igb: rename nvm ops
[safe/jmp/linux-2.6] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/pci-aspm.h>
42 #include <linux/delay.h>
43 #include <linux/interrupt.h>
44 #include <linux/if_ether.h>
45 #include <linux/aer.h>
46 #ifdef CONFIG_IGB_DCA
47 #include <linux/dca.h>
48 #endif
49 #include "igb.h"
50
51 #define DRV_VERSION "1.2.45-k2"
52 char igb_driver_name[] = "igb";
53 char igb_driver_version[] = DRV_VERSION;
54 static const char igb_driver_string[] =
55                                 "Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] = "Copyright (c) 2008 Intel Corporation.";
57
58 static const struct e1000_info *igb_info_tbl[] = {
59         [board_82575] = &e1000_82575_info,
60 };
61
62 static struct pci_device_id igb_pci_tbl[] = {
63         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
64         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
65         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
66         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
67         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
68         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
69         /* required last entry */
70         {0, }
71 };
72
73 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
74
75 void igb_reset(struct igb_adapter *);
76 static int igb_setup_all_tx_resources(struct igb_adapter *);
77 static int igb_setup_all_rx_resources(struct igb_adapter *);
78 static void igb_free_all_tx_resources(struct igb_adapter *);
79 static void igb_free_all_rx_resources(struct igb_adapter *);
80 void igb_update_stats(struct igb_adapter *);
81 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
82 static void __devexit igb_remove(struct pci_dev *pdev);
83 static int igb_sw_init(struct igb_adapter *);
84 static int igb_open(struct net_device *);
85 static int igb_close(struct net_device *);
86 static void igb_configure_tx(struct igb_adapter *);
87 static void igb_configure_rx(struct igb_adapter *);
88 static void igb_setup_rctl(struct igb_adapter *);
89 static void igb_clean_all_tx_rings(struct igb_adapter *);
90 static void igb_clean_all_rx_rings(struct igb_adapter *);
91 static void igb_clean_tx_ring(struct igb_ring *);
92 static void igb_clean_rx_ring(struct igb_ring *);
93 static void igb_set_multi(struct net_device *);
94 static void igb_update_phy_info(unsigned long);
95 static void igb_watchdog(unsigned long);
96 static void igb_watchdog_task(struct work_struct *);
97 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
98                                   struct igb_ring *);
99 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
100 static struct net_device_stats *igb_get_stats(struct net_device *);
101 static int igb_change_mtu(struct net_device *, int);
102 static int igb_set_mac(struct net_device *, void *);
103 static irqreturn_t igb_intr(int irq, void *);
104 static irqreturn_t igb_intr_msi(int irq, void *);
105 static irqreturn_t igb_msix_other(int irq, void *);
106 static irqreturn_t igb_msix_rx(int irq, void *);
107 static irqreturn_t igb_msix_tx(int irq, void *);
108 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
109 #ifdef CONFIG_IGB_DCA
110 static void igb_update_rx_dca(struct igb_ring *);
111 static void igb_update_tx_dca(struct igb_ring *);
112 static void igb_setup_dca(struct igb_adapter *);
113 #endif /* CONFIG_IGB_DCA */
114 static bool igb_clean_tx_irq(struct igb_ring *);
115 static int igb_poll(struct napi_struct *, int);
116 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
117 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
118 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
119 static void igb_tx_timeout(struct net_device *);
120 static void igb_reset_task(struct work_struct *);
121 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
122 static void igb_vlan_rx_add_vid(struct net_device *, u16);
123 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
124 static void igb_restore_vlan(struct igb_adapter *);
125
126 static int igb_suspend(struct pci_dev *, pm_message_t);
127 #ifdef CONFIG_PM
128 static int igb_resume(struct pci_dev *);
129 #endif
130 static void igb_shutdown(struct pci_dev *);
131 #ifdef CONFIG_IGB_DCA
132 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
133 static struct notifier_block dca_notifier = {
134         .notifier_call  = igb_notify_dca,
135         .next           = NULL,
136         .priority       = 0
137 };
138 #endif
139
140 #ifdef CONFIG_NET_POLL_CONTROLLER
141 /* for netdump / net console */
142 static void igb_netpoll(struct net_device *);
143 #endif
144
145 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
146                      pci_channel_state_t);
147 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
148 static void igb_io_resume(struct pci_dev *);
149
150 static struct pci_error_handlers igb_err_handler = {
151         .error_detected = igb_io_error_detected,
152         .slot_reset = igb_io_slot_reset,
153         .resume = igb_io_resume,
154 };
155
156
157 static struct pci_driver igb_driver = {
158         .name     = igb_driver_name,
159         .id_table = igb_pci_tbl,
160         .probe    = igb_probe,
161         .remove   = __devexit_p(igb_remove),
162 #ifdef CONFIG_PM
163         /* Power Managment Hooks */
164         .suspend  = igb_suspend,
165         .resume   = igb_resume,
166 #endif
167         .shutdown = igb_shutdown,
168         .err_handler = &igb_err_handler
169 };
170
171 static int global_quad_port_a; /* global quad port a indication */
172
173 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
174 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
175 MODULE_LICENSE("GPL");
176 MODULE_VERSION(DRV_VERSION);
177
178 #ifdef DEBUG
179 /**
180  * igb_get_hw_dev_name - return device name string
181  * used by hardware layer to print debugging information
182  **/
183 char *igb_get_hw_dev_name(struct e1000_hw *hw)
184 {
185         struct igb_adapter *adapter = hw->back;
186         return adapter->netdev->name;
187 }
188 #endif
189
190 /**
191  * igb_init_module - Driver Registration Routine
192  *
193  * igb_init_module is the first routine called when the driver is
194  * loaded. All it does is register with the PCI subsystem.
195  **/
196 static int __init igb_init_module(void)
197 {
198         int ret;
199         printk(KERN_INFO "%s - version %s\n",
200                igb_driver_string, igb_driver_version);
201
202         printk(KERN_INFO "%s\n", igb_copyright);
203
204         global_quad_port_a = 0;
205
206 #ifdef CONFIG_IGB_DCA
207         dca_register_notify(&dca_notifier);
208 #endif
209
210         ret = pci_register_driver(&igb_driver);
211         return ret;
212 }
213
214 module_init(igb_init_module);
215
216 /**
217  * igb_exit_module - Driver Exit Cleanup Routine
218  *
219  * igb_exit_module is called just before the driver is removed
220  * from memory.
221  **/
222 static void __exit igb_exit_module(void)
223 {
224 #ifdef CONFIG_IGB_DCA
225         dca_unregister_notify(&dca_notifier);
226 #endif
227         pci_unregister_driver(&igb_driver);
228 }
229
230 module_exit(igb_exit_module);
231
232 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
233 /**
234  * igb_cache_ring_register - Descriptor ring to register mapping
235  * @adapter: board private structure to initialize
236  *
237  * Once we know the feature-set enabled for the device, we'll cache
238  * the register offset the descriptor ring is assigned to.
239  **/
240 static void igb_cache_ring_register(struct igb_adapter *adapter)
241 {
242         int i;
243
244         switch (adapter->hw.mac.type) {
245         case e1000_82576:
246                 /* The queues are allocated for virtualization such that VF 0
247                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
248                  * In order to avoid collision we start at the first free queue
249                  * and continue consuming queues in the same sequence
250                  */
251                 for (i = 0; i < adapter->num_rx_queues; i++)
252                         adapter->rx_ring[i].reg_idx = Q_IDX_82576(i);
253                 for (i = 0; i < adapter->num_tx_queues; i++)
254                         adapter->tx_ring[i].reg_idx = Q_IDX_82576(i);
255                 break;
256         case e1000_82575:
257         default:
258                 for (i = 0; i < adapter->num_rx_queues; i++)
259                         adapter->rx_ring[i].reg_idx = i;
260                 for (i = 0; i < adapter->num_tx_queues; i++)
261                         adapter->tx_ring[i].reg_idx = i;
262                 break;
263         }
264 }
265
266 /**
267  * igb_alloc_queues - Allocate memory for all rings
268  * @adapter: board private structure to initialize
269  *
270  * We allocate one ring per queue at run-time since we don't know the
271  * number of queues at compile-time.
272  **/
273 static int igb_alloc_queues(struct igb_adapter *adapter)
274 {
275         int i;
276
277         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
278                                    sizeof(struct igb_ring), GFP_KERNEL);
279         if (!adapter->tx_ring)
280                 return -ENOMEM;
281
282         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
283                                    sizeof(struct igb_ring), GFP_KERNEL);
284         if (!adapter->rx_ring) {
285                 kfree(adapter->tx_ring);
286                 return -ENOMEM;
287         }
288
289         adapter->rx_ring->buddy = adapter->tx_ring;
290
291         for (i = 0; i < adapter->num_tx_queues; i++) {
292                 struct igb_ring *ring = &(adapter->tx_ring[i]);
293                 ring->count = adapter->tx_ring_count;
294                 ring->adapter = adapter;
295                 ring->queue_index = i;
296         }
297         for (i = 0; i < adapter->num_rx_queues; i++) {
298                 struct igb_ring *ring = &(adapter->rx_ring[i]);
299                 ring->count = adapter->rx_ring_count;
300                 ring->adapter = adapter;
301                 ring->queue_index = i;
302                 ring->itr_register = E1000_ITR;
303
304                 /* set a default napi handler for each rx_ring */
305                 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
306         }
307
308         igb_cache_ring_register(adapter);
309         return 0;
310 }
311
312 static void igb_free_queues(struct igb_adapter *adapter)
313 {
314         int i;
315
316         for (i = 0; i < adapter->num_rx_queues; i++)
317                 netif_napi_del(&adapter->rx_ring[i].napi);
318
319         kfree(adapter->tx_ring);
320         kfree(adapter->rx_ring);
321 }
322
323 #define IGB_N0_QUEUE -1
324 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
325                               int tx_queue, int msix_vector)
326 {
327         u32 msixbm = 0;
328         struct e1000_hw *hw = &adapter->hw;
329         u32 ivar, index;
330
331         switch (hw->mac.type) {
332         case e1000_82575:
333                 /* The 82575 assigns vectors using a bitmask, which matches the
334                    bitmask for the EICR/EIMS/EIMC registers.  To assign one
335                    or more queues to a vector, we write the appropriate bits
336                    into the MSIXBM register for that vector. */
337                 if (rx_queue > IGB_N0_QUEUE) {
338                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
339                         adapter->rx_ring[rx_queue].eims_value = msixbm;
340                 }
341                 if (tx_queue > IGB_N0_QUEUE) {
342                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
343                         adapter->tx_ring[tx_queue].eims_value =
344                                   E1000_EICR_TX_QUEUE0 << tx_queue;
345                 }
346                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
347                 break;
348         case e1000_82576:
349                 /* 82576 uses a table-based method for assigning vectors.
350                    Each queue has a single entry in the table to which we write
351                    a vector number along with a "valid" bit.  Sadly, the layout
352                    of the table is somewhat counterintuitive. */
353                 if (rx_queue > IGB_N0_QUEUE) {
354                         index = (rx_queue >> 1);
355                         ivar = array_rd32(E1000_IVAR0, index);
356                         if (rx_queue & 0x1) {
357                                 /* vector goes into third byte of register */
358                                 ivar = ivar & 0xFF00FFFF;
359                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
360                         } else {
361                                 /* vector goes into low byte of register */
362                                 ivar = ivar & 0xFFFFFF00;
363                                 ivar |= msix_vector | E1000_IVAR_VALID;
364                         }
365                         adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
366                         array_wr32(E1000_IVAR0, index, ivar);
367                 }
368                 if (tx_queue > IGB_N0_QUEUE) {
369                         index = (tx_queue >> 1);
370                         ivar = array_rd32(E1000_IVAR0, index);
371                         if (tx_queue & 0x1) {
372                                 /* vector goes into high byte of register */
373                                 ivar = ivar & 0x00FFFFFF;
374                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
375                         } else {
376                                 /* vector goes into second byte of register */
377                                 ivar = ivar & 0xFFFF00FF;
378                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
379                         }
380                         adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
381                         array_wr32(E1000_IVAR0, index, ivar);
382                 }
383                 break;
384         default:
385                 BUG();
386                 break;
387         }
388 }
389
390 /**
391  * igb_configure_msix - Configure MSI-X hardware
392  *
393  * igb_configure_msix sets up the hardware to properly
394  * generate MSI-X interrupts.
395  **/
396 static void igb_configure_msix(struct igb_adapter *adapter)
397 {
398         u32 tmp;
399         int i, vector = 0;
400         struct e1000_hw *hw = &adapter->hw;
401
402         adapter->eims_enable_mask = 0;
403         if (hw->mac.type == e1000_82576)
404                 /* Turn on MSI-X capability first, or our settings
405                  * won't stick.  And it will take days to debug. */
406                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
407                                    E1000_GPIE_PBA | E1000_GPIE_EIAME | 
408                                    E1000_GPIE_NSICR);
409
410         for (i = 0; i < adapter->num_tx_queues; i++) {
411                 struct igb_ring *tx_ring = &adapter->tx_ring[i];
412                 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
413                 adapter->eims_enable_mask |= tx_ring->eims_value;
414                 if (tx_ring->itr_val)
415                         writel(tx_ring->itr_val,
416                                hw->hw_addr + tx_ring->itr_register);
417                 else
418                         writel(1, hw->hw_addr + tx_ring->itr_register);
419         }
420
421         for (i = 0; i < adapter->num_rx_queues; i++) {
422                 struct igb_ring *rx_ring = &adapter->rx_ring[i];
423                 rx_ring->buddy = NULL;
424                 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
425                 adapter->eims_enable_mask |= rx_ring->eims_value;
426                 if (rx_ring->itr_val)
427                         writel(rx_ring->itr_val,
428                                hw->hw_addr + rx_ring->itr_register);
429                 else
430                         writel(1, hw->hw_addr + rx_ring->itr_register);
431         }
432
433
434         /* set vector for other causes, i.e. link changes */
435         switch (hw->mac.type) {
436         case e1000_82575:
437                 array_wr32(E1000_MSIXBM(0), vector++,
438                                       E1000_EIMS_OTHER);
439
440                 tmp = rd32(E1000_CTRL_EXT);
441                 /* enable MSI-X PBA support*/
442                 tmp |= E1000_CTRL_EXT_PBA_CLR;
443
444                 /* Auto-Mask interrupts upon ICR read. */
445                 tmp |= E1000_CTRL_EXT_EIAME;
446                 tmp |= E1000_CTRL_EXT_IRCA;
447
448                 wr32(E1000_CTRL_EXT, tmp);
449                 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
450                 adapter->eims_other = E1000_EIMS_OTHER;
451
452                 break;
453
454         case e1000_82576:
455                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
456                 wr32(E1000_IVAR_MISC, tmp);
457
458                 adapter->eims_enable_mask = (1 << (vector)) - 1;
459                 adapter->eims_other = 1 << (vector - 1);
460                 break;
461         default:
462                 /* do nothing, since nothing else supports MSI-X */
463                 break;
464         } /* switch (hw->mac.type) */
465         wrfl();
466 }
467
468 /**
469  * igb_request_msix - Initialize MSI-X interrupts
470  *
471  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
472  * kernel.
473  **/
474 static int igb_request_msix(struct igb_adapter *adapter)
475 {
476         struct net_device *netdev = adapter->netdev;
477         int i, err = 0, vector = 0;
478
479         vector = 0;
480
481         for (i = 0; i < adapter->num_tx_queues; i++) {
482                 struct igb_ring *ring = &(adapter->tx_ring[i]);
483                 sprintf(ring->name, "%s-tx-%d", netdev->name, i);
484                 err = request_irq(adapter->msix_entries[vector].vector,
485                                   &igb_msix_tx, 0, ring->name,
486                                   &(adapter->tx_ring[i]));
487                 if (err)
488                         goto out;
489                 ring->itr_register = E1000_EITR(0) + (vector << 2);
490                 ring->itr_val = 976; /* ~4000 ints/sec */
491                 vector++;
492         }
493         for (i = 0; i < adapter->num_rx_queues; i++) {
494                 struct igb_ring *ring = &(adapter->rx_ring[i]);
495                 if (strlen(netdev->name) < (IFNAMSIZ - 5))
496                         sprintf(ring->name, "%s-rx-%d", netdev->name, i);
497                 else
498                         memcpy(ring->name, netdev->name, IFNAMSIZ);
499                 err = request_irq(adapter->msix_entries[vector].vector,
500                                   &igb_msix_rx, 0, ring->name,
501                                   &(adapter->rx_ring[i]));
502                 if (err)
503                         goto out;
504                 ring->itr_register = E1000_EITR(0) + (vector << 2);
505                 ring->itr_val = adapter->itr;
506                 /* overwrite the poll routine for MSIX, we've already done
507                  * netif_napi_add */
508                 ring->napi.poll = &igb_clean_rx_ring_msix;
509                 vector++;
510         }
511
512         err = request_irq(adapter->msix_entries[vector].vector,
513                           &igb_msix_other, 0, netdev->name, netdev);
514         if (err)
515                 goto out;
516
517         igb_configure_msix(adapter);
518         return 0;
519 out:
520         return err;
521 }
522
523 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
524 {
525         if (adapter->msix_entries) {
526                 pci_disable_msix(adapter->pdev);
527                 kfree(adapter->msix_entries);
528                 adapter->msix_entries = NULL;
529         } else if (adapter->flags & IGB_FLAG_HAS_MSI)
530                 pci_disable_msi(adapter->pdev);
531         return;
532 }
533
534
535 /**
536  * igb_set_interrupt_capability - set MSI or MSI-X if supported
537  *
538  * Attempt to configure interrupts using the best available
539  * capabilities of the hardware and kernel.
540  **/
541 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
542 {
543         int err;
544         int numvecs, i;
545
546         /* Number of supported queues. */
547         /* Having more queues than CPUs doesn't make sense. */
548         adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
549         adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
550
551         numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
552         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
553                                         GFP_KERNEL);
554         if (!adapter->msix_entries)
555                 goto msi_only;
556
557         for (i = 0; i < numvecs; i++)
558                 adapter->msix_entries[i].entry = i;
559
560         err = pci_enable_msix(adapter->pdev,
561                               adapter->msix_entries,
562                               numvecs);
563         if (err == 0)
564                 goto out;
565
566         igb_reset_interrupt_capability(adapter);
567
568         /* If we can't do MSI-X, try MSI */
569 msi_only:
570         adapter->num_rx_queues = 1;
571         adapter->num_tx_queues = 1;
572         if (!pci_enable_msi(adapter->pdev))
573                 adapter->flags |= IGB_FLAG_HAS_MSI;
574 out:
575         /* Notify the stack of the (possibly) reduced Tx Queue count. */
576         adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
577         return;
578 }
579
580 /**
581  * igb_request_irq - initialize interrupts
582  *
583  * Attempts to configure interrupts using the best available
584  * capabilities of the hardware and kernel.
