igb: resolve warning of unused adapter struct
[safe/jmp/linux-2.6] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/pci-aspm.h>
43 #include <linux/delay.h>
44 #include <linux/interrupt.h>
45 #include <linux/if_ether.h>
46 #include <linux/aer.h>
47 #ifdef CONFIG_IGB_DCA
48 #include <linux/dca.h>
49 #endif
50 #include "igb.h"
51
52 #define DRV_VERSION "1.3.16-k2"
53 char igb_driver_name[] = "igb";
54 char igb_driver_version[] = DRV_VERSION;
55 static const char igb_driver_string[] =
56                                 "Intel(R) Gigabit Ethernet Network Driver";
57 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60         [board_82575] = &e1000_82575_info,
61 };
62
63 static struct pci_device_id igb_pci_tbl[] = {
64         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
65         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
66         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
67         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
68         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
69         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
70         /* required last entry */
71         {0, }
72 };
73
74 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
75
76 void igb_reset(struct igb_adapter *);
77 static int igb_setup_all_tx_resources(struct igb_adapter *);
78 static int igb_setup_all_rx_resources(struct igb_adapter *);
79 static void igb_free_all_tx_resources(struct igb_adapter *);
80 static void igb_free_all_rx_resources(struct igb_adapter *);
81 void igb_update_stats(struct igb_adapter *);
82 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
83 static void __devexit igb_remove(struct pci_dev *pdev);
84 static int igb_sw_init(struct igb_adapter *);
85 static int igb_open(struct net_device *);
86 static int igb_close(struct net_device *);
87 static void igb_configure_tx(struct igb_adapter *);
88 static void igb_configure_rx(struct igb_adapter *);
89 static void igb_setup_rctl(struct igb_adapter *);
90 static void igb_clean_all_tx_rings(struct igb_adapter *);
91 static void igb_clean_all_rx_rings(struct igb_adapter *);
92 static void igb_clean_tx_ring(struct igb_ring *);
93 static void igb_clean_rx_ring(struct igb_ring *);
94 static void igb_set_multi(struct net_device *);
95 static void igb_update_phy_info(unsigned long);
96 static void igb_watchdog(unsigned long);
97 static void igb_watchdog_task(struct work_struct *);
98 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
99                                   struct igb_ring *);
100 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
101 static struct net_device_stats *igb_get_stats(struct net_device *);
102 static int igb_change_mtu(struct net_device *, int);
103 static int igb_set_mac(struct net_device *, void *);
104 static irqreturn_t igb_intr(int irq, void *);
105 static irqreturn_t igb_intr_msi(int irq, void *);
106 static irqreturn_t igb_msix_other(int irq, void *);
107 static irqreturn_t igb_msix_rx(int irq, void *);
108 static irqreturn_t igb_msix_tx(int irq, void *);
109 #ifdef CONFIG_IGB_DCA
110 static void igb_update_rx_dca(struct igb_ring *);
111 static void igb_update_tx_dca(struct igb_ring *);
112 static void igb_setup_dca(struct igb_adapter *);
113 #endif /* CONFIG_IGB_DCA */
114 static bool igb_clean_tx_irq(struct igb_ring *);
115 static int igb_poll(struct napi_struct *, int);
116 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
117 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
118 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
119 static void igb_tx_timeout(struct net_device *);
120 static void igb_reset_task(struct work_struct *);
121 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
122 static void igb_vlan_rx_add_vid(struct net_device *, u16);
123 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
124 static void igb_restore_vlan(struct igb_adapter *);
125 static void igb_ping_all_vfs(struct igb_adapter *);
126 static void igb_msg_task(struct igb_adapter *);
127 static int igb_rcv_msg_from_vf(struct igb_adapter *, u32);
128 static inline void igb_set_rah_pool(struct e1000_hw *, int , int);
129 static void igb_set_mc_list_pools(struct igb_adapter *, int, u16);
130 static void igb_vmm_control(struct igb_adapter *);
131 static inline void igb_set_vmolr(struct e1000_hw *, int);
132 static inline int igb_set_vf_rlpml(struct igb_adapter *, int, int);
133 static int igb_set_vf_mac(struct igb_adapter *adapter, int, unsigned char *);
134 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
135
136 static int igb_suspend(struct pci_dev *, pm_message_t);
137 #ifdef CONFIG_PM
138 static int igb_resume(struct pci_dev *);
139 #endif
140 static void igb_shutdown(struct pci_dev *);
141 #ifdef CONFIG_IGB_DCA
142 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
143 static struct notifier_block dca_notifier = {
144         .notifier_call  = igb_notify_dca,
145         .next           = NULL,
146         .priority       = 0
147 };
148 #endif
149 #ifdef CONFIG_NET_POLL_CONTROLLER
150 /* for netdump / net console */
151 static void igb_netpoll(struct net_device *);
152 #endif
153
154 #ifdef CONFIG_PCI_IOV
155 static ssize_t igb_set_num_vfs(struct device *, struct device_attribute *,
156                                const char *, size_t);
157 static ssize_t igb_show_num_vfs(struct device *, struct device_attribute *,
158                                char *);
159 DEVICE_ATTR(num_vfs, S_IRUGO | S_IWUSR, igb_show_num_vfs, igb_set_num_vfs);
160 #endif
161 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
162                      pci_channel_state_t);
163 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
164 static void igb_io_resume(struct pci_dev *);
165
166 static struct pci_error_handlers igb_err_handler = {
167         .error_detected = igb_io_error_detected,
168         .slot_reset = igb_io_slot_reset,
169         .resume = igb_io_resume,
170 };
171
172
173 static struct pci_driver igb_driver = {
174         .name     = igb_driver_name,
175         .id_table = igb_pci_tbl,
176         .probe    = igb_probe,
177         .remove   = __devexit_p(igb_remove),
178 #ifdef CONFIG_PM
179         /* Power Managment Hooks */
180         .suspend  = igb_suspend,
181         .resume   = igb_resume,
182 #endif
183         .shutdown = igb_shutdown,
184         .err_handler = &igb_err_handler
185 };
186
187 static int global_quad_port_a; /* global quad port a indication */
188
189 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
190 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
191 MODULE_LICENSE("GPL");
192 MODULE_VERSION(DRV_VERSION);
193
194 /**
195  * Scale the NIC clock cycle by a large factor so that
196  * relatively small clock corrections can be added or
197  * substracted at each clock tick. The drawbacks of a
198  * large factor are a) that the clock register overflows
199  * more quickly (not such a big deal) and b) that the
200  * increment per tick has to fit into 24 bits.
201  *
202  * Note that
203  *   TIMINCA = IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS *
204  *             IGB_TSYNC_SCALE
205  *   TIMINCA += TIMINCA * adjustment [ppm] / 1e9
206  *
207  * The base scale factor is intentionally a power of two
208  * so that the division in %struct timecounter can be done with
209  * a shift.
210  */
211 #define IGB_TSYNC_SHIFT (19)
212 #define IGB_TSYNC_SCALE (1<<IGB_TSYNC_SHIFT)
213
214 /**
215  * The duration of one clock cycle of the NIC.
216  *
217  * @todo This hard-coded value is part of the specification and might change
218  * in future hardware revisions. Add revision check.
219  */
220 #define IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS 16
221
222 #if (IGB_TSYNC_SCALE * IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS) >= (1<<24)
223 # error IGB_TSYNC_SCALE and/or IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS are too large to fit into TIMINCA
224 #endif
225
226 /**
227  * igb_read_clock - read raw cycle counter (to be used by time counter)
228  */
229 static cycle_t igb_read_clock(const struct cyclecounter *tc)
230 {
231         struct igb_adapter *adapter =
232                 container_of(tc, struct igb_adapter, cycles);
233         struct e1000_hw *hw = &adapter->hw;
234         u64 stamp;
235
236         stamp =  rd32(E1000_SYSTIML);
237         stamp |= (u64)rd32(E1000_SYSTIMH) << 32ULL;
238
239         return stamp;
240 }
241
242 #ifdef DEBUG
243 /**
244  * igb_get_hw_dev_name - return device name string
245  * used by hardware layer to print debugging information
246  **/
247 char *igb_get_hw_dev_name(struct e1000_hw *hw)
248 {
249         struct igb_adapter *adapter = hw->back;
250         return adapter->netdev->name;
251 }
252
253 /**
254  * igb_get_time_str - format current NIC and system time as string
255  */
256 static char *igb_get_time_str(struct igb_adapter *adapter,
257                               char buffer[160])
258 {
259         cycle_t hw = adapter->cycles.read(&adapter->cycles);
260         struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
261         struct timespec sys;
262         struct timespec delta;
263         getnstimeofday(&sys);
264
265         delta = timespec_sub(nic, sys);
266
267         sprintf(buffer,
268                 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
269                 hw,
270                 (long)nic.tv_sec, nic.tv_nsec,
271                 (long)sys.tv_sec, sys.tv_nsec,
272                 (long)delta.tv_sec, delta.tv_nsec);
273
274         return buffer;
275 }
276 #endif
277
278 /**
279  * igb_init_module - Driver Registration Routine
280  *
281  * igb_init_module is the first routine called when the driver is
282  * loaded. All it does is register with the PCI subsystem.
283  **/
284 static int __init igb_init_module(void)
285 {
286         int ret;
287         printk(KERN_INFO "%s - version %s\n",
288                igb_driver_string, igb_driver_version);
289
290         printk(KERN_INFO "%s\n", igb_copyright);
291
292         global_quad_port_a = 0;
293
294 #ifdef CONFIG_IGB_DCA
295         dca_register_notify(&dca_notifier);
296 #endif
297
298         ret = pci_register_driver(&igb_driver);
299         return ret;
300 }
301
302 module_init(igb_init_module);
303
304 /**
305  * igb_exit_module - Driver Exit Cleanup Routine
306  *
307  * igb_exit_module is called just before the driver is removed
308  * from memory.
309  **/
310 static void __exit igb_exit_module(void)
311 {
312 #ifdef CONFIG_IGB_DCA
313         dca_unregister_notify(&dca_notifier);
314 #endif
315         pci_unregister_driver(&igb_driver);
316 }
317
318 module_exit(igb_exit_module);
319
320 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
321 /**
322  * igb_cache_ring_register - Descriptor ring to register mapping
323  * @adapter: board private structure to initialize
324  *
325  * Once we know the feature-set enabled for the device, we'll cache
326  * the register offset the descriptor ring is assigned to.
327  **/
328 static void igb_cache_ring_register(struct igb_adapter *adapter)
329 {
330         int i;
331         unsigned int rbase_offset = adapter->vfs_allocated_count;
332
333         switch (adapter->hw.mac.type) {
334         case e1000_82576:
335                 /* The queues are allocated for virtualization such that VF 0
336                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
337                  * In order to avoid collision we start at the first free queue
338                  * and continue consuming queues in the same sequence
339                  */
340                 for (i = 0; i < adapter->num_rx_queues; i++)
341                         adapter->rx_ring[i].reg_idx = rbase_offset +
342                                                       Q_IDX_82576(i);
343                 for (i = 0; i < adapter->num_tx_queues; i++)
344                         adapter->tx_ring[i].reg_idx = rbase_offset +
345                                                       Q_IDX_82576(i);
346                 break;
347         case e1000_82575:
348         default:
349                 for (i = 0; i < adapter->num_rx_queues; i++)
350                         adapter->rx_ring[i].reg_idx = i;
351                 for (i = 0; i < adapter->num_tx_queues; i++)
352                         adapter->tx_ring[i].reg_idx = i;
353                 break;
354         }
355 }
356
357 /**
358  * igb_alloc_queues - Allocate memory for all rings
359  * @adapter: board private structure to initialize
360  *
361  * We allocate one ring per queue at run-time since we don't know the
362  * number of queues at compile-time.
363  **/
364 static int igb_alloc_queues(struct igb_adapter *adapter)
365 {
366         int i;
367
368         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
369                                    sizeof(struct igb_ring), GFP_KERNEL);
370         if (!adapter->tx_ring)
371                 return -ENOMEM;
372
373         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
374                                    sizeof(struct igb_ring), GFP_KERNEL);
375         if (!adapter->rx_ring) {
376                 kfree(adapter->tx_ring);
377                 return -ENOMEM;
378         }
379
380         adapter->rx_ring->buddy = adapter->tx_ring;
381
382         for (i = 0; i < adapter->num_tx_queues; i++) {
383                 struct igb_ring *ring = &(adapter->tx_ring[i]);
384                 ring->count = adapter->tx_ring_count;
385                 ring->adapter = adapter;
386                 ring->queue_index = i;
387         }
388         for (i = 0; i < adapter->num_rx_queues; i++) {
389                 struct igb_ring *ring = &(adapter->rx_ring[i]);
390                 ring->count = adapter->rx_ring_count;
391                 ring->adapter = adapter;
392                 ring->queue_index = i;
393                 ring->itr_register = E1000_ITR;
394
395                 /* set a default napi handler for each rx_ring */
396                 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
397         }
398
399         igb_cache_ring_register(adapter);
400         return 0;
401 }
402
403 static void igb_free_queues(struct igb_adapter *adapter)
404 {
405         int i;
406
407         for (i = 0; i < adapter->num_rx_queues; i++)
408                 netif_napi_del(&adapter->rx_ring[i].napi);
409
410         kfree(adapter->tx_ring);
411         kfree(adapter->rx_ring);
412 }
413
414 #define IGB_N0_QUEUE -1
415 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
416                               int tx_queue, int msix_vector)
417 {
418         u32 msixbm = 0;
419         struct e1000_hw *hw = &adapter->hw;
420         u32 ivar, index;
421
422         switch (hw->mac.type) {
423         case e1000_82575:
424                 /* The 82575 assigns vectors using a bitmask, which matches the
425                    bitmask for the EICR/EIMS/EIMC registers.  To assign one
426                    or more queues to a vector, we write the appropriate bits
427                    into the MSIXBM register for that vector. */
428                 if (rx_queue > IGB_N0_QUEUE) {
429                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
430                         adapter->rx_ring[rx_queue].eims_value = msixbm;
431                 }
432                 if (tx_queue > IGB_N0_QUEUE) {
433                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
434                         adapter->tx_ring[tx_queue].eims_value =
435                                   E1000_EICR_TX_QUEUE0 << tx_queue;
436                 }
437                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
438                 break;
439         case e1000_82576:
440                 /* 82576 uses a table-based method for assigning vectors.
441                    Each queue has a single entry in the table to which we write
442                    a vector number along with a "valid" bit.  Sadly, the layout
443                    of the table is somewhat counterintuitive. */
444                 if (rx_queue > IGB_N0_QUEUE) {
445                         index = (rx_queue >> 1) + adapter->vfs_allocated_count;
446                         ivar = array_rd32(E1000_IVAR0, index);
447                         if (rx_queue & 0x1) {
448                                 /* vector goes into third byte of register */
449                                 ivar = ivar & 0xFF00FFFF;
450                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
451                         } else {
452                                 /* vector goes into low byte of register */
453                                 ivar = ivar & 0xFFFFFF00;
454                                 ivar |= msix_vector | E1000_IVAR_VALID;
455                         }
456                         adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
457                         array_wr32(E1000_IVAR0, index, ivar);
458                 }
459                 if (tx_queue > IGB_N0_QUEUE) {
460                         index = (tx_queue >> 1) + adapter->vfs_allocated_count;
461                         ivar = array_rd32(E1000_IVAR0, index);
462                         if (tx_queue & 0x1) {
463                                 /* vector goes into high byte of register */
464                                 ivar = ivar & 0x00FFFFFF;
465                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
466                         } else {
467                                 /* vector goes into second byte of register */
468                                 ivar = ivar & 0xFFFF00FF;
469                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
470                         }
471                         adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
472                         array_wr32(E1000_IVAR0, index, ivar);
473                 }
474                 break;
475         default:
476                 BUG();
477                 break;
478         }
479 }
480
481 /**
482  * igb_configure_msix - Configure MSI-X hardware
483  *
484  * igb_configure_msix sets up the hardware to properly
485  * generate MSI-X interrupts.
486  **/
487 static void igb_configure_msix(struct igb_adapter *adapter)
488 {
489         u32 tmp;
490         int i, vector = 0;
491         struct e1000_hw *hw = &adapter->hw;
492
493         adapter->eims_enable_mask = 0;
494         if (hw->mac.type == e1000_82576)
495                 /* Turn on MSI-X capability first, or our settings
496                  * won't stick.  And it will take days to debug. */
497                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
498                                    E1000_GPIE_PBA | E1000_GPIE_EIAME |
499                                    E1000_GPIE_NSICR);
500
501         for (i = 0; i < adapter->num_tx_queues; i++) {
502                 struct igb_ring *tx_ring = &adapter->tx_ring[i];
503                 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
504                 adapter->eims_enable_mask |= tx_ring->eims_value;
505                 if (tx_ring->itr_val)
506                         writel(tx_ring->itr_val,
507                                hw->hw_addr + tx_ring->itr_register);
508                 else
509                         writel(1, hw->hw_addr + tx_ring->itr_register);
510         }
511
512         for (i = 0; i < adapter->num_rx_queues; i++) {
513                 struct igb_ring *rx_ring = &adapter->rx_ring[i];
514                 rx_ring->buddy = NULL;
515                 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
516                 adapter->eims_enable_mask |= rx_ring->eims_value;
517                 if (rx_ring->itr_val)
518                         writel(rx_ring->itr_val,
519                                hw->hw_addr + rx_ring->itr_register);
520                 else
521                         writel(1, hw->hw_addr + rx_ring->itr_register);
522         }
523
524
525         /* set vector for other causes, i.e. link changes */
526         switch (hw->mac.type) {
527         case e1000_82575:
528                 array_wr32(E1000_MSIXBM(0), vector++,
529                                       E1000_EIMS_OTHER);
530
531                 tmp = rd32(E1000_CTRL_EXT);
532                 /* enable MSI-X PBA support*/
533                 tmp |= E1000_CTRL_EXT_PBA_CLR;
534
535                 /* Auto-Mask interrupts upon ICR read. */
536                 tmp |= E1000_CTRL_EXT_EIAME;
537                 tmp |= E1000_CTRL_EXT_IRCA;
538
539                 wr32(E1000_CTRL_EXT, tmp);
540                 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
541                 adapter->eims_other = E1000_EIMS_OTHER;
542
543                 break;
544
545         case e1000_82576:
546                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
547                 wr32(E1000_IVAR_MISC, tmp);
548
549                 adapter->eims_enable_mask = (1 << (vector)) - 1;
550                 adapter->eims_other = 1 << (vector - 1);
551                 break;
552         default:
553                 /* do nothing, since nothing else supports MSI-X */
554                 break;
555         } /* switch (hw->mac.type) */
556         wrfl();
557 }
558
559 /**
560  * igb_request_msix - Initialize MSI-X interrupts
561  *
562  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
563  * kernel.
564  **/
565 static int igb_request_msix(struct igb_adapter *adapter)
566 {
567         struct net_device *netdev = adapter->netdev;
568         int i, err = 0, vector = 0;
569
570         vector = 0;
571
572         for (i = 0; i < adapter->num_tx_queues; i++) {
573                 struct igb_ring *ring = &(adapter->tx_ring[i]);
574                 sprintf(ring->name, "%s-tx-%d", netdev->name, i);
575                 err = request_irq(adapter->msix_entries[vector].vector,
576                                   &igb_msix_tx, 0, ring->name,
577                                   &(adapter->tx_ring[i]));
578                 if (err)
579                         goto out;
580                 ring->itr_register = E1000_EITR(0) + (vector << 2);
581                 ring->itr_val = 976; /* ~4000 ints/sec */
582                 vector++;
583         }
584         for (i = 0; i < adapter->num_rx_queues; i++) {
585                 struct igb_ring *ring = &(adapter->rx_ring[i]);
586                 if (strlen(netdev->name) < (IFNAMSIZ - 5))
587                         sprintf(ring->name, "%s-rx-%d", netdev->name, i);
588                 else
589                         memcpy(ring->name, netdev->name, IFNAMSIZ);
590                 err = request_irq(adapter->msix_entries[vector].vector,
591                                   &igb_msix_rx, 0, ring->name,
592                                   &(adapter->rx_ring[i]));
593                 if (err)
594                         goto out;
595                 ring->itr_register = E1000_EITR(0) + (vector << 2);
596                 ring->itr_val = adapter->itr;
597                 vector++;
598         }
599
600         err = request_irq(adapter->msix_entries[vector].vector,
601                           &igb_msix_other, 0, netdev->name, netdev);
602         if (err)
603                 goto out;
604
605         igb_configure_msix(adapter);
606         return 0;
607 out:
608         return err;
609 }
610
611 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
612 {
613         if (adapter->msix_entries) {
614                 pci_disable_msix(adapter->pdev);
615                 kfree(adapter->msix_entries);
616                 adapter->msix_entries = NULL;
617         } else if (adapter->flags & IGB_FLAG_HAS_MSI)
618                 pci_disable_msi(adapter->pdev);
619         return;
620 }
621
622
623 /**
624  * igb_set_interrupt_capability - set MSI or MSI-X if supported
625  *
626  * Attempt to configure interrupts using the best available
627  * capabilities of the hardware and kernel.
628  **/
629 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
630 {
631         int err;
632         int numvecs, i;
633
634         /* Number of supported queues. */
635         /* Having more queues than CPUs doesn't make sense. */
636         adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
637         adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
638
639         numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
640         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
641                                         GFP_KERNEL);
642         if (!adapter->msix_entries)
643                 goto msi_only;
644
645         for (i = 0; i < numvecs; i++)
646                 adapter->msix_entries[i].entry = i;
647
648         err = pci_enable_msix(adapter->pdev,
649                               adapter->msix_entries,
650                               numvecs);
651         if (err == 0)
652                 goto out;
653
654         igb_reset_interrupt_capability(adapter);
655
656         /* If we can't do MSI-X, try MSI */
657 msi_only:
658         adapter->num_rx_queues = 1;
659         adapter->num_tx_queues = 1;
660         if (!pci_enable_msi(adapter->pdev))
661                 adapter->flags |= IGB_FLAG_HAS_MSI;
662 out:
663         /* Notify the stack of the (possibly) reduced Tx Queue count. */
664         adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
665         return;
666 }
667
668 /**
669  * igb_request_irq - initialize interrupts
670  *
671  * Attempts to configure interrupts using the best available
672  * capabilities of the hardware and kernel.
