igb: add 82576 MAC support
[safe/jmp/linux-2.6] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/interrupt.h>
43 #include <linux/if_ether.h>
44 #ifdef CONFIG_DCA
45 #include <linux/dca.h>
46 #endif
47 #include "igb.h"
48
49 #define DRV_VERSION "1.2.45-k2"
50 char igb_driver_name[] = "igb";
51 char igb_driver_version[] = DRV_VERSION;
52 static const char igb_driver_string[] =
53                                 "Intel(R) Gigabit Ethernet Network Driver";
54 static const char igb_copyright[] = "Copyright (c) 2008 Intel Corporation.";
55
56
57 static const struct e1000_info *igb_info_tbl[] = {
58         [board_82575] = &e1000_82575_info,
59 };
60
61 static struct pci_device_id igb_pci_tbl[] = {
62         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
63         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
64         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
65         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
66         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
67         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
68         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
69         /* required last entry */
70         {0, }
71 };
72
73 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
74
75 void igb_reset(struct igb_adapter *);
76 static int igb_setup_all_tx_resources(struct igb_adapter *);
77 static int igb_setup_all_rx_resources(struct igb_adapter *);
78 static void igb_free_all_tx_resources(struct igb_adapter *);
79 static void igb_free_all_rx_resources(struct igb_adapter *);
80 static void igb_free_tx_resources(struct igb_ring *);
81 static void igb_free_rx_resources(struct igb_ring *);
82 void igb_update_stats(struct igb_adapter *);
83 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
84 static void __devexit igb_remove(struct pci_dev *pdev);
85 static int igb_sw_init(struct igb_adapter *);
86 static int igb_open(struct net_device *);
87 static int igb_close(struct net_device *);
88 static void igb_configure_tx(struct igb_adapter *);
89 static void igb_configure_rx(struct igb_adapter *);
90 static void igb_setup_rctl(struct igb_adapter *);
91 static void igb_clean_all_tx_rings(struct igb_adapter *);
92 static void igb_clean_all_rx_rings(struct igb_adapter *);
93 static void igb_clean_tx_ring(struct igb_ring *);
94 static void igb_clean_rx_ring(struct igb_ring *);
95 static void igb_set_multi(struct net_device *);
96 static void igb_update_phy_info(unsigned long);
97 static void igb_watchdog(unsigned long);
98 static void igb_watchdog_task(struct work_struct *);
99 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
100                                   struct igb_ring *);
101 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
102 static struct net_device_stats *igb_get_stats(struct net_device *);
103 static int igb_change_mtu(struct net_device *, int);
104 static int igb_set_mac(struct net_device *, void *);
105 static irqreturn_t igb_intr(int irq, void *);
106 static irqreturn_t igb_intr_msi(int irq, void *);
107 static irqreturn_t igb_msix_other(int irq, void *);
108 static irqreturn_t igb_msix_rx(int irq, void *);
109 static irqreturn_t igb_msix_tx(int irq, void *);
110 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
111 #ifdef CONFIG_DCA
112 static void igb_update_rx_dca(struct igb_ring *);
113 static void igb_update_tx_dca(struct igb_ring *);
114 static void igb_setup_dca(struct igb_adapter *);
115 #endif /* CONFIG_DCA */
116 static bool igb_clean_tx_irq(struct igb_ring *);
117 static int igb_poll(struct napi_struct *, int);
118 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
119 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
120 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
121 static void igb_tx_timeout(struct net_device *);
122 static void igb_reset_task(struct work_struct *);
123 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
124 static void igb_vlan_rx_add_vid(struct net_device *, u16);
125 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
126 static void igb_restore_vlan(struct igb_adapter *);
127
128 static int igb_suspend(struct pci_dev *, pm_message_t);
129 #ifdef CONFIG_PM
130 static int igb_resume(struct pci_dev *);
131 #endif
132 static void igb_shutdown(struct pci_dev *);
133 #ifdef CONFIG_DCA
134 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
135 static struct notifier_block dca_notifier = {
136         .notifier_call  = igb_notify_dca,
137         .next           = NULL,
138         .priority       = 0
139 };
140 #endif
141
142 #ifdef CONFIG_NET_POLL_CONTROLLER
143 /* for netdump / net console */
144 static void igb_netpoll(struct net_device *);
145 #endif
146
147 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
148                      pci_channel_state_t);
149 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
150 static void igb_io_resume(struct pci_dev *);
151
152 static struct pci_error_handlers igb_err_handler = {
153         .error_detected = igb_io_error_detected,
154         .slot_reset = igb_io_slot_reset,
155         .resume = igb_io_resume,
156 };
157
158
159 static struct pci_driver igb_driver = {
160         .name     = igb_driver_name,
161         .id_table = igb_pci_tbl,
162         .probe    = igb_probe,
163         .remove   = __devexit_p(igb_remove),
164 #ifdef CONFIG_PM
165         /* Power Managment Hooks */
166         .suspend  = igb_suspend,
167         .resume   = igb_resume,
168 #endif
169         .shutdown = igb_shutdown,
170         .err_handler = &igb_err_handler
171 };
172
173 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
174 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
175 MODULE_LICENSE("GPL");
176 MODULE_VERSION(DRV_VERSION);
177
178 #ifdef DEBUG
179 /**
180  * igb_get_hw_dev_name - return device name string
181  * used by hardware layer to print debugging information
182  **/
183 char *igb_get_hw_dev_name(struct e1000_hw *hw)
184 {
185         struct igb_adapter *adapter = hw->back;
186         return adapter->netdev->name;
187 }
188 #endif
189
190 /**
191  * igb_init_module - Driver Registration Routine
192  *
193  * igb_init_module is the first routine called when the driver is
194  * loaded. All it does is register with the PCI subsystem.
195  **/
196 static int __init igb_init_module(void)
197 {
198         int ret;
199         printk(KERN_INFO "%s - version %s\n",
200                igb_driver_string, igb_driver_version);
201
202         printk(KERN_INFO "%s\n", igb_copyright);
203
204         ret = pci_register_driver(&igb_driver);
205 #ifdef CONFIG_DCA
206         dca_register_notify(&dca_notifier);
207 #endif
208         return ret;
209 }
210
211 module_init(igb_init_module);
212
213 /**
214  * igb_exit_module - Driver Exit Cleanup Routine
215  *
216  * igb_exit_module is called just before the driver is removed
217  * from memory.
218  **/
219 static void __exit igb_exit_module(void)
220 {
221 #ifdef CONFIG_DCA
222         dca_unregister_notify(&dca_notifier);
223 #endif
224         pci_unregister_driver(&igb_driver);
225 }
226
227 module_exit(igb_exit_module);
228
229 /**
230  * igb_alloc_queues - Allocate memory for all rings
231  * @adapter: board private structure to initialize
232  *
233  * We allocate one ring per queue at run-time since we don't know the
234  * number of queues at compile-time.
235  **/
236 static int igb_alloc_queues(struct igb_adapter *adapter)
237 {
238         int i;
239
240         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
241                                    sizeof(struct igb_ring), GFP_KERNEL);
242         if (!adapter->tx_ring)
243                 return -ENOMEM;
244
245         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
246                                    sizeof(struct igb_ring), GFP_KERNEL);
247         if (!adapter->rx_ring) {
248                 kfree(adapter->tx_ring);
249                 return -ENOMEM;
250         }
251
252         for (i = 0; i < adapter->num_tx_queues; i++) {
253                 struct igb_ring *ring = &(adapter->tx_ring[i]);
254                 ring->adapter = adapter;
255                 ring->queue_index = i;
256         }
257         for (i = 0; i < adapter->num_rx_queues; i++) {
258                 struct igb_ring *ring = &(adapter->rx_ring[i]);
259                 ring->adapter = adapter;
260                 ring->queue_index = i;
261                 ring->itr_register = E1000_ITR;
262
263                 /* set a default napi handler for each rx_ring */
264                 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
265         }
266         return 0;
267 }
268
269 #define IGB_N0_QUEUE -1
270 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
271                               int tx_queue, int msix_vector)
272 {
273         u32 msixbm = 0;
274         struct e1000_hw *hw = &adapter->hw;
275         u32 ivar, index;
276
277         switch (hw->mac.type) {
278         case e1000_82575:
279                 /* The 82575 assigns vectors using a bitmask, which matches the
280                    bitmask for the EICR/EIMS/EIMC registers.  To assign one
281                    or more queues to a vector, we write the appropriate bits
282                    into the MSIXBM register for that vector. */
283                 if (rx_queue > IGB_N0_QUEUE) {
284                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
285                         adapter->rx_ring[rx_queue].eims_value = msixbm;
286                 }
287                 if (tx_queue > IGB_N0_QUEUE) {
288                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
289                         adapter->tx_ring[tx_queue].eims_value =
290                                   E1000_EICR_TX_QUEUE0 << tx_queue;
291                 }
292                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
293                 break;
294         case e1000_82576:
295                 /* Kawela uses a table-based method for assigning vectors.
296                    Each queue has a single entry in the table to which we write
297                    a vector number along with a "valid" bit.  Sadly, the layout
298                    of the table is somewhat counterintuitive. */
299                 if (rx_queue > IGB_N0_QUEUE) {
300                         index = (rx_queue & 0x7);
301                         ivar = array_rd32(E1000_IVAR0, index);
302                         if (rx_queue < 8) {
303                                 /* vector goes into low byte of register */
304                                 ivar = ivar & 0xFFFFFF00;
305                                 ivar |= msix_vector | E1000_IVAR_VALID;
306                         } else {
307                                 /* vector goes into third byte of register */
308                                 ivar = ivar & 0xFF00FFFF;
309                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
310                         }
311                         adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
312                         array_wr32(E1000_IVAR0, index, ivar);
313                 }
314                 if (tx_queue > IGB_N0_QUEUE) {
315                         index = (tx_queue & 0x7);
316                         ivar = array_rd32(E1000_IVAR0, index);
317                         if (tx_queue < 8) {
318                                 /* vector goes into second byte of register */
319                                 ivar = ivar & 0xFFFF00FF;
320                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
321                         } else {
322                                 /* vector goes into high byte of register */
323                                 ivar = ivar & 0x00FFFFFF;
324                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
325                         }
326                         adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
327                         array_wr32(E1000_IVAR0, index, ivar);
328                 }
329                 break;
330         default:
331                 BUG();
332                 break;
333         }
334 }
335
336 /**
337  * igb_configure_msix - Configure MSI-X hardware
338  *
339  * igb_configure_msix sets up the hardware to properly
340  * generate MSI-X interrupts.
341  **/
342 static void igb_configure_msix(struct igb_adapter *adapter)
343 {
344         u32 tmp;
345         int i, vector = 0;
346         struct e1000_hw *hw = &adapter->hw;
347
348         adapter->eims_enable_mask = 0;
349         if (hw->mac.type == e1000_82576)
350                 /* Turn on MSI-X capability first, or our settings
351                  * won't stick.  And it will take days to debug. */
352                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
353                                    E1000_GPIE_PBA | E1000_GPIE_EIAME | 
354                                    E1000_GPIE_NSICR);
355
356         for (i = 0; i < adapter->num_tx_queues; i++) {
357                 struct igb_ring *tx_ring = &adapter->tx_ring[i];
358                 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
359                 adapter->eims_enable_mask |= tx_ring->eims_value;
360                 if (tx_ring->itr_val)
361                         writel(1000000000 / (tx_ring->itr_val * 256),
362                                hw->hw_addr + tx_ring->itr_register);
363                 else
364                         writel(1, hw->hw_addr + tx_ring->itr_register);
365         }
366
367         for (i = 0; i < adapter->num_rx_queues; i++) {
368                 struct igb_ring *rx_ring = &adapter->rx_ring[i];
369                 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
370                 adapter->eims_enable_mask |= rx_ring->eims_value;
371                 if (rx_ring->itr_val)
372                         writel(1000000000 / (rx_ring->itr_val * 256),
373                                hw->hw_addr + rx_ring->itr_register);
374                 else
375                         writel(1, hw->hw_addr + rx_ring->itr_register);
376         }
377
378
379         /* set vector for other causes, i.e. link changes */
380         switch (hw->mac.type) {
381         case e1000_82575:
382                 array_wr32(E1000_MSIXBM(0), vector++,
383                                       E1000_EIMS_OTHER);
384
385                 tmp = rd32(E1000_CTRL_EXT);
386                 /* enable MSI-X PBA support*/
387                 tmp |= E1000_CTRL_EXT_PBA_CLR;
388
389                 /* Auto-Mask interrupts upon ICR read. */
390                 tmp |= E1000_CTRL_EXT_EIAME;
391                 tmp |= E1000_CTRL_EXT_IRCA;
392
393                 wr32(E1000_CTRL_EXT, tmp);
394                 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
395                 adapter->eims_other = E1000_EIMS_OTHER;
396
397                 break;
398
399         case e1000_82576:
400                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
401                 wr32(E1000_IVAR_MISC, tmp);
402
403                 adapter->eims_enable_mask = (1 << (vector)) - 1;
404                 adapter->eims_other = 1 << (vector - 1);
405                 break;
406         default:
407                 /* do nothing, since nothing else supports MSI-X */
408                 break;
409         } /* switch (hw->mac.type) */
410         wrfl();
411 }
412
413 /**
414  * igb_request_msix - Initialize MSI-X interrupts
415  *
416  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
417  * kernel.
418  **/
419 static int igb_request_msix(struct igb_adapter *adapter)
420 {
421         struct net_device *netdev = adapter->netdev;
422         int i, err = 0, vector = 0;
423
424         vector = 0;
425
426         for (i = 0; i < adapter->num_tx_queues; i++) {
427                 struct igb_ring *ring = &(adapter->tx_ring[i]);
428                 sprintf(ring->name, "%s-tx%d", netdev->name, i);
429                 err = request_irq(adapter->msix_entries[vector].vector,
430                                   &igb_msix_tx, 0, ring->name,
431                                   &(adapter->tx_ring[i]));
432                 if (err)
433                         goto out;
434                 ring->itr_register = E1000_EITR(0) + (vector << 2);
435                 ring->itr_val = adapter->itr;
436                 vector++;
437         }
438         for (i = 0; i < adapter->num_rx_queues; i++) {
439                 struct igb_ring *ring = &(adapter->rx_ring[i]);
440                 if (strlen(netdev->name) < (IFNAMSIZ - 5))
441                         sprintf(ring->name, "%s-rx%d", netdev->name, i);
442                 else
443                         memcpy(ring->name, netdev->name, IFNAMSIZ);
444                 err = request_irq(adapter->msix_entries[vector].vector,
445                                   &igb_msix_rx, 0, ring->name,
446                                   &(adapter->rx_ring[i]));
447                 if (err)
448                         goto out;
449                 ring->itr_register = E1000_EITR(0) + (vector << 2);
450                 ring->itr_val = adapter->itr;
451                 /* overwrite the poll routine for MSIX, we've already done
452                  * netif_napi_add */
453                 ring->napi.poll = &igb_clean_rx_ring_msix;
454                 vector++;
455         }
456
457         err = request_irq(adapter->msix_entries[vector].vector,
458                           &igb_msix_other, 0, netdev->name, netdev);
459         if (err)
460                 goto out;
461
462         igb_configure_msix(adapter);
463         return 0;
464 out:
465         return err;
466 }
467
468 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
469 {
470         if (adapter->msix_entries) {
471                 pci_disable_msix(adapter->pdev);
472                 kfree(adapter->msix_entries);
473                 adapter->msix_entries = NULL;
474         } else if (adapter->msi_enabled)
475                 pci_disable_msi(adapter->pdev);
476         return;
477 }
478
479
480 /**
481  * igb_set_interrupt_capability - set MSI or MSI-X if supported
482  *
483  * Attempt to configure interrupts using the best available
484  * capabilities of the hardware and kernel.
485  **/
486 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
487 {
488         int err;
489         int numvecs, i;
490
491         numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
492         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
493                                         GFP_KERNEL);
494         if (!adapter->msix_entries)
495                 goto msi_only;
496
497         for (i = 0; i < numvecs; i++)
498                 adapter->msix_entries[i].entry = i;
499
500         err = pci_enable_msix(adapter->pdev,
501                               adapter->msix_entries,
502                               numvecs);
503         if (err == 0)
504                 return;
505
506         igb_reset_interrupt_capability(adapter);
507
508         /* If we can't do MSI-X, try MSI */
509 msi_only:
510         adapter->num_rx_queues = 1;
511         adapter->num_tx_queues = 1;
512         if (!pci_enable_msi(adapter->pdev))
513                 adapter->msi_enabled = 1;
514
515 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
516         /* Notify the stack of the (possibly) reduced Tx Queue count. */
517         adapter->netdev->egress_subqueue_count = adapter->num_tx_queues;
518 #endif
519         return;
520 }
521
522 /**
523  * igb_request_irq - initialize interrupts
524  *
525  * Attempts to configure interrupts using the best available
526  * capabilities of the hardware and kernel.
