igb: cleanup interrupt enablement in regards to msix_other
[safe/jmp/linux-2.6] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/pci-aspm.h>
43 #include <linux/delay.h>
44 #include <linux/interrupt.h>
45 #include <linux/if_ether.h>
46 #include <linux/aer.h>
47 #ifdef CONFIG_IGB_DCA
48 #include <linux/dca.h>
49 #endif
50 #include "igb.h"
51
52 #define DRV_VERSION "1.3.16-k2"
53 char igb_driver_name[] = "igb";
54 char igb_driver_version[] = DRV_VERSION;
55 static const char igb_driver_string[] =
56                                 "Intel(R) Gigabit Ethernet Network Driver";
57 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60         [board_82575] = &e1000_82575_info,
61 };
62
63 static struct pci_device_id igb_pci_tbl[] = {
64         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
65         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
66         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
67         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
68         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
69         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
70         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
71         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
72         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
73         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
74         /* required last entry */
75         {0, }
76 };
77
78 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
79
80 void igb_reset(struct igb_adapter *);
81 static int igb_setup_all_tx_resources(struct igb_adapter *);
82 static int igb_setup_all_rx_resources(struct igb_adapter *);
83 static void igb_free_all_tx_resources(struct igb_adapter *);
84 static void igb_free_all_rx_resources(struct igb_adapter *);
85 static void igb_setup_mrqc(struct igb_adapter *);
86 void igb_update_stats(struct igb_adapter *);
87 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
88 static void __devexit igb_remove(struct pci_dev *pdev);
89 static int igb_sw_init(struct igb_adapter *);
90 static int igb_open(struct net_device *);
91 static int igb_close(struct net_device *);
92 static void igb_configure_tx(struct igb_adapter *);
93 static void igb_configure_rx(struct igb_adapter *);
94 static void igb_clean_all_tx_rings(struct igb_adapter *);
95 static void igb_clean_all_rx_rings(struct igb_adapter *);
96 static void igb_clean_tx_ring(struct igb_ring *);
97 static void igb_clean_rx_ring(struct igb_ring *);
98 static void igb_set_rx_mode(struct net_device *);
99 static void igb_update_phy_info(unsigned long);
100 static void igb_watchdog(unsigned long);
101 static void igb_watchdog_task(struct work_struct *);
102 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
103 static struct net_device_stats *igb_get_stats(struct net_device *);
104 static int igb_change_mtu(struct net_device *, int);
105 static int igb_set_mac(struct net_device *, void *);
106 static void igb_set_uta(struct igb_adapter *adapter);
107 static irqreturn_t igb_intr(int irq, void *);
108 static irqreturn_t igb_intr_msi(int irq, void *);
109 static irqreturn_t igb_msix_other(int irq, void *);
110 static irqreturn_t igb_msix_ring(int irq, void *);
111 #ifdef CONFIG_IGB_DCA
112 static void igb_update_dca(struct igb_q_vector *);
113 static void igb_setup_dca(struct igb_adapter *);
114 #endif /* CONFIG_IGB_DCA */
115 static bool igb_clean_tx_irq(struct igb_q_vector *);
116 static int igb_poll(struct napi_struct *, int);
117 static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
118 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
119 static void igb_tx_timeout(struct net_device *);
120 static void igb_reset_task(struct work_struct *);
121 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
122 static void igb_vlan_rx_add_vid(struct net_device *, u16);
123 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
124 static void igb_restore_vlan(struct igb_adapter *);
125 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
126 static void igb_ping_all_vfs(struct igb_adapter *);
127 static void igb_msg_task(struct igb_adapter *);
128 static void igb_vmm_control(struct igb_adapter *);
129 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
130 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
131
132 #ifdef CONFIG_PM
133 static int igb_suspend(struct pci_dev *, pm_message_t);
134 static int igb_resume(struct pci_dev *);
135 #endif
136 static void igb_shutdown(struct pci_dev *);
137 #ifdef CONFIG_IGB_DCA
138 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
139 static struct notifier_block dca_notifier = {
140         .notifier_call  = igb_notify_dca,
141         .next           = NULL,
142         .priority       = 0
143 };
144 #endif
145 #ifdef CONFIG_NET_POLL_CONTROLLER
146 /* for netdump / net console */
147 static void igb_netpoll(struct net_device *);
148 #endif
149 #ifdef CONFIG_PCI_IOV
150 static unsigned int max_vfs = 0;
151 module_param(max_vfs, uint, 0);
152 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
153                  "per physical function");
154 #endif /* CONFIG_PCI_IOV */
155
156 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
157                      pci_channel_state_t);
158 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
159 static void igb_io_resume(struct pci_dev *);
160
161 static struct pci_error_handlers igb_err_handler = {
162         .error_detected = igb_io_error_detected,
163         .slot_reset = igb_io_slot_reset,
164         .resume = igb_io_resume,
165 };
166
167
168 static struct pci_driver igb_driver = {
169         .name     = igb_driver_name,
