = timespec_sub(nic, sys);
227
228         sprintf(buffer,
229                 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
230                 hw,
231                 (long)nic.tv_sec, nic.tv_nsec,
232                 (long)sys.tv_sec, sys.tv_nsec,
233                 (long)delta.tv_sec, delta.tv_nsec);
234
235         return buffer;
236 }
237 #endif
238
239 /**
240  * igb_init_module - Driver Registration Routine
241  *
242  * igb_init_module is the first routine called when the driver is
243  * loaded. All it does is register with the PCI subsystem.
244  **/
245 static int __init igb_init_module(void)
246 {
247         int ret;
248         printk(KERN_INFO "%s - version %s\n",
249                igb_driver_string, igb_driver_version);
250
251         printk(KERN_INFO "%s\n", igb_copyright);
252
253 #ifdef CONFIG_IGB_DCA
254         dca_register_notify(&dca_notifier);
255 #endif
256         ret = pci_register_driver(&igb_driver);
257         return ret;
258 }
259
260 module_init(igb_init_module);
261
262 /**
263  * igb_exit_module - Driver Exit Cleanup Routine
264  *
265  * igb_exit_module is called just before the driver is removed
266  * from memory.
267  **/
268 static void __exit igb_exit_module(void)
269 {
270 #ifdef CONFIG_IGB_DCA
271         dca_unregister_notify(&dca_notifier);
272 #endif
273         pci_unregister_driver(&igb_driver);
274 }
275
276 module_exit(igb_exit_module);
277
278 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
279 /**
280  * igb_cache_ring_register - Descriptor ring to register mapping
281  * @adapter: board private structure to initialize
282  *
283  * Once we know the feature-set enabled for the device, we'll cache
284  * the register offset the descriptor ring is assigned to.
285  **/
286 static void igb_cache_ring_register(struct igb_adapter *adapter)
287 {
288         int i = 0, j = 0;
289         u32 rbase_offset = adapter->vfs_allocated_count;
290
291         switch (adapter->hw.mac.type) {
292         case e1000_82576:
293                 /* The queues are allocated for virtualization such that VF 0
294                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
295                  * In order to avoid collision we start at the first free queue
296                  * and continue consuming queues in the same sequence
297                  */
298                 if (adapter->vfs_allocated_count) {
299                         for (; i < adapter->num_rx_queues; i++)
300                                 adapter->rx_ring[i].reg_idx = rbase_offset +
301                                                               Q_IDX_82576(i);
302                         for (; j < adapter->num_tx_queues; j++)
303                                 adapter->tx_ring[j].reg_idx = rbase_offset +
304                                                               Q_IDX_82576(j);
305                 }
306         case e1000_82575:
307         default:
308                 for (; i < adapter->num_rx_queues; i++)
309                         adapter->rx_ring[i].reg_idx = rbase_offset + i;
310                 for (; j < adapter->num_tx_queues; j++)
311                         adapter->tx_ring[j].reg_idx = rbase_offset + j;
312                 break;
313         }
314 }
315
316 static void igb_free_queues(struct igb_adapter *adapter)
317 {
318         kfree(adapter->tx_ring);
319         kfree(adapter->rx_ring);
320
321         adapter->tx_ring = NULL;
322         adapter->rx_ring = NULL;
323
324         adapter->num_rx_queues = 0;
325         adapter->num_tx_queues = 0;
326 }
327
328 /**
329  * igb_alloc_queues - Allocate memory for all rings
330  * @adapter: board private structure to initialize
331  *
332  * We allocate one ring per queue at run-time since we don't know the
333  * number of queues at compile-time.
334  **/
335 static int igb_alloc_queues(struct igb_adapter *adapter)
336 {
337         int i;
338
339         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
340                                    sizeof(struct igb_ring), GFP_KERNEL);
341         if (!adapter->tx_ring)
342                 goto err;
343
344         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
345                                    sizeof(struct igb_ring), GFP_KERNEL);
346         if (!adapter->rx_ring)
347                 goto err;
348
349         for (i = 0; i < adapter->num_tx_queues; i++) {
350                 struct igb_ring *ring = &(adapter->tx_ring[i]);
351                 ring->count = adapter->tx_ring_count;
352                 ring->queue_index = i;
353                 ring->pdev = adapter->pdev;
354                 ring->netdev = adapter->netdev;
355                 /* For 82575, context index must be unique per ring. */
356                 if (adapter->hw.mac.type == e1000_82575)
357                         ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
358         }
359
360         for (i = 0; i < adapter->num_rx_queues; i++) {
361                 struct igb_ring *ring = &(adapter->rx_ring[i]);
362                 ring->count = adapter->rx_ring_count;
363                 ring->queue_index = i;
364                 ring->pdev = adapter->pdev;
365                 ring->netdev = adapter->netdev;
366                 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
367                 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
368                 /* set flag indicating ring supports SCTP checksum offload */
369                 if (adapter->hw.mac.type >= e1000_82576)
370                         ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
371         }
372
373         igb_cache_ring_register(adapter);
374
375         return 0;
376
377 err:
378         igb_free_queues(adapter);
379
380         return -ENOMEM;
381 }
382
383 #define IGB_N0_QUEUE -1
384 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
385 {
386         u32 msixbm = 0;
387         struct igb_adapter *adapter = q_vector->adapter;
388         struct e1000_hw *hw = &adapter->hw;
389         u32 ivar, index;
390         int rx_queue = IGB_N0_QUEUE;
391         int tx_queue = IGB_N0_QUEUE;
392
393         if (q_vector->rx_ring)
394                 rx_queue = q_vector->rx_ring->reg_idx;
395         if (q_vector->tx_ring)
396                 tx_queue = q_vector->tx_ring->reg_idx;
397
398         switch (hw->mac.type) {
399         case e1000_82575:
400                 /* The 82575 assigns vectors using a bitmask, which matches the
401                    bitmask for the EICR/EIMS/EIMC registers.  To assign one
402                    or more queues to a vector, we write the appropriate bits
403                    into the MSIXBM register for that vector. */
404                 if (rx_queue > IGB_N0_QUEUE)
405                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
406                 if (tx_queue > IGB_N0_QUEUE)
407                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
408                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
409                 q_vector->eims_value = msixbm;
410                 break;
411         case e1000_82576:
412                 /* 82576 uses a table-based method for assigning vectors.
413                    Each queue has a single entry in the table to which we write
414                    a vector number along with a "valid" bit.  Sadly, the layout
415                    of the table is somewhat counterintuitive. */
416                 if (rx_queue > IGB_N0_QUEUE) {
417                         index = (rx_queue & 0x7);
418                         ivar = array_rd32(E1000_IVAR0, index);
419                         if (rx_queue < 8) {
420                                 /* vector goes into low byte of register */
421                                 ivar = ivar & 0xFFFFFF00;
422                                 ivar |= msix_vector | E1000_IVAR_VALID;
423                         } else {
424                                 /* vector goes into third byte of register */
425                                 ivar = ivar & 0xFF00FFFF;
426                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
427                         }
428                         array_wr32(E1000_IVAR0, index, ivar);
429                 }
430                 if (tx_queue > IGB_N0_QUEUE) {
431                         index = (tx_queue & 0x7);
432                         ivar = array_rd32(E1000_IVAR0, index);
433                         if (tx_queue < 8) {
434                                 /* vector goes into second byte of register */
435                                 ivar = ivar & 0xFFFF00FF;
436                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
437                         } else {
438                                 /* vector goes into high byte of register */
439                                 ivar = ivar & 0x00FFFFFF;
440                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
441                         }
442                         array_wr32(E1000_IVAR0, index, ivar);
443                 }
444                 q_vector->eims_value = 1 << msix_vector;
445                 break;
446         default:
447                 BUG();
448                 break;
449         }
450 }
451
452 /**
453  * igb_configure_msix - Configure MSI-X hardware
454  *
455  * igb_configure_msix sets up the hardware to properly
456  * generate MSI-X interrupts.
457  **/
458 static void igb_configure_msix(struct igb_adapter *adapter)
459 {
460         u32 tmp;
461         int i, vector = 0;
462         struct e1000_hw *hw = &adapter->hw;
463
464         adapter->eims_enable_mask = 0;
465
466         /* set vector for other causes, i.e. link changes */
467         switch (hw->mac.type) {
468         case e1000_82575:
469                 tmp = rd32(E1000_CTRL_EXT);
470                 /* enable MSI-X PBA support*/
471                 tmp |= E1000_CTRL_EXT_PBA_CLR;
472
473                 /* Auto-Mask interrupts upon ICR read. */
474                 tmp |= E1000_CTRL_EXT_EIAME;
475                 tmp |= E1000_CTRL_EXT_IRCA;
476
477                 wr32(E1000_CTRL_EXT, tmp);
478
479                 /* enable msix_other interrupt */
480                 array_wr32(E1000_MSIXBM(0), vector++,
481                                       E1000_EIMS_OTHER);
482                 adapter->eims_other = E1000_EIMS_OTHER;
483
484                 break;
485
486         case e1000_82576:
487                 /* Turn on MSI-X capability first, or our settings
488                  * won't stick.  And it will take days to debug. */
489                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
490                                 E1000_GPIE_PBA | E1000_GPIE_EIAME |
491                                 E1000_GPIE_NSICR);
492
493                 /* enable msix_other interrupt */
494                 adapter->eims_other = 1 << vector;
495                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
496
497                 wr32(E1000_IVAR_MISC, tmp);
498                 break;
499         default:
500                 /* do nothing, since nothing else supports MSI-X */
501                 break;
502         } /* switch (hw->mac.type) */
503
504         adapter->eims_enable_mask |= adapter->eims_other;
505
506         for (i = 0; i < adapter->num_q_vectors; i++) {
507                 struct igb_q_vector *q_vector = adapter->q_vector[i];
508                 igb_assign_vector(q_vector, vector++);
509                 adapter->eims_enable_mask |= q_vector->eims_value;
510         }
511
512         wrfl();
513 }
514
515 /**
516  * igb_request_msix - Initialize MSI-X interrupts
517  *
518  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
519  * kernel.
520  **/
521 static int igb_request_msix(struct igb_adapter *adapter)
522 {
523         struct net_device *netdev = adapter->netdev;
524         struct e1000_hw *hw = &adapter->hw;
525         int i, err = 0, vector = 0;
526
527         err = request_irq(adapter->msix_entries[vector].vector,
528                           &igb_msix_other, 0, netdev->name, adapter);
529         if (err)
530                 goto out;
531         vector++;
532
533         for (i = 0; i < adapter->num_q_vectors; i++) {
534                 struct igb_q_vector *q_vector = adapter->q_vector[i];
535
536                 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
537
538                 if (q_vector->rx_ring && q_vector->tx_ring)
539                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
540                                 q_vector->rx_ring->queue_index);
541                 else if (q_vector->tx_ring)
542                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
543                                 q_vector->tx_ring->queue_index);
544                 else if (q_vector->rx_ring)
545                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
546                                 q_vector->rx_ring->queue_index);
547                 else
548                         sprintf(q_vector->name, "%s-unused", netdev->name);
549
550                 err = request_irq(adapter->msix_entries[vector].vector,
551                                   &igb_msix_ring, 0, q_vector->name,
552                                   q_vector);
553                 if (err)
554                         goto out;
555                 vector++;
556         }
557
558         igb_configure_msix(adapter);
559         return 0;
560 out:
561         return err;
562 }
563
564 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
565 {
566         if (adapter->msix_entries) {
567                 pci_disable_msix(adapter->pdev);
568                 kfree(adapter->msix_entries);
569                 adapter->msix_entries = NULL;
570         } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
571                 pci_disable_msi(adapter->pdev);
572         }
573 }
574
575 /**
576  * igb_free_q_vectors - Free memory allocated for interrupt vectors
577  * @adapter: board private structure to initialize
578  *
579  * This function frees the memory allocated to the q_vectors.  In addition if
580  * NAPI is enabled it will delete any references to the NAPI struct prior
581  * to freeing the q_vector.
582  **/
583 static void igb_free_q_vectors(struct igb_adapter *adapter)
584 {
585         int v_idx;
586
587         for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
588                 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
589                 adapter->q_vector[v_idx] = NULL;
590                 netif_napi_del(&q_vector->napi);
591                 kfree(q_vector);
592         }
593         adapter->num_q_vectors = 0;
594 }
595
596 /**
597  * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
598  *
599  * This function resets the device so that it has 0 rx queues, tx queues, and
600  * MSI-X interrupts allocated.
601  */
602 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
603 {
604         igb_free_queues(adapter);
605         igb_free_q_vectors(adapter);
606         igb_reset_interrupt_capability(adapter);
607 }
608
609 /**
610  * igb_set_interrupt_capability - set MSI or MSI-X if supported
611  *
612  * Attempt to configure interrupts using the best available
613  * capabilities of the hardware and kernel.
614  **/
615 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
616 {
617         int err;
618         int numvecs, i;
619
620         /* Number of supported queues. */
621         adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
622         adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
623
624         /* start with one vector for every rx queue */
625         numvecs = adapter->num_rx_queues;
626
627         /* if tx handler is seperate add 1 for every tx queue */
628         numvecs += adapter->num_tx_queues;
629
630         /* store the number of vectors reserved for queues */
631         adapter->num_q_vectors = numvecs;
632
633         /* add 1 vector for link status interrupts */
634         numvecs++;
635         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
636                                         GFP_KERNEL);
637         if (!adapter->msix_entries)
638                 goto msi_only;
639
640         for (i = 0; i < numvecs; i++)
641                 adapter->msix_entries[i].entry = i;
642
643         err = pci_enable_msix(adapter->pdev,
644                               adapter->msix_entries,
645                               numvecs);
646         if (err == 0)
647                 goto out;
648
649         igb_reset_interrupt_capability(adapter);
650
651         /* If we can't do MSI-X, try MSI */
652 msi_only:
653 #ifdef CONFIG_PCI_IOV
654         /* disable SR-IOV for non MSI-X configurations */
655         if (adapter->vf_data) {
656                 struct e1000_hw *hw = &adapter->hw;
657                 /* disable iov and allow time for transactions to clear */
658                 pci_disable_sriov(adapter->pdev);
659                 msleep(500);
660
661                 kfree(adapter->vf_data);
662                 adapter->vf_data = NULL;
663                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
664                 msleep(100);
665                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
666         }
667 #endif
668         adapter->vfs_allocated_count = 0;
669         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
670         adapter->num_rx_queues = 1;
671         adapter->num_tx_queues = 1;
672         adapter->num_q_vectors = 1;
673         if (!pci_enable_msi(adapter->pdev))
674                 adapter->flags |= IGB_FLAG_HAS_MSI;
675 out:
676         /* Notify the stack of the (possibly) reduced Tx Queue count. */
677         adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
678         return;
679 }
680
681 /**
682  * igb_alloc_q_vectors - Allocate memory for interrupt vectors
683  * @adapter: board private structure to initialize
684  *
685  * We allocate one q_vector per queue interrupt.  If allocation fails we
686  * return -ENOMEM.
687  **/
688 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
689 {
690         struct igb_q_vector *q_vector;
691         struct e1000_hw *hw = &adapter->hw;
692         int v_idx;
693
694         for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
695                 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
696                 if (!q_vector)
697                         goto err_out;
698                 q_vector->adapter = adapter;
699                 q_vector->itr_shift = (hw->mac.type == e1000_82575) ? 16 : 0;
700                 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
701                 q_vector->itr_val = IGB_START_ITR;
702                 q_vector->set_itr = 1;
703                 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
704                 adapter->q_vector[v_idx] = q_vector;
705         }
706         return 0;
707
708 err_out:
709         while (v_idx) {
710                 v_idx--;
711                 q_vector = adapter->q_vector[v_idx];
712                 netif_napi_del(&q_vector->napi);
713                 kfree(q_vector);
714                 adapter->q_vector[v_idx] = NULL;
715         }
716         return -ENOMEM;
717 }
718
719 static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
720                                       int ring_idx, int v_idx)
721 {
722         struct igb_q_vector *q_vector;
723
724         q_vector = adapter->q_vector[v_idx];
725         q_vector->rx_ring = &adapter->rx_ring[ring_idx];
726         q_vector->rx_ring->q_vector = q_vector;
727         q_vector->itr_val = adapter->rx_itr_setting;
728         if (q_vector->itr_val && q_vector->itr_val <= 3)
729                 q_vector->itr_val = IGB_START_ITR;
730 }
731
732 static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
733                                       int ring_idx, int v_idx)
734 {
735         struct igb_q_vector *q_vector;
736
737         q_vector = adapter->q_vector[v_idx];
738         q_vector->tx_ring = &adapter->tx_ring[ring_idx];
739         q_vector->tx_ring->q_vector = q_vector;
740         q_vector->itr_val = adapter->tx_itr_setting;
741         if (q_vector->itr_val && q_vector->itr_val <= 3)
742                 q_vector->itr_val = IGB_START_ITR;
743 }
744
745 /**
746  * igb_map_ring_to_vector - maps allocated queues to vectors
747  *
748  * This function maps the recently allocated queues to vectors.
749  **/
750 static int igb_map_ring_to_vector(struct igb_adapter *adapter)
751 {
752         int i;
753         int v_idx = 0;
754
755         if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
756             (adapter->num_q_vectors < adapter->num_tx_queues))
757                 return -ENOMEM;
758
759         if (adapter->num_q_vectors >=
760             (adapter->num_rx_queues + adapter->num_tx_queues)) {
761                 for (i = 0; i < adapter->num_rx_queues; i++)
762                         igb_map_rx_ring_to_vector(adapter, i, v_idx++);
763                 for (i = 0; i < adapter->num_tx_queues; i++)
764                         igb_map_tx_ring_to_vector(adapter, i, v_idx++);
765         } else {
766                 for (i = 0; i < adapter->num_rx_queues; i++) {
767                         if (i < adapter->num_tx_queues)
768                                 igb_map_tx_ring_to_vector(adapter, i, v_idx);
769                         igb_map_rx_ring_to_vector(adapter, i, v_idx++);
770                 }
771                 for (; i < adapter->num_tx_queues; i++)
772                         igb_map_tx_ring_to_vector(adapter, i, v_idx++);
773         }
774         return 0;
775 }
776
777 /**
778  * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
779  *
780  * This function initializes the interrupts and allocates all of the queues.
781  **/
782 static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
783 {
784         struct pci_dev *pdev = adapter->pdev;
785         int err;
786
787         igb_set_interrupt_capability(adapter);
788
789         err = igb_alloc_q_vectors(adapter);
790         if (err) {
791                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
792                 goto err_alloc_q_vectors;
793         }
794
795         err = igb_alloc_queues(adapter);
796         if (err) {
797                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
798                 goto err_alloc_queues;
799         }
800
801         err = igb_map_ring_to_vector(adapter);
802         if (err) {
803                 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
804                 goto err_map_queues;
805         }
806
807
808         return 0;
809 err_map_queues:
810         igb_free_queues(adapter);
811 err_alloc_queues:
812         igb_free_q_vectors(adapter);
813 err_alloc_q_vectors:
814         igb_reset_interrupt_capability(adapter);
815         return err;
816 }
817
818 /**
819  * igb_request_irq - initialize interrupts
820  *
821  * Attempts to configure interrupts using the best available
822  * capabilities of the hardware and kernel.
823  **/
824 static int igb_request_irq(struct igb_adapter *adapter)
825 {
826         struct net_device *netdev = adapter->netdev;
827         struct pci_dev *pdev = adapter->pdev;
828         struct e1000_hw *hw = &adapter->hw;
829         int err = 0;
830
831         if (adapter->msix_entries) {
832                 err = igb_request_msix(adapter);
833                 if (!err)
834                         goto request_done;
835                 /* fall back to MSI */
836                 igb_clear_interrupt_scheme(adapter);
837                 if (!pci_enable_msi(adapter->pdev))
838                         adapter->flags |= IGB_FLAG_HAS_MSI;
839                 igb_free_all_tx_resources(adapter);
840                 igb_free_all_rx_resources(adapter);
841                 adapter->num_tx_queues = 1;
842                 adapter->num_rx_queues = 1;
843                 adapter->num_q_vectors = 1;
844                 err = igb_alloc_q_vectors(adapter);
845                 if (err) {
846                         dev_err(&pdev->dev,
847                                 "Unable to allocate memory for vectors\n");
848                         goto request_done;
849                 }
850                 err = igb_alloc_queues(adapter);
851                 if (err) {
852                         dev_err(&pdev->dev,
853                                 "Unable to allocate memory for queues\n");
854                         igb_free_q_vectors(adapter);
855                         goto request_done;
856                 }
857                 igb_setup_all_tx_resources(adapter);
858                 igb_setup_all_rx_resources(adapter);
859         } else {
860                 switch (hw->mac.type) {
861                 case e1000_82575:
862                         wr32(E1000_MSIXBM(0),
863                              (E1000_EICR_RX_QUEUE0 |
864                               E1000_EICR_TX_QUEUE0 |
865                               E1000_EIMS_OTHER));
866                         break;
867                 case e1000_82576:
868                         wr32(E1000_IVAR0, E1000_IVAR_VALID);
869                         break;
870                 default:
871                         break;
872                 }
873         }
874
875         if (adapter->flags & IGB_FLAG_HAS_MSI) {
876                 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
877                                   netdev->name, adapter);
878                 if (!err)
879                         goto request_done;
880
881                 /* fall back to legacy interrupts */
882                 igb_reset_interrupt_capability(adapter);
883                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
884         }
885
886         err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
887                           netdev->name, adapter);
888
889         if (err)
890                 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
891                         err);
892
893 request_done:
894         return err;
895 }
896
897 static void igb_free_irq(struct igb_adapter *adapter)
898 {
899         if (adapter->msix_entries) {
900                 int vector = 0, i;
901
902                 free_irq(adapter->msix_entries[vector++].vector, adapter);
903
904                 for (i = 0; i < adapter->num_q_vectors; i++) {
905                         struct igb_q_vector *q_vector = adapter->q_vector[i];
906                         free_irq(adapter->msix_entries[vector++].vector,
907                                  q_vector);
908                 }
909         } else {
910                 free_irq(adapter->pdev->irq, adapter);
911         }
912 }
913
914 /**
915  * igb_irq_disable - Mask off interrupt generation on the NIC
916  * @adapter: board private structure
917  **/
918 static void igb_irq_disable(struct igb_adapter *adapter)
919 {
920         struct e1000_hw *hw = &adapter->hw;
921
922         if (adapter->msix_entries) {
923                 u32 regval = rd32(E1000_EIAM);
924                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
925                 wr32(E1000_EIMC, adapter->eims_enable_mask);
926                 regval = rd32(E1000_EIAC);
927                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
928         }
929
930         wr32(E1000_IAM, 0);
931         wr32(E1000_IMC, ~0);
932         wrfl();
933         synchronize_irq(adapter->pdev->irq);
934 }
935
936 /**
937  * igb_irq_enable - Enable default interrupt generation settings
938  * @adapter: board private structure
939  **/
940 static void igb_irq_enable(struct igb_adapter *adapter)
941 {
942         struct e1000_hw *hw = &adapter->hw;
943
944         if (adapter->msix_entries) {
945                 u32 regval = rd32(E1000_EIAC);
946                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
947                 regval = rd32(E1000_EIAM);
948                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
949                 wr32(E1000_EIMS, adapter->eims_enable_mask);
950                 if (adapter->vfs_allocated_count)
951                         wr32(E1000_MBVFIMR, 0xFF);
952                 wr32(E1000_IMS, (E1000_IMS_LSC | E1000_IMS_VMMB |
953                                  E1000_IMS_DOUTSYNC));
954         } else {
955                 wr32(E1000_IMS, IMS_ENABLE_MASK);
956                 wr32(E1000_IAM, IMS_ENABLE_MASK);
957         }
958 }
959
960 static void igb_update_mng_vlan(struct igb_adapter *adapter)
961 {
962         struct e1000_hw *hw = &adapter->hw;
963         u16 vid = adapter->hw.mng_cookie.vlan_id;
964         u16 old_vid = adapter->mng_vlan_id;
965
966         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
967                 /* add VID to filter table */
968                 igb_vfta_set(hw, vid, true);
969                 adapter->mng_vlan_id = vid;
970         } else {
971                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
972         }
973
974         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
975             (vid != old_vid) &&
976             !vlan_group_get_device(adapter->vlgrp, old_vid)) {
977                 /* remove VID from filter table */
978                 igb_vfta_set(hw, old_vid, false);
979         }
980 }
981
982 /**
983  * igb_release_hw_control - release control of the h/w to f/w
984  * @adapter: address of board private structure
985  *
986  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
987  * For ASF and Pass Through versions of f/w this means that the
988  * driver is no longer loaded.