527  **/
528 static int igb_request_irq(struct igb_adapter *adapter)
529 {
530         struct net_device *netdev = adapter->netdev;
531         struct e1000_hw *hw = &adapter->hw;
532         int err = 0;
533
534         if (adapter->msix_entries) {
535                 err = igb_request_msix(adapter);
536                 if (!err)
537                         goto request_done;
538                 /* fall back to MSI */
539                 igb_reset_interrupt_capability(adapter);
540                 if (!pci_enable_msi(adapter->pdev))
541                         adapter->msi_enabled = 1;
542                 igb_free_all_tx_resources(adapter);
543                 igb_free_all_rx_resources(adapter);
544                 adapter->num_rx_queues = 1;
545                 igb_alloc_queues(adapter);
546         } else {
547                 switch (hw->mac.type) {
548                 case e1000_82575:
549                         wr32(E1000_MSIXBM(0),
550                              (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
551                         break;
552                 case e1000_82576:
553                         wr32(E1000_IVAR0, E1000_IVAR_VALID);
554                         break;
555                 default:
556                         break;
557                 }
558         }
559
560         if (adapter->msi_enabled) {
561                 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
562                                   netdev->name, netdev);
563                 if (!err)
564                         goto request_done;
565                 /* fall back to legacy interrupts */
566                 igb_reset_interrupt_capability(adapter);
567                 adapter->msi_enabled = 0;
568         }
569
570         err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
571                           netdev->name, netdev);
572
573         if (err)
574                 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
575                         err);
576
577 request_done:
578         return err;
579 }
580
581 static void igb_free_irq(struct igb_adapter *adapter)
582 {
583         struct net_device *netdev = adapter->netdev;
584
585         if (adapter->msix_entries) {
586                 int vector = 0, i;
587
588                 for (i = 0; i < adapter->num_tx_queues; i++)
589                         free_irq(adapter->msix_entries[vector++].vector,
590                                 &(adapter->tx_ring[i]));
591                 for (i = 0; i < adapter->num_rx_queues; i++)
592                         free_irq(adapter->msix_entries[vector++].vector,
593                                 &(adapter->rx_ring[i]));
594
595                 free_irq(adapter->msix_entries[vector++].vector, netdev);
596                 return;
597         }
598
599         free_irq(adapter->pdev->irq, netdev);
600 }
601
602 /**
603  * igb_irq_disable - Mask off interrupt generation on the NIC
604  * @adapter: board private structure
605  **/
606 static void igb_irq_disable(struct igb_adapter *adapter)
607 {
608         struct e1000_hw *hw = &adapter->hw;
609
610         if (adapter->msix_entries) {
611                 wr32(E1000_EIAM, 0);
612                 wr32(E1000_EIMC, ~0);
613                 wr32(E1000_EIAC, 0);
614         }
615
616         wr32(E1000_IAM, 0);
617         wr32(E1000_IMC, ~0);
618         wrfl();
619         synchronize_irq(adapter->pdev->irq);
620 }
621
622 /**
623  * igb_irq_enable - Enable default interrupt generation settings
624  * @adapter: board private structure
625  **/
626 static void igb_irq_enable(struct igb_adapter *adapter)
627 {
628         struct e1000_hw *hw = &adapter->hw;
629
630         if (adapter->msix_entries) {
631                 wr32(E1000_EIAC, adapter->eims_enable_mask);
632                 wr32(E1000_EIAM, adapter->eims_enable_mask);
633                 wr32(E1000_EIMS, adapter->eims_enable_mask);
634                 wr32(E1000_IMS, E1000_IMS_LSC);
635         } else {
636                 wr32(E1000_IMS, IMS_ENABLE_MASK);
637                 wr32(E1000_IAM, IMS_ENABLE_MASK);
638         }
639 }
640
641 static void igb_update_mng_vlan(struct igb_adapter *adapter)
642 {
643         struct net_device *netdev = adapter->netdev;
644         u16 vid = adapter->hw.mng_cookie.vlan_id;
645         u16 old_vid = adapter->mng_vlan_id;
646         if (adapter->vlgrp) {
647                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
648                         if (adapter->hw.mng_cookie.status &
649                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
650                                 igb_vlan_rx_add_vid(netdev, vid);
651                                 adapter->mng_vlan_id = vid;
652                         } else
653                                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
654
655                         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
656                                         (vid != old_vid) &&
657                             !vlan_group_get_device(adapter->vlgrp, old_vid))
658                                 igb_vlan_rx_kill_vid(netdev, old_vid);
659                 } else
660                         adapter->mng_vlan_id = vid;
661         }
662 }
663
664 /**
665  * igb_release_hw_control - release control of the h/w to f/w
666  * @adapter: address of board private structure
667  *
668  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
669  * For ASF and Pass Through versions of f/w this means that the
670  * driver is no longer loaded.
671  *
672  **/
673 static void igb_release_hw_control(struct igb_adapter *adapter)
674 {
675         struct e1000_hw *hw = &adapter->hw;
676         u32 ctrl_ext;
677
678         /* Let firmware take over control of h/w */
679         ctrl_ext = rd32(E1000_CTRL_EXT);
680         wr32(E1000_CTRL_EXT,
681                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
682 }
683
684
685 /**
686  * igb_get_hw_control - get control of the h/w from f/w
687  * @adapter: address of board private structure
688  *
689  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
690  * For ASF and Pass Through versions of f/w this means that
691  * the driver is loaded.
692  *
693  **/
694 static void igb_get_hw_control(struct igb_adapter *adapter)
695 {
696         struct e1000_hw *hw = &adapter->hw;
697         u32 ctrl_ext;
698
699         /* Let firmware know the driver has taken over */
700         ctrl_ext = rd32(E1000_CTRL_EXT);
701         wr32(E1000_CTRL_EXT,
702                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
703 }
704
705 static void igb_init_manageability(struct igb_adapter *adapter)
706 {
707         struct e1000_hw *hw = &adapter->hw;
708
709         if (adapter->en_mng_pt) {
710                 u32 manc2h = rd32(E1000_MANC2H);
711                 u32 manc = rd32(E1000_MANC);
712
713                 /* enable receiving management packets to the host */
714                 /* this will probably generate destination unreachable messages
715                  * from the host OS, but the packets will be handled on SMBUS */
716                 manc |= E1000_MANC_EN_MNG2HOST;
717 #define E1000_MNG2HOST_PORT_623 (1 << 5)
718 #define E1000_MNG2HOST_PORT_664 (1 << 6)
719                 manc2h |= E1000_MNG2HOST_PORT_623;
720                 manc2h |= E1000_MNG2HOST_PORT_664;
721                 wr32(E1000_MANC2H, manc2h);
722
723                 wr32(E1000_MANC, manc);
724         }
725 }
726
727 /**
728  * igb_configure - configure the hardware for RX and TX
729  * @adapter: private board structure
730  **/
731 static void igb_configure(struct igb_adapter *adapter)
732 {
733         struct net_device *netdev = adapter->netdev;
734         int i;
735
736         igb_get_hw_control(adapter);
737         igb_set_multi(netdev);
738
739         igb_restore_vlan(adapter);
740         igb_init_manageability(adapter);
741
742         igb_configure_tx(adapter);
743         igb_setup_rctl(adapter);
744         igb_configure_rx(adapter);
745
746         igb_rx_fifo_flush_82575(&adapter->hw);
747
748         /* call IGB_DESC_UNUSED which always leaves
749          * at least 1 descriptor unused to make sure
750          * next_to_use != next_to_clean */
751         for (i = 0; i < adapter->num_rx_queues; i++) {
752                 struct igb_ring *ring = &adapter->rx_ring[i];
753                 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
754         }
755
756
757         adapter->tx_queue_len = netdev->tx_queue_len;
758 }
759
760
761 /**
762  * igb_up - Open the interface and prepare it to handle traffic
763  * @adapter: board private structure
764  **/
765
766 int igb_up(struct igb_adapter *adapter)
767 {
768         struct e1000_hw *hw = &adapter->hw;
769         int i;
770
771         /* hardware has been reset, we need to reload some things */
772         igb_configure(adapter);
773
774         clear_bit(__IGB_DOWN, &adapter->state);
775
776         for (i = 0; i < adapter->num_rx_queues; i++)
777                 napi_enable(&adapter->rx_ring[i].napi);
778         if (adapter->msix_entries)
779                 igb_configure_msix(adapter);
780
781         /* Clear any pending interrupts. */
782         rd32(E1000_ICR);
783         igb_irq_enable(adapter);
784
785         /* Fire a link change interrupt to start the watchdog. */
786         wr32(E1000_ICS, E1000_ICS_LSC);
787         return 0;
788 }
789
790 void igb_down(struct igb_adapter *adapter)
791 {
792         struct e1000_hw *hw = &adapter->hw;
793         struct net_device *netdev = adapter->netdev;
794         u32 tctl, rctl;
795         int i;
796
797         /* signal that we're down so the interrupt handler does not
798          * reschedule our watchdog timer */
799         set_bit(__IGB_DOWN, &adapter->state);
800
801         /* disable receives in the hardware */
802         rctl = rd32(E1000_RCTL);
803         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
804         /* flush and sleep below */
805
806         netif_stop_queue(netdev);
807 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
808         for (i = 0; i < adapter->num_tx_queues; i++)
809                 netif_stop_subqueue(netdev, i);
810 #endif
811
812         /* disable transmits in the hardware */
813         tctl = rd32(E1000_TCTL);
814         tctl &= ~E1000_TCTL_EN;
815         wr32(E1000_TCTL, tctl);
816         /* flush both disables and wait for them to finish */
817         wrfl();
818         msleep(10);
819
820         for (i = 0; i < adapter->num_rx_queues; i++)
821                 napi_disable(&adapter->rx_ring[i].napi);
822
823         igb_irq_disable(adapter);
824
825         del_timer_sync(&adapter->watchdog_timer);
826         del_timer_sync(&adapter->phy_info_timer);
827
828         netdev->tx_queue_len = adapter->tx_queue_len;
829         netif_carrier_off(netdev);
830         adapter->link_speed = 0;
831         adapter->link_duplex = 0;
832
833         if (!pci_channel_offline(adapter->pdev))
834                 igb_reset(adapter);
835         igb_clean_all_tx_rings(adapter);
836         igb_clean_all_rx_rings(adapter);
837 }
838
839 void igb_reinit_locked(struct igb_adapter *adapter)
840 {
841         WARN_ON(in_interrupt());
842         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
843                 msleep(1);
844         igb_down(adapter);
845         igb_up(adapter);
846         clear_bit(__IGB_RESETTING, &adapter->state);
847 }
848
849 void igb_reset(struct igb_adapter *adapter)
850 {
851         struct e1000_hw *hw = &adapter->hw;
852         struct e1000_mac_info *mac = &hw->mac;
853         struct e1000_fc_info *fc = &hw->fc;
854         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
855         u16 hwm;
856
857         /* Repartition Pba for greater than 9k mtu
858          * To take effect CTRL.RST is required.
859          */
860         if (mac->type != e1000_82576) {
861         pba = E1000_PBA_34K;
862         }
863         else {
864                 pba = E1000_PBA_64K;
865         }
866
867         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
868             (mac->type < e1000_82576)) {
869                 /* adjust PBA for jumbo frames */
870                 wr32(E1000_PBA, pba);
871
872                 /* To maintain wire speed transmits, the Tx FIFO should be
873                  * large enough to accommodate two full transmit packets,
874                  * rounded up to the next 1KB and expressed in KB.  Likewise,
875                  * the Rx FIFO should be large enough to accommodate at least
876                  * one full receive packet and is similarly rounded up and
877                  * expressed in KB. */
878                 pba = rd32(E1000_PBA);
879                 /* upper 16 bits has Tx packet buffer allocation size in KB */
880                 tx_space = pba >> 16;
881                 /* lower 16 bits has Rx packet buffer allocation size in KB */
882                 pba &= 0xffff;
883                 /* the tx fifo also stores 16 bytes of information about the tx
884                  * but don't include ethernet FCS because hardware appends it */
885                 min_tx_space = (adapter->max_frame_size +
886                                 sizeof(struct e1000_tx_desc) -
887                                 ETH_FCS_LEN) * 2;
888                 min_tx_space = ALIGN(min_tx_space, 1024);
889                 min_tx_space >>= 10;
890                 /* software strips receive CRC, so leave room for it */
891                 min_rx_space = adapter->max_frame_size;
892                 min_rx_space = ALIGN(min_rx_space, 1024);
893                 min_rx_space >>= 10;
894
895                 /* If current Tx allocation is less than the min Tx FIFO size,
896                  * and the min Tx FIFO size is less than the current Rx FIFO
897                  * allocation, take space away from current Rx allocation */
898                 if (tx_space < min_tx_space &&
899                     ((min_tx_space - tx_space) < pba)) {
900                         pba = pba - (min_tx_space - tx_space);
901
902                         /* if short on rx space, rx wins and must trump tx
903                          * adjustment */
904                         if (pba < min_rx_space)
905                                 pba = min_rx_space;
906                 }
907                 wr32(E1000_PBA, pba);
908         }
909
910         /* flow control settings */
911         /* The high water mark must be low enough to fit one full frame
912          * (or the size used for early receive) above it in the Rx FIFO.
913          * Set it to the lower of:
914          * - 90% of the Rx FIFO size, or
915          * - the full Rx FIFO size minus one full frame */
916         hwm = min(((pba << 10) * 9 / 10),
917                         ((pba << 10) - 2 * adapter->max_frame_size));
918
919         if (mac->type < e1000_82576) {
920                 fc->high_water = hwm & 0xFFF8;  /* 8-byte granularity */
921                 fc->low_water = fc->high_water - 8;
922         } else {
923                 fc->high_water = hwm & 0xFFF0;  /* 16-byte granularity */
924                 fc->low_water = fc->high_water - 16;
925         }
926         fc->pause_time = 0xFFFF;
927         fc->send_xon = 1;
928         fc->type = fc->original_type;
929
930         /* Allow time for pending master requests to run */
931         adapter->hw.mac.ops.reset_hw(&adapter->hw);
932         wr32(E1000_WUC, 0);
933
934         if (adapter->hw.mac.ops.init_hw(&adapter->hw))
935                 dev_err(&adapter->pdev->dev, "Hardware Error\n");
936
937         igb_update_mng_vlan(adapter);
938
939         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
940         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
941
942         igb_reset_adaptive(&adapter->hw);
943         if (adapter->hw.phy.ops.get_phy_info)
944                 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
945 }
946
947 /**
948  * igb_is_need_ioport - determine if an adapter needs ioport resources or not
949  * @pdev: PCI device information struct
950  *
951  * Returns true if an adapter needs ioport resources
952  **/
953 static int igb_is_need_ioport(struct pci_dev *pdev)
954 {
955         switch (pdev->device) {
956         /* Currently there are no adapters that need ioport resources */
957         default:
958                 return false;
959         }
960 }
961
962 /**
963  * igb_probe - Device Initialization Routine
964  * @pdev: PCI device information struct
965  * @ent: entry in igb_pci_tbl
966  *
967  * Returns 0 on success, negative on failure
968  *
969  * igb_probe initializes an adapter identified by a pci_dev structure.
970  * The OS initialization, configuring of the adapter private structure,
971  * and a hardware reset occur.
972  **/
973 static int __devinit igb_probe(struct pci_dev *pdev,
974                                const struct pci_device_id *ent)
975 {
976         struct net_device *netdev;
977         struct igb_adapter *adapter;
978         struct e1000_hw *hw;
979         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
980         unsigned long mmio_start, mmio_len;
981         int i, err, pci_using_dac;
982         u16 eeprom_data = 0;
983         u16 eeprom_apme_mask = IGB_EEPROM_APME;
984         u32 part_num;
985         int bars, need_ioport;
986
987         /* do not allocate ioport bars when not needed */
988         need_ioport = igb_is_need_ioport(pdev);
989         if (need_ioport) {
990                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
991                 err = pci_enable_device(pdev);
992         } else {
993                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
994                 err = pci_enable_device_mem(pdev);
995         }
996         if (err)
997                 return err;
998
999         pci_using_dac = 0;
1000         err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1001         if (!err) {
1002                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1003                 if (!err)
1004                         pci_using_dac = 1;
1005         } else {
1006                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1007                 if (err) {
1008                         err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1009                         if (err) {
1010                                 dev_err(&pdev->dev, "No usable DMA "
1011                                         "configuration, aborting\n");
1012                                 goto err_dma;
1013                         }
1014                 }
1015         }
1016
1017         err = pci_request_selected_regions(pdev, bars, igb_driver_name);
1018         if (err)
1019                 goto err_pci_reg;
1020
1021         pci_set_master(pdev);
1022         pci_save_state(pdev);
1023
1024         err = -ENOMEM;
1025 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1026         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES);
1027 #else
1028         netdev = alloc_etherdev(sizeof(struct igb_adapter));
1029 #endif /* CONFIG_NETDEVICES_MULTIQUEUE */
1030         if (!netdev)
1031                 goto err_alloc_etherdev;
1032
1033         SET_NETDEV_DEV(netdev, &pdev->dev);
1034
1035         pci_set_drvdata(pdev, netdev);
1036         adapter = netdev_priv(netdev);
1037         adapter->netdev = netdev;
1038         adapter->pdev = pdev;
1039         hw = &adapter->hw;
1040         hw->back = adapter;
1041         adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1042         adapter->bars = bars;
1043         adapter->need_ioport = need_ioport;
1044
1045         mmio_start = pci_resource_start(pdev, 0);
1046         mmio_len = pci_resource_len(pdev, 0);
1047
1048         err = -EIO;
1049         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
1050         if (!adapter->hw.hw_addr)
1051                 goto err_ioremap;
1052
1053         netdev->open = &igb_open;
1054         netdev->stop = &igb_close;
1055         netdev->get_stats = &igb_get_stats;
1056         netdev->set_multicast_list = &igb_set_multi;
1057         netdev->set_mac_address = &igb_set_mac;
1058         netdev->change_mtu = &igb_change_mtu;
1059         netdev->do_ioctl = &igb_ioctl;
1060         igb_set_ethtool_ops(netdev);
1061         netdev->tx_timeout = &igb_tx_timeout;
1062         netdev->watchdog_timeo = 5 * HZ;
1063         netdev->vlan_rx_register = igb_vlan_rx_register;
1064         netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid;
1065         netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid;
1066 #ifdef CONFIG_NET_POLL_CONTROLLER
1067         netdev->poll_controller = igb_netpoll;
1068 #endif
1069         netdev->hard_start_xmit = &igb_xmit_frame_adv;
1070
1071         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1072
1073         netdev->mem_start = mmio_start;
1074         netdev->mem_end = mmio_start + mmio_len;
1075
1076         /* PCI config space info */
1077         hw->vendor_id = pdev->vendor;
1078         hw->device_id = pdev->device;
1079         hw->revision_id = pdev->revision;
1080         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1081         hw->subsystem_device_id = pdev->subsystem_device;
1082
1083         /* setup the private structure */
1084         hw->back = adapter;
1085         /* Copy the default MAC, PHY and NVM function pointers */
1086         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1087         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1088         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1089         /* Initialize skew-specific constants */