170         .id_table = igb_pci_tbl,
171         .probe    = igb_probe,
172         .remove   = __devexit_p(igb_remove),
173 #ifdef CONFIG_PM
174         /* Power Managment Hooks */
175         .suspend  = igb_suspend,
176         .resume   = igb_resume,
177 #endif
178         .shutdown = igb_shutdown,
179         .err_handler = &igb_err_handler
180 };
181
182 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
183 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
184 MODULE_LICENSE("GPL");
185 MODULE_VERSION(DRV_VERSION);
186
187 /**
188  * igb_read_clock - read raw cycle counter (to be used by time counter)
189  */
190 static cycle_t igb_read_clock(const struct cyclecounter *tc)
191 {
192         struct igb_adapter *adapter =
193                 container_of(tc, struct igb_adapter, cycles);
194         struct e1000_hw *hw = &adapter->hw;
195         u64 stamp = 0;
196         int shift = 0;
197
198         stamp |= (u64)rd32(E1000_SYSTIML) << shift;
199         stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
200         return stamp;
201 }
202
203 #ifdef DEBUG
204 /**
205  * igb_get_hw_dev_name - return device name string
206  * used by hardware layer to print debugging information
207  **/
208 char *igb_get_hw_dev_name(struct e1000_hw *hw)
209 {
210         struct igb_adapter *adapter = hw->back;
211         return adapter->netdev->name;
212 }
213
214 /**
215  * igb_get_time_str - format current NIC and system time as string
216  */
217 static char *igb_get_time_str(struct igb_adapter *adapter,
218                               char buffer[160])
219 {
220         cycle_t hw = adapter->cycles.read(&adapter->cycles);
221         struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
222         struct timespec sys;
223         struct timespec delta;
224         getnstimeofday(&sys);
225
226         delta = timespec_sub(nic, sys);
227
228         sprintf(buffer,
229                 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
230                 hw,
231                 (long)nic.tv_sec, nic.tv_nsec,
232                 (long)sys.tv_sec, sys.tv_nsec,
233                 (long)delta.tv_sec, delta.tv_nsec);
234
235         return buffer;
236 }
237 #endif
238
239 /**
240  * igb_init_module - Driver Registration Routine
241  *
242  * igb_init_module is the first routine called when the driver is
243  * loaded. All it does is register with the PCI subsystem.
244  **/
245 static int __init igb_init_module(void)
246 {
247         int ret;
248         printk(KERN_INFO "%s - version %s\n",
249                igb_driver_string, igb_driver_version);
250
251         printk(KERN_INFO "%s\n", igb_copyright);
252
253 #ifdef CONFIG_IGB_DCA
254         dca_register_notify(&dca_notifier);
255 #endif
256         ret = pci_register_driver(&igb_driver);
257         return ret;
258 }
259
260 module_init(igb_init_module);
261
262 /**
263  * igb_exit_module - Driver Exit Cleanup Routine
264  *
265  * igb_exit_module is called just before the driver is removed
266  * from memory.
267  **/
268 static void __exit igb_exit_module(void)
269 {
270 #ifdef CONFIG_IGB_DCA
271         dca_unregister_notify(&dca_notifier);
272 #endif
273         pci_unregister_driver(&igb_driver);
274 }
275
276 module_exit(igb_exit_module);
277
278 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
279 /**
280  * igb_cache_ring_register - Descriptor ring to register mapping
281  * @adapter: board private structure to initialize
282  *
283  * Once we know the feature-set enabled for the device, we'll cache
284  * the register offset the descriptor ring is assigned to.
285  **/
286 static void igb_cache_ring_register(struct igb_adapter *adapter)
287 {
288         int i = 0, j = 0;
289         u32 rbase_offset = adapter->vfs_allocated_count;
290
291         switch (adapter->hw.mac.type) {
292         case e1000_82576:
293                 /* The queues are allocated for virtualization such that VF 0
294                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
295                  * In order to avoid collision we start at the first free queue
296                  * and continue consuming queues in the same sequence
297                  */
298                 if (adapter->vfs_allocated_count) {
299                         for (; i < adapter->num_rx_queues; i++)
300                                 adapter->rx_ring[i].reg_idx = rbase_offset +
301                                                               Q_IDX_82576(i);
302                         for (; j < adapter->num_tx_queues; j++)
303                                 adapter->tx_ring[j].reg_idx = rbase_offset +
304                                                               Q_IDX_82576(j);
305                 }
306         case e1000_82575:
307         default:
308                 for (; i < adapter->num_rx_queues; i++)
309                         adapter->rx_ring[i].reg_idx = rbase_offset + i;
310                 for (; j < adapter->num_tx_queues; j++)
311                         adapter->tx_ring[j].reg_idx = rbase_offset + j;
312                 break;
313         }
314 }
315
316 static void igb_free_queues(struct igb_adapter *adapter)
317 {
318         kfree(adapter->tx_ring);
319         kfree(adapter->rx_ring);
320
321         adapter->tx_ring = NULL;
322         adapter->rx_ring = NULL;
323
324         adapter->num_rx_queues = 0;
325         adapter->num_tx_queues = 0;
326 }
327
328 /**
329  * igb_alloc_queues - Allocate memory for all rings
330  * @adapter: board private structure to initialize
331  *
332  * We allocate one ring per queue at run-time since we don't know the
333  * number of queues at compile-time.
