igb: cleanup incorrect comment and set IP Checksum Enable
[safe/jmp/linux-2.6] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/pci-aspm.h>
43 #include <linux/delay.h>
44 #include <linux/interrupt.h>
45 #include <linux/if_ether.h>
46 #include <linux/aer.h>
47 #ifdef CONFIG_IGB_DCA
48 #include <linux/dca.h>
49 #endif
50 #include "igb.h"
51
52 #define DRV_VERSION "1.3.16-k2"
53 char igb_driver_name[] = "igb";
54 char igb_driver_version[] = DRV_VERSION;
55 static const char igb_driver_string[] =
56                                 "Intel(R) Gigabit Ethernet Network Driver";
57 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60         [board_82575] = &e1000_82575_info,
61 };
62
63 static struct pci_device_id igb_pci_tbl[] = {
64         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
65         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
66         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
67         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
68         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
69         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
70         /* required last entry */
71         {0, }
72 };
73
74 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
75
76 void igb_reset(struct igb_adapter *);
77 static int igb_setup_all_tx_resources(struct igb_adapter *);
78 static int igb_setup_all_rx_resources(struct igb_adapter *);
79 static void igb_free_all_tx_resources(struct igb_adapter *);
80 static void igb_free_all_rx_resources(struct igb_adapter *);
81 void igb_update_stats(struct igb_adapter *);
82 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
83 static void __devexit igb_remove(struct pci_dev *pdev);
84 static int igb_sw_init(struct igb_adapter *);
85 static int igb_open(struct net_device *);
86 static int igb_close(struct net_device *);
87 static void igb_configure_tx(struct igb_adapter *);
88 static void igb_configure_rx(struct igb_adapter *);
89 static void igb_setup_rctl(struct igb_adapter *);
90 static void igb_clean_all_tx_rings(struct igb_adapter *);
91 static void igb_clean_all_rx_rings(struct igb_adapter *);
92 static void igb_clean_tx_ring(struct igb_ring *);
93 static void igb_clean_rx_ring(struct igb_ring *);
94 static void igb_set_multi(struct net_device *);
95 static void igb_update_phy_info(unsigned long);
96 static void igb_watchdog(unsigned long);
97 static void igb_watchdog_task(struct work_struct *);
98 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
99                                   struct igb_ring *);
100 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
101 static struct net_device_stats *igb_get_stats(struct net_device *);
102 static int igb_change_mtu(struct net_device *, int);
103 static int igb_set_mac(struct net_device *, void *);
104 static irqreturn_t igb_intr(int irq, void *);
105 static irqreturn_t igb_intr_msi(int irq, void *);
106 static irqreturn_t igb_msix_other(int irq, void *);
107 static irqreturn_t igb_msix_rx(int irq, void *);
108 static irqreturn_t igb_msix_tx(int irq, void *);
109 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
110 #ifdef CONFIG_IGB_DCA
111 static void igb_update_rx_dca(struct igb_ring *);
112 static void igb_update_tx_dca(struct igb_ring *);
113 static void igb_setup_dca(struct igb_adapter *);
114 #endif /* CONFIG_IGB_DCA */
115 static bool igb_clean_tx_irq(struct igb_ring *);
116 static int igb_poll(struct napi_struct *, int);
117 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
118 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
119 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
120 static void igb_tx_timeout(struct net_device *);
121 static void igb_reset_task(struct work_struct *);
122 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
123 static void igb_vlan_rx_add_vid(struct net_device *, u16);
124 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
125 static void igb_restore_vlan(struct igb_adapter *);
126
127 static int igb_suspend(struct pci_dev *, pm_message_t);
128 #ifdef CONFIG_PM
129 static int igb_resume(struct pci_dev *);
130 #endif
131 static void igb_shutdown(struct pci_dev *);
132 #ifdef CONFIG_IGB_DCA
133 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
134 static struct notifier_block dca_notifier = {
135         .notifier_call  = igb_notify_dca,
136         .next           = NULL,
137         .priority       = 0
138 };
139 #endif
140
141 #ifdef CONFIG_NET_POLL_CONTROLLER
142 /* for netdump / net console */
143 static void igb_netpoll(struct net_device *);
144 #endif
145
146 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
147                      pci_channel_state_t);
148 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
149 static void igb_io_resume(struct pci_dev *);
150
151 static struct pci_error_handlers igb_err_handler = {
152         .error_detected = igb_io_error_detected,
153         .slot_reset = igb_io_slot_reset,
154         .resume = igb_io_resume,
155 };
156
157
158 static struct pci_driver igb_driver = {
159         .name     = igb_driver_name,
160         .id_table = igb_pci_tbl,
161         .probe    = igb_probe,
162         .remove   = __devexit_p(igb_remove),
163 #ifdef CONFIG_PM
164         /* Power Managment Hooks */
165         .suspend  = igb_suspend,
166         .resume   = igb_resume,
167 #endif
168         .shutdown = igb_shutdown,
169         .err_handler = &igb_err_handler
170 };
171
172 static int global_quad_port_a; /* global quad port a indication */
173
174 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
175 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
176 MODULE_LICENSE("GPL");
177 MODULE_VERSION(DRV_VERSION);
178
179 /**
180  * Scale the NIC clock cycle by a large factor so that
181  * relatively small clock corrections can be added or
182  * substracted at each clock tick. The drawbacks of a
183  * large factor are a) that the clock register overflows
184  * more quickly (not such a big deal) and b) that the
185  * increment per tick has to fit into 24 bits.
186  *
187  * Note that
188  *   TIMINCA = IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS *
189  *             IGB_TSYNC_SCALE
190  *   TIMINCA += TIMINCA * adjustment [ppm] / 1e9
191  *
192  * The base scale factor is intentionally a power of two
193  * so that the division in %struct timecounter can be done with
194  * a shift.
195  */
196 #define IGB_TSYNC_SHIFT (19)
197 #define IGB_TSYNC_SCALE (1<<IGB_TSYNC_SHIFT)
198
199 /**
200  * The duration of one clock cycle of the NIC.
201  *
202  * @todo This hard-coded value is part of the specification and might change
203  * in future hardware revisions. Add revision check.
204  */
205 #define IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS 16
206
207 #if (IGB_TSYNC_SCALE * IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS) >= (1<<24)
208 # error IGB_TSYNC_SCALE and/or IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS are too large to fit into TIMINCA
209 #endif
210
211 /**
212  * igb_read_clock - read raw cycle counter (to be used by time counter)
213  */
214 static cycle_t igb_read_clock(const struct cyclecounter *tc)
215 {
216         struct igb_adapter *adapter =
217                 container_of(tc, struct igb_adapter, cycles);
218         struct e1000_hw *hw = &adapter->hw;
219         u64 stamp;
220
221         stamp =  rd32(E1000_SYSTIML);
222         stamp |= (u64)rd32(E1000_SYSTIMH) << 32ULL;
223
224         return stamp;
225 }
226
227 #ifdef DEBUG
228 /**
229  * igb_get_hw_dev_name - return device name string
230  * used by hardware layer to print debugging information
231  **/
232 char *igb_get_hw_dev_name(struct e1000_hw *hw)
233 {
234         struct igb_adapter *adapter = hw->back;
235         return adapter->netdev->name;
236 }
237
238 /**
239  * igb_get_time_str - format current NIC and system time as string
240  */
241 static char *igb_get_time_str(struct igb_adapter *adapter,
242                               char buffer[160])
243 {
244         cycle_t hw = adapter->cycles.read(&adapter->cycles);
245         struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
246         struct timespec sys;
247         struct timespec delta;
248         getnstimeofday(&sys);
249
250         delta = timespec_sub(nic, sys);
251
252         sprintf(buffer,
253                 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
254                 hw,
255                 (long)nic.tv_sec, nic.tv_nsec,
256                 (long)sys.tv_sec, sys.tv_nsec,
257                 (long)delta.tv_sec, delta.tv_nsec);
258
259         return buffer;
260 }
261 #endif
262
263 /**
264  * igb_init_module - Driver Registration Routine
265  *
266  * igb_init_module is the first routine called when the driver is
267  * loaded. All it does is register with the PCI subsystem.
268  **/
269 static int __init igb_init_module(void)
270 {
271         int ret;
272         printk(KERN_INFO "%s - version %s\n",
273                igb_driver_string, igb_driver_version);
274
275         printk(KERN_INFO "%s\n", igb_copyright);
276
277         global_quad_port_a = 0;
278
279 #ifdef CONFIG_IGB_DCA
280         dca_register_notify(&dca_notifier);
281 #endif
282
283         ret = pci_register_driver(&igb_driver);
284         return ret;
285 }
286
287 module_init(igb_init_module);
288
289 /**
290  * igb_exit_module - Driver Exit Cleanup Routine
291  *
292  * igb_exit_module is called just before the driver is removed
293  * from memory.
294  **/
295 static void __exit igb_exit_module(void)
296 {
297 #ifdef CONFIG_IGB_DCA
298         dca_unregister_notify(&dca_notifier);
299 #endif
300         pci_unregister_driver(&igb_driver);
301 }
302
303 module_exit(igb_exit_module);
304
305 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
306 /**
307  * igb_cache_ring_register - Descriptor ring to register mapping
308  * @adapter: board private structure to initialize
309  *
310  * Once we know the feature-set enabled for the device, we'll cache
311  * the register offset the descriptor ring is assigned to.
312  **/
313 static void igb_cache_ring_register(struct igb_adapter *adapter)
314 {
315         int i;
316
317         switch (adapter->hw.mac.type) {
318         case e1000_82576:
319                 /* The queues are allocated for virtualization such that VF 0
320                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
321                  * In order to avoid collision we start at the first free queue
322                  * and continue consuming queues in the same sequence
323                  */
324                 for (i = 0; i < adapter->num_rx_queues; i++)
325                         adapter->rx_ring[i].reg_idx = Q_IDX_82576(i);
326                 for (i = 0; i < adapter->num_tx_queues; i++)
327                         adapter->tx_ring[i].reg_idx = Q_IDX_82576(i);
328                 break;
329         case e1000_82575:
330         default:
331                 for (i = 0; i < adapter->num_rx_queues; i++)
332                         adapter->rx_ring[i].reg_idx = i;
333                 for (i = 0; i < adapter->num_tx_queues; i++)
334                         adapter->tx_ring[i].reg_idx = i;
335                 break;
336         }
337 }
338
339 /**
340  * igb_alloc_queues - Allocate memory for all rings
341  * @adapter: board private structure to initialize
342  *
343  * We allocate one ring per queue at run-time since we don't know the
344  * number of queues at compile-time.
345  **/
346 static int igb_alloc_queues(struct igb_adapter *adapter)
347 {
348         int i;
349
350         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
351                                    sizeof(struct igb_ring), GFP_KERNEL);
352         if (!adapter->tx_ring)
353                 return -ENOMEM;
354
355         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
356                                    sizeof(struct igb_ring), GFP_KERNEL);
357         if (!adapter->rx_ring) {
358                 kfree(adapter->tx_ring);
359                 return -ENOMEM;
360         }
361
362         adapter->rx_ring->buddy = adapter->tx_ring;
363
364         for (i = 0; i < adapter->num_tx_queues; i++) {
365                 struct igb_ring *ring = &(adapter->tx_ring[i]);
366                 ring->count = adapter->tx_ring_count;
367                 ring->adapter = adapter;
368                 ring->queue_index = i;
369         }
370         for (i = 0; i < adapter->num_rx_queues; i++) {
371                 struct igb_ring *ring = &(adapter->rx_ring[i]);
372                 ring->count = adapter->rx_ring_count;
373                 ring->adapter = adapter;
374                 ring->queue_index = i;
375                 ring->itr_register = E1000_ITR;
376
377                 /* set a default napi handler for each rx_ring */
378                 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
379         }
380
381         igb_cache_ring_register(adapter);
382         return 0;
383 }
384
385 static void igb_free_queues(struct igb_adapter *adapter)
386 {
387         int i;
388
389         for (i = 0; i < adapter->num_rx_queues; i++)
390                 netif_napi_del(&adapter->rx_ring[i].napi);
391
392         kfree(adapter->tx_ring);
393         kfree(adapter->rx_ring);
394 }
395
396 #define IGB_N0_QUEUE -1
397 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
398                               int tx_queue, int msix_vector)
399 {
400         u32 msixbm = 0;
401         struct e1000_hw *hw = &adapter->hw;
402         u32 ivar, index;
403
404         switch (hw->mac.type) {
405         case e1000_82575:
406                 /* The 82575 assigns vectors using a bitmask, which matches the
407                    bitmask for the EICR/EIMS/EIMC registers.  To assign one
408                    or more queues to a vector, we write the appropriate bits
409                    into the MSIXBM register for that vector. */
410                 if (rx_queue > IGB_N0_QUEUE) {
411                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
412                         adapter->rx_ring[rx_queue].eims_value = msixbm;
413                 }
414                 if (tx_queue > IGB_N0_QUEUE) {
415                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
416                         adapter->tx_ring[tx_queue].eims_value =
417                                   E1000_EICR_TX_QUEUE0 << tx_queue;
418                 }
419                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
420                 break;
421         case e1000_82576:
422                 /* 82576 uses a table-based method for assigning vectors.
423                    Each queue has a single entry in the table to which we write
424                    a vector number along with a "valid" bit.  Sadly, the layout
425                    of the table is somewhat counterintuitive. */
426                 if (rx_queue > IGB_N0_QUEUE) {
427                         index = (rx_queue >> 1);
428                         ivar = array_rd32(E1000_IVAR0, index);
429                         if (rx_queue & 0x1) {
430                                 /* vector goes into third byte of register */
431                                 ivar = ivar & 0xFF00FFFF;
432                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
433                         } else {
434                                 /* vector goes into low byte of register */
435                                 ivar = ivar & 0xFFFFFF00;
436                                 ivar |= msix_vector | E1000_IVAR_VALID;
437                         }
438                         adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
439                         array_wr32(E1000_IVAR0, index, ivar);
440                 }
441                 if (tx_queue > IGB_N0_QUEUE) {
442                         index = (tx_queue >> 1);
443                         ivar = array_rd32(E1000_IVAR0, index);
444                         if (tx_queue & 0x1) {
445                                 /* vector goes into high byte of register */
446                                 ivar = ivar & 0x00FFFFFF;
447                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
448                         } else {
449                                 /* vector goes into second byte of register */
450                                 ivar = ivar & 0xFFFF00FF;
451                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
452                         }
453                         adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
454                         array_wr32(E1000_IVAR0, index, ivar);
455                 }
456                 break;
457         default:
458                 BUG();
459                 break;
460         }
461 }
462
463 /**
464  * igb_configure_msix - Configure MSI-X hardware
465  *
466  * igb_configure_msix sets up the hardware to properly
467  * generate MSI-X interrupts.
468  **/
469 static void igb_configure_msix(struct igb_adapter *adapter)
470 {
471         u32 tmp;
472         int i, vector = 0;
473         struct e1000_hw *hw = &adapter->hw;
474
475         adapter->eims_enable_mask = 0;
476         if (hw->mac.type == e1000_82576)
477                 /* Turn on MSI-X capability first, or our settings
478                  * won't stick.  And it will take days to debug. */
479                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
480                                    E1000_GPIE_PBA | E1000_GPIE_EIAME |
481                                    E1000_GPIE_NSICR);
482
483         for (i = 0; i < adapter->num_tx_queues; i++) {
484                 struct igb_ring *tx_ring = &adapter->tx_ring[i];
485                 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
486                 adapter->eims_enable_mask |= tx_ring->eims_value;
487                 if (tx_ring->itr_val)
488                         writel(tx_ring->itr_val,
489                                hw->hw_addr + tx_ring->itr_register);
490                 else
491                         writel(1, hw->hw_addr + tx_ring->itr_register);
492         }
493
494         for (i = 0; i < adapter->num_rx_queues; i++) {
495                 struct igb_ring *rx_ring = &adapter->rx_ring[i];
496                 rx_ring->buddy = NULL;
497                 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
498                 adapter->eims_enable_mask |= rx_ring->eims_value;
499                 if (rx_ring->itr_val)
500                         writel(rx_ring->itr_val,
501                                hw->hw_addr + rx_ring->itr_register);
502                 else
503                         writel(1, hw->hw_addr + rx_ring->itr_register);
504         }
505
506
507         /* set vector for other causes, i.e. link changes */
508         switch (hw->mac.type) {
509         case e1000_82575:
510                 array_wr32(E1000_MSIXBM(0), vector++,
511                                       E1000_EIMS_OTHER);
512
513                 tmp = rd32(E1000_CTRL_EXT);
514                 /* enable MSI-X PBA support*/
515                 tmp |= E1000_CTRL_EXT_PBA_CLR;
516
517                 /* Auto-Mask interrupts upon ICR read. */
518                 tmp |= E1000_CTRL_EXT_EIAME;
519                 tmp |= E1000_CTRL_EXT_IRCA;
520
521                 wr32(E1000_CTRL_EXT, tmp);
522                 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
523                 adapter->eims_other = E1000_EIMS_OTHER;
524
525                 break;
526
527         case e1000_82576:
528                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
529                 wr32(E1000_IVAR_MISC, tmp);
530
531                 adapter->eims_enable_mask = (1 << (vector)) - 1;
532                 adapter->eims_other = 1 << (vector - 1);
533                 break;
534         default:
535                 /* do nothing, since nothing else supports MSI-X */
536                 break;
537         } /* switch (hw->mac.type) */
538         wrfl();
539 }
540
541 /**
542  * igb_request_msix - Initialize MSI-X interrupts
543  *
544  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
545  * kernel.
546  **/
547 static int igb_request_msix(struct igb_adapter *adapter)
548 {
549         struct net_device *netdev = adapter->netdev;
550         int i, err = 0, vector = 0;
551
552         vector = 0;
553
554         for (i = 0; i < adapter->num_tx_queues; i++) {
555                 struct igb_ring *ring = &(adapter->tx_ring[i]);
556                 sprintf(ring->name, "%s-tx-%d", netdev->name, i);
557                 err = request_irq(adapter->msix_entries[vector].vector,
558                                   &igb_msix_tx, 0, ring->name,
559                                   &(adapter->tx_ring[i]));
560                 if (err)
561                         goto out;
562                 ring->itr_register = E1000_EITR(0) + (vector << 2);
563                 ring->itr_val = 976; /* ~4000 ints/sec */
564                 vector++;
565         }
566         for (i = 0; i < adapter->num_rx_queues; i++) {
567                 struct igb_ring *ring = &(adapter->rx_ring[i]);
568                 if (strlen(netdev->name) < (IFNAMSIZ - 5))
569                         sprintf(ring->name, "%s-rx-%d", netdev->name, i);
570                 else
571                         memcpy(ring->name, netdev->name, IFNAMSIZ);
572                 err = request_irq(adapter->msix_entries[vector].vector,
573                                   &igb_msix_rx, 0, ring->name,
574                                   &(adapter->rx_ring[i]));
575                 if (err)
576                         goto out;
577                 ring->itr_register = E1000_EITR(0) + (vector << 2);
578                 ring->itr_val = adapter->itr;
579                 /* overwrite the poll routine for MSIX, we've already done
580                  * netif_napi_add */
581                 ring->napi.poll = &igb_clean_rx_ring_msix;
582                 vector++;
583         }
584
585         err = request_irq(adapter->msix_entries[vector].vector,
586                           &igb_msix_other, 0, netdev->name, netdev);
587         if (err)
588                 goto out;
589
590         igb_configure_msix(adapter);
591         return 0;
592 out:
593         return err;
594 }
595
596 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
597 {
598         if (adapter->msix_entries) {
599                 pci_disable_msix(adapter->pdev);
600                 kfree(adapter->msix_entries);
601                 adapter->msix_entries = NULL;
602         } else if (adapter->flags & IGB_FLAG_HAS_MSI)
603                 pci_disable_msi(adapter->pdev);
604         return;
605 }
606
607
608 /**
609  * igb_set_interrupt_capability - set MSI or MSI-X if supported
610  *
611  * Attempt to configure interrupts using the best available
612  * capabilities of the hardware and kernel.
613  **/
614 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
615 {
616         int err;
617         int numvecs, i;
618
619         /* Number of supported queues. */
620         /* Having more queues than CPUs doesn't make sense. */
621         adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
622         adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
623
624         numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
625         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
626                                         GFP_KERNEL);
627         if (!adapter->msix_entries)
628                 goto msi_only;
629
630         for (i = 0; i < numvecs; i++)
631                 adapter->msix_entries[i].entry = i;
632
633         err = pci_enable_msix(adapter->pdev,
634                               adapter->msix_entries,
635                               numvecs);
636         if (err == 0)
637                 goto out;
638
639         igb_reset_interrupt_capability(adapter);
640
641         /* If we can't do MSI-X, try MSI */
642 msi_only:
643         adapter->num_rx_queues = 1;
644         adapter->num_tx_queues = 1;
645         if (!pci_enable_msi(adapter->pdev))
646                 adapter->flags |= IGB_FLAG_HAS_MSI;
647 out:
648         /* Notify the stack of the (possibly) reduced Tx Queue count. */
649         adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
650         return;
651 }
652
653 /**
654  * igb_request_irq - initialize interrupts
655  *
656  * Attempts to configure interrupts using the best available
657  * capabilities of the hardware and kernel.
