Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[safe/jmp/linux-2.6] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/pci-aspm.h>
42 #include <linux/delay.h>
43 #include <linux/interrupt.h>
44 #include <linux/if_ether.h>
45 #ifdef CONFIG_IGB_DCA
46 #include <linux/dca.h>
47 #endif
48 #include "igb.h"
49
50 #define DRV_VERSION "1.2.45-k2"
51 char igb_driver_name[] = "igb";
52 char igb_driver_version[] = DRV_VERSION;
53 static const char igb_driver_string[] =
54                                 "Intel(R) Gigabit Ethernet Network Driver";
55 static const char igb_copyright[] = "Copyright (c) 2008 Intel Corporation.";
56
57 static const struct e1000_info *igb_info_tbl[] = {
58         [board_82575] = &e1000_82575_info,
59 };
60
61 static struct pci_device_id igb_pci_tbl[] = {
62         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
63         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
64         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
65         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
66         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
67         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
68         /* required last entry */
69         {0, }
70 };
71
72 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
73
74 void igb_reset(struct igb_adapter *);
75 static int igb_setup_all_tx_resources(struct igb_adapter *);
76 static int igb_setup_all_rx_resources(struct igb_adapter *);
77 static void igb_free_all_tx_resources(struct igb_adapter *);
78 static void igb_free_all_rx_resources(struct igb_adapter *);
79 void igb_update_stats(struct igb_adapter *);
80 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
81 static void __devexit igb_remove(struct pci_dev *pdev);
82 static int igb_sw_init(struct igb_adapter *);
83 static int igb_open(struct net_device *);
84 static int igb_close(struct net_device *);
85 static void igb_configure_tx(struct igb_adapter *);
86 static void igb_configure_rx(struct igb_adapter *);
87 static void igb_setup_rctl(struct igb_adapter *);
88 static void igb_clean_all_tx_rings(struct igb_adapter *);
89 static void igb_clean_all_rx_rings(struct igb_adapter *);
90 static void igb_clean_tx_ring(struct igb_ring *);
91 static void igb_clean_rx_ring(struct igb_ring *);
92 static void igb_set_multi(struct net_device *);
93 static void igb_update_phy_info(unsigned long);
94 static void igb_watchdog(unsigned long);
95 static void igb_watchdog_task(struct work_struct *);
96 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
97                                   struct igb_ring *);
98 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
99 static struct net_device_stats *igb_get_stats(struct net_device *);
100 static int igb_change_mtu(struct net_device *, int);
101 static int igb_set_mac(struct net_device *, void *);
102 static irqreturn_t igb_intr(int irq, void *);
103 static irqreturn_t igb_intr_msi(int irq, void *);
104 static irqreturn_t igb_msix_other(int irq, void *);
105 static irqreturn_t igb_msix_rx(int irq, void *);
106 static irqreturn_t igb_msix_tx(int irq, void *);
107 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
108 #ifdef CONFIG_IGB_DCA
109 static void igb_update_rx_dca(struct igb_ring *);
110 static void igb_update_tx_dca(struct igb_ring *);
111 static void igb_setup_dca(struct igb_adapter *);
112 #endif /* CONFIG_IGB_DCA */
113 static bool igb_clean_tx_irq(struct igb_ring *);
114 static int igb_poll(struct napi_struct *, int);
115 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
116 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
117 #ifdef CONFIG_IGB_LRO
118 static int igb_get_skb_hdr(struct sk_buff *skb, void **, void **, u64 *, void *);
119 #endif
120 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
121 static void igb_tx_timeout(struct net_device *);
122 static void igb_reset_task(struct work_struct *);
123 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
124 static void igb_vlan_rx_add_vid(struct net_device *, u16);
125 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
126 static void igb_restore_vlan(struct igb_adapter *);
127
128 static int igb_suspend(struct pci_dev *, pm_message_t);
129 #ifdef CONFIG_PM
130 static int igb_resume(struct pci_dev *);
131 #endif
132 static void igb_shutdown(struct pci_dev *);
133 #ifdef CONFIG_IGB_DCA
134 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
135 static struct notifier_block dca_notifier = {
136         .notifier_call  = igb_notify_dca,
137         .next           = NULL,
138         .priority       = 0
139 };
140 #endif
141
142 #ifdef CONFIG_NET_POLL_CONTROLLER
143 /* for netdump / net console */
144 static void igb_netpoll(struct net_device *);
145 #endif
146
147 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
148                      pci_channel_state_t);
149 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
150 static void igb_io_resume(struct pci_dev *);
151
152 static struct pci_error_handlers igb_err_handler = {
153         .error_detected = igb_io_error_detected,
154         .slot_reset = igb_io_slot_reset,
155         .resume = igb_io_resume,
156 };
157
158
159 static struct pci_driver igb_driver = {
160         .name     = igb_driver_name,
161         .id_table = igb_pci_tbl,
162         .probe    = igb_probe,
163         .remove   = __devexit_p(igb_remove),
164 #ifdef CONFIG_PM
165         /* Power Managment Hooks */
166         .suspend  = igb_suspend,
167         .resume   = igb_resume,
168 #endif
169         .shutdown = igb_shutdown,
170         .err_handler = &igb_err_handler
171 };
172
173 static int global_quad_port_a; /* global quad port a indication */
174
175 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
176 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
177 MODULE_LICENSE("GPL");
178 MODULE_VERSION(DRV_VERSION);
179
180 #ifdef DEBUG
181 /**
182  * igb_get_hw_dev_name - return device name string
183  * used by hardware layer to print debugging information
184  **/
185 char *igb_get_hw_dev_name(struct e1000_hw *hw)
186 {
187         struct igb_adapter *adapter = hw->back;
188         return adapter->netdev->name;
189 }
190 #endif
191
192 /**
193  * igb_init_module - Driver Registration Routine
194  *
195  * igb_init_module is the first routine called when the driver is
196  * loaded. All it does is register with the PCI subsystem.
197  **/
198 static int __init igb_init_module(void)
199 {
200         int ret;
201         printk(KERN_INFO "%s - version %s\n",
202                igb_driver_string, igb_driver_version);
203
204         printk(KERN_INFO "%s\n", igb_copyright);
205
206         global_quad_port_a = 0;
207
208         ret = pci_register_driver(&igb_driver);
209 #ifdef CONFIG_IGB_DCA
210         dca_register_notify(&dca_notifier);
211 #endif
212         return ret;
213 }
214
215 module_init(igb_init_module);
216
217 /**
218  * igb_exit_module - Driver Exit Cleanup Routine
219  *
220  * igb_exit_module is called just before the driver is removed
221  * from memory.
222  **/
223 static void __exit igb_exit_module(void)
224 {
225 #ifdef CONFIG_IGB_DCA
226         dca_unregister_notify(&dca_notifier);
227 #endif
228         pci_unregister_driver(&igb_driver);
229 }
230
231 module_exit(igb_exit_module);
232
233 /**
234  * igb_alloc_queues - Allocate memory for all rings
235  * @adapter: board private structure to initialize
236  *
237  * We allocate one ring per queue at run-time since we don't know the
238  * number of queues at compile-time.
239  **/
240 static int igb_alloc_queues(struct igb_adapter *adapter)
241 {
242         int i;
243
244         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
245                                    sizeof(struct igb_ring), GFP_KERNEL);
246         if (!adapter->tx_ring)
247                 return -ENOMEM;
248
249         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
250                                    sizeof(struct igb_ring), GFP_KERNEL);
251         if (!adapter->rx_ring) {
252                 kfree(adapter->tx_ring);
253                 return -ENOMEM;
254         }
255
256         adapter->rx_ring->buddy = adapter->tx_ring;
257
258         for (i = 0; i < adapter->num_tx_queues; i++) {
259                 struct igb_ring *ring = &(adapter->tx_ring[i]);
260                 ring->count = adapter->tx_ring_count;
261                 ring->adapter = adapter;
262                 ring->queue_index = i;
263         }
264         for (i = 0; i < adapter->num_rx_queues; i++) {
265                 struct igb_ring *ring = &(adapter->rx_ring[i]);
266                 ring->count = adapter->rx_ring_count;
267                 ring->adapter = adapter;
268                 ring->queue_index = i;
269                 ring->itr_register = E1000_ITR;
270
271                 /* set a default napi handler for each rx_ring */
272                 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
273         }
274         return 0;
275 }
276
277 static void igb_free_queues(struct igb_adapter *adapter)
278 {
279         int i;
280
281         for (i = 0; i < adapter->num_rx_queues; i++)
282                 netif_napi_del(&adapter->rx_ring[i].napi);
283
284         kfree(adapter->tx_ring);
285         kfree(adapter->rx_ring);
286 }
287
288 #define IGB_N0_QUEUE -1
289 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
290                               int tx_queue, int msix_vector)
291 {
292         u32 msixbm = 0;
293         struct e1000_hw *hw = &adapter->hw;
294         u32 ivar, index;
295
296         switch (hw->mac.type) {
297         case e1000_82575:
298                 /* The 82575 assigns vectors using a bitmask, which matches the
299                    bitmask for the EICR/EIMS/EIMC registers.  To assign one
300                    or more queues to a vector, we write the appropriate bits
301                    into the MSIXBM register for that vector. */
302                 if (rx_queue > IGB_N0_QUEUE) {
303                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
304                         adapter->rx_ring[rx_queue].eims_value = msixbm;
305                 }
306                 if (tx_queue > IGB_N0_QUEUE) {
307                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
308                         adapter->tx_ring[tx_queue].eims_value =
309                                   E1000_EICR_TX_QUEUE0 << tx_queue;
310                 }
311                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
312                 break;
313         case e1000_82576:
314                 /* The 82576 uses a table-based method for assigning vectors.
315                    Each queue has a single entry in the table to which we write
316                    a vector number along with a "valid" bit.  Sadly, the layout
317                    of the table is somewhat counterintuitive. */
318                 if (rx_queue > IGB_N0_QUEUE) {
319                         index = (rx_queue & 0x7);
320                         ivar = array_rd32(E1000_IVAR0, index);
321                         if (rx_queue < 8) {
322                                 /* vector goes into low byte of register */
323                                 ivar = ivar & 0xFFFFFF00;
324                                 ivar |= msix_vector | E1000_IVAR_VALID;
325                         } else {
326                                 /* vector goes into third byte of register */
327                                 ivar = ivar & 0xFF00FFFF;
328                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
329                         }
330                         adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
331                         array_wr32(E1000_IVAR0, index, ivar);
332                 }
333                 if (tx_queue > IGB_N0_QUEUE) {
334                         index = (tx_queue & 0x7);
335                         ivar = array_rd32(E1000_IVAR0, index);
336                         if (tx_queue < 8) {
337                                 /* vector goes into second byte of register */
338                                 ivar = ivar & 0xFFFF00FF;
339                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
340                         } else {
341                                 /* vector goes into high byte of register */
342                                 ivar = ivar & 0x00FFFFFF;
343                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
344                         }
345                         adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
346                         array_wr32(E1000_IVAR0, index, ivar);
347                 }
348                 break;
349         default:
350                 BUG();
351                 break;
352         }
353 }
354
355 /**
356  * igb_configure_msix - Configure MSI-X hardware
357  *
358  * igb_configure_msix sets up the hardware to properly
359  * generate MSI-X interrupts.
360  **/
361 static void igb_configure_msix(struct igb_adapter *adapter)
362 {
363         u32 tmp;
364         int i, vector = 0;
365         struct e1000_hw *hw = &adapter->hw;
366
367         adapter->eims_enable_mask = 0;
368         if (hw->mac.type == e1000_82576)
369                 /* Turn on MSI-X capability first, or our settings
370                  * won't stick.  And it will take days to debug. */
371                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
372                                    E1000_GPIE_PBA | E1000_GPIE_EIAME | 
373                                    E1000_GPIE_NSICR);
374
375         for (i = 0; i < adapter->num_tx_queues; i++) {
376                 struct igb_ring *tx_ring = &adapter->tx_ring[i];
377                 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
378                 adapter->eims_enable_mask |= tx_ring->eims_value;
379                 if (tx_ring->itr_val)
380                         writel(tx_ring->itr_val,
381                                hw->hw_addr + tx_ring->itr_register);
382                 else
383                         writel(1, hw->hw_addr + tx_ring->itr_register);
384         }
385
386         for (i = 0; i < adapter->num_rx_queues; i++) {
387                 struct igb_ring *rx_ring = &adapter->rx_ring[i];
388                 rx_ring->buddy = NULL;
389                 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
390                 adapter->eims_enable_mask |= rx_ring->eims_value;
391                 if (rx_ring->itr_val)
392                         writel(rx_ring->itr_val,
393                                hw->hw_addr + rx_ring->itr_register);
394                 else
395                         writel(1, hw->hw_addr + rx_ring->itr_register);
396         }
397
398
399         /* set vector for other causes, i.e. link changes */
400         switch (hw->mac.type) {
401         case e1000_82575:
402                 array_wr32(E1000_MSIXBM(0), vector++,
403                                       E1000_EIMS_OTHER);
404
405                 tmp = rd32(E1000_CTRL_EXT);
406                 /* enable MSI-X PBA support*/
407                 tmp |= E1000_CTRL_EXT_PBA_CLR;
408
409                 /* Auto-Mask interrupts upon ICR read. */
410                 tmp |= E1000_CTRL_EXT_EIAME;
411                 tmp |= E1000_CTRL_EXT_IRCA;
412
413                 wr32(E1000_CTRL_EXT, tmp);
414                 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
415                 adapter->eims_other = E1000_EIMS_OTHER;
416
417                 break;
418
419         case e1000_82576:
420                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
421                 wr32(E1000_IVAR_MISC, tmp);
422
423                 adapter->eims_enable_mask = (1 << (vector)) - 1;
424                 adapter->eims_other = 1 << (vector - 1);
425                 break;
426         default:
427                 /* do nothing, since nothing else supports MSI-X */
428                 break;
429         } /* switch (hw->mac.type) */
430         wrfl();
431 }
432
433 /**
434  * igb_request_msix - Initialize MSI-X interrupts
435  *
436  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
437  * kernel.
438  **/
439 static int igb_request_msix(struct igb_adapter *adapter)
440 {
441         struct net_device *netdev = adapter->netdev;
442         int i, err = 0, vector = 0;
443
444         vector = 0;
445
446         for (i = 0; i < adapter->num_tx_queues; i++) {
447                 struct igb_ring *ring = &(adapter->tx_ring[i]);
448                 sprintf(ring->name, "%s-tx%d", netdev->name, i);
449                 err = request_irq(adapter->msix_entries[vector].vector,
450                                   &igb_msix_tx, 0, ring->name,
451                                   &(adapter->tx_ring[i]));
452                 if (err)
453                         goto out;
454                 ring->itr_register = E1000_EITR(0) + (vector << 2);
455                 ring->itr_val = 976; /* ~4000 ints/sec */
456                 vector++;
457         }
458         for (i = 0; i < adapter->num_rx_queues; i++) {
459                 struct igb_ring *ring = &(adapter->rx_ring[i]);
460                 if (strlen(netdev->name) < (IFNAMSIZ - 5))
461                         sprintf(ring->name, "%s-rx%d", netdev->name, i);
462                 else
463                         memcpy(ring->name, netdev->name, IFNAMSIZ);
464                 err = request_irq(adapter->msix_entries[vector].vector,
465                                   &igb_msix_rx, 0, ring->name,
466                                   &(adapter->rx_ring[i]));
467                 if (err)
468                         goto out;
469                 ring->itr_register = E1000_EITR(0) + (vector << 2);
470                 ring->itr_val = adapter->itr;
471                 /* overwrite the poll routine for MSIX, we've already done
472                  * netif_napi_add */
473                 ring->napi.poll = &igb_clean_rx_ring_msix;
474                 vector++;
475         }
476
477         err = request_irq(adapter->msix_entries[vector].vector,
478                           &igb_msix_other, 0, netdev->name, netdev);
479         if (err)
480                 goto out;
481
482         igb_configure_msix(adapter);
483         return 0;
484 out:
485         return err;
486 }
487
488 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
489 {
490         if (adapter->msix_entries) {
491                 pci_disable_msix(adapter->pdev);
492                 kfree(adapter->msix_entries);
493                 adapter->msix_entries = NULL;
494         } else if (adapter->flags & IGB_FLAG_HAS_MSI)
495                 pci_disable_msi(adapter->pdev);
496         return;
497 }
498
499
500 /**
501  * igb_set_interrupt_capability - set MSI or MSI-X if supported
502  *
503  * Attempt to configure interrupts using the best available
504  * capabilities of the hardware and kernel.
505  **/
506 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
507 {
508         int err;
509         int numvecs, i;
510
511         numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
512         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
513                                         GFP_KERNEL);
514         if (!adapter->msix_entries)
515                 goto msi_only;
516
517         for (i = 0; i < numvecs; i++)
518                 adapter->msix_entries[i].entry = i;
519
520         err = pci_enable_msix(adapter->pdev,
521                               adapter->msix_entries,
522                               numvecs);
523         if (err == 0)
524                 goto out;
525
526         igb_reset_interrupt_capability(adapter);
527
528         /* If we can't do MSI-X, try MSI */
529 msi_only:
530         adapter->num_rx_queues = 1;
531         adapter->num_tx_queues = 1;
532         if (!pci_enable_msi(adapter->pdev))
533                 adapter->flags |= IGB_FLAG_HAS_MSI;
534 out:
535         /* Notify the stack of the (possibly) reduced Tx Queue count. */
536         adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
537         return;
538 }
539
540 /**
541  * igb_request_irq - initialize interrupts
542  *
543  * Attempts to configure interrupts using the best available
544  * capabilities of the hardware and kernel.