585  **/
586 static int igb_request_irq(struct igb_adapter *adapter)
587 {
588         struct net_device *netdev = adapter->netdev;
589         struct e1000_hw *hw = &adapter->hw;
590         int err = 0;
591
592         if (adapter->msix_entries) {
593                 err = igb_request_msix(adapter);
594                 if (!err)
595                         goto request_done;
596                 /* fall back to MSI */
597                 igb_reset_interrupt_capability(adapter);
598                 if (!pci_enable_msi(adapter->pdev))
599                         adapter->flags |= IGB_FLAG_HAS_MSI;
600                 igb_free_all_tx_resources(adapter);
601                 igb_free_all_rx_resources(adapter);
602                 adapter->num_rx_queues = 1;
603                 igb_alloc_queues(adapter);
604         } else {
605                 switch (hw->mac.type) {
606                 case e1000_82575:
607                         wr32(E1000_MSIXBM(0),
608                              (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
609                         break;
610                 case e1000_82576:
611                         wr32(E1000_IVAR0, E1000_IVAR_VALID);
612                         break;
613                 default:
614                         break;
615                 }
616         }
617
618         if (adapter->flags & IGB_FLAG_HAS_MSI) {
619                 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
620                                   netdev->name, netdev);
621                 if (!err)
622                         goto request_done;
623                 /* fall back to legacy interrupts */
624                 igb_reset_interrupt_capability(adapter);
625                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
626         }
627
628         err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
629                           netdev->name, netdev);
630
631         if (err)
632                 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
633                         err);
634
635 request_done:
636         return err;
637 }
638
639 static void igb_free_irq(struct igb_adapter *adapter)
640 {
641         struct net_device *netdev = adapter->netdev;
642
643         if (adapter->msix_entries) {
644                 int vector = 0, i;
645
646                 for (i = 0; i < adapter->num_tx_queues; i++)
647                         free_irq(adapter->msix_entries[vector++].vector,
648                                 &(adapter->tx_ring[i]));
649                 for (i = 0; i < adapter->num_rx_queues; i++)
650                         free_irq(adapter->msix_entries[vector++].vector,
651                                 &(adapter->rx_ring[i]));
652
653                 free_irq(adapter->msix_entries[vector++].vector, netdev);
654                 return;
655         }
656
657         free_irq(adapter->pdev->irq, netdev);
658 }
659
660 /**
661  * igb_irq_disable - Mask off interrupt generation on the NIC
662  * @adapter: board private structure
663  **/
664 static void igb_irq_disable(struct igb_adapter *adapter)
665 {
666         struct e1000_hw *hw = &adapter->hw;
667
668         if (adapter->msix_entries) {
669                 wr32(E1000_EIAM, 0);
670                 wr32(E1000_EIMC, ~0);
671                 wr32(E1000_EIAC, 0);
672         }
673
674         wr32(E1000_IAM, 0);
675         wr32(E1000_IMC, ~0);
676         wrfl();
677         synchronize_irq(adapter->pdev->irq);
678 }
679
680 /**
681  * igb_irq_enable - Enable default interrupt generation settings
682  * @adapter: board private structure
683  **/
684 static void igb_irq_enable(struct igb_adapter *adapter)
685 {
686         struct e1000_hw *hw = &adapter->hw;
687
688         if (adapter->msix_entries) {
689                 wr32(E1000_EIAC, adapter->eims_enable_mask);
690                 wr32(E1000_EIAM, adapter->eims_enable_mask);
691                 wr32(E1000_EIMS, adapter->eims_enable_mask);
692                 wr32(E1000_IMS, E1000_IMS_LSC);
693         } else {
694                 wr32(E1000_IMS, IMS_ENABLE_MASK);
695                 wr32(E1000_IAM, IMS_ENABLE_MASK);
696         }
697 }
698
699 static void igb_update_mng_vlan(struct igb_adapter *adapter)
700 {
701         struct net_device *netdev = adapter->netdev;
702         u16 vid = adapter->hw.mng_cookie.vlan_id;
703         u16 old_vid = adapter->mng_vlan_id;
704         if (adapter->vlgrp) {
705                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
706                         if (adapter->hw.mng_cookie.status &
707                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
708                                 igb_vlan_rx_add_vid(netdev, vid);
709                                 adapter->mng_vlan_id = vid;
710                         } else
711                                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
712
713                         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
714                                         (vid != old_vid) &&
715                             !vlan_group_get_device(adapter->vlgrp, old_vid))
716                                 igb_vlan_rx_kill_vid(netdev, old_vid);
717                 } else
718                         adapter->mng_vlan_id = vid;
719         }
720 }
721
722 /**
723  * igb_release_hw_control - release control of the h/w to f/w
724  * @adapter: address of board private structure
725  *
726  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
727  * For ASF and Pass Through versions of f/w this means that the
728  * driver is no longer loaded.
729  *
730  **/
731 static void igb_release_hw_control(struct igb_adapter *adapter)
732 {
733         struct e1000_hw *hw = &adapter->hw;
734         u32 ctrl_ext;
735
736         /* Let firmware take over control of h/w */
737         ctrl_ext = rd32(E1000_CTRL_EXT);
738         wr32(E1000_CTRL_EXT,
739                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
740 }
741
742
743 /**
744  * igb_get_hw_control - get control of the h/w from f/w
745  * @adapter: address of board private structure
746  *
747  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
748  * For ASF and Pass Through versions of f/w this means that
749  * the driver is loaded.
750  *
751  **/
752 static void igb_get_hw_control(struct igb_adapter *adapter)
753 {
754         struct e1000_hw *hw = &adapter->hw;
755         u32 ctrl_ext;
756
757         /* Let firmware know the driver has taken over */
758         ctrl_ext = rd32(E1000_CTRL_EXT);
759         wr32(E1000_CTRL_EXT,
760                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
761 }
762
763 /**
764  * igb_configure - configure the hardware for RX and TX
765  * @adapter: private board structure
766  **/
767 static void igb_configure(struct igb_adapter *adapter)
768 {
769         struct net_device *netdev = adapter->netdev;
770         int i;
771
772         igb_get_hw_control(adapter);
773         igb_set_multi(netdev);
774
775         igb_restore_vlan(adapter);
776
777         igb_configure_tx(adapter);
778         igb_setup_rctl(adapter);
779         igb_configure_rx(adapter);
780
781         igb_rx_fifo_flush_82575(&adapter->hw);
782
783         /* call IGB_DESC_UNUSED which always leaves
784          * at least 1 descriptor unused to make sure
785          * next_to_use != next_to_clean */
786         for (i = 0; i < adapter->num_rx_queues; i++) {
787                 struct igb_ring *ring = &adapter->rx_ring[i];
788                 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
789         }
790
791
792         adapter->tx_queue_len = netdev->tx_queue_len;
793 }
794
795
796 /**
797  * igb_up - Open the interface and prepare it to handle traffic
798  * @adapter: board private structure
799  **/
800
801 int igb_up(struct igb_adapter *adapter)
802 {
803         struct e1000_hw *hw = &adapter->hw;
804         int i;
805
806         /* hardware has been reset, we need to reload some things */
807         igb_configure(adapter);
808
809         clear_bit(__IGB_DOWN, &adapter->state);
810
811         for (i = 0; i < adapter->num_rx_queues; i++)
812                 napi_enable(&adapter->rx_ring[i].napi);
813         if (adapter->msix_entries)
814                 igb_configure_msix(adapter);
815
816         /* Clear any pending interrupts. */
817         rd32(E1000_ICR);
818         igb_irq_enable(adapter);
819
820         /* Fire a link change interrupt to start the watchdog. */
821         wr32(E1000_ICS, E1000_ICS_LSC);
822         return 0;
823 }
824
825 void igb_down(struct igb_adapter *adapter)
826 {
827         struct e1000_hw *hw = &adapter->hw;
828         struct net_device *netdev = adapter->netdev;
829         u32 tctl, rctl;
830         int i;
831
832         /* signal that we're down so the interrupt handler does not
833          * reschedule our watchdog timer */
834         set_bit(__IGB_DOWN, &adapter->state);
835
836         /* disable receives in the hardware */
837         rctl = rd32(E1000_RCTL);
838         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
839         /* flush and sleep below */
840
841         netif_tx_stop_all_queues(netdev);
842
843         /* disable transmits in the hardware */
844         tctl = rd32(E1000_TCTL);
845         tctl &= ~E1000_TCTL_EN;
846         wr32(E1000_TCTL, tctl);
847         /* flush both disables and wait for them to finish */
848         wrfl();
849         msleep(10);
850
851         for (i = 0; i < adapter->num_rx_queues; i++)
852                 napi_disable(&adapter->rx_ring[i].napi);
853
854         igb_irq_disable(adapter);
855
856         del_timer_sync(&adapter->watchdog_timer);
857         del_timer_sync(&adapter->phy_info_timer);
858
859         netdev->tx_queue_len = adapter->tx_queue_len;
860         netif_carrier_off(netdev);
861         adapter->link_speed = 0;
862         adapter->link_duplex = 0;
863
864         if (!pci_channel_offline(adapter->pdev))
865                 igb_reset(adapter);
866         igb_clean_all_tx_rings(adapter);
867         igb_clean_all_rx_rings(adapter);
868 }
869
870 void igb_reinit_locked(struct igb_adapter *adapter)
871 {
872         WARN_ON(in_interrupt());
873         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
874                 msleep(1);
875         igb_down(adapter);
876         igb_up(adapter);
877         clear_bit(__IGB_RESETTING, &adapter->state);
878 }
879
880 void igb_reset(struct igb_adapter *adapter)
881 {
882         struct e1000_hw *hw = &adapter->hw;
883         struct e1000_mac_info *mac = &hw->mac;
884         struct e1000_fc_info *fc = &hw->fc;
885         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
886         u16 hwm;
887
888         /* Repartition Pba for greater than 9k mtu
889          * To take effect CTRL.RST is required.
890          */
891         if (mac->type != e1000_82576) {
892         pba = E1000_PBA_34K;
893         }
894         else {
895                 pba = E1000_PBA_64K;
896         }
897
898         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
899             (mac->type < e1000_82576)) {
900                 /* adjust PBA for jumbo frames */
901                 wr32(E1000_PBA, pba);
902
903                 /* To maintain wire speed transmits, the Tx FIFO should be
904                  * large enough to accommodate two full transmit packets,
905                  * rounded up to the next 1KB and expressed in KB.  Likewise,
906                  * the Rx FIFO should be large enough to accommodate at least
907                  * one full receive packet and is similarly rounded up and
908                  * expressed in KB. */
909                 pba = rd32(E1000_PBA);
910                 /* upper 16 bits has Tx packet buffer allocation size in KB */
911                 tx_space = pba >> 16;
912                 /* lower 16 bits has Rx packet buffer allocation size in KB */
913                 pba &= 0xffff;
914                 /* the tx fifo also stores 16 bytes of information about the tx
915                  * but don't include ethernet FCS because hardware appends it */
916                 min_tx_space = (adapter->max_frame_size +
917                                 sizeof(struct e1000_tx_desc) -
918                                 ETH_FCS_LEN) * 2;
919                 min_tx_space = ALIGN(min_tx_space, 1024);
920                 min_tx_space >>= 10;
921                 /* software strips receive CRC, so leave room for it */
922                 min_rx_space = adapter->max_frame_size;
923                 min_rx_space = ALIGN(min_rx_space, 1024);
924                 min_rx_space >>= 10;
925
926                 /* If current Tx allocation is less than the min Tx FIFO size,
927                  * and the min Tx FIFO size is less than the current Rx FIFO
928                  * allocation, take space away from current Rx allocation */
929                 if (tx_space < min_tx_space &&
930                     ((min_tx_space - tx_space) < pba)) {
931                         pba = pba - (min_tx_space - tx_space);
932
933                         /* if short on rx space, rx wins and must trump tx
934                          * adjustment */
935                         if (pba < min_rx_space)
936                                 pba = min_rx_space;
937                 }
938                 wr32(E1000_PBA, pba);
939         }
940
941         /* flow control settings */
942         /* The high water mark must be low enough to fit one full frame
943          * (or the size used for early receive) above it in the Rx FIFO.
944          * Set it to the lower of:
945          * - 90% of the Rx FIFO size, or
946          * - the full Rx FIFO size minus one full frame */
947         hwm = min(((pba << 10) * 9 / 10),
948                         ((pba << 10) - 2 * adapter->max_frame_size));
949
950         if (mac->type < e1000_82576) {
951                 fc->high_water = hwm & 0xFFF8;  /* 8-byte granularity */
952                 fc->low_water = fc->high_water - 8;
953         } else {
954                 fc->high_water = hwm & 0xFFF0;  /* 16-byte granularity */
955                 fc->low_water = fc->high_water - 16;
956         }
957         fc->pause_time = 0xFFFF;
958         fc->send_xon = 1;
959         fc->type = fc->original_type;
960
961         /* Allow time for pending master requests to run */
962         adapter->hw.mac.ops.reset_hw(&adapter->hw);
963         wr32(E1000_WUC, 0);
964
965         if (adapter->hw.mac.ops.init_hw(&adapter->hw))
966                 dev_err(&adapter->pdev->dev, "Hardware Error\n");
967
968         igb_update_mng_vlan(adapter);
969
970         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
971         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
972
973         igb_reset_adaptive(&adapter->hw);
974         igb_get_phy_info(&adapter->hw);
975 }
976
977 static const struct net_device_ops igb_netdev_ops = {
978         .ndo_open               = igb_open,
979         .ndo_stop               = igb_close,
980         .ndo_start_xmit         = igb_xmit_frame_adv,
981         .ndo_get_stats          = igb_get_stats,
982         .ndo_set_multicast_list = igb_set_multi,
983         .ndo_set_mac_address    = igb_set_mac,
984         .ndo_change_mtu         = igb_change_mtu,
985         .ndo_do_ioctl           = igb_ioctl,
986         .ndo_tx_timeout         = igb_tx_timeout,
987         .ndo_validate_addr      = eth_validate_addr,
988         .ndo_vlan_rx_register   = igb_vlan_rx_register,
989         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
990         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
991 #ifdef CONFIG_NET_POLL_CONTROLLER
992         .ndo_poll_controller    = igb_netpoll,
993 #endif
994 };
995
996 /**
997  * igb_probe - Device Initialization Routine
998  * @pdev: PCI device information struct
999  * @ent: entry in igb_pci_tbl
1000  *
1001  * Returns 0 on success, negative on failure
1002  *
1003  * igb_probe initializes an adapter identified by a pci_dev structure.
1004  * The OS initialization, configuring of the adapter private structure,
1005  * and a hardware reset occur.