989  *
990  **/
991 static void igb_release_hw_control(struct igb_adapter *adapter)
992 {
993         struct e1000_hw *hw = &adapter->hw;
994         u32 ctrl_ext;
995
996         /* Let firmware take over control of h/w */
997         ctrl_ext = rd32(E1000_CTRL_EXT);
998         wr32(E1000_CTRL_EXT,
999                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1000 }
1001
1002
1003 /**
1004  * igb_get_hw_control - get control of the h/w from f/w
1005  * @adapter: address of board private structure
1006  *
1007  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1008  * For ASF and Pass Through versions of f/w this means that
1009  * the driver is loaded.
1010  *
1011  **/
1012 static void igb_get_hw_control(struct igb_adapter *adapter)
1013 {
1014         struct e1000_hw *hw = &adapter->hw;
1015         u32 ctrl_ext;
1016
1017         /* Let firmware know the driver has taken over */
1018         ctrl_ext = rd32(E1000_CTRL_EXT);
1019         wr32(E1000_CTRL_EXT,
1020                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1021 }
1022
1023 /**
1024  * igb_configure - configure the hardware for RX and TX
1025  * @adapter: private board structure
1026  **/
1027 static void igb_configure(struct igb_adapter *adapter)
1028 {
1029         struct net_device *netdev = adapter->netdev;
1030         int i;
1031
1032         igb_get_hw_control(adapter);
1033         igb_set_rx_mode(netdev);
1034
1035         igb_restore_vlan(adapter);
1036
1037         igb_setup_tctl(adapter);
1038         igb_setup_mrqc(adapter);
1039         igb_setup_rctl(adapter);
1040
1041         igb_configure_tx(adapter);
1042         igb_configure_rx(adapter);
1043
1044         igb_rx_fifo_flush_82575(&adapter->hw);
1045
1046         /* call igb_desc_unused which always leaves
1047          * at least 1 descriptor unused to make sure
1048          * next_to_use != next_to_clean */
1049         for (i = 0; i < adapter->num_rx_queues; i++) {
1050                 struct igb_ring *ring = &adapter->rx_ring[i];
1051                 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
1052         }
1053
1054
1055         adapter->tx_queue_len = netdev->tx_queue_len;
1056 }
1057
1058
1059 /**
1060  * igb_up - Open the interface and prepare it to handle traffic
1061  * @adapter: board private structure
1062  **/
1063
1064 int igb_up(struct igb_adapter *adapter)
1065 {
1066         struct e1000_hw *hw = &adapter->hw;
1067         int i;
1068
1069         /* hardware has been reset, we need to reload some things */
1070         igb_configure(adapter);
1071
1072         clear_bit(__IGB_DOWN, &adapter->state);
1073
1074         for (i = 0; i < adapter->num_q_vectors; i++) {
1075                 struct igb_q_vector *q_vector = adapter->q_vector[i];
1076                 napi_enable(&q_vector->napi);
1077         }
1078         if (adapter->msix_entries)
1079                 igb_configure_msix(adapter);
1080
1081         /* Clear any pending interrupts. */
1082         rd32(E1000_ICR);
1083         igb_irq_enable(adapter);
1084
1085         /* notify VFs that reset has been completed */
1086         if (adapter->vfs_allocated_count) {
1087                 u32 reg_data = rd32(E1000_CTRL_EXT);
1088                 reg_data |= E1000_CTRL_EXT_PFRSTD;
1089                 wr32(E1000_CTRL_EXT, reg_data);
1090         }
1091
1092         netif_tx_start_all_queues(adapter->netdev);
1093
1094         /* Fire a link change interrupt to start the watchdog. */
1095         wr32(E1000_ICS, E1000_ICS_LSC);
1096         return 0;
1097 }
1098
1099 void igb_down(struct igb_adapter *adapter)
1100 {
1101         struct e1000_hw *hw = &adapter->hw;
1102         struct net_device *netdev = adapter->netdev;
1103         u32 tctl, rctl;
1104         int i;
1105
1106         /* signal that we're down so the interrupt handler does not
1107          * reschedule our watchdog timer */
1108         set_bit(__IGB_DOWN, &adapter->state);
1109
1110         /* disable receives in the hardware */
1111         rctl = rd32(E1000_RCTL);
1112         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1113         /* flush and sleep below */
1114
1115         netif_tx_stop_all_queues(netdev);
1116
1117         /* disable transmits in the hardware */
1118         tctl = rd32(E1000_TCTL);
1119         tctl &= ~E1000_TCTL_EN;
1120         wr32(E1000_TCTL, tctl);
1121         /* flush both disables and wait for them to finish */
1122         wrfl();
1123         msleep(10);
1124
1125         for (i = 0; i < adapter->num_q_vectors; i++) {
1126                 struct igb_q_vector *q_vector = adapter->q_vector[i];
1127                 napi_disable(&q_vector->napi);
1128         }
1129
1130         igb_irq_disable(adapter);
1131
1132         del_timer_sync(&adapter->watchdog_timer);
1133         del_timer_sync(&adapter->phy_info_timer);
1134
1135         netdev->tx_queue_len = adapter->tx_queue_len;
1136         netif_carrier_off(netdev);
1137
1138         /* record the stats before reset*/
1139         igb_update_stats(adapter);
1140
1141         adapter->link_speed = 0;
1142         adapter->link_duplex = 0;
1143
1144         if (!pci_channel_offline(adapter->pdev))
1145                 igb_reset(adapter);
1146         igb_clean_all_tx_rings(adapter);
1147         igb_clean_all_rx_rings(adapter);
1148 #ifdef CONFIG_IGB_DCA
1149
1150         /* since we reset the hardware DCA settings were cleared */
1151         igb_setup_dca(adapter);
1152 #endif
1153 }
1154
1155 void igb_reinit_locked(struct igb_adapter *adapter)
1156 {
1157         WARN_ON(in_interrupt());
1158         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1159                 msleep(1);
1160         igb_down(adapter);
1161         igb_up(adapter);
1162         clear_bit(__IGB_RESETTING, &adapter->state);
1163 }
1164
1165 void igb_reset(struct igb_adapter *adapter)
1166 {
1167         struct e1000_hw *hw = &adapter->hw;
1168         struct e1000_mac_info *mac = &hw->mac;
1169         struct e1000_fc_info *fc = &hw->fc;
1170         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1171         u16 hwm;
1172
1173         /* Repartition Pba for greater than 9k mtu
1174          * To take effect CTRL.RST is required.
1175          */
1176         switch (mac->type) {
1177         case e1000_82576:
1178                 pba = rd32(E1000_RXPBS);
1179                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1180                 break;
1181         case e1000_82575:
1182         default:
1183                 pba = E1000_PBA_34K;
1184                 break;
1185         }
1186
1187         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1188             (mac->type < e1000_82576)) {
1189                 /* adjust PBA for jumbo frames */
1190                 wr32(E1000_PBA, pba);
1191
1192                 /* To maintain wire speed transmits, the Tx FIFO should be
1193                  * large enough to accommodate two full transmit packets,
1194                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1195                  * the Rx FIFO should be large enough to accommodate at least
1196                  * one full receive packet and is similarly rounded up and
1197                  * expressed in KB. */
1198                 pba = rd32(E1000_PBA);
1199                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1200                 tx_space = pba >> 16;
1201                 /* lower 16 bits has Rx packet buffer allocation size in KB */
1202                 pba &= 0xffff;
1203                 /* the tx fifo also stores 16 bytes of information about the tx
1204                  * but don't include ethernet FCS because hardware appends it */
1205                 min_tx_space = (adapter->max_frame_size +
1206                                 sizeof(union e1000_adv_tx_desc) -
1207                                 ETH_FCS_LEN) * 2;
1208                 min_tx_space = ALIGN(min_tx_space, 1024);
1209                 min_tx_space >>= 10;
1210                 /* software strips receive CRC, so leave room for it */
1211                 min_rx_space = adapter->max_frame_size;
1212                 min_rx_space = ALIGN(min_rx_space, 1024);
1213                 min_rx_space >>= 10;
1214
1215                 /* If current Tx allocation is less than the min Tx FIFO size,
1216                  * and the min Tx FIFO size is less than the current Rx FIFO
1217                  * allocation, take space away from current Rx allocation */
1218                 if (tx_space < min_tx_space &&
1219                     ((min_tx_space - tx_space) < pba)) {
1220                         pba = pba - (min_tx_space - tx_space);
1221
1222                         /* if short on rx space, rx wins and must trump tx
1223                          * adjustment */
1224                         if (pba < min_rx_space)
1225                                 pba = min_rx_space;
1226                 }
1227                 wr32(E1000_PBA, pba);
1228         }
1229
1230         /* flow control settings */
1231         /* The high water mark must be low enough to fit one full frame
1232          * (or the size used for early receive) above it in the Rx FIFO.
1233          * Set it to the lower of:
1234          * - 90% of the Rx FIFO size, or
1235          * - the full Rx FIFO size minus one full frame */
1236         hwm = min(((pba << 10) * 9 / 10),
1237                         ((pba << 10) - 2 * adapter->max_frame_size));
1238
1239         if (mac->type < e1000_82576) {
1240                 fc->high_water = hwm & 0xFFF8;  /* 8-byte granularity */
1241                 fc->low_water = fc->high_water - 8;
1242         } else {
1243                 fc->high_water = hwm & 0xFFF0;  /* 16-byte granularity */
1244                 fc->low_water = fc->high_water - 16;
1245         }
1246         fc->pause_time = 0xFFFF;
1247         fc->send_xon = 1;
1248         fc->current_mode = fc->requested_mode;
1249
1250         /* disable receive for all VFs and wait one second */
1251         if (adapter->vfs_allocated_count) {
1252                 int i;
1253                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1254                         adapter->vf_data[i].flags = 0;
1255
1256                 /* ping all the active vfs to let them know we are going down */
1257                 igb_ping_all_vfs(adapter);
1258
1259                 /* disable transmits and receives */
1260                 wr32(E1000_VFRE, 0);
1261                 wr32(E1000_VFTE, 0);
1262         }
1263
1264         /* Allow time for pending master requests to run */
1265         adapter->hw.mac.ops.reset_hw(&adapter->hw);
1266         wr32(E1000_WUC, 0);
1267
1268         if (adapter->hw.mac.ops.init_hw(&adapter->hw))
1269                 dev_err(&adapter->pdev->dev, "Hardware Error\n");
1270
1271         igb_update_mng_vlan(adapter);
1272
1273         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1274         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1275
1276         igb_reset_adaptive(&adapter->hw);
1277         igb_get_phy_info(&adapter->hw);
1278 }
1279
1280 static const struct net_device_ops igb_netdev_ops = {
1281         .ndo_open               = igb_open,
1282         .ndo_stop               = igb_close,
1283         .ndo_start_xmit         = igb_xmit_frame_adv,
1284         .ndo_get_stats          = igb_get_stats,
1285         .ndo_set_rx_mode        = igb_set_rx_mode,
1286         .ndo_set_multicast_list = igb_set_rx_mode,
1287         .ndo_set_mac_address    = igb_set_mac,
1288         .ndo_change_mtu         = igb_change_mtu,
1289         .ndo_do_ioctl           = igb_ioctl,
1290         .ndo_tx_timeout         = igb_tx_timeout,
1291         .ndo_validate_addr      = eth_validate_addr,
1292         .ndo_vlan_rx_register   = igb_vlan_rx_register,
1293         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
1294         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
1295 #ifdef CONFIG_NET_POLL_CONTROLLER
1296         .ndo_poll_controller    = igb_netpoll,
1297 #endif
1298 };
1299
1300 /**
1301  * igb_probe - Device Initialization Routine
1302  * @pdev: PCI device information struct
1303  * @ent: entry in igb_pci_tbl
1304  *
1305  * Returns 0 on success, negative on failure
1306  *
1307  * igb_probe initializes an adapter identified by a pci_dev structure.
1308  * The OS initialization, configuring of the adapter private structure,
1309  * and a hardware reset occur.
1310  **/
1311 static int __devinit igb_probe(struct pci_dev *pdev,
1312                                const struct pci_device_id *ent)
1313 {
1314         struct net_device *netdev;
1315         struct igb_adapter *adapter;
1316         struct e1000_hw *hw;
1317         u16 eeprom_data = 0;
1318         static int global_quad_port_a; /* global quad port a indication */
1319         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1320         unsigned long mmio_start, mmio_len;
1321         int err, pci_using_dac;
1322         u16 eeprom_apme_mask = IGB_EEPROM_APME;
1323         u32 part_num;
1324
1325         err = pci_enable_device_mem(pdev);
1326         if (err)
1327                 return err;
1328
1329         pci_using_dac = 0;
1330         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1331         if (!err) {
1332                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1333                 if (!err)
1334                         pci_using_dac = 1;
1335         } else {
1336                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1337                 if (err) {
1338                         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1339                         if (err) {
1340                                 dev_err(&pdev->dev, "No usable DMA "
1341                                         "configuration, aborting\n");
1342                                 goto err_dma;
1343                         }
1344                 }
1345         }
1346
1347         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1348                                            IORESOURCE_MEM),
1349                                            igb_driver_name);
1350         if (err)
1351                 goto err_pci_reg;
1352
1353         pci_enable_pcie_error_reporting(pdev);
1354
1355         pci_set_master(pdev);
1356         pci_save_state(pdev);
1357
1358         err = -ENOMEM;
1359         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1360                                    IGB_ABS_MAX_TX_QUEUES);
1361         if (!netdev)
1362                 goto err_alloc_etherdev;
1363
1364         SET_NETDEV_DEV(netdev, &pdev->dev);
1365
1366         pci_set_drvdata(pdev, netdev);
1367         adapter = netdev_priv(netdev);
1368         adapter->netdev = netdev;
1369         adapter->pdev = pdev;
1370         hw = &adapter->hw;
1371         hw->back = adapter;
1372         adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1373
1374         mmio_start = pci_resource_start(pdev, 0);
1375         mmio_len = pci_resource_len(pdev, 0);
1376
1377         err = -EIO;
1378         hw->hw_addr = ioremap(mmio_start, mmio_len);
1379         if (!hw->hw_addr)
1380                 goto err_ioremap;
1381
1382         netdev->netdev_ops = &igb_netdev_ops;
1383         igb_set_ethtool_ops(netdev);
1384         netdev->watchdog_timeo = 5 * HZ;
1385
1386         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1387
1388         netdev->mem_start = mmio_start;
1389         netdev->mem_end = mmio_start + mmio_len;
1390
1391         /* PCI config space info */
1392         hw->vendor_id = pdev->vendor;
1393         hw->device_id = pdev->device;
1394         hw->revision_id = pdev->revision;
1395         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1396         hw->subsystem_device_id = pdev->subsystem_device;
1397
1398         /* setup the private structure */
1399         hw->back = adapter;
1400         /* Copy the default MAC, PHY and NVM function pointers */
1401         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1402         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1403         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1404         /* Initialize skew-specific constants */
1405         err = ei->get_invariants(hw);
1406         if (err)
1407                 goto err_sw_init;
1408
1409         /* setup the private structure */
1410         err = igb_sw_init(adapter);
1411         if (err)
1412                 goto err_sw_init;
1413
1414         igb_get_bus_info_pcie(hw);
1415
1416         hw->phy.autoneg_wait_to_complete = false;
1417         hw->mac.adaptive_ifs = true;
1418
1419         /* Copper options */
1420         if (hw->phy.media_type == e1000_media_type_copper) {
1421                 hw->phy.mdix = AUTO_ALL_MODES;
1422                 hw->phy.disable_polarity_correction = false;
1423                 hw->phy.ms_type = e1000_ms_hw_default;
1424         }
1425
1426         if (igb_check_reset_block(hw))
1427                 dev_info(&pdev->dev,
1428                         "PHY reset is blocked due to SOL/IDER session.\n");
1429
1430         netdev->features = NETIF_F_SG |
1431                            NETIF_F_IP_CSUM |
1432                            NETIF_F_HW_VLAN_TX |
1433                            NETIF_F_HW_VLAN_RX |
1434                            NETIF_F_HW_VLAN_FILTER;
1435
1436         netdev->features |= NETIF_F_IPV6_CSUM;
1437         netdev->features |= NETIF_F_TSO;
1438         netdev->features |= NETIF_F_TSO6;
1439
1440         netdev->features |= NETIF_F_GRO;
1441
1442         netdev->vlan_features |= NETIF_F_TSO;
1443         netdev->vlan_features |= NETIF_F_TSO6;
1444         netdev->vlan_features |= NETIF_F_IP_CSUM;
1445         netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1446         netdev->vlan_features |= NETIF_F_SG;
1447
1448         if (pci_using_dac)
1449                 netdev->features |= NETIF_F_HIGHDMA;
1450
1451         if (adapter->hw.mac.type == e1000_82576)
1452                 netdev->features |= NETIF_F_SCTP_CSUM;
1453
1454         adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1455
1456         /* before reading the NVM, reset the controller to put the device in a
1457          * known good starting state */
1458         hw->mac.ops.reset_hw(hw);
1459
1460         /* make sure the NVM is good */
1461         if (igb_validate_nvm_checksum(hw) < 0) {
1462                 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1463                 err = -EIO;
1464                 goto err_eeprom;
1465         }
1466
1467         /* copy the MAC address out of the NVM */
1468         if (hw->mac.ops.read_mac_addr(hw))
1469                 dev_err(&pdev->dev, "NVM Read Error\n");
1470
1471         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1472         memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1473
1474         if (!is_valid_ether_addr(netdev->perm_addr)) {
1475                 dev_err(&pdev->dev, "Invalid MAC Address\n");
1476                 err = -EIO;
1477                 goto err_eeprom;
1478         }
1479
1480         setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1481                     (unsigned long) adapter);
1482         setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1483                     (unsigned long) adapter);
1484
1485         INIT_WORK(&adapter->reset_task, igb_reset_task);
1486         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1487
1488         /* Initialize link properties that are user-changeable */
1489         adapter->fc_autoneg = true;
1490         hw->mac.autoneg = true;
1491         hw->phy.autoneg_advertised = 0x2f;
1492
1493         hw->fc.requested_mode = e1000_fc_default;
1494         hw->fc.current_mode = e1000_fc_default;
1495
1496         igb_validate_mdi_setting(hw);
1497
1498         /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1499          * enable the ACPI Magic Packet filter
1500          */
1501
1502         if (hw->bus.func == 0)
1503                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1504         else if (hw->bus.func == 1)
1505                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1506
1507         if (eeprom_data & eeprom_apme_mask)
1508                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1509
1510         /* now that we have the eeprom settings, apply the special cases where
1511          * the eeprom may be wrong or the board simply won't support wake on
1512          * lan on a particular port */
1513         switch (pdev->device) {
1514         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1515                 adapter->eeprom_wol = 0;
1516                 break;
1517         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1518         case E1000_DEV_ID_82576_FIBER:
1519         case E1000_DEV_ID_82576_SERDES:
1520                 /* Wake events only supported on port A for dual fiber
1521                  * regardless of eeprom setting */
1522                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1523                         adapter->eeprom_wol = 0;
1524                 break;
1525         case E1000_DEV_ID_82576_QUAD_COPPER:
1526                 /* if quad port adapter, disable WoL on all but port A */
1527                 if (global_quad_port_a != 0)
1528                         adapter->eeprom_wol = 0;
1529                 else
1530                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1531                 /* Reset for multiple quad port adapters */
1532                 if (++global_quad_port_a == 4)
1533                         global_quad_port_a = 0;
1534                 break;
1535         }
1536
1537         /* initialize the wol settings based on the eeprom settings */
1538         adapter->wol = adapter->eeprom_wol;
1539         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1540
1541         /* reset the hardware with the new settings */
1542         igb_reset(adapter);
1543
1544         /* let the f/w know that the h/w is now under the control of the
1545          * driver. */
1546         igb_get_hw_control(adapter);
1547
1548         strcpy(netdev->name, "eth%d");
1549         err = register_netdev(netdev);
1550         if (err)
1551                 goto err_register;
1552
1553         /* carrier off reporting is important to ethtool even BEFORE open */
1554         netif_carrier_off(netdev);
1555
1556 #ifdef CONFIG_IGB_DCA
1557         if (dca_add_requester(&pdev->dev) == 0) {
1558                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1559                 dev_info(&pdev->dev, "DCA enabled\n");
1560                 igb_setup_dca(adapter);
1561         }
1562
1563 #endif
1564
1565         switch (hw->mac.type) {
1566         case e1000_82576:
1567                 /*
1568                  * Initialize hardware timer: we keep it running just in case
1569                  * that some program needs it later on.
1570                  */
1571                 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1572                 adapter->cycles.read = igb_read_clock;
1573                 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1574                 adapter->cycles.mult = 1;
1575                 /**
1576                  * Scale the NIC clock cycle by a large factor so that
1577                  * relatively small clock corrections can be added or
1578                  * substracted at each clock tick. The drawbacks of a large
1579                  * factor are a) that the clock register overflows more quickly
1580                  * (not such a big deal) and b) that the increment per tick has
1581                  * to fit into 24 bits.  As a result we need to use a shift of
1582                  * 19 so we can fit a value of 16 into the TIMINCA register.
1583                  */
1584                 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
1585                 wr32(E1000_TIMINCA,
1586                                 (1 << E1000_TIMINCA_16NS_SHIFT) |
1587                                 (16 << IGB_82576_TSYNC_SHIFT));
1588
1589                 /* Set registers so that rollover occurs soon to test this. */
1590                 wr32(E1000_SYSTIML, 0x00000000);
1591                 wr32(E1000_SYSTIMH, 0xFF800000);
1592                 wrfl();
1593
1594                 timecounter_init(&adapter->clock,
1595                                  &adapter->cycles,
1596                                  ktime_to_ns(ktime_get_real()));
1597                 /*
1598                  * Synchronize our NIC clock against system wall clock. NIC
1599                  * time stamp reading requires ~3us per sample, each sample
1600                  * was pretty stable even under load => only require 10
1601                  * samples for each offset comparison.