545  **/
546 static int igb_request_irq(struct igb_adapter *adapter)
547 {
548         struct net_device *netdev = adapter->netdev;
549         struct e1000_hw *hw = &adapter->hw;
550         int err = 0;
551
552         if (adapter->msix_entries) {
553                 err = igb_request_msix(adapter);
554                 if (!err)
555                         goto request_done;
556                 /* fall back to MSI */
557                 igb_reset_interrupt_capability(adapter);
558                 if (!pci_enable_msi(adapter->pdev))
559                         adapter->flags |= IGB_FLAG_HAS_MSI;
560                 igb_free_all_tx_resources(adapter);
561                 igb_free_all_rx_resources(adapter);
562                 adapter->num_rx_queues = 1;
563                 igb_alloc_queues(adapter);
564         } else {
565                 switch (hw->mac.type) {
566                 case e1000_82575:
567                         wr32(E1000_MSIXBM(0),
568                              (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
569                         break;
570                 case e1000_82576:
571                         wr32(E1000_IVAR0, E1000_IVAR_VALID);
572                         break;
573                 default:
574                         break;
575                 }
576         }
577
578         if (adapter->flags & IGB_FLAG_HAS_MSI) {
579                 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
580                                   netdev->name, netdev);
581                 if (!err)
582                         goto request_done;
583                 /* fall back to legacy interrupts */
584                 igb_reset_interrupt_capability(adapter);
585                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
586         }
587
588         err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
589                           netdev->name, netdev);
590
591         if (err)
592                 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
593                         err);
594
595 request_done:
596         return err;
597 }
598
599 static void igb_free_irq(struct igb_adapter *adapter)
600 {
601         struct net_device *netdev = adapter->netdev;
602
603         if (adapter->msix_entries) {
604                 int vector = 0, i;
605
606                 for (i = 0; i < adapter->num_tx_queues; i++)
607                         free_irq(adapter->msix_entries[vector++].vector,
608                                 &(adapter->tx_ring[i]));
609                 for (i = 0; i < adapter->num_rx_queues; i++)
610                         free_irq(adapter->msix_entries[vector++].vector,
611                                 &(adapter->rx_ring[i]));
612
613                 free_irq(adapter->msix_entries[vector++].vector, netdev);
614                 return;
615         }
616
617         free_irq(adapter->pdev->irq, netdev);
618 }
619
620 /**
621  * igb_irq_disable - Mask off interrupt generation on the NIC
622  * @adapter: board private structure
623  **/
624 static void igb_irq_disable(struct igb_adapter *adapter)
625 {
626         struct e1000_hw *hw = &adapter->hw;
627
628         if (adapter->msix_entries) {
629                 wr32(E1000_EIAM, 0);
630                 wr32(E1000_EIMC, ~0);
631                 wr32(E1000_EIAC, 0);
632         }
633
634         wr32(E1000_IAM, 0);
635         wr32(E1000_IMC, ~0);
636         wrfl();
637         synchronize_irq(adapter->pdev->irq);
638 }
639
640 /**
641  * igb_irq_enable - Enable default interrupt generation settings
642  * @adapter: board private structure
643  **/
644 static void igb_irq_enable(struct igb_adapter *adapter)
645 {
646         struct e1000_hw *hw = &adapter->hw;
647
648         if (adapter->msix_entries) {
649                 wr32(E1000_EIAC, adapter->eims_enable_mask);
650                 wr32(E1000_EIAM, adapter->eims_enable_mask);
651                 wr32(E1000_EIMS, adapter->eims_enable_mask);
652                 wr32(E1000_IMS, E1000_IMS_LSC);
653         } else {
654                 wr32(E1000_IMS, IMS_ENABLE_MASK);
655                 wr32(E1000_IAM, IMS_ENABLE_MASK);
656         }
657 }
658
659 static void igb_update_mng_vlan(struct igb_adapter *adapter)
660 {
661         struct net_device *netdev = adapter->netdev;
662         u16 vid = adapter->hw.mng_cookie.vlan_id;
663         u16 old_vid = adapter->mng_vlan_id;
664         if (adapter->vlgrp) {
665                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
666                         if (adapter->hw.mng_cookie.status &
667                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
668                                 igb_vlan_rx_add_vid(netdev, vid);
669                                 adapter->mng_vlan_id = vid;
670                         } else
671                                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
672
673                         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
674                                         (vid != old_vid) &&
675                             !vlan_group_get_device(adapter->vlgrp, old_vid))
676                                 igb_vlan_rx_kill_vid(netdev, old_vid);
677                 } else
678                         adapter->mng_vlan_id = vid;
679         }
680 }
681
682 /**
683  * igb_release_hw_control - release control of the h/w to f/w
684  * @adapter: address of board private structure
685  *
686  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
687  * For ASF and Pass Through versions of f/w this means that the
688  * driver is no longer loaded.
689  *
690  **/
691 static void igb_release_hw_control(struct igb_adapter *adapter)
692 {
693         struct e1000_hw *hw = &adapter->hw;
694         u32 ctrl_ext;
695
696         /* Let firmware take over control of h/w */
697         ctrl_ext = rd32(E1000_CTRL_EXT);
698         wr32(E1000_CTRL_EXT,
699                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
700 }
701
702
703 /**
704  * igb_get_hw_control - get control of the h/w from f/w
705  * @adapter: address of board private structure
706  *
707  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
708  * For ASF and Pass Through versions of f/w this means that
709  * the driver is loaded.
710  *
711  **/
712 static void igb_get_hw_control(struct igb_adapter *adapter)
713 {
714         struct e1000_hw *hw = &adapter->hw;
715         u32 ctrl_ext;
716
717         /* Let firmware know the driver has taken over */
718         ctrl_ext = rd32(E1000_CTRL_EXT);
719         wr32(E1000_CTRL_EXT,
720                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
721 }
722
723 /**
724  * igb_configure - configure the hardware for RX and TX
725  * @adapter: private board structure
726  **/
727 static void igb_configure(struct igb_adapter *adapter)
728 {
729         struct net_device *netdev = adapter->netdev;
730         int i;
731
732         igb_get_hw_control(adapter);
733         igb_set_multi(netdev);
734
735         igb_restore_vlan(adapter);
736
737         igb_configure_tx(adapter);
738         igb_setup_rctl(adapter);
739         igb_configure_rx(adapter);
740
741         igb_rx_fifo_flush_82575(&adapter->hw);
742
743         /* call IGB_DESC_UNUSED which always leaves
744          * at least 1 descriptor unused to make sure
745          * next_to_use != next_to_clean */
746         for (i = 0; i < adapter->num_rx_queues; i++) {
747                 struct igb_ring *ring = &adapter->rx_ring[i];
748                 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
749         }
750
751
752         adapter->tx_queue_len = netdev->tx_queue_len;
753 }
754
755
756 /**
757  * igb_up - Open the interface and prepare it to handle traffic
758  * @adapter: board private structure
759  **/
760
761 int igb_up(struct igb_adapter *adapter)
762 {
763         struct e1000_hw *hw = &adapter->hw;
764         int i;
765
766         /* hardware has been reset, we need to reload some things */
767         igb_configure(adapter);
768
769         clear_bit(__IGB_DOWN, &adapter->state);
770
771         for (i = 0; i < adapter->num_rx_queues; i++)
772                 napi_enable(&adapter->rx_ring[i].napi);
773         if (adapter->msix_entries)
774                 igb_configure_msix(adapter);
775
776         /* Clear any pending interrupts. */
777         rd32(E1000_ICR);
778         igb_irq_enable(adapter);
779
780         /* Fire a link change interrupt to start the watchdog. */
781         wr32(E1000_ICS, E1000_ICS_LSC);
782         return 0;
783 }
784
785 void igb_down(struct igb_adapter *adapter)
786 {
787         struct e1000_hw *hw = &adapter->hw;
788         struct net_device *netdev = adapter->netdev;
789         u32 tctl, rctl;
790         int i;
791
792         /* signal that we're down so the interrupt handler does not
793          * reschedule our watchdog timer */
794         set_bit(__IGB_DOWN, &adapter->state);
795
796         /* disable receives in the hardware */
797         rctl = rd32(E1000_RCTL);
798         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
799         /* flush and sleep below */
800
801         netif_tx_stop_all_queues(netdev);
802
803         /* disable transmits in the hardware */
804         tctl = rd32(E1000_TCTL);
805         tctl &= ~E1000_TCTL_EN;
806         wr32(E1000_TCTL, tctl);
807         /* flush both disables and wait for them to finish */
808         wrfl();
809         msleep(10);
810
811         for (i = 0; i < adapter->num_rx_queues; i++)
812                 napi_disable(&adapter->rx_ring[i].napi);
813
814         igb_irq_disable(adapter);
815
816         del_timer_sync(&adapter->watchdog_timer);
817         del_timer_sync(&adapter->phy_info_timer);
818
819         netdev->tx_queue_len = adapter->tx_queue_len;
820         netif_carrier_off(netdev);
821         adapter->link_speed = 0;
822         adapter->link_duplex = 0;
823
824         if (!pci_channel_offline(adapter->pdev))
825                 igb_reset(adapter);
826         igb_clean_all_tx_rings(adapter);
827         igb_clean_all_rx_rings(adapter);
828 }
829
830 void igb_reinit_locked(struct igb_adapter *adapter)
831 {
832         WARN_ON(in_interrupt());
833         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
834                 msleep(1);
835         igb_down(adapter);
836         igb_up(adapter);
837         clear_bit(__IGB_RESETTING, &adapter->state);
838 }
839
840 void igb_reset(struct igb_adapter *adapter)
841 {
842         struct e1000_hw *hw = &adapter->hw;
843         struct e1000_mac_info *mac = &hw->mac;
844         struct e1000_fc_info *fc = &hw->fc;
845         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
846         u16 hwm;
847
848         /* Repartition Pba for greater than 9k mtu
849          * To take effect CTRL.RST is required.
850          */
851         if (mac->type != e1000_82576) {
852         pba = E1000_PBA_34K;
853         }
854         else {
855                 pba = E1000_PBA_64K;
856         }
857
858         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
859             (mac->type < e1000_82576)) {
860                 /* adjust PBA for jumbo frames */
861                 wr32(E1000_PBA, pba);
862
863                 /* To maintain wire speed transmits, the Tx FIFO should be
864                  * large enough to accommodate two full transmit packets,
865                  * rounded up to the next 1KB and expressed in KB.  Likewise,
866                  * the Rx FIFO should be large enough to accommodate at least
867                  * one full receive packet and is similarly rounded up and
868                  * expressed in KB. */
869                 pba = rd32(E1000_PBA);
870                 /* upper 16 bits has Tx packet buffer allocation size in KB */
871                 tx_space = pba >> 16;
872                 /* lower 16 bits has Rx packet buffer allocation size in KB */
873                 pba &= 0xffff;
874                 /* the tx fifo also stores 16 bytes of information about the tx
875                  * but don't include ethernet FCS because hardware appends it */
876                 min_tx_space = (adapter->max_frame_size +
877                                 sizeof(struct e1000_tx_desc) -
878                                 ETH_FCS_LEN) * 2;
879                 min_tx_space = ALIGN(min_tx_space, 1024);
880                 min_tx_space >>= 10;
881                 /* software strips receive CRC, so leave room for it */
882                 min_rx_space = adapter->max_frame_size;
883                 min_rx_space = ALIGN(min_rx_space, 1024);
884                 min_rx_space >>= 10;
885
886                 /* If current Tx allocation is less than the min Tx FIFO size,
887                  * and the min Tx FIFO size is less than the current Rx FIFO
888                  * allocation, take space away from current Rx allocation */
889                 if (tx_space < min_tx_space &&
890                     ((min_tx_space - tx_space) < pba)) {
891                         pba = pba - (min_tx_space - tx_space);
892
893                         /* if short on rx space, rx wins and must trump tx
894                          * adjustment */
895                         if (pba < min_rx_space)
896                                 pba = min_rx_space;
897                 }
898                 wr32(E1000_PBA, pba);
899         }
900
901         /* flow control settings */
902         /* The high water mark must be low enough to fit one full frame
903          * (or the size used for early receive) above it in the Rx FIFO.
904          * Set it to the lower of:
905          * - 90% of the Rx FIFO size, or
906          * - the full Rx FIFO size minus one full frame */
907         hwm = min(((pba << 10) * 9 / 10),
908                         ((pba << 10) - 2 * adapter->max_frame_size));
909
910         if (mac->type < e1000_82576) {
911                 fc->high_water = hwm & 0xFFF8;  /* 8-byte granularity */
912                 fc->low_water = fc->high_water - 8;
913         } else {
914                 fc->high_water = hwm & 0xFFF0;  /* 16-byte granularity */
915                 fc->low_water = fc->high_water - 16;
916         }
917         fc->pause_time = 0xFFFF;
918         fc->send_xon = 1;
919         fc->type = fc->original_type;
920
921         /* Allow time for pending master requests to run */
922         adapter->hw.mac.ops.reset_hw(&adapter->hw);
923         wr32(E1000_WUC, 0);
924
925         if (adapter->hw.mac.ops.init_hw(&adapter->hw))
926                 dev_err(&adapter->pdev->dev, "Hardware Error\n");
927
928         igb_update_mng_vlan(adapter);
929
930         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
931         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
932
933         igb_reset_adaptive(&adapter->hw);
934         igb_get_phy_info(&adapter->hw);
935 }
936
937 /**
938  * igb_is_need_ioport - determine if an adapter needs ioport resources or not
939  * @pdev: PCI device information struct
940  *
941  * Returns true if an adapter needs ioport resources
942  **/
943 static int igb_is_need_ioport(struct pci_dev *pdev)
944 {
945         switch (pdev->device) {
946         /* Currently there are no adapters that need ioport resources */
947         default:
948                 return false;
949         }
950 }
951
952 static const struct net_device_ops igb_netdev_ops = {
953         .ndo_open               = igb_open,
954         .ndo_stop               = igb_close,
955         .ndo_start_xmit         = igb_xmit_frame_adv,
956         .ndo_get_stats          = igb_get_stats,
957         .ndo_set_multicast_list = igb_set_multi,
958         .ndo_set_mac_address    = igb_set_mac,
959         .ndo_change_mtu         = igb_change_mtu,
960         .ndo_do_ioctl           = igb_ioctl,
961         .ndo_tx_timeout         = igb_tx_timeout,
962         .ndo_validate_addr      = eth_validate_addr,
963         .ndo_vlan_rx_register   = igb_vlan_rx_register,
964         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
965         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
966 #ifdef CONFIG_NET_POLL_CONTROLLER
967         .ndo_poll_controller    = igb_netpoll,
968 #endif
969 };
970
971 /**
972  * igb_probe - Device Initialization Routine
973  * @pdev: PCI device information struct
974  * @ent: entry in igb_pci_tbl
975  *
976  * Returns 0 on success, negative on failure
977  *
978  * igb_probe initializes an adapter identified by a pci_dev structure.
979  * The OS initialization, configuring of the adapter private structure,
980  * and a hardware reset occur.
981  **/
982 static int __devinit igb_probe(struct pci_dev *pdev,
983                                const struct pci_device_id *ent)
984 {
985         struct net_device *netdev;
986         struct igb_adapter *adapter;
987         struct e1000_hw *hw;
988         struct pci_dev *us_dev;
989         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
990         unsigned long mmio_start, mmio_len;
991         int i, err, pci_using_dac, pos;
992         u16 eeprom_data = 0, state = 0;
993         u16 eeprom_apme_mask = IGB_EEPROM_APME;
994         u32 part_num;
995         int bars, need_ioport;
996
997         /* do not allocate ioport bars when not needed */
998         need_ioport = igb_is_need_ioport(pdev);
999         if (need_ioport) {
1000                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
1001                 err = pci_enable_device(pdev);
1002         } else {
1003                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1004                 err = pci_enable_device_mem(pdev);
1005         }
1006         if (err)
1007                 return err;
1008
1009         pci_using_dac = 0;
1010         err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1011         if (!err) {
1012                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1013                 if (!err)
1014                         pci_using_dac = 1;
1015         } else {
1016                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1017                 if (err) {
1018                         err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1019                         if (err) {
1020                                 dev_err(&pdev->dev, "No usable DMA "
1021                                         "configuration, aborting\n");
1022                                 goto err_dma;
1023                         }
1024                 }
1025         }
1026
1027         /* 82575 requires that the pci-e link partner disable the L0s state */
1028         switch (pdev->device) {
1029         case E1000_DEV_ID_82575EB_COPPER:
1030         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1031         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1032                 us_dev = pdev->bus->self;
1033                 pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
1034                 if (pos) {
1035                         pci_read_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1036                                              &state);
1037                         state &= ~PCIE_LINK_STATE_L0S;
1038                         pci_write_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1039                                               state);
1040                         dev_info(&pdev->dev,
1041                                  "Disabling ASPM L0s upstream switch port %s\n",
1042                                  pci_name(us_dev));
1043                 }
1044         default:
1045                 break;
1046         }
1047
1048         err = pci_request_selected_regions(pdev, bars, igb_driver_name);
1049         if (err)
1050                 goto err_pci_reg;
1051
1052         pci_set_master(pdev);
1053         pci_save_state(pdev);
1054
1055         err = -ENOMEM;
1056         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES);
1057         if (!netdev)
1058                 goto err_alloc_etherdev;
1059
1060         SET_NETDEV_DEV(netdev, &pdev->dev);
1061
1062         pci_set_drvdata(pdev, netdev);
1063         adapter = netdev_priv(netdev);
1064         adapter->netdev = netdev;
1065         adapter->pdev = pdev;
1066         hw = &adapter->hw;
1067         hw->back = adapter;
1068         adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1069         adapter->bars = bars;
1070         adapter->need_ioport = need_ioport;
1071
1072         mmio_start = pci_resource_start(pdev, 0);
1073         mmio_len = pci_resource_len(pdev, 0);
1074
1075         err = -EIO;
1076         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
1077         if (!adapter->hw.hw_addr)
1078                 goto err_ioremap;
1079
1080         netdev->netdev_ops = &igb_netdev_ops;
1081         igb_set_ethtool_ops(netdev);
1082         netdev->watchdog_timeo = 5 * HZ;
1083
1084         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1085
1086         netdev->mem_start = mmio_start;
1087         netdev->mem_end = mmio_start + mmio_len;
1088
1089         /* PCI config space info */
1090         hw->vendor_id = pdev->vendor;
1091         hw->device_id = pdev->device;
1092         hw->revision_id = pdev->revision;
1093         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1094         hw->subsystem_device_id = pdev->subsystem_device;
1095
1096         /* setup the private structure */
1097         hw->back = adapter;
1098         /* Copy the default MAC, PHY and NVM function pointers */
1099         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1100         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1101         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1102         /* Initialize skew-specific constants */
1103         err = ei->get_invariants(hw);
1104         if (err)
1105                 goto err_hw_init;
1106
1107         err = igb_sw_init(adapter);
1108         if (err)
1109                 goto err_sw_init;
1110
1111         igb_get_bus_info_pcie(hw);
1112
1113         /* set flags */
1114         switch (hw->mac.type) {
1115         case e1000_82576:
1116         case e1000_82575:
1117                 adapter->flags |= IGB_FLAG_HAS_DCA;
1118                 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1119                 break;
1120         default:
1121                 break;
1122         }
1123
1124         hw->phy.autoneg_wait_to_complete = false;
1125         hw->mac.adaptive_ifs = true;
1126
1127         /* Copper options */
1128         if (hw->phy.media_type == e1000_media_type_copper) {
1129                 hw->phy.mdix = AUTO_ALL_MODES;
1130                 hw->phy.disable_polarity_correction = false;
1131                 hw->phy.ms_type = e1000_ms_hw_default;
1132         }
1133
1134         if (igb_check_reset_block(hw))
1135                 dev_info(&pdev->dev,
1136                         "PHY reset is blocked due to SOL/IDER session.\n");
1137
1138         netdev->features = NETIF_F_SG |
1139                            NETIF_F_HW_CSUM |
1140                            NETIF_F_HW_VLAN_TX |
1141                            NETIF_F_HW_VLAN_RX |
1142                            NETIF_F_HW_VLAN_FILTER;
1143
1144         netdev->features |= NETIF_F_TSO;
1145         netdev->features |= NETIF_F_TSO6;
1146
1147 #ifdef CONFIG_IGB_LRO
1148         netdev->features |= NETIF_F_LRO;
1149 #endif
1150
1151         netdev->vlan_features |= NETIF_F_TSO;
1152         netdev->vlan_features |= NETIF_F_TSO6;
1153         netdev->vlan_features |= NETIF_F_HW_CSUM;
1154         netdev->vlan_features |= NETIF_F_SG;
1155
1156         if (pci_using_dac)
1157                 netdev->features |= NETIF_F_HIGHDMA;
1158
1159         netdev->features |= NETIF_F_LLTX;
1160         adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1161
1162         /* before reading the NVM, reset the controller to put the device in a