673  **/
674 static int igb_request_irq(struct igb_adapter *adapter)
675 {
676         struct net_device *netdev = adapter->netdev;
677         struct e1000_hw *hw = &adapter->hw;
678         int err = 0;
679
680         if (adapter->msix_entries) {
681                 err = igb_request_msix(adapter);
682                 if (!err)
683                         goto request_done;
684                 /* fall back to MSI */
685                 igb_reset_interrupt_capability(adapter);
686                 if (!pci_enable_msi(adapter->pdev))
687                         adapter->flags |= IGB_FLAG_HAS_MSI;
688                 igb_free_all_tx_resources(adapter);
689                 igb_free_all_rx_resources(adapter);
690                 adapter->num_rx_queues = 1;
691                 igb_alloc_queues(adapter);
692         } else {
693                 switch (hw->mac.type) {
694                 case e1000_82575:
695                         wr32(E1000_MSIXBM(0),
696                              (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
697                         break;
698                 case e1000_82576:
699                         wr32(E1000_IVAR0, E1000_IVAR_VALID);
700                         break;
701                 default:
702                         break;
703                 }
704         }
705
706         if (adapter->flags & IGB_FLAG_HAS_MSI) {
707                 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
708                                   netdev->name, netdev);
709                 if (!err)
710                         goto request_done;
711                 /* fall back to legacy interrupts */
712                 igb_reset_interrupt_capability(adapter);
713                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
714         }
715
716         err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
717                           netdev->name, netdev);
718
719         if (err)
720                 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
721                         err);
722
723 request_done:
724         return err;
725 }
726
727 static void igb_free_irq(struct igb_adapter *adapter)
728 {
729         struct net_device *netdev = adapter->netdev;
730
731         if (adapter->msix_entries) {
732                 int vector = 0, i;
733
734                 for (i = 0; i < adapter->num_tx_queues; i++)
735                         free_irq(adapter->msix_entries[vector++].vector,
736                                 &(adapter->tx_ring[i]));
737                 for (i = 0; i < adapter->num_rx_queues; i++)
738                         free_irq(adapter->msix_entries[vector++].vector,
739                                 &(adapter->rx_ring[i]));
740
741                 free_irq(adapter->msix_entries[vector++].vector, netdev);
742                 return;
743         }
744
745         free_irq(adapter->pdev->irq, netdev);
746 }
747
748 /**
749  * igb_irq_disable - Mask off interrupt generation on the NIC
750  * @adapter: board private structure
751  **/
752 static void igb_irq_disable(struct igb_adapter *adapter)
753 {
754         struct e1000_hw *hw = &adapter->hw;
755
756         if (adapter->msix_entries) {
757                 wr32(E1000_EIAM, 0);
758                 wr32(E1000_EIMC, ~0);
759                 wr32(E1000_EIAC, 0);
760         }
761
762         wr32(E1000_IAM, 0);
763         wr32(E1000_IMC, ~0);
764         wrfl();
765         synchronize_irq(adapter->pdev->irq);
766 }
767
768 /**
769  * igb_irq_enable - Enable default interrupt generation settings
770  * @adapter: board private structure
771  **/
772 static void igb_irq_enable(struct igb_adapter *adapter)
773 {
774         struct e1000_hw *hw = &adapter->hw;
775
776         if (adapter->msix_entries) {
777                 wr32(E1000_EIAC, adapter->eims_enable_mask);
778                 wr32(E1000_EIAM, adapter->eims_enable_mask);
779                 wr32(E1000_EIMS, adapter->eims_enable_mask);
780                 if (adapter->vfs_allocated_count)
781                         wr32(E1000_MBVFIMR, 0xFF);
782                 wr32(E1000_IMS, (E1000_IMS_LSC | E1000_IMS_VMMB |
783                                  E1000_IMS_DOUTSYNC));
784         } else {
785                 wr32(E1000_IMS, IMS_ENABLE_MASK);
786                 wr32(E1000_IAM, IMS_ENABLE_MASK);
787         }
788 }
789
790 static void igb_update_mng_vlan(struct igb_adapter *adapter)
791 {
792         struct net_device *netdev = adapter->netdev;
793         u16 vid = adapter->hw.mng_cookie.vlan_id;
794         u16 old_vid = adapter->mng_vlan_id;
795         if (adapter->vlgrp) {
796                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
797                         if (adapter->hw.mng_cookie.status &
798                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
799                                 igb_vlan_rx_add_vid(netdev, vid);
800                                 adapter->mng_vlan_id = vid;
801                         } else
802                                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
803
804                         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
805                                         (vid != old_vid) &&
806                             !vlan_group_get_device(adapter->vlgrp, old_vid))
807                                 igb_vlan_rx_kill_vid(netdev, old_vid);
808                 } else
809                         adapter->mng_vlan_id = vid;
810         }
811 }
812
813 /**
814  * igb_release_hw_control - release control of the h/w to f/w
815  * @adapter: address of board private structure
816  *
817  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
818  * For ASF and Pass Through versions of f/w this means that the
819  * driver is no longer loaded.
820  *
821  **/
822 static void igb_release_hw_control(struct igb_adapter *adapter)
823 {
824         struct e1000_hw *hw = &adapter->hw;
825         u32 ctrl_ext;
826
827         /* Let firmware take over control of h/w */
828         ctrl_ext = rd32(E1000_CTRL_EXT);
829         wr32(E1000_CTRL_EXT,
830                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
831 }
832
833
834 /**
835  * igb_get_hw_control - get control of the h/w from f/w
836  * @adapter: address of board private structure
837  *
838  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
839  * For ASF and Pass Through versions of f/w this means that
840  * the driver is loaded.
841  *
842  **/
843 static void igb_get_hw_control(struct igb_adapter *adapter)
844 {
845         struct e1000_hw *hw = &adapter->hw;
846         u32 ctrl_ext;
847
848         /* Let firmware know the driver has taken over */
849         ctrl_ext = rd32(E1000_CTRL_EXT);
850         wr32(E1000_CTRL_EXT,
851                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
852 }
853
854 /**
855  * igb_configure - configure the hardware for RX and TX
856  * @adapter: private board structure
857  **/
858 static void igb_configure(struct igb_adapter *adapter)
859 {
860         struct net_device *netdev = adapter->netdev;
861         int i;
862
863         igb_get_hw_control(adapter);
864         igb_set_multi(netdev);
865
866         igb_restore_vlan(adapter);
867
868         igb_configure_tx(adapter);
869         igb_setup_rctl(adapter);
870         igb_configure_rx(adapter);
871
872         igb_rx_fifo_flush_82575(&adapter->hw);
873
874         /* call IGB_DESC_UNUSED which always leaves
875          * at least 1 descriptor unused to make sure
876          * next_to_use != next_to_clean */
877         for (i = 0; i < adapter->num_rx_queues; i++) {
878                 struct igb_ring *ring = &adapter->rx_ring[i];
879                 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
880         }
881
882
883         adapter->tx_queue_len = netdev->tx_queue_len;
884 }
885
886
887 /**
888  * igb_up - Open the interface and prepare it to handle traffic
889  * @adapter: board private structure
890  **/
891
892 int igb_up(struct igb_adapter *adapter)
893 {
894         struct e1000_hw *hw = &adapter->hw;
895         int i;
896
897         /* hardware has been reset, we need to reload some things */
898         igb_configure(adapter);
899
900         clear_bit(__IGB_DOWN, &adapter->state);
901
902         for (i = 0; i < adapter->num_rx_queues; i++)
903                 napi_enable(&adapter->rx_ring[i].napi);
904         if (adapter->msix_entries)
905                 igb_configure_msix(adapter);
906
907         igb_vmm_control(adapter);
908         igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
909         igb_set_vmolr(hw, adapter->vfs_allocated_count);
910
911         /* Clear any pending interrupts. */
912         rd32(E1000_ICR);
913         igb_irq_enable(adapter);
914
915         /* Fire a link change interrupt to start the watchdog. */
916         wr32(E1000_ICS, E1000_ICS_LSC);
917         return 0;
918 }
919
920 void igb_down(struct igb_adapter *adapter)
921 {
922         struct e1000_hw *hw = &adapter->hw;
923         struct net_device *netdev = adapter->netdev;
924         u32 tctl, rctl;
925         int i;
926
927         /* signal that we're down so the interrupt handler does not
928          * reschedule our watchdog timer */
929         set_bit(__IGB_DOWN, &adapter->state);
930
931         /* disable receives in the hardware */
932         rctl = rd32(E1000_RCTL);
933         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
934         /* flush and sleep below */
935
936         netif_tx_stop_all_queues(netdev);
937
938         /* disable transmits in the hardware */
939         tctl = rd32(E1000_TCTL);
940         tctl &= ~E1000_TCTL_EN;
941         wr32(E1000_TCTL, tctl);
942         /* flush both disables and wait for them to finish */
943         wrfl();
944         msleep(10);
945
946         for (i = 0; i < adapter->num_rx_queues; i++)
947                 napi_disable(&adapter->rx_ring[i].napi);
948
949         igb_irq_disable(adapter);
950
951         del_timer_sync(&adapter->watchdog_timer);
952         del_timer_sync(&adapter->phy_info_timer);
953
954         netdev->tx_queue_len = adapter->tx_queue_len;
955         netif_carrier_off(netdev);
956
957         /* record the stats before reset*/
958         igb_update_stats(adapter);
959
960         adapter->link_speed = 0;
961         adapter->link_duplex = 0;
962
963         if (!pci_channel_offline(adapter->pdev))
964                 igb_reset(adapter);
965         igb_clean_all_tx_rings(adapter);
966         igb_clean_all_rx_rings(adapter);
967 }
968
969 void igb_reinit_locked(struct igb_adapter *adapter)
970 {
971         WARN_ON(in_interrupt());
972         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
973                 msleep(1);
974         igb_down(adapter);
975         igb_up(adapter);
976         clear_bit(__IGB_RESETTING, &adapter->state);
977 }
978
979 void igb_reset(struct igb_adapter *adapter)
980 {
981         struct e1000_hw *hw = &adapter->hw;
982         struct e1000_mac_info *mac = &hw->mac;
983         struct e1000_fc_info *fc = &hw->fc;
984         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
985         u16 hwm;
986
987         /* Repartition Pba for greater than 9k mtu
988          * To take effect CTRL.RST is required.
989          */
990         switch (mac->type) {
991         case e1000_82576:
992                 pba = E1000_PBA_64K;
993                 break;
994         case e1000_82575:
995         default:
996                 pba = E1000_PBA_34K;
997                 break;
998         }
999
1000         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1001             (mac->type < e1000_82576)) {
1002                 /* adjust PBA for jumbo frames */
1003                 wr32(E1000_PBA, pba);
1004
1005                 /* To maintain wire speed transmits, the Tx FIFO should be
1006                  * large enough to accommodate two full transmit packets,
1007                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1008                  * the Rx FIFO should be large enough to accommodate at least
1009                  * one full receive packet and is similarly rounded up and
1010                  * expressed in KB. */
1011                 pba = rd32(E1000_PBA);
1012                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1013                 tx_space = pba >> 16;
1014                 /* lower 16 bits has Rx packet buffer allocation size in KB */
1015                 pba &= 0xffff;
1016                 /* the tx fifo also stores 16 bytes of information about the tx
1017                  * but don't include ethernet FCS because hardware appends it */
1018                 min_tx_space = (adapter->max_frame_size +
1019                                 sizeof(union e1000_adv_tx_desc) -
1020                                 ETH_FCS_LEN) * 2;
1021                 min_tx_space = ALIGN(min_tx_space, 1024);
1022                 min_tx_space >>= 10;
1023                 /* software strips receive CRC, so leave room for it */
1024                 min_rx_space = adapter->max_frame_size;
1025                 min_rx_space = ALIGN(min_rx_space, 1024);
1026                 min_rx_space >>= 10;
1027
1028                 /* If current Tx allocation is less than the min Tx FIFO size,
1029                  * and the min Tx FIFO size is less than the current Rx FIFO
1030                  * allocation, take space away from current Rx allocation */
1031                 if (tx_space < min_tx_space &&
1032                     ((min_tx_space - tx_space) < pba)) {
1033                         pba = pba - (min_tx_space - tx_space);
1034
1035                         /* if short on rx space, rx wins and must trump tx
1036                          * adjustment */
1037                         if (pba < min_rx_space)
1038                                 pba = min_rx_space;
1039                 }
1040                 wr32(E1000_PBA, pba);
1041         }
1042
1043         /* flow control settings */
1044         /* The high water mark must be low enough to fit one full frame
1045          * (or the size used for early receive) above it in the Rx FIFO.
1046          * Set it to the lower of:
1047          * - 90% of the Rx FIFO size, or
1048          * - the full Rx FIFO size minus one full frame */
1049         hwm = min(((pba << 10) * 9 / 10),
1050                         ((pba << 10) - 2 * adapter->max_frame_size));
1051
1052         if (mac->type < e1000_82576) {
1053                 fc->high_water = hwm & 0xFFF8;  /* 8-byte granularity */
1054                 fc->low_water = fc->high_water - 8;
1055         } else {
1056                 fc->high_water = hwm & 0xFFF0;  /* 16-byte granularity */
1057                 fc->low_water = fc->high_water - 16;
1058         }
1059         fc->pause_time = 0xFFFF;
1060         fc->send_xon = 1;
1061         fc->type = fc->original_type;
1062
1063         /* disable receive for all VFs and wait one second */
1064         if (adapter->vfs_allocated_count) {
1065                 int i;
1066                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1067                         adapter->vf_data[i].clear_to_send = false;
1068
1069                 /* ping all the active vfs to let them know we are going down */
1070                         igb_ping_all_vfs(adapter);
1071
1072                 /* disable transmits and receives */
1073                 wr32(E1000_VFRE, 0);
1074                 wr32(E1000_VFTE, 0);
1075         }
1076
1077         /* Allow time for pending master requests to run */
1078         adapter->hw.mac.ops.reset_hw(&adapter->hw);
1079         wr32(E1000_WUC, 0);
1080
1081         if (adapter->hw.mac.ops.init_hw(&adapter->hw))
1082                 dev_err(&adapter->pdev->dev, "Hardware Error\n");
1083
1084         igb_update_mng_vlan(adapter);
1085
1086         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1087         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1088
1089         igb_reset_adaptive(&adapter->hw);
1090         igb_get_phy_info(&adapter->hw);
1091 }
1092
1093 static const struct net_device_ops igb_netdev_ops = {
1094         .ndo_open               = igb_open,
1095         .ndo_stop               = igb_close,
1096         .ndo_start_xmit         = igb_xmit_frame_adv,
1097         .ndo_get_stats          = igb_get_stats,
1098         .ndo_set_multicast_list = igb_set_multi,
1099         .ndo_set_mac_address    = igb_set_mac,
1100         .ndo_change_mtu         = igb_change_mtu,
1101         .ndo_do_ioctl           = igb_ioctl,
1102         .ndo_tx_timeout         = igb_tx_timeout,
1103         .ndo_validate_addr      = eth_validate_addr,
1104         .ndo_vlan_rx_register   = igb_vlan_rx_register,
1105         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
1106         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
1107 #ifdef CONFIG_NET_POLL_CONTROLLER
1108         .ndo_poll_controller    = igb_netpoll,
1109 #endif
1110 };
1111
1112 /**
1113  * igb_probe - Device Initialization Routine
1114  * @pdev: PCI device information struct
1115  * @ent: entry in igb_pci_tbl
1116  *
1117  * Returns 0 on success, negative on failure
1118  *
1119  * igb_probe initializes an adapter identified by a pci_dev structure.
1120  * The OS initialization, configuring of the adapter private structure,
1121  * and a hardware reset occur.
1122  **/
1123 static int __devinit igb_probe(struct pci_dev *pdev,
1124                                const struct pci_device_id *ent)
1125 {
1126         struct net_device *netdev;
1127         struct igb_adapter *adapter;
1128         struct e1000_hw *hw;
1129         struct pci_dev *us_dev;
1130         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1131         unsigned long mmio_start, mmio_len;
1132         int err, pci_using_dac, pos;
1133         u16 eeprom_data = 0, state = 0;
1134         u16 eeprom_apme_mask = IGB_EEPROM_APME;
1135         u32 part_num;
1136
1137         err = pci_enable_device_mem(pdev);
1138         if (err)
1139                 return err;
1140
1141         pci_using_dac = 0;
1142         err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1143         if (!err) {
1144                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1145                 if (!err)
1146                         pci_using_dac = 1;
1147         } else {
1148                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1149                 if (err) {
1150                         err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1151                         if (err) {
1152                                 dev_err(&pdev->dev, "No usable DMA "
1153                                         "configuration, aborting\n");
1154                                 goto err_dma;
1155                         }
1156                 }
1157         }
1158
1159         /* 82575 requires that the pci-e link partner disable the L0s state */
1160         switch (pdev->device) {
1161         case E1000_DEV_ID_82575EB_COPPER:
1162         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1163         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1164                 us_dev = pdev->bus->self;
1165                 pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
1166                 if (pos) {
1167                         pci_read_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1168                                              &state);
1169                         state &= ~PCIE_LINK_STATE_L0S;
1170                         pci_write_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1171                                               state);
1172                         dev_info(&pdev->dev,
1173                                  "Disabling ASPM L0s upstream switch port %s\n",
1174                                  pci_name(us_dev));
1175                 }
1176         default:
1177                 break;
1178         }
1179
1180         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1181                                            IORESOURCE_MEM),
1182                                            igb_driver_name);
1183         if (err)
1184                 goto err_pci_reg;
1185
1186         err = pci_enable_pcie_error_reporting(pdev);
1187         if (err) {
1188                 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
1189                         "0x%x\n", err);
1190                 /* non-fatal, continue */
1191         }
1192
1193         pci_set_master(pdev);
1194         pci_save_state(pdev);
1195
1196         err = -ENOMEM;
1197         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1198                                    IGB_ABS_MAX_TX_QUEUES);
1199         if (!netdev)
1200                 goto err_alloc_etherdev;
1201
1202         SET_NETDEV_DEV(netdev, &pdev->dev);
1203
1204         pci_set_drvdata(pdev, netdev);
1205         adapter = netdev_priv(netdev);
1206         adapter->netdev = netdev;
1207         adapter->pdev = pdev;
1208         hw = &adapter->hw;
1209         hw->back = adapter;
1210         adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1211
1212         mmio_start = pci_resource_start(pdev, 0);
1213         mmio_len = pci_resource_len(pdev, 0);
1214
1215         err = -EIO;
1216         hw->hw_addr = ioremap(mmio_start, mmio_len);
1217         if (!hw->hw_addr)
1218                 goto err_ioremap;
1219
1220         netdev->netdev_ops = &igb_netdev_ops;
1221         igb_set_ethtool_ops(netdev);
1222         netdev->watchdog_timeo = 5 * HZ;
1223
1224         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1225
1226         netdev->mem_start = mmio_start;
1227         netdev->mem_end = mmio_start + mmio_len;
1228
1229         /* PCI config space info */
1230         hw->vendor_id = pdev->vendor;
1231         hw->device_id = pdev->device;
1232         hw->revision_id = pdev->revision;
1233         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1234         hw->subsystem_device_id = pdev->subsystem_device;
1235
1236         /* setup the private structure */
1237         hw->back = adapter;
1238         /* Copy the default MAC, PHY and NVM function pointers */
1239         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1240         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1241         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1242         /* Initialize skew-specific constants */
1243         err = ei->get_invariants(hw);
1244         if (err)
1245                 goto err_sw_init;
1246
1247         /* setup the private structure */
1248         err = igb_sw_init(adapter);
1249         if (err)
1250                 goto err_sw_init;
1251
1252         igb_get_bus_info_pcie(hw);
1253
1254         /* set flags */
1255         switch (hw->mac.type) {
1256         case e1000_82575:
1257                 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1258                 break;
1259         case e1000_82576:
1260         default:
1261                 break;
1262         }
1263
1264         hw->phy.autoneg_wait_to_complete = false;
1265         hw->mac.adaptive_ifs = true;
1266
1267         /* Copper options */
1268         if (hw->phy.media_type == e1000_media_type_copper) {
1269                 hw->phy.mdix = AUTO_ALL_MODES;
1270                 hw->phy.disable_polarity_correction = false;
1271                 hw->phy.ms_type = e1000_ms_hw_default;
1272         }
1273
1274         if (igb_check_reset_block(hw))
1275                 dev_info(&pdev->dev,
1276                         "PHY reset is blocked due to SOL/IDER session.\n");
1277
1278         netdev->features = NETIF_F_SG |
1279                            NETIF_F_IP_CSUM |
1280                            NETIF_F_HW_VLAN_TX |
1281                            NETIF_F_HW_VLAN_RX |
1282                            NETIF_F_HW_VLAN_FILTER;
1283
1284         netdev->features |= NETIF_F_IPV6_CSUM;
1285         netdev->features |= NETIF_F_TSO;
1286         netdev->features |= NETIF_F_TSO6;
1287
1288         netdev->features |= NETIF_F_GRO;
1289
1290         netdev->vlan_features |= NETIF_F_TSO;
1291         netdev->vlan_features |= NETIF_F_TSO6;
1292         netdev->vlan_features |= NETIF_F_IP_CSUM;
1293         netdev->vlan_features |= NETIF_F_SG;
1294
1295         if (pci_using_dac)
1296                 netdev->features |= NETIF_F_HIGHDMA;
1297
1298         adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1299
1300         /* before reading the NVM, reset the controller to put the device in a
1301          * known good starting state */
1302         hw->mac.ops.reset_hw(hw);
1303
1304         /* make sure the NVM is good */
1305         if (igb_validate_nvm_checksum(hw) < 0) {
1306                 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1307                 err = -EIO;
1308                 goto err_eeprom;
1309         }
1310
1311         /* copy the MAC address out of the NVM */
1312         if (hw->mac.ops.read_mac_addr(hw))
1313                 dev_err(&pdev->dev, "NVM Read Error\n");
1314
1315         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1316         memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1317
1318         if (!is_valid_ether_addr(netdev->perm_addr)) {
1319                 dev_err(&pdev->dev, "Invalid MAC Address\n");
1320                 err = -EIO;
1321                 goto err_eeprom;
1322         }
1323
1324         init_timer(&adapter->watchdog_timer);
1325         adapter->watchdog_timer.function = &igb_watchdog;
1326         adapter->watchdog_timer.data = (unsigned long) adapter;
1327
1328         init_timer(&adapter->phy_info_timer);
1329         adapter->phy_info_timer.function = &igb_update_phy_info;
1330         adapter->phy_info_timer.data = (unsigned long) adapter;
1331
1332         INIT_WORK(&adapter->reset_task, igb_reset_task);
1333         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1334
1335         /* Initialize link properties that are user-changeable */
1336         adapter->fc_autoneg = true;
1337         hw->mac.autoneg = true;
1338         hw->phy.autoneg_advertised = 0x2f;
1339
1340         hw->fc.original_type = e1000_fc_default;
1341         hw->fc.type = e1000_fc_default;
1342
1343         adapter->itr_setting = IGB_DEFAULT_ITR;
1344         adapter->itr = IGB_START_ITR;
1345
1346         igb_validate_mdi_setting(hw);
1347
1348         adapter->rx_csum = 1;
1349
1350         /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1351          * enable the ACPI Magic Packet filter
1352          */
1353
1354         if (hw->bus.func == 0 ||
1355             hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1356                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1357
1358         if (eeprom_data & eeprom_apme_mask)
1359                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1360
1361         /* now that we have the eeprom settings, apply the special cases where
1362          * the eeprom may be wrong or the board simply won't support wake on
1363          * lan on a particular port */
1364         switch (pdev->device) {
1365         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1366                 adapter->eeprom_wol = 0;
1367                 break;
1368         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1369         case E1000_DEV_ID_82576_FIBER:
1370         case E1000_DEV_ID_82576_SERDES:
1371                 /* Wake events only supported on port A for dual fiber
1372                  * regardless of eeprom setting */
1373                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1374                         adapter->eeprom_wol = 0;
1375                 break;
1376         }
1377
1378         /* initialize the wol settings based on the eeprom settings */
1379         adapter->wol = adapter->eeprom_wol;
1380         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1381
1382         /* reset the hardware with the new settings */
1383         igb_reset(adapter);
1384
1385         /* let the f/w know that the h/w is now under the control of the
1386          * driver. */
1387         igb_get_hw_control(adapter);
1388
1389         /* tell the stack to leave us alone until igb_open() is called */
1390         netif_carrier_off(netdev);
1391         netif_tx_stop_all_queues(netdev);
1392
1393         strcpy(netdev->name, "eth%d");
1394         err = register_netdev(netdev);
1395         if (err)
1396                 goto err_register;
1397
1398 #ifdef CONFIG_PCI_IOV
1399         /* since iov functionality isn't critical to base device function we
1400          * can accept failure.  If it fails we don't allow iov to be enabled */
1401         if (hw->mac.type == e1000_82576) {
1402                 err = pci_enable_sriov(pdev, 0);
1403                 if (!err)
1404                         err = device_create_file(&netdev->dev,
1405                                                  &dev_attr_num_vfs);
1406                 if (err)
1407                         dev_err(&pdev->dev, "Failed to initialize IOV\n");
1408         }
1409
1410 #endif
1411 #ifdef CONFIG_IGB_DCA
1412         if (dca_add_requester(&pdev->dev) == 0) {
1413                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1414                 dev_info(&pdev->dev, "DCA enabled\n");
1415                 /* Always use CB2 mode, difference is masked
1416                  * in the CB driver. */
1417                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
1418                 igb_setup_dca(adapter);
1419         }
1420 #endif
1421
1422         /*
1423          * Initialize hardware timer: we keep it running just in case
1424          * that some program needs it later on.