1602                  */
1603                 memset(&adapter->compare, 0, sizeof(adapter->compare));
1604                 adapter->compare.source = &adapter->clock;
1605                 adapter->compare.target = ktime_get_real;
1606                 adapter->compare.num_samples = 10;
1607                 timecompare_update(&adapter->compare, 0);
1608                 break;
1609         case e1000_82575:
1610                 /* 82575 does not support timesync */
1611         default:
1612                 break;
1613         }
1614
1615         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1616         /* print bus type/speed/width info */
1617         dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1618                  netdev->name,
1619                  ((hw->bus.speed == e1000_bus_speed_2500)
1620                   ? "2.5Gb/s" : "unknown"),
1621                  ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1622                   (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1623                   (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1624                    "unknown"),
1625                  netdev->dev_addr);
1626
1627         igb_read_part_num(hw, &part_num);
1628         dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1629                 (part_num >> 8), (part_num & 0xff));
1630
1631         dev_info(&pdev->dev,
1632                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1633                 adapter->msix_entries ? "MSI-X" :
1634                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1635                 adapter->num_rx_queues, adapter->num_tx_queues);
1636
1637         return 0;
1638
1639 err_register:
1640         igb_release_hw_control(adapter);
1641 err_eeprom:
1642         if (!igb_check_reset_block(hw))
1643                 igb_reset_phy(hw);
1644
1645         if (hw->flash_address)
1646                 iounmap(hw->flash_address);
1647 err_sw_init:
1648         igb_clear_interrupt_scheme(adapter);
1649         iounmap(hw->hw_addr);
1650 err_ioremap:
1651         free_netdev(netdev);
1652 err_alloc_etherdev:
1653         pci_release_selected_regions(pdev, pci_select_bars(pdev,
1654                                      IORESOURCE_MEM));
1655 err_pci_reg:
1656 err_dma:
1657         pci_disable_device(pdev);
1658         return err;
1659 }
1660
1661 /**
1662  * igb_remove - Device Removal Routine
1663  * @pdev: PCI device information struct
1664  *
1665  * igb_remove is called by the PCI subsystem to alert the driver
1666  * that it should release a PCI device.  The could be caused by a
1667  * Hot-Plug event, or because the driver is going to be removed from
1668  * memory.
1669  **/
1670 static void __devexit igb_remove(struct pci_dev *pdev)
1671 {
1672         struct net_device *netdev = pci_get_drvdata(pdev);
1673         struct igb_adapter *adapter = netdev_priv(netdev);
1674         struct e1000_hw *hw = &adapter->hw;
1675
1676         /* flush_scheduled work may reschedule our watchdog task, so
1677          * explicitly disable watchdog tasks from being rescheduled  */
1678         set_bit(__IGB_DOWN, &adapter->state);
1679         del_timer_sync(&adapter->watchdog_timer);
1680         del_timer_sync(&adapter->phy_info_timer);
1681
1682         flush_scheduled_work();
1683
1684 #ifdef CONFIG_IGB_DCA
1685         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1686                 dev_info(&pdev->dev, "DCA disabled\n");
1687                 dca_remove_requester(&pdev->dev);
1688                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1689                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
1690         }
1691 #endif
1692
1693         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1694          * would have already happened in close and is redundant. */
1695         igb_release_hw_control(adapter);
1696
1697         unregister_netdev(netdev);
1698
1699         if (!igb_check_reset_block(&adapter->hw))
1700                 igb_reset_phy(&adapter->hw);
1701
1702         igb_clear_interrupt_scheme(adapter);
1703
1704 #ifdef CONFIG_PCI_IOV
1705         /* reclaim resources allocated to VFs */
1706         if (adapter->vf_data) {
1707                 /* disable iov and allow time for transactions to clear */
1708                 pci_disable_sriov(pdev);
1709                 msleep(500);
1710
1711                 kfree(adapter->vf_data);
1712                 adapter->vf_data = NULL;
1713                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1714                 msleep(100);
1715                 dev_info(&pdev->dev, "IOV Disabled\n");
1716         }
1717 #endif
1718         iounmap(hw->hw_addr);
1719         if (hw->flash_address)
1720                 iounmap(hw->flash_address);
1721         pci_release_selected_regions(pdev, pci_select_bars(pdev,
1722                                      IORESOURCE_MEM));
1723
1724         free_netdev(netdev);
1725
1726         pci_disable_pcie_error_reporting(pdev);
1727
1728         pci_disable_device(pdev);
1729 }
1730
1731 /**
1732  * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
1733  * @adapter: board private structure to initialize
1734  *
1735  * This function initializes the vf specific data storage and then attempts to
1736  * allocate the VFs.  The reason for ordering it this way is because it is much
1737  * mor expensive time wise to disable SR-IOV than it is to allocate and free
1738  * the memory for the VFs.
1739  **/
1740 static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
1741 {
1742 #ifdef CONFIG_PCI_IOV
1743         struct pci_dev *pdev = adapter->pdev;
1744
1745         if (adapter->vfs_allocated_count > 7)
1746                 adapter->vfs_allocated_count = 7;
1747
1748         if (adapter->vfs_allocated_count) {
1749                 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
1750                                            sizeof(struct vf_data_storage),
1751                                            GFP_KERNEL);
1752                 /* if allocation failed then we do not support SR-IOV */
1753                 if (!adapter->vf_data) {
1754                         adapter->vfs_allocated_count = 0;
1755                         dev_err(&pdev->dev, "Unable to allocate memory for VF "
1756                                 "Data Storage\n");
1757                 }
1758         }
1759
1760         if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
1761                 kfree(adapter->vf_data);
1762                 adapter->vf_data = NULL;
1763 #endif /* CONFIG_PCI_IOV */
1764                 adapter->vfs_allocated_count = 0;
1765 #ifdef CONFIG_PCI_IOV
1766         } else {
1767                 unsigned char mac_addr[ETH_ALEN];
1768                 int i;
1769                 dev_info(&pdev->dev, "%d vfs allocated\n",
1770                          adapter->vfs_allocated_count);
1771                 for (i = 0; i < adapter->vfs_allocated_count; i++) {
1772                         random_ether_addr(mac_addr);
1773                         igb_set_vf_mac(adapter, i, mac_addr);
1774                 }
1775         }
1776 #endif /* CONFIG_PCI_IOV */
1777 }
1778
1779 /**
1780  * igb_sw_init - Initialize general software structures (struct igb_adapter)
1781  * @adapter: board private structure to initialize
1782  *
1783  * igb_sw_init initializes the Adapter private data structure.
1784  * Fields are initialized based on PCI device information and
1785  * OS network device settings (MTU size).
1786  **/
1787 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1788 {
1789         struct e1000_hw *hw = &adapter->hw;
1790         struct net_device *netdev = adapter->netdev;
1791         struct pci_dev *pdev = adapter->pdev;
1792
1793         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1794
1795         adapter->tx_ring_count = IGB_DEFAULT_TXD;
1796         adapter->rx_ring_count = IGB_DEFAULT_RXD;
1797         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
1798         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
1799
1800         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1801         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1802
1803 #ifdef CONFIG_PCI_IOV
1804         if (hw->mac.type == e1000_82576)
1805                 adapter->vfs_allocated_count = max_vfs;
1806
1807 #endif /* CONFIG_PCI_IOV */
1808         /* This call may decrease the number of queues */
1809         if (igb_init_interrupt_scheme(adapter)) {
1810                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1811                 return -ENOMEM;
1812         }
1813
1814         igb_probe_vfs(adapter);
1815
1816         /* Explicitly disable IRQ since the NIC can be in any state. */
1817         igb_irq_disable(adapter);
1818
1819         set_bit(__IGB_DOWN, &adapter->state);
1820         return 0;
1821 }
1822
1823 /**
1824  * igb_open - Called when a network interface is made active
1825  * @netdev: network interface device structure
1826  *
1827  * Returns 0 on success, negative value on failure
1828  *
1829  * The open entry point is called when a network interface is made
1830  * active by the system (IFF_UP).  At this point all resources needed
1831  * for transmit and receive operations are allocated, the interrupt
1832  * handler is registered with the OS, the watchdog timer is started,
1833  * and the stack is notified that the interface is ready.
1834  **/
1835 static int igb_open(struct net_device *netdev)
1836 {
1837         struct igb_adapter *adapter = netdev_priv(netdev);
1838         struct e1000_hw *hw = &adapter->hw;
1839         int err;
1840         int i;
1841
1842         /* disallow open during test */
1843         if (test_bit(__IGB_TESTING, &adapter->state))
1844                 return -EBUSY;
1845
1846         netif_carrier_off(netdev);
1847
1848         /* allocate transmit descriptors */
1849         err = igb_setup_all_tx_resources(adapter);
1850         if (err)
1851                 goto err_setup_tx;
1852
1853         /* allocate receive descriptors */
1854         err = igb_setup_all_rx_resources(adapter);
1855         if (err)
1856                 goto err_setup_rx;
1857
1858         /* e1000_power_up_phy(adapter); */
1859
1860         /* before we allocate an interrupt, we must be ready to handle it.
1861          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1862          * as soon as we call pci_request_irq, so we have to setup our
1863          * clean_rx handler before we do so.  */
1864         igb_configure(adapter);
1865
1866         err = igb_request_irq(adapter);
1867         if (err)
1868                 goto err_req_irq;
1869
1870         /* From here on the code is the same as igb_up() */
1871         clear_bit(__IGB_DOWN, &adapter->state);
1872
1873         for (i = 0; i < adapter->num_q_vectors; i++) {
1874                 struct igb_q_vector *q_vector = adapter->q_vector[i];
1875                 napi_enable(&q_vector->napi);
1876         }
1877
1878         /* Clear any pending interrupts. */
1879         rd32(E1000_ICR);
1880
1881         igb_irq_enable(adapter);
1882
1883         /* notify VFs that reset has been completed */
1884         if (adapter->vfs_allocated_count) {
1885                 u32 reg_data = rd32(E1000_CTRL_EXT);
1886                 reg_data |= E1000_CTRL_EXT_PFRSTD;
1887                 wr32(E1000_CTRL_EXT, reg_data);
1888         }
1889
1890         netif_tx_start_all_queues(netdev);
1891
1892         /* Fire a link status change interrupt to start the watchdog. */
1893         wr32(E1000_ICS, E1000_ICS_LSC);
1894
1895         return 0;
1896
1897 err_req_irq:
1898         igb_release_hw_control(adapter);
1899         /* e1000_power_down_phy(adapter); */
1900         igb_free_all_rx_resources(adapter);
1901 err_setup_rx:
1902         igb_free_all_tx_resources(adapter);
1903 err_setup_tx:
1904         igb_reset(adapter);
1905
1906         return err;
1907 }
1908
1909 /**
1910  * igb_close - Disables a network interface
1911  * @netdev: network interface device structure
1912  *
1913  * Returns 0, this is not allowed to fail
1914  *
1915  * The close entry point is called when an interface is de-activated
1916  * by the OS.  The hardware is still under the driver's control, but
1917  * needs to be disabled.  A global MAC reset is issued to stop the
1918  * hardware, and all transmit and receive resources are freed.
1919  **/
1920 static int igb_close(struct net_device *netdev)
1921 {
1922         struct igb_adapter *adapter = netdev_priv(netdev);
1923
1924         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1925         igb_down(adapter);
1926
1927         igb_free_irq(adapter);
1928
1929         igb_free_all_tx_resources(adapter);
1930         igb_free_all_rx_resources(adapter);
1931
1932         return 0;
1933 }
1934
1935 /**
1936  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1937  * @tx_ring: tx descriptor ring (for a specific queue) to setup
1938  *
1939  * Return 0 on success, negative on failure
1940  **/
1941 int igb_setup_tx_resources(struct igb_ring *tx_ring)
1942 {
1943         struct pci_dev *pdev = tx_ring->pdev;
1944         int size;
1945
1946         size = sizeof(struct igb_buffer) * tx_ring->count;
1947         tx_ring->buffer_info = vmalloc(size);
1948         if (!tx_ring->buffer_info)
1949                 goto err;
1950         memset(tx_ring->buffer_info, 0, size);
1951
1952         /* round up to nearest 4K */
1953         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
1954         tx_ring->size = ALIGN(tx_ring->size, 4096);
1955
1956         tx_ring->desc = pci_alloc_consistent(pdev,
1957                                              tx_ring->size,
1958                                              &tx_ring->dma);
1959
1960         if (!tx_ring->desc)
1961                 goto err;
1962
1963         tx_ring->next_to_use = 0;
1964         tx_ring->next_to_clean = 0;
1965         return 0;
1966
1967 err:
1968         vfree(tx_ring->buffer_info);
1969         dev_err(&pdev->dev,
1970                 "Unable to allocate memory for the transmit descriptor ring\n");
1971         return -ENOMEM;
1972 }
1973
1974 /**
1975  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1976  *                                (Descriptors) for all queues
1977  * @adapter: board private structure
1978  *
1979  * Return 0 on success, negative on failure
1980  **/
1981 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1982 {
1983         struct pci_dev *pdev = adapter->pdev;
1984         int i, err = 0;
1985
1986         for (i = 0; i < adapter->num_tx_queues; i++) {
1987                 err = igb_setup_tx_resources(&adapter->tx_ring[i]);
1988                 if (err) {
1989                         dev_err(&pdev->dev,
1990                                 "Allocation for Tx Queue %u failed\n", i);
1991                         for (i--; i >= 0; i--)
1992                                 igb_free_tx_resources(&adapter->tx_ring[i]);
1993                         break;
1994                 }
1995         }
1996
1997         for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1998                 int r_idx = i % adapter->num_tx_queues;
1999                 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
2000         }
2001         return err;
2002 }
2003
2004 /**
2005  * igb_setup_tctl - configure the transmit control registers
2006  * @adapter: Board private structure
2007  **/
2008 void igb_setup_tctl(struct igb_adapter *adapter)
2009 {
2010         struct e1000_hw *hw = &adapter->hw;
2011         u32 tctl;
2012
2013         /* disable queue 0 which is enabled by default on 82575 and 82576 */
2014         wr32(E1000_TXDCTL(0), 0);
2015
2016         /* Program the Transmit Control Register */
2017         tctl = rd32(E1000_TCTL);
2018         tctl &= ~E1000_TCTL_CT;
2019         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2020                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2021
2022         igb_config_collision_dist(hw);
2023
2024         /* Enable transmits */
2025         tctl |= E1000_TCTL_EN;
2026
2027         wr32(E1000_TCTL, tctl);
2028 }
2029
2030 /**
2031  * igb_configure_tx_ring - Configure transmit ring after Reset
2032  * @adapter: board private structure
2033  * @ring: tx ring to configure
2034  *
2035  * Configure a transmit ring after a reset.
2036  **/
2037 void igb_configure_tx_ring(struct igb_adapter *adapter,
2038                            struct igb_ring *ring)
2039 {
2040         struct e1000_hw *hw = &adapter->hw;
2041         u32 txdctl;
2042         u64 tdba = ring->dma;
2043         int reg_idx = ring->reg_idx;
2044
2045         /* disable the queue */
2046         txdctl = rd32(E1000_TXDCTL(reg_idx));
2047         wr32(E1000_TXDCTL(reg_idx),
2048                         txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
2049         wrfl();
2050         mdelay(10);
2051
2052         wr32(E1000_TDLEN(reg_idx),
2053                         ring->count * sizeof(union e1000_adv_tx_desc));
2054         wr32(E1000_TDBAL(reg_idx),
2055                         tdba & 0x00000000ffffffffULL);
2056         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2057
2058         ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2059         ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2060         writel(0, ring->head);
2061         writel(0, ring->tail);
2062
2063         txdctl |= IGB_TX_PTHRESH;
2064         txdctl |= IGB_TX_HTHRESH << 8;
2065         txdctl |= IGB_TX_WTHRESH << 16;
2066
2067         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2068         wr32(E1000_TXDCTL(reg_idx), txdctl);
2069 }
2070
2071 /**
2072  * igb_configure_tx - Configure transmit Unit after Reset
2073  * @adapter: board private structure
2074  *
2075  * Configure the Tx unit of the MAC after a reset.
2076  **/
2077 static void igb_configure_tx(struct igb_adapter *adapter)
2078 {
2079         int i;
2080
2081         for (i = 0; i < adapter->num_tx_queues; i++)
2082                 igb_configure_tx_ring(adapter, &adapter->tx_ring[i]);
2083 }
2084
2085 /**
2086  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2087  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2088  *
2089  * Returns 0 on success, negative on failure
2090  **/
2091 int igb_setup_rx_resources(struct igb_ring *rx_ring)
2092 {
2093         struct pci_dev *pdev = rx_ring->pdev;
2094         int size, desc_len;
2095
2096         size = sizeof(struct igb_buffer) * rx_ring->count;
2097         rx_ring->buffer_info = vmalloc(size);
2098         if (!rx_ring->buffer_info)
2099                 goto err;
2100         memset(rx_ring->buffer_info, 0, size);
2101
2102         desc_len = sizeof(union e1000_adv_rx_desc);
2103
2104         /* Round up to nearest 4K */
2105         rx_ring->size = rx_ring->count * desc_len;
2106         rx_ring->size = ALIGN(rx_ring->size, 4096);
2107
2108         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
2109                                              &rx_ring->dma);
2110
2111         if (!rx_ring->desc)
2112                 goto err;
2113
2114         rx_ring->next_to_clean = 0;
2115         rx_ring->next_to_use = 0;
2116
2117         return 0;
2118
2119 err:
2120         vfree(rx_ring->buffer_info);
2121         rx_ring->buffer_info = NULL;
2122         dev_err(&pdev->dev, "Unable to allocate memory for "
2123                 "the receive descriptor ring\n");
2124         return -ENOMEM;
2125 }
2126
2127 /**
2128  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2129  *                                (Descriptors) for all queues
2130  * @adapter: board private structure
2131  *
2132  * Return 0 on success, negative on failure
2133  **/
2134 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2135 {
2136         struct pci_dev *pdev = adapter->pdev;
2137         int i, err = 0;
2138
2139         for (i = 0; i < adapter->num_rx_queues; i++) {
2140                 err = igb_setup_rx_resources(&adapter->rx_ring[i]);
2141                 if (err) {
2142                         dev_err(&pdev->dev,
2143                                 "Allocation for Rx Queue %u failed\n", i);
2144                         for (i--; i >= 0; i--)
2145                                 igb_free_rx_resources(&adapter->rx_ring[i]);
2146                         break;
2147                 }
2148         }
2149
2150         return err;
2151 }
2152
2153 /**
2154  * igb_setup_mrqc - configure the multiple receive queue control registers
2155  * @adapter: Board private structure
2156  **/
2157 static void igb_setup_mrqc(struct igb_adapter *adapter)
2158 {
2159         struct e1000_hw *hw = &adapter->hw;
2160         u32 mrqc, rxcsum;
2161         u32 j, num_rx_queues, shift = 0, shift2 = 0;
2162         union e1000_reta {
2163                 u32 dword;
2164                 u8  bytes[4];
2165         } reta;
2166         static const u8 rsshash[40] = {
2167                 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2168                 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2169                 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2170                 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2171
2172         /* Fill out hash function seeds */
2173         for (j = 0; j < 10; j++) {
2174                 u32 rsskey = rsshash[(j * 4)];
2175                 rsskey |= rsshash[(j * 4) + 1] << 8;
2176                 rsskey |= rsshash[(j * 4) + 2] << 16;
2177                 rsskey |= rsshash[(j * 4) + 3] << 24;
2178                 array_wr32(E1000_RSSRK(0), j, rsskey);
2179         }
2180
2181         num_rx_queues = adapter->num_rx_queues;
2182
2183         if (adapter->vfs_allocated_count) {
2184                 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2185                 switch (hw->mac.type) {
2186                 case e1000_82576:
2187                         shift = 3;
2188                         num_rx_queues = 2;
2189                         break;
2190                 case e1000_82575:
2191                         shift = 2;
2192                         shift2 = 6;
2193                 default:
2194                         break;
2195                 }
2196         } else {
2197                 if (hw->mac.type == e1000_82575)
2198                         shift = 6;
2199         }
2200
2201         for (j = 0; j < (32 * 4); j++) {
2202                 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2203                 if (shift2)
2204                         reta.bytes[j & 3] |= num_rx_queues << shift2;
2205                 if ((j & 3) == 3)
2206                         wr32(E1000_RETA(j >> 2), reta.dword);
2207         }
2208
2209         /*
2210          * Disable raw packet checksumming so that RSS hash is placed in
2211          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
2212          * offloads as they are enabled by default
2213          */
2214         rxcsum = rd32(E1000_RXCSUM);
2215         rxcsum |= E1000_RXCSUM_PCSD;
2216
2217         if (adapter->hw.mac.type >= e1000_82576)
2218                 /* Enable Receive Checksum Offload for SCTP */
2219                 rxcsum |= E1000_RXCSUM_CRCOFL;
2220
2221         /* Don't need to set TUOFL or IPOFL, they default to 1 */
2222         wr32(E1000_RXCSUM, rxcsum);
2223
2224         /* If VMDq is enabled then we set the appropriate mode for that, else
2225          * we default to RSS so that an RSS hash is calculated per packet even
2226          * if we are only using one queue */
2227         if (adapter->vfs_allocated_count) {
2228                 if (hw->mac.type > e1000_82575) {
2229                         /* Set the default pool for the PF's first queue */
2230                         u32 vtctl = rd32(E1000_VT_CTL);
2231                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2232                                    E1000_VT_CTL_DISABLE_DEF_POOL);
2233                         vtctl |= adapter->vfs_allocated_count <<
2234                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2235                         wr32(E1000_VT_CTL, vtctl);
2236                 }
2237                 if (adapter->num_rx_queues > 1)
2238                         mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2239                 else
2240                         mrqc = E1000_MRQC_ENABLE_VMDQ;
2241         } else {
2242                 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2243         }
2244         igb_vmm_control(adapter);
2245
2246         mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2247                  E1000_MRQC_RSS_FIELD_IPV4_TCP);
2248         mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2249                  E1000_MRQC_RSS_FIELD_IPV6_TCP);
2250         mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2251                  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2252         mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2253                  E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2254
2255         wr32(E1000_MRQC, mrqc);
2256 }
2257
2258 /**
2259  * igb_setup_rctl - configure the receive control registers
2260  * @adapter: Board private structure
2261  **/
2262 void igb_setup_rctl(struct igb_adapter *adapter)
2263 {
2264         struct e1000_hw *hw = &adapter->hw;
2265         u32 rctl;
2266
2267         rctl = rd32(E1000_RCTL);
2268
2269         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2270         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2271
2272         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2273                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2274
2275         /*
2276          * enable stripping of CRC. It's unlikely this will break BMC
2277          * redirection as it did with e1000. Newer features require
2278          * that the HW strips the CRC.
2279          */
2280         rctl |= E1000_RCTL_SECRC;
2281
2282         /*
2283          * disable store bad packets and clear size bits.
2284          */
2285         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2286
2287         /* enable LPE to prevent packets larger than max_frame_size */
2288         rctl |= E1000_RCTL_LPE;
2289
2290         /* disable queue 0 to prevent tail write w/o re-config */
2291         wr32(E1000_RXDCTL(0), 0);
2292
2293         /* Attention!!!  For SR-IOV PF driver operations you must enable
2294          * queue drop for all VF and PF queues to prevent head of line blocking
2295          * if an un-trusted VF does not provide descriptors to hardware.
2296          */
2297         if (adapter->vfs_allocated_count) {
2298                 /* set all queue drop enable bits */
2299                 wr32(E1000_QDE, ALL_QUEUES);
2300         }
2301
2302         wr32(E1000_RCTL, rctl);
2303 }
2304
2305 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2306                                    int vfn)
2307 {
2308         struct e1000_hw *hw = &adapter->hw;
2309         u32 vmolr;
2310
2311         /* if it isn't the PF check to see if VFs are enabled and
2312          * increase the size to support vlan tags */
2313         if (vfn < adapter->vfs_allocated_count &&
2314             adapter->vf_data[vfn].vlans_enabled)
2315                 size += VLAN_TAG_SIZE;
2316
2317         vmolr = rd32(E1000_VMOLR(vfn));
2318         vmolr &= ~E1000_VMOLR_RLPML_MASK;
2319         vmolr |= size | E1000_VMOLR_LPE;
2320         wr32(E1000_VMOLR(vfn), vmolr);
2321
2322         return 0;
2323 }
2324
2325 /**
2326  * igb_rlpml_set - set maximum receive packet size
2327  * @adapter: board private structure
2328  *
2329  * Configure maximum receivable packet size.