1090         err = ei->get_invariants(hw);
1091         if (err)
1092                 goto err_hw_init;
1093
1094         err = igb_sw_init(adapter);
1095         if (err)
1096                 goto err_sw_init;
1097
1098         igb_get_bus_info_pcie(hw);
1099
1100         hw->phy.autoneg_wait_to_complete = false;
1101         hw->mac.adaptive_ifs = true;
1102
1103         /* Copper options */
1104         if (hw->phy.media_type == e1000_media_type_copper) {
1105                 hw->phy.mdix = AUTO_ALL_MODES;
1106                 hw->phy.disable_polarity_correction = false;
1107                 hw->phy.ms_type = e1000_ms_hw_default;
1108         }
1109
1110         if (igb_check_reset_block(hw))
1111                 dev_info(&pdev->dev,
1112                         "PHY reset is blocked due to SOL/IDER session.\n");
1113
1114         netdev->features = NETIF_F_SG |
1115                            NETIF_F_HW_CSUM |
1116                            NETIF_F_HW_VLAN_TX |
1117                            NETIF_F_HW_VLAN_RX |
1118                            NETIF_F_HW_VLAN_FILTER;
1119
1120         netdev->features |= NETIF_F_TSO;
1121         netdev->features |= NETIF_F_TSO6;
1122
1123         netdev->vlan_features |= NETIF_F_TSO;
1124         netdev->vlan_features |= NETIF_F_TSO6;
1125         netdev->vlan_features |= NETIF_F_HW_CSUM;
1126         netdev->vlan_features |= NETIF_F_SG;
1127
1128         if (pci_using_dac)
1129                 netdev->features |= NETIF_F_HIGHDMA;
1130
1131 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1132         netdev->features |= NETIF_F_MULTI_QUEUE;
1133 #endif
1134
1135         netdev->features |= NETIF_F_LLTX;
1136         adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1137
1138         /* before reading the NVM, reset the controller to put the device in a
1139          * known good starting state */
1140         hw->mac.ops.reset_hw(hw);
1141
1142         /* make sure the NVM is good */
1143         if (igb_validate_nvm_checksum(hw) < 0) {
1144                 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1145                 err = -EIO;
1146                 goto err_eeprom;
1147         }
1148
1149         /* copy the MAC address out of the NVM */
1150         if (hw->mac.ops.read_mac_addr(hw))
1151                 dev_err(&pdev->dev, "NVM Read Error\n");
1152
1153         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1154         memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1155
1156         if (!is_valid_ether_addr(netdev->perm_addr)) {
1157                 dev_err(&pdev->dev, "Invalid MAC Address\n");
1158                 err = -EIO;
1159                 goto err_eeprom;
1160         }
1161
1162         init_timer(&adapter->watchdog_timer);
1163         adapter->watchdog_timer.function = &igb_watchdog;
1164         adapter->watchdog_timer.data = (unsigned long) adapter;
1165
1166         init_timer(&adapter->phy_info_timer);
1167         adapter->phy_info_timer.function = &igb_update_phy_info;
1168         adapter->phy_info_timer.data = (unsigned long) adapter;
1169
1170         INIT_WORK(&adapter->reset_task, igb_reset_task);
1171         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1172
1173         /* Initialize link & ring properties that are user-changeable */
1174         adapter->tx_ring->count = 256;
1175         for (i = 0; i < adapter->num_tx_queues; i++)
1176                 adapter->tx_ring[i].count = adapter->tx_ring->count;
1177         adapter->rx_ring->count = 256;
1178         for (i = 0; i < adapter->num_rx_queues; i++)
1179                 adapter->rx_ring[i].count = adapter->rx_ring->count;
1180
1181         adapter->fc_autoneg = true;
1182         hw->mac.autoneg = true;
1183         hw->phy.autoneg_advertised = 0x2f;
1184
1185         hw->fc.original_type = e1000_fc_default;
1186         hw->fc.type = e1000_fc_default;
1187
1188         adapter->itr_setting = 3;
1189         adapter->itr = IGB_START_ITR;
1190
1191         igb_validate_mdi_setting(hw);
1192
1193         adapter->rx_csum = 1;
1194
1195         /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1196          * enable the ACPI Magic Packet filter
1197          */
1198
1199         if (hw->bus.func == 0 ||
1200             hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1201                 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1202                                      &eeprom_data);
1203
1204         if (eeprom_data & eeprom_apme_mask)
1205                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1206
1207         /* now that we have the eeprom settings, apply the special cases where
1208          * the eeprom may be wrong or the board simply won't support wake on
1209          * lan on a particular port */
1210         switch (pdev->device) {
1211         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1212         case E1000_DEV_ID_82576_QUAD_COPPER:
1213                 adapter->eeprom_wol = 0;
1214                 break;
1215         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1216         case E1000_DEV_ID_82576_FIBER:
1217         case E1000_DEV_ID_82576_SERDES:
1218                 /* Wake events only supported on port A for dual fiber
1219                  * regardless of eeprom setting */
1220                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1221                         adapter->eeprom_wol = 0;
1222                 break;
1223         }
1224
1225         /* initialize the wol settings based on the eeprom settings */
1226         adapter->wol = adapter->eeprom_wol;
1227
1228         /* reset the hardware with the new settings */
1229         igb_reset(adapter);
1230
1231         /* let the f/w know that the h/w is now under the control of the
1232          * driver. */
1233         igb_get_hw_control(adapter);
1234
1235         /* tell the stack to leave us alone until igb_open() is called */
1236         netif_carrier_off(netdev);
1237         netif_stop_queue(netdev);
1238 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1239         for (i = 0; i < adapter->num_tx_queues; i++)
1240                 netif_stop_subqueue(netdev, i);
1241 #endif
1242
1243         strcpy(netdev->name, "eth%d");
1244         err = register_netdev(netdev);
1245         if (err)
1246                 goto err_register;
1247
1248 #ifdef CONFIG_DCA
1249         if (dca_add_requester(&pdev->dev) == 0) {
1250                 adapter->dca_enabled = true;
1251                 dev_info(&pdev->dev, "DCA enabled\n");
1252                 /* Always use CB2 mode, difference is masked
1253                  * in the CB driver. */
1254                 wr32(E1000_DCA_CTRL, 2);
1255                 igb_setup_dca(adapter);
1256         }
1257 #endif
1258
1259         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1260         /* print bus type/speed/width info */
1261         dev_info(&pdev->dev,
1262                  "%s: (PCIe:%s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
1263                  netdev->name,
1264                  ((hw->bus.speed == e1000_bus_speed_2500)
1265                   ? "2.5Gb/s" : "unknown"),
1266                  ((hw->bus.width == e1000_bus_width_pcie_x4)
1267                   ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1268                   ? "Width x1" : "unknown"),
1269                  netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
1270                  netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
1271
1272         igb_read_part_num(hw, &part_num);
1273         dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1274                 (part_num >> 8), (part_num & 0xff));
1275
1276         dev_info(&pdev->dev,
1277                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1278                 adapter->msix_entries ? "MSI-X" :
1279                 adapter->msi_enabled ? "MSI" : "legacy",
1280                 adapter->num_rx_queues, adapter->num_tx_queues);
1281
1282         return 0;
1283
1284 err_register:
1285         igb_release_hw_control(adapter);
1286 err_eeprom:
1287         if (!igb_check_reset_block(hw))
1288                 hw->phy.ops.reset_phy(hw);
1289
1290         if (hw->flash_address)
1291                 iounmap(hw->flash_address);
1292
1293         igb_remove_device(hw);
1294         kfree(adapter->tx_ring);
1295         kfree(adapter->rx_ring);
1296 err_sw_init:
1297 err_hw_init:
1298         iounmap(hw->hw_addr);
1299 err_ioremap:
1300         free_netdev(netdev);
1301 err_alloc_etherdev:
1302         pci_release_selected_regions(pdev, bars);
1303 err_pci_reg:
1304 err_dma:
1305         pci_disable_device(pdev);
1306         return err;
1307 }
1308
1309 /**
1310  * igb_remove - Device Removal Routine
1311  * @pdev: PCI device information struct
1312  *
1313  * igb_remove is called by the PCI subsystem to alert the driver
1314  * that it should release a PCI device.  The could be caused by a
1315  * Hot-Plug event, or because the driver is going to be removed from
1316  * memory.
1317  **/
1318 static void __devexit igb_remove(struct pci_dev *pdev)
1319 {
1320         struct net_device *netdev = pci_get_drvdata(pdev);
1321         struct igb_adapter *adapter = netdev_priv(netdev);
1322         struct e1000_hw *hw = &adapter->hw;
1323
1324         /* flush_scheduled work may reschedule our watchdog task, so
1325          * explicitly disable watchdog tasks from being rescheduled  */
1326         set_bit(__IGB_DOWN, &adapter->state);
1327         del_timer_sync(&adapter->watchdog_timer);
1328         del_timer_sync(&adapter->phy_info_timer);
1329
1330         flush_scheduled_work();
1331
1332 #ifdef CONFIG_DCA
1333         if (adapter->dca_enabled) {
1334                 dev_info(&pdev->dev, "DCA disabled\n");
1335                 dca_remove_requester(&pdev->dev);
1336                 adapter->dca_enabled = false;
1337                 wr32(E1000_DCA_CTRL, 1);
1338         }
1339 #endif
1340
1341         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1342          * would have already happened in close and is redundant. */
1343         igb_release_hw_control(adapter);
1344
1345         unregister_netdev(netdev);
1346
1347         if (!igb_check_reset_block(&adapter->hw))
1348                 adapter->hw.phy.ops.reset_phy(&adapter->hw);
1349
1350         igb_remove_device(&adapter->hw);
1351         igb_reset_interrupt_capability(adapter);
1352
1353         kfree(adapter->tx_ring);
1354         kfree(adapter->rx_ring);
1355
1356         iounmap(adapter->hw.hw_addr);
1357         if (adapter->hw.flash_address)
1358                 iounmap(adapter->hw.flash_address);
1359         pci_release_selected_regions(pdev, adapter->bars);
1360
1361         free_netdev(netdev);
1362
1363         pci_disable_device(pdev);
1364 }
1365
1366 /**
1367  * igb_sw_init - Initialize general software structures (struct igb_adapter)
1368  * @adapter: board private structure to initialize
1369  *
1370  * igb_sw_init initializes the Adapter private data structure.
1371  * Fields are initialized based on PCI device information and
1372  * OS network device settings (MTU size).
1373  **/
1374 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1375 {
1376         struct e1000_hw *hw = &adapter->hw;
1377         struct net_device *netdev = adapter->netdev;
1378         struct pci_dev *pdev = adapter->pdev;
1379
1380         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1381
1382         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1383         adapter->rx_ps_hdr_size = 0; /* disable packet split */
1384         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1385         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1386
1387         /* Number of supported queues. */
1388         /* Having more queues than CPUs doesn't make sense. */
1389         adapter->num_rx_queues = min((u32)IGB_MAX_RX_QUEUES, (u32)num_online_cpus());
1390 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1391         adapter->num_tx_queues = min(IGB_MAX_TX_QUEUES, num_online_cpus());
1392 #else
1393         adapter->num_tx_queues = 1;
1394 #endif /* CONFIG_NET_MULTI_QUEUE_DEVICE */
1395
1396         /* This call may decrease the number of queues depending on
1397          * interrupt mode. */
1398         igb_set_interrupt_capability(adapter);
1399
1400         if (igb_alloc_queues(adapter)) {
1401                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1402                 return -ENOMEM;
1403         }
1404
1405         /* Explicitly disable IRQ since the NIC can be in any state. */
1406         igb_irq_disable(adapter);
1407
1408         set_bit(__IGB_DOWN, &adapter->state);
1409         return 0;
1410 }
1411
1412 /**
1413  * igb_open - Called when a network interface is made active
1414  * @netdev: network interface device structure
1415  *
1416  * Returns 0 on success, negative value on failure
1417  *
1418  * The open entry point is called when a network interface is made
1419  * active by the system (IFF_UP).  At this point all resources needed
1420  * for transmit and receive operations are allocated, the interrupt
1421  * handler is registered with the OS, the watchdog timer is started,
1422  * and the stack is notified that the interface is ready.
1423  **/
1424 static int igb_open(struct net_device *netdev)
1425 {
1426         struct igb_adapter *adapter = netdev_priv(netdev);
1427         struct e1000_hw *hw = &adapter->hw;
1428         int err;
1429         int i;
1430
1431         /* disallow open during test */
1432         if (test_bit(__IGB_TESTING, &adapter->state))
1433                 return -EBUSY;
1434
1435         /* allocate transmit descriptors */
1436         err = igb_setup_all_tx_resources(adapter);
1437         if (err)
1438                 goto err_setup_tx;
1439
1440         /* allocate receive descriptors */
1441         err = igb_setup_all_rx_resources(adapter);
1442         if (err)
1443                 goto err_setup_rx;
1444
1445         /* e1000_power_up_phy(adapter); */
1446
1447         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1448         if ((adapter->hw.mng_cookie.status &
1449              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1450                 igb_update_mng_vlan(adapter);
1451
1452         /* before we allocate an interrupt, we must be ready to handle it.
1453          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1454          * as soon as we call pci_request_irq, so we have to setup our
1455          * clean_rx handler before we do so.  */
1456         igb_configure(adapter);
1457
1458         err = igb_request_irq(adapter);
1459         if (err)
1460                 goto err_req_irq;
1461
1462         /* From here on the code is the same as igb_up() */
1463         clear_bit(__IGB_DOWN, &adapter->state);
1464
1465         for (i = 0; i < adapter->num_rx_queues; i++)
1466                 napi_enable(&adapter->rx_ring[i].napi);
1467
1468         /* Clear any pending interrupts. */
1469         rd32(E1000_ICR);
1470
1471         igb_irq_enable(adapter);
1472
1473         /* Fire a link status change interrupt to start the watchdog. */
1474         wr32(E1000_ICS, E1000_ICS_LSC);
1475
1476         return 0;
1477
1478 err_req_irq:
1479         igb_release_hw_control(adapter);
1480         /* e1000_power_down_phy(adapter); */
1481         igb_free_all_rx_resources(adapter);
1482 err_setup_rx:
1483         igb_free_all_tx_resources(adapter);
1484 err_setup_tx:
1485         igb_reset(adapter);
1486
1487         return err;
1488 }
1489
1490 /**
1491  * igb_close - Disables a network interface
1492  * @netdev: network interface device structure
1493  *
1494  * Returns 0, this is not allowed to fail
1495  *
1496  * The close entry point is called when an interface is de-activated
1497  * by the OS.  The hardware is still under the driver's control, but
1498  * needs to be disabled.  A global MAC reset is issued to stop the
1499  * hardware, and all transmit and receive resources are freed.
1500  **/
1501 static int igb_close(struct net_device *netdev)
1502 {
1503         struct igb_adapter *adapter = netdev_priv(netdev);
1504
1505         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1506         igb_down(adapter);
1507
1508         igb_free_irq(adapter);
1509
1510         igb_free_all_tx_resources(adapter);
1511         igb_free_all_rx_resources(adapter);
1512
1513         /* kill manageability vlan ID if supported, but not if a vlan with
1514          * the same ID is registered on the host OS (let 8021q kill it) */
1515         if ((adapter->hw.mng_cookie.status &
1516                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1517              !(adapter->vlgrp &&
1518                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1519                 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1520
1521         return 0;
1522 }
1523
1524 /**
1525  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1526  * @adapter: board private structure
1527  * @tx_ring: tx descriptor ring (for a specific queue) to setup
1528  *
1529  * Return 0 on success, negative on failure
1530  **/
1531
1532 int igb_setup_tx_resources(struct igb_adapter *adapter,
1533                            struct igb_ring *tx_ring)
1534 {
1535         struct pci_dev *pdev = adapter->pdev;
1536         int size;
1537
1538         size = sizeof(struct igb_buffer) * tx_ring->count;
1539         tx_ring->buffer_info = vmalloc(size);
1540         if (!tx_ring->buffer_info)
1541                 goto err;
1542         memset(tx_ring->buffer_info, 0, size);
1543
1544         /* round up to nearest 4K */
1545         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc)
1546                         + sizeof(u32);
1547         tx_ring->size = ALIGN(tx_ring->size, 4096);
1548
1549         tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1550                                              &tx_ring->dma);
1551
1552         if (!tx_ring->desc)
1553                 goto err;
1554
1555         tx_ring->adapter = adapter;
1556         tx_ring->next_to_use = 0;
1557         tx_ring->next_to_clean = 0;
1558         return 0;
1559
1560 err:
1561         vfree(tx_ring->buffer_info);
1562         dev_err(&adapter->pdev->dev,
1563                 "Unable to allocate memory for the transmit descriptor ring\n");
1564         return -ENOMEM;
1565 }
1566
1567 /**
1568  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1569  *                                (Descriptors) for all queues
1570  * @adapter: board private structure
1571  *
1572  * Return 0 on success, negative on failure
1573  **/
1574 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1575 {
1576         int i, err = 0;
1577 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1578         int r_idx;
1579 #endif  
1580
1581         for (i = 0; i < adapter->num_tx_queues; i++) {
1582                 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1583                 if (err) {
1584                         dev_err(&adapter->pdev->dev,
1585                                 "Allocation for Tx Queue %u failed\n", i);
1586                         for (i--; i >= 0; i--)
1587                                 igb_free_tx_resources(&adapter->tx_ring[i]);
1588                         break;
1589                 }
1590         }
1591
1592 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1593         for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1594                 r_idx = i % adapter->num_tx_queues;
1595                 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1596         }       
1597 #endif          
1598         return err;
1599 }
1600
1601 /**
1602  * igb_configure_tx - Configure transmit Unit after Reset
1603  * @adapter: board private structure
1604  *
1605  * Configure the Tx unit of the MAC after a reset.
1606  **/
1607 static void igb_configure_tx(struct igb_adapter *adapter)
1608 {
1609         u64 tdba, tdwba;
1610         struct e1000_hw *hw = &adapter->hw;
1611         u32 tctl;
1612         u32 txdctl, txctrl;
1613         int i;
1614
1615         for (i = 0; i < adapter->num_tx_queues; i++) {
1616                 struct igb_ring *ring = &(adapter->tx_ring[i]);
1617
1618                 wr32(E1000_TDLEN(i),
1619                                 ring->count * sizeof(struct e1000_tx_desc));
1620                 tdba = ring->dma;
1621                 wr32(E1000_TDBAL(i),
1622                                 tdba & 0x00000000ffffffffULL);
1623                 wr32(E1000_TDBAH(i), tdba >> 32);
1624
1625                 tdwba = ring->dma + ring->count * sizeof(struct e1000_tx_desc);
1626                 tdwba |= 1; /* enable head wb */
1627                 wr32(E1000_TDWBAL(i),
1628                                 tdwba & 0x00000000ffffffffULL);
1629                 wr32(E1000_TDWBAH(i), tdwba >> 32);
1630
1631                 ring->head = E1000_TDH(i);
1632                 ring->tail = E1000_TDT(i);
1633                 writel(0, hw->hw_addr + ring->tail);
1634                 writel(0, hw->hw_addr + ring->head);
1635                 txdctl = rd32(E1000_TXDCTL(i));
1636                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1637                 wr32(E1000_TXDCTL(i), txdctl);
1638
1639                 /* Turn off Relaxed Ordering on head write-backs.  The
1640                  * writebacks MUST be delivered in order or it will
1641                  * completely screw up our bookeeping.