334  **/
335 static int igb_alloc_queues(struct igb_adapter *adapter)
336 {
337         int i;
338
339         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
340                                    sizeof(struct igb_ring), GFP_KERNEL);
341         if (!adapter->tx_ring)
342                 goto err;
343
344         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
345                                    sizeof(struct igb_ring), GFP_KERNEL);
346         if (!adapter->rx_ring)
347                 goto err;
348
349         for (i = 0; i < adapter->num_tx_queues; i++) {
350                 struct igb_ring *ring = &(adapter->tx_ring[i]);
351                 ring->count = adapter->tx_ring_count;
352                 ring->queue_index = i;
353                 ring->pdev = adapter->pdev;
354                 ring->netdev = adapter->netdev;
355                 /* For 82575, context index must be unique per ring. */
356                 if (adapter->hw.mac.type == e1000_82575)
357                         ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
358         }
359
360         for (i = 0; i < adapter->num_rx_queues; i++) {
361                 struct igb_ring *ring = &(adapter->rx_ring[i]);
362                 ring->count = adapter->rx_ring_count;
363                 ring->queue_index = i;
364                 ring->pdev = adapter->pdev;
365                 ring->netdev = adapter->netdev;
366                 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
367                 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
368                 /* set flag indicating ring supports SCTP checksum offload */
369                 if (adapter->hw.mac.type >= e1000_82576)
370                         ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
371         }
372
373         igb_cache_ring_register(adapter);
374
375         return 0;
376
377 err:
378         igb_free_queues(adapter);
379
380         return -ENOMEM;
381 }
382
383 #define IGB_N0_QUEUE -1
384 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
385 {
386         u32 msixbm = 0;
387         struct igb_adapter *adapter = q_vector->adapter;
388         struct e1000_hw *hw = &adapter->hw;
389         u32 ivar, index;
390         int rx_queue = IGB_N0_QUEUE;
391         int tx_queue = IGB_N0_QUEUE;
392
393         if (q_vector->rx_ring)
394                 rx_queue = q_vector->rx_ring->reg_idx;
395         if (q_vector->tx_ring)
396                 tx_queue = q_vector->tx_ring->reg_idx;
397
398         switch (hw->mac.type) {
399         case e1000_82575:
400                 /* The 82575 assigns vectors using a bitmask, which matches the
401                    bitmask for the EICR/EIMS/EIMC registers.  To assign one
402                    or more queues to a vector, we write the appropriate bits
403                    into the MSIXBM register for that vector. */
404                 if (rx_queue > IGB_N0_QUEUE)
405                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
406                 if (tx_queue > IGB_N0_QUEUE)
407                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
408                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
409                 q_vector->eims_value = msixbm;
410                 break;
411         case e1000_82576:
412                 /* 82576 uses a table-based method for assigning vectors.
413                    Each queue has a single entry in the table to which we write
414                    a vector number along with a "valid" bit.  Sadly, the layout
415                    of the table is somewhat counterintuitive. */
416                 if (rx_queue > IGB_N0_QUEUE) {
417                         index = (rx_queue & 0x7);
418                         ivar = array_rd32(E1000_IVAR0, index);
419                         if (rx_queue < 8) {
420                                 /* vector goes into low byte of register */
421                                 ivar = ivar & 0xFFFFFF00;
422                                 ivar |= msix_vector | E1000_IVAR_VALID;
423                         } else {
424                                 /* vector goes into third byte of register */
425                                 ivar = ivar & 0xFF00FFFF;
426                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
427                         }
428                         array_wr32(E1000_IVAR0, index, ivar);
429                 }
430                 if (tx_queue > IGB_N0_QUEUE) {
431                         index = (tx_queue & 0x7);
432                         ivar = array_rd32(E1000_IVAR0, index);
433                         if (tx_queue < 8) {
434                                 /* vector goes into second byte of register */
435                                 ivar = ivar & 0xFFFF00FF;
436                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
437                         } else {
438                                 /* vector goes into high byte of register */
439                                 ivar = ivar & 0x00FFFFFF;
440                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
441                         }
442                         array_wr32(E1000_IVAR0, index, ivar);
443                 }
444                 q_vector->eims_value = 1 << msix_vector;
445                 break;
446         default:
447                 BUG();
448                 break;
449         }
450 }
451
452 /**
453  * igb_configure_msix - Configure MSI-X hardware
454  *
455  * igb_configure_msix sets up the hardware to properly
456  * generate MSI-X interrupts.
457  **/
458 static void igb_configure_msix(struct igb_adapter *adapter)
459 {
460         u32 tmp;
461         int i, vector = 0;
462         struct e1000_hw *hw = &adapter->hw;
463
464         adapter->eims_enable_mask = 0;
465
466         /* set vector for other causes, i.e. link changes */
467         switch (hw->mac.type) {
468         case e1000_82575:
469                 tmp = rd32(E1000_CTRL_EXT);
470                 /* enable MSI-X PBA support*/
471                 tmp |= E1000_CTRL_EXT_PBA_CLR;
472
473                 /* Auto-Mask interrupts upon ICR read. */
474                 tmp |= E1000_CTRL_EXT_EIAME;
475                 tmp |= E1000_CTRL_EXT_IRCA;
476
477                 wr32(E1000_CTRL_EXT, tmp);
478
479                 /* enable msix_other interrupt */
480                 array_wr32(E1000_MSIXBM(0), vector++,
481                                       E1000_EIMS_OTHER);
482                 adapter->eims_other = E1000_EIMS_OTHER;
483
484                 break;
485
486         case e1000_82576:
487                 /* Turn on MSI-X capability first, or our settings
488                  * won't stick.  And it will take days to debug. */
489                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
490                                 E1000_GPIE_PBA | E1000_GPIE_EIAME |
491                                 E1000_GPIE_NSICR);
492
493                 /* enable msix_other interrupt */
494                 adapter->eims_other = 1 << vector;
495                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
496
497                 wr32(E1000_IVAR_MISC, tmp);
498                 break;
499         default:
500                 /* do nothing, since nothing else supports MSI-X */
501                 break;
502         } /* switch (hw->mac.type) */
503
504         adapter->eims_enable_mask |= adapter->eims_other;
505
506         for (i = 0; i < adapter->num_q_vectors; i++) {
507                 struct igb_q_vector *q_vector = adapter->q_vector[i];
508                 igb_assign_vector(q_vector, vector++);
509                 adapter->eims_enable_mask |= q_vector->eims_value;
510         }
511
512         wrfl();
513 }
514
515 /**
516  * igb_request_msix - Initialize MSI-X interrupts
517  *
518  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
519  * kernel.