658  **/
659 static int igb_request_irq(struct igb_adapter *adapter)
660 {
661         struct net_device *netdev = adapter->netdev;
662         struct e1000_hw *hw = &adapter->hw;
663         int err = 0;
664
665         if (adapter->msix_entries) {
666                 err = igb_request_msix(adapter);
667                 if (!err)
668                         goto request_done;
669                 /* fall back to MSI */
670                 igb_reset_interrupt_capability(adapter);
671                 if (!pci_enable_msi(adapter->pdev))
672                         adapter->flags |= IGB_FLAG_HAS_MSI;
673                 igb_free_all_tx_resources(adapter);
674                 igb_free_all_rx_resources(adapter);
675                 adapter->num_rx_queues = 1;
676                 igb_alloc_queues(adapter);
677         } else {
678                 switch (hw->mac.type) {
679                 case e1000_82575:
680                         wr32(E1000_MSIXBM(0),
681                              (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
682                         break;
683                 case e1000_82576:
684                         wr32(E1000_IVAR0, E1000_IVAR_VALID);
685                         break;
686                 default:
687                         break;
688                 }
689         }
690
691         if (adapter->flags & IGB_FLAG_HAS_MSI) {
692                 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
693                                   netdev->name, netdev);
694                 if (!err)
695                         goto request_done;
696                 /* fall back to legacy interrupts */
697                 igb_reset_interrupt_capability(adapter);
698                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
699         }
700
701         err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
702                           netdev->name, netdev);
703
704         if (err)
705                 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
706                         err);
707
708 request_done:
709         return err;
710 }
711
712 static void igb_free_irq(struct igb_adapter *adapter)
713 {
714         struct net_device *netdev = adapter->netdev;
715
716         if (adapter->msix_entries) {
717                 int vector = 0, i;
718
719                 for (i = 0; i < adapter->num_tx_queues; i++)
720                         free_irq(adapter->msix_entries[vector++].vector,
721                                 &(adapter->tx_ring[i]));
722                 for (i = 0; i < adapter->num_rx_queues; i++)
723                         free_irq(adapter->msix_entries[vector++].vector,
724                                 &(adapter->rx_ring[i]));
725
726                 free_irq(adapter->msix_entries[vector++].vector, netdev);
727                 return;
728         }
729
730         free_irq(adapter->pdev->irq, netdev);
731 }
732
733 /**
734  * igb_irq_disable - Mask off interrupt generation on the NIC
735  * @adapter: board private structure
736  **/
737 static void igb_irq_disable(struct igb_adapter *adapter)
738 {
739         struct e1000_hw *hw = &adapter->hw;
740
741         if (adapter->msix_entries) {
742                 wr32(E1000_EIAM, 0);
743                 wr32(E1000_EIMC, ~0);
744                 wr32(E1000_EIAC, 0);
745         }
746
747         wr32(E1000_IAM, 0);
748         wr32(E1000_IMC, ~0);
749         wrfl();
750         synchronize_irq(adapter->pdev->irq);
751 }
752
753 /**
754  * igb_irq_enable - Enable default interrupt generation settings
755  * @adapter: board private structure
756  **/
757 static void igb_irq_enable(struct igb_adapter *adapter)
758 {
759         struct e1000_hw *hw = &adapter->hw;
760
761         if (adapter->msix_entries) {
762                 wr32(E1000_EIAC, adapter->eims_enable_mask);
763                 wr32(E1000_EIAM, adapter->eims_enable_mask);
764                 wr32(E1000_EIMS, adapter->eims_enable_mask);
765                 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
766         } else {
767                 wr32(E1000_IMS, IMS_ENABLE_MASK);
768                 wr32(E1000_IAM, IMS_ENABLE_MASK);
769         }
770 }
771
772 static void igb_update_mng_vlan(struct igb_adapter *adapter)
773 {
774         struct net_device *netdev = adapter->netdev;
775         u16 vid = adapter->hw.mng_cookie.vlan_id;
776         u16 old_vid = adapter->mng_vlan_id;
777         if (adapter->vlgrp) {
778                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
779                         if (adapter->hw.mng_cookie.status &
780                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
781                                 igb_vlan_rx_add_vid(netdev, vid);
782                                 adapter->mng_vlan_id = vid;
783                         } else
784                                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
785
786                         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
787                                         (vid != old_vid) &&
788                             !vlan_group_get_device(adapter->vlgrp, old_vid))
789                                 igb_vlan_rx_kill_vid(netdev, old_vid);
790                 } else
791                         adapter->mng_vlan_id = vid;
792         }
793 }
794
795 /**
796  * igb_release_hw_control - release control of the h/w to f/w
797  * @adapter: address of board private structure
798  *
799  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
800  * For ASF and Pass Through versions of f/w this means that the
801  * driver is no longer loaded.
802  *
803  **/
804 static void igb_release_hw_control(struct igb_adapter *adapter)
805 {
806         struct e1000_hw *hw = &adapter->hw;
807         u32 ctrl_ext;
808
809         /* Let firmware take over control of h/w */
810         ctrl_ext = rd32(E1000_CTRL_EXT);
811         wr32(E1000_CTRL_EXT,
812                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
813 }
814
815
816 /**
817  * igb_get_hw_control - get control of the h/w from f/w
818  * @adapter: address of board private structure
819  *
820  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
821  * For ASF and Pass Through versions of f/w this means that
822  * the driver is loaded.
823  *
824  **/
825 static void igb_get_hw_control(struct igb_adapter *adapter)
826 {
827         struct e1000_hw *hw = &adapter->hw;
828         u32 ctrl_ext;
829
830         /* Let firmware know the driver has taken over */
831         ctrl_ext = rd32(E1000_CTRL_EXT);
832         wr32(E1000_CTRL_EXT,
833                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
834 }
835
836 /**
837  * igb_configure - configure the hardware for RX and TX
838  * @adapter: private board structure
839  **/
840 static void igb_configure(struct igb_adapter *adapter)
841 {
842         struct net_device *netdev = adapter->netdev;
843         int i;
844
845         igb_get_hw_control(adapter);
846         igb_set_multi(netdev);
847
848         igb_restore_vlan(adapter);
849
850         igb_configure_tx(adapter);
851         igb_setup_rctl(adapter);
852         igb_configure_rx(adapter);
853
854         igb_rx_fifo_flush_82575(&adapter->hw);
855
856         /* call IGB_DESC_UNUSED which always leaves
857          * at least 1 descriptor unused to make sure
858          * next_to_use != next_to_clean */
859         for (i = 0; i < adapter->num_rx_queues; i++) {
860                 struct igb_ring *ring = &adapter->rx_ring[i];
861                 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
862         }
863
864
865         adapter->tx_queue_len = netdev->tx_queue_len;
866 }
867
868
869 /**
870  * igb_up - Open the interface and prepare it to handle traffic
871  * @adapter: board private structure
872  **/
873
874 int igb_up(struct igb_adapter *adapter)
875 {
876         struct e1000_hw *hw = &adapter->hw;
877         int i;
878
879         /* hardware has been reset, we need to reload some things */
880         igb_configure(adapter);
881
882         clear_bit(__IGB_DOWN, &adapter->state);
883
884         for (i = 0; i < adapter->num_rx_queues; i++)
885                 napi_enable(&adapter->rx_ring[i].napi);
886         if (adapter->msix_entries)
887                 igb_configure_msix(adapter);
888
889         /* Clear any pending interrupts. */
890         rd32(E1000_ICR);
891         igb_irq_enable(adapter);
892
893         /* Fire a link change interrupt to start the watchdog. */
894         wr32(E1000_ICS, E1000_ICS_LSC);
895         return 0;
896 }
897
898 void igb_down(struct igb_adapter *adapter)
899 {
900         struct e1000_hw *hw = &adapter->hw;
901         struct net_device *netdev = adapter->netdev;
902         u32 tctl, rctl;
903         int i;
904
905         /* signal that we're down so the interrupt handler does not
906          * reschedule our watchdog timer */
907         set_bit(__IGB_DOWN, &adapter->state);
908
909         /* disable receives in the hardware */
910         rctl = rd32(E1000_RCTL);
911         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
912         /* flush and sleep below */
913
914         netif_tx_stop_all_queues(netdev);
915
916         /* disable transmits in the hardware */
917         tctl = rd32(E1000_TCTL);
918         tctl &= ~E1000_TCTL_EN;
919         wr32(E1000_TCTL, tctl);
920         /* flush both disables and wait for them to finish */
921         wrfl();
922         msleep(10);
923
924         for (i = 0; i < adapter->num_rx_queues; i++)
925                 napi_disable(&adapter->rx_ring[i].napi);
926
927         igb_irq_disable(adapter);
928
929         del_timer_sync(&adapter->watchdog_timer);
930         del_timer_sync(&adapter->phy_info_timer);
931
932         netdev->tx_queue_len = adapter->tx_queue_len;
933         netif_carrier_off(netdev);
934
935         /* record the stats before reset*/
936         igb_update_stats(adapter);
937
938         adapter->link_speed = 0;
939         adapter->link_duplex = 0;
940
941         if (!pci_channel_offline(adapter->pdev))
942                 igb_reset(adapter);
943         igb_clean_all_tx_rings(adapter);
944         igb_clean_all_rx_rings(adapter);
945 }
946
947 void igb_reinit_locked(struct igb_adapter *adapter)
948 {
949         WARN_ON(in_interrupt());
950         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
951                 msleep(1);
952         igb_down(adapter);
953         igb_up(adapter);
954         clear_bit(__IGB_RESETTING, &adapter->state);
955 }
956
957 void igb_reset(struct igb_adapter *adapter)
958 {
959         struct e1000_hw *hw = &adapter->hw;
960         struct e1000_mac_info *mac = &hw->mac;
961         struct e1000_fc_info *fc = &hw->fc;
962         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
963         u16 hwm;
964
965         /* Repartition Pba for greater than 9k mtu
966          * To take effect CTRL.RST is required.
967          */
968         switch (mac->type) {
969         case e1000_82576:
970                 pba = E1000_PBA_64K;
971                 break;
972         case e1000_82575:
973         default:
974                 pba = E1000_PBA_34K;
975                 break;
976         }
977
978         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
979             (mac->type < e1000_82576)) {
980                 /* adjust PBA for jumbo frames */
981                 wr32(E1000_PBA, pba);
982
983                 /* To maintain wire speed transmits, the Tx FIFO should be
984                  * large enough to accommodate two full transmit packets,
985                  * rounded up to the next 1KB and expressed in KB.  Likewise,
986                  * the Rx FIFO should be large enough to accommodate at least
987                  * one full receive packet and is similarly rounded up and
988                  * expressed in KB. */
989                 pba = rd32(E1000_PBA);
990                 /* upper 16 bits has Tx packet buffer allocation size in KB */
991                 tx_space = pba >> 16;
992                 /* lower 16 bits has Rx packet buffer allocation size in KB */
993                 pba &= 0xffff;
994                 /* the tx fifo also stores 16 bytes of information about the tx
995                  * but don't include ethernet FCS because hardware appends it */
996                 min_tx_space = (adapter->max_frame_size +
997                                 sizeof(struct e1000_tx_desc) -
998                                 ETH_FCS_LEN) * 2;
999                 min_tx_space = ALIGN(min_tx_space, 1024);
1000                 min_tx_space >>= 10;
1001                 /* software strips receive CRC, so leave room for it */
1002                 min_rx_space = adapter->max_frame_size;
1003                 min_rx_space = ALIGN(min_rx_space, 1024);
1004                 min_rx_space >>= 10;
1005
1006                 /* If current Tx allocation is less than the min Tx FIFO size,
1007                  * and the min Tx FIFO size is less than the current Rx FIFO
1008                  * allocation, take space away from current Rx allocation */
1009                 if (tx_space < min_tx_space &&
1010                     ((min_tx_space - tx_space) < pba)) {
1011                         pba = pba - (min_tx_space - tx_space);
1012
1013                         /* if short on rx space, rx wins and must trump tx
1014                          * adjustment */
1015                         if (pba < min_rx_space)
1016                                 pba = min_rx_space;
1017                 }
1018                 wr32(E1000_PBA, pba);
1019         }
1020
1021         /* flow control settings */
1022         /* The high water mark must be low enough to fit one full frame
1023          * (or the size used for early receive) above it in the Rx FIFO.
1024          * Set it to the lower of:
1025          * - 90% of the Rx FIFO size, or
1026          * - the full Rx FIFO size minus one full frame */
1027         hwm = min(((pba << 10) * 9 / 10),
1028                         ((pba << 10) - 2 * adapter->max_frame_size));
1029
1030         if (mac->type < e1000_82576) {
1031                 fc->high_water = hwm & 0xFFF8;  /* 8-byte granularity */
1032                 fc->low_water = fc->high_water - 8;
1033         } else {
1034                 fc->high_water = hwm & 0xFFF0;  /* 16-byte granularity */
1035                 fc->low_water = fc->high_water - 16;
1036         }
1037         fc->pause_time = 0xFFFF;
1038         fc->send_xon = 1;
1039         fc->type = fc->original_type;
1040
1041         /* Allow time for pending master requests to run */
1042         adapter->hw.mac.ops.reset_hw(&adapter->hw);
1043         wr32(E1000_WUC, 0);
1044
1045         if (adapter->hw.mac.ops.init_hw(&adapter->hw))
1046                 dev_err(&adapter->pdev->dev, "Hardware Error\n");
1047
1048         igb_update_mng_vlan(adapter);
1049
1050         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1051         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1052
1053         igb_reset_adaptive(&adapter->hw);
1054         igb_get_phy_info(&adapter->hw);
1055 }
1056
1057 static const struct net_device_ops igb_netdev_ops = {
1058         .ndo_open               = igb_open,
1059         .ndo_stop               = igb_close,
1060         .ndo_start_xmit         = igb_xmit_frame_adv,
1061         .ndo_get_stats          = igb_get_stats,
1062         .ndo_set_multicast_list = igb_set_multi,
1063         .ndo_set_mac_address    = igb_set_mac,
1064         .ndo_change_mtu         = igb_change_mtu,
1065         .ndo_do_ioctl           = igb_ioctl,
1066         .ndo_tx_timeout         = igb_tx_timeout,
1067         .ndo_validate_addr      = eth_validate_addr,
1068         .ndo_vlan_rx_register   = igb_vlan_rx_register,
1069         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
1070         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
1071 #ifdef CONFIG_NET_POLL_CONTROLLER
1072         .ndo_poll_controller    = igb_netpoll,
1073 #endif
1074 };
1075
1076 /**
1077  * igb_probe - Device Initialization Routine
1078  * @pdev: PCI device information struct
1079  * @ent: entry in igb_pci_tbl
1080  *
1081  * Returns 0 on success, negative on failure
1082  *
1083  * igb_probe initializes an adapter identified by a pci_dev structure.
1084  * The OS initialization, configuring of the adapter private structure,
1085  * and a hardware reset occur.
1086  **/
1087 static int __devinit igb_probe(struct pci_dev *pdev,
1088                                const struct pci_device_id *ent)
1089 {
1090         struct net_device *netdev;
1091         struct igb_adapter *adapter;
1092         struct e1000_hw *hw;
1093         struct pci_dev *us_dev;
1094         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1095         unsigned long mmio_start, mmio_len;
1096         int err, pci_using_dac, pos;
1097         u16 eeprom_data = 0, state = 0;
1098         u16 eeprom_apme_mask = IGB_EEPROM_APME;
1099         u32 part_num;
1100
1101         err = pci_enable_device_mem(pdev);
1102         if (err)
1103                 return err;
1104
1105         pci_using_dac = 0;
1106         err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1107         if (!err) {
1108                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1109                 if (!err)
1110                         pci_using_dac = 1;
1111         } else {
1112                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1113                 if (err) {
1114                         err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1115                         if (err) {
1116                                 dev_err(&pdev->dev, "No usable DMA "
1117                                         "configuration, aborting\n");
1118                                 goto err_dma;
1119                         }
1120                 }
1121         }
1122
1123         /* 82575 requires that the pci-e link partner disable the L0s state */
1124         switch (pdev->device) {
1125         case E1000_DEV_ID_82575EB_COPPER:
1126         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1127         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1128                 us_dev = pdev->bus->self;
1129                 pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
1130                 if (pos) {
1131                         pci_read_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1132                                              &state);
1133                         state &= ~PCIE_LINK_STATE_L0S;
1134                         pci_write_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1135                                               state);
1136                         dev_info(&pdev->dev,
1137                                  "Disabling ASPM L0s upstream switch port %s\n",
1138                                  pci_name(us_dev));
1139                 }
1140         default:
1141                 break;
1142         }
1143
1144         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1145                                            IORESOURCE_MEM),
1146                                            igb_driver_name);
1147         if (err)
1148                 goto err_pci_reg;
1149
1150         err = pci_enable_pcie_error_reporting(pdev);
1151         if (err) {
1152                 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
1153                         "0x%x\n", err);
1154                 /* non-fatal, continue */
1155         }
1156
1157         pci_set_master(pdev);
1158         pci_save_state(pdev);
1159
1160         err = -ENOMEM;
1161         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES);
1162         if (!netdev)
1163                 goto err_alloc_etherdev;
1164
1165         SET_NETDEV_DEV(netdev, &pdev->dev);
1166
1167         pci_set_drvdata(pdev, netdev);
1168         adapter = netdev_priv(netdev);
1169         adapter->netdev = netdev;
1170         adapter->pdev = pdev;
1171         hw = &adapter->hw;
1172         hw->back = adapter;
1173         adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1174
1175         mmio_start = pci_resource_start(pdev, 0);
1176         mmio_len = pci_resource_len(pdev, 0);
1177
1178         err = -EIO;
1179         hw->hw_addr = ioremap(mmio_start, mmio_len);
1180         if (!hw->hw_addr)
1181                 goto err_ioremap;
1182
1183         netdev->netdev_ops = &igb_netdev_ops;
1184         igb_set_ethtool_ops(netdev);
1185         netdev->watchdog_timeo = 5 * HZ;
1186
1187         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1188
1189         netdev->mem_start = mmio_start;
1190         netdev->mem_end = mmio_start + mmio_len;
1191
1192         /* PCI config space info */
1193         hw->vendor_id = pdev->vendor;
1194         hw->device_id = pdev->device;
1195         hw->revision_id = pdev->revision;
1196         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1197         hw->subsystem_device_id = pdev->subsystem_device;
1198
1199         /* setup the private structure */
1200         hw->back = adapter;
1201         /* Copy the default MAC, PHY and NVM function pointers */
1202         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1203         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1204         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1205         /* Initialize skew-specific constants */
1206         err = ei->get_invariants(hw);
1207         if (err)
1208                 goto err_sw_init;
1209
1210         /* setup the private structure */
1211         err = igb_sw_init(adapter);
1212         if (err)
1213                 goto err_sw_init;
1214
1215         igb_get_bus_info_pcie(hw);
1216
1217         /* set flags */
1218         switch (hw->mac.type) {
1219         case e1000_82575:
1220                 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1221                 break;
1222         case e1000_82576:
1223         default:
1224                 break;
1225         }
1226
1227         hw->phy.autoneg_wait_to_complete = false;
1228         hw->mac.adaptive_ifs = true;
1229
1230         /* Copper options */
1231         if (hw->phy.media_type == e1000_media_type_copper) {
1232                 hw->phy.mdix = AUTO_ALL_MODES;
1233                 hw->phy.disable_polarity_correction = false;
1234                 hw->phy.ms_type = e1000_ms_hw_default;
1235         }
1236
1237         if (igb_check_reset_block(hw))
1238                 dev_info(&pdev->dev,
1239                         "PHY reset is blocked due to SOL/IDER session.\n");
1240
1241         netdev->features = NETIF_F_SG |
1242                            NETIF_F_IP_CSUM |
1243                            NETIF_F_HW_VLAN_TX |
1244                            NETIF_F_HW_VLAN_RX |
1245                            NETIF_F_HW_VLAN_FILTER;
1246
1247         netdev->features |= NETIF_F_IPV6_CSUM;
1248         netdev->features |= NETIF_F_TSO;
1249         netdev->features |= NETIF_F_TSO6;
1250
1251 #ifdef CONFIG_IGB_LRO
1252         netdev->features |= NETIF_F_GRO;
1253 #endif
1254
1255         netdev->vlan_features |= NETIF_F_TSO;
1256         netdev->vlan_features |= NETIF_F_TSO6;
1257         netdev->vlan_features |= NETIF_F_IP_CSUM;
1258         netdev->vlan_features |= NETIF_F_SG;
1259
1260         if (pci_using_dac)
1261                 netdev->features |= NETIF_F_HIGHDMA;
1262
1263         adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1264
1265         /* before reading the NVM, reset the controller to put the device in a
1266          * known good starting state */
1267         hw->mac.ops.reset_hw(hw);
1268
1269         /* make sure the NVM is good */
1270         if (igb_validate_nvm_checksum(hw) < 0) {
1271                 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1272                 err = -EIO;
1273                 goto err_eeprom;
1274         }
1275
1276         /* copy the MAC address out of the NVM */
1277         if (hw->mac.ops.read_mac_addr(hw))
1278                 dev_err(&pdev->dev, "NVM Read Error\n");
1279
1280         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1281         memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1282
1283         if (!is_valid_ether_addr(netdev->perm_addr)) {
1284                 dev_err(&pdev->dev, "Invalid MAC Address\n");
1285                 err = -EIO;
1286                 goto err_eeprom;
1287         }
1288
1289         init_timer(&adapter->watchdog_timer);
1290         adapter->watchdog_timer.function = &igb_watchdog;
1291         adapter->watchdog_timer.data = (unsigned long) adapter;
1292
1293         init_timer(&adapter->phy_info_timer);
1294         adapter->phy_info_timer.function = &igb_update_phy_info;
1295         adapter->phy_info_timer.data = (unsigned long) adapter;
1296
1297         INIT_WORK(&adapter->reset_task, igb_reset_task);
1298         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1299
1300         /* Initialize link properties that are user-changeable */
1301         adapter->fc_autoneg = true;
1302         hw->mac.autoneg = true;
1303         hw->phy.autoneg_advertised = 0x2f;
1304
1305         hw->fc.original_type = e1000_fc_default;
1306         hw->fc.type = e1000_fc_default;
1307
1308         adapter->itr_setting = 3;
1309         adapter->itr = IGB_START_ITR;
1310
1311         igb_validate_mdi_setting(hw);
1312
1313         adapter->rx_csum = 1;
1314
1315         /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1316          * enable the ACPI Magic Packet filter
1317          */
1318
1319         if (hw->bus.func == 0 ||
1320             hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1321                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1322
1323         if (eeprom_data & eeprom_apme_mask)
1324                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1325
1326         /* now that we have the eeprom settings, apply the special cases where
1327          * the eeprom may be wrong or the board simply won't support wake on
1328          * lan on a particular port */
1329         switch (pdev->device) {
1330         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1331                 adapter->eeprom_wol = 0;
1332                 break;
1333         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1334         case E1000_DEV_ID_82576_FIBER:
1335         case E1000_DEV_ID_82576_SERDES:
1336                 /* Wake events only supported on port A for dual fiber
1337                  * regardless of eeprom setting */
1338                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1339                         adapter->eeprom_wol = 0;
1340                 break;
1341         }
1342
1343         /* initialize the wol settings based on the eeprom settings */
1344         adapter->wol = adapter->eeprom_wol;
1345         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1346
1347         /* reset the hardware with the new settings */
1348         igb_reset(adapter);
1349
1350         /* let the f/w know that the h/w is now under the control of the
1351          * driver. */
1352         igb_get_hw_control(adapter);
1353
1354         /* tell the stack to leave us alone until igb_open() is called */
1355         netif_carrier_off(netdev);
1356         netif_tx_stop_all_queues(netdev);
1357
1358         strcpy(netdev->name, "eth%d");
1359         err = register_netdev(netdev);
1360         if (err)
1361                 goto err_register;
1362
1363 #ifdef CONFIG_IGB_DCA
1364         if (dca_add_requester(&pdev->dev) == 0) {
1365                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1366                 dev_info(&pdev->dev, "DCA enabled\n");
1367                 /* Always use CB2 mode, difference is masked
1368                  * in the CB driver. */
1369                 wr32(E1000_DCA_CTRL, 2);
1370                 igb_setup_dca(adapter);
1371         }
1372 #endif
1373
1374         /*
1375          * Initialize hardware timer: we keep it running just in case
1376          * that some program needs it later on.