1006  **/
1007 static int __devinit igb_probe(struct pci_dev *pdev,
1008                                const struct pci_device_id *ent)
1009 {
1010         struct net_device *netdev;
1011         struct igb_adapter *adapter;
1012         struct e1000_hw *hw;
1013         struct pci_dev *us_dev;
1014         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1015         unsigned long mmio_start, mmio_len;
1016         int i, err, pci_using_dac, pos;
1017         u16 eeprom_data = 0, state = 0;
1018         u16 eeprom_apme_mask = IGB_EEPROM_APME;
1019         u32 part_num;
1020
1021         err = pci_enable_device_mem(pdev);
1022         if (err)
1023                 return err;
1024
1025         pci_using_dac = 0;
1026         err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1027         if (!err) {
1028                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1029                 if (!err)
1030                         pci_using_dac = 1;
1031         } else {
1032                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1033                 if (err) {
1034                         err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1035                         if (err) {
1036                                 dev_err(&pdev->dev, "No usable DMA "
1037                                         "configuration, aborting\n");
1038                                 goto err_dma;
1039                         }
1040                 }
1041         }
1042
1043         /* 82575 requires that the pci-e link partner disable the L0s state */
1044         switch (pdev->device) {
1045         case E1000_DEV_ID_82575EB_COPPER:
1046         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1047         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1048                 us_dev = pdev->bus->self;
1049                 pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
1050                 if (pos) {
1051                         pci_read_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1052                                              &state);
1053                         state &= ~PCIE_LINK_STATE_L0S;
1054                         pci_write_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1055                                               state);
1056                         dev_info(&pdev->dev,
1057                                  "Disabling ASPM L0s upstream switch port %s\n",
1058                                  pci_name(us_dev));
1059                 }
1060         default:
1061                 break;
1062         }
1063
1064         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1065                                            IORESOURCE_MEM),
1066                                            igb_driver_name);
1067         if (err)
1068                 goto err_pci_reg;
1069
1070         err = pci_enable_pcie_error_reporting(pdev);
1071         if (err) {
1072                 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
1073                         "0x%x\n", err);
1074                 /* non-fatal, continue */
1075         }
1076
1077         pci_set_master(pdev);
1078         pci_save_state(pdev);
1079
1080         err = -ENOMEM;
1081         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES);
1082         if (!netdev)
1083                 goto err_alloc_etherdev;
1084
1085         SET_NETDEV_DEV(netdev, &pdev->dev);
1086
1087         pci_set_drvdata(pdev, netdev);
1088         adapter = netdev_priv(netdev);
1089         adapter->netdev = netdev;
1090         adapter->pdev = pdev;
1091         hw = &adapter->hw;
1092         hw->back = adapter;
1093         adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1094
1095         mmio_start = pci_resource_start(pdev, 0);
1096         mmio_len = pci_resource_len(pdev, 0);
1097
1098         err = -EIO;
1099         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
1100         if (!adapter->hw.hw_addr)
1101                 goto err_ioremap;
1102
1103         netdev->netdev_ops = &igb_netdev_ops;
1104         igb_set_ethtool_ops(netdev);
1105         netdev->watchdog_timeo = 5 * HZ;
1106
1107         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1108
1109         netdev->mem_start = mmio_start;
1110         netdev->mem_end = mmio_start + mmio_len;
1111
1112         /* PCI config space info */
1113         hw->vendor_id = pdev->vendor;
1114         hw->device_id = pdev->device;
1115         hw->revision_id = pdev->revision;
1116         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1117         hw->subsystem_device_id = pdev->subsystem_device;
1118
1119         /* setup the private structure */
1120         hw->back = adapter;
1121         /* Copy the default MAC, PHY and NVM function pointers */
1122         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1123         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1124         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1125         /* Initialize skew-specific constants */
1126         err = ei->get_invariants(hw);
1127         if (err)
1128                 goto err_hw_init;
1129
1130         err = igb_sw_init(adapter);
1131         if (err)
1132                 goto err_sw_init;
1133
1134         igb_get_bus_info_pcie(hw);
1135
1136         /* set flags */
1137         switch (hw->mac.type) {
1138         case e1000_82575:
1139                 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1140                 break;
1141         case e1000_82576:
1142         default:
1143                 break;
1144         }
1145
1146         hw->phy.autoneg_wait_to_complete = false;
1147         hw->mac.adaptive_ifs = true;
1148
1149         /* Copper options */
1150         if (hw->phy.media_type == e1000_media_type_copper) {
1151                 hw->phy.mdix = AUTO_ALL_MODES;
1152                 hw->phy.disable_polarity_correction = false;
1153                 hw->phy.ms_type = e1000_ms_hw_default;
1154         }
1155
1156         if (igb_check_reset_block(hw))
1157                 dev_info(&pdev->dev,
1158                         "PHY reset is blocked due to SOL/IDER session.\n");
1159
1160         netdev->features = NETIF_F_SG |
1161                            NETIF_F_HW_CSUM |
1162                            NETIF_F_HW_VLAN_TX |
1163                            NETIF_F_HW_VLAN_RX |
1164                            NETIF_F_HW_VLAN_FILTER;
1165
1166         netdev->features |= NETIF_F_TSO;
1167         netdev->features |= NETIF_F_TSO6;
1168
1169 #ifdef CONFIG_IGB_LRO
1170         netdev->features |= NETIF_F_GRO;
1171 #endif
1172
1173         netdev->vlan_features |= NETIF_F_TSO;
1174         netdev->vlan_features |= NETIF_F_TSO6;
1175         netdev->vlan_features |= NETIF_F_HW_CSUM;
1176         netdev->vlan_features |= NETIF_F_SG;
1177
1178         if (pci_using_dac)
1179                 netdev->features |= NETIF_F_HIGHDMA;
1180
1181         adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1182
1183         /* before reading the NVM, reset the controller to put the device in a
1184          * known good starting state */
1185         hw->mac.ops.reset_hw(hw);
1186
1187         /* make sure the NVM is good */
1188         if (igb_validate_nvm_checksum(hw) < 0) {
1189                 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1190                 err = -EIO;
1191                 goto err_eeprom;
1192         }
1193
1194         /* copy the MAC address out of the NVM */
1195         if (hw->mac.ops.read_mac_addr(hw))
1196                 dev_err(&pdev->dev, "NVM Read Error\n");
1197
1198         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1199         memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1200
1201         if (!is_valid_ether_addr(netdev->perm_addr)) {
1202                 dev_err(&pdev->dev, "Invalid MAC Address\n");
1203                 err = -EIO;
1204                 goto err_eeprom;
1205         }
1206
1207         init_timer(&adapter->watchdog_timer);
1208         adapter->watchdog_timer.function = &igb_watchdog;
1209         adapter->watchdog_timer.data = (unsigned long) adapter;
1210
1211         init_timer(&adapter->phy_info_timer);
1212         adapter->phy_info_timer.function = &igb_update_phy_info;
1213         adapter->phy_info_timer.data = (unsigned long) adapter;
1214
1215         INIT_WORK(&adapter->reset_task, igb_reset_task);
1216         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1217
1218         /* Initialize link & ring properties that are user-changeable */
1219         adapter->tx_ring->count = 256;
1220         for (i = 0; i < adapter->num_tx_queues; i++)
1221                 adapter->tx_ring[i].count = adapter->tx_ring->count;
1222         adapter->rx_ring->count = 256;
1223         for (i = 0; i < adapter->num_rx_queues; i++)
1224                 adapter->rx_ring[i].count = adapter->rx_ring->count;
1225
1226         adapter->fc_autoneg = true;
1227         hw->mac.autoneg = true;
1228         hw->phy.autoneg_advertised = 0x2f;
1229
1230         hw->fc.original_type = e1000_fc_default;
1231         hw->fc.type = e1000_fc_default;
1232
1233         adapter->itr_setting = 3;
1234         adapter->itr = IGB_START_ITR;
1235
1236         igb_validate_mdi_setting(hw);
1237
1238         adapter->rx_csum = 1;
1239
1240         /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1241          * enable the ACPI Magic Packet filter
1242          */
1243
1244         if (hw->bus.func == 0 ||
1245             hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1246                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1247
1248         if (eeprom_data & eeprom_apme_mask)
1249                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1250
1251         /* now that we have the eeprom settings, apply the special cases where
1252          * the eeprom may be wrong or the board simply won't support wake on
1253          * lan on a particular port */
1254         switch (pdev->device) {
1255         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1256                 adapter->eeprom_wol = 0;
1257                 break;
1258         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1259         case E1000_DEV_ID_82576_FIBER:
1260         case E1000_DEV_ID_82576_SERDES:
1261                 /* Wake events only supported on port A for dual fiber
1262                  * regardless of eeprom setting */
1263                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1264                         adapter->eeprom_wol = 0;
1265                 break;
1266         }
1267
1268         /* initialize the wol settings based on the eeprom settings */
1269         adapter->wol = adapter->eeprom_wol;
1270         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1271
1272         /* reset the hardware with the new settings */
1273         igb_reset(adapter);
1274
1275         /* let the f/w know that the h/w is now under the control of the
1276          * driver. */
1277         igb_get_hw_control(adapter);
1278
1279         /* tell the stack to leave us alone until igb_open() is called */
1280         netif_carrier_off(netdev);
1281         netif_tx_stop_all_queues(netdev);
1282
1283         strcpy(netdev->name, "eth%d");
1284         err = register_netdev(netdev);
1285         if (err)
1286                 goto err_register;
1287
1288 #ifdef CONFIG_IGB_DCA
1289         if (dca_add_requester(&pdev->dev) == 0) {
1290                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1291                 dev_info(&pdev->dev, "DCA enabled\n");
1292                 /* Always use CB2 mode, difference is masked
1293                  * in the CB driver. */
1294                 wr32(E1000_DCA_CTRL, 2);
1295                 igb_setup_dca(adapter);
1296         }
1297 #endif
1298
1299         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1300         /* print bus type/speed/width info */
1301         dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1302                  netdev->name,
1303                  ((hw->bus.speed == e1000_bus_speed_2500)
1304                   ? "2.5Gb/s" : "unknown"),
1305                  ((hw->bus.width == e1000_bus_width_pcie_x4)
1306                   ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1307                   ? "Width x1" : "unknown"),
1308                  netdev->dev_addr);
1309
1310         igb_read_part_num(hw, &part_num);
1311         dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1312                 (part_num >> 8), (part_num & 0xff));
1313
1314         dev_info(&pdev->dev,
1315                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1316                 adapter->msix_entries ? "MSI-X" :
1317                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1318                 adapter->num_rx_queues, adapter->num_tx_queues);
1319
1320         return 0;
1321
1322 err_register:
1323         igb_release_hw_control(adapter);
1324 err_eeprom:
1325         if (!igb_check_reset_block(hw))
1326                 igb_reset_phy(hw);
1327
1328         if (hw->flash_address)
1329                 iounmap(hw->flash_address);
1330
1331         igb_free_queues(adapter);
1332 err_sw_init:
1333 err_hw_init:
1334         iounmap(hw->hw_addr);
1335 err_ioremap:
1336         free_netdev(netdev);
1337 err_alloc_etherdev:
1338         pci_release_selected_regions(pdev, pci_select_bars(pdev,
1339                                      IORESOURCE_MEM));
1340 err_pci_reg:
1341 err_dma:
1342         pci_disable_device(pdev);
1343         return err;
1344 }
1345
1346 /**
1347  * igb_remove - Device Removal Routine
1348  * @pdev: PCI device information struct
1349  *
1350  * igb_remove is called by the PCI subsystem to alert the driver
1351  * that it should release a PCI device.  The could be caused by a
1352  * Hot-Plug event, or because the driver is going to be removed from
1353  * memory.
1354  **/
1355 static void __devexit igb_remove(struct pci_dev *pdev)
1356 {
1357         struct net_device *netdev = pci_get_drvdata(pdev);
1358         struct igb_adapter *adapter = netdev_priv(netdev);
1359 #ifdef CONFIG_IGB_DCA
1360         struct e1000_hw *hw = &adapter->hw;
1361 #endif
1362         int err;
1363
1364         /* flush_scheduled work may reschedule our watchdog task, so
1365          * explicitly disable watchdog tasks from being rescheduled  */
1366         set_bit(__IGB_DOWN, &adapter->state);
1367         del_timer_sync(&adapter->watchdog_timer);
1368         del_timer_sync(&adapter->phy_info_timer);
1369
1370         flush_scheduled_work();
1371
1372 #ifdef CONFIG_IGB_DCA
1373         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1374                 dev_info(&pdev->dev, "DCA disabled\n");
1375                 dca_remove_requester(&pdev->dev);
1376                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1377                 wr32(E1000_DCA_CTRL, 1);
1378         }
1379 #endif
1380
1381         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1382          * would have already happened in close and is redundant. */
1383         igb_release_hw_control(adapter);
1384
1385         unregister_netdev(netdev);
1386
1387         if (!igb_check_reset_block(&adapter->hw))
1388                 igb_reset_phy(&adapter->hw);
1389
1390         igb_reset_interrupt_capability(adapter);
1391
1392         igb_free_queues(adapter);
1393
1394         iounmap(adapter->hw.hw_addr);
1395         if (adapter->hw.flash_address)
1396                 iounmap(adapter->hw.flash_address);
1397         pci_release_selected_regions(pdev, pci_select_bars(pdev,
1398                                      IORESOURCE_MEM));
1399
1400         free_netdev(netdev);
1401
1402         err = pci_disable_pcie_error_reporting(pdev);
1403         if (err)
1404                 dev_err(&pdev->dev,
1405                         "pci_disable_pcie_error_reporting failed 0x%x\n", err);
1406
1407         pci_disable_device(pdev);
1408 }
1409
1410 /**
1411  * igb_sw_init - Initialize general software structures (struct igb_adapter)
1412  * @adapter: board private structure to initialize
1413  *
1414  * igb_sw_init initializes the Adapter private data structure.
1415  * Fields are initialized based on PCI device information and
1416  * OS network device settings (MTU size).
1417  **/
1418 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1419 {
1420         struct e1000_hw *hw = &adapter->hw;
1421         struct net_device *netdev = adapter->netdev;
1422         struct pci_dev *pdev = adapter->pdev;
1423
1424         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1425
1426         adapter->tx_ring_count = IGB_DEFAULT_TXD;
1427         adapter->rx_ring_count = IGB_DEFAULT_RXD;
1428         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1429         adapter->rx_ps_hdr_size = 0; /* disable packet split */
1430         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1431         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1432
1433         /* This call may decrease the number of queues depending on
1434          * interrupt mode. */
1435         igb_set_interrupt_capability(adapter);
1436
1437         if (igb_alloc_queues(adapter)) {
1438                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1439                 return -ENOMEM;
1440         }
1441
1442         /* Explicitly disable IRQ since the NIC can be in any state. */
1443         igb_irq_disable(adapter);
1444
1445         set_bit(__IGB_DOWN, &adapter->state);
1446         return 0;
1447 }
1448
1449 /**
1450  * igb_open - Called when a network interface is made active
1451  * @netdev: network interface device structure
1452  *
1453  * Returns 0 on success, negative value on failure
1454  *
1455  * The open entry point is called when a network interface is made
1456  * active by the system (IFF_UP).  At this point all resources needed
1457  * for transmit and receive operations are allocated, the interrupt
1458  * handler is registered with the OS, the watchdog timer is started,
1459  * and the stack is notified that the interface is ready.
1460  **/
1461 static int igb_open(struct net_device *netdev)
1462 {
1463         struct igb_adapter *adapter = netdev_priv(netdev);
1464         struct e1000_hw *hw = &adapter->hw;
1465         int err;
1466         int i;
1467
1468         /* disallow open during test */
1469         if (test_bit(__IGB_TESTING, &adapter->state))
1470                 return -EBUSY;
1471
1472         /* allocate transmit descriptors */
1473         err = igb_setup_all_tx_resources(adapter);
1474         if (err)
1475                 goto err_setup_tx;
1476
1477         /* allocate receive descriptors */
1478         err = igb_setup_all_rx_resources(adapter);
1479         if (err)
1480                 goto err_setup_rx;
1481
1482         /* e1000_power_up_phy(adapter); */
1483
1484         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1485         if ((adapter->hw.mng_cookie.status &
1486              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1487                 igb_update_mng_vlan(adapter);
1488
1489         /* before we allocate an interrupt, we must be ready to handle it.
1490          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1491          * as soon as we call pci_request_irq, so we have to setup our
1492          * clean_rx handler before we do so.  */
1493         igb_configure(adapter);
1494
1495         err = igb_request_irq(adapter);
1496         if (err)
1497                 goto err_req_irq;
1498
1499         /* From here on the code is the same as igb_up() */
1500         clear_bit(__IGB_DOWN, &adapter->state);
1501
1502         for (i = 0; i < adapter->num_rx_queues; i++)
1503                 napi_enable(&adapter->rx_ring[i].napi);
1504
1505         /* Clear any pending interrupts. */
1506         rd32(E1000_ICR);
1507
1508         igb_irq_enable(adapter);
1509
1510         netif_tx_start_all_queues(netdev);
1511
1512         /* Fire a link status change interrupt to start the watchdog. */
1513         wr32(E1000_ICS, E1000_ICS_LSC);
1514
1515         return 0;
1516
1517 err_req_irq:
1518         igb_release_hw_control(adapter);
1519         /* e1000_power_down_phy(adapter); */
1520         igb_free_all_rx_resources(adapter);
1521 err_setup_rx:
1522         igb_free_all_tx_resources(adapter);
1523 err_setup_tx:
1524         igb_reset(adapter);
1525
1526         return err;
1527 }
1528
1529 /**
1530  * igb_close - Disables a network interface
1531  * @netdev: network interface device structure
1532  *
1533  * Returns 0, this is not allowed to fail
1534  *
1535  * The close entry point is called when an interface is de-activated
1536  * by the OS.  The hardware is still under the driver's control, but
1537  * needs to be disabled.  A global MAC reset is issued to stop the
1538  * hardware, and all transmit and receive resources are freed.
1539  **/
1540 static int igb_close(struct net_device *netdev)
1541 {
1542         struct igb_adapter *adapter = netdev_priv(netdev);
1543
1544         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1545         igb_down(adapter);
1546
1547         igb_free_irq(adapter);
1548
1549         igb_free_all_tx_resources(adapter);
1550         igb_free_all_rx_resources(adapter);
1551
1552         /* kill manageability vlan ID if supported, but not if a vlan with
1553          * the same ID is registered on the host OS (let 8021q kill it) */
1554         if ((adapter->hw.mng_cookie.status &
1555                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1556              !(adapter->vlgrp &&
1557                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1558                 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1559
1560         return 0;
1561 }
1562
1563 /**
1564  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1565  * @adapter: board private structure
1566  * @tx_ring: tx descriptor ring (for a specific queue) to setup
1567  *
1568  * Return 0 on success, negative on failure
1569  **/
1570
1571 int igb_setup_tx_resources(struct igb_adapter *adapter,
1572                            struct igb_ring *tx_ring)
1573 {
1574         struct pci_dev *pdev = adapter->pdev;
1575         int size;
1576
1577         size = sizeof(struct igb_buffer) * tx_ring->count;
1578         tx_ring->buffer_info = vmalloc(size);
1579         if (!tx_ring->buffer_info)
1580                 goto err;
1581         memset(tx_ring->buffer_info, 0, size);
1582
1583         /* round up to nearest 4K */
1584         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1585         tx_ring->size = ALIGN(tx_ring->size, 4096);
1586
1587         tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1588                                              &tx_ring->dma);
1589
1590         if (!tx_ring->desc)
1591                 goto err;
1592
1593         tx_ring->adapter = adapter;
1594         tx_ring->next_to_use = 0;
1595         tx_ring->next_to_clean = 0;
1596         return 0;
1597
1598 err:
1599         vfree(tx_ring->buffer_info);
1600         dev_err(&adapter->pdev->dev,
1601                 "Unable to allocate memory for the transmit descriptor ring\n");
1602         return -ENOMEM;
1603 }
1604
1605 /**
1606  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1607  *                                (Descriptors) for all queues
1608  * @adapter: board private structure
1609  *
1610  * Return 0 on success, negative on failure
1611  **/
1612 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1613 {
1614         int i, err = 0;
1615         int r_idx;
1616
1617         for (i = 0; i < adapter->num_tx_queues; i++) {
1618                 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1619                 if (err) {
1620                         dev_err(&adapter->pdev->dev,
1621                                 "Allocation for Tx Queue %u failed\n", i);
1622                         for (i--; i >= 0; i--)
1623                                 igb_free_tx_resources(&adapter->tx_ring[i]);
1624                         break;
1625                 }
1626         }
1627
1628         for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1629                 r_idx = i % adapter->num_tx_queues;
1630                 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1631         }       
1632         return err;
1633 }
1634
1635 /**
1636  * igb_configure_tx - Configure transmit Unit after Reset
1637  * @adapter: board private structure
1638  *
1639  * Configure the Tx unit of the MAC after a reset.
1640  **/
1641 static void igb_configure_tx(struct igb_adapter *adapter)
1642 {
1643         u64 tdba;
1644         struct e1000_hw *hw = &adapter->hw;
1645         u32 tctl;
1646         u32 txdctl, txctrl;
1647         int i, j;
1648
1649         for (i = 0; i < adapter->num_tx_queues; i++) {
1650                 struct igb_ring *ring = &(adapter->tx_ring[i]);
1651                 j = ring->reg_idx;
1652                 wr32(E1000_TDLEN(j),
1653                                 ring->count * sizeof(struct e1000_tx_desc));
1654                 tdba = ring->dma;
1655                 wr32(E1000_TDBAL(j),
1656                                 tdba & 0x00000000ffffffffULL);
1657                 wr32(E1000_TDBAH(j), tdba >> 32);
1658
1659                 ring->head = E1000_TDH(j);
1660                 ring->tail = E1000_TDT(j);
1661                 writel(0, hw->hw_addr + ring->tail);
1662                 writel(0, hw->hw_addr + ring->head);
1663                 txdctl = rd32(E1000_TXDCTL(j));
1664                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1665                 wr32(E1000_TXDCTL(j), txdctl);
1666
1667                 /* Turn off Relaxed Ordering on head write-backs.  The
1668                  * writebacks MUST be delivered in order or it will
1669                  * completely screw up our bookeeping.