1425          */
1426         memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1427         adapter->cycles.read = igb_read_clock;
1428         adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1429         adapter->cycles.mult = 1;
1430         adapter->cycles.shift = IGB_TSYNC_SHIFT;
1431         wr32(E1000_TIMINCA,
1432              (1<<24) |
1433              IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS * IGB_TSYNC_SCALE);
1434 #if 0
1435         /*
1436          * Avoid rollover while we initialize by resetting the time counter.
1437          */
1438         wr32(E1000_SYSTIML, 0x00000000);
1439         wr32(E1000_SYSTIMH, 0x00000000);
1440 #else
1441         /*
1442          * Set registers so that rollover occurs soon to test this.
1443          */
1444         wr32(E1000_SYSTIML, 0x00000000);
1445         wr32(E1000_SYSTIMH, 0xFF800000);
1446 #endif
1447         wrfl();
1448         timecounter_init(&adapter->clock,
1449                          &adapter->cycles,
1450                          ktime_to_ns(ktime_get_real()));
1451
1452         /*
1453          * Synchronize our NIC clock against system wall clock. NIC
1454          * time stamp reading requires ~3us per sample, each sample
1455          * was pretty stable even under load => only require 10
1456          * samples for each offset comparison.
1457          */
1458         memset(&adapter->compare, 0, sizeof(adapter->compare));
1459         adapter->compare.source = &adapter->clock;
1460         adapter->compare.target = ktime_get_real;
1461         adapter->compare.num_samples = 10;
1462         timecompare_update(&adapter->compare, 0);
1463
1464 #ifdef DEBUG
1465         {
1466                 char buffer[160];
1467                 printk(KERN_DEBUG
1468                         "igb: %s: hw %p initialized timer\n",
1469                         igb_get_time_str(adapter, buffer),
1470                         &adapter->hw);
1471         }
1472 #endif
1473
1474         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1475         /* print bus type/speed/width info */
1476         dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1477                  netdev->name,
1478                  ((hw->bus.speed == e1000_bus_speed_2500)
1479                   ? "2.5Gb/s" : "unknown"),
1480                  ((hw->bus.width == e1000_bus_width_pcie_x4)
1481                   ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1482                   ? "Width x1" : "unknown"),
1483                  netdev->dev_addr);
1484
1485         igb_read_part_num(hw, &part_num);
1486         dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1487                 (part_num >> 8), (part_num & 0xff));
1488
1489         dev_info(&pdev->dev,
1490                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1491                 adapter->msix_entries ? "MSI-X" :
1492                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1493                 adapter->num_rx_queues, adapter->num_tx_queues);
1494
1495         return 0;
1496
1497 err_register:
1498         igb_release_hw_control(adapter);
1499 err_eeprom:
1500         if (!igb_check_reset_block(hw))
1501                 igb_reset_phy(hw);
1502
1503         if (hw->flash_address)
1504                 iounmap(hw->flash_address);
1505
1506         igb_free_queues(adapter);
1507 err_sw_init:
1508         iounmap(hw->hw_addr);
1509 err_ioremap:
1510         free_netdev(netdev);
1511 err_alloc_etherdev:
1512         pci_release_selected_regions(pdev, pci_select_bars(pdev,
1513                                      IORESOURCE_MEM));
1514 err_pci_reg:
1515 err_dma:
1516         pci_disable_device(pdev);
1517         return err;
1518 }
1519
1520 /**
1521  * igb_remove - Device Removal Routine
1522  * @pdev: PCI device information struct
1523  *
1524  * igb_remove is called by the PCI subsystem to alert the driver
1525  * that it should release a PCI device.  The could be caused by a
1526  * Hot-Plug event, or because the driver is going to be removed from
1527  * memory.
1528  **/
1529 static void __devexit igb_remove(struct pci_dev *pdev)
1530 {
1531         struct net_device *netdev = pci_get_drvdata(pdev);
1532         struct igb_adapter *adapter = netdev_priv(netdev);
1533         struct e1000_hw *hw = &adapter->hw;
1534         int err;
1535
1536         /* flush_scheduled work may reschedule our watchdog task, so
1537          * explicitly disable watchdog tasks from being rescheduled  */
1538         set_bit(__IGB_DOWN, &adapter->state);
1539         del_timer_sync(&adapter->watchdog_timer);
1540         del_timer_sync(&adapter->phy_info_timer);
1541
1542         flush_scheduled_work();
1543
1544 #ifdef CONFIG_IGB_DCA
1545         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1546                 dev_info(&pdev->dev, "DCA disabled\n");
1547                 dca_remove_requester(&pdev->dev);
1548                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1549                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
1550         }
1551 #endif
1552
1553         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1554          * would have already happened in close and is redundant. */
1555         igb_release_hw_control(adapter);
1556
1557         unregister_netdev(netdev);
1558
1559         if (!igb_check_reset_block(&adapter->hw))
1560                 igb_reset_phy(&adapter->hw);
1561
1562         igb_reset_interrupt_capability(adapter);
1563
1564         igb_free_queues(adapter);
1565
1566 #ifdef CONFIG_PCI_IOV
1567         /* reclaim resources allocated to VFs */
1568         if (adapter->vf_data) {
1569                 /* disable iov and allow time for transactions to clear */
1570                 pci_disable_sriov(pdev);
1571                 msleep(500);
1572
1573                 kfree(adapter->vf_data);
1574                 adapter->vf_data = NULL;
1575                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1576                 msleep(100);
1577                 dev_info(&pdev->dev, "IOV Disabled\n");
1578         }
1579 #endif
1580         iounmap(hw->hw_addr);
1581         if (hw->flash_address)
1582                 iounmap(hw->flash_address);
1583         pci_release_selected_regions(pdev, pci_select_bars(pdev,
1584                                      IORESOURCE_MEM));
1585
1586         free_netdev(netdev);
1587
1588         err = pci_disable_pcie_error_reporting(pdev);
1589         if (err)
1590                 dev_err(&pdev->dev,
1591                         "pci_disable_pcie_error_reporting failed 0x%x\n", err);
1592
1593         pci_disable_device(pdev);
1594 }
1595
1596 /**
1597  * igb_sw_init - Initialize general software structures (struct igb_adapter)
1598  * @adapter: board private structure to initialize
1599  *
1600  * igb_sw_init initializes the Adapter private data structure.
1601  * Fields are initialized based on PCI device information and
1602  * OS network device settings (MTU size).
1603  **/
1604 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1605 {
1606         struct e1000_hw *hw = &adapter->hw;
1607         struct net_device *netdev = adapter->netdev;
1608         struct pci_dev *pdev = adapter->pdev;
1609
1610         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1611
1612         adapter->tx_ring_count = IGB_DEFAULT_TXD;
1613         adapter->rx_ring_count = IGB_DEFAULT_RXD;
1614         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1615         adapter->rx_ps_hdr_size = 0; /* disable packet split */
1616         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1617         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1618
1619         /* This call may decrease the number of queues depending on
1620          * interrupt mode. */
1621         igb_set_interrupt_capability(adapter);
1622
1623         if (igb_alloc_queues(adapter)) {
1624                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1625                 return -ENOMEM;
1626         }
1627
1628         /* Explicitly disable IRQ since the NIC can be in any state. */
1629         igb_irq_disable(adapter);
1630
1631         set_bit(__IGB_DOWN, &adapter->state);
1632         return 0;
1633 }
1634
1635 /**
1636  * igb_open - Called when a network interface is made active
1637  * @netdev: network interface device structure
1638  *
1639  * Returns 0 on success, negative value on failure
1640  *
1641  * The open entry point is called when a network interface is made
1642  * active by the system (IFF_UP).  At this point all resources needed
1643  * for transmit and receive operations are allocated, the interrupt
1644  * handler is registered with the OS, the watchdog timer is started,
1645  * and the stack is notified that the interface is ready.
1646  **/
1647 static int igb_open(struct net_device *netdev)
1648 {
1649         struct igb_adapter *adapter = netdev_priv(netdev);
1650         struct e1000_hw *hw = &adapter->hw;
1651         int err;
1652         int i;
1653
1654         /* disallow open during test */
1655         if (test_bit(__IGB_TESTING, &adapter->state))
1656                 return -EBUSY;
1657
1658         /* allocate transmit descriptors */
1659         err = igb_setup_all_tx_resources(adapter);
1660         if (err)
1661                 goto err_setup_tx;
1662
1663         /* allocate receive descriptors */
1664         err = igb_setup_all_rx_resources(adapter);
1665         if (err)
1666                 goto err_setup_rx;
1667
1668         /* e1000_power_up_phy(adapter); */
1669
1670         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1671         if ((adapter->hw.mng_cookie.status &
1672              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1673                 igb_update_mng_vlan(adapter);
1674
1675         /* before we allocate an interrupt, we must be ready to handle it.
1676          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1677          * as soon as we call pci_request_irq, so we have to setup our
1678          * clean_rx handler before we do so.  */
1679         igb_configure(adapter);
1680
1681         igb_vmm_control(adapter);
1682         igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
1683         igb_set_vmolr(hw, adapter->vfs_allocated_count);
1684
1685         err = igb_request_irq(adapter);
1686         if (err)
1687                 goto err_req_irq;
1688
1689         /* From here on the code is the same as igb_up() */
1690         clear_bit(__IGB_DOWN, &adapter->state);
1691
1692         for (i = 0; i < adapter->num_rx_queues; i++)
1693                 napi_enable(&adapter->rx_ring[i].napi);
1694
1695         /* Clear any pending interrupts. */
1696         rd32(E1000_ICR);
1697
1698         igb_irq_enable(adapter);
1699
1700         netif_tx_start_all_queues(netdev);
1701
1702         /* Fire a link status change interrupt to start the watchdog. */
1703         wr32(E1000_ICS, E1000_ICS_LSC);
1704
1705         return 0;
1706
1707 err_req_irq:
1708         igb_release_hw_control(adapter);
1709         /* e1000_power_down_phy(adapter); */
1710         igb_free_all_rx_resources(adapter);
1711 err_setup_rx:
1712         igb_free_all_tx_resources(adapter);
1713 err_setup_tx:
1714         igb_reset(adapter);
1715
1716         return err;
1717 }
1718
1719 /**
1720  * igb_close - Disables a network interface
1721  * @netdev: network interface device structure
1722  *
1723  * Returns 0, this is not allowed to fail
1724  *
1725  * The close entry point is called when an interface is de-activated
1726  * by the OS.  The hardware is still under the driver's control, but
1727  * needs to be disabled.  A global MAC reset is issued to stop the
1728  * hardware, and all transmit and receive resources are freed.
1729  **/
1730 static int igb_close(struct net_device *netdev)
1731 {
1732         struct igb_adapter *adapter = netdev_priv(netdev);
1733
1734         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1735         igb_down(adapter);
1736
1737         igb_free_irq(adapter);
1738
1739         igb_free_all_tx_resources(adapter);
1740         igb_free_all_rx_resources(adapter);
1741
1742         /* kill manageability vlan ID if supported, but not if a vlan with
1743          * the same ID is registered on the host OS (let 8021q kill it) */
1744         if ((adapter->hw.mng_cookie.status &
1745                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1746              !(adapter->vlgrp &&
1747                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1748                 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1749
1750         return 0;
1751 }
1752
1753 /**
1754  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1755  * @adapter: board private structure
1756  * @tx_ring: tx descriptor ring (for a specific queue) to setup
1757  *
1758  * Return 0 on success, negative on failure
1759  **/
1760 int igb_setup_tx_resources(struct igb_adapter *adapter,
1761                            struct igb_ring *tx_ring)
1762 {
1763         struct pci_dev *pdev = adapter->pdev;
1764         int size;
1765
1766         size = sizeof(struct igb_buffer) * tx_ring->count;
1767         tx_ring->buffer_info = vmalloc(size);
1768         if (!tx_ring->buffer_info)
1769                 goto err;
1770         memset(tx_ring->buffer_info, 0, size);
1771
1772         /* round up to nearest 4K */
1773         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
1774         tx_ring->size = ALIGN(tx_ring->size, 4096);
1775
1776         tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1777                                              &tx_ring->dma);
1778
1779         if (!tx_ring->desc)
1780                 goto err;
1781
1782         tx_ring->adapter = adapter;
1783         tx_ring->next_to_use = 0;
1784         tx_ring->next_to_clean = 0;
1785         return 0;
1786
1787 err:
1788         vfree(tx_ring->buffer_info);
1789         dev_err(&adapter->pdev->dev,
1790                 "Unable to allocate memory for the transmit descriptor ring\n");
1791         return -ENOMEM;
1792 }
1793
1794 /**
1795  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1796  *                                (Descriptors) for all queues
1797  * @adapter: board private structure
1798  *
1799  * Return 0 on success, negative on failure
1800  **/
1801 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1802 {
1803         int i, err = 0;
1804         int r_idx;
1805
1806         for (i = 0; i < adapter->num_tx_queues; i++) {
1807                 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1808                 if (err) {
1809                         dev_err(&adapter->pdev->dev,
1810                                 "Allocation for Tx Queue %u failed\n", i);
1811                         for (i--; i >= 0; i--)
1812                                 igb_free_tx_resources(&adapter->tx_ring[i]);
1813                         break;
1814                 }
1815         }
1816
1817         for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1818                 r_idx = i % adapter->num_tx_queues;
1819                 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1820         }
1821         return err;
1822 }
1823
1824 /**
1825  * igb_configure_tx - Configure transmit Unit after Reset
1826  * @adapter: board private structure
1827  *
1828  * Configure the Tx unit of the MAC after a reset.
1829  **/
1830 static void igb_configure_tx(struct igb_adapter *adapter)
1831 {
1832         u64 tdba;
1833         struct e1000_hw *hw = &adapter->hw;
1834         u32 tctl;
1835         u32 txdctl, txctrl;
1836         int i, j;
1837
1838         for (i = 0; i < adapter->num_tx_queues; i++) {
1839                 struct igb_ring *ring = &adapter->tx_ring[i];
1840                 j = ring->reg_idx;
1841                 wr32(E1000_TDLEN(j),
1842                      ring->count * sizeof(union e1000_adv_tx_desc));
1843                 tdba = ring->dma;
1844                 wr32(E1000_TDBAL(j),
1845                      tdba & 0x00000000ffffffffULL);
1846                 wr32(E1000_TDBAH(j), tdba >> 32);
1847
1848                 ring->head = E1000_TDH(j);
1849                 ring->tail = E1000_TDT(j);
1850                 writel(0, hw->hw_addr + ring->tail);
1851                 writel(0, hw->hw_addr + ring->head);
1852                 txdctl = rd32(E1000_TXDCTL(j));
1853                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1854                 wr32(E1000_TXDCTL(j), txdctl);
1855
1856                 /* Turn off Relaxed Ordering on head write-backs.  The
1857                  * writebacks MUST be delivered in order or it will
1858                  * completely screw up our bookeeping.
1859                  */
1860                 txctrl = rd32(E1000_DCA_TXCTRL(j));
1861                 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1862                 wr32(E1000_DCA_TXCTRL(j), txctrl);
1863         }
1864
1865         /* disable queue 0 to prevent tail bump w/o re-configuration */
1866         if (adapter->vfs_allocated_count)
1867                 wr32(E1000_TXDCTL(0), 0);
1868
1869         /* Program the Transmit Control Register */
1870         tctl = rd32(E1000_TCTL);
1871         tctl &= ~E1000_TCTL_CT;
1872         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1873                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1874
1875         igb_config_collision_dist(hw);
1876
1877         /* Setup Transmit Descriptor Settings for eop descriptor */
1878         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1879
1880         /* Enable transmits */
1881         tctl |= E1000_TCTL_EN;
1882
1883         wr32(E1000_TCTL, tctl);
1884 }
1885
1886 /**
1887  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1888  * @adapter: board private structure
1889  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
1890  *
1891  * Returns 0 on success, negative on failure
1892  **/
1893 int igb_setup_rx_resources(struct igb_adapter *adapter,
1894                            struct igb_ring *rx_ring)
1895 {
1896         struct pci_dev *pdev = adapter->pdev;
1897         int size, desc_len;
1898
1899         size = sizeof(struct igb_buffer) * rx_ring->count;
1900         rx_ring->buffer_info = vmalloc(size);
1901         if (!rx_ring->buffer_info)
1902                 goto err;
1903         memset(rx_ring->buffer_info, 0, size);
1904
1905         desc_len = sizeof(union e1000_adv_rx_desc);
1906
1907         /* Round up to nearest 4K */
1908         rx_ring->size = rx_ring->count * desc_len;
1909         rx_ring->size = ALIGN(rx_ring->size, 4096);
1910
1911         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1912                                              &rx_ring->dma);
1913
1914         if (!rx_ring->desc)
1915                 goto err;
1916
1917         rx_ring->next_to_clean = 0;
1918         rx_ring->next_to_use = 0;
1919
1920         rx_ring->adapter = adapter;
1921
1922         return 0;
1923
1924 err:
1925         vfree(rx_ring->buffer_info);
1926         dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1927                 "the receive descriptor ring\n");
1928         return -ENOMEM;
1929 }
1930
1931 /**
1932  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1933  *                                (Descriptors) for all queues
1934  * @adapter: board private structure
1935  *
1936  * Return 0 on success, negative on failure
1937  **/
1938 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1939 {
1940         int i, err = 0;
1941
1942         for (i = 0; i < adapter->num_rx_queues; i++) {
1943                 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1944                 if (err) {
1945                         dev_err(&adapter->pdev->dev,
1946                                 "Allocation for Rx Queue %u failed\n", i);
1947                         for (i--; i >= 0; i--)
1948                                 igb_free_rx_resources(&adapter->rx_ring[i]);
1949                         break;
1950                 }
1951         }
1952
1953         return err;
1954 }
1955
1956 /**
1957  * igb_setup_rctl - configure the receive control registers
1958  * @adapter: Board private structure
1959  **/
1960 static void igb_setup_rctl(struct igb_adapter *adapter)
1961 {
1962         struct e1000_hw *hw = &adapter->hw;
1963         u32 rctl;
1964         u32 srrctl = 0;
1965         int i, j;
1966
1967         rctl = rd32(E1000_RCTL);
1968
1969         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1970         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1971
1972         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
1973                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1974
1975         /*
1976          * enable stripping of CRC. It's unlikely this will break BMC
1977          * redirection as it did with e1000. Newer features require
1978          * that the HW strips the CRC.
1979          */
1980         rctl |= E1000_RCTL_SECRC;
1981
1982         /*
1983          * disable store bad packets and clear size bits.
1984          */
1985         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
1986
1987         /* enable LPE when to prevent packets larger than max_frame_size */
1988                 rctl |= E1000_RCTL_LPE;
1989
1990         /* Setup buffer sizes */
1991         switch (adapter->rx_buffer_len) {
1992         case IGB_RXBUFFER_256:
1993                 rctl |= E1000_RCTL_SZ_256;
1994                 break;
1995         case IGB_RXBUFFER_512:
1996                 rctl |= E1000_RCTL_SZ_512;
1997                 break;
1998         default:
1999                 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
2000                          >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2001                 break;
2002         }
2003
2004         /* 82575 and greater support packet-split where the protocol
2005          * header is placed in skb->data and the packet data is
2006          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2007          * In the case of a non-split, skb->data is linearly filled,
2008          * followed by the page buffers.  Therefore, skb->data is
2009          * sized to hold the largest protocol header.
2010          */
2011         /* allocations using alloc_page take too long for regular MTU
2012          * so only enable packet split for jumbo frames */
2013         if (adapter->netdev->mtu > ETH_DATA_LEN) {
2014                 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
2015                 srrctl |= adapter->rx_ps_hdr_size <<
2016                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2017                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2018         } else {
2019                 adapter->rx_ps_hdr_size = 0;
2020                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2021         }
2022
2023         /* Attention!!!  For SR-IOV PF driver operations you must enable
2024          * queue drop for all VF and PF queues to prevent head of line blocking
2025          * if an un-trusted VF does not provide descriptors to hardware.
2026          */
2027         if (adapter->vfs_allocated_count) {
2028                 u32 vmolr;
2029
2030                 j = adapter->rx_ring[0].reg_idx;
2031
2032                 /* set all queue drop enable bits */
2033                 wr32(E1000_QDE, ALL_QUEUES);
2034                 srrctl |= E1000_SRRCTL_DROP_EN;
2035
2036                 /* disable queue 0 to prevent tail write w/o re-config */
2037                 wr32(E1000_RXDCTL(0), 0);
2038
2039                 vmolr = rd32(E1000_VMOLR(j));
2040                 if (rctl & E1000_RCTL_LPE)
2041                         vmolr |= E1000_VMOLR_LPE;
2042                 if (adapter->num_rx_queues > 0)
2043                         vmolr |= E1000_VMOLR_RSSE;
2044                 wr32(E1000_VMOLR(j), vmolr);
2045         }
2046
2047         for (i = 0; i < adapter->num_rx_queues; i++) {
2048                 j = adapter->rx_ring[i].reg_idx;
2049                 wr32(E1000_SRRCTL(j), srrctl);
2050         }
2051
2052         wr32(E1000_RCTL, rctl);
2053 }
2054
2055 /**
2056  * igb_rlpml_set - set maximum receive packet size
2057  * @adapter: board private structure
2058  *
2059  * Configure maximum receivable packet size.