1377          */
1378         memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1379         adapter->cycles.read = igb_read_clock;
1380         adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1381         adapter->cycles.mult = 1;
1382         adapter->cycles.shift = IGB_TSYNC_SHIFT;
1383         wr32(E1000_TIMINCA,
1384              (1<<24) |
1385              IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS * IGB_TSYNC_SCALE);
1386 #if 0
1387         /*
1388          * Avoid rollover while we initialize by resetting the time counter.
1389          */
1390         wr32(E1000_SYSTIML, 0x00000000);
1391         wr32(E1000_SYSTIMH, 0x00000000);
1392 #else
1393         /*
1394          * Set registers so that rollover occurs soon to test this.
1395          */
1396         wr32(E1000_SYSTIML, 0x00000000);
1397         wr32(E1000_SYSTIMH, 0xFF800000);
1398 #endif
1399         wrfl();
1400         timecounter_init(&adapter->clock,
1401                          &adapter->cycles,
1402                          ktime_to_ns(ktime_get_real()));
1403
1404         /*
1405          * Synchronize our NIC clock against system wall clock. NIC
1406          * time stamp reading requires ~3us per sample, each sample
1407          * was pretty stable even under load => only require 10
1408          * samples for each offset comparison.
1409          */
1410         memset(&adapter->compare, 0, sizeof(adapter->compare));
1411         adapter->compare.source = &adapter->clock;
1412         adapter->compare.target = ktime_get_real;
1413         adapter->compare.num_samples = 10;
1414         timecompare_update(&adapter->compare, 0);
1415
1416 #ifdef DEBUG
1417         {
1418                 char buffer[160];
1419                 printk(KERN_DEBUG
1420                         "igb: %s: hw %p initialized timer\n",
1421                         igb_get_time_str(adapter, buffer),
1422                         &adapter->hw);
1423         }
1424 #endif
1425
1426         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1427         /* print bus type/speed/width info */
1428         dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1429                  netdev->name,
1430                  ((hw->bus.speed == e1000_bus_speed_2500)
1431                   ? "2.5Gb/s" : "unknown"),
1432                  ((hw->bus.width == e1000_bus_width_pcie_x4)
1433                   ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1434                   ? "Width x1" : "unknown"),
1435                  netdev->dev_addr);
1436
1437         igb_read_part_num(hw, &part_num);
1438         dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1439                 (part_num >> 8), (part_num & 0xff));
1440
1441         dev_info(&pdev->dev,
1442                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1443                 adapter->msix_entries ? "MSI-X" :
1444                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1445                 adapter->num_rx_queues, adapter->num_tx_queues);
1446
1447         return 0;
1448
1449 err_register:
1450         igb_release_hw_control(adapter);
1451 err_eeprom:
1452         if (!igb_check_reset_block(hw))
1453                 igb_reset_phy(hw);
1454
1455         if (hw->flash_address)
1456                 iounmap(hw->flash_address);
1457
1458         igb_free_queues(adapter);
1459 err_sw_init:
1460         iounmap(hw->hw_addr);
1461 err_ioremap:
1462         free_netdev(netdev);
1463 err_alloc_etherdev:
1464         pci_release_selected_regions(pdev, pci_select_bars(pdev,
1465                                      IORESOURCE_MEM));
1466 err_pci_reg:
1467 err_dma:
1468         pci_disable_device(pdev);
1469         return err;
1470 }
1471
1472 /**
1473  * igb_remove - Device Removal Routine
1474  * @pdev: PCI device information struct
1475  *
1476  * igb_remove is called by the PCI subsystem to alert the driver
1477  * that it should release a PCI device.  The could be caused by a
1478  * Hot-Plug event, or because the driver is going to be removed from
1479  * memory.
1480  **/
1481 static void __devexit igb_remove(struct pci_dev *pdev)
1482 {
1483         struct net_device *netdev = pci_get_drvdata(pdev);
1484         struct igb_adapter *adapter = netdev_priv(netdev);
1485         struct e1000_hw *hw = &adapter->hw;
1486         int err;
1487
1488         /* flush_scheduled work may reschedule our watchdog task, so
1489          * explicitly disable watchdog tasks from being rescheduled  */
1490         set_bit(__IGB_DOWN, &adapter->state);
1491         del_timer_sync(&adapter->watchdog_timer);
1492         del_timer_sync(&adapter->phy_info_timer);
1493
1494         flush_scheduled_work();
1495
1496 #ifdef CONFIG_IGB_DCA
1497         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1498                 dev_info(&pdev->dev, "DCA disabled\n");
1499                 dca_remove_requester(&pdev->dev);
1500                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1501                 wr32(E1000_DCA_CTRL, 1);
1502         }
1503 #endif
1504
1505         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1506          * would have already happened in close and is redundant. */
1507         igb_release_hw_control(adapter);
1508
1509         unregister_netdev(netdev);
1510
1511         if (!igb_check_reset_block(&adapter->hw))
1512                 igb_reset_phy(&adapter->hw);
1513
1514         igb_reset_interrupt_capability(adapter);
1515
1516         igb_free_queues(adapter);
1517
1518         iounmap(hw->hw_addr);
1519         if (hw->flash_address)
1520                 iounmap(hw->flash_address);
1521         pci_release_selected_regions(pdev, pci_select_bars(pdev,
1522                                      IORESOURCE_MEM));
1523
1524         free_netdev(netdev);
1525
1526         err = pci_disable_pcie_error_reporting(pdev);
1527         if (err)
1528                 dev_err(&pdev->dev,
1529                         "pci_disable_pcie_error_reporting failed 0x%x\n", err);
1530
1531         pci_disable_device(pdev);
1532 }
1533
1534 /**
1535  * igb_sw_init - Initialize general software structures (struct igb_adapter)
1536  * @adapter: board private structure to initialize
1537  *
1538  * igb_sw_init initializes the Adapter private data structure.
1539  * Fields are initialized based on PCI device information and
1540  * OS network device settings (MTU size).
1541  **/
1542 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1543 {
1544         struct e1000_hw *hw = &adapter->hw;
1545         struct net_device *netdev = adapter->netdev;
1546         struct pci_dev *pdev = adapter->pdev;
1547
1548         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1549
1550         adapter->tx_ring_count = IGB_DEFAULT_TXD;
1551         adapter->rx_ring_count = IGB_DEFAULT_RXD;
1552         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1553         adapter->rx_ps_hdr_size = 0; /* disable packet split */
1554         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1555         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1556
1557         /* This call may decrease the number of queues depending on
1558          * interrupt mode. */
1559         igb_set_interrupt_capability(adapter);
1560
1561         if (igb_alloc_queues(adapter)) {
1562                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1563                 return -ENOMEM;
1564         }
1565
1566         /* Explicitly disable IRQ since the NIC can be in any state. */
1567         igb_irq_disable(adapter);
1568
1569         set_bit(__IGB_DOWN, &adapter->state);
1570         return 0;
1571 }
1572
1573 /**
1574  * igb_open - Called when a network interface is made active
1575  * @netdev: network interface device structure
1576  *
1577  * Returns 0 on success, negative value on failure
1578  *
1579  * The open entry point is called when a network interface is made
1580  * active by the system (IFF_UP).  At this point all resources needed
1581  * for transmit and receive operations are allocated, the interrupt
1582  * handler is registered with the OS, the watchdog timer is started,
1583  * and the stack is notified that the interface is ready.
1584  **/
1585 static int igb_open(struct net_device *netdev)
1586 {
1587         struct igb_adapter *adapter = netdev_priv(netdev);
1588         struct e1000_hw *hw = &adapter->hw;
1589         int err;
1590         int i;
1591
1592         /* disallow open during test */
1593         if (test_bit(__IGB_TESTING, &adapter->state))
1594                 return -EBUSY;
1595
1596         /* allocate transmit descriptors */
1597         err = igb_setup_all_tx_resources(adapter);
1598         if (err)
1599                 goto err_setup_tx;
1600
1601         /* allocate receive descriptors */
1602         err = igb_setup_all_rx_resources(adapter);
1603         if (err)
1604                 goto err_setup_rx;
1605
1606         /* e1000_power_up_phy(adapter); */
1607
1608         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1609         if ((adapter->hw.mng_cookie.status &
1610              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1611                 igb_update_mng_vlan(adapter);
1612
1613         /* before we allocate an interrupt, we must be ready to handle it.
1614          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1615          * as soon as we call pci_request_irq, so we have to setup our
1616          * clean_rx handler before we do so.  */
1617         igb_configure(adapter);
1618
1619         err = igb_request_irq(adapter);
1620         if (err)
1621                 goto err_req_irq;
1622
1623         /* From here on the code is the same as igb_up() */
1624         clear_bit(__IGB_DOWN, &adapter->state);
1625
1626         for (i = 0; i < adapter->num_rx_queues; i++)
1627                 napi_enable(&adapter->rx_ring[i].napi);
1628
1629         /* Clear any pending interrupts. */
1630         rd32(E1000_ICR);
1631
1632         igb_irq_enable(adapter);
1633
1634         netif_tx_start_all_queues(netdev);
1635
1636         /* Fire a link status change interrupt to start the watchdog. */
1637         wr32(E1000_ICS, E1000_ICS_LSC);
1638
1639         return 0;
1640
1641 err_req_irq:
1642         igb_release_hw_control(adapter);
1643         /* e1000_power_down_phy(adapter); */
1644         igb_free_all_rx_resources(adapter);
1645 err_setup_rx:
1646         igb_free_all_tx_resources(adapter);
1647 err_setup_tx:
1648         igb_reset(adapter);
1649
1650         return err;
1651 }
1652
1653 /**
1654  * igb_close - Disables a network interface
1655  * @netdev: network interface device structure
1656  *
1657  * Returns 0, this is not allowed to fail
1658  *
1659  * The close entry point is called when an interface is de-activated
1660  * by the OS.  The hardware is still under the driver's control, but
1661  * needs to be disabled.  A global MAC reset is issued to stop the
1662  * hardware, and all transmit and receive resources are freed.
1663  **/
1664 static int igb_close(struct net_device *netdev)
1665 {
1666         struct igb_adapter *adapter = netdev_priv(netdev);
1667
1668         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1669         igb_down(adapter);
1670
1671         igb_free_irq(adapter);
1672
1673         igb_free_all_tx_resources(adapter);
1674         igb_free_all_rx_resources(adapter);
1675
1676         /* kill manageability vlan ID if supported, but not if a vlan with
1677          * the same ID is registered on the host OS (let 8021q kill it) */
1678         if ((adapter->hw.mng_cookie.status &
1679                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1680              !(adapter->vlgrp &&
1681                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1682                 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1683
1684         return 0;
1685 }
1686
1687 /**
1688  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1689  * @adapter: board private structure
1690  * @tx_ring: tx descriptor ring (for a specific queue) to setup
1691  *
1692  * Return 0 on success, negative on failure
1693  **/
1694 int igb_setup_tx_resources(struct igb_adapter *adapter,
1695                            struct igb_ring *tx_ring)
1696 {
1697         struct pci_dev *pdev = adapter->pdev;
1698         int size;
1699
1700         size = sizeof(struct igb_buffer) * tx_ring->count;
1701         tx_ring->buffer_info = vmalloc(size);
1702         if (!tx_ring->buffer_info)
1703                 goto err;
1704         memset(tx_ring->buffer_info, 0, size);
1705
1706         /* round up to nearest 4K */
1707         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1708         tx_ring->size = ALIGN(tx_ring->size, 4096);
1709
1710         tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1711                                              &tx_ring->dma);
1712
1713         if (!tx_ring->desc)
1714                 goto err;
1715
1716         tx_ring->adapter = adapter;
1717         tx_ring->next_to_use = 0;
1718         tx_ring->next_to_clean = 0;
1719         return 0;
1720
1721 err:
1722         vfree(tx_ring->buffer_info);
1723         dev_err(&adapter->pdev->dev,
1724                 "Unable to allocate memory for the transmit descriptor ring\n");
1725         return -ENOMEM;
1726 }
1727
1728 /**
1729  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1730  *                                (Descriptors) for all queues
1731  * @adapter: board private structure
1732  *
1733  * Return 0 on success, negative on failure
1734  **/
1735 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1736 {
1737         int i, err = 0;
1738         int r_idx;
1739
1740         for (i = 0; i < adapter->num_tx_queues; i++) {
1741                 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1742                 if (err) {
1743                         dev_err(&adapter->pdev->dev,
1744                                 "Allocation for Tx Queue %u failed\n", i);
1745                         for (i--; i >= 0; i--)
1746                                 igb_free_tx_resources(&adapter->tx_ring[i]);
1747                         break;
1748                 }
1749         }
1750
1751         for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1752                 r_idx = i % adapter->num_tx_queues;
1753                 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1754         }
1755         return err;
1756 }
1757
1758 /**
1759  * igb_configure_tx - Configure transmit Unit after Reset
1760  * @adapter: board private structure
1761  *
1762  * Configure the Tx unit of the MAC after a reset.
1763  **/
1764 static void igb_configure_tx(struct igb_adapter *adapter)
1765 {
1766         u64 tdba;
1767         struct e1000_hw *hw = &adapter->hw;
1768         u32 tctl;
1769         u32 txdctl, txctrl;
1770         int i, j;
1771
1772         for (i = 0; i < adapter->num_tx_queues; i++) {
1773                 struct igb_ring *ring = &adapter->tx_ring[i];
1774                 j = ring->reg_idx;
1775                 wr32(E1000_TDLEN(j),
1776                      ring->count * sizeof(struct e1000_tx_desc));
1777                 tdba = ring->dma;
1778                 wr32(E1000_TDBAL(j),
1779                      tdba & 0x00000000ffffffffULL);
1780                 wr32(E1000_TDBAH(j), tdba >> 32);
1781
1782                 ring->head = E1000_TDH(j);
1783                 ring->tail = E1000_TDT(j);
1784                 writel(0, hw->hw_addr + ring->tail);
1785                 writel(0, hw->hw_addr + ring->head);
1786                 txdctl = rd32(E1000_TXDCTL(j));
1787                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1788                 wr32(E1000_TXDCTL(j), txdctl);
1789
1790                 /* Turn off Relaxed Ordering on head write-backs.  The
1791                  * writebacks MUST be delivered in order or it will
1792                  * completely screw up our bookeeping.
1793                  */
1794                 txctrl = rd32(E1000_DCA_TXCTRL(j));
1795                 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1796                 wr32(E1000_DCA_TXCTRL(j), txctrl);
1797         }
1798
1799         /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1800
1801         /* Program the Transmit Control Register */
1802
1803         tctl = rd32(E1000_TCTL);
1804         tctl &= ~E1000_TCTL_CT;
1805         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1806                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1807
1808         igb_config_collision_dist(hw);
1809
1810         /* Setup Transmit Descriptor Settings for eop descriptor */
1811         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1812
1813         /* Enable transmits */
1814         tctl |= E1000_TCTL_EN;
1815
1816         wr32(E1000_TCTL, tctl);
1817 }
1818
1819 /**
1820  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1821  * @adapter: board private structure
1822  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
1823  *
1824  * Returns 0 on success, negative on failure
1825  **/
1826 int igb_setup_rx_resources(struct igb_adapter *adapter,
1827                            struct igb_ring *rx_ring)
1828 {
1829         struct pci_dev *pdev = adapter->pdev;
1830         int size, desc_len;
1831
1832         size = sizeof(struct igb_buffer) * rx_ring->count;
1833         rx_ring->buffer_info = vmalloc(size);
1834         if (!rx_ring->buffer_info)
1835                 goto err;
1836         memset(rx_ring->buffer_info, 0, size);
1837
1838         desc_len = sizeof(union e1000_adv_rx_desc);
1839
1840         /* Round up to nearest 4K */
1841         rx_ring->size = rx_ring->count * desc_len;
1842         rx_ring->size = ALIGN(rx_ring->size, 4096);
1843
1844         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1845                                              &rx_ring->dma);
1846
1847         if (!rx_ring->desc)
1848                 goto err;
1849
1850         rx_ring->next_to_clean = 0;
1851         rx_ring->next_to_use = 0;
1852
1853         rx_ring->adapter = adapter;
1854
1855         return 0;
1856
1857 err:
1858         vfree(rx_ring->buffer_info);
1859         dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1860                 "the receive descriptor ring\n");
1861         return -ENOMEM;
1862 }
1863
1864 /**
1865  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1866  *                                (Descriptors) for all queues
1867  * @adapter: board private structure
1868  *
1869  * Return 0 on success, negative on failure
1870  **/
1871 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1872 {
1873         int i, err = 0;
1874
1875         for (i = 0; i < adapter->num_rx_queues; i++) {
1876                 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1877                 if (err) {
1878                         dev_err(&adapter->pdev->dev,
1879                                 "Allocation for Rx Queue %u failed\n", i);
1880                         for (i--; i >= 0; i--)
1881                                 igb_free_rx_resources(&adapter->rx_ring[i]);
1882                         break;
1883                 }
1884         }
1885
1886         return err;
1887 }
1888
1889 /**
1890  * igb_setup_rctl - configure the receive control registers
1891  * @adapter: Board private structure
1892  **/
1893 static void igb_setup_rctl(struct igb_adapter *adapter)
1894 {
1895         struct e1000_hw *hw = &adapter->hw;
1896         u32 rctl;
1897         u32 srrctl = 0;
1898         int i, j;
1899
1900         rctl = rd32(E1000_RCTL);
1901
1902         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1903         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1904
1905         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
1906                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1907
1908         /*
1909          * enable stripping of CRC. It's unlikely this will break BMC
1910          * redirection as it did with e1000. Newer features require
1911          * that the HW strips the CRC.