1670                  */
1671                 txctrl = rd32(E1000_DCA_TXCTRL(j));
1672                 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1673                 wr32(E1000_DCA_TXCTRL(j), txctrl);
1674         }
1675
1676
1677
1678         /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1679
1680         /* Program the Transmit Control Register */
1681
1682         tctl = rd32(E1000_TCTL);
1683         tctl &= ~E1000_TCTL_CT;
1684         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1685                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1686
1687         igb_config_collision_dist(hw);
1688
1689         /* Setup Transmit Descriptor Settings for eop descriptor */
1690         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1691
1692         /* Enable transmits */
1693         tctl |= E1000_TCTL_EN;
1694
1695         wr32(E1000_TCTL, tctl);
1696 }
1697
1698 /**
1699  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1700  * @adapter: board private structure
1701  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
1702  *
1703  * Returns 0 on success, negative on failure
1704  **/
1705
1706 int igb_setup_rx_resources(struct igb_adapter *adapter,
1707                            struct igb_ring *rx_ring)
1708 {
1709         struct pci_dev *pdev = adapter->pdev;
1710         int size, desc_len;
1711
1712         size = sizeof(struct igb_buffer) * rx_ring->count;
1713         rx_ring->buffer_info = vmalloc(size);
1714         if (!rx_ring->buffer_info)
1715                 goto err;
1716         memset(rx_ring->buffer_info, 0, size);
1717
1718         desc_len = sizeof(union e1000_adv_rx_desc);
1719
1720         /* Round up to nearest 4K */
1721         rx_ring->size = rx_ring->count * desc_len;
1722         rx_ring->size = ALIGN(rx_ring->size, 4096);
1723
1724         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1725                                              &rx_ring->dma);
1726
1727         if (!rx_ring->desc)
1728                 goto err;
1729
1730         rx_ring->next_to_clean = 0;
1731         rx_ring->next_to_use = 0;
1732
1733         rx_ring->adapter = adapter;
1734
1735         return 0;
1736
1737 err:
1738         vfree(rx_ring->buffer_info);
1739         dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1740                 "the receive descriptor ring\n");
1741         return -ENOMEM;
1742 }
1743
1744 /**
1745  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1746  *                                (Descriptors) for all queues
1747  * @adapter: board private structure
1748  *
1749  * Return 0 on success, negative on failure
1750  **/
1751 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1752 {
1753         int i, err = 0;
1754
1755         for (i = 0; i < adapter->num_rx_queues; i++) {
1756                 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1757                 if (err) {
1758                         dev_err(&adapter->pdev->dev,
1759                                 "Allocation for Rx Queue %u failed\n", i);
1760                         for (i--; i >= 0; i--)
1761                                 igb_free_rx_resources(&adapter->rx_ring[i]);
1762                         break;
1763                 }
1764         }
1765
1766         return err;
1767 }
1768
1769 /**
1770  * igb_setup_rctl - configure the receive control registers
1771  * @adapter: Board private structure
1772  **/
1773 static void igb_setup_rctl(struct igb_adapter *adapter)
1774 {
1775         struct e1000_hw *hw = &adapter->hw;
1776         u32 rctl;
1777         u32 srrctl = 0;
1778         int i, j;
1779
1780         rctl = rd32(E1000_RCTL);
1781
1782         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1783         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1784
1785         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
1786                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1787
1788         /*
1789          * enable stripping of CRC. It's unlikely this will break BMC
1790          * redirection as it did with e1000. Newer features require
1791          * that the HW strips the CRC.
1792         */
1793         rctl |= E1000_RCTL_SECRC;
1794
1795         /*
1796          * disable store bad packets and clear size bits.
1797          */
1798         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
1799
1800         /* enable LPE when to prevent packets larger than max_frame_size */
1801                 rctl |= E1000_RCTL_LPE;
1802
1803         /* Setup buffer sizes */
1804         switch (adapter->rx_buffer_len) {
1805         case IGB_RXBUFFER_256:
1806                 rctl |= E1000_RCTL_SZ_256;
1807                 break;
1808         case IGB_RXBUFFER_512:
1809                 rctl |= E1000_RCTL_SZ_512;
1810                 break;
1811         default:
1812                 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
1813                          >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1814                 break;
1815         }
1816
1817         /* 82575 and greater support packet-split where the protocol
1818          * header is placed in skb->data and the packet data is
1819          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1820          * In the case of a non-split, skb->data is linearly filled,
1821          * followed by the page buffers.  Therefore, skb->data is
1822          * sized to hold the largest protocol header.
1823          */
1824         /* allocations using alloc_page take too long for regular MTU
1825          * so only enable packet split for jumbo frames */
1826         if (adapter->netdev->mtu > ETH_DATA_LEN) {
1827                 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1828                 srrctl |= adapter->rx_ps_hdr_size <<
1829                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1830                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1831         } else {
1832                 adapter->rx_ps_hdr_size = 0;
1833                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1834         }
1835
1836         for (i = 0; i < adapter->num_rx_queues; i++) {
1837                 j = adapter->rx_ring[i].reg_idx;
1838                 wr32(E1000_SRRCTL(j), srrctl);
1839         }
1840
1841         wr32(E1000_RCTL, rctl);
1842 }
1843
1844 /**
1845  * igb_configure_rx - Configure receive Unit after Reset
1846  * @adapter: board private structure
1847  *
1848  * Configure the Rx unit of the MAC after a reset.
1849  **/
1850 static void igb_configure_rx(struct igb_adapter *adapter)
1851 {
1852         u64 rdba;
1853         struct e1000_hw *hw = &adapter->hw;
1854         u32 rctl, rxcsum;
1855         u32 rxdctl;
1856         int i, j;
1857
1858         /* disable receives while setting up the descriptors */
1859         rctl = rd32(E1000_RCTL);
1860         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1861         wrfl();
1862         mdelay(10);
1863
1864         if (adapter->itr_setting > 3)
1865                 wr32(E1000_ITR, adapter->itr);
1866
1867         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1868          * the Base and Length of the Rx Descriptor Ring */
1869         for (i = 0; i < adapter->num_rx_queues; i++) {
1870                 struct igb_ring *ring = &(adapter->rx_ring[i]);
1871                 j = ring->reg_idx;
1872                 rdba = ring->dma;
1873                 wr32(E1000_RDBAL(j),
1874                                 rdba & 0x00000000ffffffffULL);
1875                 wr32(E1000_RDBAH(j), rdba >> 32);
1876                 wr32(E1000_RDLEN(j),
1877                                ring->count * sizeof(union e1000_adv_rx_desc));
1878
1879                 ring->head = E1000_RDH(j);
1880                 ring->tail = E1000_RDT(j);
1881                 writel(0, hw->hw_addr + ring->tail);
1882                 writel(0, hw->hw_addr + ring->head);
1883
1884                 rxdctl = rd32(E1000_RXDCTL(j));
1885                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1886                 rxdctl &= 0xFFF00000;
1887                 rxdctl |= IGB_RX_PTHRESH;
1888                 rxdctl |= IGB_RX_HTHRESH << 8;
1889                 rxdctl |= IGB_RX_WTHRESH << 16;
1890                 wr32(E1000_RXDCTL(j), rxdctl);
1891         }
1892
1893         if (adapter->num_rx_queues > 1) {
1894                 u32 random[10];
1895                 u32 mrqc;
1896                 u32 j, shift;
1897                 union e1000_reta {
1898                         u32 dword;
1899                         u8  bytes[4];
1900                 } reta;
1901
1902                 get_random_bytes(&random[0], 40);
1903
1904                 if (hw->mac.type >= e1000_82576)
1905                         shift = 0;
1906                 else
1907                         shift = 6;
1908                 for (j = 0; j < (32 * 4); j++) {
1909                         reta.bytes[j & 3] =
1910                                 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
1911                         if ((j & 3) == 3)
1912                                 writel(reta.dword,
1913                                        hw->hw_addr + E1000_RETA(0) + (j & ~3));
1914                 }
1915                 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1916
1917                 /* Fill out hash function seeds */
1918                 for (j = 0; j < 10; j++)
1919                         array_wr32(E1000_RSSRK(0), j, random[j]);
1920
1921                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1922                          E1000_MRQC_RSS_FIELD_IPV4_TCP);
1923                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1924                          E1000_MRQC_RSS_FIELD_IPV6_TCP);
1925                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1926                          E1000_MRQC_RSS_FIELD_IPV6_UDP);
1927                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1928                          E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1929
1930
1931                 wr32(E1000_MRQC, mrqc);
1932
1933                 /* Multiqueue and raw packet checksumming are mutually
1934                  * exclusive.  Note that this not the same as TCP/IP
1935                  * checksumming, which works fine. */
1936                 rxcsum = rd32(E1000_RXCSUM);
1937                 rxcsum |= E1000_RXCSUM_PCSD;
1938                 wr32(E1000_RXCSUM, rxcsum);
1939         } else {
1940                 /* Enable Receive Checksum Offload for TCP and UDP */
1941                 rxcsum = rd32(E1000_RXCSUM);
1942                 if (adapter->rx_csum) {
1943                         rxcsum |= E1000_RXCSUM_TUOFL;
1944
1945                         /* Enable IPv4 payload checksum for UDP fragments
1946                          * Must be used in conjunction with packet-split. */
1947                         if (adapter->rx_ps_hdr_size)
1948                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1949                 } else {
1950                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1951                         /* don't need to clear IPPCSE as it defaults to 0 */
1952                 }
1953                 wr32(E1000_RXCSUM, rxcsum);
1954         }
1955
1956         if (adapter->vlgrp)
1957                 wr32(E1000_RLPML,
1958                                 adapter->max_frame_size + VLAN_TAG_SIZE);
1959         else
1960                 wr32(E1000_RLPML, adapter->max_frame_size);
1961
1962         /* Enable Receives */
1963         wr32(E1000_RCTL, rctl);
1964 }
1965
1966 /**
1967  * igb_free_tx_resources - Free Tx Resources per Queue
1968  * @tx_ring: Tx descriptor ring for a specific queue
1969  *
1970  * Free all transmit software resources
1971  **/
1972 void igb_free_tx_resources(struct igb_ring *tx_ring)
1973 {
1974         struct pci_dev *pdev = tx_ring->adapter->pdev;
1975
1976         igb_clean_tx_ring(tx_ring);
1977
1978         vfree(tx_ring->buffer_info);
1979         tx_ring->buffer_info = NULL;
1980
1981         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1982
1983         tx_ring->desc = NULL;
1984 }
1985
1986 /**
1987  * igb_free_all_tx_resources - Free Tx Resources for All Queues
1988  * @adapter: board private structure
1989  *
1990  * Free all transmit software resources
1991  **/
1992 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
1993 {
1994         int i;
1995
1996         for (i = 0; i < adapter->num_tx_queues; i++)
1997                 igb_free_tx_resources(&adapter->tx_ring[i]);
1998 }
1999
2000 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2001                                            struct igb_buffer *buffer_info)
2002 {
2003         if (buffer_info->dma) {
2004                 pci_unmap_page(adapter->pdev,
2005                                 buffer_info->dma,
2006                                 buffer_info->length,
2007                                 PCI_DMA_TODEVICE);
2008                 buffer_info->dma = 0;
2009         }
2010         if (buffer_info->skb) {
2011                 dev_kfree_skb_any(buffer_info->skb);
2012                 buffer_info->skb = NULL;
2013         }
2014         buffer_info->time_stamp = 0;
2015         /* buffer_info must be completely set up in the transmit path */
2016 }
2017
2018 /**
2019  * igb_clean_tx_ring - Free Tx Buffers
2020  * @tx_ring: ring to be cleaned
2021  **/
2022 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2023 {
2024         struct igb_adapter *adapter = tx_ring->adapter;
2025         struct igb_buffer *buffer_info;
2026         unsigned long size;
2027         unsigned int i;
2028
2029         if (!tx_ring->buffer_info)
2030                 return;
2031         /* Free all the Tx ring sk_buffs */
2032
2033         for (i = 0; i < tx_ring->count; i++) {
2034                 buffer_info = &tx_ring->buffer_info[i];
2035                 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2036         }
2037
2038         size = sizeof(struct igb_buffer) * tx_ring->count;
2039         memset(tx_ring->buffer_info, 0, size);
2040
2041         /* Zero out the descriptor ring */
2042
2043         memset(tx_ring->desc, 0, tx_ring->size);
2044
2045         tx_ring->next_to_use = 0;
2046         tx_ring->next_to_clean = 0;
2047
2048         writel(0, adapter->hw.hw_addr + tx_ring->head);
2049         writel(0, adapter->hw.hw_addr + tx_ring->tail);
2050 }
2051
2052 /**
2053  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2054  * @adapter: board private structure
2055  **/
2056 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2057 {
2058         int i;
2059
2060         for (i = 0; i < adapter->num_tx_queues; i++)
2061                 igb_clean_tx_ring(&adapter->tx_ring[i]);
2062 }
2063
2064 /**
2065  * igb_free_rx_resources - Free Rx Resources
2066  * @rx_ring: ring to clean the resources from
2067  *
2068  * Free all receive software resources
2069  **/
2070 void igb_free_rx_resources(struct igb_ring *rx_ring)
2071 {
2072         struct pci_dev *pdev = rx_ring->adapter->pdev;
2073
2074         igb_clean_rx_ring(rx_ring);
2075
2076         vfree(rx_ring->buffer_info);
2077         rx_ring->buffer_info = NULL;
2078
2079         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2080
2081         rx_ring->desc = NULL;
2082 }
2083
2084 /**
2085  * igb_free_all_rx_resources - Free Rx Resources for All Queues
2086  * @adapter: board private structure
2087  *
2088  * Free all receive software resources
2089  **/
2090 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2091 {
2092         int i;
2093
2094         for (i = 0; i < adapter->num_rx_queues; i++)
2095                 igb_free_rx_resources(&adapter->rx_ring[i]);
2096 }
2097
2098 /**
2099  * igb_clean_rx_ring - Free Rx Buffers per Queue
2100  * @rx_ring: ring to free buffers from
2101  **/
2102 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2103 {
2104         struct igb_adapter *adapter = rx_ring->adapter;
2105         struct igb_buffer *buffer_info;
2106         struct pci_dev *pdev = adapter->pdev;
2107         unsigned long size;
2108         unsigned int i;
2109
2110         if (!rx_ring->buffer_info)
2111                 return;
2112         /* Free all the Rx ring sk_buffs */
2113         for (i = 0; i < rx_ring->count; i++) {
2114                 buffer_info = &rx_ring->buffer_info[i];
2115                 if (buffer_info->dma) {
2116                         if (adapter->rx_ps_hdr_size)
2117                                 pci_unmap_single(pdev, buffer_info->dma,
2118                                                  adapter->rx_ps_hdr_size,
2119                                                  PCI_DMA_FROMDEVICE);
2120                         else
2121                                 pci_unmap_single(pdev, buffer_info->dma,
2122                                                  adapter->rx_buffer_len,
2123                                                  PCI_DMA_FROMDEVICE);
2124                         buffer_info->dma = 0;
2125                 }
2126
2127                 if (buffer_info->skb) {
2128                         dev_kfree_skb(buffer_info->skb);
2129                         buffer_info->skb = NULL;
2130                 }
2131                 if (buffer_info->page) {
2132                         if (buffer_info->page_dma)
2133                                 pci_unmap_page(pdev, buffer_info->page_dma,
2134                                                PAGE_SIZE / 2,
2135                                                PCI_DMA_FROMDEVICE);
2136                         put_page(buffer_info->page);
2137                         buffer_info->page = NULL;
2138                         buffer_info->page_dma = 0;
2139                         buffer_info->page_offset = 0;
2140                 }
2141         }
2142
2143         size = sizeof(struct igb_buffer) * rx_ring->count;
2144         memset(rx_ring->buffer_info, 0, size);
2145
2146         /* Zero out the descriptor ring */
2147         memset(rx_ring->desc, 0, rx_ring->size);
2148
2149         rx_ring->next_to_clean = 0;
2150         rx_ring->next_to_use = 0;
2151
2152         writel(0, adapter->hw.hw_addr + rx_ring->head);
2153         writel(0, adapter->hw.hw_addr + rx_ring->tail);
2154 }
2155
2156 /**
2157  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2158  * @adapter: board private structure
2159  **/
2160 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2161 {
2162         int i;
2163
2164         for (i = 0; i < adapter->num_rx_queues; i++)
2165                 igb_clean_rx_ring(&adapter->rx_ring[i]);
2166 }
2167
2168 /**
2169  * igb_set_mac - Change the Ethernet Address of the NIC
2170  * @netdev: network interface device structure
2171  * @p: pointer to an address structure
2172  *
2173  * Returns 0 on success, negative on failure
2174  **/
2175 static int igb_set_mac(struct net_device *netdev, void *p)
2176 {
2177         struct igb_adapter *adapter = netdev_priv(netdev);
2178         struct sockaddr *addr = p;
2179
2180         if (!is_valid_ether_addr(addr->sa_data))
2181                 return -EADDRNOTAVAIL;
2182
2183         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2184         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2185
2186         adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2187
2188         return 0;
2189 }
2190
2191 /**
2192  * igb_set_multi - Multicast and Promiscuous mode set
2193  * @netdev: network interface device structure
2194  *
2195  * The set_multi entry point is called whenever the multicast address
2196  * list or the network interface flags are updated.  This routine is
2197  * responsible for configuring the hardware for proper multicast,
2198  * promiscuous mode, and all-multi behavior.