520  **/
521 static int igb_request_msix(struct igb_adapter *adapter)
522 {
523         struct net_device *netdev = adapter->netdev;
524         struct e1000_hw *hw = &adapter->hw;
525         int i, err = 0, vector = 0;
526
527         err = request_irq(adapter->msix_entries[vector].vector,
528                           &igb_msix_other, 0, netdev->name, adapter);
529         if (err)
530                 goto out;
531         vector++;
532
533         for (i = 0; i < adapter->num_q_vectors; i++) {
534                 struct igb_q_vector *q_vector = adapter->q_vector[i];
535
536                 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
537
538                 if (q_vector->rx_ring && q_vector->tx_ring)
539                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
540                                 q_vector->rx_ring->queue_index);
541                 else if (q_vector->tx_ring)
542                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
543                                 q_vector->tx_ring->queue_index);
544                 else if (q_vector->rx_ring)
545                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
546                                 q_vector->rx_ring->queue_index);
547                 else
548                         sprintf(q_vector->name, "%s-unused", netdev->name);
549
550                 err = request_irq(adapter->msix_entries[vector].vector,
551                                   &igb_msix_ring, 0, q_vector->name,
552                                   q_vector);
553                 if (err)
554                         goto out;
555                 vector++;
556         }
557
558         igb_configure_msix(adapter);
559         return 0;
560 out:
561         return err;
562 }
563
564 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
565 {
566         if (adapter->msix_entries) {
567                 pci_disable_msix(adapter->pdev);
568                 kfree(adapter->msix_entries);
569                 adapter->msix_entries = NULL;
570         } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
571                 pci_disable_msi(adapter->pdev);
572         }
573 }
574
575 /**
576  * igb_free_q_vectors - Free memory allocated for interrupt vectors
577  * @adapter: board private structure to initialize
578  *
579  * This function frees the memory allocated to the q_vectors.  In addition if
580  * NAPI is enabled it will delete any references to the NAPI struct prior
581  * to freeing the q_vector.
582  **/
583 static void igb_free_q_vectors(struct igb_adapter *adapter)
584 {
585         int v_idx;
586
587         for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
588                 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
589                 adapter->q_vector[v_idx] = NULL;
590                 netif_napi_del(&q_vector->napi);
591                 kfree(q_vector);
592         }
593         adapter->num_q_vectors = 0;
594 }
595
596 /**
597  * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
598  *
599  * This function resets the device so that it has 0 rx queues, tx queues, and
600  * MSI-X interrupts allocated.
601  */
602 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
603 {
604         igb_free_queues(adapter);
605         igb_free_q_vectors(adapter);
606         igb_reset_interrupt_capability(adapter);
607 }
608
609 /**
610  * igb_set_interrupt_capability - set MSI or MSI-X if supported
611  *
612  * Attempt to configure interrupts using the best available
613  * capabilities of the hardware and kernel.
614  **/
615 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
616 {
617         int err;
618         int numvecs, i;
619
620         /* Number of supported queues. */
621         adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
622         adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
623
624         /* start with one vector for every rx queue */
625         numvecs = adapter->num_rx_queues;
626
627         /* if tx handler is seperate add 1 for every tx queue */
628         numvecs += adapter->num_tx_queues;
629
630         /* store the number of vectors reserved for queues */
631         adapter->num_q_vectors = numvecs;
632
633         /* add 1 vector for link status interrupts */
634         numvecs++;
635         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
636                                         GFP_KERNEL);
637         if (!adapter->msix_entries)
638                 goto msi_only;
639
640         for (i = 0; i < numvecs; i++)
641                 adapter->msix_entries[i].entry = i;
642
643         err = pci_enable_msix(adapter->pdev,
644                               adapter->msix_entries,
645                               numvecs);
646         if (err == 0)
647                 goto out;
648
649         igb_reset_interrupt_capability(adapter);
650
651         /* If we can't do MSI-X, try MSI */
652 msi_only:
653 #ifdef CONFIG_PCI_IOV
654         /* disable SR-IOV for non MSI-X configurations */
655         if (adapter->vf_data) {
656                 struct e1000_hw *hw = &adapter->hw;
657                 /* disable iov and allow time for transactions to clear */
658                 pci_disable_sriov(adapter->pdev);
659                 msleep(500);
660
661                 kfree(adapter->vf_data);
662                 adapter->vf_data = NULL;
663                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
664                 msleep(100);
665                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
666         }
667 #endif
668         adapter->vfs_allocated_count = 0;
669         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
670         adapter->num_rx_queues = 1;
671         adapter->num_tx_queues = 1;
672         adapter->num_q_vectors = 1;
673         if (!pci_enable_msi(adapter->pdev))
674                 adapter->flags |= IGB_FLAG_HAS_MSI;
675 out:
676         /* Notify the stack of the (possibly) reduced Tx Queue count. */
677         adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
678         return;
679 }
680
681 /**
682  * igb_alloc_q_vectors - Allocate memory for interrupt vectors
683  * @adapter: board private structure to initialize
684  *
685  * We allocate one q_vector per queue interrupt.  If allocation fails we
686  * return -ENOMEM.