1912          */
1913         rctl |= E1000_RCTL_SECRC;
1914
1915         /*
1916          * disable store bad packets and clear size bits.
1917          */
1918         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
1919
1920         /* enable LPE when to prevent packets larger than max_frame_size */
1921                 rctl |= E1000_RCTL_LPE;
1922
1923         /* Setup buffer sizes */
1924         switch (adapter->rx_buffer_len) {
1925         case IGB_RXBUFFER_256:
1926                 rctl |= E1000_RCTL_SZ_256;
1927                 break;
1928         case IGB_RXBUFFER_512:
1929                 rctl |= E1000_RCTL_SZ_512;
1930                 break;
1931         default:
1932                 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
1933                          >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1934                 break;
1935         }
1936
1937         /* 82575 and greater support packet-split where the protocol
1938          * header is placed in skb->data and the packet data is
1939          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1940          * In the case of a non-split, skb->data is linearly filled,
1941          * followed by the page buffers.  Therefore, skb->data is
1942          * sized to hold the largest protocol header.
1943          */
1944         /* allocations using alloc_page take too long for regular MTU
1945          * so only enable packet split for jumbo frames */
1946         if (adapter->netdev->mtu > ETH_DATA_LEN) {
1947                 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1948                 srrctl |= adapter->rx_ps_hdr_size <<
1949                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1950                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1951         } else {
1952                 adapter->rx_ps_hdr_size = 0;
1953                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1954         }
1955
1956         for (i = 0; i < adapter->num_rx_queues; i++) {
1957                 j = adapter->rx_ring[i].reg_idx;
1958                 wr32(E1000_SRRCTL(j), srrctl);
1959         }
1960
1961         wr32(E1000_RCTL, rctl);
1962 }
1963
1964 /**
1965  * igb_configure_rx - Configure receive Unit after Reset
1966  * @adapter: board private structure
1967  *
1968  * Configure the Rx unit of the MAC after a reset.
1969  **/
1970 static void igb_configure_rx(struct igb_adapter *adapter)
1971 {
1972         u64 rdba;
1973         struct e1000_hw *hw = &adapter->hw;
1974         u32 rctl, rxcsum;
1975         u32 rxdctl;
1976         int i, j;
1977
1978         /* disable receives while setting up the descriptors */
1979         rctl = rd32(E1000_RCTL);
1980         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1981         wrfl();
1982         mdelay(10);
1983
1984         if (adapter->itr_setting > 3)
1985                 wr32(E1000_ITR, adapter->itr);
1986
1987         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1988          * the Base and Length of the Rx Descriptor Ring */
1989         for (i = 0; i < adapter->num_rx_queues; i++) {
1990                 struct igb_ring *ring = &adapter->rx_ring[i];
1991                 j = ring->reg_idx;
1992                 rdba = ring->dma;
1993                 wr32(E1000_RDBAL(j),
1994                      rdba & 0x00000000ffffffffULL);
1995                 wr32(E1000_RDBAH(j), rdba >> 32);
1996                 wr32(E1000_RDLEN(j),
1997                      ring->count * sizeof(union e1000_adv_rx_desc));
1998
1999                 ring->head = E1000_RDH(j);
2000                 ring->tail = E1000_RDT(j);
2001                 writel(0, hw->hw_addr + ring->tail);
2002                 writel(0, hw->hw_addr + ring->head);
2003
2004                 rxdctl = rd32(E1000_RXDCTL(j));
2005                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2006                 rxdctl &= 0xFFF00000;
2007                 rxdctl |= IGB_RX_PTHRESH;
2008                 rxdctl |= IGB_RX_HTHRESH << 8;
2009                 rxdctl |= IGB_RX_WTHRESH << 16;
2010                 wr32(E1000_RXDCTL(j), rxdctl);
2011         }
2012
2013         if (adapter->num_rx_queues > 1) {
2014                 u32 random[10];
2015                 u32 mrqc;
2016                 u32 j, shift;
2017                 union e1000_reta {
2018                         u32 dword;
2019                         u8  bytes[4];
2020                 } reta;
2021
2022                 get_random_bytes(&random[0], 40);
2023
2024                 if (hw->mac.type >= e1000_82576)
2025                         shift = 0;
2026                 else
2027                         shift = 6;
2028                 for (j = 0; j < (32 * 4); j++) {
2029                         reta.bytes[j & 3] =
2030                                 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
2031                         if ((j & 3) == 3)
2032                                 writel(reta.dword,
2033                                        hw->hw_addr + E1000_RETA(0) + (j & ~3));
2034                 }
2035                 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2036
2037                 /* Fill out hash function seeds */
2038                 for (j = 0; j < 10; j++)
2039                         array_wr32(E1000_RSSRK(0), j, random[j]);
2040
2041                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2042                          E1000_MRQC_RSS_FIELD_IPV4_TCP);
2043                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2044                          E1000_MRQC_RSS_FIELD_IPV6_TCP);
2045                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2046                          E1000_MRQC_RSS_FIELD_IPV6_UDP);
2047                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2048                          E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2049
2050
2051                 wr32(E1000_MRQC, mrqc);
2052
2053                 /* Multiqueue and raw packet checksumming are mutually
2054                  * exclusive.  Note that this not the same as TCP/IP
2055                  * checksumming, which works fine. */
2056                 rxcsum = rd32(E1000_RXCSUM);
2057                 rxcsum |= E1000_RXCSUM_PCSD;
2058                 wr32(E1000_RXCSUM, rxcsum);
2059         } else {
2060                 /* Enable Receive Checksum Offload for TCP and UDP */
2061                 rxcsum = rd32(E1000_RXCSUM);
2062                 if (adapter->rx_csum)
2063                         rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPPCSE;
2064                 else
2065                         rxcsum &= ~(E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPPCSE);
2066
2067                 wr32(E1000_RXCSUM, rxcsum);
2068         }
2069
2070         if (adapter->vlgrp)
2071                 wr32(E1000_RLPML,
2072                                 adapter->max_frame_size + VLAN_TAG_SIZE);
2073         else
2074                 wr32(E1000_RLPML, adapter->max_frame_size);
2075
2076         /* Enable Receives */
2077         wr32(E1000_RCTL, rctl);
2078 }
2079
2080 /**
2081  * igb_free_tx_resources - Free Tx Resources per Queue
2082  * @tx_ring: Tx descriptor ring for a specific queue
2083  *
2084  * Free all transmit software resources
2085  **/
2086 void igb_free_tx_resources(struct igb_ring *tx_ring)
2087 {
2088         struct pci_dev *pdev = tx_ring->adapter->pdev;
2089
2090         igb_clean_tx_ring(tx_ring);
2091
2092         vfree(tx_ring->buffer_info);
2093         tx_ring->buffer_info = NULL;
2094
2095         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2096
2097         tx_ring->desc = NULL;
2098 }
2099
2100 /**
2101  * igb_free_all_tx_resources - Free Tx Resources for All Queues
2102  * @adapter: board private structure
2103  *
2104  * Free all transmit software resources
2105  **/
2106 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2107 {
2108         int i;
2109
2110         for (i = 0; i < adapter->num_tx_queues; i++)
2111                 igb_free_tx_resources(&adapter->tx_ring[i]);
2112 }
2113
2114 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2115                                            struct igb_buffer *buffer_info)
2116 {
2117         if (buffer_info->dma) {
2118                 pci_unmap_page(adapter->pdev,
2119                                 buffer_info->dma,
2120                                 buffer_info->length,
2121                                 PCI_DMA_TODEVICE);
2122                 buffer_info->dma = 0;
2123         }
2124         if (buffer_info->skb) {
2125                 dev_kfree_skb_any(buffer_info->skb);
2126                 buffer_info->skb = NULL;
2127         }
2128         buffer_info->time_stamp = 0;
2129         buffer_info->next_to_watch = 0;
2130         /* buffer_info must be completely set up in the transmit path */
2131 }
2132
2133 /**
2134  * igb_clean_tx_ring - Free Tx Buffers
2135  * @tx_ring: ring to be cleaned
2136  **/
2137 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2138 {
2139         struct igb_adapter *adapter = tx_ring->adapter;
2140         struct igb_buffer *buffer_info;
2141         unsigned long size;
2142         unsigned int i;
2143
2144         if (!tx_ring->buffer_info)
2145                 return;
2146         /* Free all the Tx ring sk_buffs */
2147
2148         for (i = 0; i < tx_ring->count; i++) {
2149                 buffer_info = &tx_ring->buffer_info[i];
2150                 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2151         }
2152
2153         size = sizeof(struct igb_buffer) * tx_ring->count;
2154         memset(tx_ring->buffer_info, 0, size);
2155
2156         /* Zero out the descriptor ring */
2157
2158         memset(tx_ring->desc, 0, tx_ring->size);
2159
2160         tx_ring->next_to_use = 0;
2161         tx_ring->next_to_clean = 0;
2162
2163         writel(0, adapter->hw.hw_addr + tx_ring->head);
2164         writel(0, adapter->hw.hw_addr + tx_ring->tail);
2165 }
2166
2167 /**
2168  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2169  * @adapter: board private structure
2170  **/
2171 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2172 {
2173         int i;
2174
2175         for (i = 0; i < adapter->num_tx_queues; i++)
2176                 igb_clean_tx_ring(&adapter->tx_ring[i]);
2177 }
2178
2179 /**
2180  * igb_free_rx_resources - Free Rx Resources
2181  * @rx_ring: ring to clean the resources from
2182  *
2183  * Free all receive software resources
2184  **/
2185 void igb_free_rx_resources(struct igb_ring *rx_ring)
2186 {
2187         struct pci_dev *pdev = rx_ring->adapter->pdev;
2188
2189         igb_clean_rx_ring(rx_ring);
2190
2191         vfree(rx_ring->buffer_info);
2192         rx_ring->buffer_info = NULL;
2193
2194         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2195
2196         rx_ring->desc = NULL;
2197 }
2198
2199 /**
2200  * igb_free_all_rx_resources - Free Rx Resources for All Queues
2201  * @adapter: board private structure
2202  *
2203  * Free all receive software resources
2204  **/
2205 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2206 {
2207         int i;
2208
2209         for (i = 0; i < adapter->num_rx_queues; i++)
2210                 igb_free_rx_resources(&adapter->rx_ring[i]);
2211 }
2212
2213 /**
2214  * igb_clean_rx_ring - Free Rx Buffers per Queue
2215  * @rx_ring: ring to free buffers from
2216  **/
2217 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2218 {
2219         struct igb_adapter *adapter = rx_ring->adapter;
2220         struct igb_buffer *buffer_info;
2221         struct pci_dev *pdev = adapter->pdev;
2222         unsigned long size;
2223         unsigned int i;
2224
2225         if (!rx_ring->buffer_info)
2226                 return;
2227         /* Free all the Rx ring sk_buffs */
2228         for (i = 0; i < rx_ring->count; i++) {
2229                 buffer_info = &rx_ring->buffer_info[i];
2230                 if (buffer_info->dma) {
2231                         if (adapter->rx_ps_hdr_size)
2232                                 pci_unmap_single(pdev, buffer_info->dma,
2233                                                  adapter->rx_ps_hdr_size,
2234                                                  PCI_DMA_FROMDEVICE);
2235                         else
2236                                 pci_unmap_single(pdev, buffer_info->dma,
2237                                                  adapter->rx_buffer_len,
2238                                                  PCI_DMA_FROMDEVICE);
2239                         buffer_info->dma = 0;
2240                 }
2241
2242                 if (buffer_info->skb) {
2243                         dev_kfree_skb(buffer_info->skb);
2244                         buffer_info->skb = NULL;
2245                 }
2246                 if (buffer_info->page) {
2247                         if (buffer_info->page_dma)
2248                                 pci_unmap_page(pdev, buffer_info->page_dma,
2249                                                PAGE_SIZE / 2,
2250                                                PCI_DMA_FROMDEVICE);
2251                         put_page(buffer_info->page);
2252                         buffer_info->page = NULL;
2253                         buffer_info->page_dma = 0;
2254                         buffer_info->page_offset = 0;
2255                 }
2256         }
2257
2258         size = sizeof(struct igb_buffer) * rx_ring->count;
2259         memset(rx_ring->buffer_info, 0, size);
2260
2261         /* Zero out the descriptor ring */
2262         memset(rx_ring->desc, 0, rx_ring->size);
2263
2264         rx_ring->next_to_clean = 0;
2265         rx_ring->next_to_use = 0;
2266
2267         writel(0, adapter->hw.hw_addr + rx_ring->head);
2268         writel(0, adapter->hw.hw_addr + rx_ring->tail);
2269 }
2270
2271 /**
2272  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2273  * @adapter: board private structure
2274  **/
2275 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2276 {
2277         int i;
2278
2279         for (i = 0; i < adapter->num_rx_queues; i++)
2280                 igb_clean_rx_ring(&adapter->rx_ring[i]);
2281 }
2282
2283 /**
2284  * igb_set_mac - Change the Ethernet Address of the NIC
2285  * @netdev: network interface device structure
2286  * @p: pointer to an address structure
2287  *
2288  * Returns 0 on success, negative on failure
2289  **/
2290 static int igb_set_mac(struct net_device *netdev, void *p)
2291 {
2292         struct igb_adapter *adapter = netdev_priv(netdev);
2293         struct e1000_hw *hw = &adapter->hw;
2294         struct sockaddr *addr = p;
2295
2296         if (!is_valid_ether_addr(addr->sa_data))
2297                 return -EADDRNOTAVAIL;
2298
2299         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2300         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2301
2302         hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
2303
2304         return 0;
2305 }
2306
2307 /**
2308  * igb_set_multi - Multicast and Promiscuous mode set
2309  * @netdev: network interface device structure
2310  *
2311  * The set_multi entry point is called whenever the multicast address
2312  * list or the network interface flags are updated.  This routine is
2313  * responsible for configuring the hardware for proper multicast,
2314  * promiscuous mode, and all-multi behavior.
2315  **/
2316 static void igb_set_multi(struct net_device *netdev)
2317 {
2318         struct igb_adapter *adapter = netdev_priv(netdev);
2319         struct e1000_hw *hw = &adapter->hw;
2320         struct e1000_mac_info *mac = &hw->mac;
2321         struct dev_mc_list *mc_ptr;
2322         u8  *mta_list;
2323         u32 rctl;
2324         int i;
2325
2326         /* Check for Promiscuous and All Multicast modes */
2327
2328         rctl = rd32(E1000_RCTL);
2329
2330         if (netdev->flags & IFF_PROMISC) {
2331                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2332                 rctl &= ~E1000_RCTL_VFE;
2333         } else {
2334                 if (netdev->flags & IFF_ALLMULTI) {
2335                         rctl |= E1000_RCTL_MPE;
2336                         rctl &= ~E1000_RCTL_UPE;
2337                 } else
2338                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2339                 rctl |= E1000_RCTL_VFE;
2340         }
2341         wr32(E1000_RCTL, rctl);
2342
2343         if (!netdev->mc_count) {
2344                 /* nothing to program, so clear mc list */
2345                 igb_update_mc_addr_list(hw, NULL, 0, 1,
2346                                         mac->rar_entry_count);
2347                 return;
2348         }
2349
2350         mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2351         if (!mta_list)
2352                 return;
2353
2354         /* The shared function expects a packed array of only addresses. */
2355         mc_ptr = netdev->mc_list;
2356
2357         for (i = 0; i < netdev->mc_count; i++) {
2358                 if (!mc_ptr)
2359                         break;
2360                 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2361                 mc_ptr = mc_ptr->next;
2362         }
2363         igb_update_mc_addr_list(hw, mta_list, i, 1, mac->rar_entry_count);
2364         kfree(mta_list);
2365 }
2366
2367 /* Need to wait a few seconds after link up to get diagnostic information from
2368  * the phy */
2369 static void igb_update_phy_info(unsigned long data)
2370 {
2371         struct igb_adapter *adapter = (struct igb_adapter *) data;
2372         igb_get_phy_info(&adapter->hw);
2373 }
2374
2375 /**
2376  * igb_has_link - check shared code for link and determine up/down
2377  * @adapter: pointer to driver private info
2378  **/
2379 static bool igb_has_link(struct igb_adapter *adapter)
2380 {
2381         struct e1000_hw *hw = &adapter->hw;
2382         bool link_active = false;
2383         s32 ret_val = 0;
2384
2385         /* get_link_status is set on LSC (link status) interrupt or
2386          * rx sequence error interrupt.  get_link_status will stay
2387          * false until the e1000_check_for_link establishes link
2388          * for copper adapters ONLY
2389          */
2390         switch (hw->phy.media_type) {
2391         case e1000_media_type_copper:
2392                 if (hw->mac.get_link_status) {
2393                         ret_val = hw->mac.ops.check_for_link(hw);
2394                         link_active = !hw->mac.get_link_status;
2395                 } else {
2396                         link_active = true;
2397                 }
2398                 break;
2399         case e1000_media_type_fiber:
2400                 ret_val = hw->mac.ops.check_for_link(hw);
2401                 link_active = !!(rd32(E1000_STATUS) & E1000_STATUS_LU);
2402                 break;
2403         case e1000_media_type_internal_serdes:
2404                 ret_val = hw->mac.ops.check_for_link(hw);
2405                 link_active = hw->mac.serdes_has_link;
2406                 break;
2407         default:
2408         case e1000_media_type_unknown:
2409                 break;
2410         }
2411
2412         return link_active;
2413 }
2414
2415 /**
2416  * igb_watchdog - Timer Call-back
2417  * @data: pointer to adapter cast into an unsigned long
2418  **/
2419 static void igb_watchdog(unsigned long data)
2420 {
2421         struct igb_adapter *adapter = (struct igb_adapter *)data;
2422         /* Do the rest outside of interrupt context */
2423         schedule_work(&adapter->watchdog_task);
2424 }
2425
2426 static void igb_watchdog_task(struct work_struct *work)
2427 {
2428         struct igb_adapter *adapter = container_of(work,
2429                                         struct igb_adapter, watchdog_task);
2430         struct e1000_hw *hw = &adapter->hw;
2431         struct net_device *netdev = adapter->netdev;
2432         struct igb_ring *tx_ring = adapter->tx_ring;
2433         u32 link;
2434         u32 eics = 0;
2435         int i;
2436
2437         link = igb_has_link(adapter);
2438         if ((netif_carrier_ok(netdev)) && link)
2439                 goto link_up;
2440
2441         if (link) {
2442                 if (!netif_carrier_ok(netdev)) {
2443                         u32 ctrl;
2444                         hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2445                                                    &adapter->link_speed,
2446                                                    &adapter->link_duplex);
2447
2448                         ctrl = rd32(E1000_CTRL);
2449                         /* Links status message must follow this format */
2450                         printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2451                                  "Flow Control: %s\n",
2452                                  netdev->name,
2453                                  adapter->link_speed,
2454                                  adapter->link_duplex == FULL_DUPLEX ?