2330  **/
2331 static void igb_rlpml_set(struct igb_adapter *adapter)
2332 {
2333         u32 max_frame_size = adapter->max_frame_size;
2334         struct e1000_hw *hw = &adapter->hw;
2335         u16 pf_id = adapter->vfs_allocated_count;
2336
2337         if (adapter->vlgrp)
2338                 max_frame_size += VLAN_TAG_SIZE;
2339
2340         /* if vfs are enabled we set RLPML to the largest possible request
2341          * size and set the VMOLR RLPML to the size we need */
2342         if (pf_id) {
2343                 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2344                 max_frame_size = MAX_JUMBO_FRAME_SIZE;
2345         }
2346
2347         wr32(E1000_RLPML, max_frame_size);
2348 }
2349
2350 static inline void igb_set_vmolr(struct igb_adapter *adapter, int vfn)
2351 {
2352         struct e1000_hw *hw = &adapter->hw;
2353         u32 vmolr;
2354
2355         /*
2356          * This register exists only on 82576 and newer so if we are older then
2357          * we should exit and do nothing
2358          */
2359         if (hw->mac.type < e1000_82576)
2360                 return;
2361
2362         vmolr = rd32(E1000_VMOLR(vfn));
2363         vmolr |= E1000_VMOLR_AUPE |        /* Accept untagged packets */
2364                  E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
2365
2366         /* clear all bits that might not be set */
2367         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
2368
2369         if (adapter->num_rx_queues > 1 && vfn == adapter->vfs_allocated_count)
2370                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
2371         /*
2372          * for VMDq only allow the VFs and pool 0 to accept broadcast and
2373          * multicast packets
2374          */
2375         if (vfn <= adapter->vfs_allocated_count)
2376                 vmolr |= E1000_VMOLR_BAM;          /* Accept broadcast */
2377
2378         wr32(E1000_VMOLR(vfn), vmolr);
2379 }
2380
2381 /**
2382  * igb_configure_rx_ring - Configure a receive ring after Reset
2383  * @adapter: board private structure
2384  * @ring: receive ring to be configured
2385  *
2386  * Configure the Rx unit of the MAC after a reset.
2387  **/
2388 void igb_configure_rx_ring(struct igb_adapter *adapter,
2389                            struct igb_ring *ring)
2390 {
2391         struct e1000_hw *hw = &adapter->hw;
2392         u64 rdba = ring->dma;
2393         int reg_idx = ring->reg_idx;
2394         u32 srrctl, rxdctl;
2395
2396         /* disable the queue */
2397         rxdctl = rd32(E1000_RXDCTL(reg_idx));
2398         wr32(E1000_RXDCTL(reg_idx),
2399                         rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
2400
2401         /* Set DMA base address registers */
2402         wr32(E1000_RDBAL(reg_idx),
2403              rdba & 0x00000000ffffffffULL);
2404         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
2405         wr32(E1000_RDLEN(reg_idx),
2406                        ring->count * sizeof(union e1000_adv_rx_desc));
2407
2408         /* initialize head and tail */
2409         ring->head = hw->hw_addr + E1000_RDH(reg_idx);
2410         ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
2411         writel(0, ring->head);
2412         writel(0, ring->tail);
2413
2414         /* set descriptor configuration */
2415         if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
2416                 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
2417                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2418 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
2419                 srrctl |= IGB_RXBUFFER_16384 >>
2420                           E1000_SRRCTL_BSIZEPKT_SHIFT;
2421 #else
2422                 srrctl |= (PAGE_SIZE / 2) >>
2423                           E1000_SRRCTL_BSIZEPKT_SHIFT;
2424 #endif
2425                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2426         } else {
2427                 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
2428                          E1000_SRRCTL_BSIZEPKT_SHIFT;
2429                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2430         }
2431
2432         wr32(E1000_SRRCTL(reg_idx), srrctl);
2433
2434         /* set filtering for VMDQ pools */
2435         igb_set_vmolr(adapter, reg_idx & 0x7);
2436
2437         /* enable receive descriptor fetching */
2438         rxdctl = rd32(E1000_RXDCTL(reg_idx));
2439         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2440         rxdctl &= 0xFFF00000;
2441         rxdctl |= IGB_RX_PTHRESH;
2442         rxdctl |= IGB_RX_HTHRESH << 8;
2443         rxdctl |= IGB_RX_WTHRESH << 16;
2444         wr32(E1000_RXDCTL(reg_idx), rxdctl);
2445 }
2446
2447 /**
2448  * igb_configure_rx - Configure receive Unit after Reset
2449  * @adapter: board private structure
2450  *
2451  * Configure the Rx unit of the MAC after a reset.
2452  **/
2453 static void igb_configure_rx(struct igb_adapter *adapter)
2454 {
2455         int i;
2456
2457         /* set UTA to appropriate mode */
2458         igb_set_uta(adapter);
2459
2460         /* set the correct pool for the PF default MAC address in entry 0 */
2461         igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
2462                          adapter->vfs_allocated_count);
2463
2464         /* Setup the HW Rx Head and Tail Descriptor Pointers and
2465          * the Base and Length of the Rx Descriptor Ring */
2466         for (i = 0; i < adapter->num_rx_queues; i++)
2467                 igb_configure_rx_ring(adapter, &adapter->rx_ring[i]);
2468 }
2469
2470 /**
2471  * igb_free_tx_resources - Free Tx Resources per Queue
2472  * @tx_ring: Tx descriptor ring for a specific queue
2473  *
2474  * Free all transmit software resources
2475  **/
2476 void igb_free_tx_resources(struct igb_ring *tx_ring)
2477 {
2478         igb_clean_tx_ring(tx_ring);
2479
2480         vfree(tx_ring->buffer_info);
2481         tx_ring->buffer_info = NULL;
2482
2483         /* if not set, then don't free */
2484         if (!tx_ring->desc)
2485                 return;
2486
2487         pci_free_consistent(tx_ring->pdev, tx_ring->size,
2488                             tx_ring->desc, tx_ring->dma);
2489
2490         tx_ring->desc = NULL;
2491 }
2492
2493 /**
2494  * igb_free_all_tx_resources - Free Tx Resources for All Queues
2495  * @adapter: board private structure
2496  *
2497  * Free all transmit software resources
2498  **/
2499 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2500 {
2501         int i;
2502
2503         for (i = 0; i < adapter->num_tx_queues; i++)
2504                 igb_free_tx_resources(&adapter->tx_ring[i]);
2505 }
2506
2507 void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
2508                                     struct igb_buffer *buffer_info)
2509 {
2510         buffer_info->dma = 0;
2511         if (buffer_info->skb) {
2512                 skb_dma_unmap(&tx_ring->pdev->dev,
2513                               buffer_info->skb,
2514                               DMA_TO_DEVICE);
2515                 dev_kfree_skb_any(buffer_info->skb);
2516                 buffer_info->skb = NULL;
2517         }
2518         buffer_info->time_stamp = 0;
2519         /* buffer_info must be completely set up in the transmit path */
2520 }
2521
2522 /**
2523  * igb_clean_tx_ring - Free Tx Buffers
2524  * @tx_ring: ring to be cleaned
2525  **/
2526 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2527 {
2528         struct igb_buffer *buffer_info;
2529         unsigned long size;
2530         unsigned int i;
2531
2532         if (!tx_ring->buffer_info)
2533                 return;
2534         /* Free all the Tx ring sk_buffs */
2535
2536         for (i = 0; i < tx_ring->count; i++) {
2537                 buffer_info = &tx_ring->buffer_info[i];
2538                 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
2539         }
2540
2541         size = sizeof(struct igb_buffer) * tx_ring->count;
2542         memset(tx_ring->buffer_info, 0, size);
2543
2544         /* Zero out the descriptor ring */
2545         memset(tx_ring->desc, 0, tx_ring->size);
2546
2547         tx_ring->next_to_use = 0;
2548         tx_ring->next_to_clean = 0;
2549 }
2550
2551 /**
2552  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2553  * @adapter: board private structure
2554  **/
2555 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2556 {
2557         int i;
2558
2559         for (i = 0; i < adapter->num_tx_queues; i++)
2560                 igb_clean_tx_ring(&adapter->tx_ring[i]);
2561 }
2562
2563 /**
2564  * igb_free_rx_resources - Free Rx Resources
2565  * @rx_ring: ring to clean the resources from
2566  *
2567  * Free all receive software resources
2568  **/
2569 void igb_free_rx_resources(struct igb_ring *rx_ring)
2570 {
2571         igb_clean_rx_ring(rx_ring);
2572
2573         vfree(rx_ring->buffer_info);
2574         rx_ring->buffer_info = NULL;
2575
2576         /* if not set, then don't free */
2577         if (!rx_ring->desc)
2578                 return;
2579
2580         pci_free_consistent(rx_ring->pdev, rx_ring->size,
2581                             rx_ring->desc, rx_ring->dma);
2582
2583         rx_ring->desc = NULL;
2584 }
2585
2586 /**
2587  * igb_free_all_rx_resources - Free Rx Resources for All Queues
2588  * @adapter: board private structure
2589  *
2590  * Free all receive software resources
2591  **/
2592 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2593 {
2594         int i;
2595
2596         for (i = 0; i < adapter->num_rx_queues; i++)
2597                 igb_free_rx_resources(&adapter->rx_ring[i]);
2598 }
2599
2600 /**
2601  * igb_clean_rx_ring - Free Rx Buffers per Queue
2602  * @rx_ring: ring to free buffers from
2603  **/
2604 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2605 {
2606         struct igb_buffer *buffer_info;
2607         unsigned long size;
2608         unsigned int i;
2609
2610         if (!rx_ring->buffer_info)
2611                 return;
2612
2613         /* Free all the Rx ring sk_buffs */
2614         for (i = 0; i < rx_ring->count; i++) {
2615                 buffer_info = &rx_ring->buffer_info[i];
2616                 if (buffer_info->dma) {
2617                         pci_unmap_single(rx_ring->pdev,
2618                                          buffer_info->dma,
2619                                          rx_ring->rx_buffer_len,
2620                                          PCI_DMA_FROMDEVICE);
2621                         buffer_info->dma = 0;
2622                 }
2623
2624                 if (buffer_info->skb) {
2625                         dev_kfree_skb(buffer_info->skb);
2626                         buffer_info->skb = NULL;
2627                 }
2628                 if (buffer_info->page_dma) {
2629                         pci_unmap_page(rx_ring->pdev,
2630                                        buffer_info->page_dma,
2631                                        PAGE_SIZE / 2,
2632                                        PCI_DMA_FROMDEVICE);
2633                         buffer_info->page_dma = 0;
2634                 }
2635                 if (buffer_info->page) {
2636                         put_page(buffer_info->page);
2637                         buffer_info->page = NULL;
2638                         buffer_info->page_offset = 0;
2639                 }
2640         }
2641
2642         size = sizeof(struct igb_buffer) * rx_ring->count;
2643         memset(rx_ring->buffer_info, 0, size);
2644
2645         /* Zero out the descriptor ring */
2646         memset(rx_ring->desc, 0, rx_ring->size);
2647
2648         rx_ring->next_to_clean = 0;
2649         rx_ring->next_to_use = 0;
2650 }
2651
2652 /**
2653  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2654  * @adapter: board private structure
2655  **/
2656 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2657 {
2658         int i;
2659
2660         for (i = 0; i < adapter->num_rx_queues; i++)
2661                 igb_clean_rx_ring(&adapter->rx_ring[i]);
2662 }
2663
2664 /**
2665  * igb_set_mac - Change the Ethernet Address of the NIC
2666  * @netdev: network interface device structure
2667  * @p: pointer to an address structure
2668  *
2669  * Returns 0 on success, negative on failure
2670  **/
2671 static int igb_set_mac(struct net_device *netdev, void *p)
2672 {
2673         struct igb_adapter *adapter = netdev_priv(netdev);
2674         struct e1000_hw *hw = &adapter->hw;
2675         struct sockaddr *addr = p;
2676
2677         if (!is_valid_ether_addr(addr->sa_data))
2678                 return -EADDRNOTAVAIL;
2679
2680         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2681         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2682
2683         /* set the correct pool for the new PF MAC address in entry 0 */
2684         igb_rar_set_qsel(adapter, hw->mac.addr, 0,
2685                          adapter->vfs_allocated_count);
2686
2687         return 0;
2688 }
2689
2690 /**
2691  * igb_write_mc_addr_list - write multicast addresses to MTA
2692  * @netdev: network interface device structure
2693  *
2694  * Writes multicast address list to the MTA hash table.
2695  * Returns: -ENOMEM on failure
2696  *                0 on no addresses written
2697  *                X on writing X addresses to MTA
2698  **/
2699 static int igb_write_mc_addr_list(struct net_device *netdev)
2700 {
2701         struct igb_adapter *adapter = netdev_priv(netdev);
2702         struct e1000_hw *hw = &adapter->hw;
2703         struct dev_mc_list *mc_ptr = netdev->mc_list;
2704         u8  *mta_list;
2705         u32 vmolr = 0;
2706         int i;
2707
2708         if (!netdev->mc_count) {
2709                 /* nothing to program, so clear mc list */
2710                 igb_update_mc_addr_list(hw, NULL, 0);
2711                 igb_restore_vf_multicasts(adapter);
2712                 return 0;
2713         }
2714
2715         mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2716         if (!mta_list)
2717                 return -ENOMEM;
2718
2719         /* set vmolr receive overflow multicast bit */
2720         vmolr |= E1000_VMOLR_ROMPE;
2721
2722         /* The shared function expects a packed array of only addresses. */
2723         mc_ptr = netdev->mc_list;
2724
2725         for (i = 0; i < netdev->mc_count; i++) {
2726                 if (!mc_ptr)
2727                         break;
2728                 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2729                 mc_ptr = mc_ptr->next;
2730         }
2731         igb_update_mc_addr_list(hw, mta_list, i);
2732         kfree(mta_list);
2733
2734         return netdev->mc_count;
2735 }
2736
2737 /**
2738  * igb_write_uc_addr_list - write unicast addresses to RAR table
2739  * @netdev: network interface device structure
2740  *
2741  * Writes unicast address list to the RAR table.
2742  * Returns: -ENOMEM on failure/insufficient address space
2743  *                0 on no addresses written
2744  *                X on writing X addresses to the RAR table
2745  **/
2746 static int igb_write_uc_addr_list(struct net_device *netdev)
2747 {
2748         struct igb_adapter *adapter = netdev_priv(netdev);
2749         struct e1000_hw *hw = &adapter->hw;
2750         unsigned int vfn = adapter->vfs_allocated_count;
2751         unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2752         int count = 0;
2753
2754         /* return ENOMEM indicating insufficient memory for addresses */
2755         if (netdev->uc.count > rar_entries)
2756                 return -ENOMEM;
2757
2758         if (netdev->uc.count && rar_entries) {
2759                 struct netdev_hw_addr *ha;
2760                 list_for_each_entry(ha, &netdev->uc.list, list) {
2761                         if (!rar_entries)
2762                                 break;
2763                         igb_rar_set_qsel(adapter, ha->addr,
2764                                          rar_entries--,
2765                                          vfn);
2766                         count++;
2767                 }
2768         }
2769         /* write the addresses in reverse order to avoid write combining */
2770         for (; rar_entries > 0 ; rar_entries--) {
2771                 wr32(E1000_RAH(rar_entries), 0);
2772                 wr32(E1000_RAL(rar_entries), 0);
2773         }
2774         wrfl();
2775
2776         return count;
2777 }
2778
2779 /**
2780  * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2781  * @netdev: network interface device structure
2782  *
2783  * The set_rx_mode entry point is called whenever the unicast or multicast
2784  * address lists or the network interface flags are updated.  This routine is
2785  * responsible for configuring the hardware for proper unicast, multicast,
2786  * promiscuous mode, and all-multi behavior.
2787  **/
2788 static void igb_set_rx_mode(struct net_device *netdev)
2789 {
2790         struct igb_adapter *adapter = netdev_priv(netdev);
2791         struct e1000_hw *hw = &adapter->hw;
2792         unsigned int vfn = adapter->vfs_allocated_count;
2793         u32 rctl, vmolr = 0;
2794         int count;
2795
2796         /* Check for Promiscuous and All Multicast modes */
2797         rctl = rd32(E1000_RCTL);
2798
2799         /* clear the effected bits */
2800         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
2801
2802         if (netdev->flags & IFF_PROMISC) {
2803                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2804                 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
2805         } else {
2806                 if (netdev->flags & IFF_ALLMULTI) {
2807                         rctl |= E1000_RCTL_MPE;
2808                         vmolr |= E1000_VMOLR_MPME;
2809                 } else {
2810                         /*
2811                          * Write addresses to the MTA, if the attempt fails
2812                          * then we should just turn on promiscous mode so
2813                          * that we can at least receive multicast traffic
2814                          */
2815                         count = igb_write_mc_addr_list(netdev);
2816                         if (count < 0) {
2817                                 rctl |= E1000_RCTL_MPE;
2818                                 vmolr |= E1000_VMOLR_MPME;
2819                         } else if (count) {
2820                                 vmolr |= E1000_VMOLR_ROMPE;
2821                         }
2822                 }
2823                 /*
2824                  * Write addresses to available RAR registers, if there is not
2825                  * sufficient space to store all the addresses then enable
2826                  * unicast promiscous mode
2827                  */
2828                 count = igb_write_uc_addr_list(netdev);
2829                 if (count < 0) {
2830                         rctl |= E1000_RCTL_UPE;
2831                         vmolr |= E1000_VMOLR_ROPE;
2832                 }
2833                 rctl |= E1000_RCTL_VFE;
2834         }
2835         wr32(E1000_RCTL, rctl);
2836
2837         /*
2838          * In order to support SR-IOV and eventually VMDq it is necessary to set
2839          * the VMOLR to enable the appropriate modes.  Without this workaround
2840          * we will have issues with VLAN tag stripping not being done for frames
2841          * that are only arriving because we are the default pool
2842          */
2843         if (hw->mac.type < e1000_82576)
2844                 return;
2845
2846         vmolr |= rd32(E1000_VMOLR(vfn)) &
2847                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
2848         wr32(E1000_VMOLR(vfn), vmolr);
2849         igb_restore_vf_multicasts(adapter);
2850 }
2851
2852 /* Need to wait a few seconds after link up to get diagnostic information from
2853  * the phy */
2854 static void igb_update_phy_info(unsigned long data)
2855 {
2856         struct igb_adapter *adapter = (struct igb_adapter *) data;
2857         igb_get_phy_info(&adapter->hw);
2858 }
2859
2860 /**
2861  * igb_has_link - check shared code for link and determine up/down
2862  * @adapter: pointer to driver private info
2863  **/
2864 static bool igb_has_link(struct igb_adapter *adapter)
2865 {
2866         struct e1000_hw *hw = &adapter->hw;
2867         bool link_active = false;
2868         s32 ret_val = 0;
2869
2870         /* get_link_status is set on LSC (link status) interrupt or
2871          * rx sequence error interrupt.  get_link_status will stay
2872          * false until the e1000_check_for_link establishes link
2873          * for copper adapters ONLY
2874          */
2875         switch (hw->phy.media_type) {
2876         case e1000_media_type_copper:
2877                 if (hw->mac.get_link_status) {
2878                         ret_val = hw->mac.ops.check_for_link(hw);
2879                         link_active = !hw->mac.get_link_status;
2880                 } else {
2881                         link_active = true;
2882                 }
2883                 break;
2884         case e1000_media_type_internal_serdes:
2885                 ret_val = hw->mac.ops.check_for_link(hw);
2886                 link_active = hw->mac.serdes_has_link;
2887                 break;
2888         default:
2889         case e1000_media_type_unknown:
2890                 break;
2891         }
2892
2893         return link_active;
2894 }
2895
2896 /**
2897  * igb_watchdog - Timer Call-back
2898  * @data: pointer to adapter cast into an unsigned long
2899  **/
2900 static void igb_watchdog(unsigned long data)
2901 {
2902         struct igb_adapter *adapter = (struct igb_adapter *)data;
2903         /* Do the rest outside of interrupt context */
2904         schedule_work(&adapter->watchdog_task);
2905 }
2906
2907 static void igb_watchdog_task(struct work_struct *work)
2908 {
2909         struct igb_adapter *adapter = container_of(work,
2910                                         struct igb_adapter, watchdog_task);
2911         struct e1000_hw *hw = &adapter->hw;
2912         struct net_device *netdev = adapter->netdev;
2913         struct igb_ring *tx_ring = adapter->tx_ring;
2914         u32 link;
2915         int i;
2916
2917         link = igb_has_link(adapter);
2918         if ((netif_carrier_ok(netdev)) && link)
2919                 goto link_up;
2920
2921         if (link) {
2922                 if (!netif_carrier_ok(netdev)) {
2923                         u32 ctrl;
2924                         hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2925                                                    &adapter->link_speed,
2926                                                    &adapter->link_duplex);
2927
2928                         ctrl = rd32(E1000_CTRL);
2929                         /* Links status message must follow this format */
2930                         printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2931                                  "Flow Control: %s\n",
2932                                  netdev->name,
2933                                  adapter->link_speed,
2934                                  adapter->link_duplex == FULL_DUPLEX ?
2935                                  "Full Duplex" : "Half Duplex",
2936                                  ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2937                                  E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2938                                  E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2939                                  E1000_CTRL_TFCE) ? "TX" : "None")));
2940
2941                         /* tweak tx_queue_len according to speed/duplex and
2942                          * adjust the timeout factor */
2943                         netdev->tx_queue_len = adapter->tx_queue_len;
2944                         adapter->tx_timeout_factor = 1;
2945                         switch (adapter->link_speed) {
2946                         case SPEED_10:
2947                                 netdev->tx_queue_len = 10;
2948                                 adapter->tx_timeout_factor = 14;
2949                                 break;
2950                         case SPEED_100:
2951                                 netdev->tx_queue_len = 100;
2952                                 /* maybe add some timeout factor ? */
2953                                 break;
2954                         }
2955
2956                         netif_carrier_on(netdev);
2957
2958                         igb_ping_all_vfs(adapter);
2959
2960                         /* link state has changed, schedule phy info update */
2961                         if (!test_bit(__IGB_DOWN, &adapter->state))
2962                                 mod_timer(&adapter->phy_info_timer,
2963                                           round_jiffies(jiffies + 2 * HZ));
2964                 }
2965         } else {
2966                 if (netif_carrier_ok(netdev)) {
2967                         adapter->link_speed = 0;
2968                         adapter->link_duplex = 0;
2969                         /* Links status message must follow this format */
2970                         printk(KERN_INFO "igb: %s NIC Link is Down\n",
2971                                netdev->name);
2972                         netif_carrier_off(netdev);
2973
2974                         igb_ping_all_vfs(adapter);
2975
2976                         /* link state has changed, schedule phy info update */
2977                         if (!test_bit(__IGB_DOWN, &adapter->state))
2978                                 mod_timer(&adapter->phy_info_timer,
2979                                           round_jiffies(jiffies + 2 * HZ));
2980                 }
2981         }
2982
2983 link_up:
2984         igb_update_stats(adapter);
2985
2986         hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2987         adapter->tpt_old = adapter->stats.tpt;
2988         hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
2989         adapter->colc_old = adapter->stats.colc;
2990
2991         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2992         adapter->gorc_old = adapter->stats.gorc;
2993         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2994         adapter->gotc_old = adapter->stats.gotc;
2995
2996         igb_update_adaptive(&adapter->hw);
2997
2998         if (!netif_carrier_ok(netdev)) {
2999                 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3000                         /* We've lost link, so the controller stops DMA,
3001                          * but we've got queued Tx work that's never going
3002                          * to get done, so reset controller to flush Tx.