2060  **/
2061 static void igb_rlpml_set(struct igb_adapter *adapter)
2062 {
2063         u32 max_frame_size = adapter->max_frame_size;
2064         struct e1000_hw *hw = &adapter->hw;
2065         u16 pf_id = adapter->vfs_allocated_count;
2066
2067         if (adapter->vlgrp)
2068                 max_frame_size += VLAN_TAG_SIZE;
2069
2070         /* if vfs are enabled we set RLPML to the largest possible request
2071          * size and set the VMOLR RLPML to the size we need */
2072         if (pf_id) {
2073                 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2074                 max_frame_size = MAX_STD_JUMBO_FRAME_SIZE + VLAN_TAG_SIZE;
2075         }
2076
2077         wr32(E1000_RLPML, max_frame_size);
2078 }
2079
2080 /**
2081  * igb_configure_vt_default_pool - Configure VT default pool
2082  * @adapter: board private structure
2083  *
2084  * Configure the default pool
2085  **/
2086 static void igb_configure_vt_default_pool(struct igb_adapter *adapter)
2087 {
2088         struct e1000_hw *hw = &adapter->hw;
2089         u16 pf_id = adapter->vfs_allocated_count;
2090         u32 vtctl;
2091
2092         /* not in sr-iov mode - do nothing */
2093         if (!pf_id)
2094                 return;
2095
2096         vtctl = rd32(E1000_VT_CTL);
2097         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2098                    E1000_VT_CTL_DISABLE_DEF_POOL);
2099         vtctl |= pf_id << E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2100         wr32(E1000_VT_CTL, vtctl);
2101 }
2102
2103 /**
2104  * igb_configure_rx - Configure receive Unit after Reset
2105  * @adapter: board private structure
2106  *
2107  * Configure the Rx unit of the MAC after a reset.
2108  **/
2109 static void igb_configure_rx(struct igb_adapter *adapter)
2110 {
2111         u64 rdba;
2112         struct e1000_hw *hw = &adapter->hw;
2113         u32 rctl, rxcsum;
2114         u32 rxdctl;
2115         int i;
2116
2117         /* disable receives while setting up the descriptors */
2118         rctl = rd32(E1000_RCTL);
2119         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2120         wrfl();
2121         mdelay(10);
2122
2123         if (adapter->itr_setting > 3)
2124                 wr32(E1000_ITR, adapter->itr);
2125
2126         /* Setup the HW Rx Head and Tail Descriptor Pointers and
2127          * the Base and Length of the Rx Descriptor Ring */
2128         for (i = 0; i < adapter->num_rx_queues; i++) {
2129                 struct igb_ring *ring = &adapter->rx_ring[i];
2130                 int j = ring->reg_idx;
2131                 rdba = ring->dma;
2132                 wr32(E1000_RDBAL(j),
2133                      rdba & 0x00000000ffffffffULL);
2134                 wr32(E1000_RDBAH(j), rdba >> 32);
2135                 wr32(E1000_RDLEN(j),
2136                      ring->count * sizeof(union e1000_adv_rx_desc));
2137
2138                 ring->head = E1000_RDH(j);
2139                 ring->tail = E1000_RDT(j);
2140                 writel(0, hw->hw_addr + ring->tail);
2141                 writel(0, hw->hw_addr + ring->head);
2142
2143                 rxdctl = rd32(E1000_RXDCTL(j));
2144                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2145                 rxdctl &= 0xFFF00000;
2146                 rxdctl |= IGB_RX_PTHRESH;
2147                 rxdctl |= IGB_RX_HTHRESH << 8;
2148                 rxdctl |= IGB_RX_WTHRESH << 16;
2149                 wr32(E1000_RXDCTL(j), rxdctl);
2150         }
2151
2152         if (adapter->num_rx_queues > 1) {
2153                 u32 random[10];
2154                 u32 mrqc;
2155                 u32 j, shift;
2156                 union e1000_reta {
2157                         u32 dword;
2158                         u8  bytes[4];
2159                 } reta;
2160
2161                 get_random_bytes(&random[0], 40);
2162
2163                 if (hw->mac.type >= e1000_82576)
2164                         shift = 0;
2165                 else
2166                         shift = 6;
2167                 for (j = 0; j < (32 * 4); j++) {
2168                         reta.bytes[j & 3] =
2169                                 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
2170                         if ((j & 3) == 3)
2171                                 writel(reta.dword,
2172                                        hw->hw_addr + E1000_RETA(0) + (j & ~3));
2173                 }
2174                 if (adapter->vfs_allocated_count)
2175                         mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2176                 else
2177                         mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2178
2179                 /* Fill out hash function seeds */
2180                 for (j = 0; j < 10; j++)
2181                         array_wr32(E1000_RSSRK(0), j, random[j]);
2182
2183                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2184                          E1000_MRQC_RSS_FIELD_IPV4_TCP);
2185                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2186                          E1000_MRQC_RSS_FIELD_IPV6_TCP);
2187                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2188                          E1000_MRQC_RSS_FIELD_IPV6_UDP);
2189                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2190                          E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2191
2192
2193                 wr32(E1000_MRQC, mrqc);
2194
2195                 /* Multiqueue and raw packet checksumming are mutually
2196                  * exclusive.  Note that this not the same as TCP/IP
2197                  * checksumming, which works fine. */
2198                 rxcsum = rd32(E1000_RXCSUM);
2199                 rxcsum |= E1000_RXCSUM_PCSD;
2200                 wr32(E1000_RXCSUM, rxcsum);
2201         } else {
2202                 /* Enable multi-queue for sr-iov */
2203                 if (adapter->vfs_allocated_count)
2204                         wr32(E1000_MRQC, E1000_MRQC_ENABLE_VMDQ);
2205                 /* Enable Receive Checksum Offload for TCP and UDP */
2206                 rxcsum = rd32(E1000_RXCSUM);
2207                 if (adapter->rx_csum)
2208                         rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPPCSE;
2209                 else
2210                         rxcsum &= ~(E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPPCSE);
2211
2212                 wr32(E1000_RXCSUM, rxcsum);
2213         }
2214
2215         /* Set the default pool for the PF's first queue */
2216         igb_configure_vt_default_pool(adapter);
2217
2218         igb_rlpml_set(adapter);
2219
2220         /* Enable Receives */
2221         wr32(E1000_RCTL, rctl);
2222 }
2223
2224 /**
2225  * igb_free_tx_resources - Free Tx Resources per Queue
2226  * @tx_ring: Tx descriptor ring for a specific queue
2227  *
2228  * Free all transmit software resources
2229  **/
2230 void igb_free_tx_resources(struct igb_ring *tx_ring)
2231 {
2232         struct pci_dev *pdev = tx_ring->adapter->pdev;
2233
2234         igb_clean_tx_ring(tx_ring);
2235
2236         vfree(tx_ring->buffer_info);
2237         tx_ring->buffer_info = NULL;
2238
2239         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2240
2241         tx_ring->desc = NULL;
2242 }
2243
2244 /**
2245  * igb_free_all_tx_resources - Free Tx Resources for All Queues
2246  * @adapter: board private structure
2247  *
2248  * Free all transmit software resources
2249  **/
2250 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2251 {
2252         int i;
2253
2254         for (i = 0; i < adapter->num_tx_queues; i++)
2255                 igb_free_tx_resources(&adapter->tx_ring[i]);
2256 }
2257
2258 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2259                                            struct igb_buffer *buffer_info)
2260 {
2261         if (buffer_info->dma) {
2262                 pci_unmap_page(adapter->pdev,
2263                                 buffer_info->dma,
2264                                 buffer_info->length,
2265                                 PCI_DMA_TODEVICE);
2266                 buffer_info->dma = 0;
2267         }
2268         if (buffer_info->skb) {
2269                 dev_kfree_skb_any(buffer_info->skb);
2270                 buffer_info->skb = NULL;
2271         }
2272         buffer_info->time_stamp = 0;
2273         buffer_info->next_to_watch = 0;
2274         /* buffer_info must be completely set up in the transmit path */
2275 }
2276
2277 /**
2278  * igb_clean_tx_ring - Free Tx Buffers
2279  * @tx_ring: ring to be cleaned
2280  **/
2281 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2282 {
2283         struct igb_adapter *adapter = tx_ring->adapter;
2284         struct igb_buffer *buffer_info;
2285         unsigned long size;
2286         unsigned int i;
2287
2288         if (!tx_ring->buffer_info)
2289                 return;
2290         /* Free all the Tx ring sk_buffs */
2291
2292         for (i = 0; i < tx_ring->count; i++) {
2293                 buffer_info = &tx_ring->buffer_info[i];
2294                 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2295         }
2296
2297         size = sizeof(struct igb_buffer) * tx_ring->count;
2298         memset(tx_ring->buffer_info, 0, size);
2299
2300         /* Zero out the descriptor ring */
2301
2302         memset(tx_ring->desc, 0, tx_ring->size);
2303
2304         tx_ring->next_to_use = 0;
2305         tx_ring->next_to_clean = 0;
2306
2307         writel(0, adapter->hw.hw_addr + tx_ring->head);
2308         writel(0, adapter->hw.hw_addr + tx_ring->tail);
2309 }
2310
2311 /**
2312  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2313  * @adapter: board private structure
2314  **/
2315 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2316 {
2317         int i;
2318
2319         for (i = 0; i < adapter->num_tx_queues; i++)
2320                 igb_clean_tx_ring(&adapter->tx_ring[i]);
2321 }
2322
2323 /**
2324  * igb_free_rx_resources - Free Rx Resources
2325  * @rx_ring: ring to clean the resources from
2326  *
2327  * Free all receive software resources
2328  **/
2329 void igb_free_rx_resources(struct igb_ring *rx_ring)
2330 {
2331         struct pci_dev *pdev = rx_ring->adapter->pdev;
2332
2333         igb_clean_rx_ring(rx_ring);
2334
2335         vfree(rx_ring->buffer_info);
2336         rx_ring->buffer_info = NULL;
2337
2338         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2339
2340         rx_ring->desc = NULL;
2341 }
2342
2343 /**
2344  * igb_free_all_rx_resources - Free Rx Resources for All Queues
2345  * @adapter: board private structure
2346  *
2347  * Free all receive software resources
2348  **/
2349 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2350 {
2351         int i;
2352
2353         for (i = 0; i < adapter->num_rx_queues; i++)
2354                 igb_free_rx_resources(&adapter->rx_ring[i]);
2355 }
2356
2357 /**
2358  * igb_clean_rx_ring - Free Rx Buffers per Queue
2359  * @rx_ring: ring to free buffers from
2360  **/
2361 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2362 {
2363         struct igb_adapter *adapter = rx_ring->adapter;
2364         struct igb_buffer *buffer_info;
2365         struct pci_dev *pdev = adapter->pdev;
2366         unsigned long size;
2367         unsigned int i;
2368
2369         if (!rx_ring->buffer_info)
2370                 return;
2371         /* Free all the Rx ring sk_buffs */
2372         for (i = 0; i < rx_ring->count; i++) {
2373                 buffer_info = &rx_ring->buffer_info[i];
2374                 if (buffer_info->dma) {
2375                         if (adapter->rx_ps_hdr_size)
2376                                 pci_unmap_single(pdev, buffer_info->dma,
2377                                                  adapter->rx_ps_hdr_size,
2378                                                  PCI_DMA_FROMDEVICE);
2379                         else
2380                                 pci_unmap_single(pdev, buffer_info->dma,
2381                                                  adapter->rx_buffer_len,
2382                                                  PCI_DMA_FROMDEVICE);
2383                         buffer_info->dma = 0;
2384                 }
2385
2386                 if (buffer_info->skb) {
2387                         dev_kfree_skb(buffer_info->skb);
2388                         buffer_info->skb = NULL;
2389                 }
2390                 if (buffer_info->page) {
2391                         if (buffer_info->page_dma)
2392                                 pci_unmap_page(pdev, buffer_info->page_dma,
2393                                                PAGE_SIZE / 2,
2394                                                PCI_DMA_FROMDEVICE);
2395                         put_page(buffer_info->page);
2396                         buffer_info->page = NULL;
2397                         buffer_info->page_dma = 0;
2398                         buffer_info->page_offset = 0;
2399                 }
2400         }
2401
2402         size = sizeof(struct igb_buffer) * rx_ring->count;
2403         memset(rx_ring->buffer_info, 0, size);
2404
2405         /* Zero out the descriptor ring */
2406         memset(rx_ring->desc, 0, rx_ring->size);
2407
2408         rx_ring->next_to_clean = 0;
2409         rx_ring->next_to_use = 0;
2410
2411         writel(0, adapter->hw.hw_addr + rx_ring->head);
2412         writel(0, adapter->hw.hw_addr + rx_ring->tail);
2413 }
2414
2415 /**
2416  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2417  * @adapter: board private structure
2418  **/
2419 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2420 {
2421         int i;
2422
2423         for (i = 0; i < adapter->num_rx_queues; i++)
2424                 igb_clean_rx_ring(&adapter->rx_ring[i]);
2425 }
2426
2427 /**
2428  * igb_set_mac - Change the Ethernet Address of the NIC
2429  * @netdev: network interface device structure
2430  * @p: pointer to an address structure
2431  *
2432  * Returns 0 on success, negative on failure
2433  **/
2434 static int igb_set_mac(struct net_device *netdev, void *p)
2435 {
2436         struct igb_adapter *adapter = netdev_priv(netdev);
2437         struct e1000_hw *hw = &adapter->hw;
2438         struct sockaddr *addr = p;
2439
2440         if (!is_valid_ether_addr(addr->sa_data))
2441                 return -EADDRNOTAVAIL;
2442
2443         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2444         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2445
2446         hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
2447
2448         igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
2449
2450         return 0;
2451 }
2452
2453 /**
2454  * igb_set_multi - Multicast and Promiscuous mode set
2455  * @netdev: network interface device structure
2456  *
2457  * The set_multi entry point is called whenever the multicast address
2458  * list or the network interface flags are updated.  This routine is
2459  * responsible for configuring the hardware for proper multicast,
2460  * promiscuous mode, and all-multi behavior.
2461  **/
2462 static void igb_set_multi(struct net_device *netdev)
2463 {
2464         struct igb_adapter *adapter = netdev_priv(netdev);
2465         struct e1000_hw *hw = &adapter->hw;
2466         struct e1000_mac_info *mac = &hw->mac;
2467         struct dev_mc_list *mc_ptr;
2468         u8  *mta_list;
2469         u32 rctl;
2470         int i;
2471
2472         /* Check for Promiscuous and All Multicast modes */
2473
2474         rctl = rd32(E1000_RCTL);
2475
2476         if (netdev->flags & IFF_PROMISC) {
2477                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2478                 rctl &= ~E1000_RCTL_VFE;
2479         } else {
2480                 if (netdev->flags & IFF_ALLMULTI) {
2481                         rctl |= E1000_RCTL_MPE;
2482                         rctl &= ~E1000_RCTL_UPE;
2483                 } else
2484                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2485                 rctl |= E1000_RCTL_VFE;
2486         }
2487         wr32(E1000_RCTL, rctl);
2488
2489         if (!netdev->mc_count) {
2490                 /* nothing to program, so clear mc list */
2491                 igb_update_mc_addr_list(hw, NULL, 0, 1,
2492                                         mac->rar_entry_count);
2493                 return;
2494         }
2495
2496         mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2497         if (!mta_list)
2498                 return;
2499
2500         /* The shared function expects a packed array of only addresses. */
2501         mc_ptr = netdev->mc_list;
2502
2503         for (i = 0; i < netdev->mc_count; i++) {
2504                 if (!mc_ptr)
2505                         break;
2506                 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2507                 mc_ptr = mc_ptr->next;
2508         }
2509         igb_update_mc_addr_list(hw, mta_list, i,
2510                                 adapter->vfs_allocated_count + 1,
2511                                 mac->rar_entry_count);
2512
2513         igb_set_mc_list_pools(adapter, i, mac->rar_entry_count);
2514         igb_restore_vf_multicasts(adapter);
2515
2516         kfree(mta_list);
2517 }
2518
2519 /* Need to wait a few seconds after link up to get diagnostic information from
2520  * the phy */
2521 static void igb_update_phy_info(unsigned long data)
2522 {
2523         struct igb_adapter *adapter = (struct igb_adapter *) data;
2524         igb_get_phy_info(&adapter->hw);
2525 }
2526
2527 /**
2528  * igb_has_link - check shared code for link and determine up/down
2529  * @adapter: pointer to driver private info
2530  **/
2531 static bool igb_has_link(struct igb_adapter *adapter)
2532 {
2533         struct e1000_hw *hw = &adapter->hw;
2534         bool link_active = false;
2535         s32 ret_val = 0;
2536
2537         /* get_link_status is set on LSC (link status) interrupt or
2538          * rx sequence error interrupt.  get_link_status will stay
2539          * false until the e1000_check_for_link establishes link
2540          * for copper adapters ONLY
2541          */
2542         switch (hw->phy.media_type) {
2543         case e1000_media_type_copper:
2544                 if (hw->mac.get_link_status) {
2545                         ret_val = hw->mac.ops.check_for_link(hw);
2546                         link_active = !hw->mac.get_link_status;
2547                 } else {
2548                         link_active = true;
2549                 }
2550                 break;
2551         case e1000_media_type_fiber:
2552                 ret_val = hw->mac.ops.check_for_link(hw);
2553                 link_active = !!(rd32(E1000_STATUS) & E1000_STATUS_LU);
2554                 break;
2555         case e1000_media_type_internal_serdes:
2556                 ret_val = hw->mac.ops.check_for_link(hw);
2557                 link_active = hw->mac.serdes_has_link;
2558                 break;
2559         default:
2560         case e1000_media_type_unknown:
2561                 break;
2562         }
2563
2564         return link_active;
2565 }
2566
2567 /**
2568  * igb_watchdog - Timer Call-back
2569  * @data: pointer to adapter cast into an unsigned long
2570  **/
2571 static void igb_watchdog(unsigned long data)
2572 {
2573         struct igb_adapter *adapter = (struct igb_adapter *)data;
2574         /* Do the rest outside of interrupt context */
2575         schedule_work(&adapter->watchdog_task);
2576 }
2577
2578 static void igb_watchdog_task(struct work_struct *work)
2579 {
2580         struct igb_adapter *adapter = container_of(work,
2581                                         struct igb_adapter, watchdog_task);
2582         struct e1000_hw *hw = &adapter->hw;
2583         struct net_device *netdev = adapter->netdev;
2584         struct igb_ring *tx_ring = adapter->tx_ring;
2585         u32 link;
2586         u32 eics = 0;
2587         int i;
2588
2589         link = igb_has_link(adapter);
2590         if ((netif_carrier_ok(netdev)) && link)
2591                 goto link_up;
2592
2593         if (link) {
2594                 if (!netif_carrier_ok(netdev)) {
2595                         u32 ctrl;
2596                         hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2597                                                    &adapter->link_speed,
2598                                                    &adapter->link_duplex);
2599
2600                         ctrl = rd32(E1000_CTRL);
2601                         /* Links status message must follow this format */
2602                         printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2603                                  "Flow Control: %s\n",
2604                                  netdev->name,
2605                                  adapter->link_speed,
2606                                  adapter->link_duplex == FULL_DUPLEX ?
2607                                  "Full Duplex" : "Half Duplex",
2608                                  ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2609                                  E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2610                                  E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2611                                  E1000_CTRL_TFCE) ? "TX" : "None")));
2612
2613                         /* tweak tx_queue_len according to speed/duplex and
2614                          * adjust the timeout factor */
2615                         netdev->tx_queue_len = adapter->tx_queue_len;
2616                         adapter->tx_timeout_factor = 1;
2617                         switch (adapter->link_speed) {
2618                         case SPEED_10:
2619                                 netdev->tx_queue_len = 10;
2620                                 adapter->tx_timeout_factor = 14;
2621                                 break;
2622                         case SPEED_100:
2623                                 netdev->tx_queue_len = 100;
2624                                 /* maybe add some timeout factor ? */
2625                                 break;
2626                         }
2627
2628                         netif_carrier_on(netdev);
2629                         netif_tx_wake_all_queues(netdev);
2630
2631                         igb_ping_all_vfs(adapter);
2632
2633                         /* link state has changed, schedule phy info update */
2634                         if (!test_bit(__IGB_DOWN, &adapter->state))
2635                                 mod_timer(&adapter->phy_info_timer,
2636                                           round_jiffies(jiffies + 2 * HZ));
2637                 }
2638         } else {
2639                 if (netif_carrier_ok(netdev)) {
2640                         adapter->link_speed = 0;
2641                         adapter->link_duplex = 0;
2642                         /* Links status message must follow this format */
2643                         printk(KERN_INFO "igb: %s NIC Link is Down\n",
2644                                netdev->name);
2645                         netif_carrier_off(netdev);
2646                         netif_tx_stop_all_queues(netdev);
2647
2648                         igb_ping_all_vfs(adapter);
2649
2650                         /* link state has changed, schedule phy info update */
2651                         if (!test_bit(__IGB_DOWN, &adapter->state))
2652                                 mod_timer(&adapter->phy_info_timer,
2653                                           round_jiffies(jiffies + 2 * HZ));
2654                 }
2655         }
2656
2657 link_up:
2658         igb_update_stats(adapter);
2659
2660         hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2661         adapter->tpt_old = adapter->stats.tpt;
2662         hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
2663         adapter->colc_old = adapter->stats.colc;
2664
2665         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2666         adapter->gorc_old = adapter->stats.gorc;
2667         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2668         adapter->gotc_old = adapter->stats.gotc;
2669
2670         igb_update_adaptive(&adapter->hw);
2671
2672         if (!netif_carrier_ok(netdev)) {
2673                 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2674                         /* We've lost link, so the controller stops DMA,
2675                          * but we've got queued Tx work that's never going
2676                          * to get done, so reset controller to flush Tx.
2677                          * (Do the reset outside of interrupt context). */
2678                         adapter->tx_timeout_count++;
2679                         schedule_work(&adapter->reset_task);
2680                 }
2681         }
2682
2683         /* Cause software interrupt to ensure rx ring is cleaned */
2684         if (adapter->msix_entries) {
2685                 for (i = 0; i < adapter->num_rx_queues; i++)
2686                         eics |= adapter->rx_ring[i].eims_value;
2687                 wr32(E1000_EICS, eics);
2688         } else {
2689                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2690         }
2691
2692         /* Force detection of hung controller every watchdog period */
2693         tx_ring->detect_tx_hung = true;
2694
2695         /* Reset the timer */
2696         if (!test_bit(__IGB_DOWN, &adapter->state))
2697                 mod_timer(&adapter->watchdog_timer,
2698                           round_jiffies(jiffies + 2 * HZ));
2699 }
2700
2701 enum latency_range {
2702         lowest_latency = 0,
2703         low_latency = 1,
2704         bulk_latency = 2,
2705         latency_invalid = 255
2706 };
2707
2708
2709 /**
2710  * igb_update_ring_itr - update the dynamic ITR value based on packet size
2711  *
2712  *      Stores a new ITR value based on strictly on packet size.  This
2713  *      algorithm is less sophisticated than that used in igb_update_itr,
2714  *      due to the difficulty of synchronizing statistics across multiple
2715  *      receive rings.  The divisors and thresholds used by this fuction
2716  *      were determined based on theoretical maximum wire speed and testing
2717  *      data, in order to minimize response time while increasing bulk
2718  *      throughput.
2719  *      This functionality is controlled by the InterruptThrottleRate module
2720  *      parameter (see igb_param.c)
2721  *      NOTE:  This function is called only when operating in a multiqueue
2722  *             receive environment.
2723  * @rx_ring: pointer to ring
2724  **/
2725 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2726 {
2727         int new_val = rx_ring->itr_val;
2728         int avg_wire_size = 0;
2729         struct igb_adapter *adapter = rx_ring->adapter;
2730
2731         if (!rx_ring->total_packets)
2732                 goto clear_counts; /* no packets, so don't do anything */
2733
2734         /* For non-gigabit speeds, just fix the interrupt rate at 4000
2735          * ints/sec - ITR timer value of 120 ticks.