687  **/
688 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
689 {
690         struct igb_q_vector *q_vector;
691         struct e1000_hw *hw = &adapter->hw;
692         int v_idx;
693
694         for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
695                 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
696                 if (!q_vector)
697                         goto err_out;
698                 q_vector->adapter = adapter;
699                 q_vector->itr_shift = (hw->mac.type == e1000_82575) ? 16 : 0;
700                 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
701                 q_vector->itr_val = IGB_START_ITR;
702                 q_vector->set_itr = 1;
703                 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
704                 adapter->q_vector[v_idx] = q_vector;
705         }
706         return 0;
707
708 err_out:
709         while (v_idx) {
710                 v_idx--;
711                 q_vector = adapter->q_vector[v_idx];
712                 netif_napi_del(&q_vector->napi);
713                 kfree(q_vector);
714                 adapter->q_vector[v_idx] = NULL;
715         }
716         return -ENOMEM;
717 }
718
719 static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
720                                       int ring_idx, int v_idx)
721 {
722         struct igb_q_vector *q_vector;
723
724         q_vector = adapter->q_vector[v_idx];
725         q_vector->rx_ring = &adapter->rx_ring[ring_idx];
726         q_vector->rx_ring->q_vector = q_vector;
727         q_vector->itr_val = adapter->rx_itr_setting;
728         if (q_vector->itr_val && q_vector->itr_val <= 3)
729                 q_vector->itr_val = IGB_START_ITR;
730 }
731
732 static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
733                                       int ring_idx, int v_idx)
734 {
735         struct igb_q_vector *q_vector;
736
737         q_vector = adapter->q_vector[v_idx];
738         q_vector->tx_ring = &adapter->tx_ring[ring_idx];
739         q_vector->tx_ring->q_vector = q_vector;
740         q_vector->itr_val = adapter->tx_itr_setting;
741         if (q_vector->itr_val && q_vector->itr_val <= 3)
742                 q_vector->itr_val = IGB_START_ITR;
743 }
744
745 /**
746  * igb_map_ring_to_vector - maps allocated queues to vectors
747  *
748  * This function maps the recently allocated queues to vectors.
749  **/
750 static int igb_map_ring_to_vector(struct igb_adapter *adapter)
751 {
752         int i;
753         int v_idx = 0;
754
755         if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
756             (adapter->num_q_vectors < adapter->num_tx_queues))
757                 return -ENOMEM;
758
759         if (adapter->num_q_vectors >=
760             (adapter->num_rx_queues + adapter->num_tx_queues)) {
761                 for (i = 0; i < adapter->num_rx_queues; i++)
762                         igb_map_rx_ring_to_vector(adapter, i, v_idx++);
763                 for (i = 0; i < adapter->num_tx_queues; i++)
764                         igb_map_tx_ring_to_vector(adapter, i, v_idx++);
765         } else {
766                 for (i = 0; i < adapter->num_rx_queues; i++) {
767                         if (i < adapter->num_tx_queues)
768                                 igb_map_tx_ring_to_vector(adapter, i, v_idx);
769                         igb_map_rx_ring_to_vector(adapter, i, v_idx++);
770                 }
771                 for (; i < adapter->num_tx_queues; i++)
772                         igb_map_tx_ring_to_vector(adapter, i, v_idx++);
773         }
774         return 0;
775 }
776
777 /**
778  * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
779  *
780  * This function initializes the interrupts and allocates all of the queues.
781  **/
782 static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
783 {
784         struct pci_dev *pdev = adapter->pdev;
785         int err;
786
787         igb_set_interrupt_capability(adapter);
788
789         err = igb_alloc_q_vectors(adapter);
790         if (err) {
791                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
792                 goto err_alloc_q_vectors;
793         }
794
795         err = igb_alloc_queues(adapter);
796         if (err) {
797                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
798                 goto err_alloc_queues;
799         }
800
801         err = igb_map_ring_to_vector(adapter);
802         if (err) {
803                 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
804                 goto err_map_queues;
805         }
806
807
808         return 0;
809 err_map_queues:
810         igb_free_queues(adapter);
811 err_alloc_queues:
812         igb_free_q_vectors(adapter);
813 err_alloc_q_vectors:
814         igb_reset_interrupt_capability(adapter);
815         return err;
816 }
817
818 /**
819  * igb_request_irq - initialize interrupts
820  *
821  * Attempts to configure interrupts using the best available
822  * capabilities of the hardware and kernel.