2455                                  "Full Duplex" : "Half Duplex",
2456                                  ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2457                                  E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2458                                  E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2459                                  E1000_CTRL_TFCE) ? "TX" : "None")));
2460
2461                         /* tweak tx_queue_len according to speed/duplex and
2462                          * adjust the timeout factor */
2463                         netdev->tx_queue_len = adapter->tx_queue_len;
2464                         adapter->tx_timeout_factor = 1;
2465                         switch (adapter->link_speed) {
2466                         case SPEED_10:
2467                                 netdev->tx_queue_len = 10;
2468                                 adapter->tx_timeout_factor = 14;
2469                                 break;
2470                         case SPEED_100:
2471                                 netdev->tx_queue_len = 100;
2472                                 /* maybe add some timeout factor ? */
2473                                 break;
2474                         }
2475
2476                         netif_carrier_on(netdev);
2477                         netif_tx_wake_all_queues(netdev);
2478
2479                         /* link state has changed, schedule phy info update */
2480                         if (!test_bit(__IGB_DOWN, &adapter->state))
2481                                 mod_timer(&adapter->phy_info_timer,
2482                                           round_jiffies(jiffies + 2 * HZ));
2483                 }
2484         } else {
2485                 if (netif_carrier_ok(netdev)) {
2486                         adapter->link_speed = 0;
2487                         adapter->link_duplex = 0;
2488                         /* Links status message must follow this format */
2489                         printk(KERN_INFO "igb: %s NIC Link is Down\n",
2490                                netdev->name);
2491                         netif_carrier_off(netdev);
2492                         netif_tx_stop_all_queues(netdev);
2493
2494                         /* link state has changed, schedule phy info update */
2495                         if (!test_bit(__IGB_DOWN, &adapter->state))
2496                                 mod_timer(&adapter->phy_info_timer,
2497                                           round_jiffies(jiffies + 2 * HZ));
2498                 }
2499         }
2500
2501 link_up:
2502         igb_update_stats(adapter);
2503
2504         hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2505         adapter->tpt_old = adapter->stats.tpt;
2506         hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
2507         adapter->colc_old = adapter->stats.colc;
2508
2509         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2510         adapter->gorc_old = adapter->stats.gorc;
2511         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2512         adapter->gotc_old = adapter->stats.gotc;
2513
2514         igb_update_adaptive(&adapter->hw);
2515
2516         if (!netif_carrier_ok(netdev)) {
2517                 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2518                         /* We've lost link, so the controller stops DMA,
2519                          * but we've got queued Tx work that's never going
2520                          * to get done, so reset controller to flush Tx.
2521                          * (Do the reset outside of interrupt context). */
2522                         adapter->tx_timeout_count++;
2523                         schedule_work(&adapter->reset_task);
2524                 }
2525         }
2526
2527         /* Cause software interrupt to ensure rx ring is cleaned */
2528         if (adapter->msix_entries) {
2529                 for (i = 0; i < adapter->num_rx_queues; i++)
2530                         eics |= adapter->rx_ring[i].eims_value;
2531                 wr32(E1000_EICS, eics);
2532         } else {
2533                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2534         }
2535
2536         /* Force detection of hung controller every watchdog period */
2537         tx_ring->detect_tx_hung = true;
2538
2539         /* Reset the timer */
2540         if (!test_bit(__IGB_DOWN, &adapter->state))
2541                 mod_timer(&adapter->watchdog_timer,
2542                           round_jiffies(jiffies + 2 * HZ));
2543 }
2544
2545 enum latency_range {
2546         lowest_latency = 0,
2547         low_latency = 1,
2548         bulk_latency = 2,
2549         latency_invalid = 255
2550 };
2551
2552
2553 /**
2554  * igb_update_ring_itr - update the dynamic ITR value based on packet size
2555  *
2556  *      Stores a new ITR value based on strictly on packet size.  This
2557  *      algorithm is less sophisticated than that used in igb_update_itr,
2558  *      due to the difficulty of synchronizing statistics across multiple
2559  *      receive rings.  The divisors and thresholds used by this fuction
2560  *      were determined based on theoretical maximum wire speed and testing
2561  *      data, in order to minimize response time while increasing bulk
2562  *      throughput.
2563  *      This functionality is controlled by the InterruptThrottleRate module
2564  *      parameter (see igb_param.c)
2565  *      NOTE:  This function is called only when operating in a multiqueue
2566  *             receive environment.
2567  * @rx_ring: pointer to ring
2568  **/
2569 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2570 {
2571         int new_val = rx_ring->itr_val;
2572         int avg_wire_size = 0;
2573         struct igb_adapter *adapter = rx_ring->adapter;
2574
2575         if (!rx_ring->total_packets)
2576                 goto clear_counts; /* no packets, so don't do anything */
2577
2578         /* For non-gigabit speeds, just fix the interrupt rate at 4000
2579          * ints/sec - ITR timer value of 120 ticks.
2580          */
2581         if (adapter->link_speed != SPEED_1000) {
2582                 new_val = 120;
2583                 goto set_itr_val;
2584         }
2585         avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2586
2587         /* Add 24 bytes to size to account for CRC, preamble, and gap */
2588         avg_wire_size += 24;
2589
2590         /* Don't starve jumbo frames */
2591         avg_wire_size = min(avg_wire_size, 3000);
2592
2593         /* Give a little boost to mid-size frames */
2594         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2595                 new_val = avg_wire_size / 3;
2596         else
2597                 new_val = avg_wire_size / 2;
2598
2599 set_itr_val:
2600         if (new_val != rx_ring->itr_val) {
2601                 rx_ring->itr_val = new_val;
2602                 rx_ring->set_itr = 1;
2603         }
2604 clear_counts:
2605         rx_ring->total_bytes = 0;
2606         rx_ring->total_packets = 0;
2607 }
2608
2609 /**
2610  * igb_update_itr - update the dynamic ITR value based on statistics
2611  *      Stores a new ITR value based on packets and byte
2612  *      counts during the last interrupt.  The advantage of per interrupt
2613  *      computation is faster updates and more accurate ITR for the current
2614  *      traffic pattern.  Constants in this function were computed
2615  *      based on theoretical maximum wire speed and thresholds were set based
2616  *      on testing data as well as attempting to minimize response time
2617  *      while increasing bulk throughput.
2618  *      this functionality is controlled by the InterruptThrottleRate module
2619  *      parameter (see igb_param.c)
2620  *      NOTE:  These calculations are only valid when operating in a single-
2621  *             queue environment.
2622  * @adapter: pointer to adapter
2623  * @itr_setting: current adapter->itr
2624  * @packets: the number of packets during this measurement interval
2625  * @bytes: the number of bytes during this measurement interval
2626  **/
2627 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2628                                    int packets, int bytes)
2629 {
2630         unsigned int retval = itr_setting;
2631
2632         if (packets == 0)
2633                 goto update_itr_done;
2634
2635         switch (itr_setting) {
2636         case lowest_latency:
2637                 /* handle TSO and jumbo frames */
2638                 if (bytes/packets > 8000)
2639                         retval = bulk_latency;
2640                 else if ((packets < 5) && (bytes > 512))
2641                         retval = low_latency;
2642                 break;
2643         case low_latency:  /* 50 usec aka 20000 ints/s */
2644                 if (bytes > 10000) {
2645                         /* this if handles the TSO accounting */
2646                         if (bytes/packets > 8000) {
2647                                 retval = bulk_latency;
2648                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2649                                 retval = bulk_latency;
2650                         } else if ((packets > 35)) {
2651                                 retval = lowest_latency;
2652                         }
2653                 } else if (bytes/packets > 2000) {
2654                         retval = bulk_latency;
2655                 } else if (packets <= 2 && bytes < 512) {
2656                         retval = lowest_latency;
2657                 }
2658                 break;
2659         case bulk_latency: /* 250 usec aka 4000 ints/s */
2660                 if (bytes > 25000) {
2661                         if (packets > 35)
2662                                 retval = low_latency;
2663                 } else if (bytes < 1500) {
2664                         retval = low_latency;
2665                 }
2666                 break;
2667         }
2668
2669 update_itr_done:
2670         return retval;
2671 }
2672
2673 static void igb_set_itr(struct igb_adapter *adapter)
2674 {
2675         u16 current_itr;
2676         u32 new_itr = adapter->itr;
2677
2678         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2679         if (adapter->link_speed != SPEED_1000) {
2680                 current_itr = 0;
2681                 new_itr = 4000;
2682                 goto set_itr_now;
2683         }
2684
2685         adapter->rx_itr = igb_update_itr(adapter,
2686                                     adapter->rx_itr,
2687                                     adapter->rx_ring->total_packets,
2688                                     adapter->rx_ring->total_bytes);
2689
2690         if (adapter->rx_ring->buddy) {
2691                 adapter->tx_itr = igb_update_itr(adapter,
2692                                             adapter->tx_itr,
2693                                             adapter->tx_ring->total_packets,
2694                                             adapter->tx_ring->total_bytes);
2695                 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2696         } else {
2697                 current_itr = adapter->rx_itr;
2698         }
2699
2700         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2701         if (adapter->itr_setting == 3 && current_itr == lowest_latency)
2702                 current_itr = low_latency;
2703
2704         switch (current_itr) {
2705         /* counts and packets in update_itr are dependent on these numbers */
2706         case lowest_latency:
2707                 new_itr = 70000;
2708                 break;
2709         case low_latency:
2710                 new_itr = 20000; /* aka hwitr = ~200 */
2711                 break;
2712         case bulk_latency:
2713                 new_itr = 4000;
2714                 break;
2715         default:
2716                 break;
2717         }
2718
2719 set_itr_now:
2720         adapter->rx_ring->total_bytes = 0;
2721         adapter->rx_ring->total_packets = 0;
2722         if (adapter->rx_ring->buddy) {
2723                 adapter->rx_ring->buddy->total_bytes = 0;
2724                 adapter->rx_ring->buddy->total_packets = 0;
2725         }
2726
2727         if (new_itr != adapter->itr) {
2728                 /* this attempts to bias the interrupt rate towards Bulk
2729                  * by adding intermediate steps when interrupt rate is
2730                  * increasing */
2731                 new_itr = new_itr > adapter->itr ?
2732                              min(adapter->itr + (new_itr >> 2), new_itr) :
2733                              new_itr;
2734                 /* Don't write the value here; it resets the adapter's
2735                  * internal timer, and causes us to delay far longer than
2736                  * we should between interrupts.  Instead, we write the ITR
2737                  * value at the beginning of the next interrupt so the timing
2738                  * ends up being correct.
2739                  */
2740                 adapter->itr = new_itr;
2741                 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2742                 adapter->rx_ring->set_itr = 1;
2743         }
2744
2745         return;
2746 }
2747
2748
2749 #define IGB_TX_FLAGS_CSUM               0x00000001
2750 #define IGB_TX_FLAGS_VLAN               0x00000002
2751 #define IGB_TX_FLAGS_TSO                0x00000004
2752 #define IGB_TX_FLAGS_IPV4               0x00000008
2753 #define IGB_TX_FLAGS_TSTAMP             0x00000010
2754 #define IGB_TX_FLAGS_VLAN_MASK  0xffff0000
2755 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2756
2757 static inline int igb_tso_adv(struct igb_adapter *adapter,
2758                               struct igb_ring *tx_ring,
2759                               struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2760 {
2761         struct e1000_adv_tx_context_desc *context_desc;
2762         unsigned int i;
2763         int err;
2764         struct igb_buffer *buffer_info;
2765         u32 info = 0, tu_cmd = 0;
2766         u32 mss_l4len_idx, l4len;
2767         *hdr_len = 0;
2768
2769         if (skb_header_cloned(skb)) {
2770                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2771                 if (err)
2772                         return err;
2773         }
2774
2775         l4len = tcp_hdrlen(skb);
2776         *hdr_len += l4len;
2777
2778         if (skb->protocol == htons(ETH_P_IP)) {
2779                 struct iphdr *iph = ip_hdr(skb);
2780                 iph->tot_len = 0;
2781                 iph->check = 0;
2782                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2783                                                          iph->daddr, 0,
2784                                                          IPPROTO_TCP,
2785                                                          0);
2786         } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2787                 ipv6_hdr(skb)->payload_len = 0;
2788                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2789                                                        &ipv6_hdr(skb)->daddr,
2790                                                        0, IPPROTO_TCP, 0);
2791         }
2792
2793         i = tx_ring->next_to_use;
2794
2795         buffer_info = &tx_ring->buffer_info[i];
2796         context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2797         /* VLAN MACLEN IPLEN */
2798         if (tx_flags & IGB_TX_FLAGS_VLAN)
2799                 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2800         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2801         *hdr_len += skb_network_offset(skb);
2802         info |= skb_network_header_len(skb);
2803         *hdr_len += skb_network_header_len(skb);
2804         context_desc->vlan_macip_lens = cpu_to_le32(info);
2805
2806         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2807         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2808
2809         if (skb->protocol == htons(ETH_P_IP))
2810                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2811         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2812
2813         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2814
2815         /* MSS L4LEN IDX */
2816         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2817         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2818
2819         /* For 82575, context index must be unique per ring. */
2820         if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2821                 mss_l4len_idx |= tx_ring->queue_index << 4;
2822
2823         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2824         context_desc->seqnum_seed = 0;
2825
2826         buffer_info->time_stamp = jiffies;
2827         buffer_info->next_to_watch = i;
2828         buffer_info->dma = 0;
2829         i++;
2830         if (i == tx_ring->count)
2831                 i = 0;
2832
2833         tx_ring->next_to_use = i;
2834
2835         return true;
2836 }
2837
2838 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2839                                         struct igb_ring *tx_ring,
2840                                         struct sk_buff *skb, u32 tx_flags)
2841 {
2842         struct e1000_adv_tx_context_desc *context_desc;
2843         unsigned int i;
2844         struct igb_buffer *buffer_info;
2845         u32 info = 0, tu_cmd = 0;
2846
2847         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2848             (tx_flags & IGB_TX_FLAGS_VLAN)) {
2849                 i = tx_ring->next_to_use;
2850                 buffer_info = &tx_ring->buffer_info[i];
2851                 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2852
2853                 if (tx_flags & IGB_TX_FLAGS_VLAN)
2854                         info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2855                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2856                 if (skb->ip_summed == CHECKSUM_PARTIAL)
2857                         info |= skb_network_header_len(skb);
2858
2859                 context_desc->vlan_macip_lens = cpu_to_le32(info);
2860
2861                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2862
2863                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2864                         switch (skb->protocol) {
2865                         case cpu_to_be16(ETH_P_IP):
2866                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2867                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2868                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2869                                 break;
2870                         case cpu_to_be16(ETH_P_IPV6):
2871                                 /* XXX what about other V6 headers?? */
2872                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2873                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2874                                 break;
2875                         default:
2876                                 if (unlikely(net_ratelimit()))
2877                                         dev_warn(&adapter->pdev->dev,
2878                                             "partial checksum but proto=%x!\n",
2879                                             skb->protocol);
2880                                 break;
2881                         }
2882                 }
2883
2884                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2885                 context_desc->seqnum_seed = 0;
2886                 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2887                         context_desc->mss_l4len_idx =
2888                                 cpu_to_le32(tx_ring->queue_index << 4);
2889                 else
2890                         context_desc->mss_l4len_idx = 0;
2891
2892                 buffer_info->time_stamp = jiffies;
2893                 buffer_info->next_to_watch = i;
2894                 buffer_info->dma = 0;
2895
2896                 i++;
2897                 if (i == tx_ring->count)
2898                         i = 0;
2899                 tx_ring->next_to_use = i;
2900
2901                 return true;
2902         }
2903         return false;
2904 }
2905
2906 #define IGB_MAX_TXD_PWR 16
2907 #define IGB_MAX_DATA_PER_TXD    (1<<IGB_MAX_TXD_PWR)
2908
2909 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2910                                  struct igb_ring *tx_ring, struct sk_buff *skb,
2911                                  unsigned int first)
2912 {
2913         struct igb_buffer *buffer_info;
2914         unsigned int len = skb_headlen(skb);
2915         unsigned int count = 0, i;
2916         unsigned int f;
2917
2918         i = tx_ring->next_to_use;
2919
2920         buffer_info = &tx_ring->buffer_info[i];
2921         BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2922         buffer_info->length = len;
2923         /* set time_stamp *before* dma to help avoid a possible race */
2924         buffer_info->time_stamp = jiffies;
2925         buffer_info->next_to_watch = i;
2926         buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2927                                           PCI_DMA_TODEVICE);
2928         count++;
2929         i++;
2930         if (i == tx_ring->count)
2931                 i = 0;
2932
2933         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2934                 struct skb_frag_struct *frag;
2935
2936                 frag = &skb_shinfo(skb)->frags[f];
2937                 len = frag->size;
2938
2939                 buffer_info = &tx_ring->buffer_info[i];
2940                 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2941                 buffer_info->length = len;
2942                 buffer_info->time_stamp = jiffies;
2943                 buffer_info->next_to_watch = i;
2944                 buffer_info->dma = pci_map_page(adapter->pdev,
2945                                                 frag->page,
2946                                                 frag->page_offset,
2947                                                 len,
2948                                                 PCI_DMA_TODEVICE);
2949
2950                 count++;
2951                 i++;
2952                 if (i == tx_ring->count)
2953                         i = 0;
2954         }
2955
2956         i = ((i == 0) ? tx_ring->count - 1 : i - 1);
2957         tx_ring->buffer_info[i].skb = skb;
2958         tx_ring->buffer_info[first].next_to_watch = i;
2959
2960         return count;
2961 }
2962
2963 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2964                                     struct igb_ring *tx_ring,
2965                                     int tx_flags, int count, u32 paylen,
2966                                     u8 hdr_len)
2967 {
2968         union e1000_adv_tx_desc *tx_desc = NULL;
2969         struct igb_buffer *buffer_info;
2970         u32 olinfo_status = 0, cmd_type_len;
2971         unsigned int i;
2972
2973         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2974                         E1000_ADVTXD_DCMD_DEXT);
2975
2976         if (tx_flags & IGB_TX_FLAGS_VLAN)
2977                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2978
2979         if (tx_flags & IGB_TX_FLAGS_TSTAMP)
2980                 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
2981
2982         if (tx_flags & IGB_TX_FLAGS_TSO) {
2983                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2984
2985                 /* insert tcp checksum */
2986                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2987
2988                 /* insert ip checksum */
2989                 if (tx_flags & IGB_TX_FLAGS_IPV4)
2990                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2991
2992         } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2993                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2994         }
2995
2996         if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
2997             (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2998                          IGB_TX_FLAGS_VLAN)))
2999                 olinfo_status |= tx_ring->queue_index << 4;
3000
3001         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3002
3003         i = tx_ring->next_to_use;
3004         while (count--) {
3005                 buffer_info = &tx_ring->buffer_info[i];
3006                 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3007                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3008                 tx_desc->read.cmd_type_len =
3009                         cpu_to_le32(cmd_type_len | buffer_info->length);
3010                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3011                 i++;
3012                 if (i == tx_ring->count)
3013                         i = 0;
3014         }
3015
3016         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
3017         /* Force memory writes to complete before letting h/w
3018          * know there are new descriptors to fetch.  (Only
3019          * applicable for weak-ordered memory model archs,
3020          * such as IA-64). */
3021         wmb();
3022
3023         tx_ring->next_to_use = i;
3024         writel(i, adapter->hw.hw_addr + tx_ring->tail);
3025         /* we need this if more than one processor can write to our tail
3026          * at a time, it syncronizes IO on IA64/Altix systems */
3027         mmiowb();
3028 }
3029
3030 static int __igb_maybe_stop_tx(struct net_device *netdev,
3031                                struct igb_ring *tx_ring, int size)
3032 {
3033         struct igb_adapter *adapter = netdev_priv(netdev);
3034
3035         netif_stop_subqueue(netdev, tx_ring->queue_index);
3036
3037         /* Herbert's original patch had:
3038          *  smp_mb__after_netif_stop_queue();
3039          * but since that doesn't exist yet, just open code it. */
3040         smp_mb();
3041
3042         /* We need to check again in a case another CPU has just
3043          * made room available. */
3044         if (IGB_DESC_UNUSED(tx_ring) < size)
3045                 return -EBUSY;
3046
3047         /* A reprieve! */
3048         netif_wake_subqueue(netdev, tx_ring->queue_index);
3049         ++adapter->restart_queue;
3050         return 0;
3051 }
3052
3053 static int igb_maybe_stop_tx(struct net_device *netdev,
3054                              struct igb_ring *tx_ring, int size)
3055 {
3056         if (IGB_DESC_UNUSED(tx_ring) >= size)
3057                 return 0;
3058         return __igb_maybe_stop_tx(netdev, tx_ring, size);
3059 }
3060
3061 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
3062
3063 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
3064                                    struct net_device *netdev,
3065                                    struct igb_ring *tx_ring)
3066 {
3067         struct igb_adapter *adapter = netdev_priv(netdev);
3068         unsigned int first;
3069         unsigned int tx_flags = 0;
3070         u8 hdr_len = 0;
3071         int tso = 0;
3072         union skb_shared_tx *shtx;
3073
3074         if (test_bit(__IGB_DOWN, &adapter->state)) {
3075                 dev_kfree_skb_any(skb);
3076                 return NETDEV_TX_OK;
3077         }
3078
3079         if (skb->len <= 0) {
3080                 dev_kfree_skb_any(skb);
3081                 return NETDEV_TX_OK;
3082         }
3083
3084         /* need: 1 descriptor per page,
3085          *       + 2 desc gap to keep tail from touching head,
3086          *       + 1 desc for skb->data,
3087          *       + 1 desc for context descriptor,
3088          * otherwise try next time */
3089         if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3090                 /* this is a hard error */
3091                 return NETDEV_TX_BUSY;
3092         }
3093
3094         /*
3095          * TODO: check that there currently is no other packet with
3096          * time stamping in the queue
3097          *
3098          * When doing time stamping, keep the connection to the socket
3099          * a while longer: it is still needed by skb_hwtstamp_tx(),
3100          * called either in igb_tx_hwtstamp() or by our caller when
3101          * doing software time stamping.