2736          */
2737         if (adapter->link_speed != SPEED_1000) {
2738                 new_val = 120;
2739                 goto set_itr_val;
2740         }
2741         avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2742
2743         /* Add 24 bytes to size to account for CRC, preamble, and gap */
2744         avg_wire_size += 24;
2745
2746         /* Don't starve jumbo frames */
2747         avg_wire_size = min(avg_wire_size, 3000);
2748
2749         /* Give a little boost to mid-size frames */
2750         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2751                 new_val = avg_wire_size / 3;
2752         else
2753                 new_val = avg_wire_size / 2;
2754
2755 set_itr_val:
2756         if (new_val != rx_ring->itr_val) {
2757                 rx_ring->itr_val = new_val;
2758                 rx_ring->set_itr = 1;
2759         }
2760 clear_counts:
2761         rx_ring->total_bytes = 0;
2762         rx_ring->total_packets = 0;
2763 }
2764
2765 /**
2766  * igb_update_itr - update the dynamic ITR value based on statistics
2767  *      Stores a new ITR value based on packets and byte
2768  *      counts during the last interrupt.  The advantage of per interrupt
2769  *      computation is faster updates and more accurate ITR for the current
2770  *      traffic pattern.  Constants in this function were computed
2771  *      based on theoretical maximum wire speed and thresholds were set based
2772  *      on testing data as well as attempting to minimize response time
2773  *      while increasing bulk throughput.
2774  *      this functionality is controlled by the InterruptThrottleRate module
2775  *      parameter (see igb_param.c)
2776  *      NOTE:  These calculations are only valid when operating in a single-
2777  *             queue environment.
2778  * @adapter: pointer to adapter
2779  * @itr_setting: current adapter->itr
2780  * @packets: the number of packets during this measurement interval
2781  * @bytes: the number of bytes during this measurement interval
2782  **/
2783 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2784                                    int packets, int bytes)
2785 {
2786         unsigned int retval = itr_setting;
2787
2788         if (packets == 0)
2789                 goto update_itr_done;
2790
2791         switch (itr_setting) {
2792         case lowest_latency:
2793                 /* handle TSO and jumbo frames */
2794                 if (bytes/packets > 8000)
2795                         retval = bulk_latency;
2796                 else if ((packets < 5) && (bytes > 512))
2797                         retval = low_latency;
2798                 break;
2799         case low_latency:  /* 50 usec aka 20000 ints/s */
2800                 if (bytes > 10000) {
2801                         /* this if handles the TSO accounting */
2802                         if (bytes/packets > 8000) {
2803                                 retval = bulk_latency;
2804                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2805                                 retval = bulk_latency;
2806                         } else if ((packets > 35)) {
2807                                 retval = lowest_latency;
2808                         }
2809                 } else if (bytes/packets > 2000) {
2810                         retval = bulk_latency;
2811                 } else if (packets <= 2 && bytes < 512) {
2812                         retval = lowest_latency;
2813                 }
2814                 break;
2815         case bulk_latency: /* 250 usec aka 4000 ints/s */
2816                 if (bytes > 25000) {
2817                         if (packets > 35)
2818                                 retval = low_latency;
2819                 } else if (bytes < 1500) {
2820                         retval = low_latency;
2821                 }
2822                 break;
2823         }
2824
2825 update_itr_done:
2826         return retval;
2827 }
2828
2829 static void igb_set_itr(struct igb_adapter *adapter)
2830 {
2831         u16 current_itr;
2832         u32 new_itr = adapter->itr;
2833
2834         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2835         if (adapter->link_speed != SPEED_1000) {
2836                 current_itr = 0;
2837                 new_itr = 4000;
2838                 goto set_itr_now;
2839         }
2840
2841         adapter->rx_itr = igb_update_itr(adapter,
2842                                     adapter->rx_itr,
2843                                     adapter->rx_ring->total_packets,
2844                                     adapter->rx_ring->total_bytes);
2845
2846         if (adapter->rx_ring->buddy) {
2847                 adapter->tx_itr = igb_update_itr(adapter,
2848                                             adapter->tx_itr,
2849                                             adapter->tx_ring->total_packets,
2850                                             adapter->tx_ring->total_bytes);
2851                 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2852         } else {
2853                 current_itr = adapter->rx_itr;
2854         }
2855
2856         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2857         if (adapter->itr_setting == 3 && current_itr == lowest_latency)
2858                 current_itr = low_latency;
2859
2860         switch (current_itr) {
2861         /* counts and packets in update_itr are dependent on these numbers */
2862         case lowest_latency:
2863                 new_itr = 70000;
2864                 break;
2865         case low_latency:
2866                 new_itr = 20000; /* aka hwitr = ~200 */
2867                 break;
2868         case bulk_latency:
2869                 new_itr = 4000;
2870                 break;
2871         default:
2872                 break;
2873         }
2874
2875 set_itr_now:
2876         adapter->rx_ring->total_bytes = 0;
2877         adapter->rx_ring->total_packets = 0;
2878         if (adapter->rx_ring->buddy) {
2879                 adapter->rx_ring->buddy->total_bytes = 0;
2880                 adapter->rx_ring->buddy->total_packets = 0;
2881         }
2882
2883         if (new_itr != adapter->itr) {
2884                 /* this attempts to bias the interrupt rate towards Bulk
2885                  * by adding intermediate steps when interrupt rate is
2886                  * increasing */
2887                 new_itr = new_itr > adapter->itr ?
2888                              min(adapter->itr + (new_itr >> 2), new_itr) :
2889                              new_itr;
2890                 /* Don't write the value here; it resets the adapter's
2891                  * internal timer, and causes us to delay far longer than
2892                  * we should between interrupts.  Instead, we write the ITR
2893                  * value at the beginning of the next interrupt so the timing
2894                  * ends up being correct.
2895                  */
2896                 adapter->itr = new_itr;
2897                 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2898                 adapter->rx_ring->set_itr = 1;
2899         }
2900
2901         return;
2902 }
2903
2904
2905 #define IGB_TX_FLAGS_CSUM               0x00000001
2906 #define IGB_TX_FLAGS_VLAN               0x00000002
2907 #define IGB_TX_FLAGS_TSO                0x00000004
2908 #define IGB_TX_FLAGS_IPV4               0x00000008
2909 #define IGB_TX_FLAGS_TSTAMP             0x00000010
2910 #define IGB_TX_FLAGS_VLAN_MASK  0xffff0000
2911 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2912
2913 static inline int igb_tso_adv(struct igb_adapter *adapter,
2914                               struct igb_ring *tx_ring,
2915                               struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2916 {
2917         struct e1000_adv_tx_context_desc *context_desc;
2918         unsigned int i;
2919         int err;
2920         struct igb_buffer *buffer_info;
2921         u32 info = 0, tu_cmd = 0;
2922         u32 mss_l4len_idx, l4len;
2923         *hdr_len = 0;
2924
2925         if (skb_header_cloned(skb)) {
2926                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2927                 if (err)
2928                         return err;
2929         }
2930
2931         l4len = tcp_hdrlen(skb);
2932         *hdr_len += l4len;
2933
2934         if (skb->protocol == htons(ETH_P_IP)) {
2935                 struct iphdr *iph = ip_hdr(skb);
2936                 iph->tot_len = 0;
2937                 iph->check = 0;
2938                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2939                                                          iph->daddr, 0,
2940                                                          IPPROTO_TCP,
2941                                                          0);
2942         } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2943                 ipv6_hdr(skb)->payload_len = 0;
2944                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2945                                                        &ipv6_hdr(skb)->daddr,
2946                                                        0, IPPROTO_TCP, 0);
2947         }
2948
2949         i = tx_ring->next_to_use;
2950
2951         buffer_info = &tx_ring->buffer_info[i];
2952         context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2953         /* VLAN MACLEN IPLEN */
2954         if (tx_flags & IGB_TX_FLAGS_VLAN)
2955                 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2956         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2957         *hdr_len += skb_network_offset(skb);
2958         info |= skb_network_header_len(skb);
2959         *hdr_len += skb_network_header_len(skb);
2960         context_desc->vlan_macip_lens = cpu_to_le32(info);
2961
2962         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2963         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2964
2965         if (skb->protocol == htons(ETH_P_IP))
2966                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2967         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2968
2969         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2970
2971         /* MSS L4LEN IDX */
2972         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2973         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2974
2975         /* For 82575, context index must be unique per ring. */
2976         if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2977                 mss_l4len_idx |= tx_ring->queue_index << 4;
2978
2979         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2980         context_desc->seqnum_seed = 0;
2981
2982         buffer_info->time_stamp = jiffies;
2983         buffer_info->next_to_watch = i;
2984         buffer_info->dma = 0;
2985         i++;
2986         if (i == tx_ring->count)
2987                 i = 0;
2988
2989         tx_ring->next_to_use = i;
2990
2991         return true;
2992 }
2993
2994 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2995                                         struct igb_ring *tx_ring,
2996                                         struct sk_buff *skb, u32 tx_flags)
2997 {
2998         struct e1000_adv_tx_context_desc *context_desc;
2999         unsigned int i;
3000         struct igb_buffer *buffer_info;
3001         u32 info = 0, tu_cmd = 0;
3002
3003         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3004             (tx_flags & IGB_TX_FLAGS_VLAN)) {
3005                 i = tx_ring->next_to_use;
3006                 buffer_info = &tx_ring->buffer_info[i];
3007                 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3008
3009                 if (tx_flags & IGB_TX_FLAGS_VLAN)
3010                         info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3011                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3012                 if (skb->ip_summed == CHECKSUM_PARTIAL)
3013                         info |= skb_network_header_len(skb);
3014
3015                 context_desc->vlan_macip_lens = cpu_to_le32(info);
3016
3017                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3018
3019                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3020                         switch (skb->protocol) {
3021                         case cpu_to_be16(ETH_P_IP):
3022                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3023                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3024                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3025                                 break;
3026                         case cpu_to_be16(ETH_P_IPV6):
3027                                 /* XXX what about other V6 headers?? */
3028                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3029                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3030                                 break;
3031                         default:
3032                                 if (unlikely(net_ratelimit()))
3033                                         dev_warn(&adapter->pdev->dev,
3034                                             "partial checksum but proto=%x!\n",
3035                                             skb->protocol);
3036                                 break;
3037                         }
3038                 }
3039
3040                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3041                 context_desc->seqnum_seed = 0;
3042                 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
3043                         context_desc->mss_l4len_idx =
3044                                 cpu_to_le32(tx_ring->queue_index << 4);
3045                 else
3046                         context_desc->mss_l4len_idx = 0;
3047
3048                 buffer_info->time_stamp = jiffies;
3049                 buffer_info->next_to_watch = i;
3050                 buffer_info->dma = 0;
3051
3052                 i++;
3053                 if (i == tx_ring->count)
3054                         i = 0;
3055                 tx_ring->next_to_use = i;
3056
3057                 return true;
3058         }
3059         return false;
3060 }
3061
3062 #define IGB_MAX_TXD_PWR 16
3063 #define IGB_MAX_DATA_PER_TXD    (1<<IGB_MAX_TXD_PWR)
3064
3065 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
3066                                  struct igb_ring *tx_ring, struct sk_buff *skb,
3067                                  unsigned int first)
3068 {
3069         struct igb_buffer *buffer_info;
3070         unsigned int len = skb_headlen(skb);
3071         unsigned int count = 0, i;
3072         unsigned int f;
3073
3074         i = tx_ring->next_to_use;
3075
3076         buffer_info = &tx_ring->buffer_info[i];
3077         BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3078         buffer_info->length = len;
3079         /* set time_stamp *before* dma to help avoid a possible race */
3080         buffer_info->time_stamp = jiffies;
3081         buffer_info->next_to_watch = i;
3082         buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
3083                                           PCI_DMA_TODEVICE);
3084         count++;
3085         i++;
3086         if (i == tx_ring->count)
3087                 i = 0;
3088
3089         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3090                 struct skb_frag_struct *frag;
3091
3092                 frag = &skb_shinfo(skb)->frags[f];
3093                 len = frag->size;
3094
3095                 buffer_info = &tx_ring->buffer_info[i];
3096                 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3097                 buffer_info->length = len;
3098                 buffer_info->time_stamp = jiffies;
3099                 buffer_info->next_to_watch = i;
3100                 buffer_info->dma = pci_map_page(adapter->pdev,
3101                                                 frag->page,
3102                                                 frag->page_offset,
3103                                                 len,
3104                                                 PCI_DMA_TODEVICE);
3105
3106                 count++;
3107                 i++;
3108                 if (i == tx_ring->count)
3109                         i = 0;
3110         }
3111
3112         i = ((i == 0) ? tx_ring->count - 1 : i - 1);
3113         tx_ring->buffer_info[i].skb = skb;
3114         tx_ring->buffer_info[first].next_to_watch = i;
3115
3116         return count;
3117 }
3118
3119 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
3120                                     struct igb_ring *tx_ring,
3121                                     int tx_flags, int count, u32 paylen,
3122                                     u8 hdr_len)
3123 {
3124         union e1000_adv_tx_desc *tx_desc = NULL;
3125         struct igb_buffer *buffer_info;
3126         u32 olinfo_status = 0, cmd_type_len;
3127         unsigned int i;
3128
3129         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3130                         E1000_ADVTXD_DCMD_DEXT);
3131
3132         if (tx_flags & IGB_TX_FLAGS_VLAN)
3133                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3134
3135         if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3136                 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3137
3138         if (tx_flags & IGB_TX_FLAGS_TSO) {
3139                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3140
3141                 /* insert tcp checksum */
3142                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3143
3144                 /* insert ip checksum */
3145                 if (tx_flags & IGB_TX_FLAGS_IPV4)
3146                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3147
3148         } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3149                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3150         }
3151
3152         if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
3153             (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
3154                          IGB_TX_FLAGS_VLAN)))
3155                 olinfo_status |= tx_ring->queue_index << 4;
3156
3157         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3158
3159         i = tx_ring->next_to_use;
3160         while (count--) {
3161                 buffer_info = &tx_ring->buffer_info[i];
3162                 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3163                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3164                 tx_desc->read.cmd_type_len =
3165                         cpu_to_le32(cmd_type_len | buffer_info->length);
3166                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3167                 i++;
3168                 if (i == tx_ring->count)
3169                         i = 0;
3170         }
3171
3172         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
3173         /* Force memory writes to complete before letting h/w
3174          * know there are new descriptors to fetch.  (Only
3175          * applicable for weak-ordered memory model archs,
3176          * such as IA-64). */
3177         wmb();
3178
3179         tx_ring->next_to_use = i;
3180         writel(i, adapter->hw.hw_addr + tx_ring->tail);
3181         /* we need this if more than one processor can write to our tail
3182          * at a time, it syncronizes IO on IA64/Altix systems */
3183         mmiowb();
3184 }
3185
3186 static int __igb_maybe_stop_tx(struct net_device *netdev,
3187                                struct igb_ring *tx_ring, int size)
3188 {
3189         struct igb_adapter *adapter = netdev_priv(netdev);
3190
3191         netif_stop_subqueue(netdev, tx_ring->queue_index);
3192
3193         /* Herbert's original patch had:
3194          *  smp_mb__after_netif_stop_queue();
3195          * but since that doesn't exist yet, just open code it. */
3196         smp_mb();
3197
3198         /* We need to check again in a case another CPU has just
3199          * made room available. */
3200         if (IGB_DESC_UNUSED(tx_ring) < size)
3201                 return -EBUSY;
3202
3203         /* A reprieve! */
3204         netif_wake_subqueue(netdev, tx_ring->queue_index);
3205         ++adapter->restart_queue;
3206         return 0;
3207 }
3208
3209 static int igb_maybe_stop_tx(struct net_device *netdev,
3210                              struct igb_ring *tx_ring, int size)
3211 {
3212         if (IGB_DESC_UNUSED(tx_ring) >= size)
3213                 return 0;
3214         return __igb_maybe_stop_tx(netdev, tx_ring, size);
3215 }
3216
3217 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
3218                                    struct net_device *netdev,
3219                                    struct igb_ring *tx_ring)
3220 {
3221         struct igb_adapter *adapter = netdev_priv(netdev);
3222         unsigned int first;
3223         unsigned int tx_flags = 0;
3224         u8 hdr_len = 0;
3225         int tso = 0;
3226         union skb_shared_tx *shtx;
3227
3228         if (test_bit(__IGB_DOWN, &adapter->state)) {
3229                 dev_kfree_skb_any(skb);
3230                 return NETDEV_TX_OK;
3231         }
3232
3233         if (skb->len <= 0) {
3234                 dev_kfree_skb_any(skb);
3235                 return NETDEV_TX_OK;
3236         }
3237
3238         /* need: 1 descriptor per page,
3239          *       + 2 desc gap to keep tail from touching head,
3240          *       + 1 desc for skb->data,
3241          *       + 1 desc for context descriptor,
3242          * otherwise try next time */
3243         if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3244                 /* this is a hard error */
3245                 return NETDEV_TX_BUSY;
3246         }
3247
3248         /*
3249          * TODO: check that there currently is no other packet with
3250          * time stamping in the queue
3251          *
3252          * When doing time stamping, keep the connection to the socket
3253          * a while longer: it is still needed by skb_hwtstamp_tx(),
3254          * called either in igb_tx_hwtstamp() or by our caller when
3255          * doing software time stamping.
3256          */
3257         shtx = skb_tx(skb);
3258         if (unlikely(shtx->hardware)) {
3259                 shtx->in_progress = 1;
3260                 tx_flags |= IGB_TX_FLAGS_TSTAMP;
3261         }
3262
3263         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3264                 tx_flags |= IGB_TX_FLAGS_VLAN;
3265                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3266         }
3267
3268         if (skb->protocol == htons(ETH_P_IP))
3269                 tx_flags |= IGB_TX_FLAGS_IPV4;
3270
3271         first = tx_ring->next_to_use;
3272         tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
3273                                               &hdr_len) : 0;
3274
3275         if (tso < 0) {
3276                 dev_kfree_skb_any(skb);
3277                 return NETDEV_TX_OK;
3278         }
3279
3280         if (tso)
3281                 tx_flags |= IGB_TX_FLAGS_TSO;
3282         else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags) &&
3283                  (skb->ip_summed == CHECKSUM_PARTIAL))
3284                 tx_flags |= IGB_TX_FLAGS_CSUM;
3285
3286         igb_tx_queue_adv(adapter, tx_ring, tx_flags,
3287                          igb_tx_map_adv(adapter, tx_ring, skb, first),
3288                          skb->len, hdr_len);
3289
3290         netdev->trans_start = jiffies;
3291
3292         /* Make sure there is space in the ring for the next send. */
3293         igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3294
3295         return NETDEV_TX_OK;
3296 }
3297
3298 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3299 {
3300         struct igb_adapter *adapter = netdev_priv(netdev);
3301         struct igb_ring *tx_ring;
3302
3303         int r_idx = 0;
3304         r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3305         tx_ring = adapter->multi_tx_table[r_idx];
3306
3307         /* This goes back to the question of how to logically map a tx queue
3308          * to a flow.  Right now, performance is impacted slightly negatively
3309          * if using multiple tx queues.  If the stack breaks away from a
3310          * single qdisc implementation, we can look at this again. */
3311         return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3312 }
3313
3314 /**
3315  * igb_tx_timeout - Respond to a Tx Hang
3316  * @netdev: network interface device structure
3317  **/
3318 static void igb_tx_timeout(struct net_device *netdev)
3319 {
3320         struct igb_adapter *adapter = netdev_priv(netdev);
3321         struct e1000_hw *hw = &adapter->hw;
3322
3323         /* Do the reset outside of interrupt context */
3324         adapter->tx_timeout_count++;
3325         schedule_work(&adapter->reset_task);
3326         wr32(E1000_EICS,
3327              (adapter->eims_enable_mask & ~adapter->eims_other));
3328 }
3329
3330 static void igb_reset_task(struct work_struct *work)
3331 {
3332         struct igb_adapter *adapter;
3333         adapter = container_of(work, struct igb_adapter, reset_task);
3334
3335         igb_reinit_locked(adapter);
3336 }
3337
3338 /**
3339  * igb_get_stats - Get System Network Statistics
3340  * @netdev: network interface device structure
3341  *
3342  * Returns the address of the device statistics structure.
3343  * The statistics are actually updated from the timer callback.
3344  **/
3345 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3346 {
3347         struct igb_adapter *adapter = netdev_priv(netdev);
3348
3349         /* only return the current stats */
3350         return &adapter->net_stats;
3351 }
3352
3353 /**
3354  * igb_change_mtu - Change the Maximum Transfer Unit
3355  * @netdev: network interface device structure
3356  * @new_mtu: new value for maximum frame size
3357  *
3358  * Returns 0 on success, negative on failure
3359  **/
3360 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3361 {
3362         struct igb_adapter *adapter = netdev_priv(netdev);
3363         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3364
3365         if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3366             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3367                 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3368                 return -EINVAL;
3369         }
3370
3371         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3372                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3373                 return -EINVAL;
3374         }
3375
3376         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3377                 msleep(1);
3378
3379         /* igb_down has a dependency on max_frame_size */
3380         adapter->max_frame_size = max_frame;
3381         if (netif_running(netdev))
3382                 igb_down(adapter);
3383
3384         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3385          * means we reserve 2 more, this pushes us to allocate from the next
3386          * larger slab size.
3387          * i.e. RXBUFFER_2048 --> size-4096 slab
3388          */
3389
3390         if (max_frame <= IGB_RXBUFFER_256)
3391                 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3392         else if (max_frame <= IGB_RXBUFFER_512)
3393                 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3394         else if (max_frame <= IGB_RXBUFFER_1024)
3395                 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3396         else if (max_frame <= IGB_RXBUFFER_2048)
3397                 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3398         else
3399 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3400                 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3401 #else
3402                 adapter->rx_buffer_len = PAGE_SIZE / 2;
3403 #endif
3404
3405         /* if sr-iov is enabled we need to force buffer size to 1K or larger */
3406         if (adapter->vfs_allocated_count &&
3407             (adapter->rx_buffer_len < IGB_RXBUFFER_1024))
3408                 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3409
3410         /* adjust allocation if LPE protects us, and we aren't using SBP */
3411         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3412              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3413                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3414
3415         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3416                  netdev->mtu, new_mtu);
3417         netdev->mtu = new_mtu;
3418
3419         if (netif_running(netdev))
3420                 igb_up(adapter);
3421         else
3422                 igb_reset(adapter);
3423
3424         clear_bit(__IGB_RESETTING, &adapter->state);
3425
3426         return 0;
3427 }
3428
3429 /**
3430  * igb_update_stats - Update the board statistics counters
3431  * @adapter: board private structure
3432  **/
3433
3434 void igb_update_stats(struct igb_adapter *adapter)
3435 {
3436         struct e1000_hw *hw = &adapter->hw;
3437         struct pci_dev *pdev = adapter->pdev;
3438         u16 phy_tmp;
3439
3440 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3441
3442         /*
3443          * Prevent stats update while adapter is being reset, or if the pci
3444          * connection is down.