1642                  */
1643                 txctrl = rd32(E1000_DCA_TXCTRL(i));
1644                 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1645                 wr32(E1000_DCA_TXCTRL(i), txctrl);
1646         }
1647
1648
1649
1650         /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1651
1652         /* Program the Transmit Control Register */
1653
1654         tctl = rd32(E1000_TCTL);
1655         tctl &= ~E1000_TCTL_CT;
1656         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1657                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1658
1659         igb_config_collision_dist(hw);
1660
1661         /* Setup Transmit Descriptor Settings for eop descriptor */
1662         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1663
1664         /* Enable transmits */
1665         tctl |= E1000_TCTL_EN;
1666
1667         wr32(E1000_TCTL, tctl);
1668 }
1669
1670 /**
1671  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1672  * @adapter: board private structure
1673  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
1674  *
1675  * Returns 0 on success, negative on failure
1676  **/
1677
1678 int igb_setup_rx_resources(struct igb_adapter *adapter,
1679                            struct igb_ring *rx_ring)
1680 {
1681         struct pci_dev *pdev = adapter->pdev;
1682         int size, desc_len;
1683
1684         size = sizeof(struct igb_buffer) * rx_ring->count;
1685         rx_ring->buffer_info = vmalloc(size);
1686         if (!rx_ring->buffer_info)
1687                 goto err;
1688         memset(rx_ring->buffer_info, 0, size);
1689
1690         desc_len = sizeof(union e1000_adv_rx_desc);
1691
1692         /* Round up to nearest 4K */
1693         rx_ring->size = rx_ring->count * desc_len;
1694         rx_ring->size = ALIGN(rx_ring->size, 4096);
1695
1696         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1697                                              &rx_ring->dma);
1698
1699         if (!rx_ring->desc)
1700                 goto err;
1701
1702         rx_ring->next_to_clean = 0;
1703         rx_ring->next_to_use = 0;
1704         rx_ring->pending_skb = NULL;
1705
1706         rx_ring->adapter = adapter;
1707
1708         return 0;
1709
1710 err:
1711         vfree(rx_ring->buffer_info);
1712         dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1713                 "the receive descriptor ring\n");
1714         return -ENOMEM;
1715 }
1716
1717 /**
1718  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1719  *                                (Descriptors) for all queues
1720  * @adapter: board private structure
1721  *
1722  * Return 0 on success, negative on failure
1723  **/
1724 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1725 {
1726         int i, err = 0;
1727
1728         for (i = 0; i < adapter->num_rx_queues; i++) {
1729                 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1730                 if (err) {
1731                         dev_err(&adapter->pdev->dev,
1732                                 "Allocation for Rx Queue %u failed\n", i);
1733                         for (i--; i >= 0; i--)
1734                                 igb_free_rx_resources(&adapter->rx_ring[i]);
1735                         break;
1736                 }
1737         }
1738
1739         return err;
1740 }
1741
1742 /**
1743  * igb_setup_rctl - configure the receive control registers
1744  * @adapter: Board private structure
1745  **/
1746 static void igb_setup_rctl(struct igb_adapter *adapter)
1747 {
1748         struct e1000_hw *hw = &adapter->hw;
1749         u32 rctl;
1750         u32 srrctl = 0;
1751         int i;
1752
1753         rctl = rd32(E1000_RCTL);
1754
1755         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1756
1757         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1758                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1759                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1760
1761         /*
1762          * enable stripping of CRC. It's unlikely this will break BMC
1763          * redirection as it did with e1000. Newer features require
1764          * that the HW strips the CRC.
1765         */
1766         rctl |= E1000_RCTL_SECRC;
1767
1768         rctl &= ~E1000_RCTL_SBP;
1769
1770         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1771                 rctl &= ~E1000_RCTL_LPE;
1772         else
1773                 rctl |= E1000_RCTL_LPE;
1774         if (adapter->rx_buffer_len <= IGB_RXBUFFER_2048) {
1775                 /* Setup buffer sizes */
1776                 rctl &= ~E1000_RCTL_SZ_4096;
1777                 rctl |= E1000_RCTL_BSEX;
1778                 switch (adapter->rx_buffer_len) {
1779                 case IGB_RXBUFFER_256:
1780                         rctl |= E1000_RCTL_SZ_256;
1781                         rctl &= ~E1000_RCTL_BSEX;
1782                         break;
1783                 case IGB_RXBUFFER_512:
1784                         rctl |= E1000_RCTL_SZ_512;
1785                         rctl &= ~E1000_RCTL_BSEX;
1786                         break;
1787                 case IGB_RXBUFFER_1024:
1788                         rctl |= E1000_RCTL_SZ_1024;
1789                         rctl &= ~E1000_RCTL_BSEX;
1790                         break;
1791                 case IGB_RXBUFFER_2048:
1792                 default:
1793                         rctl |= E1000_RCTL_SZ_2048;
1794                         rctl &= ~E1000_RCTL_BSEX;
1795                         break;
1796                 case IGB_RXBUFFER_4096:
1797                         rctl |= E1000_RCTL_SZ_4096;
1798                         break;
1799                 case IGB_RXBUFFER_8192:
1800                         rctl |= E1000_RCTL_SZ_8192;
1801                         break;
1802                 case IGB_RXBUFFER_16384:
1803                         rctl |= E1000_RCTL_SZ_16384;
1804                         break;
1805                 }
1806         } else {
1807                 rctl &= ~E1000_RCTL_BSEX;
1808                 srrctl = adapter->rx_buffer_len >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1809         }
1810
1811         /* 82575 and greater support packet-split where the protocol
1812          * header is placed in skb->data and the packet data is
1813          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1814          * In the case of a non-split, skb->data is linearly filled,
1815          * followed by the page buffers.  Therefore, skb->data is
1816          * sized to hold the largest protocol header.
1817          */
1818         /* allocations using alloc_page take too long for regular MTU
1819          * so only enable packet split for jumbo frames */
1820         if (rctl & E1000_RCTL_LPE) {
1821                 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1822                 srrctl = adapter->rx_ps_hdr_size <<
1823                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1824                 /* buffer size is ALWAYS one page */
1825                 srrctl |= PAGE_SIZE >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1826                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1827         } else {
1828                 adapter->rx_ps_hdr_size = 0;
1829                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1830         }
1831
1832         for (i = 0; i < adapter->num_rx_queues; i++)
1833                 wr32(E1000_SRRCTL(i), srrctl);
1834
1835         wr32(E1000_RCTL, rctl);
1836 }
1837
1838 /**
1839  * igb_configure_rx - Configure receive Unit after Reset
1840  * @adapter: board private structure
1841  *
1842  * Configure the Rx unit of the MAC after a reset.
1843  **/
1844 static void igb_configure_rx(struct igb_adapter *adapter)
1845 {
1846         u64 rdba;
1847         struct e1000_hw *hw = &adapter->hw;
1848         u32 rctl, rxcsum;
1849         u32 rxdctl;
1850         int i;
1851
1852         /* disable receives while setting up the descriptors */
1853         rctl = rd32(E1000_RCTL);
1854         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1855         wrfl();
1856         mdelay(10);
1857
1858         if (adapter->itr_setting > 3)
1859                 wr32(E1000_ITR,
1860                                 1000000000 / (adapter->itr * 256));
1861
1862         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1863          * the Base and Length of the Rx Descriptor Ring */
1864         for (i = 0; i < adapter->num_rx_queues; i++) {
1865                 struct igb_ring *ring = &(adapter->rx_ring[i]);
1866                 rdba = ring->dma;
1867                 wr32(E1000_RDBAL(i),
1868                                 rdba & 0x00000000ffffffffULL);
1869                 wr32(E1000_RDBAH(i), rdba >> 32);
1870                 wr32(E1000_RDLEN(i),
1871                                ring->count * sizeof(union e1000_adv_rx_desc));
1872
1873                 ring->head = E1000_RDH(i);
1874                 ring->tail = E1000_RDT(i);
1875                 writel(0, hw->hw_addr + ring->tail);
1876                 writel(0, hw->hw_addr + ring->head);
1877
1878                 rxdctl = rd32(E1000_RXDCTL(i));
1879                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1880                 rxdctl &= 0xFFF00000;
1881                 rxdctl |= IGB_RX_PTHRESH;
1882                 rxdctl |= IGB_RX_HTHRESH << 8;
1883                 rxdctl |= IGB_RX_WTHRESH << 16;
1884                 wr32(E1000_RXDCTL(i), rxdctl);
1885         }
1886
1887         if (adapter->num_rx_queues > 1) {
1888                 u32 random[10];
1889                 u32 mrqc;
1890                 u32 j, shift;
1891                 union e1000_reta {
1892                         u32 dword;
1893                         u8  bytes[4];
1894                 } reta;
1895
1896                 get_random_bytes(&random[0], 40);
1897
1898                 if (hw->mac.type >= e1000_82576)
1899                         shift = 0;
1900                 else
1901                         shift = 6;
1902                 for (j = 0; j < (32 * 4); j++) {
1903                         reta.bytes[j & 3] =
1904                                 (j % adapter->num_rx_queues) << shift;
1905                         if ((j & 3) == 3)
1906                                 writel(reta.dword,
1907                                        hw->hw_addr + E1000_RETA(0) + (j & ~3));
1908                 }
1909                 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1910
1911                 /* Fill out hash function seeds */
1912                 for (j = 0; j < 10; j++)
1913                         array_wr32(E1000_RSSRK(0), j, random[j]);
1914
1915                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1916                          E1000_MRQC_RSS_FIELD_IPV4_TCP);
1917                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1918                          E1000_MRQC_RSS_FIELD_IPV6_TCP);
1919                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1920                          E1000_MRQC_RSS_FIELD_IPV6_UDP);
1921                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1922                          E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1923
1924
1925                 wr32(E1000_MRQC, mrqc);
1926
1927                 /* Multiqueue and raw packet checksumming are mutually
1928                  * exclusive.  Note that this not the same as TCP/IP
1929                  * checksumming, which works fine. */
1930                 rxcsum = rd32(E1000_RXCSUM);
1931                 rxcsum |= E1000_RXCSUM_PCSD;
1932                 wr32(E1000_RXCSUM, rxcsum);
1933         } else {
1934                 /* Enable Receive Checksum Offload for TCP and UDP */
1935                 rxcsum = rd32(E1000_RXCSUM);
1936                 if (adapter->rx_csum) {
1937                         rxcsum |= E1000_RXCSUM_TUOFL;
1938
1939                         /* Enable IPv4 payload checksum for UDP fragments
1940                          * Must be used in conjunction with packet-split. */
1941                         if (adapter->rx_ps_hdr_size)
1942                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1943                 } else {
1944                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1945                         /* don't need to clear IPPCSE as it defaults to 0 */
1946                 }
1947                 wr32(E1000_RXCSUM, rxcsum);
1948         }
1949
1950         if (adapter->vlgrp)
1951                 wr32(E1000_RLPML,
1952                                 adapter->max_frame_size + VLAN_TAG_SIZE);
1953         else
1954                 wr32(E1000_RLPML, adapter->max_frame_size);
1955
1956         /* Enable Receives */
1957         wr32(E1000_RCTL, rctl);
1958 }
1959
1960 /**
1961  * igb_free_tx_resources - Free Tx Resources per Queue
1962  * @adapter: board private structure
1963  * @tx_ring: Tx descriptor ring for a specific queue
1964  *
1965  * Free all transmit software resources
1966  **/
1967 static void igb_free_tx_resources(struct igb_ring *tx_ring)
1968 {
1969         struct pci_dev *pdev = tx_ring->adapter->pdev;
1970
1971         igb_clean_tx_ring(tx_ring);
1972
1973         vfree(tx_ring->buffer_info);
1974         tx_ring->buffer_info = NULL;
1975
1976         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1977
1978         tx_ring->desc = NULL;
1979 }
1980
1981 /**
1982  * igb_free_all_tx_resources - Free Tx Resources for All Queues
1983  * @adapter: board private structure
1984  *
1985  * Free all transmit software resources
1986  **/
1987 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
1988 {
1989         int i;
1990
1991         for (i = 0; i < adapter->num_tx_queues; i++)
1992                 igb_free_tx_resources(&adapter->tx_ring[i]);
1993 }
1994
1995 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
1996                                            struct igb_buffer *buffer_info)
1997 {
1998         if (buffer_info->dma) {
1999                 pci_unmap_page(adapter->pdev,
2000                                 buffer_info->dma,
2001                                 buffer_info->length,
2002                                 PCI_DMA_TODEVICE);
2003                 buffer_info->dma = 0;
2004         }
2005         if (buffer_info->skb) {
2006                 dev_kfree_skb_any(buffer_info->skb);
2007                 buffer_info->skb = NULL;
2008         }
2009         buffer_info->time_stamp = 0;
2010         /* buffer_info must be completely set up in the transmit path */
2011 }
2012
2013 /**
2014  * igb_clean_tx_ring - Free Tx Buffers
2015  * @adapter: board private structure
2016  * @tx_ring: ring to be cleaned
2017  **/
2018 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2019 {
2020         struct igb_adapter *adapter = tx_ring->adapter;
2021         struct igb_buffer *buffer_info;
2022         unsigned long size;
2023         unsigned int i;
2024
2025         if (!tx_ring->buffer_info)
2026                 return;
2027         /* Free all the Tx ring sk_buffs */
2028
2029         for (i = 0; i < tx_ring->count; i++) {
2030                 buffer_info = &tx_ring->buffer_info[i];
2031                 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2032         }
2033
2034         size = sizeof(struct igb_buffer) * tx_ring->count;
2035         memset(tx_ring->buffer_info, 0, size);
2036
2037         /* Zero out the descriptor ring */
2038
2039         memset(tx_ring->desc, 0, tx_ring->size);
2040
2041         tx_ring->next_to_use = 0;
2042         tx_ring->next_to_clean = 0;
2043
2044         writel(0, adapter->hw.hw_addr + tx_ring->head);
2045         writel(0, adapter->hw.hw_addr + tx_ring->tail);
2046 }
2047
2048 /**
2049  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2050  * @adapter: board private structure
2051  **/
2052 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2053 {
2054         int i;
2055
2056         for (i = 0; i < adapter->num_tx_queues; i++)
2057                 igb_clean_tx_ring(&adapter->tx_ring[i]);
2058 }
2059
2060 /**
2061  * igb_free_rx_resources - Free Rx Resources
2062  * @adapter: board private structure
2063  * @rx_ring: ring to clean the resources from
2064  *
2065  * Free all receive software resources
2066  **/
2067 static void igb_free_rx_resources(struct igb_ring *rx_ring)
2068 {
2069         struct pci_dev *pdev = rx_ring->adapter->pdev;
2070
2071         igb_clean_rx_ring(rx_ring);
2072
2073         vfree(rx_ring->buffer_info);
2074         rx_ring->buffer_info = NULL;
2075
2076         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2077
2078         rx_ring->desc = NULL;
2079 }
2080
2081 /**
2082  * igb_free_all_rx_resources - Free Rx Resources for All Queues
2083  * @adapter: board private structure
2084  *
2085  * Free all receive software resources
2086  **/
2087 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2088 {
2089         int i;
2090
2091         for (i = 0; i < adapter->num_rx_queues; i++)
2092                 igb_free_rx_resources(&adapter->rx_ring[i]);
2093 }
2094
2095 /**
2096  * igb_clean_rx_ring - Free Rx Buffers per Queue
2097  * @adapter: board private structure
2098  * @rx_ring: ring to free buffers from
2099  **/
2100 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2101 {
2102         struct igb_adapter *adapter = rx_ring->adapter;
2103         struct igb_buffer *buffer_info;
2104         struct pci_dev *pdev = adapter->pdev;
2105         unsigned long size;
2106         unsigned int i;
2107
2108         if (!rx_ring->buffer_info)
2109                 return;
2110         /* Free all the Rx ring sk_buffs */
2111         for (i = 0; i < rx_ring->count; i++) {
2112                 buffer_info = &rx_ring->buffer_info[i];
2113                 if (buffer_info->dma) {
2114                         if (adapter->rx_ps_hdr_size)
2115                                 pci_unmap_single(pdev, buffer_info->dma,
2116                                                  adapter->rx_ps_hdr_size,
2117                                                  PCI_DMA_FROMDEVICE);
2118                         else
2119                                 pci_unmap_single(pdev, buffer_info->dma,
2120                                                  adapter->rx_buffer_len,
2121                                                  PCI_DMA_FROMDEVICE);
2122                         buffer_info->dma = 0;
2123                 }
2124
2125                 if (buffer_info->skb) {
2126                         dev_kfree_skb(buffer_info->skb);
2127                         buffer_info->skb = NULL;
2128                 }
2129                 if (buffer_info->page) {
2130                         pci_unmap_page(pdev, buffer_info->page_dma,
2131                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2132                         put_page(buffer_info->page);
2133                         buffer_info->page = NULL;
2134                         buffer_info->page_dma = 0;
2135                 }
2136         }
2137
2138         /* there also may be some cached data from a chained receive */
2139         if (rx_ring->pending_skb) {
2140                 dev_kfree_skb(rx_ring->pending_skb);
2141                 rx_ring->pending_skb = NULL;
2142         }
2143
2144         size = sizeof(struct igb_buffer) * rx_ring->count;
2145         memset(rx_ring->buffer_info, 0, size);
2146
2147         /* Zero out the descriptor ring */
2148         memset(rx_ring->desc, 0, rx_ring->size);
2149
2150         rx_ring->next_to_clean = 0;
2151         rx_ring->next_to_use = 0;
2152
2153         writel(0, adapter->hw.hw_addr + rx_ring->head);
2154         writel(0, adapter->hw.hw_addr + rx_ring->tail);
2155 }
2156
2157 /**
2158  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2159  * @adapter: board private structure
2160  **/
2161 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2162 {
2163         int i;
2164
2165         for (i = 0; i < adapter->num_rx_queues; i++)
2166                 igb_clean_rx_ring(&adapter->rx_ring[i]);
2167 }
2168
2169 /**
2170  * igb_set_mac - Change the Ethernet Address of the NIC
2171  * @netdev: network interface device structure
2172  * @p: pointer to an address structure
2173  *
2174  * Returns 0 on success, negative on failure
2175  **/
2176 static int igb_set_mac(struct net_device *netdev, void *p)
2177 {
2178         struct igb_adapter *adapter = netdev_priv(netdev);
2179         struct sockaddr *addr = p;
2180
2181         if (!is_valid_ether_addr(addr->sa_data))
2182                 return -EADDRNOTAVAIL;
2183
2184         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2185         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2186
2187         adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2188
2189         return 0;
2190 }
2191
2192 /**
2193  * igb_set_multi - Multicast and Promiscuous mode set
2194  * @netdev: network interface device structure
2195  *
2196  * The set_multi entry point is called whenever the multicast address
2197  * list or the network interface flags are updated.  This routine is
2198  * responsible for configuring the hardware for proper multicast,
2199  * promiscuous mode, and all-multi behavior.