3102          */
3103         shtx = skb_tx(skb);
3104         if (unlikely(shtx->hardware)) {
3105                 shtx->in_progress = 1;
3106                 tx_flags |= IGB_TX_FLAGS_TSTAMP;
3107         } else if (likely(!shtx->software)) {
3108                 /*
3109                  * TODO: can this be solved in dev.c:dev_hard_start_xmit()?
3110                  * There are probably unmodified driver which do something
3111                  * like this and thus don't work in combination with
3112                  * SOF_TIMESTAMPING_TX_SOFTWARE.
3113                  */
3114                 skb_orphan(skb);
3115         }
3116
3117         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3118                 tx_flags |= IGB_TX_FLAGS_VLAN;
3119                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3120         }
3121
3122         if (skb->protocol == htons(ETH_P_IP))
3123                 tx_flags |= IGB_TX_FLAGS_IPV4;
3124
3125         first = tx_ring->next_to_use;
3126         tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
3127                                               &hdr_len) : 0;
3128
3129         if (tso < 0) {
3130                 dev_kfree_skb_any(skb);
3131                 return NETDEV_TX_OK;
3132         }
3133
3134         if (tso)
3135                 tx_flags |= IGB_TX_FLAGS_TSO;
3136         else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
3137                         if (skb->ip_summed == CHECKSUM_PARTIAL)
3138                                 tx_flags |= IGB_TX_FLAGS_CSUM;
3139
3140         igb_tx_queue_adv(adapter, tx_ring, tx_flags,
3141                          igb_tx_map_adv(adapter, tx_ring, skb, first),
3142                          skb->len, hdr_len);
3143
3144         netdev->trans_start = jiffies;
3145
3146         /* Make sure there is space in the ring for the next send. */
3147         igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3148
3149         return NETDEV_TX_OK;
3150 }
3151
3152 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3153 {
3154         struct igb_adapter *adapter = netdev_priv(netdev);
3155         struct igb_ring *tx_ring;
3156
3157         int r_idx = 0;
3158         r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1);
3159         tx_ring = adapter->multi_tx_table[r_idx];
3160
3161         /* This goes back to the question of how to logically map a tx queue
3162          * to a flow.  Right now, performance is impacted slightly negatively
3163          * if using multiple tx queues.  If the stack breaks away from a
3164          * single qdisc implementation, we can look at this again. */
3165         return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3166 }
3167
3168 /**
3169  * igb_tx_timeout - Respond to a Tx Hang
3170  * @netdev: network interface device structure
3171  **/
3172 static void igb_tx_timeout(struct net_device *netdev)
3173 {
3174         struct igb_adapter *adapter = netdev_priv(netdev);
3175         struct e1000_hw *hw = &adapter->hw;
3176
3177         /* Do the reset outside of interrupt context */
3178         adapter->tx_timeout_count++;
3179         schedule_work(&adapter->reset_task);
3180         wr32(E1000_EICS,
3181              (adapter->eims_enable_mask & ~adapter->eims_other));
3182 }
3183
3184 static void igb_reset_task(struct work_struct *work)
3185 {
3186         struct igb_adapter *adapter;
3187         adapter = container_of(work, struct igb_adapter, reset_task);
3188
3189         igb_reinit_locked(adapter);
3190 }
3191
3192 /**
3193  * igb_get_stats - Get System Network Statistics
3194  * @netdev: network interface device structure
3195  *
3196  * Returns the address of the device statistics structure.
3197  * The statistics are actually updated from the timer callback.
3198  **/
3199 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3200 {
3201         struct igb_adapter *adapter = netdev_priv(netdev);
3202
3203         /* only return the current stats */
3204         return &adapter->net_stats;
3205 }
3206
3207 /**
3208  * igb_change_mtu - Change the Maximum Transfer Unit
3209  * @netdev: network interface device structure
3210  * @new_mtu: new value for maximum frame size
3211  *
3212  * Returns 0 on success, negative on failure
3213  **/
3214 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3215 {
3216         struct igb_adapter *adapter = netdev_priv(netdev);
3217         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3218
3219         if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3220             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3221                 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3222                 return -EINVAL;
3223         }
3224
3225 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3226         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3227                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3228                 return -EINVAL;
3229         }
3230
3231         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3232                 msleep(1);
3233
3234         /* igb_down has a dependency on max_frame_size */
3235         adapter->max_frame_size = max_frame;
3236         if (netif_running(netdev))
3237                 igb_down(adapter);
3238
3239         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3240          * means we reserve 2 more, this pushes us to allocate from the next
3241          * larger slab size.
3242          * i.e. RXBUFFER_2048 --> size-4096 slab
3243          */
3244
3245         if (max_frame <= IGB_RXBUFFER_256)
3246                 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3247         else if (max_frame <= IGB_RXBUFFER_512)
3248                 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3249         else if (max_frame <= IGB_RXBUFFER_1024)
3250                 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3251         else if (max_frame <= IGB_RXBUFFER_2048)
3252                 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3253         else
3254 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3255                 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3256 #else
3257                 adapter->rx_buffer_len = PAGE_SIZE / 2;
3258 #endif
3259         /* adjust allocation if LPE protects us, and we aren't using SBP */
3260         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3261              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3262                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3263
3264         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3265                  netdev->mtu, new_mtu);
3266         netdev->mtu = new_mtu;
3267
3268         if (netif_running(netdev))
3269                 igb_up(adapter);
3270         else
3271                 igb_reset(adapter);
3272
3273         clear_bit(__IGB_RESETTING, &adapter->state);
3274
3275         return 0;
3276 }
3277
3278 /**
3279  * igb_update_stats - Update the board statistics counters
3280  * @adapter: board private structure
3281  **/
3282
3283 void igb_update_stats(struct igb_adapter *adapter)
3284 {
3285         struct e1000_hw *hw = &adapter->hw;
3286         struct pci_dev *pdev = adapter->pdev;
3287         u16 phy_tmp;
3288
3289 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3290
3291         /*
3292          * Prevent stats update while adapter is being reset, or if the pci
3293          * connection is down.
3294          */
3295         if (adapter->link_speed == 0)
3296                 return;
3297         if (pci_channel_offline(pdev))
3298                 return;
3299
3300         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3301         adapter->stats.gprc += rd32(E1000_GPRC);
3302         adapter->stats.gorc += rd32(E1000_GORCL);
3303         rd32(E1000_GORCH); /* clear GORCL */
3304         adapter->stats.bprc += rd32(E1000_BPRC);
3305         adapter->stats.mprc += rd32(E1000_MPRC);
3306         adapter->stats.roc += rd32(E1000_ROC);
3307
3308         adapter->stats.prc64 += rd32(E1000_PRC64);
3309         adapter->stats.prc127 += rd32(E1000_PRC127);
3310         adapter->stats.prc255 += rd32(E1000_PRC255);
3311         adapter->stats.prc511 += rd32(E1000_PRC511);
3312         adapter->stats.prc1023 += rd32(E1000_PRC1023);
3313         adapter->stats.prc1522 += rd32(E1000_PRC1522);
3314         adapter->stats.symerrs += rd32(E1000_SYMERRS);
3315         adapter->stats.sec += rd32(E1000_SEC);
3316
3317         adapter->stats.mpc += rd32(E1000_MPC);
3318         adapter->stats.scc += rd32(E1000_SCC);
3319         adapter->stats.ecol += rd32(E1000_ECOL);
3320         adapter->stats.mcc += rd32(E1000_MCC);
3321         adapter->stats.latecol += rd32(E1000_LATECOL);
3322         adapter->stats.dc += rd32(E1000_DC);
3323         adapter->stats.rlec += rd32(E1000_RLEC);
3324         adapter->stats.xonrxc += rd32(E1000_XONRXC);
3325         adapter->stats.xontxc += rd32(E1000_XONTXC);
3326         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3327         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3328         adapter->stats.fcruc += rd32(E1000_FCRUC);
3329         adapter->stats.gptc += rd32(E1000_GPTC);
3330         adapter->stats.gotc += rd32(E1000_GOTCL);
3331         rd32(E1000_GOTCH); /* clear GOTCL */
3332         adapter->stats.rnbc += rd32(E1000_RNBC);
3333         adapter->stats.ruc += rd32(E1000_RUC);
3334         adapter->stats.rfc += rd32(E1000_RFC);
3335         adapter->stats.rjc += rd32(E1000_RJC);
3336         adapter->stats.tor += rd32(E1000_TORH);
3337         adapter->stats.tot += rd32(E1000_TOTH);
3338         adapter->stats.tpr += rd32(E1000_TPR);
3339
3340         adapter->stats.ptc64 += rd32(E1000_PTC64);
3341         adapter->stats.ptc127 += rd32(E1000_PTC127);
3342         adapter->stats.ptc255 += rd32(E1000_PTC255);
3343         adapter->stats.ptc511 += rd32(E1000_PTC511);
3344         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3345         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3346
3347         adapter->stats.mptc += rd32(E1000_MPTC);
3348         adapter->stats.bptc += rd32(E1000_BPTC);
3349
3350         /* used for adaptive IFS */
3351
3352         hw->mac.tx_packet_delta = rd32(E1000_TPT);
3353         adapter->stats.tpt += hw->mac.tx_packet_delta;
3354         hw->mac.collision_delta = rd32(E1000_COLC);
3355         adapter->stats.colc += hw->mac.collision_delta;
3356
3357         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3358         adapter->stats.rxerrc += rd32(E1000_RXERRC);
3359         adapter->stats.tncrs += rd32(E1000_TNCRS);
3360         adapter->stats.tsctc += rd32(E1000_TSCTC);
3361         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3362
3363         adapter->stats.iac += rd32(E1000_IAC);
3364         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3365         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3366         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3367         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3368         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3369         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3370         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3371         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3372
3373         /* Fill out the OS statistics structure */
3374         adapter->net_stats.multicast = adapter->stats.mprc;
3375         adapter->net_stats.collisions = adapter->stats.colc;
3376
3377         /* Rx Errors */
3378
3379         /* RLEC on some newer hardware can be incorrect so build
3380         * our own version based on RUC and ROC */
3381         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3382                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3383                 adapter->stats.ruc + adapter->stats.roc +
3384                 adapter->stats.cexterr;
3385         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3386                                               adapter->stats.roc;
3387         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3388         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3389         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3390
3391         /* Tx Errors */
3392         adapter->net_stats.tx_errors = adapter->stats.ecol +
3393                                        adapter->stats.latecol;
3394         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3395         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3396         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3397
3398         /* Tx Dropped needs to be maintained elsewhere */
3399
3400         /* Phy Stats */
3401         if (hw->phy.media_type == e1000_media_type_copper) {
3402                 if ((adapter->link_speed == SPEED_1000) &&
3403                    (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3404                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3405                         adapter->phy_stats.idle_errors += phy_tmp;
3406                 }
3407         }
3408
3409         /* Management Stats */
3410         adapter->stats.mgptc += rd32(E1000_MGTPTC);
3411         adapter->stats.mgprc += rd32(E1000_MGTPRC);
3412         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3413 }
3414
3415 static irqreturn_t igb_msix_other(int irq, void *data)
3416 {
3417         struct net_device *netdev = data;
3418         struct igb_adapter *adapter = netdev_priv(netdev);
3419         struct e1000_hw *hw = &adapter->hw;
3420         u32 icr = rd32(E1000_ICR);
3421
3422         /* reading ICR causes bit 31 of EICR to be cleared */
3423
3424         if(icr & E1000_ICR_DOUTSYNC) {
3425                 /* HW is reporting DMA is out of sync */
3426                 adapter->stats.doosync++;
3427         }
3428         if (!(icr & E1000_ICR_LSC))
3429                 goto no_link_interrupt;
3430         hw->mac.get_link_status = 1;
3431         /* guard against interrupt when we're going down */
3432         if (!test_bit(__IGB_DOWN, &adapter->state))
3433                 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3434
3435 no_link_interrupt:
3436         wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
3437         wr32(E1000_EIMS, adapter->eims_other);
3438
3439         return IRQ_HANDLED;
3440 }
3441
3442 static irqreturn_t igb_msix_tx(int irq, void *data)
3443 {
3444         struct igb_ring *tx_ring = data;
3445         struct igb_adapter *adapter = tx_ring->adapter;
3446         struct e1000_hw *hw = &adapter->hw;
3447
3448 #ifdef CONFIG_IGB_DCA
3449         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3450                 igb_update_tx_dca(tx_ring);
3451 #endif
3452
3453         tx_ring->total_bytes = 0;
3454         tx_ring->total_packets = 0;
3455
3456         /* auto mask will automatically reenable the interrupt when we write
3457          * EICS */
3458         if (!igb_clean_tx_irq(tx_ring))
3459                 /* Ring was not completely cleaned, so fire another interrupt */
3460                 wr32(E1000_EICS, tx_ring->eims_value);
3461         else
3462                 wr32(E1000_EIMS, tx_ring->eims_value);
3463
3464         return IRQ_HANDLED;
3465 }
3466
3467 static void igb_write_itr(struct igb_ring *ring)
3468 {
3469         struct e1000_hw *hw = &ring->adapter->hw;
3470         if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3471                 switch (hw->mac.type) {
3472                 case e1000_82576:
3473                         wr32(ring->itr_register, ring->itr_val |
3474                              0x80000000);
3475                         break;
3476                 default:
3477                         wr32(ring->itr_register, ring->itr_val |
3478                              (ring->itr_val << 16));
3479                         break;
3480                 }
3481                 ring->set_itr = 0;
3482         }
3483 }
3484
3485 static irqreturn_t igb_msix_rx(int irq, void *data)
3486 {
3487         struct igb_ring *rx_ring = data;
3488
3489         /* Write the ITR value calculated at the end of the
3490          * previous interrupt.
3491          */
3492
3493         igb_write_itr(rx_ring);
3494
3495         if (napi_schedule_prep(&rx_ring->napi))
3496                 __napi_schedule(&rx_ring->napi);
3497
3498 #ifdef CONFIG_IGB_DCA
3499         if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
3500                 igb_update_rx_dca(rx_ring);
3501 #endif
3502                 return IRQ_HANDLED;
3503 }
3504
3505 #ifdef CONFIG_IGB_DCA
3506 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3507 {
3508         u32 dca_rxctrl;
3509         struct igb_adapter *adapter = rx_ring->adapter;
3510         struct e1000_hw *hw = &adapter->hw;
3511         int cpu = get_cpu();
3512         int q = rx_ring->reg_idx;
3513
3514         if (rx_ring->cpu != cpu) {
3515                 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3516                 if (hw->mac.type == e1000_82576) {
3517                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3518                         dca_rxctrl |= dca_get_tag(cpu) <<
3519                                       E1000_DCA_RXCTRL_CPUID_SHIFT;
3520                 } else {
3521                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3522                         dca_rxctrl |= dca_get_tag(cpu);
3523                 }
3524                 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3525                 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3526                 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3527                 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3528                 rx_ring->cpu = cpu;
3529         }
3530         put_cpu();
3531 }
3532
3533 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3534 {
3535         u32 dca_txctrl;
3536         struct igb_adapter *adapter = tx_ring->adapter;
3537         struct e1000_hw *hw = &adapter->hw;
3538         int cpu = get_cpu();
3539         int q = tx_ring->reg_idx;
3540
3541         if (tx_ring->cpu != cpu) {
3542                 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3543                 if (hw->mac.type == e1000_82576) {
3544                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3545                         dca_txctrl |= dca_get_tag(cpu) <<
3546                                       E1000_DCA_TXCTRL_CPUID_SHIFT;
3547                 } else {
3548                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3549                         dca_txctrl |= dca_get_tag(cpu);
3550                 }
3551                 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3552                 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3553                 tx_ring->cpu = cpu;
3554         }
3555         put_cpu();
3556 }
3557
3558 static void igb_setup_dca(struct igb_adapter *adapter)
3559 {
3560         int i;
3561
3562         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3563                 return;
3564
3565         for (i = 0; i < adapter->num_tx_queues; i++) {
3566                 adapter->tx_ring[i].cpu = -1;
3567                 igb_update_tx_dca(&adapter->tx_ring[i]);
3568         }
3569         for (i = 0; i < adapter->num_rx_queues; i++) {
3570                 adapter->rx_ring[i].cpu = -1;
3571                 igb_update_rx_dca(&adapter->rx_ring[i]);
3572         }
3573 }
3574
3575 static int __igb_notify_dca(struct device *dev, void *data)
3576 {
3577         struct net_device *netdev = dev_get_drvdata(dev);
3578         struct igb_adapter *adapter = netdev_priv(netdev);
3579         struct e1000_hw *hw = &adapter->hw;
3580         unsigned long event = *(unsigned long *)data;
3581
3582         switch (event) {
3583         case DCA_PROVIDER_ADD:
3584                 /* if already enabled, don't do it again */
3585                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3586                         break;
3587                 /* Always use CB2 mode, difference is masked
3588                  * in the CB driver. */
3589                 wr32(E1000_DCA_CTRL, 2);
3590                 if (dca_add_requester(dev) == 0) {
3591                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
3592                         dev_info(&adapter->pdev->dev, "DCA enabled\n");
3593                         igb_setup_dca(adapter);
3594                         break;
3595                 }
3596                 /* Fall Through since DCA is disabled. */
3597         case DCA_PROVIDER_REMOVE:
3598                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3599                         /* without this a class_device is left
3600                          * hanging around in the sysfs model */
3601                         dca_remove_requester(dev);
3602                         dev_info(&adapter->pdev->dev, "DCA disabled\n");
3603                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3604                         wr32(E1000_DCA_CTRL, 1);
3605                 }
3606                 break;
3607         }
3608
3609         return 0;
3610 }
3611
3612 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3613                           void *p)
3614 {
3615         int ret_val;
3616
3617         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3618                                          __igb_notify_dca);
3619
3620         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3621 }
3622 #endif /* CONFIG_IGB_DCA */
3623
3624 /**
3625  * igb_intr_msi - Interrupt Handler
3626  * @irq: interrupt number
3627  * @data: pointer to a network interface device structure
3628  **/
3629 static irqreturn_t igb_intr_msi(int irq, void *data)
3630 {
3631         struct net_device *netdev = data;
3632         struct igb_adapter *adapter = netdev_priv(netdev);
3633         struct e1000_hw *hw = &adapter->hw;
3634         /* read ICR disables interrupts using IAM */
3635         u32 icr = rd32(E1000_ICR);
3636
3637         igb_write_itr(adapter->rx_ring);
3638
3639         if(icr & E1000_ICR_DOUTSYNC) {
3640                 /* HW is reporting DMA is out of sync */
3641                 adapter->stats.doosync++;
3642         }
3643
3644         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3645                 hw->mac.get_link_status = 1;
3646                 if (!test_bit(__IGB_DOWN, &adapter->state))
3647                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3648         }
3649
3650         napi_schedule(&adapter->rx_ring[0].napi);
3651
3652         return IRQ_HANDLED;
3653 }
3654
3655 /**
3656  * igb_intr - Legacy Interrupt Handler
3657  * @irq: interrupt number
3658  * @data: pointer to a network interface device structure
3659  **/
3660 static irqreturn_t igb_intr(int irq, void *data)
3661 {
3662         struct net_device *netdev = data;
3663         struct igb_adapter *adapter = netdev_priv(netdev);
3664         struct e1000_hw *hw = &adapter->hw;
3665         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3666          * need for the IMC write */
3667         u32 icr = rd32(E1000_ICR);
3668         if (!icr)
3669                 return IRQ_NONE;  /* Not our interrupt */
3670
3671         igb_write_itr(adapter->rx_ring);
3672
3673         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3674          * not set, then the adapter didn't send an interrupt */
3675         if (!(icr & E1000_ICR_INT_ASSERTED))
3676                 return IRQ_NONE;
3677
3678         if(icr & E1000_ICR_DOUTSYNC) {
3679                 /* HW is reporting DMA is out of sync */
3680                 adapter->stats.doosync++;
3681         }
3682
3683         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3684                 hw->mac.get_link_status = 1;
3685                 /* guard against interrupt when we're going down */
3686                 if (!test_bit(__IGB_DOWN, &adapter->state))
3687                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3688         }
3689
3690         napi_schedule(&adapter->rx_ring[0].napi);
3691
3692         return IRQ_HANDLED;
3693 }
3694
3695 /**
3696  * igb_poll - NAPI Rx polling callback
3697  * @napi: napi polling structure
3698  * @budget: count of how many packets we should handle
3699  **/
3700 static int igb_poll(struct napi_struct *napi, int budget)
3701 {
3702         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3703         struct igb_adapter *adapter = rx_ring->adapter;
3704         struct net_device *netdev = adapter->netdev;
3705         int tx_clean_complete, work_done = 0;
3706
3707         /* this poll routine only supports one tx and one rx queue */
3708 #ifdef CONFIG_IGB_DCA
3709         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3710                 igb_update_tx_dca(&adapter->tx_ring[0]);
3711 #endif
3712         tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]);
3713
3714 #ifdef CONFIG_IGB_DCA
3715         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3716                 igb_update_rx_dca(&adapter->rx_ring[0]);
3717 #endif
3718         igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget);
3719
3720         /* If no Tx and not enough Rx work done, exit the polling mode */
3721         if ((tx_clean_complete && (work_done < budget)) ||
3722             !netif_running(netdev)) {
3723                 if (adapter->itr_setting & 3)
3724                         igb_set_itr(adapter);
3725                 napi_complete(napi);
3726                 if (!test_bit(__IGB_DOWN, &adapter->state))
3727                         igb_irq_enable(adapter);
3728                 return 0;
3729         }
3730
3731         return 1;
3732 }
3733
3734 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3735 {
3736         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3737         struct igb_adapter *adapter = rx_ring->adapter;
3738         struct e1000_hw *hw = &adapter->hw;
3739         struct net_device *netdev = adapter->netdev;
3740         int work_done = 0;
3741
3742 #ifdef CONFIG_IGB_DCA
3743         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3744                 igb_update_rx_dca(rx_ring);
3745 #endif
3746         igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
3747
3748         /* If not enough Rx work done, exit the polling mode */
3749         if ((work_done == 0) || !netif_running(netdev)) {
3750                 napi_complete(napi);
3751
3752                 if (adapter->itr_setting & 3) {
3753                         if (adapter->num_rx_queues == 1)
3754                                 igb_set_itr(adapter);
3755                         else
3756                                 igb_update_ring_itr(rx_ring);
3757                 }
3758                 if (!test_bit(__IGB_DOWN, &adapter->state))
3759                         wr32(E1000_EIMS, rx_ring->eims_value);
3760
3761                 return 0;
3762         }
3763
3764         return 1;
3765 }
3766
3767 /**
3768  * igb_hwtstamp - utility function which checks for TX time stamp
3769  * @adapter: board private structure
3770  * @skb: packet that was just sent
3771  *
3772  * If we were asked to do hardware stamping and such a time stamp is
3773  * available, then it must have been for this skb here because we only
3774  * allow only one such packet into the queue.