2199  **/
2200 static void igb_set_multi(struct net_device *netdev)
2201 {
2202         struct igb_adapter *adapter = netdev_priv(netdev);
2203         struct e1000_hw *hw = &adapter->hw;
2204         struct e1000_mac_info *mac = &hw->mac;
2205         struct dev_mc_list *mc_ptr;
2206         u8  *mta_list;
2207         u32 rctl;
2208         int i;
2209
2210         /* Check for Promiscuous and All Multicast modes */
2211
2212         rctl = rd32(E1000_RCTL);
2213
2214         if (netdev->flags & IFF_PROMISC) {
2215                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2216                 rctl &= ~E1000_RCTL_VFE;
2217         } else {
2218                 if (netdev->flags & IFF_ALLMULTI) {
2219                         rctl |= E1000_RCTL_MPE;
2220                         rctl &= ~E1000_RCTL_UPE;
2221                 } else
2222                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2223                 rctl |= E1000_RCTL_VFE;
2224         }
2225         wr32(E1000_RCTL, rctl);
2226
2227         if (!netdev->mc_count) {
2228                 /* nothing to program, so clear mc list */
2229                 igb_update_mc_addr_list_82575(hw, NULL, 0, 1,
2230                                           mac->rar_entry_count);
2231                 return;
2232         }
2233
2234         mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2235         if (!mta_list)
2236                 return;
2237
2238         /* The shared function expects a packed array of only addresses. */
2239         mc_ptr = netdev->mc_list;
2240
2241         for (i = 0; i < netdev->mc_count; i++) {
2242                 if (!mc_ptr)
2243                         break;
2244                 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2245                 mc_ptr = mc_ptr->next;
2246         }
2247         igb_update_mc_addr_list_82575(hw, mta_list, i, 1,
2248                                       mac->rar_entry_count);
2249         kfree(mta_list);
2250 }
2251
2252 /* Need to wait a few seconds after link up to get diagnostic information from
2253  * the phy */
2254 static void igb_update_phy_info(unsigned long data)
2255 {
2256         struct igb_adapter *adapter = (struct igb_adapter *) data;
2257         igb_get_phy_info(&adapter->hw);
2258 }
2259
2260 /**
2261  * igb_has_link - check shared code for link and determine up/down
2262  * @adapter: pointer to driver private info
2263  **/
2264 static bool igb_has_link(struct igb_adapter *adapter)
2265 {
2266         struct e1000_hw *hw = &adapter->hw;
2267         bool link_active = false;
2268         s32 ret_val = 0;
2269
2270         /* get_link_status is set on LSC (link status) interrupt or
2271          * rx sequence error interrupt.  get_link_status will stay
2272          * false until the e1000_check_for_link establishes link
2273          * for copper adapters ONLY
2274          */
2275         switch (hw->phy.media_type) {
2276         case e1000_media_type_copper:
2277                 if (hw->mac.get_link_status) {
2278                         ret_val = hw->mac.ops.check_for_link(hw);
2279                         link_active = !hw->mac.get_link_status;
2280                 } else {
2281                         link_active = true;
2282                 }
2283                 break;
2284         case e1000_media_type_fiber:
2285                 ret_val = hw->mac.ops.check_for_link(hw);
2286                 link_active = !!(rd32(E1000_STATUS) & E1000_STATUS_LU);
2287                 break;
2288         case e1000_media_type_internal_serdes:
2289                 ret_val = hw->mac.ops.check_for_link(hw);
2290                 link_active = hw->mac.serdes_has_link;
2291                 break;
2292         default:
2293         case e1000_media_type_unknown:
2294                 break;
2295         }
2296
2297         return link_active;
2298 }
2299
2300 /**
2301  * igb_watchdog - Timer Call-back
2302  * @data: pointer to adapter cast into an unsigned long
2303  **/
2304 static void igb_watchdog(unsigned long data)
2305 {
2306         struct igb_adapter *adapter = (struct igb_adapter *)data;
2307         /* Do the rest outside of interrupt context */
2308         schedule_work(&adapter->watchdog_task);
2309 }
2310
2311 static void igb_watchdog_task(struct work_struct *work)
2312 {
2313         struct igb_adapter *adapter = container_of(work,
2314                                         struct igb_adapter, watchdog_task);
2315         struct e1000_hw *hw = &adapter->hw;
2316
2317         struct net_device *netdev = adapter->netdev;
2318         struct igb_ring *tx_ring = adapter->tx_ring;
2319         struct e1000_mac_info *mac = &adapter->hw.mac;
2320         u32 link;
2321         u32 eics = 0;
2322         s32 ret_val;
2323         int i;
2324
2325         link = igb_has_link(adapter);
2326         if ((netif_carrier_ok(netdev)) && link)
2327                 goto link_up;
2328
2329         if (link) {
2330                 if (!netif_carrier_ok(netdev)) {
2331                         u32 ctrl;
2332                         hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2333                                                    &adapter->link_speed,
2334                                                    &adapter->link_duplex);
2335
2336                         ctrl = rd32(E1000_CTRL);
2337                         /* Links status message must follow this format */
2338                         printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2339                                  "Flow Control: %s\n",
2340                                  netdev->name,
2341                                  adapter->link_speed,
2342                                  adapter->link_duplex == FULL_DUPLEX ?
2343                                  "Full Duplex" : "Half Duplex",
2344                                  ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2345                                  E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2346                                  E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2347                                  E1000_CTRL_TFCE) ? "TX" : "None")));
2348
2349                         /* tweak tx_queue_len according to speed/duplex and
2350                          * adjust the timeout factor */
2351                         netdev->tx_queue_len = adapter->tx_queue_len;
2352                         adapter->tx_timeout_factor = 1;
2353                         switch (adapter->link_speed) {
2354                         case SPEED_10:
2355                                 netdev->tx_queue_len = 10;
2356                                 adapter->tx_timeout_factor = 14;
2357                                 break;
2358                         case SPEED_100:
2359                                 netdev->tx_queue_len = 100;
2360                                 /* maybe add some timeout factor ? */
2361                                 break;
2362                         }
2363
2364                         netif_carrier_on(netdev);
2365                         netif_tx_wake_all_queues(netdev);
2366
2367                         if (!test_bit(__IGB_DOWN, &adapter->state))
2368                                 mod_timer(&adapter->phy_info_timer,
2369                                           round_jiffies(jiffies + 2 * HZ));
2370                 }
2371         } else {
2372                 if (netif_carrier_ok(netdev)) {
2373                         adapter->link_speed = 0;
2374                         adapter->link_duplex = 0;
2375                         /* Links status message must follow this format */
2376                         printk(KERN_INFO "igb: %s NIC Link is Down\n",
2377                                netdev->name);
2378                         netif_carrier_off(netdev);
2379                         netif_tx_stop_all_queues(netdev);
2380                         if (!test_bit(__IGB_DOWN, &adapter->state))
2381                                 mod_timer(&adapter->phy_info_timer,
2382                                           round_jiffies(jiffies + 2 * HZ));
2383                 }
2384         }
2385
2386 link_up:
2387         igb_update_stats(adapter);
2388
2389         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2390         adapter->tpt_old = adapter->stats.tpt;
2391         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2392         adapter->colc_old = adapter->stats.colc;
2393
2394         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2395         adapter->gorc_old = adapter->stats.gorc;
2396         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2397         adapter->gotc_old = adapter->stats.gotc;
2398
2399         igb_update_adaptive(&adapter->hw);
2400
2401         if (!netif_carrier_ok(netdev)) {
2402                 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2403                         /* We've lost link, so the controller stops DMA,
2404                          * but we've got queued Tx work that's never going
2405                          * to get done, so reset controller to flush Tx.
2406                          * (Do the reset outside of interrupt context). */
2407                         adapter->tx_timeout_count++;
2408                         schedule_work(&adapter->reset_task);
2409                 }
2410         }
2411
2412         /* Cause software interrupt to ensure rx ring is cleaned */
2413         if (adapter->msix_entries) {
2414                 for (i = 0; i < adapter->num_rx_queues; i++)
2415                         eics |= adapter->rx_ring[i].eims_value;
2416                 wr32(E1000_EICS, eics);
2417         } else {
2418                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2419         }
2420
2421         /* Force detection of hung controller every watchdog period */
2422         tx_ring->detect_tx_hung = true;
2423
2424         /* Reset the timer */
2425         if (!test_bit(__IGB_DOWN, &adapter->state))
2426                 mod_timer(&adapter->watchdog_timer,
2427                           round_jiffies(jiffies + 2 * HZ));
2428 }
2429
2430 enum latency_range {
2431         lowest_latency = 0,
2432         low_latency = 1,
2433         bulk_latency = 2,
2434         latency_invalid = 255
2435 };
2436
2437
2438 /**
2439  * igb_update_ring_itr - update the dynamic ITR value based on packet size
2440  *
2441  *      Stores a new ITR value based on strictly on packet size.  This
2442  *      algorithm is less sophisticated than that used in igb_update_itr,
2443  *      due to the difficulty of synchronizing statistics across multiple
2444  *      receive rings.  The divisors and thresholds used by this fuction
2445  *      were determined based on theoretical maximum wire speed and testing
2446  *      data, in order to minimize response time while increasing bulk
2447  *      throughput.
2448  *      This functionality is controlled by the InterruptThrottleRate module
2449  *      parameter (see igb_param.c)
2450  *      NOTE:  This function is called only when operating in a multiqueue
2451  *             receive environment.
2452  * @rx_ring: pointer to ring
2453  **/
2454 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2455 {
2456         int new_val = rx_ring->itr_val;
2457         int avg_wire_size = 0;
2458         struct igb_adapter *adapter = rx_ring->adapter;
2459
2460         if (!rx_ring->total_packets)
2461                 goto clear_counts; /* no packets, so don't do anything */
2462
2463         /* For non-gigabit speeds, just fix the interrupt rate at 4000
2464          * ints/sec - ITR timer value of 120 ticks.
2465          */
2466         if (adapter->link_speed != SPEED_1000) {
2467                 new_val = 120;
2468                 goto set_itr_val;
2469         }
2470         avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2471
2472         /* Add 24 bytes to size to account for CRC, preamble, and gap */
2473         avg_wire_size += 24;
2474
2475         /* Don't starve jumbo frames */
2476         avg_wire_size = min(avg_wire_size, 3000);
2477
2478         /* Give a little boost to mid-size frames */
2479         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2480                 new_val = avg_wire_size / 3;
2481         else
2482                 new_val = avg_wire_size / 2;
2483
2484 set_itr_val:
2485         if (new_val != rx_ring->itr_val) {
2486                 rx_ring->itr_val = new_val;
2487                 rx_ring->set_itr = 1;
2488         }
2489 clear_counts:
2490         rx_ring->total_bytes = 0;
2491         rx_ring->total_packets = 0;
2492 }
2493
2494 /**
2495  * igb_update_itr - update the dynamic ITR value based on statistics
2496  *      Stores a new ITR value based on packets and byte
2497  *      counts during the last interrupt.  The advantage of per interrupt
2498  *      computation is faster updates and more accurate ITR for the current
2499  *      traffic pattern.  Constants in this function were computed
2500  *      based on theoretical maximum wire speed and thresholds were set based
2501  *      on testing data as well as attempting to minimize response time
2502  *      while increasing bulk throughput.
2503  *      this functionality is controlled by the InterruptThrottleRate module
2504  *      parameter (see igb_param.c)
2505  *      NOTE:  These calculations are only valid when operating in a single-
2506  *             queue environment.
2507  * @adapter: pointer to adapter
2508  * @itr_setting: current adapter->itr
2509  * @packets: the number of packets during this measurement interval
2510  * @bytes: the number of bytes during this measurement interval
2511  **/
2512 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2513                                    int packets, int bytes)
2514 {
2515         unsigned int retval = itr_setting;
2516
2517         if (packets == 0)
2518                 goto update_itr_done;
2519
2520         switch (itr_setting) {
2521         case lowest_latency:
2522                 /* handle TSO and jumbo frames */
2523                 if (bytes/packets > 8000)
2524                         retval = bulk_latency;
2525                 else if ((packets < 5) && (bytes > 512))
2526                         retval = low_latency;
2527                 break;
2528         case low_latency:  /* 50 usec aka 20000 ints/s */
2529                 if (bytes > 10000) {
2530                         /* this if handles the TSO accounting */
2531                         if (bytes/packets > 8000) {
2532                                 retval = bulk_latency;
2533                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2534                                 retval = bulk_latency;
2535                         } else if ((packets > 35)) {
2536                                 retval = lowest_latency;
2537                         }
2538                 } else if (bytes/packets > 2000) {
2539                         retval = bulk_latency;
2540                 } else if (packets <= 2 && bytes < 512) {
2541                         retval = lowest_latency;
2542                 }
2543                 break;
2544         case bulk_latency: /* 250 usec aka 4000 ints/s */
2545                 if (bytes > 25000) {
2546                         if (packets > 35)
2547                                 retval = low_latency;
2548                 } else if (bytes < 6000) {
2549                         retval = low_latency;
2550                 }
2551                 break;
2552         }
2553
2554 update_itr_done:
2555         return retval;
2556 }
2557
2558 static void igb_set_itr(struct igb_adapter *adapter)
2559 {
2560         u16 current_itr;
2561         u32 new_itr = adapter->itr;
2562
2563         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2564         if (adapter->link_speed != SPEED_1000) {
2565                 current_itr = 0;
2566                 new_itr = 4000;
2567                 goto set_itr_now;
2568         }
2569
2570         adapter->rx_itr = igb_update_itr(adapter,
2571                                     adapter->rx_itr,
2572                                     adapter->rx_ring->total_packets,
2573                                     adapter->rx_ring->total_bytes);
2574
2575         if (adapter->rx_ring->buddy) {
2576                 adapter->tx_itr = igb_update_itr(adapter,
2577                                             adapter->tx_itr,
2578                                             adapter->tx_ring->total_packets,
2579                                             adapter->tx_ring->total_bytes);
2580
2581                 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2582         } else {
2583                 current_itr = adapter->rx_itr;
2584         }
2585
2586         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2587         if (adapter->itr_setting == 3 &&
2588             current_itr == lowest_latency)
2589                 current_itr = low_latency;
2590
2591         switch (current_itr) {
2592         /* counts and packets in update_itr are dependent on these numbers */
2593         case lowest_latency:
2594                 new_itr = 70000;
2595                 break;
2596         case low_latency:
2597                 new_itr = 20000; /* aka hwitr = ~200 */
2598                 break;
2599         case bulk_latency:
2600                 new_itr = 4000;
2601                 break;
2602         default:
2603                 break;
2604         }
2605
2606 set_itr_now:
2607         adapter->rx_ring->total_bytes = 0;
2608         adapter->rx_ring->total_packets = 0;
2609         if (adapter->rx_ring->buddy) {
2610                 adapter->rx_ring->buddy->total_bytes = 0;
2611                 adapter->rx_ring->buddy->total_packets = 0;
2612         }
2613
2614         if (new_itr != adapter->itr) {
2615                 /* this attempts to bias the interrupt rate towards Bulk
2616                  * by adding intermediate steps when interrupt rate is
2617                  * increasing */
2618                 new_itr = new_itr > adapter->itr ?
2619                              min(adapter->itr + (new_itr >> 2), new_itr) :
2620                              new_itr;
2621                 /* Don't write the value here; it resets the adapter's
2622                  * internal timer, and causes us to delay far longer than
2623                  * we should between interrupts.  Instead, we write the ITR
2624                  * value at the beginning of the next interrupt so the timing
2625                  * ends up being correct.