1163          * known good starting state */
1164         hw->mac.ops.reset_hw(hw);
1165
1166         /* make sure the NVM is good */
1167         if (igb_validate_nvm_checksum(hw) < 0) {
1168                 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1169                 err = -EIO;
1170                 goto err_eeprom;
1171         }
1172
1173         /* copy the MAC address out of the NVM */
1174         if (hw->mac.ops.read_mac_addr(hw))
1175                 dev_err(&pdev->dev, "NVM Read Error\n");
1176
1177         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1178         memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1179
1180         if (!is_valid_ether_addr(netdev->perm_addr)) {
1181                 dev_err(&pdev->dev, "Invalid MAC Address\n");
1182                 err = -EIO;
1183                 goto err_eeprom;
1184         }
1185
1186         init_timer(&adapter->watchdog_timer);
1187         adapter->watchdog_timer.function = &igb_watchdog;
1188         adapter->watchdog_timer.data = (unsigned long) adapter;
1189
1190         init_timer(&adapter->phy_info_timer);
1191         adapter->phy_info_timer.function = &igb_update_phy_info;
1192         adapter->phy_info_timer.data = (unsigned long) adapter;
1193
1194         INIT_WORK(&adapter->reset_task, igb_reset_task);
1195         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1196
1197         /* Initialize link & ring properties that are user-changeable */
1198         adapter->tx_ring->count = 256;
1199         for (i = 0; i < adapter->num_tx_queues; i++)
1200                 adapter->tx_ring[i].count = adapter->tx_ring->count;
1201         adapter->rx_ring->count = 256;
1202         for (i = 0; i < adapter->num_rx_queues; i++)
1203                 adapter->rx_ring[i].count = adapter->rx_ring->count;
1204
1205         adapter->fc_autoneg = true;
1206         hw->mac.autoneg = true;
1207         hw->phy.autoneg_advertised = 0x2f;
1208
1209         hw->fc.original_type = e1000_fc_default;
1210         hw->fc.type = e1000_fc_default;
1211
1212         adapter->itr_setting = 3;
1213         adapter->itr = IGB_START_ITR;
1214
1215         igb_validate_mdi_setting(hw);
1216
1217         adapter->rx_csum = 1;
1218
1219         /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1220          * enable the ACPI Magic Packet filter
1221          */
1222
1223         if (hw->bus.func == 0 ||
1224             hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1225                 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1226                                      &eeprom_data);
1227
1228         if (eeprom_data & eeprom_apme_mask)
1229                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1230
1231         /* now that we have the eeprom settings, apply the special cases where
1232          * the eeprom may be wrong or the board simply won't support wake on
1233          * lan on a particular port */
1234         switch (pdev->device) {
1235         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1236                 adapter->eeprom_wol = 0;
1237                 break;
1238         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1239         case E1000_DEV_ID_82576_FIBER:
1240         case E1000_DEV_ID_82576_SERDES:
1241                 /* Wake events only supported on port A for dual fiber
1242                  * regardless of eeprom setting */
1243                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1244                         adapter->eeprom_wol = 0;
1245                 break;
1246         }
1247
1248         /* initialize the wol settings based on the eeprom settings */
1249         adapter->wol = adapter->eeprom_wol;
1250         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1251
1252         /* reset the hardware with the new settings */
1253         igb_reset(adapter);
1254
1255         /* let the f/w know that the h/w is now under the control of the
1256          * driver. */
1257         igb_get_hw_control(adapter);
1258
1259         /* tell the stack to leave us alone until igb_open() is called */
1260         netif_carrier_off(netdev);
1261         netif_tx_stop_all_queues(netdev);
1262
1263         strcpy(netdev->name, "eth%d");
1264         err = register_netdev(netdev);
1265         if (err)
1266                 goto err_register;
1267
1268 #ifdef CONFIG_IGB_DCA
1269         if ((adapter->flags & IGB_FLAG_HAS_DCA) &&
1270             (dca_add_requester(&pdev->dev) == 0)) {
1271                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1272                 dev_info(&pdev->dev, "DCA enabled\n");
1273                 /* Always use CB2 mode, difference is masked
1274                  * in the CB driver. */
1275                 wr32(E1000_DCA_CTRL, 2);
1276                 igb_setup_dca(adapter);
1277         }
1278 #endif
1279
1280         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1281         /* print bus type/speed/width info */
1282         dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1283                  netdev->name,
1284                  ((hw->bus.speed == e1000_bus_speed_2500)
1285                   ? "2.5Gb/s" : "unknown"),
1286                  ((hw->bus.width == e1000_bus_width_pcie_x4)
1287                   ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1288                   ? "Width x1" : "unknown"),
1289                  netdev->dev_addr);
1290
1291         igb_read_part_num(hw, &part_num);
1292         dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1293                 (part_num >> 8), (part_num & 0xff));
1294
1295         dev_info(&pdev->dev,
1296                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1297                 adapter->msix_entries ? "MSI-X" :
1298                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1299                 adapter->num_rx_queues, adapter->num_tx_queues);
1300
1301         return 0;
1302
1303 err_register:
1304         igb_release_hw_control(adapter);
1305 err_eeprom:
1306         if (!igb_check_reset_block(hw))
1307                 igb_reset_phy(hw);
1308
1309         if (hw->flash_address)
1310                 iounmap(hw->flash_address);
1311
1312         igb_remove_device(hw);
1313         igb_free_queues(adapter);
1314 err_sw_init:
1315 err_hw_init:
1316         iounmap(hw->hw_addr);
1317 err_ioremap:
1318         free_netdev(netdev);
1319 err_alloc_etherdev:
1320         pci_release_selected_regions(pdev, bars);
1321 err_pci_reg:
1322 err_dma:
1323         pci_disable_device(pdev);
1324         return err;
1325 }
1326
1327 /**
1328  * igb_remove - Device Removal Routine
1329  * @pdev: PCI device information struct
1330  *
1331  * igb_remove is called by the PCI subsystem to alert the driver
1332  * that it should release a PCI device.  The could be caused by a
1333  * Hot-Plug event, or because the driver is going to be removed from
1334  * memory.
1335  **/
1336 static void __devexit igb_remove(struct pci_dev *pdev)
1337 {
1338         struct net_device *netdev = pci_get_drvdata(pdev);
1339         struct igb_adapter *adapter = netdev_priv(netdev);
1340 #ifdef CONFIG_IGB_DCA
1341         struct e1000_hw *hw = &adapter->hw;
1342 #endif
1343
1344         /* flush_scheduled work may reschedule our watchdog task, so
1345          * explicitly disable watchdog tasks from being rescheduled  */
1346         set_bit(__IGB_DOWN, &adapter->state);
1347         del_timer_sync(&adapter->watchdog_timer);
1348         del_timer_sync(&adapter->phy_info_timer);
1349
1350         flush_scheduled_work();
1351
1352 #ifdef CONFIG_IGB_DCA
1353         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1354                 dev_info(&pdev->dev, "DCA disabled\n");
1355                 dca_remove_requester(&pdev->dev);
1356                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1357                 wr32(E1000_DCA_CTRL, 1);
1358         }
1359 #endif
1360
1361         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1362          * would have already happened in close and is redundant. */
1363         igb_release_hw_control(adapter);
1364
1365         unregister_netdev(netdev);
1366
1367         if (!igb_check_reset_block(&adapter->hw))
1368                 igb_reset_phy(&adapter->hw);
1369
1370         igb_remove_device(&adapter->hw);
1371         igb_reset_interrupt_capability(adapter);
1372
1373         igb_free_queues(adapter);
1374
1375         iounmap(adapter->hw.hw_addr);
1376         if (adapter->hw.flash_address)
1377                 iounmap(adapter->hw.flash_address);
1378         pci_release_selected_regions(pdev, adapter->bars);
1379
1380         free_netdev(netdev);
1381
1382         pci_disable_device(pdev);
1383 }
1384
1385 /**
1386  * igb_sw_init - Initialize general software structures (struct igb_adapter)
1387  * @adapter: board private structure to initialize
1388  *
1389  * igb_sw_init initializes the Adapter private data structure.
1390  * Fields are initialized based on PCI device information and
1391  * OS network device settings (MTU size).
1392  **/
1393 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1394 {
1395         struct e1000_hw *hw = &adapter->hw;
1396         struct net_device *netdev = adapter->netdev;
1397         struct pci_dev *pdev = adapter->pdev;
1398
1399         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1400
1401         adapter->tx_ring_count = IGB_DEFAULT_TXD;
1402         adapter->rx_ring_count = IGB_DEFAULT_RXD;
1403         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1404         adapter->rx_ps_hdr_size = 0; /* disable packet split */
1405         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1406         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1407
1408         /* Number of supported queues. */
1409         /* Having more queues than CPUs doesn't make sense. */
1410         adapter->num_rx_queues = min((u32)IGB_MAX_RX_QUEUES, (u32)num_online_cpus());
1411         adapter->num_tx_queues = min(IGB_MAX_TX_QUEUES, num_online_cpus());
1412
1413         /* This call may decrease the number of queues depending on
1414          * interrupt mode. */
1415         igb_set_interrupt_capability(adapter);
1416
1417         if (igb_alloc_queues(adapter)) {
1418                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1419                 return -ENOMEM;
1420         }
1421
1422         /* Explicitly disable IRQ since the NIC can be in any state. */
1423         igb_irq_disable(adapter);
1424
1425         set_bit(__IGB_DOWN, &adapter->state);
1426         return 0;
1427 }
1428
1429 /**
1430  * igb_open - Called when a network interface is made active
1431  * @netdev: network interface device structure
1432  *
1433  * Returns 0 on success, negative value on failure
1434  *
1435  * The open entry point is called when a network interface is made
1436  * active by the system (IFF_UP).  At this point all resources needed
1437  * for transmit and receive operations are allocated, the interrupt
1438  * handler is registered with the OS, the watchdog timer is started,
1439  * and the stack is notified that the interface is ready.
1440  **/
1441 static int igb_open(struct net_device *netdev)
1442 {
1443         struct igb_adapter *adapter = netdev_priv(netdev);
1444         struct e1000_hw *hw = &adapter->hw;
1445         int err;
1446         int i;
1447
1448         /* disallow open during test */
1449         if (test_bit(__IGB_TESTING, &adapter->state))
1450                 return -EBUSY;
1451
1452         /* allocate transmit descriptors */
1453         err = igb_setup_all_tx_resources(adapter);
1454         if (err)
1455                 goto err_setup_tx;
1456
1457         /* allocate receive descriptors */
1458         err = igb_setup_all_rx_resources(adapter);
1459         if (err)
1460                 goto err_setup_rx;
1461
1462         /* e1000_power_up_phy(adapter); */
1463
1464         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1465         if ((adapter->hw.mng_cookie.status &
1466              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1467                 igb_update_mng_vlan(adapter);
1468
1469         /* before we allocate an interrupt, we must be ready to handle it.
1470          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1471          * as soon as we call pci_request_irq, so we have to setup our
1472          * clean_rx handler before we do so.  */
1473         igb_configure(adapter);
1474
1475         err = igb_request_irq(adapter);
1476         if (err)
1477                 goto err_req_irq;
1478
1479         /* From here on the code is the same as igb_up() */
1480         clear_bit(__IGB_DOWN, &adapter->state);
1481
1482         for (i = 0; i < adapter->num_rx_queues; i++)
1483                 napi_enable(&adapter->rx_ring[i].napi);
1484
1485         /* Clear any pending interrupts. */
1486         rd32(E1000_ICR);
1487
1488         igb_irq_enable(adapter);
1489
1490         netif_tx_start_all_queues(netdev);
1491
1492         /* Fire a link status change interrupt to start the watchdog. */
1493         wr32(E1000_ICS, E1000_ICS_LSC);
1494
1495         return 0;
1496
1497 err_req_irq:
1498         igb_release_hw_control(adapter);
1499         /* e1000_power_down_phy(adapter); */
1500         igb_free_all_rx_resources(adapter);
1501 err_setup_rx:
1502         igb_free_all_tx_resources(adapter);
1503 err_setup_tx:
1504         igb_reset(adapter);
1505
1506         return err;
1507 }
1508
1509 /**
1510  * igb_close - Disables a network interface
1511  * @netdev: network interface device structure
1512  *
1513  * Returns 0, this is not allowed to fail
1514  *
1515  * The close entry point is called when an interface is de-activated
1516  * by the OS.  The hardware is still under the driver's control, but
1517  * needs to be disabled.  A global MAC reset is issued to stop the
1518  * hardware, and all transmit and receive resources are freed.
1519  **/
1520 static int igb_close(struct net_device *netdev)
1521 {
1522         struct igb_adapter *adapter = netdev_priv(netdev);
1523
1524         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1525         igb_down(adapter);
1526
1527         igb_free_irq(adapter);
1528
1529         igb_free_all_tx_resources(adapter);
1530         igb_free_all_rx_resources(adapter);
1531
1532         /* kill manageability vlan ID if supported, but not if a vlan with
1533          * the same ID is registered on the host OS (let 8021q kill it) */
1534         if ((adapter->hw.mng_cookie.status &
1535                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1536              !(adapter->vlgrp &&
1537                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1538                 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1539
1540         return 0;
1541 }
1542
1543 /**
1544  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1545  * @adapter: board private structure
1546  * @tx_ring: tx descriptor ring (for a specific queue) to setup
1547  *
1548  * Return 0 on success, negative on failure
1549  **/
1550
1551 int igb_setup_tx_resources(struct igb_adapter *adapter,
1552                            struct igb_ring *tx_ring)
1553 {
1554         struct pci_dev *pdev = adapter->pdev;
1555         int size;
1556
1557         size = sizeof(struct igb_buffer) * tx_ring->count;
1558         tx_ring->buffer_info = vmalloc(size);
1559         if (!tx_ring->buffer_info)
1560                 goto err;
1561         memset(tx_ring->buffer_info, 0, size);
1562
1563         /* round up to nearest 4K */
1564         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc)
1565                         + sizeof(u32);
1566         tx_ring->size = ALIGN(tx_ring->size, 4096);
1567
1568         tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1569                                              &tx_ring->dma);
1570
1571         if (!tx_ring->desc)
1572                 goto err;
1573
1574         tx_ring->adapter = adapter;
1575         tx_ring->next_to_use = 0;
1576         tx_ring->next_to_clean = 0;
1577         return 0;
1578
1579 err:
1580         vfree(tx_ring->buffer_info);
1581         dev_err(&adapter->pdev->dev,
1582                 "Unable to allocate memory for the transmit descriptor ring\n");
1583         return -ENOMEM;
1584 }
1585
1586 /**
1587  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1588  *                                (Descriptors) for all queues
1589  * @adapter: board private structure
1590  *
1591  * Return 0 on success, negative on failure
1592  **/
1593 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1594 {
1595         int i, err = 0;
1596         int r_idx;
1597
1598         for (i = 0; i < adapter->num_tx_queues; i++) {
1599                 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1600                 if (err) {
1601                         dev_err(&adapter->pdev->dev,
1602                                 "Allocation for Tx Queue %u failed\n", i);
1603                         for (i--; i >= 0; i--)
1604                                 igb_free_tx_resources(&adapter->tx_ring[i]);
1605                         break;
1606                 }
1607         }
1608
1609         for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1610                 r_idx = i % adapter->num_tx_queues;
1611                 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1612         }       
1613         return err;
1614 }
1615
1616 /**
1617  * igb_configure_tx - Configure transmit Unit after Reset
1618  * @adapter: board private structure
1619  *
1620  * Configure the Tx unit of the MAC after a reset.
1621  **/
1622 static void igb_configure_tx(struct igb_adapter *adapter)
1623 {
1624         u64 tdba, tdwba;
1625         struct e1000_hw *hw = &adapter->hw;
1626         u32 tctl;
1627         u32 txdctl, txctrl;
1628         int i;
1629
1630         for (i = 0; i < adapter->num_tx_queues; i++) {
1631                 struct igb_ring *ring = &(adapter->tx_ring[i]);
1632
1633                 wr32(E1000_TDLEN(i),
1634                                 ring->count * sizeof(struct e1000_tx_desc));
1635                 tdba = ring->dma;
1636                 wr32(E1000_TDBAL(i),
1637                                 tdba & 0x00000000ffffffffULL);
1638                 wr32(E1000_TDBAH(i), tdba >> 32);
1639
1640                 tdwba = ring->dma + ring->count * sizeof(struct e1000_tx_desc);
1641                 tdwba |= 1; /* enable head wb */
1642                 wr32(E1000_TDWBAL(i),
1643                                 tdwba & 0x00000000ffffffffULL);
1644                 wr32(E1000_TDWBAH(i), tdwba >> 32);
1645
1646                 ring->head = E1000_TDH(i);
1647                 ring->tail = E1000_TDT(i);
1648                 writel(0, hw->hw_addr + ring->tail);
1649                 writel(0, hw->hw_addr + ring->head);
1650                 txdctl = rd32(E1000_TXDCTL(i));
1651                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1652                 wr32(E1000_TXDCTL(i), txdctl);
1653
1654                 /* Turn off Relaxed Ordering on head write-backs.  The
1655                  * writebacks MUST be delivered in order or it will
1656                  * completely screw up our bookeeping.
1657                  */
1658                 txctrl = rd32(E1000_DCA_TXCTRL(i));
1659                 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1660                 wr32(E1000_DCA_TXCTRL(i), txctrl);
1661         }
1662
1663
1664
1665         /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1666
1667         /* Program the Transmit Control Register */
1668
1669         tctl = rd32(E1000_TCTL);
1670         tctl &= ~E1000_TCTL_CT;
1671         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1672                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1673
1674         igb_config_collision_dist(hw);
1675
1676         /* Setup Transmit Descriptor Settings for eop descriptor */
1677         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1678
1679         /* Enable transmits */
1680         tctl |= E1000_TCTL_EN;
1681
1682         wr32(E1000_TCTL, tctl);
1683 }
1684
1685 /**
1686  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1687  * @adapter: board private structure
1688  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
1689  *
1690  * Returns 0 on success, negative on failure
1691  **/
1692
1693 int igb_setup_rx_resources(struct igb_adapter *adapter,
1694                            struct igb_ring *rx_ring)
1695 {
1696         struct pci_dev *pdev = adapter->pdev;
1697         int size, desc_len;
1698
1699 #ifdef CONFIG_IGB_LRO
1700         size = sizeof(struct net_lro_desc) * MAX_LRO_DESCRIPTORS;
1701         rx_ring->lro_mgr.lro_arr = vmalloc(size);
1702         if (!rx_ring->lro_mgr.lro_arr)
1703                 goto err;
1704         memset(rx_ring->lro_mgr.lro_arr, 0, size);
1705 #endif
1706
1707         size = sizeof(struct igb_buffer) * rx_ring->count;
1708         rx_ring->buffer_info = vmalloc(size);
1709         if (!rx_ring->buffer_info)
1710                 goto err;
1711         memset(rx_ring->buffer_info, 0, size);
1712
1713         desc_len = sizeof(union e1000_adv_rx_desc);
1714
1715         /* Round up to nearest 4K */
1716         rx_ring->size = rx_ring->count * desc_len;
1717         rx_ring->size = ALIGN(rx_ring->size, 4096);
1718
1719         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1720                                              &rx_ring->dma);
1721
1722         if (!rx_ring->desc)
1723                 goto err;
1724
1725         rx_ring->next_to_clean = 0;
1726         rx_ring->next_to_use = 0;
1727
1728         rx_ring->adapter = adapter;
1729
1730         return 0;
1731
1732 err:
1733 #ifdef CONFIG_IGB_LRO
1734         vfree(rx_ring->lro_mgr.lro_arr);
1735         rx_ring->lro_mgr.lro_arr = NULL;
1736 #endif
1737         vfree(rx_ring->buffer_info);
1738         dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1739                 "the receive descriptor ring\n");
1740         return -ENOMEM;
1741 }
1742
1743 /**
1744  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1745  *                                (Descriptors) for all queues
1746  * @adapter: board private structure
1747  *
1748  * Return 0 on success, negative on failure
1749  **/
1750 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1751 {
1752         int i, err = 0;
1753
1754         for (i = 0; i < adapter->num_rx_queues; i++) {
1755                 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1756                 if (err) {
1757                         dev_err(&adapter->pdev->dev,
1758                                 "Allocation for Rx Queue %u failed\n", i);
1759                         for (i--; i >= 0; i--)
1760                                 igb_free_rx_resources(&adapter->rx_ring[i]);
1761                         break;
1762                 }
1763         }
1764
1765         return err;
1766 }
1767
1768 /**
1769  * igb_setup_rctl - configure the receive control registers
1770  * @adapter: Board private structure
1771  **/
1772 static void igb_setup_rctl(struct igb_adapter *adapter)
1773 {
1774         struct e1000_hw *hw = &adapter->hw;
1775         u32 rctl;
1776         u32 srrctl = 0;
1777         int i;
1778
1779         rctl = rd32(E1000_RCTL);
1780
1781         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1782         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1783
1784         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
1785                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1786
1787         /*
1788          * enable stripping of CRC. It's unlikely this will break BMC
1789          * redirection as it did with e1000. Newer features require
1790          * that the HW strips the CRC.