3775  */
3776 static void igb_tx_hwtstamp(struct igb_adapter *adapter, struct sk_buff *skb)
3777 {
3778         union skb_shared_tx *shtx = skb_tx(skb);
3779         struct e1000_hw *hw = &adapter->hw;
3780
3781         if (unlikely(shtx->hardware)) {
3782                 u32 valid = rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID;
3783                 if (valid) {
3784                         u64 regval = rd32(E1000_TXSTMPL);
3785                         u64 ns;
3786                         struct skb_shared_hwtstamps shhwtstamps;
3787
3788                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
3789                         regval |= (u64)rd32(E1000_TXSTMPH) << 32;
3790                         ns = timecounter_cyc2time(&adapter->clock,
3791                                                   regval);
3792                         timecompare_update(&adapter->compare, ns);
3793                         shhwtstamps.hwtstamp = ns_to_ktime(ns);
3794                         shhwtstamps.syststamp =
3795                                 timecompare_transform(&adapter->compare, ns);
3796                         skb_tstamp_tx(skb, &shhwtstamps);
3797                 }
3798
3799                 /* delayed orphaning: skb_tstamp_tx() needs the socket */
3800                 skb_orphan(skb);
3801         }
3802 }
3803
3804 /**
3805  * igb_clean_tx_irq - Reclaim resources after transmit completes
3806  * @adapter: board private structure
3807  * returns true if ring is completely cleaned
3808  **/
3809 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
3810 {
3811         struct igb_adapter *adapter = tx_ring->adapter;
3812         struct net_device *netdev = adapter->netdev;
3813         struct e1000_hw *hw = &adapter->hw;
3814         struct igb_buffer *buffer_info;
3815         struct sk_buff *skb;
3816         union e1000_adv_tx_desc *tx_desc, *eop_desc;
3817         unsigned int total_bytes = 0, total_packets = 0;
3818         unsigned int i, eop, count = 0;
3819         bool cleaned = false;
3820
3821         i = tx_ring->next_to_clean;
3822         eop = tx_ring->buffer_info[i].next_to_watch;
3823         eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
3824
3825         while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3826                (count < tx_ring->count)) {
3827                 for (cleaned = false; !cleaned; count++) {
3828                         tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3829                         buffer_info = &tx_ring->buffer_info[i];
3830                         cleaned = (i == eop);
3831                         skb = buffer_info->skb;
3832
3833                         if (skb) {
3834                                 unsigned int segs, bytecount;
3835                                 /* gso_segs is currently only valid for tcp */
3836                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3837                                 /* multiply data chunks by size of headers */
3838                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3839                                             skb->len;
3840                                 total_packets += segs;
3841                                 total_bytes += bytecount;
3842
3843                                 igb_tx_hwtstamp(adapter, skb);
3844                         }
3845
3846                         igb_unmap_and_free_tx_resource(adapter, buffer_info);
3847                         tx_desc->wb.status = 0;
3848
3849                         i++;
3850                         if (i == tx_ring->count)
3851                                 i = 0;
3852                 }
3853                 eop = tx_ring->buffer_info[i].next_to_watch;
3854                 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
3855         }
3856
3857         tx_ring->next_to_clean = i;
3858
3859         if (unlikely(count &&
3860                      netif_carrier_ok(netdev) &&
3861                      IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3862                 /* Make sure that anybody stopping the queue after this
3863                  * sees the new next_to_clean.
3864                  */
3865                 smp_mb();
3866                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
3867                     !(test_bit(__IGB_DOWN, &adapter->state))) {
3868                         netif_wake_subqueue(netdev, tx_ring->queue_index);
3869                         ++adapter->restart_queue;
3870                 }
3871         }
3872
3873         if (tx_ring->detect_tx_hung) {
3874                 /* Detect a transmit hang in hardware, this serializes the
3875                  * check with the clearing of time_stamp and movement of i */
3876                 tx_ring->detect_tx_hung = false;
3877                 if (tx_ring->buffer_info[i].time_stamp &&
3878                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3879                                (adapter->tx_timeout_factor * HZ))
3880                     && !(rd32(E1000_STATUS) &
3881                          E1000_STATUS_TXOFF)) {
3882
3883                         /* detected Tx unit hang */
3884                         dev_err(&adapter->pdev->dev,
3885                                 "Detected Tx Unit Hang\n"
3886                                 "  Tx Queue             <%d>\n"
3887                                 "  TDH                  <%x>\n"
3888                                 "  TDT                  <%x>\n"
3889                                 "  next_to_use          <%x>\n"
3890                                 "  next_to_clean        <%x>\n"
3891                                 "buffer_info[next_to_clean]\n"
3892                                 "  time_stamp           <%lx>\n"
3893                                 "  next_to_watch        <%x>\n"
3894                                 "  jiffies              <%lx>\n"
3895                                 "  desc.status          <%x>\n",
3896                                 tx_ring->queue_index,
3897                                 readl(adapter->hw.hw_addr + tx_ring->head),
3898                                 readl(adapter->hw.hw_addr + tx_ring->tail),
3899                                 tx_ring->next_to_use,
3900                                 tx_ring->next_to_clean,
3901                                 tx_ring->buffer_info[i].time_stamp,
3902                                 eop,
3903                                 jiffies,
3904                                 eop_desc->wb.status);
3905                         netif_stop_subqueue(netdev, tx_ring->queue_index);
3906                 }
3907         }
3908         tx_ring->total_bytes += total_bytes;
3909         tx_ring->total_packets += total_packets;
3910         tx_ring->tx_stats.bytes += total_bytes;
3911         tx_ring->tx_stats.packets += total_packets;
3912         adapter->net_stats.tx_bytes += total_bytes;
3913         adapter->net_stats.tx_packets += total_packets;
3914         return (count < tx_ring->count);
3915 }
3916
3917 /**
3918  * igb_receive_skb - helper function to handle rx indications
3919  * @ring: pointer to receive ring receving this packet
3920  * @status: descriptor status field as written by hardware
3921  * @rx_desc: receive descriptor containing vlan and type information.
3922  * @skb: pointer to sk_buff to be indicated to stack
3923  **/
3924 static void igb_receive_skb(struct igb_ring *ring, u8 status,
3925                             union e1000_adv_rx_desc * rx_desc,
3926                             struct sk_buff *skb)
3927 {
3928         struct igb_adapter * adapter = ring->adapter;
3929         bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
3930
3931         skb_record_rx_queue(skb, ring->queue_index);
3932         if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3933                 if (vlan_extracted)
3934                         vlan_gro_receive(&ring->napi, adapter->vlgrp,
3935                                          le16_to_cpu(rx_desc->wb.upper.vlan),
3936                                          skb);
3937                 else
3938                         napi_gro_receive(&ring->napi, skb);
3939         } else {
3940                 if (vlan_extracted)
3941                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3942                                           le16_to_cpu(rx_desc->wb.upper.vlan));
3943                 else
3944                         netif_receive_skb(skb);
3945         }
3946 }
3947
3948 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3949                                        u32 status_err, struct sk_buff *skb)
3950 {
3951         skb->ip_summed = CHECKSUM_NONE;
3952
3953         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3954         if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3955                 return;
3956         /* TCP/UDP checksum error bit is set */
3957         if (status_err &
3958             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3959                 /* let the stack verify checksum errors */
3960                 adapter->hw_csum_err++;
3961                 return;
3962         }
3963         /* It must be a TCP or UDP packet with a valid checksum */
3964         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3965                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3966
3967         adapter->hw_csum_good++;
3968 }
3969
3970 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3971                                  int *work_done, int budget)
3972 {
3973         struct igb_adapter *adapter = rx_ring->adapter;
3974         struct net_device *netdev = adapter->netdev;
3975         struct e1000_hw *hw = &adapter->hw;
3976         struct pci_dev *pdev = adapter->pdev;
3977         union e1000_adv_rx_desc *rx_desc , *next_rxd;
3978         struct igb_buffer *buffer_info , *next_buffer;
3979         struct sk_buff *skb;
3980         bool cleaned = false;
3981         int cleaned_count = 0;
3982         unsigned int total_bytes = 0, total_packets = 0;
3983         unsigned int i;
3984         u32 length, hlen, staterr;
3985
3986         i = rx_ring->next_to_clean;
3987         buffer_info = &rx_ring->buffer_info[i];
3988         rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3989         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3990
3991         while (staterr & E1000_RXD_STAT_DD) {
3992                 if (*work_done >= budget)
3993                         break;
3994                 (*work_done)++;
3995
3996                 skb = buffer_info->skb;
3997                 prefetch(skb->data - NET_IP_ALIGN);
3998                 buffer_info->skb = NULL;
3999
4000                 i++;
4001                 if (i == rx_ring->count)
4002                         i = 0;
4003                 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
4004                 prefetch(next_rxd);
4005                 next_buffer = &rx_ring->buffer_info[i];
4006
4007                 length = le16_to_cpu(rx_desc->wb.upper.length);
4008                 cleaned = true;
4009                 cleaned_count++;
4010
4011                 if (!adapter->rx_ps_hdr_size) {
4012                         pci_unmap_single(pdev, buffer_info->dma,
4013                                          adapter->rx_buffer_len +
4014                                            NET_IP_ALIGN,
4015                                          PCI_DMA_FROMDEVICE);
4016                         skb_put(skb, length);
4017                         goto send_up;
4018                 }
4019
4020                 /* HW will not DMA in data larger than the given buffer, even
4021                  * if it parses the (NFS, of course) header to be larger.  In
4022                  * that case, it fills the header buffer and spills the rest
4023                  * into the page.
4024                  */
4025                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
4026                   E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4027                 if (hlen > adapter->rx_ps_hdr_size)
4028                         hlen = adapter->rx_ps_hdr_size;
4029
4030                 if (!skb_shinfo(skb)->nr_frags) {
4031                         pci_unmap_single(pdev, buffer_info->dma,
4032                                          adapter->rx_ps_hdr_size + NET_IP_ALIGN,
4033                                          PCI_DMA_FROMDEVICE);
4034                         skb_put(skb, hlen);
4035                 }
4036
4037                 if (length) {
4038                         pci_unmap_page(pdev, buffer_info->page_dma,
4039                                        PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
4040                         buffer_info->page_dma = 0;
4041
4042                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
4043                                                 buffer_info->page,
4044                                                 buffer_info->page_offset,
4045                                                 length);
4046
4047                         if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
4048                             (page_count(buffer_info->page) != 1))
4049                                 buffer_info->page = NULL;
4050                         else
4051                                 get_page(buffer_info->page);
4052
4053                         skb->len += length;
4054                         skb->data_len += length;
4055
4056                         skb->truesize += length;
4057                 }
4058
4059                 if (!(staterr & E1000_RXD_STAT_EOP)) {
4060                         buffer_info->skb = next_buffer->skb;
4061                         buffer_info->dma = next_buffer->dma;
4062                         next_buffer->skb = skb;
4063                         next_buffer->dma = 0;
4064                         goto next_desc;
4065                 }
4066 send_up:
4067                 /*
4068                  * If this bit is set, then the RX registers contain
4069                  * the time stamp. No other packet will be time
4070                  * stamped until we read these registers, so read the
4071                  * registers to make them available again. Because
4072                  * only one packet can be time stamped at a time, we
4073                  * know that the register values must belong to this
4074                  * one here and therefore we don't need to compare
4075                  * any of the additional attributes stored for it.
4076                  *
4077                  * If nothing went wrong, then it should have a
4078                  * skb_shared_tx that we can turn into a
4079                  * skb_shared_hwtstamps.
4080                  *
4081                  * TODO: can time stamping be triggered (thus locking
4082                  * the registers) without the packet reaching this point
4083                  * here? In that case RX time stamping would get stuck.
4084                  *
4085                  * TODO: in "time stamp all packets" mode this bit is
4086                  * not set. Need a global flag for this mode and then
4087                  * always read the registers. Cannot be done without
4088                  * a race condition.
4089                  */
4090                 if (unlikely(staterr & E1000_RXD_STAT_TS)) {
4091                         u64 regval;
4092                         u64 ns;
4093                         struct skb_shared_hwtstamps *shhwtstamps =
4094                                 skb_hwtstamps(skb);
4095
4096                         WARN(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID),
4097                              "igb: no RX time stamp available for time stamped packet");
4098                         regval = rd32(E1000_RXSTMPL);
4099                         regval |= (u64)rd32(E1000_RXSTMPH) << 32;
4100                         ns = timecounter_cyc2time(&adapter->clock, regval);
4101                         timecompare_update(&adapter->compare, ns);
4102                         memset(shhwtstamps, 0, sizeof(*shhwtstamps));
4103                         shhwtstamps->hwtstamp = ns_to_ktime(ns);
4104                         shhwtstamps->syststamp =
4105                                 timecompare_transform(&adapter->compare, ns);
4106                 }
4107
4108                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
4109                         dev_kfree_skb_irq(skb);
4110                         goto next_desc;
4111                 }
4112
4113                 total_bytes += skb->len;
4114                 total_packets++;
4115
4116                 igb_rx_checksum_adv(adapter, staterr, skb);
4117
4118                 skb->protocol = eth_type_trans(skb, netdev);
4119
4120                 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
4121
4122 next_desc:
4123                 rx_desc->wb.upper.status_error = 0;
4124
4125                 /* return some buffers to hardware, one at a time is too slow */
4126                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
4127                         igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4128                         cleaned_count = 0;
4129                 }
4130
4131                 /* use prefetched values */
4132                 rx_desc = next_rxd;
4133                 buffer_info = next_buffer;
4134                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4135         }
4136
4137         rx_ring->next_to_clean = i;
4138         cleaned_count = IGB_DESC_UNUSED(rx_ring);
4139
4140         if (cleaned_count)
4141                 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4142
4143         rx_ring->total_packets += total_packets;
4144         rx_ring->total_bytes += total_bytes;
4145         rx_ring->rx_stats.packets += total_packets;
4146         rx_ring->rx_stats.bytes += total_bytes;
4147         adapter->net_stats.rx_bytes += total_bytes;
4148         adapter->net_stats.rx_packets += total_packets;
4149         return cleaned;
4150 }
4151
4152 /**
4153  * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
4154  * @adapter: address of board private structure
4155  **/
4156 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
4157                                      int cleaned_count)
4158 {
4159         struct igb_adapter *adapter = rx_ring->adapter;
4160         struct net_device *netdev = adapter->netdev;
4161         struct pci_dev *pdev = adapter->pdev;
4162         union e1000_adv_rx_desc *rx_desc;
4163         struct igb_buffer *buffer_info;
4164         struct sk_buff *skb;
4165         unsigned int i;
4166         int bufsz;
4167
4168         i = rx_ring->next_to_use;
4169         buffer_info = &rx_ring->buffer_info[i];
4170
4171         if (adapter->rx_ps_hdr_size)
4172                 bufsz = adapter->rx_ps_hdr_size;
4173         else
4174                 bufsz = adapter->rx_buffer_len;
4175         bufsz += NET_IP_ALIGN;
4176
4177         while (cleaned_count--) {
4178                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4179
4180                 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
4181                         if (!buffer_info->page) {
4182                                 buffer_info->page = alloc_page(GFP_ATOMIC);
4183                                 if (!buffer_info->page) {
4184                                         adapter->alloc_rx_buff_failed++;
4185                                         goto no_buffers;
4186                                 }
4187                                 buffer_info->page_offset = 0;
4188                         } else {
4189                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
4190                         }
4191                         buffer_info->page_dma =
4192                                 pci_map_page(pdev, buffer_info->page,
4193                                              buffer_info->page_offset,
4194                                              PAGE_SIZE / 2,
4195                                              PCI_DMA_FROMDEVICE);
4196                 }
4197
4198                 if (!buffer_info->skb) {
4199                         skb = netdev_alloc_skb(netdev, bufsz);
4200                         if (!skb) {
4201                                 adapter->alloc_rx_buff_failed++;
4202                                 goto no_buffers;
4203                         }
4204
4205                         /* Make buffer alignment 2 beyond a 16 byte boundary
4206                          * this will result in a 16 byte aligned IP header after
4207                          * the 14 byte MAC header is removed
4208                          */
4209                         skb_reserve(skb, NET_IP_ALIGN);
4210
4211                         buffer_info->skb = skb;
4212                         buffer_info->dma = pci_map_single(pdev, skb->data,
4213                                                           bufsz,
4214                                                           PCI_DMA_FROMDEVICE);
4215                 }
4216                 /* Refresh the desc even if buffer_addrs didn't change because
4217                  * each write-back erases this info. */
4218                 if (adapter->rx_ps_hdr_size) {
4219                         rx_desc->read.pkt_addr =
4220                              cpu_to_le64(buffer_info->page_dma);
4221                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4222                 } else {
4223                         rx_desc->read.pkt_addr =
4224                              cpu_to_le64(buffer_info->dma);
4225                         rx_desc->read.hdr_addr = 0;
4226                 }
4227
4228                 i++;
4229                 if (i == rx_ring->count)
4230                         i = 0;
4231                 buffer_info = &rx_ring->buffer_info[i];
4232         }
4233
4234 no_buffers:
4235         if (rx_ring->next_to_use != i) {
4236                 rx_ring->next_to_use = i;
4237                 if (i == 0)
4238                         i = (rx_ring->count - 1);
4239                 else
4240                         i--;
4241
4242                 /* Force memory writes to complete before letting h/w
4243                  * know there are new descriptors to fetch.  (Only
4244                  * applicable for weak-ordered memory model archs,
4245                  * such as IA-64). */
4246                 wmb();
4247                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4248         }
4249 }
4250
4251 /**
4252  * igb_mii_ioctl -
4253  * @netdev:
4254  * @ifreq:
4255  * @cmd:
4256  **/
4257 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4258 {
4259         struct igb_adapter *adapter = netdev_priv(netdev);
4260         struct mii_ioctl_data *data = if_mii(ifr);
4261
4262         if (adapter->hw.phy.media_type != e1000_media_type_copper)
4263                 return -EOPNOTSUPP;
4264
4265         switch (cmd) {
4266         case SIOCGMIIPHY:
4267                 data->phy_id = adapter->hw.phy.addr;
4268                 break;
4269         case SIOCGMIIREG:
4270                 if (!capable(CAP_NET_ADMIN))
4271                         return -EPERM;
4272                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4273                                      &data->val_out))
4274                         return -EIO;
4275                 break;
4276         case SIOCSMIIREG:
4277         default:
4278                 return -EOPNOTSUPP;
4279         }
4280         return 0;
4281 }
4282
4283 /**
4284  * igb_hwtstamp_ioctl - control hardware time stamping
4285  * @netdev:
4286  * @ifreq:
4287  * @cmd:
4288  *
4289  * Outgoing time stamping can be enabled and disabled. Play nice and
4290  * disable it when requested, although it shouldn't case any overhead
4291  * when no packet needs it. At most one packet in the queue may be
4292  * marked for time stamping, otherwise it would be impossible to tell
4293  * for sure to which packet the hardware time stamp belongs.