2626                  */
2627                 adapter->itr = new_itr;
2628                 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2629                 adapter->rx_ring->set_itr = 1;
2630         }
2631
2632         return;
2633 }
2634
2635
2636 #define IGB_TX_FLAGS_CSUM               0x00000001
2637 #define IGB_TX_FLAGS_VLAN               0x00000002
2638 #define IGB_TX_FLAGS_TSO                0x00000004
2639 #define IGB_TX_FLAGS_IPV4               0x00000008
2640 #define IGB_TX_FLAGS_VLAN_MASK  0xffff0000
2641 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2642
2643 static inline int igb_tso_adv(struct igb_adapter *adapter,
2644                               struct igb_ring *tx_ring,
2645                               struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2646 {
2647         struct e1000_adv_tx_context_desc *context_desc;
2648         unsigned int i;
2649         int err;
2650         struct igb_buffer *buffer_info;
2651         u32 info = 0, tu_cmd = 0;
2652         u32 mss_l4len_idx, l4len;
2653         *hdr_len = 0;
2654
2655         if (skb_header_cloned(skb)) {
2656                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2657                 if (err)
2658                         return err;
2659         }
2660
2661         l4len = tcp_hdrlen(skb);
2662         *hdr_len += l4len;
2663
2664         if (skb->protocol == htons(ETH_P_IP)) {
2665                 struct iphdr *iph = ip_hdr(skb);
2666                 iph->tot_len = 0;
2667                 iph->check = 0;
2668                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2669                                                          iph->daddr, 0,
2670                                                          IPPROTO_TCP,
2671                                                          0);
2672         } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2673                 ipv6_hdr(skb)->payload_len = 0;
2674                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2675                                                        &ipv6_hdr(skb)->daddr,
2676                                                        0, IPPROTO_TCP, 0);
2677         }
2678
2679         i = tx_ring->next_to_use;
2680
2681         buffer_info = &tx_ring->buffer_info[i];
2682         context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2683         /* VLAN MACLEN IPLEN */
2684         if (tx_flags & IGB_TX_FLAGS_VLAN)
2685                 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2686         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2687         *hdr_len += skb_network_offset(skb);
2688         info |= skb_network_header_len(skb);
2689         *hdr_len += skb_network_header_len(skb);
2690         context_desc->vlan_macip_lens = cpu_to_le32(info);
2691
2692         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2693         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2694
2695         if (skb->protocol == htons(ETH_P_IP))
2696                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2697         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2698
2699         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2700
2701         /* MSS L4LEN IDX */
2702         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2703         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2704
2705         /* Context index must be unique per ring. */
2706         if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2707                 mss_l4len_idx |= tx_ring->queue_index << 4;
2708
2709         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2710         context_desc->seqnum_seed = 0;
2711
2712         buffer_info->time_stamp = jiffies;
2713         buffer_info->next_to_watch = i;
2714         buffer_info->dma = 0;
2715         i++;
2716         if (i == tx_ring->count)
2717                 i = 0;
2718
2719         tx_ring->next_to_use = i;
2720
2721         return true;
2722 }
2723
2724 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2725                                         struct igb_ring *tx_ring,
2726                                         struct sk_buff *skb, u32 tx_flags)
2727 {
2728         struct e1000_adv_tx_context_desc *context_desc;
2729         unsigned int i;
2730         struct igb_buffer *buffer_info;
2731         u32 info = 0, tu_cmd = 0;
2732
2733         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2734             (tx_flags & IGB_TX_FLAGS_VLAN)) {
2735                 i = tx_ring->next_to_use;
2736                 buffer_info = &tx_ring->buffer_info[i];
2737                 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2738
2739                 if (tx_flags & IGB_TX_FLAGS_VLAN)
2740                         info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2741                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2742                 if (skb->ip_summed == CHECKSUM_PARTIAL)
2743                         info |= skb_network_header_len(skb);
2744
2745                 context_desc->vlan_macip_lens = cpu_to_le32(info);
2746
2747                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2748
2749                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2750                         switch (skb->protocol) {
2751                         case cpu_to_be16(ETH_P_IP):
2752                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2753                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2754                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2755                                 break;
2756                         case cpu_to_be16(ETH_P_IPV6):
2757                                 /* XXX what about other V6 headers?? */
2758                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2759                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2760                                 break;
2761                         default:
2762                                 if (unlikely(net_ratelimit()))
2763                                         dev_warn(&adapter->pdev->dev,
2764                                             "partial checksum but proto=%x!\n",
2765                                             skb->protocol);
2766                                 break;
2767                         }
2768                 }
2769
2770                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2771                 context_desc->seqnum_seed = 0;
2772                 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2773                         context_desc->mss_l4len_idx =
2774                                 cpu_to_le32(tx_ring->queue_index << 4);
2775
2776                 buffer_info->time_stamp = jiffies;
2777                 buffer_info->next_to_watch = i;
2778                 buffer_info->dma = 0;
2779
2780                 i++;
2781                 if (i == tx_ring->count)
2782                         i = 0;
2783                 tx_ring->next_to_use = i;
2784
2785                 return true;
2786         }
2787
2788
2789         return false;
2790 }
2791
2792 #define IGB_MAX_TXD_PWR 16
2793 #define IGB_MAX_DATA_PER_TXD    (1<<IGB_MAX_TXD_PWR)
2794
2795 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2796                                  struct igb_ring *tx_ring, struct sk_buff *skb,
2797                                  unsigned int first)
2798 {
2799         struct igb_buffer *buffer_info;
2800         unsigned int len = skb_headlen(skb);
2801         unsigned int count = 0, i;
2802         unsigned int f;
2803
2804         i = tx_ring->next_to_use;
2805
2806         buffer_info = &tx_ring->buffer_info[i];
2807         BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2808         buffer_info->length = len;
2809         /* set time_stamp *before* dma to help avoid a possible race */
2810         buffer_info->time_stamp = jiffies;
2811         buffer_info->next_to_watch = i;
2812         buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2813                                           PCI_DMA_TODEVICE);
2814         count++;
2815         i++;
2816         if (i == tx_ring->count)
2817                 i = 0;
2818
2819         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2820                 struct skb_frag_struct *frag;
2821
2822                 frag = &skb_shinfo(skb)->frags[f];
2823                 len = frag->size;
2824
2825                 buffer_info = &tx_ring->buffer_info[i];
2826                 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2827                 buffer_info->length = len;
2828                 buffer_info->time_stamp = jiffies;
2829                 buffer_info->next_to_watch = i;
2830                 buffer_info->dma = pci_map_page(adapter->pdev,
2831                                                 frag->page,
2832                                                 frag->page_offset,
2833                                                 len,
2834                                                 PCI_DMA_TODEVICE);
2835
2836                 count++;
2837                 i++;
2838                 if (i == tx_ring->count)
2839                         i = 0;
2840         }
2841
2842         i = ((i == 0) ? tx_ring->count - 1 : i - 1);
2843         tx_ring->buffer_info[i].skb = skb;
2844         tx_ring->buffer_info[first].next_to_watch = i;
2845
2846         return count;
2847 }
2848
2849 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2850                                     struct igb_ring *tx_ring,
2851                                     int tx_flags, int count, u32 paylen,
2852                                     u8 hdr_len)
2853 {
2854         union e1000_adv_tx_desc *tx_desc = NULL;
2855         struct igb_buffer *buffer_info;
2856         u32 olinfo_status = 0, cmd_type_len;
2857         unsigned int i;
2858
2859         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2860                         E1000_ADVTXD_DCMD_DEXT);
2861
2862         if (tx_flags & IGB_TX_FLAGS_VLAN)
2863                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2864
2865         if (tx_flags & IGB_TX_FLAGS_TSO) {
2866                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2867
2868                 /* insert tcp checksum */
2869                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2870
2871                 /* insert ip checksum */
2872                 if (tx_flags & IGB_TX_FLAGS_IPV4)
2873                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2874
2875         } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2876                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2877         }
2878
2879         if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
2880             (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2881                          IGB_TX_FLAGS_VLAN)))
2882                 olinfo_status |= tx_ring->queue_index << 4;
2883
2884         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2885
2886         i = tx_ring->next_to_use;
2887         while (count--) {
2888                 buffer_info = &tx_ring->buffer_info[i];
2889                 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2890                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2891                 tx_desc->read.cmd_type_len =
2892                         cpu_to_le32(cmd_type_len | buffer_info->length);
2893                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2894                 i++;
2895                 if (i == tx_ring->count)
2896                         i = 0;
2897         }
2898
2899         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2900         /* Force memory writes to complete before letting h/w
2901          * know there are new descriptors to fetch.  (Only
2902          * applicable for weak-ordered memory model archs,
2903          * such as IA-64). */
2904         wmb();
2905
2906         tx_ring->next_to_use = i;
2907         writel(i, adapter->hw.hw_addr + tx_ring->tail);
2908         /* we need this if more than one processor can write to our tail
2909          * at a time, it syncronizes IO on IA64/Altix systems */
2910         mmiowb();
2911 }
2912
2913 static int __igb_maybe_stop_tx(struct net_device *netdev,
2914                                struct igb_ring *tx_ring, int size)
2915 {
2916         struct igb_adapter *adapter = netdev_priv(netdev);
2917
2918         netif_stop_subqueue(netdev, tx_ring->queue_index);
2919
2920         /* Herbert's original patch had:
2921          *  smp_mb__after_netif_stop_queue();
2922          * but since that doesn't exist yet, just open code it. */
2923         smp_mb();
2924
2925         /* We need to check again in a case another CPU has just
2926          * made room available. */
2927         if (IGB_DESC_UNUSED(tx_ring) < size)
2928                 return -EBUSY;
2929
2930         /* A reprieve! */
2931         netif_wake_subqueue(netdev, tx_ring->queue_index);
2932         ++adapter->restart_queue;
2933         return 0;
2934 }
2935
2936 static int igb_maybe_stop_tx(struct net_device *netdev,
2937                              struct igb_ring *tx_ring, int size)
2938 {
2939         if (IGB_DESC_UNUSED(tx_ring) >= size)
2940                 return 0;
2941         return __igb_maybe_stop_tx(netdev, tx_ring, size);
2942 }
2943
2944 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2945
2946 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2947                                    struct net_device *netdev,
2948                                    struct igb_ring *tx_ring)
2949 {
2950         struct igb_adapter *adapter = netdev_priv(netdev);
2951         unsigned int first;
2952         unsigned int tx_flags = 0;
2953         unsigned int len;
2954         u8 hdr_len = 0;
2955         int tso = 0;
2956
2957         len = skb_headlen(skb);
2958
2959         if (test_bit(__IGB_DOWN, &adapter->state)) {
2960                 dev_kfree_skb_any(skb);
2961                 return NETDEV_TX_OK;
2962         }
2963
2964         if (skb->len <= 0) {
2965                 dev_kfree_skb_any(skb);
2966                 return NETDEV_TX_OK;
2967         }
2968
2969         /* need: 1 descriptor per page,
2970          *       + 2 desc gap to keep tail from touching head,
2971          *       + 1 desc for skb->data,
2972          *       + 1 desc for context descriptor,
2973          * otherwise try next time */
2974         if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2975                 /* this is a hard error */
2976                 return NETDEV_TX_BUSY;
2977         }
2978         skb_orphan(skb);
2979
2980         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2981                 tx_flags |= IGB_TX_FLAGS_VLAN;
2982                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2983         }
2984
2985         if (skb->protocol == htons(ETH_P_IP))
2986                 tx_flags |= IGB_TX_FLAGS_IPV4;
2987
2988         first = tx_ring->next_to_use;
2989
2990         tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2991                                               &hdr_len) : 0;
2992
2993         if (tso < 0) {
2994                 dev_kfree_skb_any(skb);
2995                 return NETDEV_TX_OK;
2996         }
2997
2998         if (tso)
2999                 tx_flags |= IGB_TX_FLAGS_TSO;
3000         else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
3001                         if (skb->ip_summed == CHECKSUM_PARTIAL)
3002                                 tx_flags |= IGB_TX_FLAGS_CSUM;
3003
3004         igb_tx_queue_adv(adapter, tx_ring, tx_flags,
3005                          igb_tx_map_adv(adapter, tx_ring, skb, first),
3006                          skb->len, hdr_len);
3007
3008         netdev->trans_start = jiffies;
3009
3010         /* Make sure there is space in the ring for the next send. */
3011         igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3012
3013         return NETDEV_TX_OK;
3014 }
3015
3016 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3017 {
3018         struct igb_adapter *adapter = netdev_priv(netdev);
3019         struct igb_ring *tx_ring;
3020
3021         int r_idx = 0;
3022         r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1);
3023         tx_ring = adapter->multi_tx_table[r_idx];
3024
3025         /* This goes back to the question of how to logically map a tx queue
3026          * to a flow.  Right now, performance is impacted slightly negatively
3027          * if using multiple tx queues.  If the stack breaks away from a
3028          * single qdisc implementation, we can look at this again. */
3029         return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3030 }
3031
3032 /**
3033  * igb_tx_timeout - Respond to a Tx Hang
3034  * @netdev: network interface device structure
3035  **/
3036 static void igb_tx_timeout(struct net_device *netdev)
3037 {
3038         struct igb_adapter *adapter = netdev_priv(netdev);
3039         struct e1000_hw *hw = &adapter->hw;
3040
3041         /* Do the reset outside of interrupt context */
3042         adapter->tx_timeout_count++;
3043         schedule_work(&adapter->reset_task);
3044         wr32(E1000_EICS, adapter->eims_enable_mask &
3045                 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
3046 }
3047
3048 static void igb_reset_task(struct work_struct *work)
3049 {
3050         struct igb_adapter *adapter;
3051         adapter = container_of(work, struct igb_adapter, reset_task);
3052
3053         igb_reinit_locked(adapter);
3054 }
3055
3056 /**
3057  * igb_get_stats - Get System Network Statistics
3058  * @netdev: network interface device structure
3059  *
3060  * Returns the address of the device statistics structure.
3061  * The statistics are actually updated from the timer callback.
3062  **/
3063 static struct net_device_stats *
3064 igb_get_stats(struct net_device *netdev)
3065 {
3066         struct igb_adapter *adapter = netdev_priv(netdev);
3067
3068         /* only return the current stats */
3069         return &adapter->net_stats;
3070 }
3071
3072 /**
3073  * igb_change_mtu - Change the Maximum Transfer Unit
3074  * @netdev: network interface device structure
3075  * @new_mtu: new value for maximum frame size
3076  *
3077  * Returns 0 on success, negative on failure
3078  **/
3079 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3080 {
3081         struct igb_adapter *adapter = netdev_priv(netdev);
3082         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3083
3084         if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3085             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3086                 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3087                 return -EINVAL;
3088         }
3089
3090 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3091         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3092                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3093                 return -EINVAL;
3094         }
3095
3096         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3097                 msleep(1);
3098         /* igb_down has a dependency on max_frame_size */
3099         adapter->max_frame_size = max_frame;
3100         if (netif_running(netdev))
3101                 igb_down(adapter);
3102
3103         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3104          * means we reserve 2 more, this pushes us to allocate from the next
3105          * larger slab size.
3106          * i.e. RXBUFFER_2048 --> size-4096 slab
3107          */
3108
3109         if (max_frame <= IGB_RXBUFFER_256)
3110                 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3111         else if (max_frame <= IGB_RXBUFFER_512)
3112                 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3113         else if (max_frame <= IGB_RXBUFFER_1024)
3114                 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3115         else if (max_frame <= IGB_RXBUFFER_2048)
3116                 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3117         else
3118 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3119                 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3120 #else
3121                 adapter->rx_buffer_len = PAGE_SIZE / 2;
3122 #endif
3123         /* adjust allocation if LPE protects us, and we aren't using SBP */
3124         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3125              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3126                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3127
3128         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3129                  netdev->mtu, new_mtu);
3130         netdev->mtu = new_mtu;
3131
3132         if (netif_running(netdev))
3133                 igb_up(adapter);
3134         else
3135                 igb_reset(adapter);
3136
3137         clear_bit(__IGB_RESETTING, &adapter->state);
3138
3139         return 0;
3140 }
3141
3142 /**
3143  * igb_update_stats - Update the board statistics counters
3144  * @adapter: board private structure
3145  **/
3146
3147 void igb_update_stats(struct igb_adapter *adapter)
3148 {
3149         struct e1000_hw *hw = &adapter->hw;
3150         struct pci_dev *pdev = adapter->pdev;
3151         u16 phy_tmp;
3152
3153 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3154
3155         /*
3156          * Prevent stats update while adapter is being reset, or if the pci
3157          * connection is down.
3158          */
3159         if (adapter->link_speed == 0)
3160                 return;
3161         if (pci_channel_offline(pdev))
3162                 return;
3163
3164         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3165         adapter->stats.gprc += rd32(E1000_GPRC);
3166         adapter->stats.gorc += rd32(E1000_GORCL);
3167         rd32(E1000_GORCH); /* clear GORCL */
3168         adapter->stats.bprc += rd32(E1000_BPRC);
3169         adapter->stats.mprc += rd32(E1000_MPRC);
3170         adapter->stats.roc += rd32(E1000_ROC);
3171
3172         adapter->stats.prc64 += rd32(E1000_PRC64);
3173         adapter->stats.prc127 += rd32(E1000_PRC127);
3174         adapter->stats.prc255 += rd32(E1000_PRC255);
3175         adapter->stats.prc511 += rd32(E1000_PRC511);
3176         adapter->stats.prc1023 += rd32(E1000_PRC1023);
3177         adapter->stats.prc1522 += rd32(E1000_PRC1522);
3178         adapter->stats.symerrs += rd32(E1000_SYMERRS);
3179         adapter->stats.sec += rd32(E1000_SEC);
3180
3181         adapter->stats.mpc += rd32(E1000_MPC);
3182         adapter->stats.scc += rd32(E1000_SCC);
3183         adapter->stats.ecol += rd32(E1000_ECOL);
3184         adapter->stats.mcc += rd32(E1000_MCC);
3185         adapter->stats.latecol += rd32(E1000_LATECOL);
3186         adapter->stats.dc += rd32(E1000_DC);
3187         adapter->stats.rlec += rd32(E1000_RLEC);
3188         adapter->stats.xonrxc += rd32(E1000_XONRXC);
3189         adapter->stats.xontxc += rd32(E1000_XONTXC);
3190         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3191         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3192         adapter->stats.fcruc += rd32(E1000_FCRUC);
3193         adapter->stats.gptc += rd32(E1000_GPTC);
3194         adapter->stats.gotc += rd32(E1000_GOTCL);
3195         rd32(E1000_GOTCH); /* clear GOTCL */
3196         adapter->stats.rnbc += rd32(E1000_RNBC);
3197         adapter->stats.ruc += rd32(E1000_RUC);
3198         adapter->stats.rfc += rd32(E1000_RFC);
3199         adapter->stats.rjc += rd32(E1000_RJC);
3200         adapter->stats.tor += rd32(E1000_TORH);
3201         adapter->stats.tot += rd32(E1000_TOTH);
3202         adapter->stats.tpr += rd32(E1000_TPR);
3203
3204         adapter->stats.ptc64 += rd32(E1000_PTC64);
3205         adapter->stats.ptc127 += rd32(E1000_PTC127);
3206         adapter->stats.ptc255 += rd32(E1000_PTC255);
3207         adapter->stats.ptc511 += rd32(E1000_PTC511);
3208         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3209         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3210
3211         adapter->stats.mptc += rd32(E1000_MPTC);
3212         adapter->stats.bptc += rd32(E1000_BPTC);
3213
3214         /* used for adaptive IFS */
3215
3216         hw->mac.tx_packet_delta = rd32(E1000_TPT);
3217         adapter->stats.tpt += hw->mac.tx_packet_delta;
3218         hw->mac.collision_delta = rd32(E1000_COLC);
3219         adapter->stats.colc += hw->mac.collision_delta;
3220
3221         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3222         adapter->stats.rxerrc += rd32(E1000_RXERRC);
3223         adapter->stats.tncrs += rd32(E1000_TNCRS);
3224         adapter->stats.tsctc += rd32(E1000_TSCTC);
3225         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3226
3227         adapter->stats.iac += rd32(E1000_IAC);
3228         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3229         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3230         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3231         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3232         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3233         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3234         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3235         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3236
3237         /* Fill out the OS statistics structure */
3238         adapter->net_stats.multicast = adapter->stats.mprc;
3239         adapter->net_stats.collisions = adapter->stats.colc;
3240
3241         /* Rx Errors */
3242
3243         /* RLEC on some newer hardware can be incorrect so build
3244         * our own version based on RUC and ROC */
3245         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3246                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3247                 adapter->stats.ruc + adapter->stats.roc +
3248                 adapter->stats.cexterr;
3249         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3250                                               adapter->stats.roc;
3251         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3252         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3253         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3254
3255         /* Tx Errors */
3256         adapter->net_stats.tx_errors = adapter->stats.ecol +
3257                                        adapter->stats.latecol;
3258         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3259         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3260         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3261
3262         /* Tx Dropped needs to be maintained elsewhere */
3263
3264         /* Phy Stats */
3265         if (hw->phy.media_type == e1000_media_type_copper) {
3266                 if ((adapter->link_speed == SPEED_1000) &&
3267                    (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
3268                                               &phy_tmp))) {
3269                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3270                         adapter->phy_stats.idle_errors += phy_tmp;
3271                 }
3272         }
3273
3274         /* Management Stats */
3275         adapter->stats.mgptc += rd32(E1000_MGTPTC);
3276         adapter->stats.mgprc += rd32(E1000_MGTPRC);
3277         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3278 }
3279
3280
3281 static irqreturn_t igb_msix_other(int irq, void *data)
3282 {
3283         struct net_device *netdev = data;
3284         struct igb_adapter *adapter = netdev_priv(netdev);
3285         struct e1000_hw *hw = &adapter->hw;
3286         u32 icr = rd32(E1000_ICR);
3287
3288         /* reading ICR causes bit 31 of EICR to be cleared */
3289         if (!(icr & E1000_ICR_LSC))
3290                 goto no_link_interrupt;
3291         hw->mac.get_link_status = 1;
3292         /* guard against interrupt when we're going down */
3293         if (!test_bit(__IGB_DOWN, &adapter->state))
3294                 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3295         
3296 no_link_interrupt:
3297         wr32(E1000_IMS, E1000_IMS_LSC);
3298         wr32(E1000_EIMS, adapter->eims_other);
3299
3300         return IRQ_HANDLED;
3301 }
3302
3303 static irqreturn_t igb_msix_tx(int irq, void *data)
3304 {
3305         struct igb_ring *tx_ring = data;
3306         struct igb_adapter *adapter = tx_ring->adapter;
3307         struct e1000_hw *hw = &adapter->hw;
3308
3309 #ifdef CONFIG_IGB_DCA
3310         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3311                 igb_update_tx_dca(tx_ring);
3312 #endif
3313         tx_ring->total_bytes = 0;
3314         tx_ring->total_packets = 0;
3315
3316         /* auto mask will automatically reenable the interrupt when we write
3317          * EICS */
3318         if (!igb_clean_tx_irq(tx_ring))
3319                 /* Ring was not completely cleaned, so fire another interrupt */
3320                 wr32(E1000_EICS, tx_ring->eims_value);
3321         else
3322                 wr32(E1000_EIMS, tx_ring->eims_value);
3323
3324         return IRQ_HANDLED;
3325 }
3326
3327 static void igb_write_itr(struct igb_ring *ring)
3328 {
3329         struct e1000_hw *hw = &ring->adapter->hw;
3330         if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3331                 switch (hw->mac.type) {
3332                 case e1000_82576:
3333                         wr32(ring->itr_register,
3334                              ring->itr_val |
3335                              0x80000000);
3336                         break;
3337                 default:
3338                         wr32(ring->itr_register,
3339                              ring->itr_val |
3340                              (ring->itr_val << 16));
3341                         break;
3342                 }
3343                 ring->set_itr = 0;
3344         }
3345 }
3346
3347 static irqreturn_t igb_msix_rx(int irq, void *data)
3348 {
3349         struct igb_ring *rx_ring = data;
3350
3351         /* Write the ITR value calculated at the end of the
3352          * previous interrupt.