1791         */
1792         rctl |= E1000_RCTL_SECRC;
1793
1794         /*
1795          * disable store bad packets, long packet enable, and clear size bits.
1796          */
1797         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_LPE | E1000_RCTL_SZ_256);
1798
1799         if (adapter->netdev->mtu <= ETH_DATA_LEN) {
1800                 /* Setup buffer sizes */
1801                 switch (adapter->rx_buffer_len) {
1802                 case IGB_RXBUFFER_256:
1803                         rctl |= E1000_RCTL_SZ_256;
1804                         break;
1805                 case IGB_RXBUFFER_512:
1806                         rctl |= E1000_RCTL_SZ_512;
1807                         break;
1808                 case IGB_RXBUFFER_1024:
1809                         rctl |= E1000_RCTL_SZ_1024;
1810                         break;
1811                 default:
1812                         rctl |= E1000_RCTL_SZ_2048;
1813                         break;
1814                 }
1815         } else {
1816                 rctl |= E1000_RCTL_LPE;
1817                 srrctl = adapter->rx_buffer_len >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1818         }
1819
1820         /* 82575 and greater support packet-split where the protocol
1821          * header is placed in skb->data and the packet data is
1822          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1823          * In the case of a non-split, skb->data is linearly filled,
1824          * followed by the page buffers.  Therefore, skb->data is
1825          * sized to hold the largest protocol header.
1826          */
1827         /* allocations using alloc_page take too long for regular MTU
1828          * so only enable packet split for jumbo frames */
1829         if (rctl & E1000_RCTL_LPE) {
1830                 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1831                 srrctl |= adapter->rx_ps_hdr_size <<
1832                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1833                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1834         } else {
1835                 adapter->rx_ps_hdr_size = 0;
1836                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1837         }
1838
1839         for (i = 0; i < adapter->num_rx_queues; i++)
1840                 wr32(E1000_SRRCTL(i), srrctl);
1841
1842         wr32(E1000_RCTL, rctl);
1843 }
1844
1845 /**
1846  * igb_configure_rx - Configure receive Unit after Reset
1847  * @adapter: board private structure
1848  *
1849  * Configure the Rx unit of the MAC after a reset.
1850  **/
1851 static void igb_configure_rx(struct igb_adapter *adapter)
1852 {
1853         u64 rdba;
1854         struct e1000_hw *hw = &adapter->hw;
1855         u32 rctl, rxcsum;
1856         u32 rxdctl;
1857         int i;
1858
1859         /* disable receives while setting up the descriptors */
1860         rctl = rd32(E1000_RCTL);
1861         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1862         wrfl();
1863         mdelay(10);
1864
1865         if (adapter->itr_setting > 3)
1866                 wr32(E1000_ITR, adapter->itr);
1867
1868         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1869          * the Base and Length of the Rx Descriptor Ring */
1870         for (i = 0; i < adapter->num_rx_queues; i++) {
1871                 struct igb_ring *ring = &(adapter->rx_ring[i]);
1872                 rdba = ring->dma;
1873                 wr32(E1000_RDBAL(i),
1874                                 rdba & 0x00000000ffffffffULL);
1875                 wr32(E1000_RDBAH(i), rdba >> 32);
1876                 wr32(E1000_RDLEN(i),
1877                                ring->count * sizeof(union e1000_adv_rx_desc));
1878
1879                 ring->head = E1000_RDH(i);
1880                 ring->tail = E1000_RDT(i);
1881                 writel(0, hw->hw_addr + ring->tail);
1882                 writel(0, hw->hw_addr + ring->head);
1883
1884                 rxdctl = rd32(E1000_RXDCTL(i));
1885                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1886                 rxdctl &= 0xFFF00000;
1887                 rxdctl |= IGB_RX_PTHRESH;
1888                 rxdctl |= IGB_RX_HTHRESH << 8;
1889                 rxdctl |= IGB_RX_WTHRESH << 16;
1890                 wr32(E1000_RXDCTL(i), rxdctl);
1891 #ifdef CONFIG_IGB_LRO
1892                 /* Intitial LRO Settings */
1893                 ring->lro_mgr.max_aggr = MAX_LRO_AGGR;
1894                 ring->lro_mgr.max_desc = MAX_LRO_DESCRIPTORS;
1895                 ring->lro_mgr.get_skb_header = igb_get_skb_hdr;
1896                 ring->lro_mgr.features = LRO_F_NAPI | LRO_F_EXTRACT_VLAN_ID;
1897                 ring->lro_mgr.dev = adapter->netdev;
1898                 ring->lro_mgr.ip_summed = CHECKSUM_UNNECESSARY;
1899                 ring->lro_mgr.ip_summed_aggr = CHECKSUM_UNNECESSARY;
1900 #endif
1901         }
1902
1903         if (adapter->num_rx_queues > 1) {
1904                 u32 random[10];
1905                 u32 mrqc;
1906                 u32 j, shift;
1907                 union e1000_reta {
1908                         u32 dword;
1909                         u8  bytes[4];
1910                 } reta;
1911
1912                 get_random_bytes(&random[0], 40);
1913
1914                 if (hw->mac.type >= e1000_82576)
1915                         shift = 0;
1916                 else
1917                         shift = 6;
1918                 for (j = 0; j < (32 * 4); j++) {
1919                         reta.bytes[j & 3] =
1920                                 (j % adapter->num_rx_queues) << shift;
1921                         if ((j & 3) == 3)
1922                                 writel(reta.dword,
1923                                        hw->hw_addr + E1000_RETA(0) + (j & ~3));
1924                 }
1925                 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1926
1927                 /* Fill out hash function seeds */
1928                 for (j = 0; j < 10; j++)
1929                         array_wr32(E1000_RSSRK(0), j, random[j]);
1930
1931                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1932                          E1000_MRQC_RSS_FIELD_IPV4_TCP);
1933                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1934                          E1000_MRQC_RSS_FIELD_IPV6_TCP);
1935                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1936                          E1000_MRQC_RSS_FIELD_IPV6_UDP);
1937                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1938                          E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1939
1940
1941                 wr32(E1000_MRQC, mrqc);
1942
1943                 /* Multiqueue and raw packet checksumming are mutually
1944                  * exclusive.  Note that this not the same as TCP/IP
1945                  * checksumming, which works fine. */
1946                 rxcsum = rd32(E1000_RXCSUM);
1947                 rxcsum |= E1000_RXCSUM_PCSD;
1948                 wr32(E1000_RXCSUM, rxcsum);
1949         } else {
1950                 /* Enable Receive Checksum Offload for TCP and UDP */
1951                 rxcsum = rd32(E1000_RXCSUM);
1952                 if (adapter->rx_csum) {
1953                         rxcsum |= E1000_RXCSUM_TUOFL;
1954
1955                         /* Enable IPv4 payload checksum for UDP fragments
1956                          * Must be used in conjunction with packet-split. */
1957                         if (adapter->rx_ps_hdr_size)
1958                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1959                 } else {
1960                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1961                         /* don't need to clear IPPCSE as it defaults to 0 */
1962                 }
1963                 wr32(E1000_RXCSUM, rxcsum);
1964         }
1965
1966         if (adapter->vlgrp)
1967                 wr32(E1000_RLPML,
1968                                 adapter->max_frame_size + VLAN_TAG_SIZE);
1969         else
1970                 wr32(E1000_RLPML, adapter->max_frame_size);
1971
1972         /* Enable Receives */
1973         wr32(E1000_RCTL, rctl);
1974 }
1975
1976 /**
1977  * igb_free_tx_resources - Free Tx Resources per Queue
1978  * @tx_ring: Tx descriptor ring for a specific queue
1979  *
1980  * Free all transmit software resources
1981  **/
1982 void igb_free_tx_resources(struct igb_ring *tx_ring)
1983 {
1984         struct pci_dev *pdev = tx_ring->adapter->pdev;
1985
1986         igb_clean_tx_ring(tx_ring);
1987
1988         vfree(tx_ring->buffer_info);
1989         tx_ring->buffer_info = NULL;
1990
1991         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1992
1993         tx_ring->desc = NULL;
1994 }
1995
1996 /**
1997  * igb_free_all_tx_resources - Free Tx Resources for All Queues
1998  * @adapter: board private structure
1999  *
2000  * Free all transmit software resources
2001  **/
2002 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2003 {
2004         int i;
2005
2006         for (i = 0; i < adapter->num_tx_queues; i++)
2007                 igb_free_tx_resources(&adapter->tx_ring[i]);
2008 }
2009
2010 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2011                                            struct igb_buffer *buffer_info)
2012 {
2013         if (buffer_info->dma) {
2014                 pci_unmap_page(adapter->pdev,
2015                                 buffer_info->dma,
2016                                 buffer_info->length,
2017                                 PCI_DMA_TODEVICE);
2018                 buffer_info->dma = 0;
2019         }
2020         if (buffer_info->skb) {
2021                 dev_kfree_skb_any(buffer_info->skb);
2022                 buffer_info->skb = NULL;
2023         }
2024         buffer_info->time_stamp = 0;
2025         /* buffer_info must be completely set up in the transmit path */
2026 }
2027
2028 /**
2029  * igb_clean_tx_ring - Free Tx Buffers
2030  * @tx_ring: ring to be cleaned
2031  **/
2032 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2033 {
2034         struct igb_adapter *adapter = tx_ring->adapter;
2035         struct igb_buffer *buffer_info;
2036         unsigned long size;
2037         unsigned int i;
2038
2039         if (!tx_ring->buffer_info)
2040                 return;
2041         /* Free all the Tx ring sk_buffs */
2042
2043         for (i = 0; i < tx_ring->count; i++) {
2044                 buffer_info = &tx_ring->buffer_info[i];
2045                 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2046         }
2047
2048         size = sizeof(struct igb_buffer) * tx_ring->count;
2049         memset(tx_ring->buffer_info, 0, size);
2050
2051         /* Zero out the descriptor ring */
2052
2053         memset(tx_ring->desc, 0, tx_ring->size);
2054
2055         tx_ring->next_to_use = 0;
2056         tx_ring->next_to_clean = 0;
2057
2058         writel(0, adapter->hw.hw_addr + tx_ring->head);
2059         writel(0, adapter->hw.hw_addr + tx_ring->tail);
2060 }
2061
2062 /**
2063  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2064  * @adapter: board private structure
2065  **/
2066 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2067 {
2068         int i;
2069
2070         for (i = 0; i < adapter->num_tx_queues; i++)
2071                 igb_clean_tx_ring(&adapter->tx_ring[i]);
2072 }
2073
2074 /**
2075  * igb_free_rx_resources - Free Rx Resources
2076  * @rx_ring: ring to clean the resources from
2077  *
2078  * Free all receive software resources
2079  **/
2080 void igb_free_rx_resources(struct igb_ring *rx_ring)
2081 {
2082         struct pci_dev *pdev = rx_ring->adapter->pdev;
2083
2084         igb_clean_rx_ring(rx_ring);
2085
2086         vfree(rx_ring->buffer_info);
2087         rx_ring->buffer_info = NULL;
2088
2089 #ifdef CONFIG_IGB_LRO
2090         vfree(rx_ring->lro_mgr.lro_arr);
2091         rx_ring->lro_mgr.lro_arr = NULL;
2092 #endif 
2093
2094         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2095
2096         rx_ring->desc = NULL;
2097 }
2098
2099 /**
2100  * igb_free_all_rx_resources - Free Rx Resources for All Queues
2101  * @adapter: board private structure
2102  *
2103  * Free all receive software resources
2104  **/
2105 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2106 {
2107         int i;
2108
2109         for (i = 0; i < adapter->num_rx_queues; i++)
2110                 igb_free_rx_resources(&adapter->rx_ring[i]);
2111 }
2112
2113 /**
2114  * igb_clean_rx_ring - Free Rx Buffers per Queue
2115  * @rx_ring: ring to free buffers from
2116  **/
2117 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2118 {
2119         struct igb_adapter *adapter = rx_ring->adapter;
2120         struct igb_buffer *buffer_info;
2121         struct pci_dev *pdev = adapter->pdev;
2122         unsigned long size;
2123         unsigned int i;
2124
2125         if (!rx_ring->buffer_info)
2126                 return;
2127         /* Free all the Rx ring sk_buffs */
2128         for (i = 0; i < rx_ring->count; i++) {
2129                 buffer_info = &rx_ring->buffer_info[i];
2130                 if (buffer_info->dma) {
2131                         if (adapter->rx_ps_hdr_size)
2132                                 pci_unmap_single(pdev, buffer_info->dma,
2133                                                  adapter->rx_ps_hdr_size,
2134                                                  PCI_DMA_FROMDEVICE);
2135                         else
2136                                 pci_unmap_single(pdev, buffer_info->dma,
2137                                                  adapter->rx_buffer_len,
2138                                                  PCI_DMA_FROMDEVICE);
2139                         buffer_info->dma = 0;
2140                 }
2141
2142                 if (buffer_info->skb) {
2143                         dev_kfree_skb(buffer_info->skb);
2144                         buffer_info->skb = NULL;
2145                 }
2146                 if (buffer_info->page) {
2147                         if (buffer_info->page_dma)
2148                                 pci_unmap_page(pdev, buffer_info->page_dma,
2149                                                PAGE_SIZE / 2,
2150                                                PCI_DMA_FROMDEVICE);
2151                         put_page(buffer_info->page);
2152                         buffer_info->page = NULL;
2153                         buffer_info->page_dma = 0;
2154                         buffer_info->page_offset = 0;
2155                 }
2156         }
2157
2158         size = sizeof(struct igb_buffer) * rx_ring->count;
2159         memset(rx_ring->buffer_info, 0, size);
2160
2161         /* Zero out the descriptor ring */
2162         memset(rx_ring->desc, 0, rx_ring->size);
2163
2164         rx_ring->next_to_clean = 0;
2165         rx_ring->next_to_use = 0;
2166
2167         writel(0, adapter->hw.hw_addr + rx_ring->head);
2168         writel(0, adapter->hw.hw_addr + rx_ring->tail);
2169 }
2170
2171 /**
2172  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2173  * @adapter: board private structure
2174  **/
2175 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2176 {
2177         int i;
2178
2179         for (i = 0; i < adapter->num_rx_queues; i++)
2180                 igb_clean_rx_ring(&adapter->rx_ring[i]);
2181 }
2182
2183 /**
2184  * igb_set_mac - Change the Ethernet Address of the NIC
2185  * @netdev: network interface device structure
2186  * @p: pointer to an address structure
2187  *
2188  * Returns 0 on success, negative on failure
2189  **/
2190 static int igb_set_mac(struct net_device *netdev, void *p)
2191 {
2192         struct igb_adapter *adapter = netdev_priv(netdev);
2193         struct sockaddr *addr = p;
2194
2195         if (!is_valid_ether_addr(addr->sa_data))
2196                 return -EADDRNOTAVAIL;
2197
2198         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2199         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2200
2201         adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2202
2203         return 0;
2204 }
2205
2206 /**
2207  * igb_set_multi - Multicast and Promiscuous mode set
2208  * @netdev: network interface device structure
2209  *
2210  * The set_multi entry point is called whenever the multicast address
2211  * list or the network interface flags are updated.  This routine is
2212  * responsible for configuring the hardware for proper multicast,
2213  * promiscuous mode, and all-multi behavior.