2200  **/
2201 static void igb_set_multi(struct net_device *netdev)
2202 {
2203         struct igb_adapter *adapter = netdev_priv(netdev);
2204         struct e1000_hw *hw = &adapter->hw;
2205         struct e1000_mac_info *mac = &hw->mac;
2206         struct dev_mc_list *mc_ptr;
2207         u8  *mta_list;
2208         u32 rctl;
2209         int i;
2210
2211         /* Check for Promiscuous and All Multicast modes */
2212
2213         rctl = rd32(E1000_RCTL);
2214
2215         if (netdev->flags & IFF_PROMISC)
2216                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2217         else if (netdev->flags & IFF_ALLMULTI) {
2218                 rctl |= E1000_RCTL_MPE;
2219                 rctl &= ~E1000_RCTL_UPE;
2220         } else
2221                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2222
2223         wr32(E1000_RCTL, rctl);
2224
2225         if (!netdev->mc_count) {
2226                 /* nothing to program, so clear mc list */
2227                 igb_update_mc_addr_list_82575(hw, NULL, 0, 1,
2228                                           mac->rar_entry_count);
2229                 return;
2230         }
2231
2232         mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2233         if (!mta_list)
2234                 return;
2235
2236         /* The shared function expects a packed array of only addresses. */
2237         mc_ptr = netdev->mc_list;
2238
2239         for (i = 0; i < netdev->mc_count; i++) {
2240                 if (!mc_ptr)
2241                         break;
2242                 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2243                 mc_ptr = mc_ptr->next;
2244         }
2245         igb_update_mc_addr_list_82575(hw, mta_list, i, 1,
2246                                       mac->rar_entry_count);
2247         kfree(mta_list);
2248 }
2249
2250 /* Need to wait a few seconds after link up to get diagnostic information from
2251  * the phy */
2252 static void igb_update_phy_info(unsigned long data)
2253 {
2254         struct igb_adapter *adapter = (struct igb_adapter *) data;
2255         if (adapter->hw.phy.ops.get_phy_info)
2256                 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
2257 }
2258
2259 /**
2260  * igb_watchdog - Timer Call-back
2261  * @data: pointer to adapter cast into an unsigned long
2262  **/
2263 static void igb_watchdog(unsigned long data)
2264 {
2265         struct igb_adapter *adapter = (struct igb_adapter *)data;
2266         /* Do the rest outside of interrupt context */
2267         schedule_work(&adapter->watchdog_task);
2268 }
2269
2270 static void igb_watchdog_task(struct work_struct *work)
2271 {
2272         struct igb_adapter *adapter = container_of(work,
2273                                         struct igb_adapter, watchdog_task);
2274         struct e1000_hw *hw = &adapter->hw;
2275
2276         struct net_device *netdev = adapter->netdev;
2277         struct igb_ring *tx_ring = adapter->tx_ring;
2278         struct e1000_mac_info *mac = &adapter->hw.mac;
2279         u32 link;
2280         s32 ret_val;
2281 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
2282         int i;
2283 #endif
2284
2285         if ((netif_carrier_ok(netdev)) &&
2286             (rd32(E1000_STATUS) & E1000_STATUS_LU))
2287                 goto link_up;
2288
2289         ret_val = hw->mac.ops.check_for_link(&adapter->hw);
2290         if ((ret_val == E1000_ERR_PHY) &&
2291             (hw->phy.type == e1000_phy_igp_3) &&
2292             (rd32(E1000_CTRL) &
2293              E1000_PHY_CTRL_GBE_DISABLE))
2294                 dev_info(&adapter->pdev->dev,
2295                          "Gigabit has been disabled, downgrading speed\n");
2296
2297         if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
2298             !(rd32(E1000_TXCW) & E1000_TXCW_ANE))
2299                 link = mac->serdes_has_link;
2300         else
2301                 link = rd32(E1000_STATUS) &
2302                                       E1000_STATUS_LU;
2303
2304         if (link) {
2305                 if (!netif_carrier_ok(netdev)) {
2306                         u32 ctrl;
2307                         hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2308                                                    &adapter->link_speed,
2309                                                    &adapter->link_duplex);
2310
2311                         ctrl = rd32(E1000_CTRL);
2312                         dev_info(&adapter->pdev->dev,
2313                                  "NIC Link is Up %d Mbps %s, "
2314                                  "Flow Control: %s\n",
2315                                  adapter->link_speed,
2316                                  adapter->link_duplex == FULL_DUPLEX ?
2317                                  "Full Duplex" : "Half Duplex",
2318                                  ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2319                                  E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2320                                  E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2321                                  E1000_CTRL_TFCE) ? "TX" : "None")));
2322
2323                         /* tweak tx_queue_len according to speed/duplex and
2324                          * adjust the timeout factor */
2325                         netdev->tx_queue_len = adapter->tx_queue_len;
2326                         adapter->tx_timeout_factor = 1;
2327                         switch (adapter->link_speed) {
2328                         case SPEED_10:
2329                                 netdev->tx_queue_len = 10;
2330                                 adapter->tx_timeout_factor = 14;
2331                                 break;
2332                         case SPEED_100:
2333                                 netdev->tx_queue_len = 100;
2334                                 /* maybe add some timeout factor ? */
2335                                 break;
2336                         }
2337
2338                         netif_carrier_on(netdev);
2339                         netif_wake_queue(netdev);
2340 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
2341                         for (i = 0; i < adapter->num_tx_queues; i++)
2342                                 netif_wake_subqueue(netdev, i);
2343 #endif
2344
2345                         if (!test_bit(__IGB_DOWN, &adapter->state))
2346                                 mod_timer(&adapter->phy_info_timer,
2347                                           round_jiffies(jiffies + 2 * HZ));
2348                 }
2349         } else {
2350                 if (netif_carrier_ok(netdev)) {
2351                         adapter->link_speed = 0;
2352                         adapter->link_duplex = 0;
2353                         dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2354                         netif_carrier_off(netdev);
2355                         netif_stop_queue(netdev);
2356 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
2357                         for (i = 0; i < adapter->num_tx_queues; i++)
2358                                 netif_stop_subqueue(netdev, i);
2359 #endif
2360                         if (!test_bit(__IGB_DOWN, &adapter->state))
2361                                 mod_timer(&adapter->phy_info_timer,
2362                                           round_jiffies(jiffies + 2 * HZ));
2363                 }
2364         }
2365
2366 link_up:
2367         igb_update_stats(adapter);
2368
2369         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2370         adapter->tpt_old = adapter->stats.tpt;
2371         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2372         adapter->colc_old = adapter->stats.colc;
2373
2374         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2375         adapter->gorc_old = adapter->stats.gorc;
2376         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2377         adapter->gotc_old = adapter->stats.gotc;
2378
2379         igb_update_adaptive(&adapter->hw);
2380
2381         if (!netif_carrier_ok(netdev)) {
2382                 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2383                         /* We've lost link, so the controller stops DMA,
2384                          * but we've got queued Tx work that's never going
2385                          * to get done, so reset controller to flush Tx.
2386                          * (Do the reset outside of interrupt context). */
2387                         adapter->tx_timeout_count++;
2388                         schedule_work(&adapter->reset_task);
2389                 }
2390         }
2391
2392         /* Cause software interrupt to ensure rx ring is cleaned */
2393         wr32(E1000_ICS, E1000_ICS_RXDMT0);
2394
2395         /* Force detection of hung controller every watchdog period */
2396         tx_ring->detect_tx_hung = true;
2397
2398         /* Reset the timer */
2399         if (!test_bit(__IGB_DOWN, &adapter->state))
2400                 mod_timer(&adapter->watchdog_timer,
2401                           round_jiffies(jiffies + 2 * HZ));
2402 }
2403
2404 enum latency_range {
2405         lowest_latency = 0,
2406         low_latency = 1,
2407         bulk_latency = 2,
2408         latency_invalid = 255
2409 };
2410
2411
2412 static void igb_lower_rx_eitr(struct igb_adapter *adapter,
2413                               struct igb_ring *rx_ring)
2414 {
2415         struct e1000_hw *hw = &adapter->hw;
2416         int new_val;
2417
2418         new_val = rx_ring->itr_val / 2;
2419         if (new_val < IGB_MIN_DYN_ITR)
2420                 new_val = IGB_MIN_DYN_ITR;
2421
2422         if (new_val != rx_ring->itr_val) {
2423                 rx_ring->itr_val = new_val;
2424                 wr32(rx_ring->itr_register,
2425                                 1000000000 / (new_val * 256));
2426         }
2427 }
2428
2429 static void igb_raise_rx_eitr(struct igb_adapter *adapter,
2430                               struct igb_ring *rx_ring)
2431 {
2432         struct e1000_hw *hw = &adapter->hw;
2433         int new_val;
2434
2435         new_val = rx_ring->itr_val * 2;
2436         if (new_val > IGB_MAX_DYN_ITR)
2437                 new_val = IGB_MAX_DYN_ITR;
2438
2439         if (new_val != rx_ring->itr_val) {
2440                 rx_ring->itr_val = new_val;
2441                 wr32(rx_ring->itr_register,
2442                                 1000000000 / (new_val * 256));
2443         }
2444 }
2445
2446 /**
2447  * igb_update_itr - update the dynamic ITR value based on statistics
2448  *      Stores a new ITR value based on packets and byte
2449  *      counts during the last interrupt.  The advantage of per interrupt
2450  *      computation is faster updates and more accurate ITR for the current
2451  *      traffic pattern.  Constants in this function were computed
2452  *      based on theoretical maximum wire speed and thresholds were set based
2453  *      on testing data as well as attempting to minimize response time
2454  *      while increasing bulk throughput.
2455  *      this functionality is controlled by the InterruptThrottleRate module
2456  *      parameter (see igb_param.c)
2457  *      NOTE:  These calculations are only valid when operating in a single-
2458  *             queue environment.
2459  * @adapter: pointer to adapter
2460  * @itr_setting: current adapter->itr
2461  * @packets: the number of packets during this measurement interval
2462  * @bytes: the number of bytes during this measurement interval
2463  **/
2464 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2465                                    int packets, int bytes)
2466 {
2467         unsigned int retval = itr_setting;
2468
2469         if (packets == 0)
2470                 goto update_itr_done;
2471
2472         switch (itr_setting) {
2473         case lowest_latency:
2474                 /* handle TSO and jumbo frames */
2475                 if (bytes/packets > 8000)
2476                         retval = bulk_latency;
2477                 else if ((packets < 5) && (bytes > 512))
2478                         retval = low_latency;
2479                 break;
2480         case low_latency:  /* 50 usec aka 20000 ints/s */
2481                 if (bytes > 10000) {
2482                         /* this if handles the TSO accounting */
2483                         if (bytes/packets > 8000) {
2484                                 retval = bulk_latency;
2485                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2486                                 retval = bulk_latency;
2487                         } else if ((packets > 35)) {
2488                                 retval = lowest_latency;
2489                         }
2490                 } else if (bytes/packets > 2000) {
2491                         retval = bulk_latency;
2492                 } else if (packets <= 2 && bytes < 512) {
2493                         retval = lowest_latency;
2494                 }
2495                 break;
2496         case bulk_latency: /* 250 usec aka 4000 ints/s */
2497                 if (bytes > 25000) {
2498                         if (packets > 35)
2499                                 retval = low_latency;
2500                 } else if (bytes < 6000) {
2501                         retval = low_latency;
2502                 }
2503                 break;
2504         }
2505
2506 update_itr_done:
2507         return retval;
2508 }
2509
2510 static void igb_set_itr(struct igb_adapter *adapter, u16 itr_register,
2511                         int rx_only)
2512 {
2513         u16 current_itr;
2514         u32 new_itr = adapter->itr;
2515
2516         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2517         if (adapter->link_speed != SPEED_1000) {
2518                 current_itr = 0;
2519                 new_itr = 4000;
2520                 goto set_itr_now;
2521         }
2522
2523         adapter->rx_itr = igb_update_itr(adapter,
2524                                     adapter->rx_itr,
2525                                     adapter->rx_ring->total_packets,
2526                                     adapter->rx_ring->total_bytes);
2527         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2528         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2529                 adapter->rx_itr = low_latency;
2530
2531         if (!rx_only) {
2532                 adapter->tx_itr = igb_update_itr(adapter,
2533                                             adapter->tx_itr,
2534                                             adapter->tx_ring->total_packets,
2535                                             adapter->tx_ring->total_bytes);
2536                 /* conservative mode (itr 3) eliminates the
2537                  * lowest_latency setting */
2538                 if (adapter->itr_setting == 3 &&
2539                     adapter->tx_itr == lowest_latency)
2540                         adapter->tx_itr = low_latency;
2541
2542                 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2543         } else {
2544                 current_itr = adapter->rx_itr;
2545         }
2546
2547         switch (current_itr) {
2548         /* counts and packets in update_itr are dependent on these numbers */
2549         case lowest_latency:
2550                 new_itr = 70000;
2551                 break;
2552         case low_latency:
2553                 new_itr = 20000; /* aka hwitr = ~200 */
2554                 break;
2555         case bulk_latency:
2556                 new_itr = 4000;
2557                 break;
2558         default:
2559                 break;
2560         }
2561
2562 set_itr_now:
2563         if (new_itr != adapter->itr) {
2564                 /* this attempts to bias the interrupt rate towards Bulk
2565                  * by adding intermediate steps when interrupt rate is
2566                  * increasing */
2567                 new_itr = new_itr > adapter->itr ?
2568                              min(adapter->itr + (new_itr >> 2), new_itr) :
2569                              new_itr;
2570                 /* Don't write the value here; it resets the adapter's
2571                  * internal timer, and causes us to delay far longer than
2572                  * we should between interrupts.  Instead, we write the ITR
2573                  * value at the beginning of the next interrupt so the timing
2574                  * ends up being correct.
2575                  */
2576                 adapter->itr = new_itr;
2577                 adapter->set_itr = 1;
2578         }
2579
2580         return;
2581 }
2582
2583
2584 #define IGB_TX_FLAGS_CSUM               0x00000001
2585 #define IGB_TX_FLAGS_VLAN               0x00000002
2586 #define IGB_TX_FLAGS_TSO                0x00000004
2587 #define IGB_TX_FLAGS_IPV4               0x00000008
2588 #define IGB_TX_FLAGS_VLAN_MASK  0xffff0000
2589 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2590
2591 static inline int igb_tso_adv(struct igb_adapter *adapter,
2592                               struct igb_ring *tx_ring,
2593                               struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2594 {
2595         struct e1000_adv_tx_context_desc *context_desc;
2596         unsigned int i;
2597         int err;
2598         struct igb_buffer *buffer_info;
2599         u32 info = 0, tu_cmd = 0;
2600         u32 mss_l4len_idx, l4len;
2601         *hdr_len = 0;
2602
2603         if (skb_header_cloned(skb)) {
2604                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2605                 if (err)
2606                         return err;
2607         }
2608
2609         l4len = tcp_hdrlen(skb);
2610         *hdr_len += l4len;
2611
2612         if (skb->protocol == htons(ETH_P_IP)) {
2613                 struct iphdr *iph = ip_hdr(skb);
2614                 iph->tot_len = 0;
2615                 iph->check = 0;
2616                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2617                                                          iph->daddr, 0,
2618                                                          IPPROTO_TCP,
2619                                                          0);
2620         } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2621                 ipv6_hdr(skb)->payload_len = 0;
2622                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2623                                                        &ipv6_hdr(skb)->daddr,
2624                                                        0, IPPROTO_TCP, 0);
2625         }
2626
2627         i = tx_ring->next_to_use;
2628
2629         buffer_info = &tx_ring->buffer_info[i];
2630         context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2631         /* VLAN MACLEN IPLEN */
2632         if (tx_flags & IGB_TX_FLAGS_VLAN)
2633                 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2634         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2635         *hdr_len += skb_network_offset(skb);
2636         info |= skb_network_header_len(skb);
2637         *hdr_len += skb_network_header_len(skb);
2638         context_desc->vlan_macip_lens = cpu_to_le32(info);
2639
2640         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2641         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2642
2643         if (skb->protocol == htons(ETH_P_IP))
2644                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2645         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2646
2647         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2648
2649         /* MSS L4LEN IDX */
2650         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2651         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2652
2653         /* Context index must be unique per ring.  Luckily, so is the interrupt
2654          * mask value. */
2655         mss_l4len_idx |= tx_ring->eims_value >> 4;
2656
2657         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2658         context_desc->seqnum_seed = 0;
2659
2660         buffer_info->time_stamp = jiffies;
2661         buffer_info->dma = 0;
2662         i++;
2663         if (i == tx_ring->count)
2664                 i = 0;
2665
2666         tx_ring->next_to_use = i;
2667
2668         return true;
2669 }
2670
2671 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2672                                         struct igb_ring *tx_ring,
2673                                         struct sk_buff *skb, u32 tx_flags)
2674 {
2675         struct e1000_adv_tx_context_desc *context_desc;
2676         unsigned int i;
2677         struct igb_buffer *buffer_info;
2678         u32 info = 0, tu_cmd = 0;
2679
2680         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2681             (tx_flags & IGB_TX_FLAGS_VLAN)) {
2682                 i = tx_ring->next_to_use;
2683                 buffer_info = &tx_ring->buffer_info[i];
2684                 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2685
2686                 if (tx_flags & IGB_TX_FLAGS_VLAN)
2687                         info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2688                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2689                 if (skb->ip_summed == CHECKSUM_PARTIAL)
2690                         info |= skb_network_header_len(skb);
2691
2692                 context_desc->vlan_macip_lens = cpu_to_le32(info);
2693
2694                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2695
2696                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2697                         switch (skb->protocol) {
2698                         case __constant_htons(ETH_P_IP):
2699                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2700                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2701                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2702                                 break;
2703                         case __constant_htons(ETH_P_IPV6):
2704                                 /* XXX what about other V6 headers?? */
2705                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2706                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2707                                 break;
2708                         default:
2709                                 if (unlikely(net_ratelimit()))
2710                                         dev_warn(&adapter->pdev->dev,
2711                                             "partial checksum but proto=%x!\n",
2712                                             skb->protocol);
2713                                 break;
2714                         }
2715                 }
2716
2717                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2718                 context_desc->seqnum_seed = 0;
2719                 context_desc->mss_l4len_idx =