823  **/
824 static int igb_request_irq(struct igb_adapter *adapter)
825 {
826         struct net_device *netdev = adapter->netdev;
827         struct pci_dev *pdev = adapter->pdev;
828         struct e1000_hw *hw = &adapter->hw;
829         int err = 0;
830
831         if (adapter->msix_entries) {
832                 err = igb_request_msix(adapter);
833                 if (!err)
834                         goto request_done;
835                 /* fall back to MSI */
836                 igb_clear_interrupt_scheme(adapter);
837                 if (!pci_enable_msi(adapter->pdev))
838                         adapter->flags |= IGB_FLAG_HAS_MSI;
839                 igb_free_all_tx_resources(adapter);
840                 igb_free_all_rx_resources(adapter);
841                 adapter->num_tx_queues = 1;
842                 adapter->num_rx_queues = 1;
843                 adapter->num_q_vectors = 1;
844                 err = igb_alloc_q_vectors(adapter);
845                 if (err) {
846                         dev_err(&pdev->dev,
847                                 "Unable to allocate memory for vectors\n");
848                         goto request_done;
849                 }
850                 err = igb_alloc_queues(adapter);
851                 if (err) {
852                         dev_err(&pdev->dev,
853                                 "Unable to allocate memory for queues\n");
854                         igb_free_q_vectors(adapter);
855                         goto request_done;
856                 }
857                 igb_setup_all_tx_resources(adapter);
858                 igb_setup_all_rx_resources(adapter);
859         } else {
860                 switch (hw->mac.type) {
861                 case e1000_82575:
862                         wr32(E1000_MSIXBM(0),
863                              (E1000_EICR_RX_QUEUE0 |
864                               E1000_EICR_TX_QUEUE0 |
865                               E1000_EIMS_OTHER));
866                         break;
867                 case e1000_82576:
868                         wr32(E1000_IVAR0, E1000_IVAR_VALID);
869                         break;
870                 default:
871                         break;
872                 }
873         }
874
875         if (adapter->flags & IGB_FLAG_HAS_MSI) {
876                 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
877                                   netdev->name, adapter);
878                 if (!err)
879                         goto request_done;
880
881                 /* fall back to legacy interrupts */
882                 igb_reset_interrupt_capability(adapter);
883                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
884         }
885
886         err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
887                           netdev->name, adapter);
888
889         if (err)
890                 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
891                         err);
892
893 request_done:
894         return err;
895 }
896
897 static void igb_free_irq(struct igb_adapter *adapter)
898 {
899         if (adapter->msix_entries) {
900                 int vector = 0, i;
901
902                 free_irq(adapter->msix_entries[vector++].vector, adapter);
903
904                 for (i = 0; i < adapter->num_q_vectors; i++) {
905                         struct igb_q_vector *q_vector = adapter->q_vector[i];
906                         free_irq(adapter->msix_entries[vector++].vector,
907                                  q_vector);
908                 }
909         } else {
910                 free_irq(adapter->pdev->irq, adapter);
911         }
912 }
913
914 /**
915  * igb_irq_disable - Mask off interrupt generation on the NIC
916  * @adapter: board private structure
917  **/
918 static void igb_irq_disable(struct igb_adapter *adapter)
919 {
920         struct e1000_hw *hw = &adapter->hw;
921
922         /*
923          * we need to be careful when disabling interrupts.  The VFs are also
924          * mapped into these registers and so clearing the bits can cause
925          * issues on the VF drivers so we only need to clear what we set
926          */
927         if (adapter->msix_entries) {
928                 u32 regval = rd32(E1000_EIAM);
929                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
930                 wr32(E1000_EIMC, adapter->eims_enable_mask);
931                 regval = rd32(E1000_EIAC);
932                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
933         }
934
935         wr32(E1000_IAM, 0);
936         wr32(E1000_IMC, ~0);
937         wrfl();
938         synchronize_irq(adapter->pdev->irq);
939 }
940
941 /**
942  * igb_irq_enable - Enable default interrupt generation settings
943  * @adapter: board private structure
944  **/
945 static void igb_irq_enable(struct igb_adapter *adapter)
946 {
947         struct e1000_hw *hw = &adapter->hw;
948
949         if (adapter->msix_entries) {
950                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
951                 u32 regval = rd32(E1000_EIAC);
952                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
953                 regval = rd32(E1000_EIAM);
954                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
955                 wr32(E1000_EIMS, adapter->eims_enable_mask);
956                 if (adapter->vfs_allocated_count) {
957                         wr32(E1000_MBVFIMR, 0xFF);
958                         ims |= E1000_IMS_VMMB;
959                 }
960                 wr32(E1000_IMS, ims);
961         } else {
962                 wr32(E1000_IMS, IMS_ENABLE_MASK);
963                 wr32(E1000_IAM, IMS_ENABLE_MASK);
964         }
965 }
966
967 static void igb_update_mng_vlan(struct igb_adapter *adapter)
968 {
969         struct e1000_hw *hw = &adapter->hw;
970         u16 vid = adapter->hw.mng_cookie.vlan_id;
971         u16 old_vid = adapter->mng_vlan_id;
972
973         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
974                 /* add VID to filter table */
975                 igb_vfta_set(hw, vid, true);
976                 adapter->mng_vlan_id = vid;
977         } else {
978                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
979         }
980
981         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
982             (vid != old_vid) &&
983             !vlan_group_get_device(adapter->vlgrp, old_vid)) {
984                 /* remove VID from filter table */
985                 igb_vfta_set(hw, old_vid, false);
986         }
987 }
988
989 /**
990  * igb_release_hw_control - release control of the h/w to f/w
991  * @adapter: address of board private structure
992  *
993  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
994  * For ASF and Pass Through versions of f/w this means that the
995  * driver is no longer loaded.