2214  **/
2215 static void igb_set_multi(struct net_device *netdev)
2216 {
2217         struct igb_adapter *adapter = netdev_priv(netdev);
2218         struct e1000_hw *hw = &adapter->hw;
2219         struct e1000_mac_info *mac = &hw->mac;
2220         struct dev_mc_list *mc_ptr;
2221         u8  *mta_list;
2222         u32 rctl;
2223         int i;
2224
2225         /* Check for Promiscuous and All Multicast modes */
2226
2227         rctl = rd32(E1000_RCTL);
2228
2229         if (netdev->flags & IFF_PROMISC) {
2230                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2231                 rctl &= ~E1000_RCTL_VFE;
2232         } else {
2233                 if (netdev->flags & IFF_ALLMULTI) {
2234                         rctl |= E1000_RCTL_MPE;
2235                         rctl &= ~E1000_RCTL_UPE;
2236                 } else
2237                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2238                 rctl |= E1000_RCTL_VFE;
2239         }
2240         wr32(E1000_RCTL, rctl);
2241
2242         if (!netdev->mc_count) {
2243                 /* nothing to program, so clear mc list */
2244                 igb_update_mc_addr_list_82575(hw, NULL, 0, 1,
2245                                           mac->rar_entry_count);
2246                 return;
2247         }
2248
2249         mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2250         if (!mta_list)
2251                 return;
2252
2253         /* The shared function expects a packed array of only addresses. */
2254         mc_ptr = netdev->mc_list;
2255
2256         for (i = 0; i < netdev->mc_count; i++) {
2257                 if (!mc_ptr)
2258                         break;
2259                 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2260                 mc_ptr = mc_ptr->next;
2261         }
2262         igb_update_mc_addr_list_82575(hw, mta_list, i, 1,
2263                                       mac->rar_entry_count);
2264         kfree(mta_list);
2265 }
2266
2267 /* Need to wait a few seconds after link up to get diagnostic information from
2268  * the phy */
2269 static void igb_update_phy_info(unsigned long data)
2270 {
2271         struct igb_adapter *adapter = (struct igb_adapter *) data;
2272         igb_get_phy_info(&adapter->hw);
2273 }
2274
2275 /**
2276  * igb_watchdog - Timer Call-back
2277  * @data: pointer to adapter cast into an unsigned long
2278  **/
2279 static void igb_watchdog(unsigned long data)
2280 {
2281         struct igb_adapter *adapter = (struct igb_adapter *)data;
2282         /* Do the rest outside of interrupt context */
2283         schedule_work(&adapter->watchdog_task);
2284 }
2285
2286 static void igb_watchdog_task(struct work_struct *work)
2287 {
2288         struct igb_adapter *adapter = container_of(work,
2289                                         struct igb_adapter, watchdog_task);
2290         struct e1000_hw *hw = &adapter->hw;
2291
2292         struct net_device *netdev = adapter->netdev;
2293         struct igb_ring *tx_ring = adapter->tx_ring;
2294         struct e1000_mac_info *mac = &adapter->hw.mac;
2295         u32 link;
2296         u32 eics = 0;
2297         s32 ret_val;
2298         int i;
2299
2300         if ((netif_carrier_ok(netdev)) &&
2301             (rd32(E1000_STATUS) & E1000_STATUS_LU))
2302                 goto link_up;
2303
2304         ret_val = hw->mac.ops.check_for_link(&adapter->hw);
2305         if ((ret_val == E1000_ERR_PHY) &&
2306             (hw->phy.type == e1000_phy_igp_3) &&
2307             (rd32(E1000_CTRL) &
2308              E1000_PHY_CTRL_GBE_DISABLE))
2309                 dev_info(&adapter->pdev->dev,
2310                          "Gigabit has been disabled, downgrading speed\n");
2311
2312         if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
2313             !(rd32(E1000_TXCW) & E1000_TXCW_ANE))
2314                 link = mac->serdes_has_link;
2315         else
2316                 link = rd32(E1000_STATUS) &
2317                                       E1000_STATUS_LU;
2318
2319         if (link) {
2320                 if (!netif_carrier_ok(netdev)) {
2321                         u32 ctrl;
2322                         hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2323                                                    &adapter->link_speed,
2324                                                    &adapter->link_duplex);
2325
2326                         ctrl = rd32(E1000_CTRL);
2327                         dev_info(&adapter->pdev->dev,
2328                                  "NIC Link is Up %d Mbps %s, "
2329                                  "Flow Control: %s\n",
2330                                  adapter->link_speed,
2331                                  adapter->link_duplex == FULL_DUPLEX ?
2332                                  "Full Duplex" : "Half Duplex",
2333                                  ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2334                                  E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2335                                  E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2336                                  E1000_CTRL_TFCE) ? "TX" : "None")));
2337
2338                         /* tweak tx_queue_len according to speed/duplex and
2339                          * adjust the timeout factor */
2340                         netdev->tx_queue_len = adapter->tx_queue_len;
2341                         adapter->tx_timeout_factor = 1;
2342                         switch (adapter->link_speed) {
2343                         case SPEED_10:
2344                                 netdev->tx_queue_len = 10;
2345                                 adapter->tx_timeout_factor = 14;
2346                                 break;
2347                         case SPEED_100:
2348                                 netdev->tx_queue_len = 100;
2349                                 /* maybe add some timeout factor ? */
2350                                 break;
2351                         }
2352
2353                         netif_carrier_on(netdev);
2354                         netif_tx_wake_all_queues(netdev);
2355
2356                         if (!test_bit(__IGB_DOWN, &adapter->state))
2357                                 mod_timer(&adapter->phy_info_timer,
2358                                           round_jiffies(jiffies + 2 * HZ));
2359                 }
2360         } else {
2361                 if (netif_carrier_ok(netdev)) {
2362                         adapter->link_speed = 0;
2363                         adapter->link_duplex = 0;
2364                         dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2365                         netif_carrier_off(netdev);
2366                         netif_tx_stop_all_queues(netdev);
2367                         if (!test_bit(__IGB_DOWN, &adapter->state))
2368                                 mod_timer(&adapter->phy_info_timer,
2369                                           round_jiffies(jiffies + 2 * HZ));
2370                 }
2371         }
2372
2373 link_up:
2374         igb_update_stats(adapter);
2375
2376         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2377         adapter->tpt_old = adapter->stats.tpt;
2378         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2379         adapter->colc_old = adapter->stats.colc;
2380
2381         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2382         adapter->gorc_old = adapter->stats.gorc;
2383         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2384         adapter->gotc_old = adapter->stats.gotc;
2385
2386         igb_update_adaptive(&adapter->hw);
2387
2388         if (!netif_carrier_ok(netdev)) {
2389                 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2390                         /* We've lost link, so the controller stops DMA,
2391                          * but we've got queued Tx work that's never going
2392                          * to get done, so reset controller to flush Tx.
2393                          * (Do the reset outside of interrupt context). */
2394                         adapter->tx_timeout_count++;
2395                         schedule_work(&adapter->reset_task);
2396                 }
2397         }
2398
2399         /* Cause software interrupt to ensure rx ring is cleaned */
2400         if (adapter->msix_entries) {
2401                 for (i = 0; i < adapter->num_rx_queues; i++)
2402                         eics |= adapter->rx_ring[i].eims_value;
2403                 wr32(E1000_EICS, eics);
2404         } else {
2405                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2406         }
2407
2408         /* Force detection of hung controller every watchdog period */
2409         tx_ring->detect_tx_hung = true;
2410
2411         /* Reset the timer */
2412         if (!test_bit(__IGB_DOWN, &adapter->state))
2413                 mod_timer(&adapter->watchdog_timer,
2414                           round_jiffies(jiffies + 2 * HZ));
2415 }
2416
2417 enum latency_range {
2418         lowest_latency = 0,
2419         low_latency = 1,
2420         bulk_latency = 2,
2421         latency_invalid = 255
2422 };
2423
2424
2425 /**
2426  * igb_update_ring_itr - update the dynamic ITR value based on packet size
2427  *
2428  *      Stores a new ITR value based on strictly on packet size.  This
2429  *      algorithm is less sophisticated than that used in igb_update_itr,
2430  *      due to the difficulty of synchronizing statistics across multiple
2431  *      receive rings.  The divisors and thresholds used by this fuction
2432  *      were determined based on theoretical maximum wire speed and testing
2433  *      data, in order to minimize response time while increasing bulk
2434  *      throughput.
2435  *      This functionality is controlled by the InterruptThrottleRate module
2436  *      parameter (see igb_param.c)
2437  *      NOTE:  This function is called only when operating in a multiqueue
2438  *             receive environment.
2439  * @rx_ring: pointer to ring
2440  **/
2441 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2442 {
2443         int new_val = rx_ring->itr_val;
2444         int avg_wire_size = 0;
2445         struct igb_adapter *adapter = rx_ring->adapter;
2446
2447         if (!rx_ring->total_packets)
2448                 goto clear_counts; /* no packets, so don't do anything */
2449
2450         /* For non-gigabit speeds, just fix the interrupt rate at 4000
2451          * ints/sec - ITR timer value of 120 ticks.
2452          */
2453         if (adapter->link_speed != SPEED_1000) {
2454                 new_val = 120;
2455                 goto set_itr_val;
2456         }
2457         avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2458
2459         /* Add 24 bytes to size to account for CRC, preamble, and gap */
2460         avg_wire_size += 24;
2461
2462         /* Don't starve jumbo frames */
2463         avg_wire_size = min(avg_wire_size, 3000);
2464
2465         /* Give a little boost to mid-size frames */
2466         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2467                 new_val = avg_wire_size / 3;
2468         else
2469                 new_val = avg_wire_size / 2;
2470
2471 set_itr_val:
2472         if (new_val != rx_ring->itr_val) {
2473                 rx_ring->itr_val = new_val;
2474                 rx_ring->set_itr = 1;
2475         }
2476 clear_counts:
2477         rx_ring->total_bytes = 0;
2478         rx_ring->total_packets = 0;
2479 }
2480
2481 /**
2482  * igb_update_itr - update the dynamic ITR value based on statistics
2483  *      Stores a new ITR value based on packets and byte
2484  *      counts during the last interrupt.  The advantage of per interrupt
2485  *      computation is faster updates and more accurate ITR for the current
2486  *      traffic pattern.  Constants in this function were computed
2487  *      based on theoretical maximum wire speed and thresholds were set based
2488  *      on testing data as well as attempting to minimize response time
2489  *      while increasing bulk throughput.
2490  *      this functionality is controlled by the InterruptThrottleRate module
2491  *      parameter (see igb_param.c)
2492  *      NOTE:  These calculations are only valid when operating in a single-
2493  *             queue environment.
2494  * @adapter: pointer to adapter
2495  * @itr_setting: current adapter->itr
2496  * @packets: the number of packets during this measurement interval
2497  * @bytes: the number of bytes during this measurement interval
2498  **/
2499 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2500                                    int packets, int bytes)
2501 {
2502         unsigned int retval = itr_setting;
2503
2504         if (packets == 0)
2505                 goto update_itr_done;
2506
2507         switch (itr_setting) {
2508         case lowest_latency:
2509                 /* handle TSO and jumbo frames */
2510                 if (bytes/packets > 8000)
2511                         retval = bulk_latency;
2512                 else if ((packets < 5) && (bytes > 512))
2513                         retval = low_latency;
2514                 break;
2515         case low_latency:  /* 50 usec aka 20000 ints/s */
2516                 if (bytes > 10000) {
2517                         /* this if handles the TSO accounting */
2518                         if (bytes/packets > 8000) {
2519                                 retval = bulk_latency;
2520                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2521                                 retval = bulk_latency;
2522                         } else if ((packets > 35)) {
2523                                 retval = lowest_latency;
2524                         }
2525                 } else if (bytes/packets > 2000) {
2526                         retval = bulk_latency;
2527                 } else if (packets <= 2 && bytes < 512) {
2528                         retval = lowest_latency;
2529                 }
2530                 break;
2531         case bulk_latency: /* 250 usec aka 4000 ints/s */
2532                 if (bytes > 25000) {
2533                         if (packets > 35)
2534                                 retval = low_latency;
2535                 } else if (bytes < 6000) {
2536                         retval = low_latency;
2537                 }
2538                 break;
2539         }
2540
2541 update_itr_done:
2542         return retval;
2543 }
2544
2545 static void igb_set_itr(struct igb_adapter *adapter)
2546 {
2547         u16 current_itr;
2548         u32 new_itr = adapter->itr;
2549
2550         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2551         if (adapter->link_speed != SPEED_1000) {
2552                 current_itr = 0;
2553                 new_itr = 4000;
2554                 goto set_itr_now;
2555         }
2556
2557         adapter->rx_itr = igb_update_itr(adapter,
2558                                     adapter->rx_itr,
2559                                     adapter->rx_ring->total_packets,
2560                                     adapter->rx_ring->total_bytes);
2561
2562         if (adapter->rx_ring->buddy) {
2563                 adapter->tx_itr = igb_update_itr(adapter,
2564                                             adapter->tx_itr,
2565                                             adapter->tx_ring->total_packets,
2566                                             adapter->tx_ring->total_bytes);
2567
2568                 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2569         } else {
2570                 current_itr = adapter->rx_itr;
2571         }
2572
2573         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2574         if (adapter->itr_setting == 3 &&
2575             current_itr == lowest_latency)
2576                 current_itr = low_latency;
2577
2578         switch (current_itr) {
2579         /* counts and packets in update_itr are dependent on these numbers */
2580         case lowest_latency:
2581                 new_itr = 70000;
2582                 break;
2583         case low_latency:
2584                 new_itr = 20000; /* aka hwitr = ~200 */
2585                 break;
2586         case bulk_latency:
2587                 new_itr = 4000;
2588                 break;
2589         default:
2590                 break;
2591         }
2592
2593 set_itr_now:
2594         adapter->rx_ring->total_bytes = 0;
2595         adapter->rx_ring->total_packets = 0;
2596         if (adapter->rx_ring->buddy) {
2597                 adapter->rx_ring->buddy->total_bytes = 0;
2598                 adapter->rx_ring->buddy->total_packets = 0;
2599         }
2600
2601         if (new_itr != adapter->itr) {
2602                 /* this attempts to bias the interrupt rate towards Bulk
2603                  * by adding intermediate steps when interrupt rate is
2604                  * increasing */
2605                 new_itr = new_itr > adapter->itr ?
2606                              min(adapter->itr + (new_itr >> 2), new_itr) :
2607                              new_itr;
2608                 /* Don't write the value here; it resets the adapter's
2609                  * internal timer, and causes us to delay far longer than
2610                  * we should between interrupts.  Instead, we write the ITR
2611                  * value at the beginning of the next interrupt so the timing
2612                  * ends up being correct.
2613                  */
2614                 adapter->itr = new_itr;
2615                 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2616                 adapter->rx_ring->set_itr = 1;
2617         }
2618
2619         return;
2620 }
2621
2622
2623 #define IGB_TX_FLAGS_CSUM               0x00000001
2624 #define IGB_TX_FLAGS_VLAN               0x00000002
2625 #define IGB_TX_FLAGS_TSO                0x00000004
2626 #define IGB_TX_FLAGS_IPV4               0x00000008
2627 #define IGB_TX_FLAGS_VLAN_MASK  0xffff0000
2628 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2629
2630 static inline int igb_tso_adv(struct igb_adapter *adapter,
2631                               struct igb_ring *tx_ring,
2632                               struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2633 {
2634         struct e1000_adv_tx_context_desc *context_desc;
2635         unsigned int i;
2636         int err;
2637         struct igb_buffer *buffer_info;
2638         u32 info = 0, tu_cmd = 0;
2639         u32 mss_l4len_idx, l4len;
2640         *hdr_len = 0;
2641
2642         if (skb_header_cloned(skb)) {
2643                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2644                 if (err)
2645                         return err;
2646         }
2647
2648         l4len = tcp_hdrlen(skb);
2649         *hdr_len += l4len;
2650
2651         if (skb->protocol == htons(ETH_P_IP)) {
2652                 struct iphdr *iph = ip_hdr(skb);
2653                 iph->tot_len = 0;
2654                 iph->check = 0;
2655                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2656                                                          iph->daddr, 0,
2657                                                          IPPROTO_TCP,
2658                                                          0);
2659         } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2660                 ipv6_hdr(skb)->payload_len = 0;
2661                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2662                                                        &ipv6_hdr(skb)->daddr,
2663                                                        0, IPPROTO_TCP, 0);
2664         }
2665
2666         i = tx_ring->next_to_use;
2667
2668         buffer_info = &tx_ring->buffer_info[i];
2669         context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2670         /* VLAN MACLEN IPLEN */
2671         if (tx_flags & IGB_TX_FLAGS_VLAN)
2672                 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2673         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2674         *hdr_len += skb_network_offset(skb);
2675         info |= skb_network_header_len(skb);
2676         *hdr_len += skb_network_header_len(skb);
2677         context_desc->vlan_macip_lens = cpu_to_le32(info);
2678
2679         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2680         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2681
2682         if (skb->protocol == htons(ETH_P_IP))
2683                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2684         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2685
2686         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2687
2688         /* MSS L4LEN IDX */
2689         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2690         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2691
2692         /* Context index must be unique per ring. */
2693         if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2694                 mss_l4len_idx |= tx_ring->queue_index << 4;
2695
2696         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2697         context_desc->seqnum_seed = 0;
2698
2699         buffer_info->time_stamp = jiffies;
2700         buffer_info->dma = 0;
2701         i++;
2702         if (i == tx_ring->count)
2703                 i = 0;
2704
2705         tx_ring->next_to_use = i;
2706
2707         return true;
2708 }
2709
2710 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2711                                         struct igb_ring *tx_ring,
2712                                         struct sk_buff *skb, u32 tx_flags)
2713 {
2714         struct e1000_adv_tx_context_desc *context_desc;
2715         unsigned int i;
2716         struct igb_buffer *buffer_info;
2717         u32 info = 0, tu_cmd = 0;
2718
2719         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2720             (tx_flags & IGB_TX_FLAGS_VLAN)) {
2721                 i = tx_ring->next_to_use;
2722                 buffer_info = &tx_ring->buffer_info[i];
2723                 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2724
2725                 if (tx_flags & IGB_TX_FLAGS_VLAN)
2726                         info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2727                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2728                 if (skb->ip_summed == CHECKSUM_PARTIAL)
2729                         info |= skb_network_header_len(skb);
2730
2731                 context_desc->vlan_macip_lens = cpu_to_le32(info);
2732
2733                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2734
2735                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2736                         switch (skb->protocol) {
2737                         case __constant_htons(ETH_P_IP):
2738                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2739                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2740                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2741                                 break;
2742                         case __constant_htons(ETH_P_IPV6):
2743                                 /* XXX what about other V6 headers?? */
2744                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2745                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2746                                 break;
2747                         default:
2748                                 if (unlikely(net_ratelimit()))
2749                                         dev_warn(&adapter->pdev->dev,
2750                                             "partial checksum but proto=%x!\n",
2751                                             skb->protocol);
2752                                 break;