4294  *
4295  * Incoming time stamping has to be configured via the hardware
4296  * filters. Not all combinations are supported, in particular event
4297  * type has to be specified. Matching the kind of event packet is
4298  * not supported, with the exception of "all V2 events regardless of
4299  * level 2 or 4".
4300  *
4301  **/
4302 static int igb_hwtstamp_ioctl(struct net_device *netdev,
4303                               struct ifreq *ifr, int cmd)
4304 {
4305         struct igb_adapter *adapter = netdev_priv(netdev);
4306         struct e1000_hw *hw = &adapter->hw;
4307         struct hwtstamp_config config;
4308         u32 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4309         u32 tsync_rx_ctl_bit = E1000_TSYNCRXCTL_ENABLED;
4310         u32 tsync_rx_ctl_type = 0;
4311         u32 tsync_rx_cfg = 0;
4312         int is_l4 = 0;
4313         int is_l2 = 0;
4314         short port = 319; /* PTP */
4315         u32 regval;
4316
4317         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
4318                 return -EFAULT;
4319
4320         /* reserved for future extensions */
4321         if (config.flags)
4322                 return -EINVAL;
4323
4324         switch (config.tx_type) {
4325         case HWTSTAMP_TX_OFF:
4326                 tsync_tx_ctl_bit = 0;
4327                 break;
4328         case HWTSTAMP_TX_ON:
4329                 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4330                 break;
4331         default:
4332                 return -ERANGE;
4333         }
4334
4335         switch (config.rx_filter) {
4336         case HWTSTAMP_FILTER_NONE:
4337                 tsync_rx_ctl_bit = 0;
4338                 break;
4339         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
4340         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4341         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4342         case HWTSTAMP_FILTER_ALL:
4343                 /*
4344                  * register TSYNCRXCFG must be set, therefore it is not
4345                  * possible to time stamp both Sync and Delay_Req messages
4346                  * => fall back to time stamping all packets
4347                  */
4348                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_ALL;
4349                 config.rx_filter = HWTSTAMP_FILTER_ALL;
4350                 break;
4351         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
4352                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4353                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
4354                 is_l4 = 1;
4355                 break;
4356         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
4357                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4358                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
4359                 is_l4 = 1;
4360                 break;
4361         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
4362         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
4363                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
4364                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
4365                 is_l2 = 1;
4366                 is_l4 = 1;
4367                 config.rx_filter = HWTSTAMP_FILTER_SOME;
4368                 break;
4369         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
4370         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
4371                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
4372                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
4373                 is_l2 = 1;
4374                 is_l4 = 1;
4375                 config.rx_filter = HWTSTAMP_FILTER_SOME;
4376                 break;
4377         case HWTSTAMP_FILTER_PTP_V2_EVENT:
4378         case HWTSTAMP_FILTER_PTP_V2_SYNC:
4379         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
4380                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_EVENT_V2;
4381                 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
4382                 is_l2 = 1;
4383                 break;
4384         default:
4385                 return -ERANGE;
4386         }
4387
4388         /* enable/disable TX */
4389         regval = rd32(E1000_TSYNCTXCTL);
4390         regval = (regval & ~E1000_TSYNCTXCTL_ENABLED) | tsync_tx_ctl_bit;
4391         wr32(E1000_TSYNCTXCTL, regval);
4392
4393         /* enable/disable RX, define which PTP packets are time stamped */
4394         regval = rd32(E1000_TSYNCRXCTL);
4395         regval = (regval & ~E1000_TSYNCRXCTL_ENABLED) | tsync_rx_ctl_bit;
4396         regval = (regval & ~0xE) | tsync_rx_ctl_type;
4397         wr32(E1000_TSYNCRXCTL, regval);
4398         wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
4399
4400         /*
4401          * Ethertype Filter Queue Filter[0][15:0] = 0x88F7
4402          *                                          (Ethertype to filter on)
4403          * Ethertype Filter Queue Filter[0][26] = 0x1 (Enable filter)
4404          * Ethertype Filter Queue Filter[0][30] = 0x1 (Enable Timestamping)
4405          */
4406         wr32(E1000_ETQF0, is_l2 ? 0x440088f7 : 0);
4407
4408         /* L4 Queue Filter[0]: only filter by source and destination port */
4409         wr32(E1000_SPQF0, htons(port));
4410         wr32(E1000_IMIREXT(0), is_l4 ?
4411              ((1<<12) | (1<<19) /* bypass size and control flags */) : 0);
4412         wr32(E1000_IMIR(0), is_l4 ?
4413              (htons(port)
4414               | (0<<16) /* immediate interrupt disabled */
4415               | 0 /* (1<<17) bit cleared: do not bypass
4416                      destination port check */)
4417                 : 0);
4418         wr32(E1000_FTQF0, is_l4 ?
4419              (0x11 /* UDP */
4420               | (1<<15) /* VF not compared */
4421               | (1<<27) /* Enable Timestamping */
4422               | (7<<28) /* only source port filter enabled,
4423                            source/target address and protocol
4424                            masked */)
4425              : ((1<<15) | (15<<28) /* all mask bits set = filter not
4426                                       enabled */));
4427
4428         wrfl();
4429
4430         adapter->hwtstamp_config = config;
4431
4432         /* clear TX/RX time stamp registers, just to be sure */
4433         regval = rd32(E1000_TXSTMPH);
4434         regval = rd32(E1000_RXSTMPH);
4435
4436         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
4437                 -EFAULT : 0;
4438 }
4439
4440 /**
4441  * igb_ioctl -
4442  * @netdev:
4443  * @ifreq:
4444  * @cmd:
4445  **/
4446 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4447 {
4448         switch (cmd) {
4449         case SIOCGMIIPHY:
4450         case SIOCGMIIREG:
4451         case SIOCSMIIREG:
4452                 return igb_mii_ioctl(netdev, ifr, cmd);
4453         case SIOCSHWTSTAMP:
4454                 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
4455         default:
4456                 return -EOPNOTSUPP;
4457         }
4458 }
4459
4460 static void igb_vlan_rx_register(struct net_device *netdev,
4461                                  struct vlan_group *grp)
4462 {
4463         struct igb_adapter *adapter = netdev_priv(netdev);
4464         struct e1000_hw *hw = &adapter->hw;
4465         u32 ctrl, rctl;
4466
4467         igb_irq_disable(adapter);
4468         adapter->vlgrp = grp;
4469
4470         if (grp) {
4471                 /* enable VLAN tag insert/strip */
4472                 ctrl = rd32(E1000_CTRL);
4473                 ctrl |= E1000_CTRL_VME;
4474                 wr32(E1000_CTRL, ctrl);
4475
4476                 /* enable VLAN receive filtering */
4477                 rctl = rd32(E1000_RCTL);
4478                 rctl &= ~E1000_RCTL_CFIEN;
4479                 wr32(E1000_RCTL, rctl);
4480                 igb_update_mng_vlan(adapter);
4481                 wr32(E1000_RLPML,
4482                                 adapter->max_frame_size + VLAN_TAG_SIZE);
4483         } else {
4484                 /* disable VLAN tag insert/strip */
4485                 ctrl = rd32(E1000_CTRL);
4486                 ctrl &= ~E1000_CTRL_VME;
4487                 wr32(E1000_CTRL, ctrl);
4488
4489                 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4490                         igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4491                         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4492                 }
4493                 wr32(E1000_RLPML,
4494                                 adapter->max_frame_size);
4495         }
4496
4497         if (!test_bit(__IGB_DOWN, &adapter->state))
4498                 igb_irq_enable(adapter);
4499 }
4500
4501 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4502 {
4503         struct igb_adapter *adapter = netdev_priv(netdev);
4504         struct e1000_hw *hw = &adapter->hw;
4505         u32 vfta, index;
4506
4507         if ((hw->mng_cookie.status &
4508              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4509             (vid == adapter->mng_vlan_id))
4510                 return;
4511         /* add VID to filter table */
4512         index = (vid >> 5) & 0x7F;
4513         vfta = array_rd32(E1000_VFTA, index);
4514         vfta |= (1 << (vid & 0x1F));
4515         igb_write_vfta(&adapter->hw, index, vfta);
4516 }
4517
4518 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4519 {
4520         struct igb_adapter *adapter = netdev_priv(netdev);
4521         struct e1000_hw *hw = &adapter->hw;
4522         u32 vfta, index;
4523
4524         igb_irq_disable(adapter);
4525         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4526
4527         if (!test_bit(__IGB_DOWN, &adapter->state))
4528                 igb_irq_enable(adapter);
4529
4530         if ((adapter->hw.mng_cookie.status &
4531              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4532             (vid == adapter->mng_vlan_id)) {
4533                 /* release control to f/w */
4534                 igb_release_hw_control(adapter);
4535                 return;
4536         }
4537
4538         /* remove VID from filter table */
4539         index = (vid >> 5) & 0x7F;
4540         vfta = array_rd32(E1000_VFTA, index);
4541         vfta &= ~(1 << (vid & 0x1F));
4542         igb_write_vfta(&adapter->hw, index, vfta);
4543 }
4544
4545 static void igb_restore_vlan(struct igb_adapter *adapter)
4546 {
4547         igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4548
4549         if (adapter->vlgrp) {
4550                 u16 vid;
4551                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4552                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4553                                 continue;
4554                         igb_vlan_rx_add_vid(adapter->netdev, vid);
4555                 }
4556         }
4557 }
4558
4559 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4560 {
4561         struct e1000_mac_info *mac = &adapter->hw.mac;
4562
4563         mac->autoneg = 0;
4564
4565         /* Fiber NICs only allow 1000 gbps Full duplex */
4566         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
4567                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4568                 dev_err(&adapter->pdev->dev,
4569                         "Unsupported Speed/Duplex configuration\n");
4570                 return -EINVAL;
4571         }
4572
4573         switch (spddplx) {
4574         case SPEED_10 + DUPLEX_HALF:
4575                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4576                 break;
4577         case SPEED_10 + DUPLEX_FULL:
4578                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4579                 break;
4580         case SPEED_100 + DUPLEX_HALF:
4581                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4582                 break;
4583         case SPEED_100 + DUPLEX_FULL:
4584                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4585                 break;
4586         case SPEED_1000 + DUPLEX_FULL:
4587                 mac->autoneg = 1;
4588                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4589                 break;
4590         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4591         default:
4592                 dev_err(&adapter->pdev->dev,
4593                         "Unsupported Speed/Duplex configuration\n");
4594                 return -EINVAL;
4595         }
4596         return 0;
4597 }
4598
4599 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
4600 {
4601         struct net_device *netdev = pci_get_drvdata(pdev);
4602         struct igb_adapter *adapter = netdev_priv(netdev);
4603         struct e1000_hw *hw = &adapter->hw;
4604         u32 ctrl, rctl, status;
4605         u32 wufc = adapter->wol;
4606 #ifdef CONFIG_PM
4607         int retval = 0;
4608 #endif
4609
4610         netif_device_detach(netdev);
4611
4612         if (netif_running(netdev))
4613                 igb_close(netdev);
4614
4615         igb_reset_interrupt_capability(adapter);
4616
4617         igb_free_queues(adapter);
4618
4619 #ifdef CONFIG_PM
4620         retval = pci_save_state(pdev);
4621         if (retval)
4622                 return retval;
4623 #endif
4624
4625         status = rd32(E1000_STATUS);
4626         if (status & E1000_STATUS_LU)
4627                 wufc &= ~E1000_WUFC_LNKC;
4628
4629         if (wufc) {
4630                 igb_setup_rctl(adapter);
4631                 igb_set_multi(netdev);
4632
4633                 /* turn on all-multi mode if wake on multicast is enabled */
4634                 if (wufc & E1000_WUFC_MC) {
4635                         rctl = rd32(E1000_RCTL);
4636                         rctl |= E1000_RCTL_MPE;
4637                         wr32(E1000_RCTL, rctl);
4638                 }
4639
4640                 ctrl = rd32(E1000_CTRL);
4641                 /* advertise wake from D3Cold */
4642                 #define E1000_CTRL_ADVD3WUC 0x00100000
4643                 /* phy power management enable */
4644                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4645                 ctrl |= E1000_CTRL_ADVD3WUC;
4646                 wr32(E1000_CTRL, ctrl);
4647
4648                 /* Allow time for pending master requests to run */
4649                 igb_disable_pcie_master(&adapter->hw);
4650
4651                 wr32(E1000_WUC, E1000_WUC_PME_EN);
4652                 wr32(E1000_WUFC, wufc);
4653         } else {
4654                 wr32(E1000_WUC, 0);
4655                 wr32(E1000_WUFC, 0);
4656         }
4657
4658         /* make sure adapter isn't asleep if manageability/wol is enabled */
4659         if (wufc || adapter->en_mng_pt) {
4660                 pci_enable_wake(pdev, PCI_D3hot, 1);
4661                 pci_enable_wake(pdev, PCI_D3cold, 1);
4662         } else {
4663                 igb_shutdown_fiber_serdes_link_82575(hw);
4664                 pci_enable_wake(pdev, PCI_D3hot, 0);
4665                 pci_enable_wake(pdev, PCI_D3cold, 0);
4666         }
4667
4668         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4669          * would have already happened in close and is redundant. */
4670         igb_release_hw_control(adapter);
4671
4672         pci_disable_device(pdev);
4673
4674         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4675
4676         return 0;
4677 }
4678
4679 #ifdef CONFIG_PM
4680 static int igb_resume(struct pci_dev *pdev)
4681 {
4682         struct net_device *netdev = pci_get_drvdata(pdev);
4683         struct igb_adapter *adapter = netdev_priv(netdev);
4684         struct e1000_hw *hw = &adapter->hw;
4685         u32 err;
4686
4687         pci_set_power_state(pdev, PCI_D0);
4688         pci_restore_state(pdev);
4689
4690         err = pci_enable_device_mem(pdev);
4691         if (err) {
4692                 dev_err(&pdev->dev,
4693                         "igb: Cannot enable PCI device from suspend\n");
4694                 return err;
4695         }
4696         pci_set_master(pdev);
4697
4698         pci_enable_wake(pdev, PCI_D3hot, 0);
4699         pci_enable_wake(pdev, PCI_D3cold, 0);
4700
4701         igb_set_interrupt_capability(adapter);
4702
4703         if (igb_alloc_queues(adapter)) {
4704                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4705                 return -ENOMEM;
4706         }
4707
4708         /* e1000_power_up_phy(adapter); */
4709
4710         igb_reset(adapter);
4711
4712         /* let the f/w know that the h/w is now under the control of the
4713          * driver. */
4714         igb_get_hw_control(adapter);
4715
4716         wr32(E1000_WUS, ~0);
4717
4718         if (netif_running(netdev)) {
4719                 err = igb_open(netdev);
4720                 if (err)
4721                         return err;
4722         }
4723
4724         netif_device_attach(netdev);
4725
4726         return 0;
4727 }
4728 #endif
4729
4730 static void igb_shutdown(struct pci_dev *pdev)
4731 {
4732         igb_suspend(pdev, PMSG_SUSPEND);
4733 }
4734
4735 #ifdef CONFIG_NET_POLL_CONTROLLER
4736 /*
4737  * Polling 'interrupt' - used by things like netconsole to send skbs
4738  * without having to re-enable interrupts. It's not called while
4739  * the interrupt routine is executing.
4740  */
4741 static void igb_netpoll(struct net_device *netdev)
4742 {
4743         struct igb_adapter *adapter = netdev_priv(netdev);
4744         struct e1000_hw *hw = &adapter->hw;
4745         int i;
4746
4747         if (!adapter->msix_entries) {
4748                 igb_irq_disable(adapter);
4749                 napi_schedule(&adapter->rx_ring[0].napi);
4750                 return;
4751         }
4752
4753         for (i = 0; i < adapter->num_tx_queues; i++) {
4754                 struct igb_ring *tx_ring = &adapter->tx_ring[i];
4755                 wr32(E1000_EIMC, tx_ring->eims_value);
4756                 igb_clean_tx_irq(tx_ring);
4757                 wr32(E1000_EIMS, tx_ring->eims_value);
4758         }
4759
4760         for (i = 0; i < adapter->num_rx_queues; i++) {
4761                 struct igb_ring *rx_ring = &adapter->rx_ring[i];
4762                 wr32(E1000_EIMC, rx_ring->eims_value);
4763                 napi_schedule(&rx_ring->napi);
4764         }
4765 }
4766 #endif /* CONFIG_NET_POLL_CONTROLLER */
4767
4768 /**
4769  * igb_io_error_detected - called when PCI error is detected
4770  * @pdev: Pointer to PCI device
4771  * @state: The current pci connection state
4772  *
4773  * This function is called after a PCI bus error affecting
4774  * this device has been detected.
4775  */
4776 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4777                                               pci_channel_state_t state)
4778 {
4779         struct net_device *netdev = pci_get_drvdata(pdev);
4780         struct igb_adapter *adapter = netdev_priv(netdev);
4781
4782         netif_device_detach(netdev);
4783
4784         if (netif_running(netdev))
4785                 igb_down(adapter);
4786         pci_disable_device(pdev);
4787
4788         /* Request a slot slot reset. */
4789         return PCI_ERS_RESULT_NEED_RESET;
4790 }
4791
4792 /**
4793  * igb_io_slot_reset - called after the pci bus has been reset.
4794  * @pdev: Pointer to PCI device
4795  *
4796  * Restart the card from scratch, as if from a cold-boot. Implementation
4797  * resembles the first-half of the igb_resume routine.
4798  */
4799 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4800 {
4801         struct net_device *netdev = pci_get_drvdata(pdev);
4802         struct igb_adapter *adapter = netdev_priv(netdev);
4803         struct e1000_hw *hw = &adapter->hw;
4804         pci_ers_result_t result;
4805         int err;
4806
4807         if (pci_enable_device_mem(pdev)) {
4808                 dev_err(&pdev->dev,
4809                         "Cannot re-enable PCI device after reset.\n");
4810                 result = PCI_ERS_RESULT_DISCONNECT;
4811         } else {
4812                 pci_set_master(pdev);
4813                 pci_restore_state(pdev);
4814
4815                 pci_enable_wake(pdev, PCI_D3hot, 0);
4816                 pci_enable_wake(pdev, PCI_D3cold, 0);
4817
4818                 igb_reset(adapter);
4819                 wr32(E1000_WUS, ~0);
4820                 result = PCI_ERS_RESULT_RECOVERED;
4821         }
4822
4823         err = pci_cleanup_aer_uncorrect_error_status(pdev);
4824         if (err) {
4825                 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
4826                         "failed 0x%0x\n", err);
4827                 /* non-fatal, continue */
4828         }
4829
4830         return result;
4831 }
4832
4833 /**
4834  * igb_io_resume - called when traffic can start flowing again.
4835  * @pdev: Pointer to PCI device
4836  *
4837  * This callback is called when the error recovery driver tells us that
4838  * its OK to resume normal operation. Implementation resembles the
4839  * second-half of the igb_resume routine.
4840  */
4841 static void igb_io_resume(struct pci_dev *pdev)
4842 {
4843         struct net_device *netdev = pci_get_drvdata(pdev);
4844         struct igb_adapter *adapter = netdev_priv(netdev);
4845
4846         if (netif_running(netdev)) {
4847                 if (igb_up(adapter)) {
4848                         dev_err(&pdev->dev, "igb_up failed after reset\n");
4849                         return;
4850                 }
4851         }
4852
4853         netif_device_attach(netdev);
4854
4855         /* let the f/w know that the h/w is now under the control of the
4856          * driver. */
4857         igb_get_hw_control(adapter);
4858 }
4859
4860 /* igb_main.c */