3003                          * (Do the reset outside of interrupt context). */
3004                         adapter->tx_timeout_count++;
3005                         schedule_work(&adapter->reset_task);
3006                         /* return immediately since reset is imminent */
3007                         return;
3008                 }
3009         }
3010
3011         /* Force detection of hung controller every watchdog period */
3012         for (i = 0; i < adapter->num_tx_queues; i++)
3013                 adapter->tx_ring[i].detect_tx_hung = true;
3014
3015         /* Cause software interrupt to ensure rx ring is cleaned */
3016         if (adapter->msix_entries) {
3017                 u32 eics = 0;
3018                 for (i = 0; i < adapter->num_q_vectors; i++) {
3019                         struct igb_q_vector *q_vector = adapter->q_vector[i];
3020                         eics |= q_vector->eims_value;
3021                 }
3022                 wr32(E1000_EICS, eics);
3023         } else {
3024                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3025         }
3026
3027         /* Reset the timer */
3028         if (!test_bit(__IGB_DOWN, &adapter->state))
3029                 mod_timer(&adapter->watchdog_timer,
3030                           round_jiffies(jiffies + 2 * HZ));
3031 }
3032
3033 enum latency_range {
3034         lowest_latency = 0,
3035         low_latency = 1,
3036         bulk_latency = 2,
3037         latency_invalid = 255
3038 };
3039
3040 /**
3041  * igb_update_ring_itr - update the dynamic ITR value based on packet size
3042  *
3043  *      Stores a new ITR value based on strictly on packet size.  This
3044  *      algorithm is less sophisticated than that used in igb_update_itr,
3045  *      due to the difficulty of synchronizing statistics across multiple
3046  *      receive rings.  The divisors and thresholds used by this fuction
3047  *      were determined based on theoretical maximum wire speed and testing
3048  *      data, in order to minimize response time while increasing bulk
3049  *      throughput.
3050  *      This functionality is controlled by the InterruptThrottleRate module
3051  *      parameter (see igb_param.c)
3052  *      NOTE:  This function is called only when operating in a multiqueue
3053  *             receive environment.
3054  * @q_vector: pointer to q_vector
3055  **/
3056 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3057 {
3058         int new_val = q_vector->itr_val;
3059         int avg_wire_size = 0;
3060         struct igb_adapter *adapter = q_vector->adapter;
3061
3062         /* For non-gigabit speeds, just fix the interrupt rate at 4000
3063          * ints/sec - ITR timer value of 120 ticks.
3064          */
3065         if (adapter->link_speed != SPEED_1000) {
3066                 new_val = 976;
3067                 goto set_itr_val;
3068         }
3069
3070         if (q_vector->rx_ring && q_vector->rx_ring->total_packets) {
3071                 struct igb_ring *ring = q_vector->rx_ring;
3072                 avg_wire_size = ring->total_bytes / ring->total_packets;
3073         }
3074
3075         if (q_vector->tx_ring && q_vector->tx_ring->total_packets) {
3076                 struct igb_ring *ring = q_vector->tx_ring;
3077                 avg_wire_size = max_t(u32, avg_wire_size,
3078                                       (ring->total_bytes /
3079                                        ring->total_packets));
3080         }
3081
3082         /* if avg_wire_size isn't set no work was done */
3083         if (!avg_wire_size)
3084                 goto clear_counts;
3085
3086         /* Add 24 bytes to size to account for CRC, preamble, and gap */
3087         avg_wire_size += 24;
3088
3089         /* Don't starve jumbo frames */
3090         avg_wire_size = min(avg_wire_size, 3000);
3091
3092         /* Give a little boost to mid-size frames */
3093         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3094                 new_val = avg_wire_size / 3;
3095         else
3096                 new_val = avg_wire_size / 2;
3097
3098 set_itr_val:
3099         if (new_val != q_vector->itr_val) {
3100                 q_vector->itr_val = new_val;
3101                 q_vector->set_itr = 1;
3102         }
3103 clear_counts:
3104         if (q_vector->rx_ring) {
3105                 q_vector->rx_ring->total_bytes = 0;
3106                 q_vector->rx_ring->total_packets = 0;
3107         }
3108         if (q_vector->tx_ring) {
3109                 q_vector->tx_ring->total_bytes = 0;
3110                 q_vector->tx_ring->total_packets = 0;
3111         }
3112 }
3113
3114 /**
3115  * igb_update_itr - update the dynamic ITR value based on statistics
3116  *      Stores a new ITR value based on packets and byte
3117  *      counts during the last interrupt.  The advantage of per interrupt
3118  *      computation is faster updates and more accurate ITR for the current
3119  *      traffic pattern.  Constants in this function were computed
3120  *      based on theoretical maximum wire speed and thresholds were set based
3121  *      on testing data as well as attempting to minimize response time
3122  *      while increasing bulk throughput.
3123  *      this functionality is controlled by the InterruptThrottleRate module
3124  *      parameter (see igb_param.c)
3125  *      NOTE:  These calculations are only valid when operating in a single-
3126  *             queue environment.
3127  * @adapter: pointer to adapter
3128  * @itr_setting: current q_vector->itr_val
3129  * @packets: the number of packets during this measurement interval
3130  * @bytes: the number of bytes during this measurement interval
3131  **/
3132 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3133                                    int packets, int bytes)
3134 {
3135         unsigned int retval = itr_setting;
3136
3137         if (packets == 0)
3138                 goto update_itr_done;
3139
3140         switch (itr_setting) {
3141         case lowest_latency:
3142                 /* handle TSO and jumbo frames */
3143                 if (bytes/packets > 8000)
3144                         retval = bulk_latency;
3145                 else if ((packets < 5) && (bytes > 512))
3146                         retval = low_latency;
3147                 break;
3148         case low_latency:  /* 50 usec aka 20000 ints/s */
3149                 if (bytes > 10000) {
3150                         /* this if handles the TSO accounting */
3151                         if (bytes/packets > 8000) {
3152                                 retval = bulk_latency;
3153                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3154                                 retval = bulk_latency;
3155                         } else if ((packets > 35)) {
3156                                 retval = lowest_latency;
3157                         }
3158                 } else if (bytes/packets > 2000) {
3159                         retval = bulk_latency;
3160                 } else if (packets <= 2 && bytes < 512) {
3161                         retval = lowest_latency;
3162                 }
3163                 break;
3164         case bulk_latency: /* 250 usec aka 4000 ints/s */
3165                 if (bytes > 25000) {
3166                         if (packets > 35)
3167                                 retval = low_latency;
3168                 } else if (bytes < 1500) {
3169                         retval = low_latency;
3170                 }
3171                 break;
3172         }
3173
3174 update_itr_done:
3175         return retval;
3176 }
3177
3178 static void igb_set_itr(struct igb_adapter *adapter)
3179 {
3180         struct igb_q_vector *q_vector = adapter->q_vector[0];
3181         u16 current_itr;
3182         u32 new_itr = q_vector->itr_val;
3183
3184         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3185         if (adapter->link_speed != SPEED_1000) {
3186                 current_itr = 0;
3187                 new_itr = 4000;
3188                 goto set_itr_now;
3189         }
3190
3191         adapter->rx_itr = igb_update_itr(adapter,
3192                                     adapter->rx_itr,
3193                                     adapter->rx_ring->total_packets,
3194                                     adapter->rx_ring->total_bytes);
3195
3196         adapter->tx_itr = igb_update_itr(adapter,
3197                                     adapter->tx_itr,
3198                                     adapter->tx_ring->total_packets,
3199                                     adapter->tx_ring->total_bytes);
3200         current_itr = max(adapter->rx_itr, adapter->tx_itr);
3201
3202         /* conservative mode (itr 3) eliminates the lowest_latency setting */
3203         if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
3204                 current_itr = low_latency;
3205
3206         switch (current_itr) {
3207         /* counts and packets in update_itr are dependent on these numbers */
3208         case lowest_latency:
3209                 new_itr = 56;  /* aka 70,000 ints/sec */
3210                 break;
3211         case low_latency:
3212                 new_itr = 196; /* aka 20,000 ints/sec */
3213                 break;
3214         case bulk_latency:
3215                 new_itr = 980; /* aka 4,000 ints/sec */
3216                 break;
3217         default:
3218                 break;
3219         }
3220
3221 set_itr_now:
3222         adapter->rx_ring->total_bytes = 0;
3223         adapter->rx_ring->total_packets = 0;
3224         adapter->tx_ring->total_bytes = 0;
3225         adapter->tx_ring->total_packets = 0;
3226
3227         if (new_itr != q_vector->itr_val) {
3228                 /* this attempts to bias the interrupt rate towards Bulk
3229                  * by adding intermediate steps when interrupt rate is
3230                  * increasing */
3231                 new_itr = new_itr > q_vector->itr_val ?
3232                              max((new_itr * q_vector->itr_val) /
3233                                  (new_itr + (q_vector->itr_val >> 2)),
3234                                  new_itr) :
3235                              new_itr;
3236                 /* Don't write the value here; it resets the adapter's
3237                  * internal timer, and causes us to delay far longer than
3238                  * we should between interrupts.  Instead, we write the ITR
3239                  * value at the beginning of the next interrupt so the timing
3240                  * ends up being correct.
3241                  */
3242                 q_vector->itr_val = new_itr;
3243                 q_vector->set_itr = 1;
3244         }
3245
3246         return;
3247 }
3248
3249 #define IGB_TX_FLAGS_CSUM               0x00000001
3250 #define IGB_TX_FLAGS_VLAN               0x00000002
3251 #define IGB_TX_FLAGS_TSO                0x00000004
3252 #define IGB_TX_FLAGS_IPV4               0x00000008
3253 #define IGB_TX_FLAGS_TSTAMP             0x00000010
3254 #define IGB_TX_FLAGS_VLAN_MASK  0xffff0000
3255 #define IGB_TX_FLAGS_VLAN_SHIFT 16
3256
3257 static inline int igb_tso_adv(struct igb_ring *tx_ring,
3258                               struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3259 {
3260         struct e1000_adv_tx_context_desc *context_desc;
3261         unsigned int i;
3262         int err;
3263         struct igb_buffer *buffer_info;
3264         u32 info = 0, tu_cmd = 0;
3265         u32 mss_l4len_idx, l4len;
3266         *hdr_len = 0;
3267
3268         if (skb_header_cloned(skb)) {
3269                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3270                 if (err)
3271                         return err;
3272         }
3273
3274         l4len = tcp_hdrlen(skb);
3275         *hdr_len += l4len;
3276
3277         if (skb->protocol == htons(ETH_P_IP)) {
3278                 struct iphdr *iph = ip_hdr(skb);
3279                 iph->tot_len = 0;
3280                 iph->check = 0;
3281                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3282                                                          iph->daddr, 0,
3283                                                          IPPROTO_TCP,
3284                                                          0);
3285         } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3286                 ipv6_hdr(skb)->payload_len = 0;
3287                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3288                                                        &ipv6_hdr(skb)->daddr,
3289                                                        0, IPPROTO_TCP, 0);
3290         }
3291
3292         i = tx_ring->next_to_use;
3293
3294         buffer_info = &tx_ring->buffer_info[i];
3295         context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3296         /* VLAN MACLEN IPLEN */
3297         if (tx_flags & IGB_TX_FLAGS_VLAN)
3298                 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3299         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3300         *hdr_len += skb_network_offset(skb);
3301         info |= skb_network_header_len(skb);
3302         *hdr_len += skb_network_header_len(skb);
3303         context_desc->vlan_macip_lens = cpu_to_le32(info);
3304
3305         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3306         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3307
3308         if (skb->protocol == htons(ETH_P_IP))
3309                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3310         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3311
3312         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3313
3314         /* MSS L4LEN IDX */
3315         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3316         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3317
3318         /* For 82575, context index must be unique per ring. */
3319         if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3320                 mss_l4len_idx |= tx_ring->reg_idx << 4;
3321
3322         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3323         context_desc->seqnum_seed = 0;
3324
3325         buffer_info->time_stamp = jiffies;
3326         buffer_info->next_to_watch = i;
3327         buffer_info->dma = 0;
3328         i++;
3329         if (i == tx_ring->count)
3330                 i = 0;
3331
3332         tx_ring->next_to_use = i;
3333
3334         return true;
3335 }
3336
3337 static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
3338                                    struct sk_buff *skb, u32 tx_flags)
3339 {
3340         struct e1000_adv_tx_context_desc *context_desc;
3341         struct pci_dev *pdev = tx_ring->pdev;
3342         struct igb_buffer *buffer_info;
3343         u32 info = 0, tu_cmd = 0;
3344         unsigned int i;
3345
3346         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3347             (tx_flags & IGB_TX_FLAGS_VLAN)) {
3348                 i = tx_ring->next_to_use;
3349                 buffer_info = &tx_ring->buffer_info[i];
3350                 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3351
3352                 if (tx_flags & IGB_TX_FLAGS_VLAN)
3353                         info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3354                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3355                 if (skb->ip_summed == CHECKSUM_PARTIAL)
3356                         info |= skb_network_header_len(skb);
3357
3358                 context_desc->vlan_macip_lens = cpu_to_le32(info);
3359
3360                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3361
3362                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3363                         __be16 protocol;
3364
3365                         if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3366                                 const struct vlan_ethhdr *vhdr =
3367                                           (const struct vlan_ethhdr*)skb->data;
3368
3369                                 protocol = vhdr->h_vlan_encapsulated_proto;
3370                         } else {
3371                                 protocol = skb->protocol;
3372                         }
3373
3374                         switch (protocol) {
3375                         case cpu_to_be16(ETH_P_IP):
3376                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3377                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3378                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3379                                 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3380                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3381                                 break;
3382                         case cpu_to_be16(ETH_P_IPV6):
3383                                 /* XXX what about other V6 headers?? */
3384                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3385                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3386                                 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3387                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3388                                 break;
3389                         default:
3390                                 if (unlikely(net_ratelimit()))
3391                                         dev_warn(&pdev->dev,
3392                                             "partial checksum but proto=%x!\n",
3393                                             skb->protocol);
3394                                 break;
3395                         }
3396                 }
3397
3398                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3399                 context_desc->seqnum_seed = 0;
3400                 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3401                         context_desc->mss_l4len_idx =
3402                                 cpu_to_le32(tx_ring->reg_idx << 4);
3403
3404                 buffer_info->time_stamp = jiffies;
3405                 buffer_info->next_to_watch = i;
3406                 buffer_info->dma = 0;
3407
3408                 i++;
3409                 if (i == tx_ring->count)
3410                         i = 0;
3411                 tx_ring->next_to_use = i;
3412
3413                 return true;
3414         }
3415         return false;
3416 }
3417
3418 #define IGB_MAX_TXD_PWR 16
3419 #define IGB_MAX_DATA_PER_TXD    (1<<IGB_MAX_TXD_PWR)
3420
3421 static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
3422                                  unsigned int first)
3423 {
3424         struct igb_buffer *buffer_info;
3425         struct pci_dev *pdev = tx_ring->pdev;
3426         unsigned int len = skb_headlen(skb);
3427         unsigned int count = 0, i;
3428         unsigned int f;
3429         dma_addr_t *map;
3430
3431         i = tx_ring->next_to_use;
3432
3433         if (skb_dma_map(&pdev->dev, skb, DMA_TO_DEVICE)) {
3434                 dev_err(&pdev->dev, "TX DMA map failed\n");
3435                 return 0;
3436         }
3437
3438         map = skb_shinfo(skb)->dma_maps;
3439
3440         buffer_info = &tx_ring->buffer_info[i];
3441         BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3442         buffer_info->length = len;
3443         /* set time_stamp *before* dma to help avoid a possible race */
3444         buffer_info->time_stamp = jiffies;
3445         buffer_info->next_to_watch = i;
3446         buffer_info->dma = skb_shinfo(skb)->dma_head;
3447
3448         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3449                 struct skb_frag_struct *frag;
3450
3451                 i++;
3452                 if (i == tx_ring->count)
3453                         i = 0;
3454
3455                 frag = &skb_shinfo(skb)->frags[f];
3456                 len = frag->size;
3457
3458                 buffer_info = &tx_ring->buffer_info[i];
3459                 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3460                 buffer_info->length = len;
3461                 buffer_info->time_stamp = jiffies;
3462                 buffer_info->next_to_watch = i;
3463                 buffer_info->dma = map[count];
3464                 count++;
3465         }
3466
3467         tx_ring->buffer_info[i].skb = skb;
3468         tx_ring->buffer_info[first].next_to_watch = i;
3469
3470         return count + 1;
3471 }
3472
3473 static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
3474                                     int tx_flags, int count, u32 paylen,
3475                                     u8 hdr_len)
3476 {
3477         union e1000_adv_tx_desc *tx_desc = NULL;
3478         struct igb_buffer *buffer_info;
3479         u32 olinfo_status = 0, cmd_type_len;
3480         unsigned int i;
3481
3482         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3483                         E1000_ADVTXD_DCMD_DEXT);
3484
3485         if (tx_flags & IGB_TX_FLAGS_VLAN)
3486                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3487
3488         if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3489                 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3490
3491         if (tx_flags & IGB_TX_FLAGS_TSO) {
3492                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3493
3494                 /* insert tcp checksum */
3495                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3496
3497                 /* insert ip checksum */
3498                 if (tx_flags & IGB_TX_FLAGS_IPV4)
3499                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3500
3501         } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3502                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3503         }
3504
3505         if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
3506             (tx_flags & (IGB_TX_FLAGS_CSUM |
3507                          IGB_TX_FLAGS_TSO |
3508                          IGB_TX_FLAGS_VLAN)))
3509                 olinfo_status |= tx_ring->reg_idx << 4;
3510
3511         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3512
3513         i = tx_ring->next_to_use;
3514         while (count--) {
3515                 buffer_info = &tx_ring->buffer_info[i];
3516                 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3517                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3518                 tx_desc->read.cmd_type_len =
3519                         cpu_to_le32(cmd_type_len | buffer_info->length);
3520                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3521                 i++;
3522                 if (i == tx_ring->count)
3523                         i = 0;
3524         }
3525
3526         tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
3527         /* Force memory writes to complete before letting h/w
3528          * know there are new descriptors to fetch.  (Only
3529          * applicable for weak-ordered memory model archs,
3530          * such as IA-64). */
3531         wmb();
3532
3533         tx_ring->next_to_use = i;
3534         writel(i, tx_ring->tail);
3535         /* we need this if more than one processor can write to our tail
3536          * at a time, it syncronizes IO on IA64/Altix systems */
3537         mmiowb();
3538 }
3539
3540 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3541 {
3542         struct net_device *netdev = tx_ring->netdev;
3543
3544         netif_stop_subqueue(netdev, tx_ring->queue_index);
3545
3546         /* Herbert's original patch had:
3547          *  smp_mb__after_netif_stop_queue();
3548          * but since that doesn't exist yet, just open code it. */
3549         smp_mb();
3550
3551         /* We need to check again in a case another CPU has just
3552          * made room available. */
3553         if (igb_desc_unused(tx_ring) < size)
3554                 return -EBUSY;
3555
3556         /* A reprieve! */
3557         netif_wake_subqueue(netdev, tx_ring->queue_index);
3558         tx_ring->tx_stats.restart_queue++;
3559         return 0;
3560 }
3561
3562 static int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3563 {
3564         if (igb_desc_unused(tx_ring) >= size)
3565                 return 0;
3566         return __igb_maybe_stop_tx(tx_ring, size);
3567 }
3568
3569 netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
3570                                     struct igb_ring *tx_ring)
3571 {
3572         struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
3573         unsigned int first;
3574         unsigned int tx_flags = 0;
3575         u8 hdr_len = 0;
3576         int count = 0;
3577         int tso = 0;
3578         union skb_shared_tx *shtx = skb_tx(skb);
3579
3580         /* need: 1 descriptor per page,
3581          *       + 2 desc gap to keep tail from touching head,
3582          *       + 1 desc for skb->data,
3583          *       + 1 desc for context descriptor,
3584          * otherwise try next time */
3585         if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3586                 /* this is a hard error */
3587                 return NETDEV_TX_BUSY;
3588         }
3589
3590         if (unlikely(shtx->hardware)) {
3591                 shtx->in_progress = 1;
3592                 tx_flags |= IGB_TX_FLAGS_TSTAMP;
3593         }
3594
3595         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3596                 tx_flags |= IGB_TX_FLAGS_VLAN;
3597                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3598         }
3599
3600         if (skb->protocol == htons(ETH_P_IP))
3601                 tx_flags |= IGB_TX_FLAGS_IPV4;
3602
3603         first = tx_ring->next_to_use;
3604         if (skb_is_gso(skb)) {
3605                 tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
3606                 if (tso < 0) {
3607                         dev_kfree_skb_any(skb);
3608                         return NETDEV_TX_OK;
3609                 }
3610         }
3611
3612         if (tso)
3613                 tx_flags |= IGB_TX_FLAGS_TSO;
3614         else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
3615                  (skb->ip_summed == CHECKSUM_PARTIAL))
3616                 tx_flags |= IGB_TX_FLAGS_CSUM;
3617
3618         /*
3619          * count reflects descriptors mapped, if 0 then mapping error
3620          * has occured and we need to rewind the descriptor queue
3621          */
3622         count = igb_tx_map_adv(tx_ring, skb, first);
3623
3624         if (!count) {
3625                 dev_kfree_skb_any(skb);
3626                 tx_ring->buffer_info[first].time_stamp = 0;
3627                 tx_ring->next_to_use = first;
3628                 return NETDEV_TX_OK;
3629         }
3630
3631         igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
3632
3633         /* Make sure there is space in the ring for the next send. */
3634         igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
3635
3636         return NETDEV_TX_OK;
3637 }
3638
3639 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
3640                                       struct net_device *netdev)
3641 {
3642         struct igb_adapter *adapter = netdev_priv(netdev);
3643         struct igb_ring *tx_ring;
3644         int r_idx = 0;
3645
3646         if (test_bit(__IGB_DOWN, &adapter->state)) {
3647                 dev_kfree_skb_any(skb);
3648                 return NETDEV_TX_OK;
3649         }
3650
3651         if (skb->len <= 0) {
3652                 dev_kfree_skb_any(skb);
3653                 return NETDEV_TX_OK;
3654         }
3655
3656         r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3657         tx_ring = adapter->multi_tx_table[r_idx];
3658
3659         /* This goes back to the question of how to logically map a tx queue
3660          * to a flow.  Right now, performance is impacted slightly negatively
3661          * if using multiple tx queues.  If the stack breaks away from a
3662          * single qdisc implementation, we can look at this again. */
3663         return igb_xmit_frame_ring_adv(skb, tx_ring);
3664 }
3665
3666 /**
3667  * igb_tx_timeout - Respond to a Tx Hang
3668  * @netdev: network interface device structure
3669  **/
3670 static void igb_tx_timeout(struct net_device *netdev)
3671 {
3672         struct igb_adapter *adapter = netdev_priv(netdev);
3673         struct e1000_hw *hw = &adapter->hw;
3674
3675         /* Do the reset outside of interrupt context */
3676         adapter->tx_timeout_count++;
3677
3678         schedule_work(&adapter->reset_task);
3679         wr32(E1000_EICS,
3680              (adapter->eims_enable_mask & ~adapter->eims_other));
3681 }
3682
3683 static void igb_reset_task(struct work_struct *work)
3684 {
3685         struct igb_adapter *adapter;
3686         adapter = container_of(work, struct igb_adapter, reset_task);
3687
3688         igb_reinit_locked(adapter);
3689 }
3690
3691 /**
3692  * igb_get_stats - Get System Network Statistics
3693  * @netdev: network interface device structure
3694  *
3695  * Returns the address of the device statistics structure.