2753                         }
2754                 }
2755
2756                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2757                 context_desc->seqnum_seed = 0;
2758                 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2759                         context_desc->mss_l4len_idx =
2760                                 cpu_to_le32(tx_ring->queue_index << 4);
2761
2762                 buffer_info->time_stamp = jiffies;
2763                 buffer_info->dma = 0;
2764
2765                 i++;
2766                 if (i == tx_ring->count)
2767                         i = 0;
2768                 tx_ring->next_to_use = i;
2769
2770                 return true;
2771         }
2772
2773
2774         return false;
2775 }
2776
2777 #define IGB_MAX_TXD_PWR 16
2778 #define IGB_MAX_DATA_PER_TXD    (1<<IGB_MAX_TXD_PWR)
2779
2780 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2781                                  struct igb_ring *tx_ring,
2782                                  struct sk_buff *skb)
2783 {
2784         struct igb_buffer *buffer_info;
2785         unsigned int len = skb_headlen(skb);
2786         unsigned int count = 0, i;
2787         unsigned int f;
2788
2789         i = tx_ring->next_to_use;
2790
2791         buffer_info = &tx_ring->buffer_info[i];
2792         BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2793         buffer_info->length = len;
2794         /* set time_stamp *before* dma to help avoid a possible race */
2795         buffer_info->time_stamp = jiffies;
2796         buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2797                                           PCI_DMA_TODEVICE);
2798         count++;
2799         i++;
2800         if (i == tx_ring->count)
2801                 i = 0;
2802
2803         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2804                 struct skb_frag_struct *frag;
2805
2806                 frag = &skb_shinfo(skb)->frags[f];
2807                 len = frag->size;
2808
2809                 buffer_info = &tx_ring->buffer_info[i];
2810                 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2811                 buffer_info->length = len;
2812                 buffer_info->time_stamp = jiffies;
2813                 buffer_info->dma = pci_map_page(adapter->pdev,
2814                                                 frag->page,
2815                                                 frag->page_offset,
2816                                                 len,
2817                                                 PCI_DMA_TODEVICE);
2818
2819                 count++;
2820                 i++;
2821                 if (i == tx_ring->count)
2822                         i = 0;
2823         }
2824
2825         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2826         tx_ring->buffer_info[i].skb = skb;
2827
2828         return count;
2829 }
2830
2831 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2832                                     struct igb_ring *tx_ring,
2833                                     int tx_flags, int count, u32 paylen,
2834                                     u8 hdr_len)
2835 {
2836         union e1000_adv_tx_desc *tx_desc = NULL;
2837         struct igb_buffer *buffer_info;
2838         u32 olinfo_status = 0, cmd_type_len;
2839         unsigned int i;
2840
2841         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2842                         E1000_ADVTXD_DCMD_DEXT);
2843
2844         if (tx_flags & IGB_TX_FLAGS_VLAN)
2845                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2846
2847         if (tx_flags & IGB_TX_FLAGS_TSO) {
2848                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2849
2850                 /* insert tcp checksum */
2851                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2852
2853                 /* insert ip checksum */
2854                 if (tx_flags & IGB_TX_FLAGS_IPV4)
2855                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2856
2857         } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2858                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2859         }
2860
2861         if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
2862             (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2863                          IGB_TX_FLAGS_VLAN)))
2864                 olinfo_status |= tx_ring->queue_index << 4;
2865
2866         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2867
2868         i = tx_ring->next_to_use;
2869         while (count--) {
2870                 buffer_info = &tx_ring->buffer_info[i];
2871                 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2872                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2873                 tx_desc->read.cmd_type_len =
2874                         cpu_to_le32(cmd_type_len | buffer_info->length);
2875                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2876                 i++;
2877                 if (i == tx_ring->count)
2878                         i = 0;
2879         }
2880
2881         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2882         /* Force memory writes to complete before letting h/w
2883          * know there are new descriptors to fetch.  (Only
2884          * applicable for weak-ordered memory model archs,
2885          * such as IA-64). */
2886         wmb();
2887
2888         tx_ring->next_to_use = i;
2889         writel(i, adapter->hw.hw_addr + tx_ring->tail);
2890         /* we need this if more than one processor can write to our tail
2891          * at a time, it syncronizes IO on IA64/Altix systems */
2892         mmiowb();
2893 }
2894
2895 static int __igb_maybe_stop_tx(struct net_device *netdev,
2896                                struct igb_ring *tx_ring, int size)
2897 {
2898         struct igb_adapter *adapter = netdev_priv(netdev);
2899
2900         netif_stop_subqueue(netdev, tx_ring->queue_index);
2901
2902         /* Herbert's original patch had:
2903          *  smp_mb__after_netif_stop_queue();
2904          * but since that doesn't exist yet, just open code it. */
2905         smp_mb();
2906
2907         /* We need to check again in a case another CPU has just
2908          * made room available. */
2909         if (IGB_DESC_UNUSED(tx_ring) < size)
2910                 return -EBUSY;
2911
2912         /* A reprieve! */
2913         netif_wake_subqueue(netdev, tx_ring->queue_index);
2914         ++adapter->restart_queue;
2915         return 0;
2916 }
2917
2918 static int igb_maybe_stop_tx(struct net_device *netdev,
2919                              struct igb_ring *tx_ring, int size)
2920 {
2921         if (IGB_DESC_UNUSED(tx_ring) >= size)
2922                 return 0;
2923         return __igb_maybe_stop_tx(netdev, tx_ring, size);
2924 }
2925
2926 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2927
2928 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2929                                    struct net_device *netdev,
2930                                    struct igb_ring *tx_ring)
2931 {
2932         struct igb_adapter *adapter = netdev_priv(netdev);
2933         unsigned int tx_flags = 0;
2934         unsigned int len;
2935         u8 hdr_len = 0;
2936         int tso = 0;
2937
2938         len = skb_headlen(skb);
2939
2940         if (test_bit(__IGB_DOWN, &adapter->state)) {
2941                 dev_kfree_skb_any(skb);
2942                 return NETDEV_TX_OK;
2943         }
2944
2945         if (skb->len <= 0) {
2946                 dev_kfree_skb_any(skb);
2947                 return NETDEV_TX_OK;
2948         }
2949
2950         /* need: 1 descriptor per page,
2951          *       + 2 desc gap to keep tail from touching head,
2952          *       + 1 desc for skb->data,
2953          *       + 1 desc for context descriptor,
2954          * otherwise try next time */
2955         if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2956                 /* this is a hard error */
2957                 return NETDEV_TX_BUSY;
2958         }
2959         skb_orphan(skb);
2960
2961         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2962                 tx_flags |= IGB_TX_FLAGS_VLAN;
2963                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2964         }
2965
2966         if (skb->protocol == htons(ETH_P_IP))
2967                 tx_flags |= IGB_TX_FLAGS_IPV4;
2968
2969         tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2970                                               &hdr_len) : 0;
2971
2972         if (tso < 0) {
2973                 dev_kfree_skb_any(skb);
2974                 return NETDEV_TX_OK;
2975         }
2976
2977         if (tso)
2978                 tx_flags |= IGB_TX_FLAGS_TSO;
2979         else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
2980                         if (skb->ip_summed == CHECKSUM_PARTIAL)
2981                                 tx_flags |= IGB_TX_FLAGS_CSUM;
2982
2983         igb_tx_queue_adv(adapter, tx_ring, tx_flags,
2984                          igb_tx_map_adv(adapter, tx_ring, skb),
2985                          skb->len, hdr_len);
2986
2987         netdev->trans_start = jiffies;
2988
2989         /* Make sure there is space in the ring for the next send. */
2990         igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
2991
2992         return NETDEV_TX_OK;
2993 }
2994
2995 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
2996 {
2997         struct igb_adapter *adapter = netdev_priv(netdev);
2998         struct igb_ring *tx_ring;
2999
3000         int r_idx = 0;
3001         r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1);
3002         tx_ring = adapter->multi_tx_table[r_idx];
3003
3004         /* This goes back to the question of how to logically map a tx queue
3005          * to a flow.  Right now, performance is impacted slightly negatively
3006          * if using multiple tx queues.  If the stack breaks away from a
3007          * single qdisc implementation, we can look at this again. */
3008         return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3009 }
3010
3011 /**
3012  * igb_tx_timeout - Respond to a Tx Hang
3013  * @netdev: network interface device structure
3014  **/
3015 static void igb_tx_timeout(struct net_device *netdev)
3016 {
3017         struct igb_adapter *adapter = netdev_priv(netdev);
3018         struct e1000_hw *hw = &adapter->hw;
3019
3020         /* Do the reset outside of interrupt context */
3021         adapter->tx_timeout_count++;
3022         schedule_work(&adapter->reset_task);
3023         wr32(E1000_EICS, adapter->eims_enable_mask &
3024                 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
3025 }
3026
3027 static void igb_reset_task(struct work_struct *work)
3028 {
3029         struct igb_adapter *adapter;
3030         adapter = container_of(work, struct igb_adapter, reset_task);
3031
3032         igb_reinit_locked(adapter);
3033 }
3034
3035 /**
3036  * igb_get_stats - Get System Network Statistics
3037  * @netdev: network interface device structure
3038  *
3039  * Returns the address of the device statistics structure.
3040  * The statistics are actually updated from the timer callback.
3041  **/
3042 static struct net_device_stats *
3043 igb_get_stats(struct net_device *netdev)
3044 {
3045         struct igb_adapter *adapter = netdev_priv(netdev);
3046
3047         /* only return the current stats */
3048         return &adapter->net_stats;
3049 }
3050
3051 /**
3052  * igb_change_mtu - Change the Maximum Transfer Unit
3053  * @netdev: network interface device structure
3054  * @new_mtu: new value for maximum frame size
3055  *
3056  * Returns 0 on success, negative on failure
3057  **/
3058 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3059 {
3060         struct igb_adapter *adapter = netdev_priv(netdev);
3061         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3062
3063         if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3064             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3065                 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3066                 return -EINVAL;
3067         }
3068
3069 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3070         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3071                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3072                 return -EINVAL;
3073         }
3074
3075         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3076                 msleep(1);
3077         /* igb_down has a dependency on max_frame_size */
3078         adapter->max_frame_size = max_frame;
3079         if (netif_running(netdev))
3080                 igb_down(adapter);
3081
3082         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3083          * means we reserve 2 more, this pushes us to allocate from the next
3084          * larger slab size.
3085          * i.e. RXBUFFER_2048 --> size-4096 slab
3086          */
3087
3088         if (max_frame <= IGB_RXBUFFER_256)
3089                 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3090         else if (max_frame <= IGB_RXBUFFER_512)
3091                 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3092         else if (max_frame <= IGB_RXBUFFER_1024)
3093                 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3094         else if (max_frame <= IGB_RXBUFFER_2048)
3095                 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3096         else
3097 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3098                 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3099 #else
3100                 adapter->rx_buffer_len = PAGE_SIZE / 2;
3101 #endif
3102         /* adjust allocation if LPE protects us, and we aren't using SBP */
3103         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3104              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3105                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3106
3107         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3108                  netdev->mtu, new_mtu);
3109         netdev->mtu = new_mtu;
3110
3111         if (netif_running(netdev))
3112                 igb_up(adapter);
3113         else
3114                 igb_reset(adapter);
3115
3116         clear_bit(__IGB_RESETTING, &adapter->state);
3117
3118         return 0;
3119 }
3120
3121 /**
3122  * igb_update_stats - Update the board statistics counters
3123  * @adapter: board private structure
3124  **/
3125
3126 void igb_update_stats(struct igb_adapter *adapter)
3127 {
3128         struct e1000_hw *hw = &adapter->hw;
3129         struct pci_dev *pdev = adapter->pdev;
3130         u16 phy_tmp;
3131
3132 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3133
3134         /*
3135          * Prevent stats update while adapter is being reset, or if the pci
3136          * connection is down.
3137          */
3138         if (adapter->link_speed == 0)
3139                 return;
3140         if (pci_channel_offline(pdev))
3141                 return;
3142
3143         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3144         adapter->stats.gprc += rd32(E1000_GPRC);
3145         adapter->stats.gorc += rd32(E1000_GORCL);
3146         rd32(E1000_GORCH); /* clear GORCL */
3147         adapter->stats.bprc += rd32(E1000_BPRC);
3148         adapter->stats.mprc += rd32(E1000_MPRC);
3149         adapter->stats.roc += rd32(E1000_ROC);
3150
3151         adapter->stats.prc64 += rd32(E1000_PRC64);
3152         adapter->stats.prc127 += rd32(E1000_PRC127);
3153         adapter->stats.prc255 += rd32(E1000_PRC255);
3154         adapter->stats.prc511 += rd32(E1000_PRC511);
3155         adapter->stats.prc1023 += rd32(E1000_PRC1023);
3156         adapter->stats.prc1522 += rd32(E1000_PRC1522);
3157         adapter->stats.symerrs += rd32(E1000_SYMERRS);
3158         adapter->stats.sec += rd32(E1000_SEC);
3159
3160         adapter->stats.mpc += rd32(E1000_MPC);
3161         adapter->stats.scc += rd32(E1000_SCC);
3162         adapter->stats.ecol += rd32(E1000_ECOL);
3163         adapter->stats.mcc += rd32(E1000_MCC);
3164         adapter->stats.latecol += rd32(E1000_LATECOL);
3165         adapter->stats.dc += rd32(E1000_DC);
3166         adapter->stats.rlec += rd32(E1000_RLEC);
3167         adapter->stats.xonrxc += rd32(E1000_XONRXC);
3168         adapter->stats.xontxc += rd32(E1000_XONTXC);
3169         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3170         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3171         adapter->stats.fcruc += rd32(E1000_FCRUC);
3172         adapter->stats.gptc += rd32(E1000_GPTC);
3173         adapter->stats.gotc += rd32(E1000_GOTCL);
3174         rd32(E1000_GOTCH); /* clear GOTCL */
3175         adapter->stats.rnbc += rd32(E1000_RNBC);
3176         adapter->stats.ruc += rd32(E1000_RUC);
3177         adapter->stats.rfc += rd32(E1000_RFC);
3178         adapter->stats.rjc += rd32(E1000_RJC);
3179         adapter->stats.tor += rd32(E1000_TORH);
3180         adapter->stats.tot += rd32(E1000_TOTH);
3181         adapter->stats.tpr += rd32(E1000_TPR);
3182
3183         adapter->stats.ptc64 += rd32(E1000_PTC64);
3184         adapter->stats.ptc127 += rd32(E1000_PTC127);
3185         adapter->stats.ptc255 += rd32(E1000_PTC255);
3186         adapter->stats.ptc511 += rd32(E1000_PTC511);
3187         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3188         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3189
3190         adapter->stats.mptc += rd32(E1000_MPTC);
3191         adapter->stats.bptc += rd32(E1000_BPTC);
3192
3193         /* used for adaptive IFS */
3194
3195         hw->mac.tx_packet_delta = rd32(E1000_TPT);
3196         adapter->stats.tpt += hw->mac.tx_packet_delta;
3197         hw->mac.collision_delta = rd32(E1000_COLC);
3198         adapter->stats.colc += hw->mac.collision_delta;
3199
3200         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3201         adapter->stats.rxerrc += rd32(E1000_RXERRC);
3202         adapter->stats.tncrs += rd32(E1000_TNCRS);
3203         adapter->stats.tsctc += rd32(E1000_TSCTC);
3204         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3205
3206         adapter->stats.iac += rd32(E1000_IAC);
3207         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3208         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3209         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3210         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3211         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3212         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3213         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3214         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3215
3216         /* Fill out the OS statistics structure */
3217         adapter->net_stats.multicast = adapter->stats.mprc;
3218         adapter->net_stats.collisions = adapter->stats.colc;
3219
3220         /* Rx Errors */
3221
3222         /* RLEC on some newer hardware can be incorrect so build
3223         * our own version based on RUC and ROC */
3224         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3225                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3226                 adapter->stats.ruc + adapter->stats.roc +
3227                 adapter->stats.cexterr;
3228         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3229                                               adapter->stats.roc;
3230         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3231         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3232         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3233
3234         /* Tx Errors */
3235         adapter->net_stats.tx_errors = adapter->stats.ecol +
3236                                        adapter->stats.latecol;
3237         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3238         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3239         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3240
3241         /* Tx Dropped needs to be maintained elsewhere */
3242
3243         /* Phy Stats */
3244         if (hw->phy.media_type == e1000_media_type_copper) {
3245                 if ((adapter->link_speed == SPEED_1000) &&
3246                    (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
3247                                               &phy_tmp))) {
3248                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3249                         adapter->phy_stats.idle_errors += phy_tmp;
3250                 }
3251         }
3252
3253         /* Management Stats */
3254         adapter->stats.mgptc += rd32(E1000_MGTPTC);
3255         adapter->stats.mgprc += rd32(E1000_MGTPRC);
3256         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3257 }
3258
3259
3260 static irqreturn_t igb_msix_other(int irq, void *data)
3261 {
3262         struct net_device *netdev = data;
3263         struct igb_adapter *adapter = netdev_priv(netdev);
3264         struct e1000_hw *hw = &adapter->hw;
3265         u32 icr = rd32(E1000_ICR);
3266
3267         /* reading ICR causes bit 31 of EICR to be cleared */
3268         if (!(icr & E1000_ICR_LSC))
3269                 goto no_link_interrupt;
3270         hw->mac.get_link_status = 1;
3271         /* guard against interrupt when we're going down */
3272         if (!test_bit(__IGB_DOWN, &adapter->state))
3273                 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3274         
3275 no_link_interrupt:
3276         wr32(E1000_IMS, E1000_IMS_LSC);
3277         wr32(E1000_EIMS, adapter->eims_other);
3278
3279         return IRQ_HANDLED;
3280 }
3281
3282 static irqreturn_t igb_msix_tx(int irq, void *data)
3283 {
3284         struct igb_ring *tx_ring = data;
3285         struct igb_adapter *adapter = tx_ring->adapter;
3286         struct e1000_hw *hw = &adapter->hw;
3287
3288 #ifdef CONFIG_IGB_DCA
3289         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3290                 igb_update_tx_dca(tx_ring);
3291 #endif
3292         tx_ring->total_bytes = 0;
3293         tx_ring->total_packets = 0;
3294
3295         /* auto mask will automatically reenable the interrupt when we write
3296          * EICS */
3297         if (!igb_clean_tx_irq(tx_ring))
3298                 /* Ring was not completely cleaned, so fire another interrupt */
3299                 wr32(E1000_EICS, tx_ring->eims_value);
3300         else
3301                 wr32(E1000_EIMS, tx_ring->eims_value);
3302
3303         return IRQ_HANDLED;
3304 }
3305
3306 static void igb_write_itr(struct igb_ring *ring)
3307 {
3308         struct e1000_hw *hw = &ring->adapter->hw;
3309         if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3310                 switch (hw->mac.type) {
3311                 case e1000_82576:
3312                         wr32(ring->itr_register,
3313                              ring->itr_val |
3314                              0x80000000);
3315                         break;
3316                 default:
3317                         wr32(ring->itr_register,
3318                              ring->itr_val |
3319                              (ring->itr_val << 16));
3320                         break;
3321                 }
3322                 ring->set_itr = 0;
3323         }
3324 }
3325
3326 static irqreturn_t igb_msix_rx(int irq, void *data)
3327 {
3328         struct igb_ring *rx_ring = data;
3329         struct igb_adapter *adapter = rx_ring->adapter;
3330
3331         /* Write the ITR value calculated at the end of the
3332          * previous interrupt.