3353          */
3354
3355         igb_write_itr(rx_ring);
3356
3357         if (napi_schedule_prep(&rx_ring->napi))
3358                 __napi_schedule(&rx_ring->napi);
3359
3360 #ifdef CONFIG_IGB_DCA
3361         if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
3362                 igb_update_rx_dca(rx_ring);
3363 #endif
3364                 return IRQ_HANDLED;
3365 }
3366
3367 #ifdef CONFIG_IGB_DCA
3368 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3369 {
3370         u32 dca_rxctrl;
3371         struct igb_adapter *adapter = rx_ring->adapter;
3372         struct e1000_hw *hw = &adapter->hw;
3373         int cpu = get_cpu();
3374         int q = rx_ring->reg_idx;
3375
3376         if (rx_ring->cpu != cpu) {
3377                 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3378                 if (hw->mac.type == e1000_82576) {
3379                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3380                         dca_rxctrl |= dca_get_tag(cpu) <<
3381                                       E1000_DCA_RXCTRL_CPUID_SHIFT;
3382                 } else {
3383                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3384                         dca_rxctrl |= dca_get_tag(cpu);
3385                 }
3386                 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3387                 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3388                 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3389                 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3390                 rx_ring->cpu = cpu;
3391         }
3392         put_cpu();
3393 }
3394
3395 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3396 {
3397         u32 dca_txctrl;
3398         struct igb_adapter *adapter = tx_ring->adapter;
3399         struct e1000_hw *hw = &adapter->hw;
3400         int cpu = get_cpu();
3401         int q = tx_ring->reg_idx;
3402
3403         if (tx_ring->cpu != cpu) {
3404                 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3405                 if (hw->mac.type == e1000_82576) {
3406                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3407                         dca_txctrl |= dca_get_tag(cpu) <<
3408                                       E1000_DCA_TXCTRL_CPUID_SHIFT;
3409                 } else {
3410                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3411                         dca_txctrl |= dca_get_tag(cpu);
3412                 }
3413                 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3414                 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3415                 tx_ring->cpu = cpu;
3416         }
3417         put_cpu();
3418 }
3419
3420 static void igb_setup_dca(struct igb_adapter *adapter)
3421 {
3422         int i;
3423
3424         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3425                 return;
3426
3427         for (i = 0; i < adapter->num_tx_queues; i++) {
3428                 adapter->tx_ring[i].cpu = -1;
3429                 igb_update_tx_dca(&adapter->tx_ring[i]);
3430         }
3431         for (i = 0; i < adapter->num_rx_queues; i++) {
3432                 adapter->rx_ring[i].cpu = -1;
3433                 igb_update_rx_dca(&adapter->rx_ring[i]);
3434         }
3435 }
3436
3437 static int __igb_notify_dca(struct device *dev, void *data)
3438 {
3439         struct net_device *netdev = dev_get_drvdata(dev);
3440         struct igb_adapter *adapter = netdev_priv(netdev);
3441         struct e1000_hw *hw = &adapter->hw;
3442         unsigned long event = *(unsigned long *)data;
3443
3444         switch (event) {
3445         case DCA_PROVIDER_ADD:
3446                 /* if already enabled, don't do it again */
3447                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3448                         break;
3449                 /* Always use CB2 mode, difference is masked
3450                  * in the CB driver. */
3451                 wr32(E1000_DCA_CTRL, 2);
3452                 if (dca_add_requester(dev) == 0) {
3453                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
3454                         dev_info(&adapter->pdev->dev, "DCA enabled\n");
3455                         igb_setup_dca(adapter);
3456                         break;
3457                 }
3458                 /* Fall Through since DCA is disabled. */
3459         case DCA_PROVIDER_REMOVE:
3460                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3461                         /* without this a class_device is left
3462                          * hanging around in the sysfs model */
3463                         dca_remove_requester(dev);
3464                         dev_info(&adapter->pdev->dev, "DCA disabled\n");
3465                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3466                         wr32(E1000_DCA_CTRL, 1);
3467                 }
3468                 break;
3469         }
3470
3471         return 0;
3472 }
3473
3474 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3475                           void *p)
3476 {
3477         int ret_val;
3478
3479         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3480                                          __igb_notify_dca);
3481
3482         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3483 }
3484 #endif /* CONFIG_IGB_DCA */
3485
3486 /**
3487  * igb_intr_msi - Interrupt Handler
3488  * @irq: interrupt number
3489  * @data: pointer to a network interface device structure
3490  **/
3491 static irqreturn_t igb_intr_msi(int irq, void *data)
3492 {
3493         struct net_device *netdev = data;
3494         struct igb_adapter *adapter = netdev_priv(netdev);
3495         struct e1000_hw *hw = &adapter->hw;
3496         /* read ICR disables interrupts using IAM */
3497         u32 icr = rd32(E1000_ICR);
3498
3499         igb_write_itr(adapter->rx_ring);
3500
3501         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3502                 hw->mac.get_link_status = 1;
3503                 if (!test_bit(__IGB_DOWN, &adapter->state))
3504                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3505         }
3506
3507         napi_schedule(&adapter->rx_ring[0].napi);
3508
3509         return IRQ_HANDLED;
3510 }
3511
3512 /**
3513  * igb_intr - Interrupt Handler
3514  * @irq: interrupt number
3515  * @data: pointer to a network interface device structure
3516  **/
3517 static irqreturn_t igb_intr(int irq, void *data)
3518 {
3519         struct net_device *netdev = data;
3520         struct igb_adapter *adapter = netdev_priv(netdev);
3521         struct e1000_hw *hw = &adapter->hw;
3522         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3523          * need for the IMC write */
3524         u32 icr = rd32(E1000_ICR);
3525         u32 eicr = 0;
3526         if (!icr)
3527                 return IRQ_NONE;  /* Not our interrupt */
3528
3529         igb_write_itr(adapter->rx_ring);
3530
3531         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3532          * not set, then the adapter didn't send an interrupt */
3533         if (!(icr & E1000_ICR_INT_ASSERTED))
3534                 return IRQ_NONE;
3535
3536         eicr = rd32(E1000_EICR);
3537
3538         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3539                 hw->mac.get_link_status = 1;
3540                 /* guard against interrupt when we're going down */
3541                 if (!test_bit(__IGB_DOWN, &adapter->state))
3542                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3543         }
3544
3545         napi_schedule(&adapter->rx_ring[0].napi);
3546
3547         return IRQ_HANDLED;
3548 }
3549
3550 /**
3551  * igb_poll - NAPI Rx polling callback
3552  * @napi: napi polling structure
3553  * @budget: count of how many packets we should handle
3554  **/
3555 static int igb_poll(struct napi_struct *napi, int budget)
3556 {
3557         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3558         struct igb_adapter *adapter = rx_ring->adapter;
3559         struct net_device *netdev = adapter->netdev;
3560         int tx_clean_complete, work_done = 0;
3561
3562         /* this poll routine only supports one tx and one rx queue */
3563 #ifdef CONFIG_IGB_DCA
3564         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3565                 igb_update_tx_dca(&adapter->tx_ring[0]);
3566 #endif
3567         tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]);
3568
3569 #ifdef CONFIG_IGB_DCA
3570         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3571                 igb_update_rx_dca(&adapter->rx_ring[0]);
3572 #endif
3573         igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget);
3574
3575         /* If no Tx and not enough Rx work done, exit the polling mode */
3576         if ((tx_clean_complete && (work_done < budget)) ||
3577             !netif_running(netdev)) {
3578                 if (adapter->itr_setting & 3)
3579                         igb_set_itr(adapter);
3580                 napi_complete(napi);
3581                 if (!test_bit(__IGB_DOWN, &adapter->state))
3582                         igb_irq_enable(adapter);
3583                 return 0;
3584         }
3585
3586         return 1;
3587 }
3588
3589 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3590 {
3591         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3592         struct igb_adapter *adapter = rx_ring->adapter;
3593         struct e1000_hw *hw = &adapter->hw;
3594         struct net_device *netdev = adapter->netdev;
3595         int work_done = 0;
3596
3597 #ifdef CONFIG_IGB_DCA
3598         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3599                 igb_update_rx_dca(rx_ring);
3600 #endif
3601         igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
3602
3603
3604         /* If not enough Rx work done, exit the polling mode */
3605         if ((work_done == 0) || !netif_running(netdev)) {
3606                 napi_complete(napi);
3607
3608                 if (adapter->itr_setting & 3) {
3609                         if (adapter->num_rx_queues == 1)
3610                                 igb_set_itr(adapter);
3611                         else
3612                                 igb_update_ring_itr(rx_ring);
3613                 }
3614
3615                 if (!test_bit(__IGB_DOWN, &adapter->state))
3616                         wr32(E1000_EIMS, rx_ring->eims_value);
3617
3618                 return 0;
3619         }
3620
3621         return 1;
3622 }
3623
3624 /**
3625  * igb_clean_tx_irq - Reclaim resources after transmit completes
3626  * @adapter: board private structure
3627  * returns true if ring is completely cleaned
3628  **/
3629 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
3630 {
3631         struct igb_adapter *adapter = tx_ring->adapter;
3632         struct net_device *netdev = adapter->netdev;
3633         struct e1000_hw *hw = &adapter->hw;
3634         struct igb_buffer *buffer_info;
3635         struct sk_buff *skb;
3636         union e1000_adv_tx_desc *tx_desc, *eop_desc;
3637         unsigned int total_bytes = 0, total_packets = 0;
3638         unsigned int i, eop, count = 0;
3639         bool cleaned = false;
3640
3641         i = tx_ring->next_to_clean;
3642         eop = tx_ring->buffer_info[i].next_to_watch;
3643         eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
3644
3645         while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3646                (count < tx_ring->count)) {
3647                 for (cleaned = false; !cleaned; count++) {
3648                         tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3649                         buffer_info = &tx_ring->buffer_info[i];
3650                         cleaned = (i == eop);
3651                         skb = buffer_info->skb;
3652
3653                         if (skb) {
3654                                 unsigned int segs, bytecount;
3655                                 /* gso_segs is currently only valid for tcp */
3656                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3657                                 /* multiply data chunks by size of headers */
3658                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3659                                             skb->len;
3660                                 total_packets += segs;
3661                                 total_bytes += bytecount;
3662                         }
3663
3664                         igb_unmap_and_free_tx_resource(adapter, buffer_info);
3665                         tx_desc->wb.status = 0;
3666
3667                         i++;
3668                         if (i == tx_ring->count)
3669                                 i = 0;
3670                 }
3671
3672                 eop = tx_ring->buffer_info[i].next_to_watch;
3673                 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
3674         }
3675
3676         tx_ring->next_to_clean = i;
3677
3678         if (unlikely(count &&
3679                      netif_carrier_ok(netdev) &&
3680                      IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3681                 /* Make sure that anybody stopping the queue after this
3682                  * sees the new next_to_clean.
3683                  */
3684                 smp_mb();
3685                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
3686                     !(test_bit(__IGB_DOWN, &adapter->state))) {
3687                         netif_wake_subqueue(netdev, tx_ring->queue_index);
3688                         ++adapter->restart_queue;
3689                 }
3690         }
3691
3692         if (tx_ring->detect_tx_hung) {
3693                 /* Detect a transmit hang in hardware, this serializes the
3694                  * check with the clearing of time_stamp and movement of i */
3695                 tx_ring->detect_tx_hung = false;
3696                 if (tx_ring->buffer_info[i].time_stamp &&
3697                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3698                                (adapter->tx_timeout_factor * HZ))
3699                     && !(rd32(E1000_STATUS) &
3700                          E1000_STATUS_TXOFF)) {
3701
3702                         /* detected Tx unit hang */
3703                         dev_err(&adapter->pdev->dev,
3704                                 "Detected Tx Unit Hang\n"
3705                                 "  Tx Queue             <%d>\n"
3706                                 "  TDH                  <%x>\n"
3707                                 "  TDT                  <%x>\n"
3708                                 "  next_to_use          <%x>\n"
3709                                 "  next_to_clean        <%x>\n"
3710                                 "buffer_info[next_to_clean]\n"
3711                                 "  time_stamp           <%lx>\n"
3712                                 "  next_to_watch        <%x>\n"
3713                                 "  jiffies              <%lx>\n"
3714                                 "  desc.status          <%x>\n",
3715                                 tx_ring->queue_index,
3716                                 readl(adapter->hw.hw_addr + tx_ring->head),
3717                                 readl(adapter->hw.hw_addr + tx_ring->tail),
3718                                 tx_ring->next_to_use,
3719                                 tx_ring->next_to_clean,
3720                                 tx_ring->buffer_info[i].time_stamp,
3721                                 eop,
3722                                 jiffies,
3723                                 eop_desc->wb.status);
3724                         netif_stop_subqueue(netdev, tx_ring->queue_index);
3725                 }
3726         }
3727         tx_ring->total_bytes += total_bytes;
3728         tx_ring->total_packets += total_packets;
3729         tx_ring->tx_stats.bytes += total_bytes;
3730         tx_ring->tx_stats.packets += total_packets;
3731         adapter->net_stats.tx_bytes += total_bytes;
3732         adapter->net_stats.tx_packets += total_packets;
3733         return (count < tx_ring->count);
3734 }
3735
3736 /**
3737  * igb_receive_skb - helper function to handle rx indications
3738  * @ring: pointer to receive ring receving this packet 
3739  * @status: descriptor status field as written by hardware
3740  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3741  * @skb: pointer to sk_buff to be indicated to stack
3742  **/
3743 static void igb_receive_skb(struct igb_ring *ring, u8 status,
3744                             union e1000_adv_rx_desc * rx_desc,
3745                             struct sk_buff *skb)
3746 {
3747         struct igb_adapter * adapter = ring->adapter;
3748         bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
3749
3750         skb_record_rx_queue(skb, ring->queue_index);
3751         if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3752                 if (vlan_extracted)
3753                         vlan_gro_receive(&ring->napi, adapter->vlgrp,
3754                                          le16_to_cpu(rx_desc->wb.upper.vlan),
3755                                          skb);
3756                 else
3757                         napi_gro_receive(&ring->napi, skb);
3758         } else {
3759                 if (vlan_extracted)
3760                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3761                                           le16_to_cpu(rx_desc->wb.upper.vlan));
3762                 else
3763                         netif_receive_skb(skb);
3764         }
3765 }
3766
3767
3768 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3769                                        u32 status_err, struct sk_buff *skb)
3770 {
3771         skb->ip_summed = CHECKSUM_NONE;
3772
3773         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3774         if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3775                 return;
3776         /* TCP/UDP checksum error bit is set */
3777         if (status_err &
3778             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3779                 /* let the stack verify checksum errors */
3780                 adapter->hw_csum_err++;
3781                 return;
3782         }
3783         /* It must be a TCP or UDP packet with a valid checksum */
3784         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3785                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3786
3787         adapter->hw_csum_good++;
3788 }
3789
3790 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3791                                  int *work_done, int budget)
3792 {
3793         struct igb_adapter *adapter = rx_ring->adapter;
3794         struct net_device *netdev = adapter->netdev;
3795         struct pci_dev *pdev = adapter->pdev;
3796         union e1000_adv_rx_desc *rx_desc , *next_rxd;
3797         struct igb_buffer *buffer_info , *next_buffer;
3798         struct sk_buff *skb;
3799         unsigned int i;
3800         u32 length, hlen, staterr;
3801         bool cleaned = false;
3802         int cleaned_count = 0;
3803         unsigned int total_bytes = 0, total_packets = 0;
3804
3805         i = rx_ring->next_to_clean;
3806         buffer_info = &rx_ring->buffer_info[i];
3807         rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3808         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3809
3810         while (staterr & E1000_RXD_STAT_DD) {
3811                 if (*work_done >= budget)
3812                         break;
3813                 (*work_done)++;
3814
3815                 skb = buffer_info->skb;
3816                 prefetch(skb->data - NET_IP_ALIGN);
3817                 buffer_info->skb = NULL;
3818
3819                 i++;
3820                 if (i == rx_ring->count)
3821                         i = 0;
3822                 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3823                 prefetch(next_rxd);
3824                 next_buffer = &rx_ring->buffer_info[i];
3825
3826                 length = le16_to_cpu(rx_desc->wb.upper.length);
3827                 cleaned = true;
3828                 cleaned_count++;
3829
3830                 if (!adapter->rx_ps_hdr_size) {
3831                         pci_unmap_single(pdev, buffer_info->dma,
3832                                          adapter->rx_buffer_len +
3833                                            NET_IP_ALIGN,
3834                                          PCI_DMA_FROMDEVICE);
3835                         skb_put(skb, length);
3836                         goto send_up;
3837                 }
3838
3839                 /* HW will not DMA in data larger than the given buffer, even
3840                  * if it parses the (NFS, of course) header to be larger.  In
3841                  * that case, it fills the header buffer and spills the rest
3842                  * into the page.