3696  * The statistics are actually updated from the timer callback.
3697  **/
3698 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3699 {
3700         /* only return the current stats */
3701         return &netdev->stats;
3702 }
3703
3704 /**
3705  * igb_change_mtu - Change the Maximum Transfer Unit
3706  * @netdev: network interface device structure
3707  * @new_mtu: new value for maximum frame size
3708  *
3709  * Returns 0 on success, negative on failure
3710  **/
3711 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3712 {
3713         struct igb_adapter *adapter = netdev_priv(netdev);
3714         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3715         u32 rx_buffer_len, i;
3716
3717         if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3718             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3719                 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3720                 return -EINVAL;
3721         }
3722
3723         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3724                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3725                 return -EINVAL;
3726         }
3727
3728         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3729                 msleep(1);
3730
3731         /* igb_down has a dependency on max_frame_size */
3732         adapter->max_frame_size = max_frame;
3733         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3734          * means we reserve 2 more, this pushes us to allocate from the next
3735          * larger slab size.
3736          * i.e. RXBUFFER_2048 --> size-4096 slab
3737          */
3738
3739         if (max_frame <= IGB_RXBUFFER_1024)
3740                 rx_buffer_len = IGB_RXBUFFER_1024;
3741         else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
3742                 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3743         else
3744                 rx_buffer_len = IGB_RXBUFFER_128;
3745
3746         if (netif_running(netdev))
3747                 igb_down(adapter);
3748
3749         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3750                  netdev->mtu, new_mtu);
3751         netdev->mtu = new_mtu;
3752
3753         for (i = 0; i < adapter->num_rx_queues; i++)
3754                 adapter->rx_ring[i].rx_buffer_len = rx_buffer_len;
3755
3756         if (netif_running(netdev))
3757                 igb_up(adapter);
3758         else
3759                 igb_reset(adapter);
3760
3761         clear_bit(__IGB_RESETTING, &adapter->state);
3762
3763         return 0;
3764 }
3765
3766 /**
3767  * igb_update_stats - Update the board statistics counters
3768  * @adapter: board private structure
3769  **/
3770
3771 void igb_update_stats(struct igb_adapter *adapter)
3772 {
3773         struct net_device *netdev = adapter->netdev;
3774         struct e1000_hw *hw = &adapter->hw;
3775         struct pci_dev *pdev = adapter->pdev;
3776         u32 rnbc;
3777         u16 phy_tmp;
3778         int i;
3779         u64 bytes, packets;
3780
3781 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3782
3783         /*
3784          * Prevent stats update while adapter is being reset, or if the pci
3785          * connection is down.
3786          */
3787         if (adapter->link_speed == 0)
3788                 return;
3789         if (pci_channel_offline(pdev))
3790                 return;
3791
3792         bytes = 0;
3793         packets = 0;
3794         for (i = 0; i < adapter->num_rx_queues; i++) {
3795                 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3796                 adapter->rx_ring[i].rx_stats.drops += rqdpc_tmp;
3797                 netdev->stats.rx_fifo_errors += rqdpc_tmp;
3798                 bytes += adapter->rx_ring[i].rx_stats.bytes;
3799                 packets += adapter->rx_ring[i].rx_stats.packets;
3800         }
3801
3802         netdev->stats.rx_bytes = bytes;
3803         netdev->stats.rx_packets = packets;
3804
3805         bytes = 0;
3806         packets = 0;
3807         for (i = 0; i < adapter->num_tx_queues; i++) {
3808                 bytes += adapter->tx_ring[i].tx_stats.bytes;
3809                 packets += adapter->tx_ring[i].tx_stats.packets;
3810         }
3811         netdev->stats.tx_bytes = bytes;
3812         netdev->stats.tx_packets = packets;
3813
3814         /* read stats registers */
3815         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3816         adapter->stats.gprc += rd32(E1000_GPRC);
3817         adapter->stats.gorc += rd32(E1000_GORCL);
3818         rd32(E1000_GORCH); /* clear GORCL */
3819         adapter->stats.bprc += rd32(E1000_BPRC);
3820         adapter->stats.mprc += rd32(E1000_MPRC);
3821         adapter->stats.roc += rd32(E1000_ROC);
3822
3823         adapter->stats.prc64 += rd32(E1000_PRC64);
3824         adapter->stats.prc127 += rd32(E1000_PRC127);
3825         adapter->stats.prc255 += rd32(E1000_PRC255);
3826         adapter->stats.prc511 += rd32(E1000_PRC511);
3827         adapter->stats.prc1023 += rd32(E1000_PRC1023);
3828         adapter->stats.prc1522 += rd32(E1000_PRC1522);
3829         adapter->stats.symerrs += rd32(E1000_SYMERRS);
3830         adapter->stats.sec += rd32(E1000_SEC);
3831
3832         adapter->stats.mpc += rd32(E1000_MPC);
3833         adapter->stats.scc += rd32(E1000_SCC);
3834         adapter->stats.ecol += rd32(E1000_ECOL);
3835         adapter->stats.mcc += rd32(E1000_MCC);
3836         adapter->stats.latecol += rd32(E1000_LATECOL);
3837         adapter->stats.dc += rd32(E1000_DC);
3838         adapter->stats.rlec += rd32(E1000_RLEC);
3839         adapter->stats.xonrxc += rd32(E1000_XONRXC);
3840         adapter->stats.xontxc += rd32(E1000_XONTXC);
3841         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3842         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3843         adapter->stats.fcruc += rd32(E1000_FCRUC);
3844         adapter->stats.gptc += rd32(E1000_GPTC);
3845         adapter->stats.gotc += rd32(E1000_GOTCL);
3846         rd32(E1000_GOTCH); /* clear GOTCL */
3847         rnbc = rd32(E1000_RNBC);
3848         adapter->stats.rnbc += rnbc;
3849         netdev->stats.rx_fifo_errors += rnbc;
3850         adapter->stats.ruc += rd32(E1000_RUC);
3851         adapter->stats.rfc += rd32(E1000_RFC);
3852         adapter->stats.rjc += rd32(E1000_RJC);
3853         adapter->stats.tor += rd32(E1000_TORH);
3854         adapter->stats.tot += rd32(E1000_TOTH);
3855         adapter->stats.tpr += rd32(E1000_TPR);
3856
3857         adapter->stats.ptc64 += rd32(E1000_PTC64);
3858         adapter->stats.ptc127 += rd32(E1000_PTC127);
3859         adapter->stats.ptc255 += rd32(E1000_PTC255);
3860         adapter->stats.ptc511 += rd32(E1000_PTC511);
3861         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3862         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3863
3864         adapter->stats.mptc += rd32(E1000_MPTC);
3865         adapter->stats.bptc += rd32(E1000_BPTC);
3866
3867         /* used for adaptive IFS */
3868
3869         hw->mac.tx_packet_delta = rd32(E1000_TPT);
3870         adapter->stats.tpt += hw->mac.tx_packet_delta;
3871         hw->mac.collision_delta = rd32(E1000_COLC);
3872         adapter->stats.colc += hw->mac.collision_delta;
3873
3874         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3875         adapter->stats.rxerrc += rd32(E1000_RXERRC);
3876         adapter->stats.tncrs += rd32(E1000_TNCRS);
3877         adapter->stats.tsctc += rd32(E1000_TSCTC);
3878         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3879
3880         adapter->stats.iac += rd32(E1000_IAC);
3881         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3882         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3883         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3884         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3885         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3886         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3887         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3888         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3889
3890         /* Fill out the OS statistics structure */
3891         netdev->stats.multicast = adapter->stats.mprc;
3892         netdev->stats.collisions = adapter->stats.colc;
3893
3894         /* Rx Errors */
3895
3896         /* RLEC on some newer hardware can be incorrect so build
3897          * our own version based on RUC and ROC */
3898         netdev->stats.rx_errors = adapter->stats.rxerrc +
3899                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3900                 adapter->stats.ruc + adapter->stats.roc +
3901                 adapter->stats.cexterr;
3902         netdev->stats.rx_length_errors = adapter->stats.ruc +
3903                                               adapter->stats.roc;
3904         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3905         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3906         netdev->stats.rx_missed_errors = adapter->stats.mpc;
3907
3908         /* Tx Errors */
3909         netdev->stats.tx_errors = adapter->stats.ecol +
3910                                        adapter->stats.latecol;
3911         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3912         netdev->stats.tx_window_errors = adapter->stats.latecol;
3913         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3914
3915         /* Tx Dropped needs to be maintained elsewhere */
3916
3917         /* Phy Stats */
3918         if (hw->phy.media_type == e1000_media_type_copper) {
3919                 if ((adapter->link_speed == SPEED_1000) &&
3920                    (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3921                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3922                         adapter->phy_stats.idle_errors += phy_tmp;
3923                 }
3924         }
3925
3926         /* Management Stats */
3927         adapter->stats.mgptc += rd32(E1000_MGTPTC);
3928         adapter->stats.mgprc += rd32(E1000_MGTPRC);
3929         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3930 }
3931
3932 static irqreturn_t igb_msix_other(int irq, void *data)
3933 {
3934         struct igb_adapter *adapter = data;
3935         struct e1000_hw *hw = &adapter->hw;
3936         u32 icr = rd32(E1000_ICR);
3937         /* reading ICR causes bit 31 of EICR to be cleared */
3938
3939         if (icr & E1000_ICR_DOUTSYNC) {
3940                 /* HW is reporting DMA is out of sync */
3941                 adapter->stats.doosync++;
3942         }
3943
3944         /* Check for a mailbox event */
3945         if (icr & E1000_ICR_VMMB)
3946                 igb_msg_task(adapter);
3947
3948         if (icr & E1000_ICR_LSC) {
3949                 hw->mac.get_link_status = 1;
3950                 /* guard against interrupt when we're going down */
3951                 if (!test_bit(__IGB_DOWN, &adapter->state))
3952                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3953         }
3954
3955         wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_VMMB);
3956         wr32(E1000_EIMS, adapter->eims_other);
3957
3958         return IRQ_HANDLED;
3959 }
3960
3961 static void igb_write_itr(struct igb_q_vector *q_vector)
3962 {
3963         u32 itr_val = q_vector->itr_val & 0x7FFC;
3964
3965         if (!q_vector->set_itr)
3966                 return;
3967
3968         if (!itr_val)
3969                 itr_val = 0x4;
3970
3971         if (q_vector->itr_shift)
3972                 itr_val |= itr_val << q_vector->itr_shift;
3973         else
3974                 itr_val |= 0x8000000;
3975
3976         writel(itr_val, q_vector->itr_register);
3977         q_vector->set_itr = 0;
3978 }
3979
3980 static irqreturn_t igb_msix_ring(int irq, void *data)
3981 {
3982         struct igb_q_vector *q_vector = data;
3983
3984         /* Write the ITR value calculated from the previous interrupt. */
3985         igb_write_itr(q_vector);
3986
3987         napi_schedule(&q_vector->napi);
3988
3989         return IRQ_HANDLED;
3990 }
3991
3992 #ifdef CONFIG_IGB_DCA
3993 static void igb_update_dca(struct igb_q_vector *q_vector)
3994 {
3995         struct igb_adapter *adapter = q_vector->adapter;
3996         struct e1000_hw *hw = &adapter->hw;
3997         int cpu = get_cpu();
3998
3999         if (q_vector->cpu == cpu)
4000                 goto out_no_update;
4001
4002         if (q_vector->tx_ring) {
4003                 int q = q_vector->tx_ring->reg_idx;
4004                 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4005                 if (hw->mac.type == e1000_82575) {
4006                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4007                         dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4008                 } else {
4009                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4010                         dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4011                                       E1000_DCA_TXCTRL_CPUID_SHIFT;
4012                 }
4013                 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4014                 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4015         }
4016         if (q_vector->rx_ring) {
4017                 int q = q_vector->rx_ring->reg_idx;
4018                 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4019                 if (hw->mac.type == e1000_82575) {
4020                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
4021                         dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4022                 } else {
4023                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4024                         dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4025                                       E1000_DCA_RXCTRL_CPUID_SHIFT;
4026                 }
4027                 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4028                 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4029                 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4030                 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
4031         }
4032         q_vector->cpu = cpu;
4033 out_no_update:
4034         put_cpu();
4035 }
4036
4037 static void igb_setup_dca(struct igb_adapter *adapter)
4038 {
4039         struct e1000_hw *hw = &adapter->hw;
4040         int i;
4041
4042         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
4043                 return;
4044
4045         /* Always use CB2 mode, difference is masked in the CB driver. */
4046         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4047
4048         for (i = 0; i < adapter->num_q_vectors; i++) {
4049                 struct igb_q_vector *q_vector = adapter->q_vector[i];
4050                 q_vector->cpu = -1;
4051                 igb_update_dca(q_vector);
4052         }
4053 }
4054
4055 static int __igb_notify_dca(struct device *dev, void *data)
4056 {
4057         struct net_device *netdev = dev_get_drvdata(dev);
4058         struct igb_adapter *adapter = netdev_priv(netdev);
4059         struct e1000_hw *hw = &adapter->hw;
4060         unsigned long event = *(unsigned long *)data;
4061
4062         switch (event) {
4063         case DCA_PROVIDER_ADD:
4064                 /* if already enabled, don't do it again */
4065                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
4066                         break;
4067                 /* Always use CB2 mode, difference is masked
4068                  * in the CB driver. */
4069                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4070                 if (dca_add_requester(dev) == 0) {
4071                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
4072                         dev_info(&adapter->pdev->dev, "DCA enabled\n");
4073                         igb_setup_dca(adapter);
4074                         break;
4075                 }
4076                 /* Fall Through since DCA is disabled. */
4077         case DCA_PROVIDER_REMOVE:
4078                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
4079                         /* without this a class_device is left
4080                          * hanging around in the sysfs model */
4081                         dca_remove_requester(dev);
4082                         dev_info(&adapter->pdev->dev, "DCA disabled\n");
4083                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
4084                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
4085                 }
4086                 break;
4087         }
4088
4089         return 0;
4090 }
4091
4092 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4093                           void *p)
4094 {
4095         int ret_val;
4096
4097         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4098                                          __igb_notify_dca);
4099
4100         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4101 }
4102 #endif /* CONFIG_IGB_DCA */
4103
4104 static void igb_ping_all_vfs(struct igb_adapter *adapter)
4105 {
4106         struct e1000_hw *hw = &adapter->hw;
4107         u32 ping;
4108         int i;
4109
4110         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4111                 ping = E1000_PF_CONTROL_MSG;
4112                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4113                         ping |= E1000_VT_MSGTYPE_CTS;
4114                 igb_write_mbx(hw, &ping, 1, i);
4115         }
4116 }
4117
4118 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4119 {
4120         struct e1000_hw *hw = &adapter->hw;
4121         u32 vmolr = rd32(E1000_VMOLR(vf));
4122         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4123
4124         vf_data->flags |= ~(IGB_VF_FLAG_UNI_PROMISC |
4125                             IGB_VF_FLAG_MULTI_PROMISC);
4126         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4127
4128         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4129                 vmolr |= E1000_VMOLR_MPME;
4130                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4131         } else {
4132                 /*
4133                  * if we have hashes and we are clearing a multicast promisc
4134                  * flag we need to write the hashes to the MTA as this step
4135                  * was previously skipped
4136                  */
4137                 if (vf_data->num_vf_mc_hashes > 30) {
4138                         vmolr |= E1000_VMOLR_MPME;
4139                 } else if (vf_data->num_vf_mc_hashes) {
4140                         int j;
4141                         vmolr |= E1000_VMOLR_ROMPE;
4142                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4143                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4144                 }
4145         }
4146
4147         wr32(E1000_VMOLR(vf), vmolr);
4148
4149         /* there are flags left unprocessed, likely not supported */
4150         if (*msgbuf & E1000_VT_MSGINFO_MASK)
4151                 return -EINVAL;
4152
4153         return 0;
4154
4155 }
4156
4157 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4158                                   u32 *msgbuf, u32 vf)
4159 {
4160         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4161         u16 *hash_list = (u16 *)&msgbuf[1];
4162         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4163         int i;
4164
4165         /* salt away the number of multicast addresses assigned
4166          * to this VF for later use to restore when the PF multi cast
4167          * list changes
4168          */
4169         vf_data->num_vf_mc_hashes = n;
4170
4171         /* only up to 30 hash values supported */
4172         if (n > 30)
4173                 n = 30;
4174
4175         /* store the hashes for later use */
4176         for (i = 0; i < n; i++)
4177                 vf_data->vf_mc_hashes[i] = hash_list[i];
4178
4179         /* Flush and reset the mta with the new values */
4180         igb_set_rx_mode(adapter->netdev);
4181
4182         return 0;
4183 }
4184
4185 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4186 {
4187         struct e1000_hw *hw = &adapter->hw;
4188         struct vf_data_storage *vf_data;
4189         int i, j;
4190
4191         for (i = 0; i < adapter->vfs_allocated_count; i++) {
4192                 u32 vmolr = rd32(E1000_VMOLR(i));
4193                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4194
4195                 vf_data = &adapter->vf_data[i];
4196
4197                 if ((vf_data->num_vf_mc_hashes > 30) ||
4198                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4199                         vmolr |= E1000_VMOLR_MPME;
4200                 } else if (vf_data->num_vf_mc_hashes) {
4201                         vmolr |= E1000_VMOLR_ROMPE;
4202                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4203                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4204                 }
4205                 wr32(E1000_VMOLR(i), vmolr);
4206         }
4207 }
4208
4209 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4210 {
4211         struct e1000_hw *hw = &adapter->hw;
4212         u32 pool_mask, reg, vid;
4213         int i;
4214
4215         pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4216
4217         /* Find the vlan filter for this id */
4218         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4219                 reg = rd32(E1000_VLVF(i));
4220
4221                 /* remove the vf from the pool */
4222                 reg &= ~pool_mask;
4223
4224                 /* if pool is empty then remove entry from vfta */
4225                 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4226                     (reg & E1000_VLVF_VLANID_ENABLE)) {
4227                         reg = 0;
4228                         vid = reg & E1000_VLVF_VLANID_MASK;
4229                         igb_vfta_set(hw, vid, false);
4230                 }
4231
4232                 wr32(E1000_VLVF(i), reg);
4233         }
4234
4235         adapter->vf_data[vf].vlans_enabled = 0;
4236 }
4237
4238 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4239 {
4240         struct e1000_hw *hw = &adapter->hw;
4241         u32 reg, i;
4242
4243         /* The vlvf table only exists on 82576 hardware and newer */
4244         if (hw->mac.type < e1000_82576)
4245                 return -1;
4246
4247         /* we only need to do this if VMDq is enabled */
4248         if (!adapter->vfs_allocated_count)
4249                 return -1;
4250
4251         /* Find the vlan filter for this id */
4252         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4253                 reg = rd32(E1000_VLVF(i));
4254                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
4255                     vid == (reg & E1000_VLVF_VLANID_MASK))
4256                         break;
4257         }
4258
4259         if (add) {
4260                 if (i == E1000_VLVF_ARRAY_SIZE) {
4261                         /* Did not find a matching VLAN ID entry that was
4262                          * enabled.  Search for a free filter entry, i.e.
4263                          * one without the enable bit set
4264                          */
4265                         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4266                                 reg = rd32(E1000_VLVF(i));
4267                                 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4268                                         break;
4269                         }
4270                 }
4271                 if (i < E1000_VLVF_ARRAY_SIZE) {
4272                         /* Found an enabled/available entry */
4273                         reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4274
4275                         /* if !enabled we need to set this up in vfta */
4276                         if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
4277                                 /* add VID to filter table */
4278                                 igb_vfta_set(hw, vid, true);
4279                                 reg |= E1000_VLVF_VLANID_ENABLE;
4280                         }
4281                         reg &= ~E1000_VLVF_VLANID_MASK;
4282                         reg |= vid;
4283                         wr32(E1000_VLVF(i), reg);
4284
4285                         /* do not modify RLPML for PF devices */
4286                         if (vf >= adapter->vfs_allocated_count)
4287                                 return 0;
4288
4289                         if (!adapter->vf_data[vf].vlans_enabled) {
4290                                 u32 size;
4291                                 reg = rd32(E1000_VMOLR(vf));
4292                                 size = reg & E1000_VMOLR_RLPML_MASK;
4293                                 size += 4;
4294                                 reg &= ~E1000_VMOLR_RLPML_MASK;
4295                                 reg |= size;
4296                                 wr32(E1000_VMOLR(vf), reg);
4297                         }
4298
4299                         adapter->vf_data[vf].vlans_enabled++;
4300                         return 0;
4301                 }
4302         } else {
4303                 if (i < E1000_VLVF_ARRAY_SIZE) {
4304                         /* remove vf from the pool */
4305                         reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4306                         /* if pool is empty then remove entry from vfta */
4307                         if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4308                                 reg = 0;
4309                                 igb_vfta_set(hw, vid, false);
4310                         }
4311                         wr32(E1000_VLVF(i), reg);
4312
4313                         /* do not modify RLPML for PF devices */
4314                         if (vf >= adapter->vfs_allocated_count)
4315                                 return 0;
4316
4317                         adapter->vf_data[vf].vlans_enabled--;
4318                         if (!adapter->vf_data[vf].vlans_enabled) {
4319                                 u32 size;
4320                                 reg = rd32(E1000_VMOLR(vf));
4321                                 size = reg & E1000_VMOLR_RLPML_MASK;
4322                                 size -= 4;
4323                                 reg &= ~E1000_VMOLR_RLPML_MASK;
4324                                 reg |= size;
4325                                 wr32(E1000_VMOLR(vf), reg);
4326                         }
4327                         return 0;
4328                 }
4329         }
4330         return -1;
4331 }
4332
4333 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4334 {
4335         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4336         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4337
4338         return igb_vlvf_set(adapter, vid, add, vf);
4339 }
4340
4341 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4342 {
4343         /* clear all flags */
4344         adapter->vf_data[vf].flags = 0;
4345         adapter->vf_data[vf].last_nack = jiffies;
4346
4347         /* reset offloads to defaults */
4348         igb_set_vmolr(adapter, vf);
4349
4350         /* reset vlans for device */
4351         igb_clear_vf_vfta(adapter, vf);
4352
4353         /* reset multicast table array for vf */
4354         adapter->vf_data[vf].num_vf_mc_hashes = 0;
4355
4356         /* Flush and reset the mta with the new values */
4357         igb_set_rx_mode(adapter->netdev);
4358 }
4359
4360 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4361 {
4362         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4363
4364         /* generate a new mac address as we were hotplug removed/added */
4365         random_ether_addr(vf_mac);
4366
4367         /* process remaining reset events */
4368         igb_vf_reset(adapter, vf);
4369 }
4370
4371 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4372 {
4373         struct e1000_hw *hw = &adapter->hw;
4374         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4375         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4376         u32 reg, msgbuf[3];
4377         u8 *addr = (u8 *)(&msgbuf[1]);
4378
4379         /* process all the same items cleared in a function level reset */
4380         igb_vf_reset(adapter, vf);
4381
4382         /* set vf mac address */
4383         igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4384
4385         /* enable transmit and receive for vf */
4386         reg = rd32(E1000_VFTE);
4387         wr32(E1000_VFTE, reg | (1 << vf));
4388         reg = rd32(E1000_VFRE);
4389         wr32(E1000_VFRE, reg | (1 << vf));
4390
4391         adapter->vf_data[vf].flags = IGB_VF_FLAG_CTS;
4392
4393         /* reply to reset with ack and vf mac address */
4394         msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4395         memcpy(addr, vf_mac, 6);
4396         igb_write_mbx(hw, msgbuf, 3, vf);
4397 }
4398
4399 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4400 {
4401         unsigned char *addr = (char *)&msg[1];
4402         int err = -1;
4403
4404         if (is_valid_ether_addr(addr))
4405                 err = igb_set_vf_mac(adapter, vf, addr);
4406
4407         return err;
4408 }
4409
4410 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4411 {
4412         struct e1000_hw *hw = &adapter->hw;
4413         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4414         u32 msg = E1000_VT_MSGTYPE_NACK;
4415
4416         /* if device isn't clear to send it shouldn't be reading either */
4417         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
4418             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4419                 igb_write_mbx(hw, &msg, 1, vf);
4420                 vf_data->last_nack = jiffies;
4421         }
4422 }
4423
4424 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4425 {
4426         struct pci_dev *pdev = adapter->pdev;
4427         u32 msgbuf[E1000_VFMAILBOX_SIZE];
4428         struct e1000_hw *hw = &adapter->hw;
4429         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4430         s32 retval;
4431
4432         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4433
4434         if (retval)
4435                 dev_err(&pdev->dev, "Error receiving message from VF\n");
4436
4437         /* this is a message we already processed, do nothing */
4438         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4439                 return;
4440
4441         /*
4442          * until the vf completes a reset it should not be
4443          * allowed to start any configuration.