2720                                           cpu_to_le32(tx_ring->queue_index << 4);
2721
2722                 buffer_info->time_stamp = jiffies;
2723                 buffer_info->dma = 0;
2724
2725                 i++;
2726                 if (i == tx_ring->count)
2727                         i = 0;
2728                 tx_ring->next_to_use = i;
2729
2730                 return true;
2731         }
2732
2733
2734         return false;
2735 }
2736
2737 #define IGB_MAX_TXD_PWR 16
2738 #define IGB_MAX_DATA_PER_TXD    (1<<IGB_MAX_TXD_PWR)
2739
2740 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2741                                  struct igb_ring *tx_ring,
2742                                  struct sk_buff *skb)
2743 {
2744         struct igb_buffer *buffer_info;
2745         unsigned int len = skb_headlen(skb);
2746         unsigned int count = 0, i;
2747         unsigned int f;
2748
2749         i = tx_ring->next_to_use;
2750
2751         buffer_info = &tx_ring->buffer_info[i];
2752         BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2753         buffer_info->length = len;
2754         /* set time_stamp *before* dma to help avoid a possible race */
2755         buffer_info->time_stamp = jiffies;
2756         buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2757                                           PCI_DMA_TODEVICE);
2758         count++;
2759         i++;
2760         if (i == tx_ring->count)
2761                 i = 0;
2762
2763         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2764                 struct skb_frag_struct *frag;
2765
2766                 frag = &skb_shinfo(skb)->frags[f];
2767                 len = frag->size;
2768
2769                 buffer_info = &tx_ring->buffer_info[i];
2770                 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2771                 buffer_info->length = len;
2772                 buffer_info->time_stamp = jiffies;
2773                 buffer_info->dma = pci_map_page(adapter->pdev,
2774                                                 frag->page,
2775                                                 frag->page_offset,
2776                                                 len,
2777                                                 PCI_DMA_TODEVICE);
2778
2779                 count++;
2780                 i++;
2781                 if (i == tx_ring->count)
2782                         i = 0;
2783         }
2784
2785         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2786         tx_ring->buffer_info[i].skb = skb;
2787
2788         return count;
2789 }
2790
2791 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2792                                     struct igb_ring *tx_ring,
2793                                     int tx_flags, int count, u32 paylen,
2794                                     u8 hdr_len)
2795 {
2796         union e1000_adv_tx_desc *tx_desc = NULL;
2797         struct igb_buffer *buffer_info;
2798         u32 olinfo_status = 0, cmd_type_len;
2799         unsigned int i;
2800
2801         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2802                         E1000_ADVTXD_DCMD_DEXT);
2803
2804         if (tx_flags & IGB_TX_FLAGS_VLAN)
2805                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2806
2807         if (tx_flags & IGB_TX_FLAGS_TSO) {
2808                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2809
2810                 /* insert tcp checksum */
2811                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2812
2813                 /* insert ip checksum */
2814                 if (tx_flags & IGB_TX_FLAGS_IPV4)
2815                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2816
2817         } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2818                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2819         }
2820
2821         if (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2822                         IGB_TX_FLAGS_VLAN))
2823                 olinfo_status |= tx_ring->queue_index << 4;
2824
2825         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2826
2827         i = tx_ring->next_to_use;
2828         while (count--) {
2829                 buffer_info = &tx_ring->buffer_info[i];
2830                 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2831                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2832                 tx_desc->read.cmd_type_len =
2833                         cpu_to_le32(cmd_type_len | buffer_info->length);
2834                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2835                 i++;
2836                 if (i == tx_ring->count)
2837                         i = 0;
2838         }
2839
2840         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2841         /* Force memory writes to complete before letting h/w
2842          * know there are new descriptors to fetch.  (Only
2843          * applicable for weak-ordered memory model archs,
2844          * such as IA-64). */
2845         wmb();
2846
2847         tx_ring->next_to_use = i;
2848         writel(i, adapter->hw.hw_addr + tx_ring->tail);
2849         /* we need this if more than one processor can write to our tail
2850          * at a time, it syncronizes IO on IA64/Altix systems */
2851         mmiowb();
2852 }
2853
2854 static int __igb_maybe_stop_tx(struct net_device *netdev,
2855                                struct igb_ring *tx_ring, int size)
2856 {
2857         struct igb_adapter *adapter = netdev_priv(netdev);
2858
2859 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
2860         netif_stop_subqueue(netdev, tx_ring->queue_index);
2861 #else
2862         netif_stop_queue(netdev);
2863 #endif
2864
2865         /* Herbert's original patch had:
2866          *  smp_mb__after_netif_stop_queue();
2867          * but since that doesn't exist yet, just open code it. */
2868         smp_mb();
2869
2870         /* We need to check again in a case another CPU has just
2871          * made room available. */
2872         if (IGB_DESC_UNUSED(tx_ring) < size)
2873                 return -EBUSY;
2874
2875         /* A reprieve! */
2876 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
2877         netif_wake_subqueue(netdev, tx_ring->queue_index);
2878 #else
2879         netif_wake_queue(netdev);
2880 #endif  
2881         ++adapter->restart_queue;
2882         return 0;
2883 }
2884
2885 static int igb_maybe_stop_tx(struct net_device *netdev,
2886                              struct igb_ring *tx_ring, int size)
2887 {
2888         if (IGB_DESC_UNUSED(tx_ring) >= size)
2889                 return 0;
2890         return __igb_maybe_stop_tx(netdev, tx_ring, size);
2891 }
2892
2893 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2894
2895 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2896                                    struct net_device *netdev,
2897                                    struct igb_ring *tx_ring)
2898 {
2899         struct igb_adapter *adapter = netdev_priv(netdev);
2900         unsigned int tx_flags = 0;
2901         unsigned int len;
2902         u8 hdr_len = 0;
2903         int tso = 0;
2904
2905         len = skb_headlen(skb);
2906
2907         if (test_bit(__IGB_DOWN, &adapter->state)) {
2908                 dev_kfree_skb_any(skb);
2909                 return NETDEV_TX_OK;
2910         }
2911
2912         if (skb->len <= 0) {
2913                 dev_kfree_skb_any(skb);
2914                 return NETDEV_TX_OK;
2915         }
2916
2917         /* need: 1 descriptor per page,
2918          *       + 2 desc gap to keep tail from touching head,
2919          *       + 1 desc for skb->data,
2920          *       + 1 desc for context descriptor,
2921          * otherwise try next time */
2922         if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2923                 /* this is a hard error */
2924                 return NETDEV_TX_BUSY;
2925         }
2926
2927         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2928                 tx_flags |= IGB_TX_FLAGS_VLAN;
2929                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2930         }
2931
2932         if (skb->protocol == htons(ETH_P_IP))
2933                 tx_flags |= IGB_TX_FLAGS_IPV4;
2934
2935         tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2936                                               &hdr_len) : 0;
2937
2938         if (tso < 0) {
2939                 dev_kfree_skb_any(skb);
2940                 return NETDEV_TX_OK;
2941         }
2942
2943         if (tso)
2944                 tx_flags |= IGB_TX_FLAGS_TSO;
2945         else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
2946                         if (skb->ip_summed == CHECKSUM_PARTIAL)
2947                                 tx_flags |= IGB_TX_FLAGS_CSUM;
2948
2949         igb_tx_queue_adv(adapter, tx_ring, tx_flags,
2950                          igb_tx_map_adv(adapter, tx_ring, skb),
2951                          skb->len, hdr_len);
2952
2953         netdev->trans_start = jiffies;
2954
2955         /* Make sure there is space in the ring for the next send. */
2956         igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
2957
2958         return NETDEV_TX_OK;
2959 }
2960
2961 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
2962 {
2963         struct igb_adapter *adapter = netdev_priv(netdev);
2964         struct igb_ring *tx_ring;
2965
2966 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
2967         int r_idx = 0;
2968         r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1);
2969         tx_ring = adapter->multi_tx_table[r_idx];
2970 #else
2971         tx_ring = &adapter->tx_ring[0];
2972 #endif
2973
2974
2975         /* This goes back to the question of how to logically map a tx queue
2976          * to a flow.  Right now, performance is impacted slightly negatively
2977          * if using multiple tx queues.  If the stack breaks away from a
2978          * single qdisc implementation, we can look at this again. */
2979         return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
2980 }
2981
2982 /**
2983  * igb_tx_timeout - Respond to a Tx Hang
2984  * @netdev: network interface device structure
2985  **/
2986 static void igb_tx_timeout(struct net_device *netdev)
2987 {
2988         struct igb_adapter *adapter = netdev_priv(netdev);
2989         struct e1000_hw *hw = &adapter->hw;
2990
2991         /* Do the reset outside of interrupt context */
2992         adapter->tx_timeout_count++;
2993         schedule_work(&adapter->reset_task);
2994         wr32(E1000_EICS, adapter->eims_enable_mask &
2995                 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
2996 }
2997
2998 static void igb_reset_task(struct work_struct *work)
2999 {
3000         struct igb_adapter *adapter;
3001         adapter = container_of(work, struct igb_adapter, reset_task);
3002
3003         igb_reinit_locked(adapter);
3004 }
3005
3006 /**
3007  * igb_get_stats - Get System Network Statistics
3008  * @netdev: network interface device structure
3009  *
3010  * Returns the address of the device statistics structure.
3011  * The statistics are actually updated from the timer callback.
3012  **/
3013 static struct net_device_stats *
3014 igb_get_stats(struct net_device *netdev)
3015 {
3016         struct igb_adapter *adapter = netdev_priv(netdev);
3017
3018         /* only return the current stats */
3019         return &adapter->net_stats;
3020 }
3021
3022 /**
3023  * igb_change_mtu - Change the Maximum Transfer Unit
3024  * @netdev: network interface device structure
3025  * @new_mtu: new value for maximum frame size
3026  *
3027  * Returns 0 on success, negative on failure
3028  **/
3029 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3030 {
3031         struct igb_adapter *adapter = netdev_priv(netdev);
3032         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3033
3034         if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3035             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3036                 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3037                 return -EINVAL;
3038         }
3039
3040 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3041         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3042                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3043                 return -EINVAL;
3044         }
3045
3046         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3047                 msleep(1);
3048         /* igb_down has a dependency on max_frame_size */
3049         adapter->max_frame_size = max_frame;
3050         if (netif_running(netdev))
3051                 igb_down(adapter);
3052
3053         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3054          * means we reserve 2 more, this pushes us to allocate from the next
3055          * larger slab size.
3056          * i.e. RXBUFFER_2048 --> size-4096 slab
3057          */
3058
3059         if (max_frame <= IGB_RXBUFFER_256)
3060                 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3061         else if (max_frame <= IGB_RXBUFFER_512)
3062                 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3063         else if (max_frame <= IGB_RXBUFFER_1024)
3064                 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3065         else if (max_frame <= IGB_RXBUFFER_2048)
3066                 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3067         else
3068                 adapter->rx_buffer_len = IGB_RXBUFFER_4096;
3069         /* adjust allocation if LPE protects us, and we aren't using SBP */
3070         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3071              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3072                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3073
3074         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3075                  netdev->mtu, new_mtu);
3076         netdev->mtu = new_mtu;
3077
3078         if (netif_running(netdev))
3079                 igb_up(adapter);
3080         else
3081                 igb_reset(adapter);
3082
3083         clear_bit(__IGB_RESETTING, &adapter->state);
3084
3085         return 0;
3086 }
3087
3088 /**
3089  * igb_update_stats - Update the board statistics counters
3090  * @adapter: board private structure
3091  **/
3092
3093 void igb_update_stats(struct igb_adapter *adapter)
3094 {
3095         struct e1000_hw *hw = &adapter->hw;
3096         struct pci_dev *pdev = adapter->pdev;
3097         u16 phy_tmp;
3098
3099 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3100
3101         /*
3102          * Prevent stats update while adapter is being reset, or if the pci
3103          * connection is down.
3104          */
3105         if (adapter->link_speed == 0)
3106                 return;
3107         if (pci_channel_offline(pdev))
3108                 return;
3109
3110         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3111         adapter->stats.gprc += rd32(E1000_GPRC);
3112         adapter->stats.gorc += rd32(E1000_GORCL);
3113         rd32(E1000_GORCH); /* clear GORCL */
3114         adapter->stats.bprc += rd32(E1000_BPRC);
3115         adapter->stats.mprc += rd32(E1000_MPRC);
3116         adapter->stats.roc += rd32(E1000_ROC);
3117
3118         adapter->stats.prc64 += rd32(E1000_PRC64);
3119         adapter->stats.prc127 += rd32(E1000_PRC127);
3120         adapter->stats.prc255 += rd32(E1000_PRC255);
3121         adapter->stats.prc511 += rd32(E1000_PRC511);
3122         adapter->stats.prc1023 += rd32(E1000_PRC1023);
3123         adapter->stats.prc1522 += rd32(E1000_PRC1522);
3124         adapter->stats.symerrs += rd32(E1000_SYMERRS);
3125         adapter->stats.sec += rd32(E1000_SEC);
3126
3127         adapter->stats.mpc += rd32(E1000_MPC);
3128         adapter->stats.scc += rd32(E1000_SCC);
3129         adapter->stats.ecol += rd32(E1000_ECOL);
3130         adapter->stats.mcc += rd32(E1000_MCC);
3131         adapter->stats.latecol += rd32(E1000_LATECOL);
3132         adapter->stats.dc += rd32(E1000_DC);
3133         adapter->stats.rlec += rd32(E1000_RLEC);
3134         adapter->stats.xonrxc += rd32(E1000_XONRXC);
3135         adapter->stats.xontxc += rd32(E1000_XONTXC);
3136         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3137         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3138         adapter->stats.fcruc += rd32(E1000_FCRUC);
3139         adapter->stats.gptc += rd32(E1000_GPTC);
3140         adapter->stats.gotc += rd32(E1000_GOTCL);
3141         rd32(E1000_GOTCH); /* clear GOTCL */
3142         adapter->stats.rnbc += rd32(E1000_RNBC);
3143         adapter->stats.ruc += rd32(E1000_RUC);
3144         adapter->stats.rfc += rd32(E1000_RFC);
3145         adapter->stats.rjc += rd32(E1000_RJC);
3146         adapter->stats.tor += rd32(E1000_TORH);
3147         adapter->stats.tot += rd32(E1000_TOTH);
3148         adapter->stats.tpr += rd32(E1000_TPR);
3149
3150         adapter->stats.ptc64 += rd32(E1000_PTC64);
3151         adapter->stats.ptc127 += rd32(E1000_PTC127);
3152         adapter->stats.ptc255 += rd32(E1000_PTC255);
3153         adapter->stats.ptc511 += rd32(E1000_PTC511);
3154         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3155         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3156
3157         adapter->stats.mptc += rd32(E1000_MPTC);
3158         adapter->stats.bptc += rd32(E1000_BPTC);
3159
3160         /* used for adaptive IFS */
3161
3162         hw->mac.tx_packet_delta = rd32(E1000_TPT);
3163         adapter->stats.tpt += hw->mac.tx_packet_delta;
3164         hw->mac.collision_delta = rd32(E1000_COLC);
3165         adapter->stats.colc += hw->mac.collision_delta;
3166
3167         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3168         adapter->stats.rxerrc += rd32(E1000_RXERRC);
3169         adapter->stats.tncrs += rd32(E1000_TNCRS);
3170         adapter->stats.tsctc += rd32(E1000_TSCTC);
3171         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3172
3173         adapter->stats.iac += rd32(E1000_IAC);
3174         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3175         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3176         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3177         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3178         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3179         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3180         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3181         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3182
3183         /* Fill out the OS statistics structure */
3184         adapter->net_stats.multicast = adapter->stats.mprc;
3185         adapter->net_stats.collisions = adapter->stats.colc;
3186
3187         /* Rx Errors */
3188
3189         /* RLEC on some newer hardware can be incorrect so build
3190         * our own version based on RUC and ROC */
3191         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3192                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3193                 adapter->stats.ruc + adapter->stats.roc +
3194                 adapter->stats.cexterr;
3195         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3196                                               adapter->stats.roc;
3197         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3198         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3199         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3200
3201         /* Tx Errors */
3202         adapter->net_stats.tx_errors = adapter->stats.ecol +
3203                                        adapter->stats.latecol;
3204         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3205         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3206         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3207
3208         /* Tx Dropped needs to be maintained elsewhere */
3209
3210         /* Phy Stats */
3211         if (hw->phy.media_type == e1000_media_type_copper) {
3212                 if ((adapter->link_speed == SPEED_1000) &&
3213                    (!hw->phy.ops.read_phy_reg(hw, PHY_1000T_STATUS,
3214                                               &phy_tmp))) {
3215                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3216                         adapter->phy_stats.idle_errors += phy_tmp;
3217                 }
3218         }
3219
3220         /* Management Stats */
3221         adapter->stats.mgptc += rd32(E1000_MGTPTC);
3222         adapter->stats.mgprc += rd32(E1000_MGTPRC);
3223         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3224 }
3225
3226
3227 static irqreturn_t igb_msix_other(int irq, void *data)
3228 {
3229         struct net_device *netdev = data;
3230         struct igb_adapter *adapter = netdev_priv(netdev);
3231         struct e1000_hw *hw = &adapter->hw;
3232         u32 icr = rd32(E1000_ICR);
3233
3234         /* reading ICR causes bit 31 of EICR to be cleared */
3235         if (!(icr & E1000_ICR_LSC))
3236                 goto no_link_interrupt;
3237         hw->mac.get_link_status = 1;
3238         /* guard against interrupt when we're going down */
3239         if (!test_bit(__IGB_DOWN, &adapter->state))
3240                 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3241         
3242 no_link_interrupt:
3243         wr32(E1000_IMS, E1000_IMS_LSC);
3244         wr32(E1000_EIMS, adapter->eims_other);
3245
3246         return IRQ_HANDLED;
3247 }
3248
3249 static irqreturn_t igb_msix_tx(int irq, void *data)
3250 {
3251         struct igb_ring *tx_ring = data;
3252         struct igb_adapter *adapter = tx_ring->adapter;
3253         struct e1000_hw *hw = &adapter->hw;
3254
3255         if (!tx_ring->itr_val)
3256                 wr32(E1000_EIMC, tx_ring->eims_value);
3257 #ifdef CONFIG_DCA
3258         if (adapter->dca_enabled)
3259                 igb_update_tx_dca(tx_ring);
3260 #endif
3261         tx_ring->total_bytes = 0;
3262         tx_ring->total_packets = 0;
3263
3264         /* auto mask will automatically reenable the interrupt when we write
3265          * EICS */
3266         if (!igb_clean_tx_irq(tx_ring))
3267                 /* Ring was not completely cleaned, so fire another interrupt */
3268                 wr32(E1000_EICS, tx_ring->eims_value);
3269         else
3270                 wr32(E1000_EIMS, tx_ring->eims_value);
3271
3272         return IRQ_HANDLED;
3273 }
3274
3275 static irqreturn_t igb_msix_rx(int irq, void *data)
3276 {
3277         struct igb_ring *rx_ring = data;
3278         struct igb_adapter *adapter = rx_ring->adapter;
3279         struct e1000_hw *hw = &adapter->hw;
3280
3281         /* Write the ITR value calculated at the end of the
3282          * previous interrupt.