996  *
997  **/
998 static void igb_release_hw_control(struct igb_adapter *adapter)
999 {
1000         struct e1000_hw *hw = &adapter->hw;
1001         u32 ctrl_ext;
1002
1003         /* Let firmware take over control of h/w */
1004         ctrl_ext = rd32(E1000_CTRL_EXT);
1005         wr32(E1000_CTRL_EXT,
1006                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1007 }
1008
1009
1010 /**
1011  * igb_get_hw_control - get control of the h/w from f/w
1012  * @adapter: address of board private structure
1013  *
1014  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1015  * For ASF and Pass Through versions of f/w this means that
1016  * the driver is loaded.
1017  *
1018  **/
1019 static void igb_get_hw_control(struct igb_adapter *adapter)
1020 {
1021         struct e1000_hw *hw = &adapter->hw;
1022         u32 ctrl_ext;
1023
1024         /* Let firmware know the driver has taken over */
1025         ctrl_ext = rd32(E1000_CTRL_EXT);
1026         wr32(E1000_CTRL_EXT,
1027                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1028 }
1029
1030 /**
1031  * igb_configure - configure the hardware for RX and TX
1032  * @adapter: private board structure
1033  **/
1034 static void igb_configure(struct igb_adapter *adapter)
1035 {
1036         struct net_device *netdev = adapter->netdev;
1037         int i;
1038
1039         igb_get_hw_control(adapter);
1040         igb_set_rx_mode(netdev);
1041
1042         igb_restore_vlan(adapter);
1043
1044         igb_setup_tctl(adapter);
1045         igb_setup_mrqc(adapter);
1046         igb_setup_rctl(adapter);
1047
1048         igb_configure_tx(adapter);
1049         igb_configure_rx(adapter);
1050
1051         igb_rx_fifo_flush_82575(&adapter->hw);
1052
1053         /* call igb_desc_unused which always leaves
1054          * at least 1 descriptor unused to make sure
1055          * next_to_use != next_to_clean */
1056         for (i = 0; i < adapter->num_rx_queues; i++) {
1057                 struct igb_ring *ring = &adapter->rx_ring[i];
1058                 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
1059         }
1060
1061
1062         adapter->tx_queue_len = netdev->tx_queue_len;
1063 }
1064
1065
1066 /**
1067  * igb_up - Open the interface and prepare it to handle traffic
1068  * @adapter: board private structure
1069  **/
1070
1071 int igb_up(struct igb_adapter *adapter)
1072 {
1073         struct e1000_hw *hw = &adapter->hw;
1074         int i;
1075
1076         /* hardware has been reset, we need to reload some things */
1077         igb_configure(adapter);
1078
1079         clear_bit(__IGB_DOWN, &adapter->state);
1080
1081         for (i = 0; i < adapter->num_q_vectors; i++) {
1082                 struct igb_q_vector *q_vector = adapter->q_vector[i];
1083                 napi_enable(&q_vector->napi);
1084         }
1085         if (adapter->msix_entries)
1086                 igb_configure_msix(adapter);
1087
1088         /* Clear any pending interrupts. */
1089         rd32(E1000_ICR);
1090         igb_irq_enable(adapter);
1091
1092         /* notify VFs that reset has been completed */
1093         if (adapter->vfs_allocated_count) {
1094                 u32 reg_data = rd32(E1000_CTRL_EXT);
1095                 reg_data |= E1000_CTRL_EXT_PFRSTD;
1096                 wr32(E1000_CTRL_EXT, reg_data);
1097         }
1098
1099         netif_tx_start_all_queues(adapter->netdev);
1100
1101         /* start the watchdog. */
1102         hw->mac.get_link_status = 1;
1103         schedule_work(&adapter->watchdog_task);
1104
1105         return 0;
1106 }
1107
1108 void igb_down(struct igb_adapter *adapter)
1109 {
1110         struct e1000_hw *hw = &adapter->hw;
1111         struct net_device *netdev = adapter->netdev;
1112         u32 tctl, rctl;
1113         int i;
1114
1115         /* signal that we're down so the interrupt handler does not
1116          * reschedule our watchdog timer */
1117         set_bit(__IGB_DOWN, &adapter->state);
1118
1119         /* disable receives in the hardware */
1120         rctl = rd32(E1000_RCTL);
1121         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1122         /* flush and sleep below */
1123
1124         netif_tx_stop_all_queues(netdev);
1125
1126         /* disable transmits in the hardware */
1127         tctl = rd32(E1000_TCTL);
1128         tctl &= ~E1000_TCTL_EN;
1129         wr32(E1000_TCTL, tctl);
1130         /* flush both disables and wait for them to finish */
1131         wrfl();
1132         msleep(10);
1133
1134         for (i = 0; i < adapter->num_q_vectors; i++) {
1135                 struct igb_q_vector *q_vector = adapter->q_vector[i];
1136                 napi_disable(&q_vector->napi);
1137         }
1138
1139         igb_irq_disable(adapter);
1140
1141         del_timer_sync(&adapter->watchdog_timer);
1142         del_timer_sync(&adapter->phy_info_timer);
1143
1144         netdev->tx_queue_len = adapter->tx_queue_len;
1145         netif_carrier_off(netdev);
1146
1147         /* record the stats before reset*/
1148         igb_update_stats(adapter);
1149
1150         adapter->link_speed = 0;
1151         adapter->link_duplex = 0;
1152
1153         if (!pci_channel_offline(adapter->pdev))
1154                 igb_reset(adapter);
1155         igb_clean_all_tx_rings(adapter);
1156         igb_clean_all_rx_rings(adapter);
1157 #ifdef CONFIG_IGB_DCA
1158
1159         /* since we reset the hardware DCA settings were cleared */
1160         igb_setup_dca(adapter);
1161 #endif
1162 }
1163
1164 void igb_reinit_locked(struct igb_adapter *adapter)
1165 {
1166         WARN_ON(in_interrupt());
1167         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1168                 msleep(1);
1169         igb_down(adapter);
1170         igb_up(adapter);
1171         clear_bit(__IGB_RESETTING, &adapter->state);
1172 }
1173
1174 void igb_reset(struct igb_adapter *adapter)
1175 {
1176         struct e1000_hw *hw = &adapter->hw;
1177         struct e1000_mac_info *mac = &hw->mac;
1178         struct e1000_fc_info *fc = &hw->fc;
1179         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1180         u16 hwm;
1181
1182         /* Repartition Pba for greater than 9k mtu
1183          * To take effect CTRL.RST is required.