4444          */
4445
4446         if (msgbuf[0] == E1000_VF_RESET) {
4447                 igb_vf_reset_msg(adapter, vf);
4448                 return;
4449         }
4450
4451         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
4452                 msgbuf[0] = E1000_VT_MSGTYPE_NACK;
4453                 if (time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4454                         igb_write_mbx(hw, msgbuf, 1, vf);
4455                         vf_data->last_nack = jiffies;
4456                 }
4457                 return;
4458         }
4459
4460         switch ((msgbuf[0] & 0xFFFF)) {
4461         case E1000_VF_SET_MAC_ADDR:
4462                 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4463                 break;
4464         case E1000_VF_SET_PROMISC:
4465                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
4466                 break;
4467         case E1000_VF_SET_MULTICAST:
4468                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4469                 break;
4470         case E1000_VF_SET_LPE:
4471                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4472                 break;
4473         case E1000_VF_SET_VLAN:
4474                 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4475                 break;
4476         default:
4477                 dev_err(&adapter->pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4478                 retval = -1;
4479                 break;
4480         }
4481
4482         /* notify the VF of the results of what it sent us */
4483         if (retval)
4484                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4485         else
4486                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4487
4488         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4489
4490         igb_write_mbx(hw, msgbuf, 1, vf);
4491 }
4492
4493 static void igb_msg_task(struct igb_adapter *adapter)
4494 {
4495         struct e1000_hw *hw = &adapter->hw;
4496         u32 vf;
4497
4498         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4499                 /* process any reset requests */
4500                 if (!igb_check_for_rst(hw, vf))
4501                         igb_vf_reset_event(adapter, vf);
4502
4503                 /* process any messages pending */
4504                 if (!igb_check_for_msg(hw, vf))
4505                         igb_rcv_msg_from_vf(adapter, vf);
4506
4507                 /* process any acks */
4508                 if (!igb_check_for_ack(hw, vf))
4509                         igb_rcv_ack_from_vf(adapter, vf);
4510         }
4511 }
4512
4513 /**
4514  *  igb_set_uta - Set unicast filter table address
4515  *  @adapter: board private structure
4516  *
4517  *  The unicast table address is a register array of 32-bit registers.
4518  *  The table is meant to be used in a way similar to how the MTA is used
4519  *  however due to certain limitations in the hardware it is necessary to
4520  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
4521  *  enable bit to allow vlan tag stripping when promiscous mode is enabled
4522  **/
4523 static void igb_set_uta(struct igb_adapter *adapter)
4524 {
4525         struct e1000_hw *hw = &adapter->hw;
4526         int i;
4527
4528         /* The UTA table only exists on 82576 hardware and newer */
4529         if (hw->mac.type < e1000_82576)
4530                 return;
4531
4532         /* we only need to do this if VMDq is enabled */
4533         if (!adapter->vfs_allocated_count)
4534                 return;
4535
4536         for (i = 0; i < hw->mac.uta_reg_count; i++)
4537                 array_wr32(E1000_UTA, i, ~0);
4538 }
4539
4540 /**
4541  * igb_intr_msi - Interrupt Handler
4542  * @irq: interrupt number
4543  * @data: pointer to a network interface device structure
4544  **/
4545 static irqreturn_t igb_intr_msi(int irq, void *data)
4546 {
4547         struct igb_adapter *adapter = data;
4548         struct igb_q_vector *q_vector = adapter->q_vector[0];
4549         struct e1000_hw *hw = &adapter->hw;
4550         /* read ICR disables interrupts using IAM */
4551         u32 icr = rd32(E1000_ICR);
4552
4553         igb_write_itr(q_vector);
4554
4555         if (icr & E1000_ICR_DOUTSYNC) {
4556                 /* HW is reporting DMA is out of sync */
4557                 adapter->stats.doosync++;
4558         }
4559
4560         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4561                 hw->mac.get_link_status = 1;
4562                 if (!test_bit(__IGB_DOWN, &adapter->state))
4563                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
4564         }
4565
4566         napi_schedule(&q_vector->napi);
4567
4568         return IRQ_HANDLED;
4569 }
4570
4571 /**
4572  * igb_intr - Legacy Interrupt Handler
4573  * @irq: interrupt number
4574  * @data: pointer to a network interface device structure
4575  **/
4576 static irqreturn_t igb_intr(int irq, void *data)
4577 {
4578         struct igb_adapter *adapter = data;
4579         struct igb_q_vector *q_vector = adapter->q_vector[0];
4580         struct e1000_hw *hw = &adapter->hw;
4581         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
4582          * need for the IMC write */
4583         u32 icr = rd32(E1000_ICR);
4584         if (!icr)
4585                 return IRQ_NONE;  /* Not our interrupt */
4586
4587         igb_write_itr(q_vector);
4588
4589         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4590          * not set, then the adapter didn't send an interrupt */
4591         if (!(icr & E1000_ICR_INT_ASSERTED))
4592                 return IRQ_NONE;
4593
4594         if (icr & E1000_ICR_DOUTSYNC) {
4595                 /* HW is reporting DMA is out of sync */
4596                 adapter->stats.doosync++;
4597         }
4598
4599         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4600                 hw->mac.get_link_status = 1;
4601                 /* guard against interrupt when we're going down */
4602                 if (!test_bit(__IGB_DOWN, &adapter->state))
4603                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
4604         }
4605
4606         napi_schedule(&q_vector->napi);
4607
4608         return IRQ_HANDLED;
4609 }
4610
4611 static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
4612 {
4613         struct igb_adapter *adapter = q_vector->adapter;
4614         struct e1000_hw *hw = &adapter->hw;
4615
4616         if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
4617             (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
4618                 if (!adapter->msix_entries)
4619                         igb_set_itr(adapter);
4620                 else
4621                         igb_update_ring_itr(q_vector);
4622         }
4623
4624         if (!test_bit(__IGB_DOWN, &adapter->state)) {
4625                 if (adapter->msix_entries)
4626                         wr32(E1000_EIMS, q_vector->eims_value);
4627                 else
4628                         igb_irq_enable(adapter);
4629         }
4630 }
4631
4632 /**
4633  * igb_poll - NAPI Rx polling callback
4634  * @napi: napi polling structure
4635  * @budget: count of how many packets we should handle
4636  **/
4637 static int igb_poll(struct napi_struct *napi, int budget)
4638 {
4639         struct igb_q_vector *q_vector = container_of(napi,
4640                                                      struct igb_q_vector,
4641                                                      napi);
4642         int tx_clean_complete = 1, work_done = 0;
4643
4644 #ifdef CONFIG_IGB_DCA
4645         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
4646                 igb_update_dca(q_vector);
4647 #endif
4648         if (q_vector->tx_ring)
4649                 tx_clean_complete = igb_clean_tx_irq(q_vector);
4650
4651         if (q_vector->rx_ring)
4652                 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
4653
4654         if (!tx_clean_complete)
4655                 work_done = budget;
4656
4657         /* If not enough Rx work done, exit the polling mode */
4658         if (work_done < budget) {
4659                 napi_complete(napi);
4660                 igb_ring_irq_enable(q_vector);
4661         }
4662
4663         return work_done;
4664 }
4665
4666 /**
4667  * igb_systim_to_hwtstamp - convert system time value to hw timestamp
4668  * @adapter: board private structure
4669  * @shhwtstamps: timestamp structure to update
4670  * @regval: unsigned 64bit system time value.
4671  *
4672  * We need to convert the system time value stored in the RX/TXSTMP registers
4673  * into a hwtstamp which can be used by the upper level timestamping functions
4674  */
4675 static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
4676                                    struct skb_shared_hwtstamps *shhwtstamps,
4677                                    u64 regval)
4678 {
4679         u64 ns;
4680
4681         ns = timecounter_cyc2time(&adapter->clock, regval);
4682         timecompare_update(&adapter->compare, ns);
4683         memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
4684         shhwtstamps->hwtstamp = ns_to_ktime(ns);
4685         shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
4686 }
4687
4688 /**
4689  * igb_tx_hwtstamp - utility function which checks for TX time stamp
4690  * @q_vector: pointer to q_vector containing needed info
4691  * @skb: packet that was just sent
4692  *
4693  * If we were asked to do hardware stamping and such a time stamp is
4694  * available, then it must have been for this skb here because we only
4695  * allow only one such packet into the queue.
4696  */
4697 static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
4698 {
4699         struct igb_adapter *adapter = q_vector->adapter;
4700         union skb_shared_tx *shtx = skb_tx(skb);
4701         struct e1000_hw *hw = &adapter->hw;
4702         struct skb_shared_hwtstamps shhwtstamps;
4703         u64 regval;
4704
4705         /* if skb does not support hw timestamp or TX stamp not valid exit */
4706         if (likely(!shtx->hardware) ||
4707             !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
4708                 return;
4709
4710         regval = rd32(E1000_TXSTMPL);
4711         regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4712
4713         igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
4714         skb_tstamp_tx(skb, &shhwtstamps);
4715 }
4716
4717 /**
4718  * igb_clean_tx_irq - Reclaim resources after transmit completes
4719  * @q_vector: pointer to q_vector containing needed info
4720  * returns true if ring is completely cleaned
4721  **/
4722 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
4723 {
4724         struct igb_adapter *adapter = q_vector->adapter;
4725         struct igb_ring *tx_ring = q_vector->tx_ring;
4726         struct net_device *netdev = tx_ring->netdev;
4727         struct e1000_hw *hw = &adapter->hw;
4728         struct igb_buffer *buffer_info;
4729         struct sk_buff *skb;
4730         union e1000_adv_tx_desc *tx_desc, *eop_desc;
4731         unsigned int total_bytes = 0, total_packets = 0;
4732         unsigned int i, eop, count = 0;
4733         bool cleaned = false;
4734
4735         i = tx_ring->next_to_clean;
4736         eop = tx_ring->buffer_info[i].next_to_watch;
4737         eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4738
4739         while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4740                (count < tx_ring->count)) {
4741                 for (cleaned = false; !cleaned; count++) {
4742                         tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4743                         buffer_info = &tx_ring->buffer_info[i];
4744                         cleaned = (i == eop);
4745                         skb = buffer_info->skb;
4746
4747                         if (skb) {
4748                                 unsigned int segs, bytecount;
4749                                 /* gso_segs is currently only valid for tcp */
4750                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
4751                                 /* multiply data chunks by size of headers */
4752                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
4753                                             skb->len;
4754                                 total_packets += segs;
4755                                 total_bytes += bytecount;
4756
4757                                 igb_tx_hwtstamp(q_vector, skb);
4758                         }
4759
4760                         igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
4761                         tx_desc->wb.status = 0;
4762
4763                         i++;
4764                         if (i == tx_ring->count)
4765                                 i = 0;
4766                 }
4767                 eop = tx_ring->buffer_info[i].next_to_watch;
4768                 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4769         }
4770
4771         tx_ring->next_to_clean = i;
4772
4773         if (unlikely(count &&
4774                      netif_carrier_ok(netdev) &&
4775                      igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4776                 /* Make sure that anybody stopping the queue after this
4777                  * sees the new next_to_clean.
4778                  */
4779                 smp_mb();
4780                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
4781                     !(test_bit(__IGB_DOWN, &adapter->state))) {
4782                         netif_wake_subqueue(netdev, tx_ring->queue_index);
4783                         tx_ring->tx_stats.restart_queue++;
4784                 }
4785         }
4786
4787         if (tx_ring->detect_tx_hung) {
4788                 /* Detect a transmit hang in hardware, this serializes the
4789                  * check with the clearing of time_stamp and movement of i */
4790                 tx_ring->detect_tx_hung = false;
4791                 if (tx_ring->buffer_info[i].time_stamp &&
4792                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
4793                                (adapter->tx_timeout_factor * HZ))
4794                     && !(rd32(E1000_STATUS) &
4795                          E1000_STATUS_TXOFF)) {
4796
4797                         /* detected Tx unit hang */
4798                         dev_err(&tx_ring->pdev->dev,
4799                                 "Detected Tx Unit Hang\n"
4800                                 "  Tx Queue             <%d>\n"
4801                                 "  TDH                  <%x>\n"
4802                                 "  TDT                  <%x>\n"
4803                                 "  next_to_use          <%x>\n"
4804                                 "  next_to_clean        <%x>\n"
4805                                 "buffer_info[next_to_clean]\n"
4806                                 "  time_stamp           <%lx>\n"
4807                                 "  next_to_watch        <%x>\n"
4808                                 "  jiffies              <%lx>\n"
4809                                 "  desc.status          <%x>\n",
4810                                 tx_ring->queue_index,
4811                                 readl(tx_ring->head),
4812                                 readl(tx_ring->tail),
4813                                 tx_ring->next_to_use,
4814                                 tx_ring->next_to_clean,
4815                                 tx_ring->buffer_info[eop].time_stamp,
4816                                 eop,
4817                                 jiffies,
4818                                 eop_desc->wb.status);
4819                         netif_stop_subqueue(netdev, tx_ring->queue_index);
4820                 }
4821         }
4822         tx_ring->total_bytes += total_bytes;
4823         tx_ring->total_packets += total_packets;
4824         tx_ring->tx_stats.bytes += total_bytes;
4825         tx_ring->tx_stats.packets += total_packets;
4826         return (count < tx_ring->count);
4827 }
4828
4829 /**
4830  * igb_receive_skb - helper function to handle rx indications
4831  * @q_vector: structure containing interrupt and ring information
4832  * @skb: packet to send up
4833  * @vlan_tag: vlan tag for packet
4834  **/
4835 static void igb_receive_skb(struct igb_q_vector *q_vector,
4836                             struct sk_buff *skb,
4837                             u16 vlan_tag)
4838 {
4839         struct igb_adapter *adapter = q_vector->adapter;
4840
4841         if (vlan_tag)
4842                 vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
4843                                  vlan_tag, skb);
4844         else
4845                 napi_gro_receive(&q_vector->napi, skb);
4846 }
4847
4848 static inline void igb_rx_checksum_adv(struct igb_ring *ring,
4849                                        u32 status_err, struct sk_buff *skb)
4850 {
4851         skb->ip_summed = CHECKSUM_NONE;
4852
4853         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
4854         if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
4855              (status_err & E1000_RXD_STAT_IXSM))
4856                 return;
4857
4858         /* TCP/UDP checksum error bit is set */
4859         if (status_err &
4860             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
4861                 /*
4862                  * work around errata with sctp packets where the TCPE aka
4863                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
4864                  * packets, (aka let the stack check the crc32c)
4865                  */
4866                 if ((skb->len == 60) &&
4867                     (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM))
4868                         ring->rx_stats.csum_err++;
4869
4870                 /* let the stack verify checksum errors */
4871                 return;
4872         }
4873         /* It must be a TCP or UDP packet with a valid checksum */
4874         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
4875                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4876
4877         dev_dbg(&ring->pdev->dev, "cksum success: bits %08X\n", status_err);
4878 }
4879
4880 static inline void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
4881                                    struct sk_buff *skb)
4882 {
4883         struct igb_adapter *adapter = q_vector->adapter;
4884         struct e1000_hw *hw = &adapter->hw;
4885         u64 regval;
4886
4887         /*
4888          * If this bit is set, then the RX registers contain the time stamp. No
4889          * other packet will be time stamped until we read these registers, so
4890          * read the registers to make them available again. Because only one
4891          * packet can be time stamped at a time, we know that the register
4892          * values must belong to this one here and therefore we don't need to
4893          * compare any of the additional attributes stored for it.
4894          *
4895          * If nothing went wrong, then it should have a skb_shared_tx that we
4896          * can turn into a skb_shared_hwtstamps.
4897          */
4898         if (likely(!(staterr & E1000_RXDADV_STAT_TS)))
4899                 return;
4900         if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
4901                 return;
4902
4903         regval = rd32(E1000_RXSTMPL);
4904         regval |= (u64)rd32(E1000_RXSTMPH) << 32;
4905
4906         igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
4907 }
4908 static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
4909                                union e1000_adv_rx_desc *rx_desc)
4910 {
4911         /* HW will not DMA in data larger than the given buffer, even if it
4912          * parses the (NFS, of course) header to be larger.  In that case, it
4913          * fills the header buffer and spills the rest into the page.
4914          */
4915         u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
4916                    E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4917         if (hlen > rx_ring->rx_buffer_len)
4918                 hlen = rx_ring->rx_buffer_len;
4919         return hlen;
4920 }
4921
4922 static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
4923                                  int *work_done, int budget)
4924 {
4925         struct igb_ring *rx_ring = q_vector->rx_ring;
4926         struct net_device *netdev = rx_ring->netdev;
4927         struct pci_dev *pdev = rx_ring->pdev;
4928         union e1000_adv_rx_desc *rx_desc , *next_rxd;
4929         struct igb_buffer *buffer_info , *next_buffer;
4930         struct sk_buff *skb;
4931         bool cleaned = false;
4932         int cleaned_count = 0;
4933         unsigned int total_bytes = 0, total_packets = 0;
4934         unsigned int i;
4935         u32 staterr;
4936         u16 length;
4937         u16 vlan_tag;
4938
4939         i = rx_ring->next_to_clean;
4940         buffer_info = &rx_ring->buffer_info[i];
4941         rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4942         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4943
4944         while (staterr & E1000_RXD_STAT_DD) {
4945                 if (*work_done >= budget)
4946                         break;
4947                 (*work_done)++;
4948
4949                 skb = buffer_info->skb;
4950                 prefetch(skb->data - NET_IP_ALIGN);
4951                 buffer_info->skb = NULL;
4952
4953                 i++;
4954                 if (i == rx_ring->count)
4955                         i = 0;
4956                 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
4957                 prefetch(next_rxd);
4958                 next_buffer = &rx_ring->buffer_info[i];
4959
4960                 length = le16_to_cpu(rx_desc->wb.upper.length);
4961                 cleaned = true;
4962                 cleaned_count++;
4963
4964                 if (buffer_info->dma) {
4965                         pci_unmap_single(pdev, buffer_info->dma,
4966                                          rx_ring->rx_buffer_len,
4967                                          PCI_DMA_FROMDEVICE);
4968                         buffer_info->dma = 0;
4969                         if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
4970                                 skb_put(skb, length);
4971                                 goto send_up;
4972                         }
4973                         skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
4974                 }
4975
4976                 if (length) {
4977                         pci_unmap_page(pdev, buffer_info->page_dma,
4978                                        PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
4979                         buffer_info->page_dma = 0;
4980
4981                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
4982                                                 buffer_info->page,
4983                                                 buffer_info->page_offset,
4984                                                 length);
4985
4986                         if (page_count(buffer_info->page) != 1)
4987                                 buffer_info->page = NULL;
4988                         else
4989                                 get_page(buffer_info->page);
4990
4991                         skb->len += length;
4992                         skb->data_len += length;
4993
4994                         skb->truesize += length;
4995                 }
4996
4997                 if (!(staterr & E1000_RXD_STAT_EOP)) {
4998                         buffer_info->skb = next_buffer->skb;
4999                         buffer_info->dma = next_buffer->dma;
5000                         next_buffer->skb = skb;
5001                         next_buffer->dma = 0;
5002                         goto next_desc;
5003                 }
5004 send_up:
5005                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5006                         dev_kfree_skb_irq(skb);
5007                         goto next_desc;
5008                 }
5009
5010                 igb_rx_hwtstamp(q_vector, staterr, skb);
5011                 total_bytes += skb->len;
5012                 total_packets++;
5013
5014                 igb_rx_checksum_adv(rx_ring, staterr, skb);
5015
5016                 skb->protocol = eth_type_trans(skb, netdev);
5017                 skb_record_rx_queue(skb, rx_ring->queue_index);
5018
5019                 vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
5020                             le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
5021
5022                 igb_receive_skb(q_vector, skb, vlan_tag);
5023
5024 next_desc:
5025                 rx_desc->wb.upper.status_error = 0;
5026
5027                 /* return some buffers to hardware, one at a time is too slow */
5028                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
5029                         igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5030                         cleaned_count = 0;
5031                 }
5032
5033                 /* use prefetched values */
5034                 rx_desc = next_rxd;
5035                 buffer_info = next_buffer;
5036                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5037         }
5038
5039         rx_ring->next_to_clean = i;
5040         cleaned_count = igb_desc_unused(rx_ring);
5041
5042         if (cleaned_count)
5043                 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5044
5045         rx_ring->total_packets += total_packets;
5046         rx_ring->total_bytes += total_bytes;
5047         rx_ring->rx_stats.packets += total_packets;
5048         rx_ring->rx_stats.bytes += total_bytes;
5049         return cleaned;
5050 }
5051
5052 /**
5053  * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5054  * @adapter: address of board private structure
5055  **/
5056 void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
5057 {
5058         struct net_device *netdev = rx_ring->netdev;
5059         union e1000_adv_rx_desc *rx_desc;
5060         struct igb_buffer *buffer_info;
5061         struct sk_buff *skb;
5062         unsigned int i;
5063         int bufsz;
5064
5065         i = rx_ring->next_to_use;
5066         buffer_info = &rx_ring->buffer_info[i];
5067
5068         bufsz = rx_ring->rx_buffer_len;
5069
5070         while (cleaned_count--) {
5071                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5072
5073                 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
5074                         if (!buffer_info->page) {
5075                                 buffer_info->page = alloc_page(GFP_ATOMIC);
5076                                 if (!buffer_info->page) {
5077                                         rx_ring->rx_stats.alloc_failed++;
5078                                         goto no_buffers;
5079                                 }
5080                                 buffer_info->page_offset = 0;
5081                         } else {
5082                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
5083                         }
5084                         buffer_info->page_dma =
5085                                 pci_map_page(rx_ring->pdev, buffer_info->page,
5086                                              buffer_info->page_offset,
5087                                              PAGE_SIZE / 2,
5088                                              PCI_DMA_FROMDEVICE);
5089                 }
5090
5091                 if (!buffer_info->skb) {
5092                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
5093                         if (!skb) {
5094                                 rx_ring->rx_stats.alloc_failed++;
5095                                 goto no_buffers;
5096                         }
5097
5098                         buffer_info->skb = skb;
5099                         buffer_info->dma = pci_map_single(rx_ring->pdev,
5100                                                           skb->data,
5101                                                           bufsz,
5102                                                           PCI_DMA_FROMDEVICE);
5103                 }
5104                 /* Refresh the desc even if buffer_addrs didn't change because
5105                  * each write-back erases this info. */
5106                 if (bufsz < IGB_RXBUFFER_1024) {
5107                         rx_desc->read.pkt_addr =
5108                              cpu_to_le64(buffer_info->page_dma);
5109                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
5110                 } else {
5111                         rx_desc->read.pkt_addr =
5112                              cpu_to_le64(buffer_info->dma);
5113                         rx_desc->read.hdr_addr = 0;
5114                 }
5115
5116                 i++;
5117                 if (i == rx_ring->count)
5118                         i = 0;
5119                 buffer_info = &rx_ring->buffer_info[i];
5120         }
5121
5122 no_buffers:
5123         if (rx_ring->next_to_use != i) {
5124                 rx_ring->next_to_use = i;
5125                 if (i == 0)
5126                         i = (rx_ring->count - 1);
5127                 else
5128                         i--;
5129
5130                 /* Force memory writes to complete before letting h/w
5131                  * know there are new descriptors to fetch.  (Only
5132                  * applicable for weak-ordered memory model archs,
5133                  * such as IA-64). */
5134                 wmb();
5135                 writel(i, rx_ring->tail);
5136         }
5137 }
5138
5139 /**
5140  * igb_mii_ioctl -
5141  * @netdev:
5142  * @ifreq:
5143  * @cmd:
5144  **/
5145 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5146 {
5147         struct igb_adapter *adapter = netdev_priv(netdev);
5148         struct mii_ioctl_data *data = if_mii(ifr);
5149
5150         if (adapter->hw.phy.media_type != e1000_media_type_copper)
5151                 return -EOPNOTSUPP;
5152
5153         switch (cmd) {
5154         case SIOCGMIIPHY:
5155                 data->phy_id = adapter->hw.phy.addr;
5156                 break;
5157         case SIOCGMIIREG:
5158                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
5159                                      &data->val_out))
5160                         return -EIO;
5161                 break;
5162         case SIOCSMIIREG:
5163         default:
5164                 return -EOPNOTSUPP;
5165         }
5166         return 0;
5167 }
5168
5169 /**
5170  * igb_hwtstamp_ioctl - control hardware time stamping
5171  * @netdev:
5172  * @ifreq:
5173  * @cmd:
5174  *
5175  * Outgoing time stamping can be enabled and disabled. Play nice and
5176  * disable it when requested, although it shouldn't case any overhead
5177  * when no packet needs it. At most one packet in the queue may be
5178  * marked for time stamping, otherwise it would be impossible to tell
5179  * for sure to which packet the hardware time stamp belongs.