3445          */
3446         if (adapter->link_speed == 0)
3447                 return;
3448         if (pci_channel_offline(pdev))
3449                 return;
3450
3451         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3452         adapter->stats.gprc += rd32(E1000_GPRC);
3453         adapter->stats.gorc += rd32(E1000_GORCL);
3454         rd32(E1000_GORCH); /* clear GORCL */
3455         adapter->stats.bprc += rd32(E1000_BPRC);
3456         adapter->stats.mprc += rd32(E1000_MPRC);
3457         adapter->stats.roc += rd32(E1000_ROC);
3458
3459         adapter->stats.prc64 += rd32(E1000_PRC64);
3460         adapter->stats.prc127 += rd32(E1000_PRC127);
3461         adapter->stats.prc255 += rd32(E1000_PRC255);
3462         adapter->stats.prc511 += rd32(E1000_PRC511);
3463         adapter->stats.prc1023 += rd32(E1000_PRC1023);
3464         adapter->stats.prc1522 += rd32(E1000_PRC1522);
3465         adapter->stats.symerrs += rd32(E1000_SYMERRS);
3466         adapter->stats.sec += rd32(E1000_SEC);
3467
3468         adapter->stats.mpc += rd32(E1000_MPC);
3469         adapter->stats.scc += rd32(E1000_SCC);
3470         adapter->stats.ecol += rd32(E1000_ECOL);
3471         adapter->stats.mcc += rd32(E1000_MCC);
3472         adapter->stats.latecol += rd32(E1000_LATECOL);
3473         adapter->stats.dc += rd32(E1000_DC);
3474         adapter->stats.rlec += rd32(E1000_RLEC);
3475         adapter->stats.xonrxc += rd32(E1000_XONRXC);
3476         adapter->stats.xontxc += rd32(E1000_XONTXC);
3477         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3478         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3479         adapter->stats.fcruc += rd32(E1000_FCRUC);
3480         adapter->stats.gptc += rd32(E1000_GPTC);
3481         adapter->stats.gotc += rd32(E1000_GOTCL);
3482         rd32(E1000_GOTCH); /* clear GOTCL */
3483         adapter->stats.rnbc += rd32(E1000_RNBC);
3484         adapter->stats.ruc += rd32(E1000_RUC);
3485         adapter->stats.rfc += rd32(E1000_RFC);
3486         adapter->stats.rjc += rd32(E1000_RJC);
3487         adapter->stats.tor += rd32(E1000_TORH);
3488         adapter->stats.tot += rd32(E1000_TOTH);
3489         adapter->stats.tpr += rd32(E1000_TPR);
3490
3491         adapter->stats.ptc64 += rd32(E1000_PTC64);
3492         adapter->stats.ptc127 += rd32(E1000_PTC127);
3493         adapter->stats.ptc255 += rd32(E1000_PTC255);
3494         adapter->stats.ptc511 += rd32(E1000_PTC511);
3495         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3496         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3497
3498         adapter->stats.mptc += rd32(E1000_MPTC);
3499         adapter->stats.bptc += rd32(E1000_BPTC);
3500
3501         /* used for adaptive IFS */
3502
3503         hw->mac.tx_packet_delta = rd32(E1000_TPT);
3504         adapter->stats.tpt += hw->mac.tx_packet_delta;
3505         hw->mac.collision_delta = rd32(E1000_COLC);
3506         adapter->stats.colc += hw->mac.collision_delta;
3507
3508         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3509         adapter->stats.rxerrc += rd32(E1000_RXERRC);
3510         adapter->stats.tncrs += rd32(E1000_TNCRS);
3511         adapter->stats.tsctc += rd32(E1000_TSCTC);
3512         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3513
3514         adapter->stats.iac += rd32(E1000_IAC);
3515         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3516         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3517         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3518         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3519         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3520         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3521         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3522         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3523
3524         /* Fill out the OS statistics structure */
3525         adapter->net_stats.multicast = adapter->stats.mprc;
3526         adapter->net_stats.collisions = adapter->stats.colc;
3527
3528         /* Rx Errors */
3529
3530         /* RLEC on some newer hardware can be incorrect so build
3531         * our own version based on RUC and ROC */
3532         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3533                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3534                 adapter->stats.ruc + adapter->stats.roc +
3535                 adapter->stats.cexterr;
3536         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3537                                               adapter->stats.roc;
3538         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3539         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3540         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3541
3542         /* Tx Errors */
3543         adapter->net_stats.tx_errors = adapter->stats.ecol +
3544                                        adapter->stats.latecol;
3545         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3546         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3547         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3548
3549         /* Tx Dropped needs to be maintained elsewhere */
3550
3551         /* Phy Stats */
3552         if (hw->phy.media_type == e1000_media_type_copper) {
3553                 if ((adapter->link_speed == SPEED_1000) &&
3554                    (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3555                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3556                         adapter->phy_stats.idle_errors += phy_tmp;
3557                 }
3558         }
3559
3560         /* Management Stats */
3561         adapter->stats.mgptc += rd32(E1000_MGTPTC);
3562         adapter->stats.mgprc += rd32(E1000_MGTPRC);
3563         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3564 }
3565
3566 static irqreturn_t igb_msix_other(int irq, void *data)
3567 {
3568         struct net_device *netdev = data;
3569         struct igb_adapter *adapter = netdev_priv(netdev);
3570         struct e1000_hw *hw = &adapter->hw;
3571         u32 icr = rd32(E1000_ICR);
3572
3573         /* reading ICR causes bit 31 of EICR to be cleared */
3574
3575         if(icr & E1000_ICR_DOUTSYNC) {
3576                 /* HW is reporting DMA is out of sync */
3577                 adapter->stats.doosync++;
3578         }
3579
3580         /* Check for a mailbox event */
3581         if (icr & E1000_ICR_VMMB)
3582                 igb_msg_task(adapter);
3583
3584         if (icr & E1000_ICR_LSC) {
3585                 hw->mac.get_link_status = 1;
3586                 /* guard against interrupt when we're going down */
3587                 if (!test_bit(__IGB_DOWN, &adapter->state))
3588                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3589         }
3590
3591         wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_VMMB);
3592         wr32(E1000_EIMS, adapter->eims_other);
3593
3594         return IRQ_HANDLED;
3595 }
3596
3597 static irqreturn_t igb_msix_tx(int irq, void *data)
3598 {
3599         struct igb_ring *tx_ring = data;
3600         struct igb_adapter *adapter = tx_ring->adapter;
3601         struct e1000_hw *hw = &adapter->hw;
3602
3603 #ifdef CONFIG_IGB_DCA
3604         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3605                 igb_update_tx_dca(tx_ring);
3606 #endif
3607
3608         tx_ring->total_bytes = 0;
3609         tx_ring->total_packets = 0;
3610
3611         /* auto mask will automatically reenable the interrupt when we write
3612          * EICS */
3613         if (!igb_clean_tx_irq(tx_ring))
3614                 /* Ring was not completely cleaned, so fire another interrupt */
3615                 wr32(E1000_EICS, tx_ring->eims_value);
3616         else
3617                 wr32(E1000_EIMS, tx_ring->eims_value);
3618
3619         return IRQ_HANDLED;
3620 }
3621
3622 static void igb_write_itr(struct igb_ring *ring)
3623 {
3624         struct e1000_hw *hw = &ring->adapter->hw;
3625         if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3626                 switch (hw->mac.type) {
3627                 case e1000_82576:
3628                         wr32(ring->itr_register, ring->itr_val |
3629                              0x80000000);
3630                         break;
3631                 default:
3632                         wr32(ring->itr_register, ring->itr_val |
3633                              (ring->itr_val << 16));
3634                         break;
3635                 }
3636                 ring->set_itr = 0;
3637         }
3638 }
3639
3640 static irqreturn_t igb_msix_rx(int irq, void *data)
3641 {
3642         struct igb_ring *rx_ring = data;
3643
3644         /* Write the ITR value calculated at the end of the
3645          * previous interrupt.
3646          */
3647
3648         igb_write_itr(rx_ring);
3649
3650         if (napi_schedule_prep(&rx_ring->napi))
3651                 __napi_schedule(&rx_ring->napi);
3652
3653 #ifdef CONFIG_IGB_DCA
3654         if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
3655                 igb_update_rx_dca(rx_ring);
3656 #endif
3657                 return IRQ_HANDLED;
3658 }
3659
3660 #ifdef CONFIG_IGB_DCA
3661 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3662 {
3663         u32 dca_rxctrl;
3664         struct igb_adapter *adapter = rx_ring->adapter;
3665         struct e1000_hw *hw = &adapter->hw;
3666         int cpu = get_cpu();
3667         int q = rx_ring->reg_idx;
3668
3669         if (rx_ring->cpu != cpu) {
3670                 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3671                 if (hw->mac.type == e1000_82576) {
3672                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3673                         dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
3674                                       E1000_DCA_RXCTRL_CPUID_SHIFT;
3675                 } else {
3676                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3677                         dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
3678                 }
3679                 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3680                 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3681                 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3682                 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3683                 rx_ring->cpu = cpu;
3684         }
3685         put_cpu();
3686 }
3687
3688 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3689 {
3690         u32 dca_txctrl;
3691         struct igb_adapter *adapter = tx_ring->adapter;
3692         struct e1000_hw *hw = &adapter->hw;
3693         int cpu = get_cpu();
3694         int q = tx_ring->reg_idx;
3695
3696         if (tx_ring->cpu != cpu) {
3697                 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3698                 if (hw->mac.type == e1000_82576) {
3699                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3700                         dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
3701                                       E1000_DCA_TXCTRL_CPUID_SHIFT;
3702                 } else {
3703                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3704                         dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
3705                 }
3706                 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3707                 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3708                 tx_ring->cpu = cpu;
3709         }
3710         put_cpu();
3711 }
3712
3713 static void igb_setup_dca(struct igb_adapter *adapter)
3714 {
3715         int i;
3716
3717         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3718                 return;
3719
3720         for (i = 0; i < adapter->num_tx_queues; i++) {
3721                 adapter->tx_ring[i].cpu = -1;
3722                 igb_update_tx_dca(&adapter->tx_ring[i]);
3723         }
3724         for (i = 0; i < adapter->num_rx_queues; i++) {
3725                 adapter->rx_ring[i].cpu = -1;
3726                 igb_update_rx_dca(&adapter->rx_ring[i]);
3727         }
3728 }
3729
3730 static int __igb_notify_dca(struct device *dev, void *data)
3731 {
3732         struct net_device *netdev = dev_get_drvdata(dev);
3733         struct igb_adapter *adapter = netdev_priv(netdev);
3734         struct e1000_hw *hw = &adapter->hw;
3735         unsigned long event = *(unsigned long *)data;
3736
3737         switch (event) {
3738         case DCA_PROVIDER_ADD:
3739                 /* if already enabled, don't do it again */
3740                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3741                         break;
3742                 /* Always use CB2 mode, difference is masked
3743                  * in the CB driver. */
3744                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
3745                 if (dca_add_requester(dev) == 0) {
3746                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
3747                         dev_info(&adapter->pdev->dev, "DCA enabled\n");
3748                         igb_setup_dca(adapter);
3749                         break;
3750                 }
3751                 /* Fall Through since DCA is disabled. */
3752         case DCA_PROVIDER_REMOVE:
3753                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3754                         /* without this a class_device is left
3755                          * hanging around in the sysfs model */
3756                         dca_remove_requester(dev);
3757                         dev_info(&adapter->pdev->dev, "DCA disabled\n");
3758                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3759                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3760                 }
3761                 break;
3762         }
3763
3764         return 0;
3765 }
3766
3767 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3768                           void *p)
3769 {
3770         int ret_val;
3771
3772         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3773                                          __igb_notify_dca);
3774
3775         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3776 }
3777 #endif /* CONFIG_IGB_DCA */
3778
3779 static void igb_ping_all_vfs(struct igb_adapter *adapter)
3780 {
3781         struct e1000_hw *hw = &adapter->hw;
3782         u32 ping;
3783         int i;
3784
3785         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
3786                 ping = E1000_PF_CONTROL_MSG;
3787                 if (adapter->vf_data[i].clear_to_send)
3788                         ping |= E1000_VT_MSGTYPE_CTS;
3789                 igb_write_mbx(hw, &ping, 1, i);
3790         }
3791 }
3792
3793 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
3794                                   u32 *msgbuf, u32 vf)
3795 {
3796         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
3797         u16 *hash_list = (u16 *)&msgbuf[1];
3798         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
3799         int i;
3800
3801         /* only up to 30 hash values supported */
3802         if (n > 30)
3803                 n = 30;
3804
3805         /* salt away the number of multi cast addresses assigned
3806          * to this VF for later use to restore when the PF multi cast
3807          * list changes
3808          */
3809         vf_data->num_vf_mc_hashes = n;
3810
3811         /* VFs are limited to using the MTA hash table for their multicast
3812          * addresses */
3813         for (i = 0; i < n; i++)
3814                 vf_data->vf_mc_hashes[i] = hash_list[i];;
3815
3816         /* Flush and reset the mta with the new values */
3817         igb_set_multi(adapter->netdev);
3818
3819         return 0;
3820 }
3821
3822 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
3823 {
3824         struct e1000_hw *hw = &adapter->hw;
3825         struct vf_data_storage *vf_data;
3826         int i, j;
3827
3828         for (i = 0; i < adapter->vfs_allocated_count; i++) {
3829                 vf_data = &adapter->vf_data[i];
3830                 for (j = 0; j < vf_data[i].num_vf_mc_hashes; j++)
3831                         igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
3832         }
3833 }
3834
3835 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
3836 {
3837         struct e1000_hw *hw = &adapter->hw;
3838         u32 pool_mask, reg, vid;
3839         int i;
3840
3841         pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
3842
3843         /* Find the vlan filter for this id */
3844         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3845                 reg = rd32(E1000_VLVF(i));
3846
3847                 /* remove the vf from the pool */
3848                 reg &= ~pool_mask;
3849
3850                 /* if pool is empty then remove entry from vfta */
3851                 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
3852                     (reg & E1000_VLVF_VLANID_ENABLE)) {
3853                         reg = 0;
3854                         vid = reg & E1000_VLVF_VLANID_MASK;
3855                         igb_vfta_set(hw, vid, false);
3856                 }
3857
3858                 wr32(E1000_VLVF(i), reg);
3859         }
3860 }
3861
3862 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
3863 {
3864         struct e1000_hw *hw = &adapter->hw;
3865         u32 reg, i;
3866
3867         /* It is an error to call this function when VFs are not enabled */
3868         if (!adapter->vfs_allocated_count)
3869                 return -1;
3870
3871         /* Find the vlan filter for this id */
3872         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3873                 reg = rd32(E1000_VLVF(i));
3874                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
3875                     vid == (reg & E1000_VLVF_VLANID_MASK))
3876                         break;
3877         }
3878
3879         if (add) {
3880                 if (i == E1000_VLVF_ARRAY_SIZE) {
3881                         /* Did not find a matching VLAN ID entry that was
3882                          * enabled.  Search for a free filter entry, i.e.
3883                          * one without the enable bit set
3884                          */
3885                         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3886                                 reg = rd32(E1000_VLVF(i));
3887                                 if (!(reg & E1000_VLVF_VLANID_ENABLE))
3888                                         break;
3889                         }
3890                 }
3891                 if (i < E1000_VLVF_ARRAY_SIZE) {
3892                         /* Found an enabled/available entry */
3893                         reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
3894
3895                         /* if !enabled we need to set this up in vfta */
3896                         if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
3897                                 /* add VID to filter table */
3898                                 igb_vfta_set(hw, vid, true);
3899                                 reg |= E1000_VLVF_VLANID_ENABLE;
3900                         }
3901
3902                         wr32(E1000_VLVF(i), reg);
3903                         return 0;
3904                 }
3905         } else {
3906                 if (i < E1000_VLVF_ARRAY_SIZE) {
3907                         /* remove vf from the pool */
3908                         reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
3909                         /* if pool is empty then remove entry from vfta */
3910                         if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
3911                                 reg = 0;
3912                                 igb_vfta_set(hw, vid, false);
3913                         }
3914                         wr32(E1000_VLVF(i), reg);
3915                         return 0;
3916                 }
3917         }
3918         return -1;
3919 }
3920
3921 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
3922 {
3923         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
3924         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
3925
3926         return igb_vlvf_set(adapter, vid, add, vf);
3927 }
3928
3929 static inline void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
3930 {
3931         struct e1000_hw *hw = &adapter->hw;
3932
3933         /* disable mailbox functionality for vf */
3934         adapter->vf_data[vf].clear_to_send = false;
3935
3936         /* reset offloads to defaults */
3937         igb_set_vmolr(hw, vf);
3938
3939         /* reset vlans for device */
3940         igb_clear_vf_vfta(adapter, vf);
3941
3942         /* reset multicast table array for vf */
3943         adapter->vf_data[vf].num_vf_mc_hashes = 0;
3944
3945         /* Flush and reset the mta with the new values */
3946         igb_set_multi(adapter->netdev);
3947 }
3948
3949 static inline void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
3950 {
3951         struct e1000_hw *hw = &adapter->hw;
3952         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
3953         u32 reg, msgbuf[3];
3954         u8 *addr = (u8 *)(&msgbuf[1]);
3955
3956         /* process all the same items cleared in a function level reset */
3957         igb_vf_reset_event(adapter, vf);
3958
3959         /* set vf mac address */
3960         igb_rar_set(hw, vf_mac, vf + 1);
3961         igb_set_rah_pool(hw, vf, vf + 1);
3962
3963         /* enable transmit and receive for vf */
3964         reg = rd32(E1000_VFTE);
3965         wr32(E1000_VFTE, reg | (1 << vf));
3966         reg = rd32(E1000_VFRE);
3967         wr32(E1000_VFRE, reg | (1 << vf));
3968
3969         /* enable mailbox functionality for vf */
3970         adapter->vf_data[vf].clear_to_send = true;
3971
3972         /* reply to reset with ack and vf mac address */
3973         msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
3974         memcpy(addr, vf_mac, 6);
3975         igb_write_mbx(hw, msgbuf, 3, vf);
3976 }
3977
3978 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
3979 {
3980                 unsigned char *addr = (char *)&msg[1];
3981                 int err = -1;
3982
3983                 if (is_valid_ether_addr(addr))
3984                         err = igb_set_vf_mac(adapter, vf, addr);
3985
3986                 return err;
3987
3988 }
3989
3990 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
3991 {
3992         struct e1000_hw *hw = &adapter->hw;
3993         u32 msg = E1000_VT_MSGTYPE_NACK;
3994
3995         /* if device isn't clear to send it shouldn't be reading either */
3996         if (!adapter->vf_data[vf].clear_to_send)
3997                 igb_write_mbx(hw, &msg, 1, vf);
3998 }
3999
4000
4001 static void igb_msg_task(struct igb_adapter *adapter)
4002 {
4003         struct e1000_hw *hw = &adapter->hw;
4004         u32 vf;
4005
4006         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4007                 /* process any reset requests */
4008                 if (!igb_check_for_rst(hw, vf)) {
4009                         adapter->vf_data[vf].clear_to_send = false;
4010                         igb_vf_reset_event(adapter, vf);
4011                 }
4012
4013                 /* process any messages pending */
4014                 if (!igb_check_for_msg(hw, vf))
4015                         igb_rcv_msg_from_vf(adapter, vf);
4016
4017                 /* process any acks */
4018                 if (!igb_check_for_ack(hw, vf))
4019                         igb_rcv_ack_from_vf(adapter, vf);
4020
4021         }
4022 }
4023
4024 static int igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4025 {
4026         u32 mbx_size = E1000_VFMAILBOX_SIZE;
4027         u32 msgbuf[mbx_size];
4028         struct e1000_hw *hw = &adapter->hw;
4029         s32 retval;
4030
4031         retval = igb_read_mbx(hw, msgbuf, mbx_size, vf);
4032
4033         if (retval)
4034                 dev_err(&adapter->pdev->dev,
4035                         "Error receiving message from VF\n");
4036
4037         /* this is a message we already processed, do nothing */
4038         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4039                 return retval;
4040
4041         /*
4042          * until the vf completes a reset it should not be
4043          * allowed to start any configuration.
4044          */
4045
4046         if (msgbuf[0] == E1000_VF_RESET) {
4047                 igb_vf_reset_msg(adapter, vf);
4048
4049                 return retval;
4050         }
4051
4052         if (!adapter->vf_data[vf].clear_to_send) {
4053                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4054                 igb_write_mbx(hw, msgbuf, 1, vf);
4055                 return retval;
4056         }
4057
4058         switch ((msgbuf[0] & 0xFFFF)) {
4059         case E1000_VF_SET_MAC_ADDR:
4060                 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4061                 break;
4062         case E1000_VF_SET_MULTICAST:
4063                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4064                 break;
4065         case E1000_VF_SET_LPE:
4066                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4067                 break;
4068         case E1000_VF_SET_VLAN:
4069                 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4070                 break;
4071         default:
4072                 dev_err(&adapter->pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4073                 retval = -1;
4074                 break;
4075         }
4076
4077         /* notify the VF of the results of what it sent us */
4078         if (retval)
4079                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4080         else
4081                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4082
4083         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4084
4085         igb_write_mbx(hw, msgbuf, 1, vf);
4086
4087         return retval;
4088 }
4089
4090 /**
4091  * igb_intr_msi - Interrupt Handler
4092  * @irq: interrupt number
4093  * @data: pointer to a network interface device structure
4094  **/
4095 static irqreturn_t igb_intr_msi(int irq, void *data)
4096 {
4097         struct net_device *netdev = data;
4098         struct igb_adapter *adapter = netdev_priv(netdev);
4099         struct e1000_hw *hw = &adapter->hw;
4100         /* read ICR disables interrupts using IAM */
4101         u32 icr = rd32(E1000_ICR);
4102
4103         igb_write_itr(adapter->rx_ring);
4104
4105         if(icr & E1000_ICR_DOUTSYNC) {
4106                 /* HW is reporting DMA is out of sync */
4107                 adapter->stats.doosync++;
4108         }
4109
4110         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4111                 hw->mac.get_link_status = 1;
4112                 if (!test_bit(__IGB_DOWN, &adapter->state))
4113                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
4114         }
4115
4116         napi_schedule(&adapter->rx_ring[0].napi);
4117
4118         return IRQ_HANDLED;
4119 }
4120
4121 /**
4122  * igb_intr - Legacy Interrupt Handler
4123  * @irq: interrupt number
4124  * @data: pointer to a network interface device structure
4125  **/
4126 static irqreturn_t igb_intr(int irq, void *data)
4127 {
4128         struct net_device *netdev = data;
4129         struct igb_adapter *adapter = netdev_priv(netdev);
4130         struct e1000_hw *hw = &adapter->hw;
4131         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
4132          * need for the IMC write */
4133         u32 icr = rd32(E1000_ICR);
4134         if (!icr)
4135                 return IRQ_NONE;  /* Not our interrupt */
4136
4137         igb_write_itr(adapter->rx_ring);
4138
4139         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4140          * not set, then the adapter didn't send an interrupt */
4141         if (!(icr & E1000_ICR_INT_ASSERTED))
4142                 return IRQ_NONE;
4143
4144         if(icr & E1000_ICR_DOUTSYNC) {
4145                 /* HW is reporting DMA is out of sync */
4146                 adapter->stats.doosync++;
4147         }
4148
4149         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4150                 hw->mac.get_link_status = 1;
4151                 /* guard against interrupt when we're going down */
4152                 if (!test_bit(__IGB_DOWN, &adapter->state))
4153                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
4154         }
4155
4156         napi_schedule(&adapter->rx_ring[0].napi);
4157
4158         return IRQ_HANDLED;
4159 }
4160
4161 static inline void igb_rx_irq_enable(struct igb_ring *rx_ring)
4162 {
4163         struct igb_adapter *adapter = rx_ring->adapter;
4164         struct e1000_hw *hw = &adapter->hw;
4165
4166         if (adapter->itr_setting & 3) {
4167                 if (adapter->num_rx_queues == 1)
4168                         igb_set_itr(adapter);
4169                 else
4170                         igb_update_ring_itr(rx_ring);
4171         }
4172
4173         if (!test_bit(__IGB_DOWN, &adapter->state)) {
4174                 if (adapter->msix_entries)
4175                         wr32(E1000_EIMS, rx_ring->eims_value);
4176                 else
4177                         igb_irq_enable(adapter);
4178         }
4179 }
4180
4181 /**
4182  * igb_poll - NAPI Rx polling callback
4183  * @napi: napi polling structure
4184  * @budget: count of how many packets we should handle
4185  **/
4186 static int igb_poll(struct napi_struct *napi, int budget)
4187 {
4188         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
4189         int work_done = 0;
4190
4191 #ifdef CONFIG_IGB_DCA
4192         if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
4193                 igb_update_rx_dca(rx_ring);
4194 #endif
4195         igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
4196
4197         if (rx_ring->buddy) {
4198 #ifdef CONFIG_IGB_DCA
4199                 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
4200                         igb_update_tx_dca(rx_ring->buddy);
4201 #endif
4202                 if (!igb_clean_tx_irq(rx_ring->buddy))
4203                         work_done = budget;
4204         }
4205
4206         /* If not enough Rx work done, exit the polling mode */
4207         if (work_done < budget) {
4208                 napi_complete(napi);
4209                 igb_rx_irq_enable(rx_ring);
4210         }
4211
4212         return work_done;
4213 }
4214
4215 /**
4216  * igb_hwtstamp - utility function which checks for TX time stamp
4217  * @adapter: board private structure
4218  * @skb: packet that was just sent
4219  *
4220  * If we were asked to do hardware stamping and such a time stamp is
4221  * available, then it must have been for this skb here because we only
4222  * allow only one such packet into the queue.