3283          */
3284
3285         if (adapter->set_itr) {
3286                 wr32(rx_ring->itr_register,
3287                      1000000000 / (rx_ring->itr_val * 256));
3288                 adapter->set_itr = 0;
3289         }
3290
3291         if (netif_rx_schedule_prep(adapter->netdev, &rx_ring->napi))
3292                 __netif_rx_schedule(adapter->netdev, &rx_ring->napi);
3293
3294 #ifdef CONFIG_DCA
3295         if (adapter->dca_enabled)
3296                 igb_update_rx_dca(rx_ring);
3297 #endif
3298                 return IRQ_HANDLED;
3299 }
3300
3301 #ifdef CONFIG_DCA
3302 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3303 {
3304         u32 dca_rxctrl;
3305         struct igb_adapter *adapter = rx_ring->adapter;
3306         struct e1000_hw *hw = &adapter->hw;
3307         int cpu = get_cpu();
3308         int q = rx_ring - adapter->rx_ring;
3309
3310         if (rx_ring->cpu != cpu) {
3311                 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3312                 if (hw->mac.type == e1000_82576) {
3313                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3314                         dca_rxctrl |= dca_get_tag(cpu) <<
3315                                       E1000_DCA_RXCTRL_CPUID_SHIFT;
3316                 } else {
3317                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3318                         dca_rxctrl |= dca_get_tag(cpu);
3319                 }
3320                 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3321                 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3322                 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3323                 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3324                 rx_ring->cpu = cpu;
3325         }
3326         put_cpu();
3327 }
3328
3329 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3330 {
3331         u32 dca_txctrl;
3332         struct igb_adapter *adapter = tx_ring->adapter;
3333         struct e1000_hw *hw = &adapter->hw;
3334         int cpu = get_cpu();
3335         int q = tx_ring - adapter->tx_ring;
3336
3337         if (tx_ring->cpu != cpu) {
3338                 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3339                 if (hw->mac.type == e1000_82576) {
3340                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3341                         dca_txctrl |= dca_get_tag(cpu) <<
3342                                       E1000_DCA_TXCTRL_CPUID_SHIFT;
3343                 } else {
3344                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3345                         dca_txctrl |= dca_get_tag(cpu);
3346                 }
3347                 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3348                 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3349                 tx_ring->cpu = cpu;
3350         }
3351         put_cpu();
3352 }
3353
3354 static void igb_setup_dca(struct igb_adapter *adapter)
3355 {
3356         int i;
3357
3358         if (!(adapter->dca_enabled))
3359                 return;
3360
3361         for (i = 0; i < adapter->num_tx_queues; i++) {
3362                 adapter->tx_ring[i].cpu = -1;
3363                 igb_update_tx_dca(&adapter->tx_ring[i]);
3364         }
3365         for (i = 0; i < adapter->num_rx_queues; i++) {
3366                 adapter->rx_ring[i].cpu = -1;
3367                 igb_update_rx_dca(&adapter->rx_ring[i]);
3368         }
3369 }
3370
3371 static int __igb_notify_dca(struct device *dev, void *data)
3372 {
3373         struct net_device *netdev = dev_get_drvdata(dev);
3374         struct igb_adapter *adapter = netdev_priv(netdev);
3375         struct e1000_hw *hw = &adapter->hw;
3376         unsigned long event = *(unsigned long *)data;
3377
3378         switch (event) {
3379         case DCA_PROVIDER_ADD:
3380                 /* if already enabled, don't do it again */
3381                 if (adapter->dca_enabled)
3382                         break;
3383                 adapter->dca_enabled = true;
3384                 /* Always use CB2 mode, difference is masked
3385                  * in the CB driver. */
3386                 wr32(E1000_DCA_CTRL, 2);
3387                 if (dca_add_requester(dev) == 0) {
3388                         dev_info(&adapter->pdev->dev, "DCA enabled\n");
3389                         igb_setup_dca(adapter);
3390                         break;
3391                 }
3392                 /* Fall Through since DCA is disabled. */
3393         case DCA_PROVIDER_REMOVE:
3394                 if (adapter->dca_enabled) {
3395                         /* without this a class_device is left
3396                          * hanging around in the sysfs model */
3397                         dca_remove_requester(dev);
3398                         dev_info(&adapter->pdev->dev, "DCA disabled\n");
3399                         adapter->dca_enabled = false;
3400                         wr32(E1000_DCA_CTRL, 1);
3401                 }
3402                 break;
3403         }
3404
3405         return 0;
3406 }
3407
3408 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3409                           void *p)
3410 {
3411         int ret_val;
3412
3413         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3414                                          __igb_notify_dca);
3415
3416         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3417 }
3418 #endif /* CONFIG_DCA */
3419
3420 /**
3421  * igb_intr_msi - Interrupt Handler
3422  * @irq: interrupt number
3423  * @data: pointer to a network interface device structure
3424  **/
3425 static irqreturn_t igb_intr_msi(int irq, void *data)
3426 {
3427         struct net_device *netdev = data;
3428         struct igb_adapter *adapter = netdev_priv(netdev);
3429         struct e1000_hw *hw = &adapter->hw;
3430         /* read ICR disables interrupts using IAM */
3431         u32 icr = rd32(E1000_ICR);
3432
3433         /* Write the ITR value calculated at the end of the
3434          * previous interrupt.
3435          */
3436         if (adapter->set_itr) {
3437                 wr32(E1000_ITR, 1000000000 / (adapter->itr * 256));
3438                 adapter->set_itr = 0;
3439         }
3440
3441         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3442                 hw->mac.get_link_status = 1;
3443                 if (!test_bit(__IGB_DOWN, &adapter->state))
3444                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3445         }
3446
3447         netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
3448
3449         return IRQ_HANDLED;
3450 }
3451
3452 /**
3453  * igb_intr - Interrupt Handler
3454  * @irq: interrupt number
3455  * @data: pointer to a network interface device structure
3456  **/
3457 static irqreturn_t igb_intr(int irq, void *data)
3458 {
3459         struct net_device *netdev = data;
3460         struct igb_adapter *adapter = netdev_priv(netdev);
3461         struct e1000_hw *hw = &adapter->hw;
3462         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3463          * need for the IMC write */
3464         u32 icr = rd32(E1000_ICR);
3465         u32 eicr = 0;
3466         if (!icr)
3467                 return IRQ_NONE;  /* Not our interrupt */
3468
3469         /* Write the ITR value calculated at the end of the
3470          * previous interrupt.
3471          */
3472         if (adapter->set_itr) {
3473                 wr32(E1000_ITR, 1000000000 / (adapter->itr * 256));
3474                 adapter->set_itr = 0;
3475         }
3476
3477         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3478          * not set, then the adapter didn't send an interrupt */
3479         if (!(icr & E1000_ICR_INT_ASSERTED))
3480                 return IRQ_NONE;
3481
3482         eicr = rd32(E1000_EICR);
3483
3484         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3485                 hw->mac.get_link_status = 1;
3486                 /* guard against interrupt when we're going down */
3487                 if (!test_bit(__IGB_DOWN, &adapter->state))
3488                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3489         }
3490
3491         netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
3492
3493         return IRQ_HANDLED;
3494 }
3495
3496 /**
3497  * igb_poll - NAPI Rx polling callback
3498  * @napi: napi polling structure
3499  * @budget: count of how many packets we should handle
3500  **/
3501 static int igb_poll(struct napi_struct *napi, int budget)
3502 {
3503         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3504         struct igb_adapter *adapter = rx_ring->adapter;
3505         struct net_device *netdev = adapter->netdev;
3506         int tx_clean_complete, work_done = 0;
3507
3508         /* this poll routine only supports one tx and one rx queue */
3509 #ifdef CONFIG_DCA
3510         if (adapter->dca_enabled)
3511                 igb_update_tx_dca(&adapter->tx_ring[0]);
3512 #endif
3513         tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]);
3514
3515 #ifdef CONFIG_DCA
3516         if (adapter->dca_enabled)
3517                 igb_update_rx_dca(&adapter->rx_ring[0]);
3518 #endif
3519         igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget);
3520
3521         /* If no Tx and not enough Rx work done, exit the polling mode */
3522         if ((tx_clean_complete && (work_done < budget)) ||
3523             !netif_running(netdev)) {
3524                 if (adapter->itr_setting & 3)
3525                         igb_set_itr(adapter, E1000_ITR, false);
3526                 netif_rx_complete(netdev, napi);
3527                 if (!test_bit(__IGB_DOWN, &adapter->state))
3528                         igb_irq_enable(adapter);
3529                 return 0;
3530         }
3531
3532         return 1;
3533 }
3534
3535 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3536 {
3537         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3538         struct igb_adapter *adapter = rx_ring->adapter;
3539         struct e1000_hw *hw = &adapter->hw;
3540         struct net_device *netdev = adapter->netdev;
3541         int work_done = 0;
3542
3543         /* Keep link state information with original netdev */
3544         if (!netif_carrier_ok(netdev))
3545                 goto quit_polling;
3546
3547 #ifdef CONFIG_DCA
3548         if (adapter->dca_enabled)
3549                 igb_update_rx_dca(rx_ring);
3550 #endif
3551         igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
3552
3553
3554         /* If not enough Rx work done, exit the polling mode */
3555         if ((work_done == 0) || !netif_running(netdev)) {
3556 quit_polling:
3557                 netif_rx_complete(netdev, napi);
3558
3559                 wr32(E1000_EIMS, rx_ring->eims_value);
3560                 if ((adapter->itr_setting & 3) && !rx_ring->no_itr_adjust &&
3561                     (rx_ring->total_packets > IGB_DYN_ITR_PACKET_THRESHOLD)) {
3562                         int mean_size = rx_ring->total_bytes /
3563                                         rx_ring->total_packets;
3564                         if (mean_size < IGB_DYN_ITR_LENGTH_LOW)
3565                                 igb_raise_rx_eitr(adapter, rx_ring);
3566                         else if (mean_size > IGB_DYN_ITR_LENGTH_HIGH)
3567                                 igb_lower_rx_eitr(adapter, rx_ring);
3568                 }
3569
3570                 if (!test_bit(__IGB_DOWN, &adapter->state))
3571                         wr32(E1000_EIMS, rx_ring->eims_value);
3572
3573                 return 0;
3574         }
3575
3576         return 1;
3577 }
3578
3579 static inline u32 get_head(struct igb_ring *tx_ring)
3580 {
3581         void *end = (struct e1000_tx_desc *)tx_ring->desc + tx_ring->count;
3582         return le32_to_cpu(*(volatile __le32 *)end);
3583 }
3584
3585 /**
3586  * igb_clean_tx_irq - Reclaim resources after transmit completes
3587  * @adapter: board private structure
3588  * returns true if ring is completely cleaned
3589  **/
3590 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
3591 {
3592         struct igb_adapter *adapter = tx_ring->adapter;
3593         struct e1000_hw *hw = &adapter->hw;
3594         struct net_device *netdev = adapter->netdev;
3595         struct e1000_tx_desc *tx_desc;
3596         struct igb_buffer *buffer_info;
3597         struct sk_buff *skb;
3598         unsigned int i;
3599         u32 head, oldhead;
3600         unsigned int count = 0;
3601         bool cleaned = false;
3602         bool retval = true;
3603         unsigned int total_bytes = 0, total_packets = 0;
3604
3605         rmb();
3606         head = get_head(tx_ring);
3607         i = tx_ring->next_to_clean;
3608         while (1) {
3609                 while (i != head) {
3610                         cleaned = true;
3611                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3612                         buffer_info = &tx_ring->buffer_info[i];
3613                         skb = buffer_info->skb;
3614
3615                         if (skb) {
3616                                 unsigned int segs, bytecount;
3617                                 /* gso_segs is currently only valid for tcp */
3618                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3619                                 /* multiply data chunks by size of headers */
3620                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3621                                             skb->len;
3622                                 total_packets += segs;
3623                                 total_bytes += bytecount;
3624                         }
3625
3626                         igb_unmap_and_free_tx_resource(adapter, buffer_info);
3627                         tx_desc->upper.data = 0;
3628
3629                         i++;
3630                         if (i == tx_ring->count)
3631                                 i = 0;
3632
3633                         count++;
3634                         if (count == IGB_MAX_TX_CLEAN) {
3635                                 retval = false;
3636                                 goto done_cleaning;
3637                         }
3638                 }
3639                 oldhead = head;
3640                 rmb();
3641                 head = get_head(tx_ring);
3642                 if (head == oldhead)
3643                         goto done_cleaning;
3644         }  /* while (1) */
3645
3646 done_cleaning:
3647         tx_ring->next_to_clean = i;
3648
3649         if (unlikely(cleaned &&
3650                      netif_carrier_ok(netdev) &&
3651                      IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3652                 /* Make sure that anybody stopping the queue after this
3653                  * sees the new next_to_clean.
3654                  */
3655                 smp_mb();
3656 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
3657                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
3658                     !(test_bit(__IGB_DOWN, &adapter->state))) {
3659                         netif_wake_subqueue(netdev, tx_ring->queue_index);
3660                         ++adapter->restart_queue;
3661                 }
3662 #else
3663                 if (netif_queue_stopped(netdev) &&
3664                     !(test_bit(__IGB_DOWN, &adapter->state))) {
3665                         netif_wake_queue(netdev);
3666                         ++adapter->restart_queue;
3667                 }
3668 #endif          
3669         }
3670
3671         if (tx_ring->detect_tx_hung) {
3672                 /* Detect a transmit hang in hardware, this serializes the
3673                  * check with the clearing of time_stamp and movement of i */
3674                 tx_ring->detect_tx_hung = false;
3675                 if (tx_ring->buffer_info[i].time_stamp &&
3676                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3677                                (adapter->tx_timeout_factor * HZ))
3678                     && !(rd32(E1000_STATUS) &
3679                          E1000_STATUS_TXOFF)) {
3680
3681                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3682                         /* detected Tx unit hang */
3683                         dev_err(&adapter->pdev->dev,
3684                                 "Detected Tx Unit Hang\n"
3685                                 "  Tx Queue             <%d>\n"
3686                                 "  TDH                  <%x>\n"
3687                                 "  TDT                  <%x>\n"
3688                                 "  next_to_use          <%x>\n"
3689                                 "  next_to_clean        <%x>\n"
3690                                 "  head (WB)            <%x>\n"
3691                                 "buffer_info[next_to_clean]\n"
3692                                 "  time_stamp           <%lx>\n"
3693                                 "  jiffies              <%lx>\n"
3694                                 "  desc.status          <%x>\n",
3695                                 tx_ring->queue_index,
3696                                 readl(adapter->hw.hw_addr + tx_ring->head),
3697                                 readl(adapter->hw.hw_addr + tx_ring->tail),
3698                                 tx_ring->next_to_use,
3699                                 tx_ring->next_to_clean,
3700                                 head,
3701                                 tx_ring->buffer_info[i].time_stamp,
3702                                 jiffies,
3703                                 tx_desc->upper.fields.status);
3704 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
3705                         netif_stop_subqueue(netdev, tx_ring->queue_index);
3706 #else
3707                         netif_stop_queue(netdev);
3708 #endif
3709                 }
3710         }
3711         tx_ring->total_bytes += total_bytes;
3712         tx_ring->total_packets += total_packets;
3713         tx_ring->tx_stats.bytes += total_bytes;
3714         tx_ring->tx_stats.packets += total_packets;
3715         adapter->net_stats.tx_bytes += total_bytes;
3716         adapter->net_stats.tx_packets += total_packets;
3717         return retval;
3718 }
3719
3720
3721 /**
3722  * igb_receive_skb - helper function to handle rx indications
3723  * @adapter: board private structure
3724  * @status: descriptor status field as written by hardware
3725  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3726  * @skb: pointer to sk_buff to be indicated to stack
3727  **/
3728 static void igb_receive_skb(struct igb_adapter *adapter, u8 status, __le16 vlan,
3729                             struct sk_buff *skb)
3730 {
3731         if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
3732                 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3733                                          le16_to_cpu(vlan));
3734         else
3735                 netif_receive_skb(skb);
3736 }
3737
3738
3739 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3740                                        u32 status_err, struct sk_buff *skb)
3741 {
3742         skb->ip_summed = CHECKSUM_NONE;
3743
3744         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3745         if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3746                 return;
3747         /* TCP/UDP checksum error bit is set */
3748         if (status_err &
3749             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3750                 /* let the stack verify checksum errors */
3751                 adapter->hw_csum_err++;
3752                 return;
3753         }
3754         /* It must be a TCP or UDP packet with a valid checksum */
3755         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3756                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3757
3758         adapter->hw_csum_good++;
3759 }
3760
3761 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3762                                  int *work_done, int budget)
3763 {
3764         struct igb_adapter *adapter = rx_ring->adapter;
3765         struct net_device *netdev = adapter->netdev;
3766         struct pci_dev *pdev = adapter->pdev;
3767         union e1000_adv_rx_desc *rx_desc , *next_rxd;
3768         struct igb_buffer *buffer_info , *next_buffer;
3769         struct sk_buff *skb;
3770         unsigned int i, j;
3771         u32 length, hlen, staterr;
3772         bool cleaned = false;
3773         int cleaned_count = 0;
3774         unsigned int total_bytes = 0, total_packets = 0;
3775
3776         i = rx_ring->next_to_clean;
3777         rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3778         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3779
3780         while (staterr & E1000_RXD_STAT_DD) {
3781                 if (*work_done >= budget)
3782                         break;
3783                 (*work_done)++;
3784                 buffer_info = &rx_ring->buffer_info[i];
3785
3786                 /* HW will not DMA in data larger than the given buffer, even
3787                  * if it parses the (NFS, of course) header to be larger.  In
3788                  * that case, it fills the header buffer and spills the rest
3789                  * into the page.