5180  *
5181  * Incoming time stamping has to be configured via the hardware
5182  * filters. Not all combinations are supported, in particular event
5183  * type has to be specified. Matching the kind of event packet is
5184  * not supported, with the exception of "all V2 events regardless of
5185  * level 2 or 4".
5186  *
5187  **/
5188 static int igb_hwtstamp_ioctl(struct net_device *netdev,
5189                               struct ifreq *ifr, int cmd)
5190 {
5191         struct igb_adapter *adapter = netdev_priv(netdev);
5192         struct e1000_hw *hw = &adapter->hw;
5193         struct hwtstamp_config config;
5194         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
5195         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
5196         u32 tsync_rx_cfg = 0;
5197         bool is_l4 = false;
5198         bool is_l2 = false;
5199         u32 regval;
5200
5201         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5202                 return -EFAULT;
5203
5204         /* reserved for future extensions */
5205         if (config.flags)
5206                 return -EINVAL;
5207
5208         switch (config.tx_type) {
5209         case HWTSTAMP_TX_OFF:
5210                 tsync_tx_ctl = 0;
5211         case HWTSTAMP_TX_ON:
5212                 break;
5213         default:
5214                 return -ERANGE;
5215         }
5216
5217         switch (config.rx_filter) {
5218         case HWTSTAMP_FILTER_NONE:
5219                 tsync_rx_ctl = 0;
5220                 break;
5221         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5222         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5223         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5224         case HWTSTAMP_FILTER_ALL:
5225                 /*
5226                  * register TSYNCRXCFG must be set, therefore it is not
5227                  * possible to time stamp both Sync and Delay_Req messages
5228                  * => fall back to time stamping all packets
5229                  */
5230                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
5231                 config.rx_filter = HWTSTAMP_FILTER_ALL;
5232                 break;
5233         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
5234                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5235                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
5236                 is_l4 = true;
5237                 break;
5238         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
5239                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5240                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
5241                 is_l4 = true;
5242                 break;
5243         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5244         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5245                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5246                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
5247                 is_l2 = true;
5248                 is_l4 = true;
5249                 config.rx_filter = HWTSTAMP_FILTER_SOME;
5250                 break;
5251         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5252         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5253                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5254                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
5255                 is_l2 = true;
5256                 is_l4 = true;
5257                 config.rx_filter = HWTSTAMP_FILTER_SOME;
5258                 break;
5259         case HWTSTAMP_FILTER_PTP_V2_EVENT:
5260         case HWTSTAMP_FILTER_PTP_V2_SYNC:
5261         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5262                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
5263                 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
5264                 is_l2 = true;
5265                 break;
5266         default:
5267                 return -ERANGE;
5268         }
5269
5270         if (hw->mac.type == e1000_82575) {
5271                 if (tsync_rx_ctl | tsync_tx_ctl)
5272                         return -EINVAL;
5273                 return 0;
5274         }
5275
5276         /* enable/disable TX */
5277         regval = rd32(E1000_TSYNCTXCTL);
5278         regval &= ~E1000_TSYNCTXCTL_ENABLED;
5279         regval |= tsync_tx_ctl;
5280         wr32(E1000_TSYNCTXCTL, regval);
5281
5282         /* enable/disable RX */
5283         regval = rd32(E1000_TSYNCRXCTL);
5284         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
5285         regval |= tsync_rx_ctl;
5286         wr32(E1000_TSYNCRXCTL, regval);
5287
5288         /* define which PTP packets are time stamped */
5289         wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
5290
5291         /* define ethertype filter for timestamped packets */
5292         if (is_l2)
5293                 wr32(E1000_ETQF(3),
5294                                 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
5295                                  E1000_ETQF_1588 | /* enable timestamping */
5296                                  ETH_P_1588));     /* 1588 eth protocol type */
5297         else
5298                 wr32(E1000_ETQF(3), 0);
5299
5300 #define PTP_PORT 319
5301         /* L4 Queue Filter[3]: filter by destination port and protocol */
5302         if (is_l4) {
5303                 u32 ftqf = (IPPROTO_UDP /* UDP */
5304                         | E1000_FTQF_VF_BP /* VF not compared */
5305                         | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
5306                         | E1000_FTQF_MASK); /* mask all inputs */
5307                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
5308
5309                 wr32(E1000_IMIR(3), htons(PTP_PORT));
5310                 wr32(E1000_IMIREXT(3),
5311                      (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
5312                 if (hw->mac.type == e1000_82576) {
5313                         /* enable source port check */
5314                         wr32(E1000_SPQF(3), htons(PTP_PORT));
5315                         ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
5316                 }
5317                 wr32(E1000_FTQF(3), ftqf);
5318         } else {
5319                 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
5320         }
5321         wrfl();
5322
5323         adapter->hwtstamp_config = config;
5324
5325         /* clear TX/RX time stamp registers, just to be sure */
5326         regval = rd32(E1000_TXSTMPH);
5327         regval = rd32(E1000_RXSTMPH);
5328
5329         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
5330                 -EFAULT : 0;
5331 }
5332
5333 /**
5334  * igb_ioctl -
5335  * @netdev:
5336  * @ifreq:
5337  * @cmd:
5338  **/
5339 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5340 {
5341         switch (cmd) {
5342         case SIOCGMIIPHY:
5343         case SIOCGMIIREG:
5344         case SIOCSMIIREG:
5345                 return igb_mii_ioctl(netdev, ifr, cmd);
5346         case SIOCSHWTSTAMP:
5347                 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
5348         default:
5349                 return -EOPNOTSUPP;
5350         }
5351 }
5352
5353 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5354 {
5355         struct igb_adapter *adapter = hw->back;
5356         u16 cap_offset;
5357
5358         cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5359         if (!cap_offset)
5360                 return -E1000_ERR_CONFIG;
5361
5362         pci_read_config_word(adapter->pdev, cap_offset + reg, value);
5363
5364         return 0;
5365 }
5366
5367 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5368 {
5369         struct igb_adapter *adapter = hw->back;
5370         u16 cap_offset;
5371
5372         cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5373         if (!cap_offset)
5374                 return -E1000_ERR_CONFIG;
5375
5376         pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
5377
5378         return 0;
5379 }
5380
5381 static void igb_vlan_rx_register(struct net_device *netdev,
5382                                  struct vlan_group *grp)
5383 {
5384         struct igb_adapter *adapter = netdev_priv(netdev);
5385         struct e1000_hw *hw = &adapter->hw;
5386         u32 ctrl, rctl;
5387
5388         igb_irq_disable(adapter);
5389         adapter->vlgrp = grp;
5390
5391         if (grp) {
5392                 /* enable VLAN tag insert/strip */
5393                 ctrl = rd32(E1000_CTRL);
5394                 ctrl |= E1000_CTRL_VME;
5395                 wr32(E1000_CTRL, ctrl);
5396
5397                 /* Disable CFI check */
5398                 rctl = rd32(E1000_RCTL);
5399                 rctl &= ~E1000_RCTL_CFIEN;
5400                 wr32(E1000_RCTL, rctl);
5401         } else {
5402                 /* disable VLAN tag insert/strip */
5403                 ctrl = rd32(E1000_CTRL);
5404                 ctrl &= ~E1000_CTRL_VME;
5405                 wr32(E1000_CTRL, ctrl);
5406         }
5407
5408         igb_rlpml_set(adapter);
5409
5410         if (!test_bit(__IGB_DOWN, &adapter->state))
5411                 igb_irq_enable(adapter);
5412 }
5413
5414 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
5415 {
5416         struct igb_adapter *adapter = netdev_priv(netdev);
5417         struct e1000_hw *hw = &adapter->hw;
5418         int pf_id = adapter->vfs_allocated_count;
5419
5420         /* attempt to add filter to vlvf array */
5421         igb_vlvf_set(adapter, vid, true, pf_id);
5422
5423         /* add the filter since PF can receive vlans w/o entry in vlvf */
5424         igb_vfta_set(hw, vid, true);
5425 }
5426
5427 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
5428 {
5429         struct igb_adapter *adapter = netdev_priv(netdev);
5430         struct e1000_hw *hw = &adapter->hw;
5431         int pf_id = adapter->vfs_allocated_count;
5432         s32 err;
5433
5434         igb_irq_disable(adapter);
5435         vlan_group_set_device(adapter->vlgrp, vid, NULL);
5436
5437         if (!test_bit(__IGB_DOWN, &adapter->state))
5438                 igb_irq_enable(adapter);
5439
5440         /* remove vlan from VLVF table array */
5441         err = igb_vlvf_set(adapter, vid, false, pf_id);
5442
5443         /* if vid was not present in VLVF just remove it from table */
5444         if (err)
5445                 igb_vfta_set(hw, vid, false);
5446 }
5447
5448 static void igb_restore_vlan(struct igb_adapter *adapter)
5449 {
5450         igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5451
5452         if (adapter->vlgrp) {
5453                 u16 vid;
5454                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5455                         if (!vlan_group_get_device(adapter->vlgrp, vid))
5456                                 continue;
5457                         igb_vlan_rx_add_vid(adapter->netdev, vid);
5458                 }
5459         }
5460 }
5461
5462 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5463 {
5464         struct e1000_mac_info *mac = &adapter->hw.mac;
5465
5466         mac->autoneg = 0;
5467
5468         switch (spddplx) {
5469         case SPEED_10 + DUPLEX_HALF:
5470                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5471                 break;
5472         case SPEED_10 + DUPLEX_FULL:
5473                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5474                 break;
5475         case SPEED_100 + DUPLEX_HALF:
5476                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5477                 break;
5478         case SPEED_100 + DUPLEX_FULL:
5479                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5480                 break;
5481         case SPEED_1000 + DUPLEX_FULL:
5482                 mac->autoneg = 1;
5483                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5484                 break;
5485         case SPEED_1000 + DUPLEX_HALF: /* not supported */
5486         default:
5487                 dev_err(&adapter->pdev->dev,
5488                         "Unsupported Speed/Duplex configuration\n");
5489                 return -EINVAL;
5490         }
5491         return 0;
5492 }
5493
5494 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
5495 {
5496         struct net_device *netdev = pci_get_drvdata(pdev);
5497         struct igb_adapter *adapter = netdev_priv(netdev);
5498         struct e1000_hw *hw = &adapter->hw;
5499         u32 ctrl, rctl, status;
5500         u32 wufc = adapter->wol;
5501 #ifdef CONFIG_PM
5502         int retval = 0;
5503 #endif
5504
5505         netif_device_detach(netdev);
5506
5507         if (netif_running(netdev))
5508                 igb_close(netdev);
5509
5510         igb_clear_interrupt_scheme(adapter);
5511
5512 #ifdef CONFIG_PM
5513         retval = pci_save_state(pdev);
5514         if (retval)
5515                 return retval;
5516 #endif
5517
5518         status = rd32(E1000_STATUS);
5519         if (status & E1000_STATUS_LU)
5520                 wufc &= ~E1000_WUFC_LNKC;
5521
5522         if (wufc) {
5523                 igb_setup_rctl(adapter);
5524                 igb_set_rx_mode(netdev);
5525
5526                 /* turn on all-multi mode if wake on multicast is enabled */
5527                 if (wufc & E1000_WUFC_MC) {
5528                         rctl = rd32(E1000_RCTL);
5529                         rctl |= E1000_RCTL_MPE;
5530                         wr32(E1000_RCTL, rctl);
5531                 }
5532
5533                 ctrl = rd32(E1000_CTRL);
5534                 /* advertise wake from D3Cold */
5535                 #define E1000_CTRL_ADVD3WUC 0x00100000
5536                 /* phy power management enable */
5537                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5538                 ctrl |= E1000_CTRL_ADVD3WUC;
5539                 wr32(E1000_CTRL, ctrl);
5540
5541                 /* Allow time for pending master requests to run */
5542                 igb_disable_pcie_master(&adapter->hw);
5543
5544                 wr32(E1000_WUC, E1000_WUC_PME_EN);
5545                 wr32(E1000_WUFC, wufc);
5546         } else {
5547                 wr32(E1000_WUC, 0);
5548                 wr32(E1000_WUFC, 0);
5549         }
5550
5551         *enable_wake = wufc || adapter->en_mng_pt;
5552         if (!*enable_wake)
5553                 igb_shutdown_serdes_link_82575(hw);
5554
5555         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5556          * would have already happened in close and is redundant. */
5557         igb_release_hw_control(adapter);
5558
5559         pci_disable_device(pdev);
5560
5561         return 0;
5562 }
5563
5564 #ifdef CONFIG_PM
5565 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5566 {
5567         int retval;
5568         bool wake;
5569
5570         retval = __igb_shutdown(pdev, &wake);
5571         if (retval)
5572                 return retval;
5573
5574         if (wake) {
5575                 pci_prepare_to_sleep(pdev);
5576         } else {
5577                 pci_wake_from_d3(pdev, false);
5578                 pci_set_power_state(pdev, PCI_D3hot);
5579         }
5580
5581         return 0;
5582 }
5583
5584 static int igb_resume(struct pci_dev *pdev)
5585 {
5586         struct net_device *netdev = pci_get_drvdata(pdev);
5587         struct igb_adapter *adapter = netdev_priv(netdev);
5588         struct e1000_hw *hw = &adapter->hw;
5589         u32 err;
5590
5591         pci_set_power_state(pdev, PCI_D0);
5592         pci_restore_state(pdev);
5593
5594         err = pci_enable_device_mem(pdev);
5595         if (err) {
5596                 dev_err(&pdev->dev,
5597                         "igb: Cannot enable PCI device from suspend\n");
5598                 return err;
5599         }
5600         pci_set_master(pdev);
5601
5602         pci_enable_wake(pdev, PCI_D3hot, 0);
5603         pci_enable_wake(pdev, PCI_D3cold, 0);
5604
5605         if (igb_init_interrupt_scheme(adapter)) {
5606                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5607                 return -ENOMEM;
5608         }
5609
5610         /* e1000_power_up_phy(adapter); */
5611
5612         igb_reset(adapter);
5613
5614         /* let the f/w know that the h/w is now under the control of the
5615          * driver. */
5616         igb_get_hw_control(adapter);
5617
5618         wr32(E1000_WUS, ~0);
5619
5620         if (netif_running(netdev)) {
5621                 err = igb_open(netdev);
5622                 if (err)
5623                         return err;
5624         }
5625
5626         netif_device_attach(netdev);
5627
5628         return 0;
5629 }
5630 #endif
5631
5632 static void igb_shutdown(struct pci_dev *pdev)
5633 {
5634         bool wake;
5635
5636         __igb_shutdown(pdev, &wake);
5637
5638         if (system_state == SYSTEM_POWER_OFF) {
5639                 pci_wake_from_d3(pdev, wake);
5640                 pci_set_power_state(pdev, PCI_D3hot);
5641         }
5642 }
5643
5644 #ifdef CONFIG_NET_POLL_CONTROLLER
5645 /*
5646  * Polling 'interrupt' - used by things like netconsole to send skbs
5647  * without having to re-enable interrupts. It's not called while
5648  * the interrupt routine is executing.
5649  */
5650 static void igb_netpoll(struct net_device *netdev)
5651 {
5652         struct igb_adapter *adapter = netdev_priv(netdev);
5653         struct e1000_hw *hw = &adapter->hw;
5654         int i;
5655
5656         if (!adapter->msix_entries) {
5657                 struct igb_q_vector *q_vector = adapter->q_vector[0];
5658                 igb_irq_disable(adapter);
5659                 napi_schedule(&q_vector->napi);
5660                 return;
5661         }
5662
5663         for (i = 0; i < adapter->num_q_vectors; i++) {
5664                 struct igb_q_vector *q_vector = adapter->q_vector[i];
5665                 wr32(E1000_EIMC, q_vector->eims_value);
5666                 napi_schedule(&q_vector->napi);
5667         }
5668 }
5669 #endif /* CONFIG_NET_POLL_CONTROLLER */
5670
5671 /**
5672  * igb_io_error_detected - called when PCI error is detected
5673  * @pdev: Pointer to PCI device
5674  * @state: The current pci connection state
5675  *
5676  * This function is called after a PCI bus error affecting
5677  * this device has been detected.
5678  */
5679 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5680                                               pci_channel_state_t state)
5681 {
5682         struct net_device *netdev = pci_get_drvdata(pdev);
5683         struct igb_adapter *adapter = netdev_priv(netdev);
5684
5685         netif_device_detach(netdev);
5686
5687         if (state == pci_channel_io_perm_failure)
5688                 return PCI_ERS_RESULT_DISCONNECT;
5689
5690         if (netif_running(netdev))
5691                 igb_down(adapter);
5692         pci_disable_device(pdev);
5693
5694         /* Request a slot slot reset. */
5695         return PCI_ERS_RESULT_NEED_RESET;
5696 }
5697
5698 /**
5699  * igb_io_slot_reset - called after the pci bus has been reset.
5700  * @pdev: Pointer to PCI device
5701  *
5702  * Restart the card from scratch, as if from a cold-boot. Implementation
5703  * resembles the first-half of the igb_resume routine.
5704  */
5705 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5706 {
5707         struct net_device *netdev = pci_get_drvdata(pdev);
5708         struct igb_adapter *adapter = netdev_priv(netdev);
5709         struct e1000_hw *hw = &adapter->hw;
5710         pci_ers_result_t result;
5711         int err;
5712
5713         if (pci_enable_device_mem(pdev)) {
5714                 dev_err(&pdev->dev,
5715                         "Cannot re-enable PCI device after reset.\n");
5716                 result = PCI_ERS_RESULT_DISCONNECT;
5717         } else {
5718                 pci_set_master(pdev);
5719                 pci_restore_state(pdev);
5720
5721                 pci_enable_wake(pdev, PCI_D3hot, 0);
5722                 pci_enable_wake(pdev, PCI_D3cold, 0);
5723
5724                 igb_reset(adapter);
5725                 wr32(E1000_WUS, ~0);
5726                 result = PCI_ERS_RESULT_RECOVERED;
5727         }
5728
5729         err = pci_cleanup_aer_uncorrect_error_status(pdev);
5730         if (err) {
5731                 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
5732                         "failed 0x%0x\n", err);
5733                 /* non-fatal, continue */
5734         }
5735
5736         return result;
5737 }
5738
5739 /**
5740  * igb_io_resume - called when traffic can start flowing again.
5741  * @pdev: Pointer to PCI device
5742  *
5743  * This callback is called when the error recovery driver tells us that
5744  * its OK to resume normal operation. Implementation resembles the
5745  * second-half of the igb_resume routine.
5746  */
5747 static void igb_io_resume(struct pci_dev *pdev)
5748 {
5749         struct net_device *netdev = pci_get_drvdata(pdev);
5750         struct igb_adapter *adapter = netdev_priv(netdev);
5751
5752         if (netif_running(netdev)) {
5753                 if (igb_up(adapter)) {
5754                         dev_err(&pdev->dev, "igb_up failed after reset\n");
5755                         return;
5756                 }
5757         }
5758
5759         netif_device_attach(netdev);
5760
5761         /* let the f/w know that the h/w is now under the control of the
5762          * driver. */
5763         igb_get_hw_control(adapter);
5764 }
5765
5766 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
5767                              u8 qsel)
5768 {
5769         u32 rar_low, rar_high;
5770         struct e1000_hw *hw = &adapter->hw;
5771
5772         /* HW expects these in little endian so we reverse the byte order
5773          * from network order (big endian) to little endian
5774          */
5775         rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
5776                   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
5777         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
5778
5779         /* Indicate to hardware the Address is Valid. */
5780         rar_high |= E1000_RAH_AV;
5781
5782         if (hw->mac.type == e1000_82575)
5783                 rar_high |= E1000_RAH_POOL_1 * qsel;
5784         else
5785                 rar_high |= E1000_RAH_POOL_1 << qsel;
5786
5787         wr32(E1000_RAL(index), rar_low);
5788         wrfl();
5789         wr32(E1000_RAH(index), rar_high);
5790         wrfl();
5791 }
5792
5793 static int igb_set_vf_mac(struct igb_adapter *adapter,
5794                           int vf, unsigned char *mac_addr)
5795 {
5796         struct e1000_hw *hw = &adapter->hw;
5797         /* VF MAC addresses start at end of receive addresses and moves
5798          * torwards the first, as a result a collision should not be possible */
5799         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5800
5801         memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
5802
5803         igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
5804
5805         return 0;
5806 }
5807
5808 static void igb_vmm_control(struct igb_adapter *adapter)
5809 {
5810         struct e1000_hw *hw = &adapter->hw;
5811         u32 reg;
5812
5813         /* replication is not supported for 82575 */
5814         if (hw->mac.type == e1000_82575)
5815                 return;
5816
5817         /* enable replication vlan tag stripping */
5818         reg = rd32(E1000_RPLOLR);
5819         reg |= E1000_RPLOLR_STRVLAN;
5820         wr32(E1000_RPLOLR, reg);
5821
5822         /* notify HW that the MAC is adding vlan tags */
5823         reg = rd32(E1000_DTXCTL);
5824         reg |= E1000_DTXCTL_VLAN_ADDED;
5825         wr32(E1000_DTXCTL, reg);
5826
5827         if (adapter->vfs_allocated_count) {
5828                 igb_vmdq_set_loopback_pf(hw, true);
5829                 igb_vmdq_set_replication_pf(hw, true);
5830         } else {
5831                 igb_vmdq_set_loopback_pf(hw, false);
5832                 igb_vmdq_set_replication_pf(hw, false);
5833         }
5834 }
5835
5836 /* igb_main.c */