4223  */
4224 static void igb_tx_hwtstamp(struct igb_adapter *adapter, struct sk_buff *skb)
4225 {
4226         union skb_shared_tx *shtx = skb_tx(skb);
4227         struct e1000_hw *hw = &adapter->hw;
4228
4229         if (unlikely(shtx->hardware)) {
4230                 u32 valid = rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID;
4231                 if (valid) {
4232                         u64 regval = rd32(E1000_TXSTMPL);
4233                         u64 ns;
4234                         struct skb_shared_hwtstamps shhwtstamps;
4235
4236                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
4237                         regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4238                         ns = timecounter_cyc2time(&adapter->clock,
4239                                                   regval);
4240                         timecompare_update(&adapter->compare, ns);
4241                         shhwtstamps.hwtstamp = ns_to_ktime(ns);
4242                         shhwtstamps.syststamp =
4243                                 timecompare_transform(&adapter->compare, ns);
4244                         skb_tstamp_tx(skb, &shhwtstamps);
4245                 }
4246         }
4247 }
4248
4249 /**
4250  * igb_clean_tx_irq - Reclaim resources after transmit completes
4251  * @adapter: board private structure
4252  * returns true if ring is completely cleaned
4253  **/
4254 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
4255 {
4256         struct igb_adapter *adapter = tx_ring->adapter;
4257         struct net_device *netdev = adapter->netdev;
4258         struct e1000_hw *hw = &adapter->hw;
4259         struct igb_buffer *buffer_info;
4260         struct sk_buff *skb;
4261         union e1000_adv_tx_desc *tx_desc, *eop_desc;
4262         unsigned int total_bytes = 0, total_packets = 0;
4263         unsigned int i, eop, count = 0;
4264         bool cleaned = false;
4265
4266         i = tx_ring->next_to_clean;
4267         eop = tx_ring->buffer_info[i].next_to_watch;
4268         eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4269
4270         while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4271                (count < tx_ring->count)) {
4272                 for (cleaned = false; !cleaned; count++) {
4273                         tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4274                         buffer_info = &tx_ring->buffer_info[i];
4275                         cleaned = (i == eop);
4276                         skb = buffer_info->skb;
4277
4278                         if (skb) {
4279                                 unsigned int segs, bytecount;
4280                                 /* gso_segs is currently only valid for tcp */
4281                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
4282                                 /* multiply data chunks by size of headers */
4283                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
4284                                             skb->len;
4285                                 total_packets += segs;
4286                                 total_bytes += bytecount;
4287
4288                                 igb_tx_hwtstamp(adapter, skb);
4289                         }
4290
4291                         igb_unmap_and_free_tx_resource(adapter, buffer_info);
4292                         tx_desc->wb.status = 0;
4293
4294                         i++;
4295                         if (i == tx_ring->count)
4296                                 i = 0;
4297                 }
4298                 eop = tx_ring->buffer_info[i].next_to_watch;
4299                 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4300         }
4301
4302         tx_ring->next_to_clean = i;
4303
4304         if (unlikely(count &&
4305                      netif_carrier_ok(netdev) &&
4306                      IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4307                 /* Make sure that anybody stopping the queue after this
4308                  * sees the new next_to_clean.
4309                  */
4310                 smp_mb();
4311                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
4312                     !(test_bit(__IGB_DOWN, &adapter->state))) {
4313                         netif_wake_subqueue(netdev, tx_ring->queue_index);
4314                         ++adapter->restart_queue;
4315                 }
4316         }
4317
4318         if (tx_ring->detect_tx_hung) {
4319                 /* Detect a transmit hang in hardware, this serializes the
4320                  * check with the clearing of time_stamp and movement of i */
4321                 tx_ring->detect_tx_hung = false;
4322                 if (tx_ring->buffer_info[i].time_stamp &&
4323                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
4324                                (adapter->tx_timeout_factor * HZ))
4325                     && !(rd32(E1000_STATUS) &
4326                          E1000_STATUS_TXOFF)) {
4327
4328                         /* detected Tx unit hang */
4329                         dev_err(&adapter->pdev->dev,
4330                                 "Detected Tx Unit Hang\n"
4331                                 "  Tx Queue             <%d>\n"
4332                                 "  TDH                  <%x>\n"
4333                                 "  TDT                  <%x>\n"
4334                                 "  next_to_use          <%x>\n"
4335                                 "  next_to_clean        <%x>\n"
4336                                 "buffer_info[next_to_clean]\n"
4337                                 "  time_stamp           <%lx>\n"
4338                                 "  next_to_watch        <%x>\n"
4339                                 "  jiffies              <%lx>\n"
4340                                 "  desc.status          <%x>\n",
4341                                 tx_ring->queue_index,
4342                                 readl(adapter->hw.hw_addr + tx_ring->head),
4343                                 readl(adapter->hw.hw_addr + tx_ring->tail),
4344                                 tx_ring->next_to_use,
4345                                 tx_ring->next_to_clean,
4346                                 tx_ring->buffer_info[i].time_stamp,
4347                                 eop,
4348                                 jiffies,
4349                                 eop_desc->wb.status);
4350                         netif_stop_subqueue(netdev, tx_ring->queue_index);
4351                 }
4352         }
4353         tx_ring->total_bytes += total_bytes;
4354         tx_ring->total_packets += total_packets;
4355         tx_ring->tx_stats.bytes += total_bytes;
4356         tx_ring->tx_stats.packets += total_packets;
4357         adapter->net_stats.tx_bytes += total_bytes;
4358         adapter->net_stats.tx_packets += total_packets;
4359         return (count < tx_ring->count);
4360 }
4361
4362 /**
4363  * igb_receive_skb - helper function to handle rx indications
4364  * @ring: pointer to receive ring receving this packet
4365  * @status: descriptor status field as written by hardware
4366  * @rx_desc: receive descriptor containing vlan and type information.
4367  * @skb: pointer to sk_buff to be indicated to stack
4368  **/
4369 static void igb_receive_skb(struct igb_ring *ring, u8 status,
4370                             union e1000_adv_rx_desc * rx_desc,
4371                             struct sk_buff *skb)
4372 {
4373         struct igb_adapter * adapter = ring->adapter;
4374         bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
4375
4376         skb_record_rx_queue(skb, ring->queue_index);
4377         if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4378                 if (vlan_extracted)
4379                         vlan_gro_receive(&ring->napi, adapter->vlgrp,
4380                                          le16_to_cpu(rx_desc->wb.upper.vlan),
4381                                          skb);
4382                 else
4383                         napi_gro_receive(&ring->napi, skb);
4384         } else {
4385                 if (vlan_extracted)
4386                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4387                                           le16_to_cpu(rx_desc->wb.upper.vlan));
4388                 else
4389                         netif_receive_skb(skb);
4390         }
4391 }
4392
4393 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
4394                                        u32 status_err, struct sk_buff *skb)
4395 {
4396         skb->ip_summed = CHECKSUM_NONE;
4397
4398         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
4399         if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
4400                 return;
4401         /* TCP/UDP checksum error bit is set */
4402         if (status_err &
4403             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
4404                 /* let the stack verify checksum errors */
4405                 adapter->hw_csum_err++;
4406                 return;
4407         }
4408         /* It must be a TCP or UDP packet with a valid checksum */
4409         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
4410                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4411
4412         adapter->hw_csum_good++;
4413 }
4414
4415 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
4416                                  int *work_done, int budget)
4417 {
4418         struct igb_adapter *adapter = rx_ring->adapter;
4419         struct net_device *netdev = adapter->netdev;
4420         struct e1000_hw *hw = &adapter->hw;
4421         struct pci_dev *pdev = adapter->pdev;
4422         union e1000_adv_rx_desc *rx_desc , *next_rxd;
4423         struct igb_buffer *buffer_info , *next_buffer;
4424         struct sk_buff *skb;
4425         bool cleaned = false;
4426         int cleaned_count = 0;
4427         unsigned int total_bytes = 0, total_packets = 0;
4428         unsigned int i;
4429         u32 length, hlen, staterr;
4430
4431         i = rx_ring->next_to_clean;
4432         buffer_info = &rx_ring->buffer_info[i];
4433         rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4434         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4435
4436         while (staterr & E1000_RXD_STAT_DD) {
4437                 if (*work_done >= budget)
4438                         break;
4439                 (*work_done)++;
4440
4441                 skb = buffer_info->skb;
4442                 prefetch(skb->data - NET_IP_ALIGN);
4443                 buffer_info->skb = NULL;
4444
4445                 i++;
4446                 if (i == rx_ring->count)
4447                         i = 0;
4448                 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
4449                 prefetch(next_rxd);
4450                 next_buffer = &rx_ring->buffer_info[i];
4451
4452                 length = le16_to_cpu(rx_desc->wb.upper.length);
4453                 cleaned = true;
4454                 cleaned_count++;
4455
4456                 if (!adapter->rx_ps_hdr_size) {
4457                         pci_unmap_single(pdev, buffer_info->dma,
4458                                          adapter->rx_buffer_len +
4459                                            NET_IP_ALIGN,
4460                                          PCI_DMA_FROMDEVICE);
4461                         skb_put(skb, length);
4462                         goto send_up;
4463                 }
4464
4465                 /* HW will not DMA in data larger than the given buffer, even
4466                  * if it parses the (NFS, of course) header to be larger.  In
4467                  * that case, it fills the header buffer and spills the rest
4468                  * into the page.
4469                  */
4470                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
4471                   E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4472                 if (hlen > adapter->rx_ps_hdr_size)
4473                         hlen = adapter->rx_ps_hdr_size;
4474
4475                 if (!skb_shinfo(skb)->nr_frags) {
4476                         pci_unmap_single(pdev, buffer_info->dma,
4477                                          adapter->rx_ps_hdr_size + NET_IP_ALIGN,
4478                                          PCI_DMA_FROMDEVICE);
4479                         skb_put(skb, hlen);
4480                 }
4481
4482                 if (length) {
4483                         pci_unmap_page(pdev, buffer_info->page_dma,
4484                                        PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
4485                         buffer_info->page_dma = 0;
4486
4487                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
4488                                                 buffer_info->page,
4489                                                 buffer_info->page_offset,
4490                                                 length);
4491
4492                         if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
4493                             (page_count(buffer_info->page) != 1))
4494                                 buffer_info->page = NULL;
4495                         else
4496                                 get_page(buffer_info->page);
4497
4498                         skb->len += length;
4499                         skb->data_len += length;
4500
4501                         skb->truesize += length;
4502                 }
4503
4504                 if (!(staterr & E1000_RXD_STAT_EOP)) {
4505                         buffer_info->skb = next_buffer->skb;
4506                         buffer_info->dma = next_buffer->dma;
4507                         next_buffer->skb = skb;
4508                         next_buffer->dma = 0;
4509                         goto next_desc;
4510                 }
4511 send_up:
4512                 /*
4513                  * If this bit is set, then the RX registers contain
4514                  * the time stamp. No other packet will be time
4515                  * stamped until we read these registers, so read the
4516                  * registers to make them available again. Because
4517                  * only one packet can be time stamped at a time, we
4518                  * know that the register values must belong to this
4519                  * one here and therefore we don't need to compare
4520                  * any of the additional attributes stored for it.
4521                  *
4522                  * If nothing went wrong, then it should have a
4523                  * skb_shared_tx that we can turn into a
4524                  * skb_shared_hwtstamps.
4525                  *
4526                  * TODO: can time stamping be triggered (thus locking
4527                  * the registers) without the packet reaching this point
4528                  * here? In that case RX time stamping would get stuck.
4529                  *
4530                  * TODO: in "time stamp all packets" mode this bit is
4531                  * not set. Need a global flag for this mode and then
4532                  * always read the registers. Cannot be done without
4533                  * a race condition.
4534                  */
4535                 if (unlikely(staterr & E1000_RXD_STAT_TS)) {
4536                         u64 regval;
4537                         u64 ns;
4538                         struct skb_shared_hwtstamps *shhwtstamps =
4539                                 skb_hwtstamps(skb);
4540
4541                         WARN(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID),
4542                              "igb: no RX time stamp available for time stamped packet");
4543                         regval = rd32(E1000_RXSTMPL);
4544                         regval |= (u64)rd32(E1000_RXSTMPH) << 32;
4545                         ns = timecounter_cyc2time(&adapter->clock, regval);
4546                         timecompare_update(&adapter->compare, ns);
4547                         memset(shhwtstamps, 0, sizeof(*shhwtstamps));
4548                         shhwtstamps->hwtstamp = ns_to_ktime(ns);
4549                         shhwtstamps->syststamp =
4550                                 timecompare_transform(&adapter->compare, ns);
4551                 }
4552
4553                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
4554                         dev_kfree_skb_irq(skb);
4555                         goto next_desc;
4556                 }
4557
4558                 total_bytes += skb->len;
4559                 total_packets++;
4560
4561                 igb_rx_checksum_adv(adapter, staterr, skb);
4562
4563                 skb->protocol = eth_type_trans(skb, netdev);
4564
4565                 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
4566
4567 next_desc:
4568                 rx_desc->wb.upper.status_error = 0;
4569
4570                 /* return some buffers to hardware, one at a time is too slow */
4571                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
4572                         igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4573                         cleaned_count = 0;
4574                 }
4575
4576                 /* use prefetched values */
4577                 rx_desc = next_rxd;
4578                 buffer_info = next_buffer;
4579                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4580         }
4581
4582         rx_ring->next_to_clean = i;
4583         cleaned_count = IGB_DESC_UNUSED(rx_ring);
4584
4585         if (cleaned_count)
4586                 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4587
4588         rx_ring->total_packets += total_packets;
4589         rx_ring->total_bytes += total_bytes;
4590         rx_ring->rx_stats.packets += total_packets;
4591         rx_ring->rx_stats.bytes += total_bytes;
4592         adapter->net_stats.rx_bytes += total_bytes;
4593         adapter->net_stats.rx_packets += total_packets;
4594         return cleaned;
4595 }
4596
4597 /**
4598  * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
4599  * @adapter: address of board private structure
4600  **/
4601 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
4602                                      int cleaned_count)
4603 {
4604         struct igb_adapter *adapter = rx_ring->adapter;
4605         struct net_device *netdev = adapter->netdev;
4606         struct pci_dev *pdev = adapter->pdev;
4607         union e1000_adv_rx_desc *rx_desc;
4608         struct igb_buffer *buffer_info;
4609         struct sk_buff *skb;
4610         unsigned int i;
4611         int bufsz;
4612
4613         i = rx_ring->next_to_use;
4614         buffer_info = &rx_ring->buffer_info[i];
4615
4616         if (adapter->rx_ps_hdr_size)
4617                 bufsz = adapter->rx_ps_hdr_size;
4618         else
4619                 bufsz = adapter->rx_buffer_len;
4620         bufsz += NET_IP_ALIGN;
4621
4622         while (cleaned_count--) {
4623                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4624
4625                 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
4626                         if (!buffer_info->page) {
4627                                 buffer_info->page = alloc_page(GFP_ATOMIC);
4628                                 if (!buffer_info->page) {
4629                                         adapter->alloc_rx_buff_failed++;
4630                                         goto no_buffers;
4631                                 }
4632                                 buffer_info->page_offset = 0;
4633                         } else {
4634                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
4635                         }
4636                         buffer_info->page_dma =
4637                                 pci_map_page(pdev, buffer_info->page,
4638                                              buffer_info->page_offset,
4639                                              PAGE_SIZE / 2,
4640                                              PCI_DMA_FROMDEVICE);
4641                 }
4642
4643                 if (!buffer_info->skb) {
4644                         skb = netdev_alloc_skb(netdev, bufsz);
4645                         if (!skb) {
4646                                 adapter->alloc_rx_buff_failed++;
4647                                 goto no_buffers;
4648                         }
4649
4650                         /* Make buffer alignment 2 beyond a 16 byte boundary
4651                          * this will result in a 16 byte aligned IP header after
4652                          * the 14 byte MAC header is removed
4653                          */
4654                         skb_reserve(skb, NET_IP_ALIGN);
4655
4656                         buffer_info->skb = skb;
4657                         buffer_info->dma = pci_map_single(pdev, skb->data,
4658                                                           bufsz,
4659                                                           PCI_DMA_FROMDEVICE);
4660                 }
4661                 /* Refresh the desc even if buffer_addrs didn't change because
4662                  * each write-back erases this info. */
4663                 if (adapter->rx_ps_hdr_size) {
4664                         rx_desc->read.pkt_addr =
4665                              cpu_to_le64(buffer_info->page_dma);
4666                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4667                 } else {
4668                         rx_desc->read.pkt_addr =
4669                              cpu_to_le64(buffer_info->dma);
4670                         rx_desc->read.hdr_addr = 0;
4671                 }
4672
4673                 i++;
4674                 if (i == rx_ring->count)
4675                         i = 0;
4676                 buffer_info = &rx_ring->buffer_info[i];
4677         }
4678
4679 no_buffers:
4680         if (rx_ring->next_to_use != i) {
4681                 rx_ring->next_to_use = i;
4682                 if (i == 0)
4683                         i = (rx_ring->count - 1);
4684                 else
4685                         i--;
4686
4687                 /* Force memory writes to complete before letting h/w
4688                  * know there are new descriptors to fetch.  (Only
4689                  * applicable for weak-ordered memory model archs,
4690                  * such as IA-64). */
4691                 wmb();
4692                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4693         }
4694 }
4695
4696 /**
4697  * igb_mii_ioctl -
4698  * @netdev:
4699  * @ifreq:
4700  * @cmd:
4701  **/
4702 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4703 {
4704         struct igb_adapter *adapter = netdev_priv(netdev);
4705         struct mii_ioctl_data *data = if_mii(ifr);
4706
4707         if (adapter->hw.phy.media_type != e1000_media_type_copper)
4708                 return -EOPNOTSUPP;
4709
4710         switch (cmd) {
4711         case SIOCGMIIPHY:
4712                 data->phy_id = adapter->hw.phy.addr;
4713                 break;
4714         case SIOCGMIIREG:
4715                 if (!capable(CAP_NET_ADMIN))
4716                         return -EPERM;
4717                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4718                                      &data->val_out))
4719                         return -EIO;
4720                 break;
4721         case SIOCSMIIREG:
4722         default:
4723                 return -EOPNOTSUPP;
4724         }
4725         return 0;
4726 }
4727
4728 /**
4729  * igb_hwtstamp_ioctl - control hardware time stamping
4730  * @netdev:
4731  * @ifreq:
4732  * @cmd:
4733  *
4734  * Outgoing time stamping can be enabled and disabled. Play nice and
4735  * disable it when requested, although it shouldn't case any overhead
4736  * when no packet needs it. At most one packet in the queue may be
4737  * marked for time stamping, otherwise it would be impossible to tell
4738  * for sure to which packet the hardware time stamp belongs.
4739  *
4740  * Incoming time stamping has to be configured via the hardware
4741  * filters. Not all combinations are supported, in particular event
4742  * type has to be specified. Matching the kind of event packet is
4743  * not supported, with the exception of "all V2 events regardless of
4744  * level 2 or 4".
4745  *
4746  **/
4747 static int igb_hwtstamp_ioctl(struct net_device *netdev,
4748                               struct ifreq *ifr, int cmd)
4749 {
4750         struct igb_adapter *adapter = netdev_priv(netdev);
4751         struct e1000_hw *hw = &adapter->hw;
4752         struct hwtstamp_config config;
4753         u32 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4754         u32 tsync_rx_ctl_bit = E1000_TSYNCRXCTL_ENABLED;
4755         u32 tsync_rx_ctl_type = 0;
4756         u32 tsync_rx_cfg = 0;
4757         int is_l4 = 0;
4758         int is_l2 = 0;
4759         short port = 319; /* PTP */
4760         u32 regval;
4761
4762         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
4763                 return -EFAULT;
4764
4765         /* reserved for future extensions */
4766         if (config.flags)
4767                 return -EINVAL;
4768
4769         switch (config.tx_type) {
4770         case HWTSTAMP_TX_OFF:
4771                 tsync_tx_ctl_bit = 0;
4772                 break;
4773         case HWTSTAMP_TX_ON:
4774                 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4775                 break;
4776         default:
4777                 return -ERANGE;
4778         }
4779
4780         switch (config.rx_filter) {
4781         case HWTSTAMP_FILTER_NONE:
4782                 tsync_rx_ctl_bit = 0;
4783                 break;
4784         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
4785         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4786         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4787         case HWTSTAMP_FILTER_ALL:
4788                 /*
4789                  * register TSYNCRXCFG must be set, therefore it is not
4790                  * possible to time stamp both Sync and Delay_Req messages
4791                  * => fall back to time stamping all packets
4792                  */
4793                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_ALL;
4794                 config.rx_filter = HWTSTAMP_FILTER_ALL;
4795                 break;
4796         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
4797                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4798                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
4799                 is_l4 = 1;
4800                 break;
4801         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
4802                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4803                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
4804                 is_l4 = 1;
4805                 break;
4806         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
4807         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
4808                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
4809                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
4810                 is_l2 = 1;
4811                 is_l4 = 1;
4812                 config.rx_filter = HWTSTAMP_FILTER_SOME;
4813                 break;
4814         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
4815         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
4816                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
4817                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
4818                 is_l2 = 1;
4819                 is_l4 = 1;
4820                 config.rx_filter = HWTSTAMP_FILTER_SOME;
4821                 break;
4822         case HWTSTAMP_FILTER_PTP_V2_EVENT:
4823         case HWTSTAMP_FILTER_PTP_V2_SYNC:
4824         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
4825                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_EVENT_V2;
4826                 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
4827                 is_l2 = 1;
4828                 break;
4829         default:
4830                 return -ERANGE;
4831         }
4832
4833         /* enable/disable TX */
4834         regval = rd32(E1000_TSYNCTXCTL);
4835         regval = (regval & ~E1000_TSYNCTXCTL_ENABLED) | tsync_tx_ctl_bit;
4836         wr32(E1000_TSYNCTXCTL, regval);
4837
4838         /* enable/disable RX, define which PTP packets are time stamped */
4839         regval = rd32(E1000_TSYNCRXCTL);
4840         regval = (regval & ~E1000_TSYNCRXCTL_ENABLED) | tsync_rx_ctl_bit;
4841         regval = (regval & ~0xE) | tsync_rx_ctl_type;
4842         wr32(E1000_TSYNCRXCTL, regval);
4843         wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
4844
4845         /*
4846          * Ethertype Filter Queue Filter[0][15:0] = 0x88F7
4847          *                                          (Ethertype to filter on)
4848          * Ethertype Filter Queue Filter[0][26] = 0x1 (Enable filter)
4849          * Ethertype Filter Queue Filter[0][30] = 0x1 (Enable Timestamping)
4850          */
4851         wr32(E1000_ETQF0, is_l2 ? 0x440088f7 : 0);
4852
4853         /* L4 Queue Filter[0]: only filter by source and destination port */
4854         wr32(E1000_SPQF0, htons(port));
4855         wr32(E1000_IMIREXT(0), is_l4 ?