3790                  */
3791                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3792                   E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
3793                 if (hlen > adapter->rx_ps_hdr_size)
3794                         hlen = adapter->rx_ps_hdr_size;
3795
3796                 length = le16_to_cpu(rx_desc->wb.upper.length);
3797                 cleaned = true;
3798                 cleaned_count++;
3799
3800                 if (rx_ring->pending_skb != NULL) {
3801                         skb = rx_ring->pending_skb;
3802                         rx_ring->pending_skb = NULL;
3803                         j = rx_ring->pending_skb_page;
3804                 } else {
3805                         skb = buffer_info->skb;
3806                         prefetch(skb->data - NET_IP_ALIGN);
3807                         buffer_info->skb = NULL;
3808                         if (hlen) {
3809                                 pci_unmap_single(pdev, buffer_info->dma,
3810                                                  adapter->rx_ps_hdr_size +
3811                                                    NET_IP_ALIGN,
3812                                                  PCI_DMA_FROMDEVICE);
3813                                 skb_put(skb, hlen);
3814                         } else {
3815                                 pci_unmap_single(pdev, buffer_info->dma,
3816                                                  adapter->rx_buffer_len +
3817                                                    NET_IP_ALIGN,
3818                                                  PCI_DMA_FROMDEVICE);
3819                                 skb_put(skb, length);
3820                                 goto send_up;
3821                         }
3822                         j = 0;
3823                 }
3824
3825                 while (length) {
3826                         pci_unmap_page(pdev, buffer_info->page_dma,
3827                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3828                         buffer_info->page_dma = 0;
3829                         skb_fill_page_desc(skb, j, buffer_info->page,
3830                                                 0, length);
3831                         buffer_info->page = NULL;
3832
3833                         skb->len += length;
3834                         skb->data_len += length;
3835                         skb->truesize += length;
3836                         rx_desc->wb.upper.status_error = 0;
3837                         if (staterr & E1000_RXD_STAT_EOP)
3838                                 break;
3839
3840                         j++;
3841                         cleaned_count++;
3842                         i++;
3843                         if (i == rx_ring->count)
3844                                 i = 0;
3845
3846                         buffer_info = &rx_ring->buffer_info[i];
3847                         rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3848                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3849                         length = le16_to_cpu(rx_desc->wb.upper.length);
3850                         if (!(staterr & E1000_RXD_STAT_DD)) {
3851                                 rx_ring->pending_skb = skb;
3852                                 rx_ring->pending_skb_page = j;
3853                                 goto out;
3854                         }
3855                 }
3856 send_up:
3857                 i++;
3858                 if (i == rx_ring->count)
3859                         i = 0;
3860                 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3861                 prefetch(next_rxd);
3862                 next_buffer = &rx_ring->buffer_info[i];
3863
3864                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3865                         dev_kfree_skb_irq(skb);
3866                         goto next_desc;
3867                 }
3868                 rx_ring->no_itr_adjust |= (staterr & E1000_RXD_STAT_DYNINT);
3869
3870                 total_bytes += skb->len;
3871                 total_packets++;
3872
3873                 igb_rx_checksum_adv(adapter, staterr, skb);
3874
3875                 skb->protocol = eth_type_trans(skb, netdev);
3876
3877                 igb_receive_skb(adapter, staterr, rx_desc->wb.upper.vlan, skb);
3878
3879                 netdev->last_rx = jiffies;
3880
3881 next_desc:
3882                 rx_desc->wb.upper.status_error = 0;
3883
3884                 /* return some buffers to hardware, one at a time is too slow */
3885                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3886                         igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3887                         cleaned_count = 0;
3888                 }
3889
3890                 /* use prefetched values */
3891                 rx_desc = next_rxd;
3892                 buffer_info = next_buffer;
3893
3894                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3895         }
3896 out:
3897         rx_ring->next_to_clean = i;
3898         cleaned_count = IGB_DESC_UNUSED(rx_ring);
3899
3900         if (cleaned_count)
3901                 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3902
3903         rx_ring->total_packets += total_packets;
3904         rx_ring->total_bytes += total_bytes;
3905         rx_ring->rx_stats.packets += total_packets;
3906         rx_ring->rx_stats.bytes += total_bytes;
3907         adapter->net_stats.rx_bytes += total_bytes;
3908         adapter->net_stats.rx_packets += total_packets;
3909         return cleaned;
3910 }
3911
3912
3913 /**
3914  * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3915  * @adapter: address of board private structure
3916  **/
3917 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
3918                                      int cleaned_count)
3919 {
3920         struct igb_adapter *adapter = rx_ring->adapter;
3921         struct net_device *netdev = adapter->netdev;
3922         struct pci_dev *pdev = adapter->pdev;
3923         union e1000_adv_rx_desc *rx_desc;
3924         struct igb_buffer *buffer_info;
3925         struct sk_buff *skb;
3926         unsigned int i;
3927
3928         i = rx_ring->next_to_use;
3929         buffer_info = &rx_ring->buffer_info[i];
3930
3931         while (cleaned_count--) {
3932                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3933
3934                 if (adapter->rx_ps_hdr_size && !buffer_info->page) {
3935                         buffer_info->page = alloc_page(GFP_ATOMIC);
3936                         if (!buffer_info->page) {
3937                                 adapter->alloc_rx_buff_failed++;
3938                                 goto no_buffers;
3939                         }
3940                         buffer_info->page_dma =
3941                                 pci_map_page(pdev,
3942                                              buffer_info->page,
3943                                              0, PAGE_SIZE,
3944                                              PCI_DMA_FROMDEVICE);
3945                 }
3946
3947                 if (!buffer_info->skb) {
3948                         int bufsz;
3949
3950                         if (adapter->rx_ps_hdr_size)
3951                                 bufsz = adapter->rx_ps_hdr_size;
3952                         else
3953                                 bufsz = adapter->rx_buffer_len;
3954                         bufsz += NET_IP_ALIGN;
3955                         skb = netdev_alloc_skb(netdev, bufsz);
3956
3957                         if (!skb) {
3958                                 adapter->alloc_rx_buff_failed++;
3959                                 goto no_buffers;
3960                         }
3961
3962                         /* Make buffer alignment 2 beyond a 16 byte boundary
3963                          * this will result in a 16 byte aligned IP header after
3964                          * the 14 byte MAC header is removed
3965                          */
3966                         skb_reserve(skb, NET_IP_ALIGN);
3967
3968                         buffer_info->skb = skb;
3969                         buffer_info->dma = pci_map_single(pdev, skb->data,
3970                                                           bufsz,
3971                                                           PCI_DMA_FROMDEVICE);
3972
3973                 }
3974                 /* Refresh the desc even if buffer_addrs didn't change because
3975                  * each write-back erases this info. */
3976                 if (adapter->rx_ps_hdr_size) {
3977                         rx_desc->read.pkt_addr =
3978                              cpu_to_le64(buffer_info->page_dma);
3979                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
3980                 } else {
3981                         rx_desc->read.pkt_addr =
3982                              cpu_to_le64(buffer_info->dma);
3983                         rx_desc->read.hdr_addr = 0;
3984                 }
3985
3986                 i++;
3987                 if (i == rx_ring->count)
3988                         i = 0;
3989                 buffer_info = &rx_ring->buffer_info[i];
3990         }
3991
3992 no_buffers:
3993         if (rx_ring->next_to_use != i) {
3994                 rx_ring->next_to_use = i;
3995                 if (i == 0)
3996                         i = (rx_ring->count - 1);
3997                 else
3998                         i--;
3999
4000                 /* Force memory writes to complete before letting h/w
4001                  * know there are new descriptors to fetch.  (Only
4002                  * applicable for weak-ordered memory model archs,
4003                  * such as IA-64). */
4004                 wmb();
4005                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4006         }
4007 }
4008
4009 /**
4010  * igb_mii_ioctl -
4011  * @netdev:
4012  * @ifreq:
4013  * @cmd:
4014  **/
4015 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4016 {
4017         struct igb_adapter *adapter = netdev_priv(netdev);
4018         struct mii_ioctl_data *data = if_mii(ifr);
4019
4020         if (adapter->hw.phy.media_type != e1000_media_type_copper)
4021                 return -EOPNOTSUPP;
4022
4023         switch (cmd) {
4024         case SIOCGMIIPHY:
4025                 data->phy_id = adapter->hw.phy.addr;
4026                 break;
4027         case SIOCGMIIREG:
4028                 if (!capable(CAP_NET_ADMIN))
4029                         return -EPERM;
4030                 if (adapter->hw.phy.ops.read_phy_reg(&adapter->hw,
4031                                                      data->reg_num
4032                                                      & 0x1F, &data->val_out))
4033                         return -EIO;
4034                 break;
4035         case SIOCSMIIREG:
4036         default:
4037                 return -EOPNOTSUPP;
4038         }
4039         return 0;
4040 }
4041
4042 /**
4043  * igb_ioctl -
4044  * @netdev:
4045  * @ifreq:
4046  * @cmd:
4047  **/
4048 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4049 {
4050         switch (cmd) {
4051         case SIOCGMIIPHY:
4052         case SIOCGMIIREG:
4053         case SIOCSMIIREG:
4054                 return igb_mii_ioctl(netdev, ifr, cmd);
4055         default:
4056                 return -EOPNOTSUPP;
4057         }
4058 }
4059
4060 static void igb_vlan_rx_register(struct net_device *netdev,
4061                                  struct vlan_group *grp)
4062 {
4063         struct igb_adapter *adapter = netdev_priv(netdev);
4064         struct e1000_hw *hw = &adapter->hw;
4065         u32 ctrl, rctl;
4066
4067         igb_irq_disable(adapter);
4068         adapter->vlgrp = grp;
4069
4070         if (grp) {
4071                 /* enable VLAN tag insert/strip */
4072                 ctrl = rd32(E1000_CTRL);
4073                 ctrl |= E1000_CTRL_VME;
4074                 wr32(E1000_CTRL, ctrl);
4075
4076                 /* enable VLAN receive filtering */
4077                 rctl = rd32(E1000_RCTL);
4078                 rctl |= E1000_RCTL_VFE;
4079                 rctl &= ~E1000_RCTL_CFIEN;
4080                 wr32(E1000_RCTL, rctl);
4081                 igb_update_mng_vlan(adapter);
4082                 wr32(E1000_RLPML,
4083                                 adapter->max_frame_size + VLAN_TAG_SIZE);
4084         } else {
4085                 /* disable VLAN tag insert/strip */
4086                 ctrl = rd32(E1000_CTRL);
4087                 ctrl &= ~E1000_CTRL_VME;
4088                 wr32(E1000_CTRL, ctrl);
4089
4090                 /* disable VLAN filtering */
4091                 rctl = rd32(E1000_RCTL);
4092                 rctl &= ~E1000_RCTL_VFE;
4093                 wr32(E1000_RCTL, rctl);
4094                 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4095                         igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4096                         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4097                 }
4098                 wr32(E1000_RLPML,
4099                                 adapter->max_frame_size);
4100         }
4101
4102         if (!test_bit(__IGB_DOWN, &adapter->state))
4103                 igb_irq_enable(adapter);
4104 }
4105
4106 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4107 {
4108         struct igb_adapter *adapter = netdev_priv(netdev);
4109         struct e1000_hw *hw = &adapter->hw;
4110         u32 vfta, index;
4111
4112         if ((adapter->hw.mng_cookie.status &
4113              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4114             (vid == adapter->mng_vlan_id))
4115                 return;
4116         /* add VID to filter table */
4117         index = (vid >> 5) & 0x7F;
4118         vfta = array_rd32(E1000_VFTA, index);
4119         vfta |= (1 << (vid & 0x1F));
4120         igb_write_vfta(&adapter->hw, index, vfta);
4121 }
4122
4123 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4124 {
4125         struct igb_adapter *adapter = netdev_priv(netdev);
4126         struct e1000_hw *hw = &adapter->hw;
4127         u32 vfta, index;
4128
4129         igb_irq_disable(adapter);
4130         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4131
4132         if (!test_bit(__IGB_DOWN, &adapter->state))
4133                 igb_irq_enable(adapter);
4134
4135         if ((adapter->hw.mng_cookie.status &
4136              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4137             (vid == adapter->mng_vlan_id)) {
4138                 /* release control to f/w */
4139                 igb_release_hw_control(adapter);
4140                 return;
4141         }
4142
4143         /* remove VID from filter table */
4144         index = (vid >> 5) & 0x7F;
4145         vfta = array_rd32(E1000_VFTA, index);
4146         vfta &= ~(1 << (vid & 0x1F));
4147         igb_write_vfta(&adapter->hw, index, vfta);
4148 }
4149
4150 static void igb_restore_vlan(struct igb_adapter *adapter)
4151 {
4152         igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4153
4154         if (adapter->vlgrp) {
4155                 u16 vid;
4156                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4157                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4158                                 continue;
4159                         igb_vlan_rx_add_vid(adapter->netdev, vid);
4160                 }
4161         }
4162 }
4163
4164 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4165 {
4166         struct e1000_mac_info *mac = &adapter->hw.mac;
4167
4168         mac->autoneg = 0;
4169
4170         /* Fiber NICs only allow 1000 gbps Full duplex */
4171         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
4172                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4173                 dev_err(&adapter->pdev->dev,
4174                         "Unsupported Speed/Duplex configuration\n");
4175                 return -EINVAL;
4176         }
4177
4178         switch (spddplx) {
4179         case SPEED_10 + DUPLEX_HALF:
4180                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4181                 break;
4182         case SPEED_10 + DUPLEX_FULL:
4183                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4184                 break;
4185         case SPEED_100 + DUPLEX_HALF:
4186                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4187                 break;
4188         case SPEED_100 + DUPLEX_FULL:
4189                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4190                 break;
4191         case SPEED_1000 + DUPLEX_FULL:
4192                 mac->autoneg = 1;
4193                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4194                 break;
4195         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4196         default:
4197                 dev_err(&adapter->pdev->dev,
4198                         "Unsupported Speed/Duplex configuration\n");
4199                 return -EINVAL;
4200         }
4201         return 0;
4202 }
4203
4204
4205 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
4206 {
4207         struct net_device *netdev = pci_get_drvdata(pdev);
4208         struct igb_adapter *adapter = netdev_priv(netdev);
4209         struct e1000_hw *hw = &adapter->hw;
4210         u32 ctrl, rctl, status;
4211         u32 wufc = adapter->wol;
4212 #ifdef CONFIG_PM
4213         int retval = 0;
4214 #endif
4215
4216         netif_device_detach(netdev);
4217
4218         if (netif_running(netdev)) {
4219                 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4220                 igb_down(adapter);
4221                 igb_free_irq(adapter);
4222         }
4223
4224 #ifdef CONFIG_PM
4225         retval = pci_save_state(pdev);
4226         if (retval)
4227                 return retval;
4228 #endif
4229
4230         status = rd32(E1000_STATUS);
4231         if (status & E1000_STATUS_LU)
4232                 wufc &= ~E1000_WUFC_LNKC;
4233
4234         if (wufc) {
4235                 igb_setup_rctl(adapter);
4236                 igb_set_multi(netdev);
4237
4238                 /* turn on all-multi mode if wake on multicast is enabled */
4239                 if (wufc & E1000_WUFC_MC) {
4240                         rctl = rd32(E1000_RCTL);
4241                         rctl |= E1000_RCTL_MPE;
4242                         wr32(E1000_RCTL, rctl);
4243                 }
4244
4245                 ctrl = rd32(E1000_CTRL);
4246                 /* advertise wake from D3Cold */
4247                 #define E1000_CTRL_ADVD3WUC 0x00100000
4248                 /* phy power management enable */
4249                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4250                 ctrl |= E1000_CTRL_ADVD3WUC;
4251                 wr32(E1000_CTRL, ctrl);
4252
4253                 /* Allow time for pending master requests to run */
4254                 igb_disable_pcie_master(&adapter->hw);
4255
4256                 wr32(E1000_WUC, E1000_WUC_PME_EN);
4257                 wr32(E1000_WUFC, wufc);
4258         } else {
4259                 wr32(E1000_WUC, 0);
4260                 wr32(E1000_WUFC, 0);
4261         }
4262
4263         /* make sure adapter isn't asleep if manageability/wol is enabled */
4264         if (wufc || adapter->en_mng_pt) {
4265                 pci_enable_wake(pdev, PCI_D3hot, 1);
4266                 pci_enable_wake(pdev, PCI_D3cold, 1);
4267         } else {
4268                 igb_shutdown_fiber_serdes_link_82575(hw);
4269                 pci_enable_wake(pdev, PCI_D3hot, 0);
4270                 pci_enable_wake(pdev, PCI_D3cold, 0);
4271         }
4272
4273         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4274          * would have already happened in close and is redundant. */
4275         igb_release_hw_control(adapter);
4276
4277         pci_disable_device(pdev);
4278
4279         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4280
4281         return 0;
4282 }
4283
4284 #ifdef CONFIG_PM
4285 static int igb_resume(struct pci_dev *pdev)
4286 {
4287         struct net_device *netdev = pci_get_drvdata(pdev);
4288         struct igb_adapter *adapter = netdev_priv(netdev);
4289         struct e1000_hw *hw = &adapter->hw;
4290         u32 err;
4291
4292         pci_set_power_state(pdev, PCI_D0);
4293         pci_restore_state(pdev);
4294
4295         if (adapter->need_ioport)
4296                 err = pci_enable_device(pdev);
4297         else
4298                 err = pci_enable_device_mem(pdev);
4299         if (err) {
4300                 dev_err(&pdev->dev,
4301                         "igb: Cannot enable PCI device from suspend\n");
4302                 return err;
4303         }
4304         pci_set_master(pdev);
4305
4306         pci_enable_wake(pdev, PCI_D3hot, 0);
4307         pci_enable_wake(pdev, PCI_D3cold, 0);
4308
4309         if (netif_running(netdev)) {
4310                 err = igb_request_irq(adapter);
4311                 if (err)
4312                         return err;
4313         }
4314
4315         /* e1000_power_up_phy(adapter); */
4316
4317         igb_reset(adapter);
4318         wr32(E1000_WUS, ~0);
4319
4320         igb_init_manageability(adapter);
4321
4322         if (netif_running(netdev))
4323                 igb_up(adapter);
4324
4325         netif_device_attach(netdev);
4326
4327         /* let the f/w know that the h/w is now under the control of the
4328          * driver. */
4329         igb_get_hw_control(adapter);
4330
4331         return 0;
4332 }
4333 #endif
4334
4335 static void igb_shutdown(struct pci_dev *pdev)
4336 {
4337         igb_suspend(pdev, PMSG_SUSPEND);
4338 }
4339
4340 #ifdef CONFIG_NET_POLL_CONTROLLER
4341 /*
4342  * Polling 'interrupt' - used by things like netconsole to send skbs
4343  * without having to re-enable interrupts. It's not called while
4344  * the interrupt routine is executing.
4345  */
4346 static void igb_netpoll(struct net_device *netdev)
4347 {
4348         struct igb_adapter *adapter = netdev_priv(netdev);
4349         int i;
4350         int work_done = 0;
4351
4352         igb_irq_disable(adapter);
4353         for (i = 0; i < adapter->num_tx_queues; i++)
4354                 igb_clean_tx_irq(&adapter->tx_ring[i]);
4355
4356         for (i = 0; i < adapter->num_rx_queues; i++)
4357                 igb_clean_rx_irq_adv(&adapter->rx_ring[i],
4358                                      &work_done,
4359                                      adapter->rx_ring[i].napi.weight);
4360
4361         igb_irq_enable(adapter);
4362 }
4363 #endif /* CONFIG_NET_POLL_CONTROLLER */
4364
4365 /**
4366  * igb_io_error_detected - called when PCI error is detected
4367  * @pdev: Pointer to PCI device
4368  * @state: The current pci connection state
4369  *
4370  * This function is called after a PCI bus error affecting
4371  * this device has been detected.
4372  */
4373 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4374                                               pci_channel_state_t state)
4375 {
4376         struct net_device *netdev = pci_get_drvdata(pdev);
4377         struct igb_adapter *adapter = netdev_priv(netdev);
4378
4379         netif_device_detach(netdev);
4380
4381         if (netif_running(netdev))
4382                 igb_down(adapter);
4383         pci_disable_device(pdev);
4384
4385         /* Request a slot slot reset. */
4386         return PCI_ERS_RESULT_NEED_RESET;
4387 }
4388
4389 /**
4390  * igb_io_slot_reset - called after the pci bus has been reset.
4391  * @pdev: Pointer to PCI device
4392  *
4393  * Restart the card from scratch, as if from a cold-boot. Implementation
4394  * resembles the first-half of the igb_resume routine.
4395  */
4396 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4397 {
4398         struct net_device *netdev = pci_get_drvdata(pdev);
4399         struct igb_adapter *adapter = netdev_priv(netdev);
4400         struct e1000_hw *hw = &adapter->hw;
4401         int err;
4402
4403         if (adapter->need_ioport)
4404                 err = pci_enable_device(pdev);
4405         else
4406                 err = pci_enable_device_mem(pdev);
4407         if (err) {
4408                 dev_err(&pdev->dev,
4409                         "Cannot re-enable PCI device after reset.\n");
4410                 return PCI_ERS_RESULT_DISCONNECT;
4411         }
4412         pci_set_master(pdev);
4413         pci_restore_state(pdev);
4414
4415         pci_enable_wake(pdev, PCI_D3hot, 0);
4416         pci_enable_wake(pdev, PCI_D3cold, 0);
4417
4418         igb_reset(adapter);
4419         wr32(E1000_WUS, ~0);
4420
4421         return PCI_ERS_RESULT_RECOVERED;
4422 }
4423
4424 /**
4425  * igb_io_resume - called when traffic can start flowing again.
4426  * @pdev: Pointer to PCI device
4427  *
4428  * This callback is called when the error recovery driver tells us that
4429  * its OK to resume normal operation. Implementation resembles the
4430  * second-half of the igb_resume routine.
4431  */
4432 static void igb_io_resume(struct pci_dev *pdev)
4433 {
4434         struct net_device *netdev = pci_get_drvdata(pdev);
4435         struct igb_adapter *adapter = netdev_priv(netdev);
4436
4437         igb_init_manageability(adapter);
4438
4439         if (netif_running(netdev)) {
4440                 if (igb_up(adapter)) {
4441                         dev_err(&pdev->dev, "igb_up failed after reset\n");
4442                         return;
4443                 }
4444         }
4445
4446         netif_device_attach(netdev);
4447
4448         /* let the f/w know that the h/w is now under the control of the
4449          * driver. */
4450         igb_get_hw_control(adapter);
4451
4452 }
4453
4454 /* igb_main.c */