3333          */
3334
3335         igb_write_itr(rx_ring);
3336
3337         if (netif_rx_schedule_prep(adapter->netdev, &rx_ring->napi))
3338                 __netif_rx_schedule(adapter->netdev, &rx_ring->napi);
3339
3340 #ifdef CONFIG_IGB_DCA
3341         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3342                 igb_update_rx_dca(rx_ring);
3343 #endif
3344                 return IRQ_HANDLED;
3345 }
3346
3347 #ifdef CONFIG_IGB_DCA
3348 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3349 {
3350         u32 dca_rxctrl;
3351         struct igb_adapter *adapter = rx_ring->adapter;
3352         struct e1000_hw *hw = &adapter->hw;
3353         int cpu = get_cpu();
3354         int q = rx_ring - adapter->rx_ring;
3355
3356         if (rx_ring->cpu != cpu) {
3357                 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3358                 if (hw->mac.type == e1000_82576) {
3359                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3360                         dca_rxctrl |= dca_get_tag(cpu) <<
3361                                       E1000_DCA_RXCTRL_CPUID_SHIFT;
3362                 } else {
3363                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3364                         dca_rxctrl |= dca_get_tag(cpu);
3365                 }
3366                 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3367                 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3368                 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3369                 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3370                 rx_ring->cpu = cpu;
3371         }
3372         put_cpu();
3373 }
3374
3375 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3376 {
3377         u32 dca_txctrl;
3378         struct igb_adapter *adapter = tx_ring->adapter;
3379         struct e1000_hw *hw = &adapter->hw;
3380         int cpu = get_cpu();
3381         int q = tx_ring - adapter->tx_ring;
3382
3383         if (tx_ring->cpu != cpu) {
3384                 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3385                 if (hw->mac.type == e1000_82576) {
3386                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3387                         dca_txctrl |= dca_get_tag(cpu) <<
3388                                       E1000_DCA_TXCTRL_CPUID_SHIFT;
3389                 } else {
3390                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3391                         dca_txctrl |= dca_get_tag(cpu);
3392                 }
3393                 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3394                 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3395                 tx_ring->cpu = cpu;
3396         }
3397         put_cpu();
3398 }
3399
3400 static void igb_setup_dca(struct igb_adapter *adapter)
3401 {
3402         int i;
3403
3404         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3405                 return;
3406
3407         for (i = 0; i < adapter->num_tx_queues; i++) {
3408                 adapter->tx_ring[i].cpu = -1;
3409                 igb_update_tx_dca(&adapter->tx_ring[i]);
3410         }
3411         for (i = 0; i < adapter->num_rx_queues; i++) {
3412                 adapter->rx_ring[i].cpu = -1;
3413                 igb_update_rx_dca(&adapter->rx_ring[i]);
3414         }
3415 }
3416
3417 static int __igb_notify_dca(struct device *dev, void *data)
3418 {
3419         struct net_device *netdev = dev_get_drvdata(dev);
3420         struct igb_adapter *adapter = netdev_priv(netdev);
3421         struct e1000_hw *hw = &adapter->hw;
3422         unsigned long event = *(unsigned long *)data;
3423
3424         if (!(adapter->flags & IGB_FLAG_HAS_DCA))
3425                 goto out;
3426
3427         switch (event) {
3428         case DCA_PROVIDER_ADD:
3429                 /* if already enabled, don't do it again */
3430                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3431                         break;
3432                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3433                 /* Always use CB2 mode, difference is masked
3434                  * in the CB driver. */
3435                 wr32(E1000_DCA_CTRL, 2);
3436                 if (dca_add_requester(dev) == 0) {
3437                         dev_info(&adapter->pdev->dev, "DCA enabled\n");
3438                         igb_setup_dca(adapter);
3439                         break;
3440                 }
3441                 /* Fall Through since DCA is disabled. */
3442         case DCA_PROVIDER_REMOVE:
3443                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3444                         /* without this a class_device is left
3445                          * hanging around in the sysfs model */
3446                         dca_remove_requester(dev);
3447                         dev_info(&adapter->pdev->dev, "DCA disabled\n");
3448                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3449                         wr32(E1000_DCA_CTRL, 1);
3450                 }
3451                 break;
3452         }
3453 out:
3454         return 0;
3455 }
3456
3457 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3458                           void *p)
3459 {
3460         int ret_val;
3461
3462         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3463                                          __igb_notify_dca);
3464
3465         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3466 }
3467 #endif /* CONFIG_IGB_DCA */
3468
3469 /**
3470  * igb_intr_msi - Interrupt Handler
3471  * @irq: interrupt number
3472  * @data: pointer to a network interface device structure
3473  **/
3474 static irqreturn_t igb_intr_msi(int irq, void *data)
3475 {
3476         struct net_device *netdev = data;
3477         struct igb_adapter *adapter = netdev_priv(netdev);
3478         struct e1000_hw *hw = &adapter->hw;
3479         /* read ICR disables interrupts using IAM */
3480         u32 icr = rd32(E1000_ICR);
3481
3482         igb_write_itr(adapter->rx_ring);
3483
3484         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3485                 hw->mac.get_link_status = 1;
3486                 if (!test_bit(__IGB_DOWN, &adapter->state))
3487                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3488         }
3489
3490         netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
3491
3492         return IRQ_HANDLED;
3493 }
3494
3495 /**
3496  * igb_intr - Interrupt Handler
3497  * @irq: interrupt number
3498  * @data: pointer to a network interface device structure
3499  **/
3500 static irqreturn_t igb_intr(int irq, void *data)
3501 {
3502         struct net_device *netdev = data;
3503         struct igb_adapter *adapter = netdev_priv(netdev);
3504         struct e1000_hw *hw = &adapter->hw;
3505         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3506          * need for the IMC write */
3507         u32 icr = rd32(E1000_ICR);
3508         u32 eicr = 0;
3509         if (!icr)
3510                 return IRQ_NONE;  /* Not our interrupt */
3511
3512         igb_write_itr(adapter->rx_ring);
3513
3514         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3515          * not set, then the adapter didn't send an interrupt */
3516         if (!(icr & E1000_ICR_INT_ASSERTED))
3517                 return IRQ_NONE;
3518
3519         eicr = rd32(E1000_EICR);
3520
3521         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3522                 hw->mac.get_link_status = 1;
3523                 /* guard against interrupt when we're going down */
3524                 if (!test_bit(__IGB_DOWN, &adapter->state))
3525                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3526         }
3527
3528         netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
3529
3530         return IRQ_HANDLED;
3531 }
3532
3533 /**
3534  * igb_poll - NAPI Rx polling callback
3535  * @napi: napi polling structure
3536  * @budget: count of how many packets we should handle
3537  **/
3538 static int igb_poll(struct napi_struct *napi, int budget)
3539 {
3540         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3541         struct igb_adapter *adapter = rx_ring->adapter;
3542         struct net_device *netdev = adapter->netdev;
3543         int tx_clean_complete, work_done = 0;
3544
3545         /* this poll routine only supports one tx and one rx queue */
3546 #ifdef CONFIG_IGB_DCA
3547         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3548                 igb_update_tx_dca(&adapter->tx_ring[0]);
3549 #endif
3550         tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]);
3551
3552 #ifdef CONFIG_IGB_DCA
3553         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3554                 igb_update_rx_dca(&adapter->rx_ring[0]);
3555 #endif
3556         igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget);
3557
3558         /* If no Tx and not enough Rx work done, exit the polling mode */
3559         if ((tx_clean_complete && (work_done < budget)) ||
3560             !netif_running(netdev)) {
3561                 if (adapter->itr_setting & 3)
3562                         igb_set_itr(adapter);
3563                 netif_rx_complete(netdev, napi);
3564                 if (!test_bit(__IGB_DOWN, &adapter->state))
3565                         igb_irq_enable(adapter);
3566                 return 0;
3567         }
3568
3569         return 1;
3570 }
3571
3572 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3573 {
3574         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3575         struct igb_adapter *adapter = rx_ring->adapter;
3576         struct e1000_hw *hw = &adapter->hw;
3577         struct net_device *netdev = adapter->netdev;
3578         int work_done = 0;
3579
3580 #ifdef CONFIG_IGB_DCA
3581         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3582                 igb_update_rx_dca(rx_ring);
3583 #endif
3584         igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
3585
3586
3587         /* If not enough Rx work done, exit the polling mode */
3588         if ((work_done == 0) || !netif_running(netdev)) {
3589                 netif_rx_complete(netdev, napi);
3590
3591                 if (adapter->itr_setting & 3) {
3592                         if (adapter->num_rx_queues == 1)
3593                                 igb_set_itr(adapter);
3594                         else
3595                                 igb_update_ring_itr(rx_ring);
3596                 }
3597
3598                 if (!test_bit(__IGB_DOWN, &adapter->state))
3599                         wr32(E1000_EIMS, rx_ring->eims_value);
3600
3601                 return 0;
3602         }
3603
3604         return 1;
3605 }
3606
3607 static inline u32 get_head(struct igb_ring *tx_ring)
3608 {
3609         void *end = (struct e1000_tx_desc *)tx_ring->desc + tx_ring->count;
3610         return le32_to_cpu(*(volatile __le32 *)end);
3611 }
3612
3613 /**
3614  * igb_clean_tx_irq - Reclaim resources after transmit completes
3615  * @adapter: board private structure
3616  * returns true if ring is completely cleaned
3617  **/
3618 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
3619 {
3620         struct igb_adapter *adapter = tx_ring->adapter;
3621         struct e1000_hw *hw = &adapter->hw;
3622         struct net_device *netdev = adapter->netdev;
3623         struct e1000_tx_desc *tx_desc;
3624         struct igb_buffer *buffer_info;
3625         struct sk_buff *skb;
3626         unsigned int i;
3627         u32 head, oldhead;
3628         unsigned int count = 0;
3629         unsigned int total_bytes = 0, total_packets = 0;
3630         bool retval = true;
3631
3632         rmb();
3633         head = get_head(tx_ring);
3634         i = tx_ring->next_to_clean;
3635         while (1) {
3636                 while (i != head) {
3637                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3638                         buffer_info = &tx_ring->buffer_info[i];
3639                         skb = buffer_info->skb;
3640
3641                         if (skb) {
3642                                 unsigned int segs, bytecount;
3643                                 /* gso_segs is currently only valid for tcp */
3644                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3645                                 /* multiply data chunks by size of headers */
3646                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3647                                             skb->len;
3648                                 total_packets += segs;
3649                                 total_bytes += bytecount;
3650                         }
3651
3652                         igb_unmap_and_free_tx_resource(adapter, buffer_info);
3653
3654                         i++;
3655                         if (i == tx_ring->count)
3656                                 i = 0;
3657
3658                         count++;
3659                         if (count == IGB_MAX_TX_CLEAN) {
3660                                 retval = false;
3661                                 goto done_cleaning;
3662                         }
3663                 }
3664                 oldhead = head;
3665                 rmb();
3666                 head = get_head(tx_ring);
3667                 if (head == oldhead)
3668                         goto done_cleaning;
3669         }  /* while (1) */
3670
3671 done_cleaning:
3672         tx_ring->next_to_clean = i;
3673
3674         if (unlikely(count &&
3675                      netif_carrier_ok(netdev) &&
3676                      IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3677                 /* Make sure that anybody stopping the queue after this
3678                  * sees the new next_to_clean.
3679                  */
3680                 smp_mb();
3681                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
3682                     !(test_bit(__IGB_DOWN, &adapter->state))) {
3683                         netif_wake_subqueue(netdev, tx_ring->queue_index);
3684                         ++adapter->restart_queue;
3685                 }
3686         }
3687
3688         if (tx_ring->detect_tx_hung) {
3689                 /* Detect a transmit hang in hardware, this serializes the
3690                  * check with the clearing of time_stamp and movement of i */
3691                 tx_ring->detect_tx_hung = false;
3692                 if (tx_ring->buffer_info[i].time_stamp &&
3693                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3694                                (adapter->tx_timeout_factor * HZ))
3695                     && !(rd32(E1000_STATUS) &
3696                          E1000_STATUS_TXOFF)) {
3697
3698                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3699                         /* detected Tx unit hang */
3700                         dev_err(&adapter->pdev->dev,
3701                                 "Detected Tx Unit Hang\n"
3702                                 "  Tx Queue             <%d>\n"
3703                                 "  TDH                  <%x>\n"
3704                                 "  TDT                  <%x>\n"
3705                                 "  next_to_use          <%x>\n"
3706                                 "  next_to_clean        <%x>\n"
3707                                 "  head (WB)            <%x>\n"
3708                                 "buffer_info[next_to_clean]\n"
3709                                 "  time_stamp           <%lx>\n"
3710                                 "  jiffies              <%lx>\n"
3711                                 "  desc.status          <%x>\n",
3712                                 tx_ring->queue_index,
3713                                 readl(adapter->hw.hw_addr + tx_ring->head),
3714                                 readl(adapter->hw.hw_addr + tx_ring->tail),
3715                                 tx_ring->next_to_use,
3716                                 tx_ring->next_to_clean,
3717                                 head,
3718                                 tx_ring->buffer_info[i].time_stamp,
3719                                 jiffies,
3720                                 tx_desc->upper.fields.status);
3721                         netif_stop_subqueue(netdev, tx_ring->queue_index);
3722                 }
3723         }
3724         tx_ring->total_bytes += total_bytes;
3725         tx_ring->total_packets += total_packets;
3726         tx_ring->tx_stats.bytes += total_bytes;
3727         tx_ring->tx_stats.packets += total_packets;
3728         adapter->net_stats.tx_bytes += total_bytes;
3729         adapter->net_stats.tx_packets += total_packets;
3730         return retval;
3731 }
3732
3733 #ifdef CONFIG_IGB_LRO
3734  /**
3735  * igb_get_skb_hdr - helper function for LRO header processing
3736  * @skb: pointer to sk_buff to be added to LRO packet
3737  * @iphdr: pointer to ip header structure
3738  * @tcph: pointer to tcp header structure
3739  * @hdr_flags: pointer to header flags
3740  * @priv: pointer to the receive descriptor for the current sk_buff
3741  **/
3742 static int igb_get_skb_hdr(struct sk_buff *skb, void **iphdr, void **tcph,
3743                            u64 *hdr_flags, void *priv)
3744 {
3745         union e1000_adv_rx_desc *rx_desc = priv;
3746         u16 pkt_type = rx_desc->wb.lower.lo_dword.pkt_info &
3747                        (E1000_RXDADV_PKTTYPE_IPV4 | E1000_RXDADV_PKTTYPE_TCP);
3748
3749         /* Verify that this is a valid IPv4 TCP packet */
3750         if (pkt_type != (E1000_RXDADV_PKTTYPE_IPV4 |
3751                           E1000_RXDADV_PKTTYPE_TCP))
3752                 return -1;
3753
3754         /* Set network headers */
3755         skb_reset_network_header(skb);
3756         skb_set_transport_header(skb, ip_hdrlen(skb));
3757         *iphdr = ip_hdr(skb);
3758         *tcph = tcp_hdr(skb);
3759         *hdr_flags = LRO_IPV4 | LRO_TCP;
3760
3761         return 0;
3762
3763 }
3764 #endif /* CONFIG_IGB_LRO */
3765
3766 /**
3767  * igb_receive_skb - helper function to handle rx indications
3768  * @ring: pointer to receive ring receving this packet 
3769  * @status: descriptor status field as written by hardware
3770  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3771  * @skb: pointer to sk_buff to be indicated to stack
3772  **/
3773 static void igb_receive_skb(struct igb_ring *ring, u8 status,
3774                             union e1000_adv_rx_desc * rx_desc,
3775                             struct sk_buff *skb)
3776 {
3777         struct igb_adapter * adapter = ring->adapter;
3778         bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
3779
3780 #ifdef CONFIG_IGB_LRO
3781         if (adapter->netdev->features & NETIF_F_LRO &&
3782             skb->ip_summed == CHECKSUM_UNNECESSARY) {
3783                 if (vlan_extracted)
3784                         lro_vlan_hwaccel_receive_skb(&ring->lro_mgr, skb,
3785                                            adapter->vlgrp,
3786                                            le16_to_cpu(rx_desc->wb.upper.vlan),
3787                                            rx_desc);
3788                 else
3789                         lro_receive_skb(&ring->lro_mgr,skb, rx_desc);
3790                 ring->lro_used = 1;
3791         } else {
3792 #endif
3793                 if (vlan_extracted)
3794                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3795                                           le16_to_cpu(rx_desc->wb.upper.vlan));
3796                 else
3797
3798                         netif_receive_skb(skb);
3799 #ifdef CONFIG_IGB_LRO
3800         }
3801 #endif
3802 }
3803
3804
3805 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3806                                        u32 status_err, struct sk_buff *skb)
3807 {
3808         skb->ip_summed = CHECKSUM_NONE;
3809
3810         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3811         if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3812                 return;
3813         /* TCP/UDP checksum error bit is set */
3814         if (status_err &
3815             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3816                 /* let the stack verify checksum errors */
3817                 adapter->hw_csum_err++;
3818                 return;
3819         }
3820         /* It must be a TCP or UDP packet with a valid checksum */
3821         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3822                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3823
3824         adapter->hw_csum_good++;
3825 }
3826
3827 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3828                                  int *work_done, int budget)
3829 {
3830         struct igb_adapter *adapter = rx_ring->adapter;
3831         struct net_device *netdev = adapter->netdev;
3832         struct pci_dev *pdev = adapter->pdev;
3833         union e1000_adv_rx_desc *rx_desc , *next_rxd;
3834         struct igb_buffer *buffer_info , *next_buffer;
3835         struct sk_buff *skb;
3836         unsigned int i;
3837         u32 length, hlen, staterr;
3838         bool cleaned = false;
3839         int cleaned_count = 0;
3840         unsigned int total_bytes = 0, total_packets = 0;
3841
3842         i = rx_ring->next_to_clean;
3843         rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3844         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3845
3846         while (staterr & E1000_RXD_STAT_DD) {
3847                 if (*work_done >= budget)
3848                         break;
3849                 (*work_done)++;
3850                 buffer_info = &rx_ring->buffer_info[i];
3851
3852                 /* HW will not DMA in data larger than the given buffer, even
3853                  * if it parses the (NFS, of course) header to be larger.  In
3854                  * that case, it fills the header buffer and spills the rest
3855                  * into the page.