4856              ((1<<12) | (1<<19) /* bypass size and control flags */) : 0);
4857         wr32(E1000_IMIR(0), is_l4 ?
4858              (htons(port)
4859               | (0<<16) /* immediate interrupt disabled */
4860               | 0 /* (1<<17) bit cleared: do not bypass
4861                      destination port check */)
4862                 : 0);
4863         wr32(E1000_FTQF0, is_l4 ?
4864              (0x11 /* UDP */
4865               | (1<<15) /* VF not compared */
4866               | (1<<27) /* Enable Timestamping */
4867               | (7<<28) /* only source port filter enabled,
4868                            source/target address and protocol
4869                            masked */)
4870              : ((1<<15) | (15<<28) /* all mask bits set = filter not
4871                                       enabled */));
4872
4873         wrfl();
4874
4875         adapter->hwtstamp_config = config;
4876
4877         /* clear TX/RX time stamp registers, just to be sure */
4878         regval = rd32(E1000_TXSTMPH);
4879         regval = rd32(E1000_RXSTMPH);
4880
4881         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
4882                 -EFAULT : 0;
4883 }
4884
4885 /**
4886  * igb_ioctl -
4887  * @netdev:
4888  * @ifreq:
4889  * @cmd:
4890  **/
4891 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4892 {
4893         switch (cmd) {
4894         case SIOCGMIIPHY:
4895         case SIOCGMIIREG:
4896         case SIOCSMIIREG:
4897                 return igb_mii_ioctl(netdev, ifr, cmd);
4898         case SIOCSHWTSTAMP:
4899                 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
4900         default:
4901                 return -EOPNOTSUPP;
4902         }
4903 }
4904
4905 static void igb_vlan_rx_register(struct net_device *netdev,
4906                                  struct vlan_group *grp)
4907 {
4908         struct igb_adapter *adapter = netdev_priv(netdev);
4909         struct e1000_hw *hw = &adapter->hw;
4910         u32 ctrl, rctl;
4911
4912         igb_irq_disable(adapter);
4913         adapter->vlgrp = grp;
4914
4915         if (grp) {
4916                 /* enable VLAN tag insert/strip */
4917                 ctrl = rd32(E1000_CTRL);
4918                 ctrl |= E1000_CTRL_VME;
4919                 wr32(E1000_CTRL, ctrl);
4920
4921                 /* enable VLAN receive filtering */
4922                 rctl = rd32(E1000_RCTL);
4923                 rctl &= ~E1000_RCTL_CFIEN;
4924                 wr32(E1000_RCTL, rctl);
4925                 igb_update_mng_vlan(adapter);
4926         } else {
4927                 /* disable VLAN tag insert/strip */
4928                 ctrl = rd32(E1000_CTRL);
4929                 ctrl &= ~E1000_CTRL_VME;
4930                 wr32(E1000_CTRL, ctrl);
4931
4932                 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4933                         igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4934                         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4935                 }
4936         }
4937
4938         igb_rlpml_set(adapter);
4939
4940         if (!test_bit(__IGB_DOWN, &adapter->state))
4941                 igb_irq_enable(adapter);
4942 }
4943
4944 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4945 {
4946         struct igb_adapter *adapter = netdev_priv(netdev);
4947         struct e1000_hw *hw = &adapter->hw;
4948         int pf_id = adapter->vfs_allocated_count;
4949
4950         if ((hw->mng_cookie.status &
4951              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4952             (vid == adapter->mng_vlan_id))
4953                 return;
4954
4955         /* add vid to vlvf if sr-iov is enabled,
4956          * if that fails add directly to filter table */
4957         if (igb_vlvf_set(adapter, vid, true, pf_id))
4958                 igb_vfta_set(hw, vid, true);
4959
4960 }
4961
4962 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4963 {
4964         struct igb_adapter *adapter = netdev_priv(netdev);
4965         struct e1000_hw *hw = &adapter->hw;
4966         int pf_id = adapter->vfs_allocated_count;
4967
4968         igb_irq_disable(adapter);
4969         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4970
4971         if (!test_bit(__IGB_DOWN, &adapter->state))
4972                 igb_irq_enable(adapter);
4973
4974         if ((adapter->hw.mng_cookie.status &
4975              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4976             (vid == adapter->mng_vlan_id)) {
4977                 /* release control to f/w */
4978                 igb_release_hw_control(adapter);
4979                 return;
4980         }
4981
4982         /* remove vid from vlvf if sr-iov is enabled,
4983          * if not in vlvf remove from vfta */
4984         if (igb_vlvf_set(adapter, vid, false, pf_id))
4985                 igb_vfta_set(hw, vid, false);
4986 }
4987
4988 static void igb_restore_vlan(struct igb_adapter *adapter)
4989 {
4990         igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4991
4992         if (adapter->vlgrp) {
4993                 u16 vid;
4994                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4995                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4996                                 continue;
4997                         igb_vlan_rx_add_vid(adapter->netdev, vid);
4998                 }
4999         }
5000 }
5001
5002 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5003 {
5004         struct e1000_mac_info *mac = &adapter->hw.mac;
5005
5006         mac->autoneg = 0;
5007
5008         /* Fiber NICs only allow 1000 gbps Full duplex */
5009         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
5010                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
5011                 dev_err(&adapter->pdev->dev,
5012                         "Unsupported Speed/Duplex configuration\n");
5013                 return -EINVAL;
5014         }
5015
5016         switch (spddplx) {
5017         case SPEED_10 + DUPLEX_HALF:
5018                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5019                 break;
5020         case SPEED_10 + DUPLEX_FULL:
5021                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5022                 break;
5023         case SPEED_100 + DUPLEX_HALF:
5024                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5025                 break;
5026         case SPEED_100 + DUPLEX_FULL:
5027                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5028                 break;
5029         case SPEED_1000 + DUPLEX_FULL:
5030                 mac->autoneg = 1;
5031                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5032                 break;
5033         case SPEED_1000 + DUPLEX_HALF: /* not supported */
5034         default:
5035                 dev_err(&adapter->pdev->dev,
5036                         "Unsupported Speed/Duplex configuration\n");
5037                 return -EINVAL;
5038         }
5039         return 0;
5040 }
5041
5042 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5043 {
5044         struct net_device *netdev = pci_get_drvdata(pdev);
5045         struct igb_adapter *adapter = netdev_priv(netdev);
5046         struct e1000_hw *hw = &adapter->hw;
5047         u32 ctrl, rctl, status;
5048         u32 wufc = adapter->wol;
5049 #ifdef CONFIG_PM
5050         int retval = 0;
5051 #endif
5052
5053         netif_device_detach(netdev);
5054
5055         if (netif_running(netdev))
5056                 igb_close(netdev);
5057
5058         igb_reset_interrupt_capability(adapter);
5059
5060         igb_free_queues(adapter);
5061
5062 #ifdef CONFIG_PM
5063         retval = pci_save_state(pdev);
5064         if (retval)
5065                 return retval;
5066 #endif
5067
5068         status = rd32(E1000_STATUS);
5069         if (status & E1000_STATUS_LU)
5070                 wufc &= ~E1000_WUFC_LNKC;
5071
5072         if (wufc) {
5073                 igb_setup_rctl(adapter);
5074                 igb_set_multi(netdev);
5075
5076                 /* turn on all-multi mode if wake on multicast is enabled */
5077                 if (wufc & E1000_WUFC_MC) {
5078                         rctl = rd32(E1000_RCTL);
5079                         rctl |= E1000_RCTL_MPE;
5080                         wr32(E1000_RCTL, rctl);
5081                 }
5082
5083                 ctrl = rd32(E1000_CTRL);
5084                 /* advertise wake from D3Cold */
5085                 #define E1000_CTRL_ADVD3WUC 0x00100000
5086                 /* phy power management enable */
5087                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5088                 ctrl |= E1000_CTRL_ADVD3WUC;
5089                 wr32(E1000_CTRL, ctrl);
5090
5091                 /* Allow time for pending master requests to run */
5092                 igb_disable_pcie_master(&adapter->hw);
5093
5094                 wr32(E1000_WUC, E1000_WUC_PME_EN);
5095                 wr32(E1000_WUFC, wufc);
5096         } else {
5097                 wr32(E1000_WUC, 0);
5098                 wr32(E1000_WUFC, 0);
5099         }
5100
5101         /* make sure adapter isn't asleep if manageability/wol is enabled */
5102         if (wufc || adapter->en_mng_pt) {
5103                 pci_enable_wake(pdev, PCI_D3hot, 1);
5104                 pci_enable_wake(pdev, PCI_D3cold, 1);
5105         } else {
5106                 igb_shutdown_fiber_serdes_link_82575(hw);
5107                 pci_enable_wake(pdev, PCI_D3hot, 0);
5108                 pci_enable_wake(pdev, PCI_D3cold, 0);
5109         }
5110
5111         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5112          * would have already happened in close and is redundant. */
5113         igb_release_hw_control(adapter);
5114
5115         pci_disable_device(pdev);
5116
5117         pci_set_power_state(pdev, pci_choose_state(pdev, state));
5118
5119         return 0;
5120 }
5121
5122 #ifdef CONFIG_PM
5123 static int igb_resume(struct pci_dev *pdev)
5124 {
5125         struct net_device *netdev = pci_get_drvdata(pdev);
5126         struct igb_adapter *adapter = netdev_priv(netdev);
5127         struct e1000_hw *hw = &adapter->hw;
5128         u32 err;
5129
5130         pci_set_power_state(pdev, PCI_D0);
5131         pci_restore_state(pdev);
5132
5133         err = pci_enable_device_mem(pdev);
5134         if (err) {
5135                 dev_err(&pdev->dev,
5136                         "igb: Cannot enable PCI device from suspend\n");
5137                 return err;
5138         }
5139         pci_set_master(pdev);
5140
5141         pci_enable_wake(pdev, PCI_D3hot, 0);
5142         pci_enable_wake(pdev, PCI_D3cold, 0);
5143
5144         igb_set_interrupt_capability(adapter);
5145
5146         if (igb_alloc_queues(adapter)) {
5147                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5148                 return -ENOMEM;
5149         }
5150
5151         /* e1000_power_up_phy(adapter); */
5152
5153         igb_reset(adapter);
5154
5155         /* let the f/w know that the h/w is now under the control of the
5156          * driver. */
5157         igb_get_hw_control(adapter);
5158
5159         wr32(E1000_WUS, ~0);
5160
5161         if (netif_running(netdev)) {
5162                 err = igb_open(netdev);
5163                 if (err)
5164                         return err;
5165         }
5166
5167         netif_device_attach(netdev);
5168
5169         return 0;
5170 }
5171 #endif
5172
5173 static void igb_shutdown(struct pci_dev *pdev)
5174 {
5175         igb_suspend(pdev, PMSG_SUSPEND);
5176 }
5177
5178 #ifdef CONFIG_NET_POLL_CONTROLLER
5179 /*
5180  * Polling 'interrupt' - used by things like netconsole to send skbs
5181  * without having to re-enable interrupts. It's not called while
5182  * the interrupt routine is executing.
5183  */
5184 static void igb_netpoll(struct net_device *netdev)
5185 {
5186         struct igb_adapter *adapter = netdev_priv(netdev);
5187         struct e1000_hw *hw = &adapter->hw;
5188         int i;
5189
5190         if (!adapter->msix_entries) {
5191                 igb_irq_disable(adapter);
5192                 napi_schedule(&adapter->rx_ring[0].napi);
5193                 return;
5194         }
5195
5196         for (i = 0; i < adapter->num_tx_queues; i++) {
5197                 struct igb_ring *tx_ring = &adapter->tx_ring[i];
5198                 wr32(E1000_EIMC, tx_ring->eims_value);
5199                 igb_clean_tx_irq(tx_ring);
5200                 wr32(E1000_EIMS, tx_ring->eims_value);
5201         }
5202
5203         for (i = 0; i < adapter->num_rx_queues; i++) {
5204                 struct igb_ring *rx_ring = &adapter->rx_ring[i];
5205                 wr32(E1000_EIMC, rx_ring->eims_value);
5206                 napi_schedule(&rx_ring->napi);
5207         }
5208 }
5209 #endif /* CONFIG_NET_POLL_CONTROLLER */
5210
5211 /**
5212  * igb_io_error_detected - called when PCI error is detected
5213  * @pdev: Pointer to PCI device
5214  * @state: The current pci connection state
5215  *
5216  * This function is called after a PCI bus error affecting
5217  * this device has been detected.
5218  */
5219 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5220                                               pci_channel_state_t state)
5221 {
5222         struct net_device *netdev = pci_get_drvdata(pdev);
5223         struct igb_adapter *adapter = netdev_priv(netdev);
5224
5225         netif_device_detach(netdev);
5226
5227         if (netif_running(netdev))
5228                 igb_down(adapter);
5229         pci_disable_device(pdev);
5230
5231         /* Request a slot slot reset. */
5232         return PCI_ERS_RESULT_NEED_RESET;
5233 }
5234
5235 /**
5236  * igb_io_slot_reset - called after the pci bus has been reset.
5237  * @pdev: Pointer to PCI device
5238  *
5239  * Restart the card from scratch, as if from a cold-boot. Implementation
5240  * resembles the first-half of the igb_resume routine.
5241  */
5242 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5243 {
5244         struct net_device *netdev = pci_get_drvdata(pdev);
5245         struct igb_adapter *adapter = netdev_priv(netdev);
5246         struct e1000_hw *hw = &adapter->hw;
5247         pci_ers_result_t result;
5248         int err;
5249
5250         if (pci_enable_device_mem(pdev)) {
5251                 dev_err(&pdev->dev,
5252                         "Cannot re-enable PCI device after reset.\n");
5253                 result = PCI_ERS_RESULT_DISCONNECT;
5254         } else {
5255                 pci_set_master(pdev);
5256                 pci_restore_state(pdev);
5257
5258                 pci_enable_wake(pdev, PCI_D3hot, 0);
5259                 pci_enable_wake(pdev, PCI_D3cold, 0);
5260
5261                 igb_reset(adapter);
5262                 wr32(E1000_WUS, ~0);
5263                 result = PCI_ERS_RESULT_RECOVERED;
5264         }
5265
5266         err = pci_cleanup_aer_uncorrect_error_status(pdev);
5267         if (err) {
5268                 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
5269                         "failed 0x%0x\n", err);
5270                 /* non-fatal, continue */
5271         }
5272
5273         return result;
5274 }
5275
5276 /**
5277  * igb_io_resume - called when traffic can start flowing again.
5278  * @pdev: Pointer to PCI device
5279  *
5280  * This callback is called when the error recovery driver tells us that
5281  * its OK to resume normal operation. Implementation resembles the
5282  * second-half of the igb_resume routine.
5283  */
5284 static void igb_io_resume(struct pci_dev *pdev)
5285 {
5286         struct net_device *netdev = pci_get_drvdata(pdev);
5287         struct igb_adapter *adapter = netdev_priv(netdev);
5288
5289         if (netif_running(netdev)) {
5290                 if (igb_up(adapter)) {
5291                         dev_err(&pdev->dev, "igb_up failed after reset\n");
5292                         return;
5293                 }
5294         }
5295
5296         netif_device_attach(netdev);
5297
5298         /* let the f/w know that the h/w is now under the control of the
5299          * driver. */
5300         igb_get_hw_control(adapter);
5301 }
5302
5303 static inline void igb_set_vmolr(struct e1000_hw *hw, int vfn)
5304 {
5305         u32 reg_data;
5306
5307         reg_data = rd32(E1000_VMOLR(vfn));
5308         reg_data |= E1000_VMOLR_BAM |    /* Accept broadcast */
5309                     E1000_VMOLR_ROPE |   /* Accept packets matched in UTA */
5310                     E1000_VMOLR_ROMPE |  /* Accept packets matched in MTA */
5311                     E1000_VMOLR_AUPE |   /* Accept untagged packets */
5312                     E1000_VMOLR_STRVLAN; /* Strip vlan tags */
5313         wr32(E1000_VMOLR(vfn), reg_data);
5314 }
5315
5316 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
5317                                  int vfn)
5318 {
5319         struct e1000_hw *hw = &adapter->hw;
5320         u32 vmolr;
5321
5322         vmolr = rd32(E1000_VMOLR(vfn));
5323         vmolr &= ~E1000_VMOLR_RLPML_MASK;
5324         vmolr |= size | E1000_VMOLR_LPE;
5325         wr32(E1000_VMOLR(vfn), vmolr);
5326
5327         return 0;
5328 }
5329
5330 static inline void igb_set_rah_pool(struct e1000_hw *hw, int pool, int entry)
5331 {
5332         u32 reg_data;
5333
5334         reg_data = rd32(E1000_RAH(entry));
5335         reg_data &= ~E1000_RAH_POOL_MASK;
5336         reg_data |= E1000_RAH_POOL_1 << pool;;
5337         wr32(E1000_RAH(entry), reg_data);
5338 }
5339
5340 static void igb_set_mc_list_pools(struct igb_adapter *adapter,
5341                                   int entry_count, u16 total_rar_filters)
5342 {
5343         struct e1000_hw *hw = &adapter->hw;
5344         int i = adapter->vfs_allocated_count + 1;
5345
5346         if ((i + entry_count) < total_rar_filters)
5347                 total_rar_filters = i + entry_count;
5348
5349         for (; i < total_rar_filters; i++)
5350                 igb_set_rah_pool(hw, adapter->vfs_allocated_count, i);
5351 }
5352
5353 static int igb_set_vf_mac(struct igb_adapter *adapter,
5354                           int vf, unsigned char *mac_addr)
5355 {
5356         struct e1000_hw *hw = &adapter->hw;
5357         int rar_entry = vf + 1; /* VF MAC addresses start at entry 1 */
5358
5359         igb_rar_set(hw, mac_addr, rar_entry);
5360
5361         memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
5362
5363         igb_set_rah_pool(hw, vf, rar_entry);
5364
5365         return 0;
5366 }
5367
5368 static void igb_vmm_control(struct igb_adapter *adapter)
5369 {
5370         struct e1000_hw *hw = &adapter->hw;
5371         u32 reg_data;
5372
5373         if (!adapter->vfs_allocated_count)
5374                 return;
5375
5376         /* VF's need PF reset indication before they
5377          * can send/receive mail */
5378         reg_data = rd32(E1000_CTRL_EXT);
5379         reg_data |= E1000_CTRL_EXT_PFRSTD;
5380         wr32(E1000_CTRL_EXT, reg_data);
5381
5382         igb_vmdq_set_loopback_pf(hw, true);
5383         igb_vmdq_set_replication_pf(hw, true);
5384 }
5385
5386 #ifdef CONFIG_PCI_IOV
5387 static ssize_t igb_show_num_vfs(struct device *dev,
5388                                 struct device_attribute *attr, char *buf)
5389 {
5390         struct igb_adapter *adapter = netdev_priv(to_net_dev(dev));
5391
5392         return sprintf(buf, "%d\n", adapter->vfs_allocated_count);
5393 }
5394
5395 static ssize_t igb_set_num_vfs(struct device *dev,
5396                                struct device_attribute *attr,
5397                                const char *buf, size_t count)
5398 {
5399         struct net_device *netdev = to_net_dev(dev);
5400         struct igb_adapter *adapter = netdev_priv(netdev);
5401         struct e1000_hw *hw = &adapter->hw;
5402         struct pci_dev *pdev = adapter->pdev;
5403         unsigned int num_vfs, i;
5404         unsigned char mac_addr[ETH_ALEN];
5405         int err;
5406
5407         sscanf(buf, "%u", &num_vfs);
5408
5409         if (num_vfs > 7)
5410                 num_vfs = 7;
5411
5412         /* value unchanged do nothing */
5413         if (num_vfs == adapter->vfs_allocated_count)
5414                 return count;
5415
5416         if (netdev->flags & IFF_UP)
5417                 igb_close(netdev);
5418
5419         igb_reset_interrupt_capability(adapter);
5420         igb_free_queues(adapter);
5421         adapter->tx_ring = NULL;
5422         adapter->rx_ring = NULL;
5423         adapter->vfs_allocated_count = 0;
5424
5425         /* reclaim resources allocated to VFs since we are changing count */
5426         if (adapter->vf_data) {
5427                 /* disable iov and allow time for transactions to clear */
5428                 pci_disable_sriov(pdev);
5429                 msleep(500);
5430
5431                 kfree(adapter->vf_data);
5432                 adapter->vf_data = NULL;
5433                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
5434                 msleep(100);
5435                 dev_info(&pdev->dev, "IOV Disabled\n");
5436         }
5437
5438         if (num_vfs) {
5439                 adapter->vf_data = kcalloc(num_vfs,
5440                                            sizeof(struct vf_data_storage),
5441                                            GFP_KERNEL);
5442                 if (!adapter->vf_data) {
5443                         dev_err(&pdev->dev, "Could not allocate VF private "
5444                                 "data - IOV enable failed\n");
5445                 } else {
5446                         err = pci_enable_sriov(pdev, num_vfs);
5447                         if (!err) {
5448                                 adapter->vfs_allocated_count = num_vfs;
5449                                 dev_info(&pdev->dev, "%d vfs allocated\n", num_vfs);
5450                                 for (i = 0; i < adapter->vfs_allocated_count; i++) {
5451                                         random_ether_addr(mac_addr);
5452                                         igb_set_vf_mac(adapter, i, mac_addr);
5453                                 }
5454                         } else {
5455                                 kfree(adapter->vf_data);
5456                                 adapter->vf_data = NULL;
5457                         }
5458                 }
5459         }
5460
5461         igb_set_interrupt_capability(adapter);
5462         igb_alloc_queues(adapter);
5463         igb_reset(adapter);
5464
5465         if (netdev->flags & IFF_UP)
5466                 igb_open(netdev);
5467
5468         return count;
5469 }
5470 #endif /* CONFIG_PCI_IOV */
5471 /* igb_main.c */