3843                  */
3844                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3845                   E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
3846                 if (hlen > adapter->rx_ps_hdr_size)
3847                         hlen = adapter->rx_ps_hdr_size;
3848
3849                 if (!skb_shinfo(skb)->nr_frags) {
3850                         pci_unmap_single(pdev, buffer_info->dma,
3851                                          adapter->rx_ps_hdr_size +
3852                                            NET_IP_ALIGN,
3853                                          PCI_DMA_FROMDEVICE);
3854                         skb_put(skb, hlen);
3855                 }
3856
3857                 if (length) {
3858                         pci_unmap_page(pdev, buffer_info->page_dma,
3859                                        PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
3860                         buffer_info->page_dma = 0;
3861
3862                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
3863                                                 buffer_info->page,
3864                                                 buffer_info->page_offset,
3865                                                 length);
3866
3867                         if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
3868                             (page_count(buffer_info->page) != 1))
3869                                 buffer_info->page = NULL;
3870                         else
3871                                 get_page(buffer_info->page);
3872
3873                         skb->len += length;
3874                         skb->data_len += length;
3875
3876                         skb->truesize += length;
3877                 }
3878
3879                 if (!(staterr & E1000_RXD_STAT_EOP)) {
3880                         buffer_info->skb = next_buffer->skb;
3881                         buffer_info->dma = next_buffer->dma;
3882                         next_buffer->skb = skb;
3883                         next_buffer->dma = 0;
3884                         goto next_desc;
3885                 }
3886 send_up:
3887                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3888                         dev_kfree_skb_irq(skb);
3889                         goto next_desc;
3890                 }
3891
3892                 total_bytes += skb->len;
3893                 total_packets++;
3894
3895                 igb_rx_checksum_adv(adapter, staterr, skb);
3896
3897                 skb->protocol = eth_type_trans(skb, netdev);
3898
3899                 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
3900
3901 next_desc:
3902                 rx_desc->wb.upper.status_error = 0;
3903
3904                 /* return some buffers to hardware, one at a time is too slow */
3905                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3906                         igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3907                         cleaned_count = 0;
3908                 }
3909
3910                 /* use prefetched values */
3911                 rx_desc = next_rxd;
3912                 buffer_info = next_buffer;
3913                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3914         }
3915
3916         rx_ring->next_to_clean = i;
3917         cleaned_count = IGB_DESC_UNUSED(rx_ring);
3918
3919         if (cleaned_count)
3920                 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3921
3922         rx_ring->total_packets += total_packets;
3923         rx_ring->total_bytes += total_bytes;
3924         rx_ring->rx_stats.packets += total_packets;
3925         rx_ring->rx_stats.bytes += total_bytes;
3926         adapter->net_stats.rx_bytes += total_bytes;
3927         adapter->net_stats.rx_packets += total_packets;
3928         return cleaned;
3929 }
3930
3931
3932 /**
3933  * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3934  * @adapter: address of board private structure
3935  **/
3936 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
3937                                      int cleaned_count)
3938 {
3939         struct igb_adapter *adapter = rx_ring->adapter;
3940         struct net_device *netdev = adapter->netdev;
3941         struct pci_dev *pdev = adapter->pdev;
3942         union e1000_adv_rx_desc *rx_desc;
3943         struct igb_buffer *buffer_info;
3944         struct sk_buff *skb;
3945         unsigned int i;
3946         int bufsz;
3947
3948         i = rx_ring->next_to_use;
3949         buffer_info = &rx_ring->buffer_info[i];
3950
3951         if (adapter->rx_ps_hdr_size)
3952                 bufsz = adapter->rx_ps_hdr_size;
3953         else
3954                 bufsz = adapter->rx_buffer_len;
3955         bufsz += NET_IP_ALIGN;
3956
3957         while (cleaned_count--) {
3958                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3959
3960                 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
3961                         if (!buffer_info->page) {
3962                                 buffer_info->page = alloc_page(GFP_ATOMIC);
3963                                 if (!buffer_info->page) {
3964                                         adapter->alloc_rx_buff_failed++;
3965                                         goto no_buffers;
3966                                 }
3967                                 buffer_info->page_offset = 0;
3968                         } else {
3969                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
3970                         }
3971                         buffer_info->page_dma =
3972                                 pci_map_page(pdev, buffer_info->page,
3973                                              buffer_info->page_offset,
3974                                              PAGE_SIZE / 2,
3975                                              PCI_DMA_FROMDEVICE);
3976                 }
3977
3978                 if (!buffer_info->skb) {
3979                         skb = netdev_alloc_skb(netdev, bufsz);
3980                         if (!skb) {
3981                                 adapter->alloc_rx_buff_failed++;
3982                                 goto no_buffers;
3983                         }
3984
3985                         /* Make buffer alignment 2 beyond a 16 byte boundary
3986                          * this will result in a 16 byte aligned IP header after
3987                          * the 14 byte MAC header is removed
3988                          */
3989                         skb_reserve(skb, NET_IP_ALIGN);
3990
3991                         buffer_info->skb = skb;
3992                         buffer_info->dma = pci_map_single(pdev, skb->data,
3993                                                           bufsz,
3994                                                           PCI_DMA_FROMDEVICE);
3995                 }
3996                 /* Refresh the desc even if buffer_addrs didn't change because
3997                  * each write-back erases this info. */
3998                 if (adapter->rx_ps_hdr_size) {
3999                         rx_desc->read.pkt_addr =
4000                              cpu_to_le64(buffer_info->page_dma);
4001                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4002                 } else {
4003                         rx_desc->read.pkt_addr =
4004                              cpu_to_le64(buffer_info->dma);
4005                         rx_desc->read.hdr_addr = 0;
4006                 }
4007
4008                 i++;
4009                 if (i == rx_ring->count)
4010                         i = 0;
4011                 buffer_info = &rx_ring->buffer_info[i];
4012         }
4013
4014 no_buffers:
4015         if (rx_ring->next_to_use != i) {
4016                 rx_ring->next_to_use = i;
4017                 if (i == 0)
4018                         i = (rx_ring->count - 1);
4019                 else
4020                         i--;
4021
4022                 /* Force memory writes to complete before letting h/w
4023                  * know there are new descriptors to fetch.  (Only
4024                  * applicable for weak-ordered memory model archs,
4025                  * such as IA-64). */
4026                 wmb();
4027                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4028         }
4029 }
4030
4031 /**
4032  * igb_mii_ioctl -
4033  * @netdev:
4034  * @ifreq:
4035  * @cmd:
4036  **/
4037 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4038 {
4039         struct igb_adapter *adapter = netdev_priv(netdev);
4040         struct mii_ioctl_data *data = if_mii(ifr);
4041
4042         if (adapter->hw.phy.media_type != e1000_media_type_copper)
4043                 return -EOPNOTSUPP;
4044
4045         switch (cmd) {
4046         case SIOCGMIIPHY:
4047                 data->phy_id = adapter->hw.phy.addr;
4048                 break;
4049         case SIOCGMIIREG:
4050                 if (!capable(CAP_NET_ADMIN))
4051                         return -EPERM;
4052                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4053                                      &data->val_out))
4054                         return -EIO;
4055                 break;
4056         case SIOCSMIIREG:
4057         default:
4058                 return -EOPNOTSUPP;
4059         }
4060         return 0;
4061 }
4062
4063 /**
4064  * igb_ioctl -
4065  * @netdev:
4066  * @ifreq:
4067  * @cmd:
4068  **/
4069 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4070 {
4071         switch (cmd) {
4072         case SIOCGMIIPHY:
4073         case SIOCGMIIREG:
4074         case SIOCSMIIREG:
4075                 return igb_mii_ioctl(netdev, ifr, cmd);
4076         default:
4077                 return -EOPNOTSUPP;
4078         }
4079 }
4080
4081 static void igb_vlan_rx_register(struct net_device *netdev,
4082                                  struct vlan_group *grp)
4083 {
4084         struct igb_adapter *adapter = netdev_priv(netdev);
4085         struct e1000_hw *hw = &adapter->hw;
4086         u32 ctrl, rctl;
4087
4088         igb_irq_disable(adapter);
4089         adapter->vlgrp = grp;
4090
4091         if (grp) {
4092                 /* enable VLAN tag insert/strip */
4093                 ctrl = rd32(E1000_CTRL);
4094                 ctrl |= E1000_CTRL_VME;
4095                 wr32(E1000_CTRL, ctrl);
4096
4097                 /* enable VLAN receive filtering */
4098                 rctl = rd32(E1000_RCTL);
4099                 rctl &= ~E1000_RCTL_CFIEN;
4100                 wr32(E1000_RCTL, rctl);
4101                 igb_update_mng_vlan(adapter);
4102                 wr32(E1000_RLPML,
4103                                 adapter->max_frame_size + VLAN_TAG_SIZE);
4104         } else {
4105                 /* disable VLAN tag insert/strip */
4106                 ctrl = rd32(E1000_CTRL);
4107                 ctrl &= ~E1000_CTRL_VME;
4108                 wr32(E1000_CTRL, ctrl);
4109
4110                 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4111                         igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4112                         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4113                 }
4114                 wr32(E1000_RLPML,
4115                                 adapter->max_frame_size);
4116         }
4117
4118         if (!test_bit(__IGB_DOWN, &adapter->state))
4119                 igb_irq_enable(adapter);
4120 }
4121
4122 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4123 {
4124         struct igb_adapter *adapter = netdev_priv(netdev);
4125         struct e1000_hw *hw = &adapter->hw;
4126         u32 vfta, index;
4127
4128         if ((adapter->hw.mng_cookie.status &
4129              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4130             (vid == adapter->mng_vlan_id))
4131                 return;
4132         /* add VID to filter table */
4133         index = (vid >> 5) & 0x7F;
4134         vfta = array_rd32(E1000_VFTA, index);
4135         vfta |= (1 << (vid & 0x1F));
4136         igb_write_vfta(&adapter->hw, index, vfta);
4137 }
4138
4139 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4140 {
4141         struct igb_adapter *adapter = netdev_priv(netdev);
4142         struct e1000_hw *hw = &adapter->hw;
4143         u32 vfta, index;
4144
4145         igb_irq_disable(adapter);
4146         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4147
4148         if (!test_bit(__IGB_DOWN, &adapter->state))
4149                 igb_irq_enable(adapter);
4150
4151         if ((adapter->hw.mng_cookie.status &
4152              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4153             (vid == adapter->mng_vlan_id)) {
4154                 /* release control to f/w */
4155                 igb_release_hw_control(adapter);
4156                 return;
4157         }
4158
4159         /* remove VID from filter table */
4160         index = (vid >> 5) & 0x7F;
4161         vfta = array_rd32(E1000_VFTA, index);
4162         vfta &= ~(1 << (vid & 0x1F));
4163         igb_write_vfta(&adapter->hw, index, vfta);
4164 }
4165
4166 static void igb_restore_vlan(struct igb_adapter *adapter)
4167 {
4168         igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4169
4170         if (adapter->vlgrp) {
4171                 u16 vid;
4172                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4173                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4174                                 continue;
4175                         igb_vlan_rx_add_vid(adapter->netdev, vid);
4176                 }
4177         }
4178 }
4179
4180 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4181 {
4182         struct e1000_mac_info *mac = &adapter->hw.mac;
4183
4184         mac->autoneg = 0;
4185
4186         /* Fiber NICs only allow 1000 gbps Full duplex */
4187         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
4188                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4189                 dev_err(&adapter->pdev->dev,
4190                         "Unsupported Speed/Duplex configuration\n");
4191                 return -EINVAL;
4192         }
4193
4194         switch (spddplx) {
4195         case SPEED_10 + DUPLEX_HALF:
4196                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4197                 break;
4198         case SPEED_10 + DUPLEX_FULL:
4199                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4200                 break;
4201         case SPEED_100 + DUPLEX_HALF:
4202                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4203                 break;
4204         case SPEED_100 + DUPLEX_FULL:
4205                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4206                 break;
4207         case SPEED_1000 + DUPLEX_FULL:
4208                 mac->autoneg = 1;
4209                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4210                 break;
4211         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4212         default:
4213                 dev_err(&adapter->pdev->dev,
4214                         "Unsupported Speed/Duplex configuration\n");
4215                 return -EINVAL;
4216         }
4217         return 0;
4218 }
4219
4220
4221 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
4222 {
4223         struct net_device *netdev = pci_get_drvdata(pdev);
4224         struct igb_adapter *adapter = netdev_priv(netdev);
4225         struct e1000_hw *hw = &adapter->hw;
4226         u32 ctrl, rctl, status;
4227         u32 wufc = adapter->wol;
4228 #ifdef CONFIG_PM
4229         int retval = 0;
4230 #endif
4231
4232         netif_device_detach(netdev);
4233
4234         if (netif_running(netdev))
4235                 igb_close(netdev);
4236
4237         igb_reset_interrupt_capability(adapter);
4238
4239         igb_free_queues(adapter);
4240
4241 #ifdef CONFIG_PM
4242         retval = pci_save_state(pdev);
4243         if (retval)
4244                 return retval;
4245 #endif
4246
4247         status = rd32(E1000_STATUS);
4248         if (status & E1000_STATUS_LU)
4249                 wufc &= ~E1000_WUFC_LNKC;
4250
4251         if (wufc) {
4252                 igb_setup_rctl(adapter);
4253                 igb_set_multi(netdev);
4254
4255                 /* turn on all-multi mode if wake on multicast is enabled */
4256                 if (wufc & E1000_WUFC_MC) {
4257                         rctl = rd32(E1000_RCTL);
4258                         rctl |= E1000_RCTL_MPE;
4259                         wr32(E1000_RCTL, rctl);
4260                 }
4261
4262                 ctrl = rd32(E1000_CTRL);
4263                 /* advertise wake from D3Cold */
4264                 #define E1000_CTRL_ADVD3WUC 0x00100000
4265                 /* phy power management enable */
4266                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4267                 ctrl |= E1000_CTRL_ADVD3WUC;
4268                 wr32(E1000_CTRL, ctrl);
4269
4270                 /* Allow time for pending master requests to run */
4271                 igb_disable_pcie_master(&adapter->hw);
4272
4273                 wr32(E1000_WUC, E1000_WUC_PME_EN);
4274                 wr32(E1000_WUFC, wufc);
4275         } else {
4276                 wr32(E1000_WUC, 0);
4277                 wr32(E1000_WUFC, 0);
4278         }
4279
4280         /* make sure adapter isn't asleep if manageability/wol is enabled */
4281         if (wufc || adapter->en_mng_pt) {
4282                 pci_enable_wake(pdev, PCI_D3hot, 1);
4283                 pci_enable_wake(pdev, PCI_D3cold, 1);
4284         } else {
4285                 igb_shutdown_fiber_serdes_link_82575(hw);
4286                 pci_enable_wake(pdev, PCI_D3hot, 0);
4287                 pci_enable_wake(pdev, PCI_D3cold, 0);
4288         }
4289
4290         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4291          * would have already happened in close and is redundant. */
4292         igb_release_hw_control(adapter);
4293
4294         pci_disable_device(pdev);
4295
4296         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4297
4298         return 0;
4299 }
4300
4301 #ifdef CONFIG_PM
4302 static int igb_resume(struct pci_dev *pdev)
4303 {
4304         struct net_device *netdev = pci_get_drvdata(pdev);
4305         struct igb_adapter *adapter = netdev_priv(netdev);
4306         struct e1000_hw *hw = &adapter->hw;
4307         u32 err;
4308
4309         pci_set_power_state(pdev, PCI_D0);
4310         pci_restore_state(pdev);
4311
4312         err = pci_enable_device_mem(pdev);
4313         if (err) {
4314                 dev_err(&pdev->dev,
4315                         "igb: Cannot enable PCI device from suspend\n");
4316                 return err;
4317         }
4318         pci_set_master(pdev);
4319
4320         pci_enable_wake(pdev, PCI_D3hot, 0);
4321         pci_enable_wake(pdev, PCI_D3cold, 0);
4322
4323         igb_set_interrupt_capability(adapter);
4324
4325         if (igb_alloc_queues(adapter)) {
4326                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4327                 return -ENOMEM;
4328         }
4329
4330         /* e1000_power_up_phy(adapter); */
4331
4332         igb_reset(adapter);
4333         wr32(E1000_WUS, ~0);
4334
4335         if (netif_running(netdev)) {
4336                 err = igb_open(netdev);
4337                 if (err)
4338                         return err;
4339         }
4340
4341         netif_device_attach(netdev);
4342
4343         /* let the f/w know that the h/w is now under the control of the
4344          * driver. */
4345         igb_get_hw_control(adapter);
4346
4347         return 0;
4348 }
4349 #endif
4350
4351 static void igb_shutdown(struct pci_dev *pdev)
4352 {
4353         igb_suspend(pdev, PMSG_SUSPEND);
4354 }
4355
4356 #ifdef CONFIG_NET_POLL_CONTROLLER
4357 /*
4358  * Polling 'interrupt' - used by things like netconsole to send skbs
4359  * without having to re-enable interrupts. It's not called while
4360  * the interrupt routine is executing.
4361  */
4362 static void igb_netpoll(struct net_device *netdev)
4363 {
4364         struct igb_adapter *adapter = netdev_priv(netdev);
4365         int i;
4366         int work_done = 0;
4367
4368         igb_irq_disable(adapter);
4369         adapter->flags |= IGB_FLAG_IN_NETPOLL;
4370
4371         for (i = 0; i < adapter->num_tx_queues; i++)
4372                 igb_clean_tx_irq(&adapter->tx_ring[i]);
4373
4374         for (i = 0; i < adapter->num_rx_queues; i++)
4375                 igb_clean_rx_irq_adv(&adapter->rx_ring[i],
4376                                      &work_done,
4377                                      adapter->rx_ring[i].napi.weight);
4378
4379         adapter->flags &= ~IGB_FLAG_IN_NETPOLL;
4380         igb_irq_enable(adapter);
4381 }
4382 #endif /* CONFIG_NET_POLL_CONTROLLER */
4383
4384 /**
4385  * igb_io_error_detected - called when PCI error is detected
4386  * @pdev: Pointer to PCI device
4387  * @state: The current pci connection state
4388  *
4389  * This function is called after a PCI bus error affecting
4390  * this device has been detected.
4391  */
4392 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4393                                               pci_channel_state_t state)
4394 {
4395         struct net_device *netdev = pci_get_drvdata(pdev);
4396         struct igb_adapter *adapter = netdev_priv(netdev);
4397
4398         netif_device_detach(netdev);
4399
4400         if (netif_running(netdev))
4401                 igb_down(adapter);
4402         pci_disable_device(pdev);
4403
4404         /* Request a slot slot reset. */
4405         return PCI_ERS_RESULT_NEED_RESET;
4406 }
4407
4408 /**
4409  * igb_io_slot_reset - called after the pci bus has been reset.
4410  * @pdev: Pointer to PCI device
4411  *
4412  * Restart the card from scratch, as if from a cold-boot. Implementation
4413  * resembles the first-half of the igb_resume routine.
4414  */
4415 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4416 {
4417         struct net_device *netdev = pci_get_drvdata(pdev);
4418         struct igb_adapter *adapter = netdev_priv(netdev);
4419         struct e1000_hw *hw = &adapter->hw;
4420         pci_ers_result_t result;
4421         int err;
4422
4423         if (pci_enable_device_mem(pdev)) {
4424                 dev_err(&pdev->dev,
4425                         "Cannot re-enable PCI device after reset.\n");
4426                 result = PCI_ERS_RESULT_DISCONNECT;
4427         } else {
4428                 pci_set_master(pdev);
4429                 pci_restore_state(pdev);
4430
4431                 pci_enable_wake(pdev, PCI_D3hot, 0);
4432                 pci_enable_wake(pdev, PCI_D3cold, 0);
4433
4434                 igb_reset(adapter);
4435                 wr32(E1000_WUS, ~0);
4436                 result = PCI_ERS_RESULT_RECOVERED;
4437         }
4438
4439         err = pci_cleanup_aer_uncorrect_error_status(pdev);
4440         if (err) {
4441                 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
4442                         "failed 0x%0x\n", err);
4443                 /* non-fatal, continue */
4444         }
4445
4446         return result;
4447 }
4448
4449 /**
4450  * igb_io_resume - called when traffic can start flowing again.
4451  * @pdev: Pointer to PCI device
4452  *
4453  * This callback is called when the error recovery driver tells us that
4454  * its OK to resume normal operation. Implementation resembles the
4455  * second-half of the igb_resume routine.
4456  */
4457 static void igb_io_resume(struct pci_dev *pdev)
4458 {
4459         struct net_device *netdev = pci_get_drvdata(pdev);
4460         struct igb_adapter *adapter = netdev_priv(netdev);
4461
4462         if (netif_running(netdev)) {
4463                 if (igb_up(adapter)) {
4464                         dev_err(&pdev->dev, "igb_up failed after reset\n");
4465                         return;
4466                 }
4467         }
4468
4469         netif_device_attach(netdev);
4470
4471         /* let the f/w know that the h/w is now under the control of the
4472          * driver. */
4473         igb_get_hw_control(adapter);
4474 }
4475
4476 /* igb_main.c */