3856                  */
3857                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3858                   E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
3859                 if (hlen > adapter->rx_ps_hdr_size)
3860                         hlen = adapter->rx_ps_hdr_size;
3861
3862                 length = le16_to_cpu(rx_desc->wb.upper.length);
3863                 cleaned = true;
3864                 cleaned_count++;
3865
3866                 skb = buffer_info->skb;
3867                 prefetch(skb->data - NET_IP_ALIGN);
3868                 buffer_info->skb = NULL;
3869                 if (!adapter->rx_ps_hdr_size) {
3870                         pci_unmap_single(pdev, buffer_info->dma,
3871                                          adapter->rx_buffer_len +
3872                                            NET_IP_ALIGN,
3873                                          PCI_DMA_FROMDEVICE);
3874                         skb_put(skb, length);
3875                         goto send_up;
3876                 }
3877
3878                 if (!skb_shinfo(skb)->nr_frags) {
3879                         pci_unmap_single(pdev, buffer_info->dma,
3880                                          adapter->rx_ps_hdr_size +
3881                                            NET_IP_ALIGN,
3882                                          PCI_DMA_FROMDEVICE);
3883                         skb_put(skb, hlen);
3884                 }
3885
3886                 if (length) {
3887                         pci_unmap_page(pdev, buffer_info->page_dma,
3888                                        PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
3889                         buffer_info->page_dma = 0;
3890
3891                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
3892                                                 buffer_info->page,
3893                                                 buffer_info->page_offset,
3894                                                 length);
3895
3896                         if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
3897                             (page_count(buffer_info->page) != 1))
3898                                 buffer_info->page = NULL;
3899                         else
3900                                 get_page(buffer_info->page);
3901
3902                         skb->len += length;
3903                         skb->data_len += length;
3904
3905                         skb->truesize += length;
3906                 }
3907 send_up:
3908                 i++;
3909                 if (i == rx_ring->count)
3910                         i = 0;
3911                 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3912                 prefetch(next_rxd);
3913                 next_buffer = &rx_ring->buffer_info[i];
3914
3915                 if (!(staterr & E1000_RXD_STAT_EOP)) {
3916                         buffer_info->skb = next_buffer->skb;
3917                         buffer_info->dma = next_buffer->dma;
3918                         next_buffer->skb = skb;
3919                         next_buffer->dma = 0;
3920                         goto next_desc;
3921                 }
3922
3923                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3924                         dev_kfree_skb_irq(skb);
3925                         goto next_desc;
3926                 }
3927
3928                 total_bytes += skb->len;
3929                 total_packets++;
3930
3931                 igb_rx_checksum_adv(adapter, staterr, skb);
3932
3933                 skb->protocol = eth_type_trans(skb, netdev);
3934
3935                 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
3936
3937 next_desc:
3938                 rx_desc->wb.upper.status_error = 0;
3939
3940                 /* return some buffers to hardware, one at a time is too slow */
3941                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3942                         igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3943                         cleaned_count = 0;
3944                 }
3945
3946                 /* use prefetched values */
3947                 rx_desc = next_rxd;
3948                 buffer_info = next_buffer;
3949
3950                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3951         }
3952
3953         rx_ring->next_to_clean = i;
3954         cleaned_count = IGB_DESC_UNUSED(rx_ring);
3955
3956 #ifdef CONFIG_IGB_LRO
3957         if (rx_ring->lro_used) {
3958                 lro_flush_all(&rx_ring->lro_mgr);
3959                 rx_ring->lro_used = 0;
3960         }
3961 #endif
3962
3963         if (cleaned_count)
3964                 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3965
3966         rx_ring->total_packets += total_packets;
3967         rx_ring->total_bytes += total_bytes;
3968         rx_ring->rx_stats.packets += total_packets;
3969         rx_ring->rx_stats.bytes += total_bytes;
3970         adapter->net_stats.rx_bytes += total_bytes;
3971         adapter->net_stats.rx_packets += total_packets;
3972         return cleaned;
3973 }
3974
3975
3976 /**
3977  * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3978  * @adapter: address of board private structure
3979  **/
3980 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
3981                                      int cleaned_count)
3982 {
3983         struct igb_adapter *adapter = rx_ring->adapter;
3984         struct net_device *netdev = adapter->netdev;
3985         struct pci_dev *pdev = adapter->pdev;
3986         union e1000_adv_rx_desc *rx_desc;
3987         struct igb_buffer *buffer_info;
3988         struct sk_buff *skb;
3989         unsigned int i;
3990
3991         i = rx_ring->next_to_use;
3992         buffer_info = &rx_ring->buffer_info[i];
3993
3994         while (cleaned_count--) {
3995                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3996
3997                 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
3998                         if (!buffer_info->page) {
3999                                 buffer_info->page = alloc_page(GFP_ATOMIC);
4000                                 if (!buffer_info->page) {
4001                                         adapter->alloc_rx_buff_failed++;
4002                                         goto no_buffers;
4003                                 }
4004                                 buffer_info->page_offset = 0;
4005                         } else {
4006                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
4007                         }
4008                         buffer_info->page_dma =
4009                                 pci_map_page(pdev,
4010                                              buffer_info->page,
4011                                              buffer_info->page_offset,
4012                                              PAGE_SIZE / 2,
4013                                              PCI_DMA_FROMDEVICE);
4014                 }
4015
4016                 if (!buffer_info->skb) {
4017                         int bufsz;
4018
4019                         if (adapter->rx_ps_hdr_size)
4020                                 bufsz = adapter->rx_ps_hdr_size;
4021                         else
4022                                 bufsz = adapter->rx_buffer_len;
4023                         bufsz += NET_IP_ALIGN;
4024                         skb = netdev_alloc_skb(netdev, bufsz);
4025
4026                         if (!skb) {
4027                                 adapter->alloc_rx_buff_failed++;
4028                                 goto no_buffers;
4029                         }
4030
4031                         /* Make buffer alignment 2 beyond a 16 byte boundary
4032                          * this will result in a 16 byte aligned IP header after
4033                          * the 14 byte MAC header is removed
4034                          */
4035                         skb_reserve(skb, NET_IP_ALIGN);
4036
4037                         buffer_info->skb = skb;
4038                         buffer_info->dma = pci_map_single(pdev, skb->data,
4039                                                           bufsz,
4040                                                           PCI_DMA_FROMDEVICE);
4041
4042                 }
4043                 /* Refresh the desc even if buffer_addrs didn't change because
4044                  * each write-back erases this info. */
4045                 if (adapter->rx_ps_hdr_size) {
4046                         rx_desc->read.pkt_addr =
4047                              cpu_to_le64(buffer_info->page_dma);
4048                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4049                 } else {
4050                         rx_desc->read.pkt_addr =
4051                              cpu_to_le64(buffer_info->dma);
4052                         rx_desc->read.hdr_addr = 0;
4053                 }
4054
4055                 i++;
4056                 if (i == rx_ring->count)
4057                         i = 0;
4058                 buffer_info = &rx_ring->buffer_info[i];
4059         }
4060
4061 no_buffers:
4062         if (rx_ring->next_to_use != i) {
4063                 rx_ring->next_to_use = i;
4064                 if (i == 0)
4065                         i = (rx_ring->count - 1);
4066                 else
4067                         i--;
4068
4069                 /* Force memory writes to complete before letting h/w
4070                  * know there are new descriptors to fetch.  (Only
4071                  * applicable for weak-ordered memory model archs,
4072                  * such as IA-64). */
4073                 wmb();
4074                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4075         }
4076 }
4077
4078 /**
4079  * igb_mii_ioctl -
4080  * @netdev:
4081  * @ifreq:
4082  * @cmd:
4083  **/
4084 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4085 {
4086         struct igb_adapter *adapter = netdev_priv(netdev);
4087         struct mii_ioctl_data *data = if_mii(ifr);
4088
4089         if (adapter->hw.phy.media_type != e1000_media_type_copper)
4090                 return -EOPNOTSUPP;
4091
4092         switch (cmd) {
4093         case SIOCGMIIPHY:
4094                 data->phy_id = adapter->hw.phy.addr;
4095                 break;
4096         case SIOCGMIIREG:
4097                 if (!capable(CAP_NET_ADMIN))
4098                         return -EPERM;
4099                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4100                                      &data->val_out))
4101                         return -EIO;
4102                 break;
4103         case SIOCSMIIREG:
4104         default:
4105                 return -EOPNOTSUPP;
4106         }
4107         return 0;
4108 }
4109
4110 /**
4111  * igb_ioctl -
4112  * @netdev:
4113  * @ifreq:
4114  * @cmd:
4115  **/
4116 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4117 {
4118         switch (cmd) {
4119         case SIOCGMIIPHY:
4120         case SIOCGMIIREG:
4121         case SIOCSMIIREG:
4122                 return igb_mii_ioctl(netdev, ifr, cmd);
4123         default:
4124                 return -EOPNOTSUPP;
4125         }
4126 }
4127
4128 static void igb_vlan_rx_register(struct net_device *netdev,
4129                                  struct vlan_group *grp)
4130 {
4131         struct igb_adapter *adapter = netdev_priv(netdev);
4132         struct e1000_hw *hw = &adapter->hw;
4133         u32 ctrl, rctl;
4134
4135         igb_irq_disable(adapter);
4136         adapter->vlgrp = grp;
4137
4138         if (grp) {
4139                 /* enable VLAN tag insert/strip */
4140                 ctrl = rd32(E1000_CTRL);
4141                 ctrl |= E1000_CTRL_VME;
4142                 wr32(E1000_CTRL, ctrl);
4143
4144                 /* enable VLAN receive filtering */
4145                 rctl = rd32(E1000_RCTL);
4146                 rctl &= ~E1000_RCTL_CFIEN;
4147                 wr32(E1000_RCTL, rctl);
4148                 igb_update_mng_vlan(adapter);
4149                 wr32(E1000_RLPML,
4150                                 adapter->max_frame_size + VLAN_TAG_SIZE);
4151         } else {
4152                 /* disable VLAN tag insert/strip */
4153                 ctrl = rd32(E1000_CTRL);
4154                 ctrl &= ~E1000_CTRL_VME;
4155                 wr32(E1000_CTRL, ctrl);
4156
4157                 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4158                         igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4159                         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4160                 }
4161                 wr32(E1000_RLPML,
4162                                 adapter->max_frame_size);
4163         }
4164
4165         if (!test_bit(__IGB_DOWN, &adapter->state))
4166                 igb_irq_enable(adapter);
4167 }
4168
4169 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4170 {
4171         struct igb_adapter *adapter = netdev_priv(netdev);
4172         struct e1000_hw *hw = &adapter->hw;
4173         u32 vfta, index;
4174
4175         if ((adapter->hw.mng_cookie.status &
4176              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4177             (vid == adapter->mng_vlan_id))
4178                 return;
4179         /* add VID to filter table */
4180         index = (vid >> 5) & 0x7F;
4181         vfta = array_rd32(E1000_VFTA, index);
4182         vfta |= (1 << (vid & 0x1F));
4183         igb_write_vfta(&adapter->hw, index, vfta);
4184 }
4185
4186 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4187 {
4188         struct igb_adapter *adapter = netdev_priv(netdev);
4189         struct e1000_hw *hw = &adapter->hw;
4190         u32 vfta, index;
4191
4192         igb_irq_disable(adapter);
4193         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4194
4195         if (!test_bit(__IGB_DOWN, &adapter->state))
4196                 igb_irq_enable(adapter);
4197
4198         if ((adapter->hw.mng_cookie.status &
4199              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4200             (vid == adapter->mng_vlan_id)) {
4201                 /* release control to f/w */
4202                 igb_release_hw_control(adapter);
4203                 return;
4204         }
4205
4206         /* remove VID from filter table */
4207         index = (vid >> 5) & 0x7F;
4208         vfta = array_rd32(E1000_VFTA, index);
4209         vfta &= ~(1 << (vid & 0x1F));
4210         igb_write_vfta(&adapter->hw, index, vfta);
4211 }
4212
4213 static void igb_restore_vlan(struct igb_adapter *adapter)
4214 {
4215         igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4216
4217         if (adapter->vlgrp) {
4218                 u16 vid;
4219                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4220                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4221                                 continue;
4222                         igb_vlan_rx_add_vid(adapter->netdev, vid);
4223                 }
4224         }
4225 }
4226
4227 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4228 {
4229         struct e1000_mac_info *mac = &adapter->hw.mac;
4230
4231         mac->autoneg = 0;
4232
4233         /* Fiber NICs only allow 1000 gbps Full duplex */
4234         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
4235                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4236                 dev_err(&adapter->pdev->dev,
4237                         "Unsupported Speed/Duplex configuration\n");
4238                 return -EINVAL;
4239         }
4240
4241         switch (spddplx) {
4242         case SPEED_10 + DUPLEX_HALF:
4243                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4244                 break;
4245         case SPEED_10 + DUPLEX_FULL:
4246                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4247                 break;
4248         case SPEED_100 + DUPLEX_HALF:
4249                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4250                 break;
4251         case SPEED_100 + DUPLEX_FULL:
4252                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4253                 break;
4254         case SPEED_1000 + DUPLEX_FULL:
4255                 mac->autoneg = 1;
4256                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4257                 break;
4258         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4259         default:
4260                 dev_err(&adapter->pdev->dev,
4261                         "Unsupported Speed/Duplex configuration\n");
4262                 return -EINVAL;
4263         }
4264         return 0;
4265 }
4266
4267
4268 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
4269 {
4270         struct net_device *netdev = pci_get_drvdata(pdev);
4271         struct igb_adapter *adapter = netdev_priv(netdev);
4272         struct e1000_hw *hw = &adapter->hw;
4273         u32 ctrl, rctl, status;
4274         u32 wufc = adapter->wol;
4275 #ifdef CONFIG_PM
4276         int retval = 0;
4277 #endif
4278
4279         netif_device_detach(netdev);
4280
4281         if (netif_running(netdev))
4282                 igb_close(netdev);
4283
4284         igb_reset_interrupt_capability(adapter);
4285
4286         igb_free_queues(adapter);
4287
4288 #ifdef CONFIG_PM
4289         retval = pci_save_state(pdev);
4290         if (retval)
4291                 return retval;
4292 #endif
4293
4294         status = rd32(E1000_STATUS);
4295         if (status & E1000_STATUS_LU)
4296                 wufc &= ~E1000_WUFC_LNKC;
4297
4298         if (wufc) {
4299                 igb_setup_rctl(adapter);
4300                 igb_set_multi(netdev);
4301
4302                 /* turn on all-multi mode if wake on multicast is enabled */
4303                 if (wufc & E1000_WUFC_MC) {
4304                         rctl = rd32(E1000_RCTL);
4305                         rctl |= E1000_RCTL_MPE;
4306                         wr32(E1000_RCTL, rctl);
4307                 }
4308
4309                 ctrl = rd32(E1000_CTRL);
4310                 /* advertise wake from D3Cold */
4311                 #define E1000_CTRL_ADVD3WUC 0x00100000
4312                 /* phy power management enable */
4313                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4314                 ctrl |= E1000_CTRL_ADVD3WUC;
4315                 wr32(E1000_CTRL, ctrl);
4316
4317                 /* Allow time for pending master requests to run */
4318                 igb_disable_pcie_master(&adapter->hw);
4319
4320                 wr32(E1000_WUC, E1000_WUC_PME_EN);
4321                 wr32(E1000_WUFC, wufc);
4322         } else {
4323                 wr32(E1000_WUC, 0);
4324                 wr32(E1000_WUFC, 0);
4325         }
4326
4327         /* make sure adapter isn't asleep if manageability/wol is enabled */
4328         if (wufc || adapter->en_mng_pt) {
4329                 pci_enable_wake(pdev, PCI_D3hot, 1);
4330                 pci_enable_wake(pdev, PCI_D3cold, 1);
4331         } else {
4332                 igb_shutdown_fiber_serdes_link_82575(hw);
4333                 pci_enable_wake(pdev, PCI_D3hot, 0);
4334                 pci_enable_wake(pdev, PCI_D3cold, 0);
4335         }
4336
4337         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4338          * would have already happened in close and is redundant. */
4339         igb_release_hw_control(adapter);
4340
4341         pci_disable_device(pdev);
4342
4343         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4344
4345         return 0;
4346 }
4347
4348 #ifdef CONFIG_PM
4349 static int igb_resume(struct pci_dev *pdev)
4350 {
4351         struct net_device *netdev = pci_get_drvdata(pdev);
4352         struct igb_adapter *adapter = netdev_priv(netdev);
4353         struct e1000_hw *hw = &adapter->hw;
4354         u32 err;
4355
4356         pci_set_power_state(pdev, PCI_D0);
4357         pci_restore_state(pdev);
4358
4359         if (adapter->need_ioport)
4360                 err = pci_enable_device(pdev);
4361         else
4362                 err = pci_enable_device_mem(pdev);
4363         if (err) {
4364                 dev_err(&pdev->dev,
4365                         "igb: Cannot enable PCI device from suspend\n");
4366                 return err;
4367         }
4368         pci_set_master(pdev);
4369
4370         pci_enable_wake(pdev, PCI_D3hot, 0);
4371         pci_enable_wake(pdev, PCI_D3cold, 0);
4372
4373         igb_set_interrupt_capability(adapter);
4374
4375         if (igb_alloc_queues(adapter)) {
4376                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4377                 return -ENOMEM;
4378         }
4379
4380         /* e1000_power_up_phy(adapter); */
4381
4382         igb_reset(adapter);
4383         wr32(E1000_WUS, ~0);
4384
4385         if (netif_running(netdev)) {
4386                 err = igb_open(netdev);
4387                 if (err)
4388                         return err;
4389         }
4390
4391         netif_device_attach(netdev);
4392
4393         /* let the f/w know that the h/w is now under the control of the
4394          * driver. */
4395         igb_get_hw_control(adapter);
4396
4397         return 0;
4398 }
4399 #endif
4400
4401 static void igb_shutdown(struct pci_dev *pdev)
4402 {
4403         igb_suspend(pdev, PMSG_SUSPEND);
4404 }
4405
4406 #ifdef CONFIG_NET_POLL_CONTROLLER
4407 /*
4408  * Polling 'interrupt' - used by things like netconsole to send skbs
4409  * without having to re-enable interrupts. It's not called while
4410  * the interrupt routine is executing.
4411  */
4412 static void igb_netpoll(struct net_device *netdev)
4413 {
4414         struct igb_adapter *adapter = netdev_priv(netdev);
4415         int i;
4416         int work_done = 0;
4417
4418         igb_irq_disable(adapter);
4419         adapter->flags |= IGB_FLAG_IN_NETPOLL;
4420
4421         for (i = 0; i < adapter->num_tx_queues; i++)
4422                 igb_clean_tx_irq(&adapter->tx_ring[i]);
4423
4424         for (i = 0; i < adapter->num_rx_queues; i++)
4425                 igb_clean_rx_irq_adv(&adapter->rx_ring[i],
4426                                      &work_done,
4427                                      adapter->rx_ring[i].napi.weight);
4428
4429         adapter->flags &= ~IGB_FLAG_IN_NETPOLL;
4430         igb_irq_enable(adapter);
4431 }
4432 #endif /* CONFIG_NET_POLL_CONTROLLER */
4433
4434 /**
4435  * igb_io_error_detected - called when PCI error is detected
4436  * @pdev: Pointer to PCI device
4437  * @state: The current pci connection state
4438  *
4439  * This function is called after a PCI bus error affecting
4440  * this device has been detected.
4441  */
4442 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4443                                               pci_channel_state_t state)
4444 {
4445         struct net_device *netdev = pci_get_drvdata(pdev);
4446         struct igb_adapter *adapter = netdev_priv(netdev);
4447
4448         netif_device_detach(netdev);
4449
4450         if (netif_running(netdev))
4451                 igb_down(adapter);
4452         pci_disable_device(pdev);
4453
4454         /* Request a slot slot reset. */
4455         return PCI_ERS_RESULT_NEED_RESET;
4456 }
4457
4458 /**
4459  * igb_io_slot_reset - called after the pci bus has been reset.
4460  * @pdev: Pointer to PCI device
4461  *
4462  * Restart the card from scratch, as if from a cold-boot. Implementation
4463  * resembles the first-half of the igb_resume routine.
4464  */
4465 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4466 {
4467         struct net_device *netdev = pci_get_drvdata(pdev);
4468         struct igb_adapter *adapter = netdev_priv(netdev);
4469         struct e1000_hw *hw = &adapter->hw;
4470         int err;
4471
4472         if (adapter->need_ioport)
4473                 err = pci_enable_device(pdev);
4474         else
4475                 err = pci_enable_device_mem(pdev);
4476         if (err) {
4477                 dev_err(&pdev->dev,
4478                         "Cannot re-enable PCI device after reset.\n");
4479                 return PCI_ERS_RESULT_DISCONNECT;
4480         }
4481         pci_set_master(pdev);
4482         pci_restore_state(pdev);
4483
4484         pci_enable_wake(pdev, PCI_D3hot, 0);
4485         pci_enable_wake(pdev, PCI_D3cold, 0);
4486
4487         igb_reset(adapter);
4488         wr32(E1000_WUS, ~0);
4489
4490         return PCI_ERS_RESULT_RECOVERED;
4491 }
4492
4493 /**
4494  * igb_io_resume - called when traffic can start flowing again.
4495  * @pdev: Pointer to PCI device
4496  *
4497  * This callback is called when the error recovery driver tells us that
4498  * its OK to resume normal operation. Implementation resembles the
4499  * second-half of the igb_resume routine.
4500  */
4501 static void igb_io_resume(struct pci_dev *pdev)
4502 {
4503         struct net_device *netdev = pci_get_drvdata(pdev);
4504         struct igb_adapter *adapter = netdev_priv(netdev);
4505
4506         if (netif_running(netdev)) {
4507                 if (igb_up(adapter)) {
4508                         dev_err(&pdev->dev, "igb_up failed after reset\n");
4509                         return;
4510                 }
4511         }
4512
4513         netif_device_attach(netdev);
4514
4515         /* let the f/w know that the h/w is now under the control of the
4516          * driver. */
4517         igb_get_hw_control(adapter);
4518
4519 }
4520
4521 /* igb_main.c */