1184          */
1185         switch (mac->type) {
1186         case e1000_82576:
1187                 pba = rd32(E1000_RXPBS);
1188                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1189                 break;
1190         case e1000_82575:
1191         default:
1192                 pba = E1000_PBA_34K;
1193                 break;
1194         }
1195
1196         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1197             (mac->type < e1000_82576)) {
1198                 /* adjust PBA for jumbo frames */
1199                 wr32(E1000_PBA, pba);
1200
1201                 /* To maintain wire speed transmits, the Tx FIFO should be
1202                  * large enough to accommodate two full transmit packets,
1203                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1204                  * the Rx FIFO should be large enough to accommodate at least
1205                  * one full receive packet and is similarly rounded up and
1206                  * expressed in KB. */
1207                 pba = rd32(E1000_PBA);
1208                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1209                 tx_space = pba >> 16;
1210                 /* lower 16 bits has Rx packet buffer allocation size in KB */
1211                 pba &= 0xffff;
1212                 /* the tx fifo also stores 16 bytes of information about the tx
1213                  * but don't include ethernet FCS because hardware appends it */
1214                 min_tx_space = (adapter->max_frame_size +
1215                                 sizeof(union e1000_adv_tx_desc) -
1216                                 ETH_FCS_LEN) * 2;
1217                 min_tx_space = ALIGN(min_tx_space, 1024);
1218                 min_tx_space >>= 10;
1219                 /* software strips receive CRC, so leave room for it */
1220                 min_rx_space = adapter->max_frame_size;
1221                 min_rx_space = ALIGN(min_rx_space, 1024);
1222                 min_rx_space >>= 10;
1223
1224                 /* If current Tx allocation is less than the min Tx FIFO size,
1225                  * and the min Tx FIFO size is less than the current Rx FIFO
1226                  * allocation, take space away from current Rx allocation */
1227                 if (tx_space < min_tx_space &&
1228                     ((min_tx_space - tx_space) < pba)) {
1229                         pba = pba - (min_tx_space - tx_space);
1230
1231                         /* if short on rx space, rx wins and must trump tx
1232                          * adjustment */
1233                         if (pba < min_rx_space)
1234                                 pba = min_rx_space;
1235                 }
1236                 wr32(E1000_PBA, pba);
1237         }
1238
1239         /* flow control settings */
1240         /* The high water mark must be low enough to fit one full frame
1241          * (or the size used for early receive) above it in the Rx FIFO.
1242          * Set it to the lower of:
1243          * - 90% of the Rx FIFO size, or
1244          * - the full Rx FIFO size minus one full frame */
1245         hwm = min(((pba << 10) * 9 / 10),
1246                         ((pba << 10) - 2 * adapter->max_frame_size));
1247
1248         if (mac->type < e1000_82576) {
1249                 fc->high_water = hwm & 0xFFF8;  /* 8-byte granularity */
1250                 fc->low_water = fc->high_water - 8;
1251         } else {
1252                 fc->high_water = hwm & 0xFFF0;  /* 16-byte granularity */
1253                 fc->low_water = fc->high_water - 16;
1254         }
1255         fc->pause_time = 0xFFFF;
1256         fc->send_xon = 1;
1257         fc->current_mode = fc->requested_mode;
1258
1259         /* disable receive for all VFs and wait one second */
1260         if (adapter->vfs_allocated_count) {
1261                 int i;
1262                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1263                         adapter->vf_data[i].flags = 0;
1264
1265                 /* ping all the active vfs to let them know we are going down */
1266                 igb_ping_all_vfs(adapter);
1267
1268                 /* disable transmits and receives */
1269                 wr32(E1000_VFRE, 0);
1270                 wr32(E1000_VFTE, 0);
1271         }
1272
1273         /* Allow time for pending master requests to run */
1274         adapter->hw.mac.ops.reset_hw(&adapter->hw);
1275         wr32(E1000_WUC, 0);
1276
1277         if (adapter->hw.mac.ops.init_hw(&adapter->hw))
1278                 dev_err(&adapter->pdev->dev, "Hardware Error\n");
1279
1280         igb_update_mng_vlan(adapter);
1281
1282         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1283         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1284
1285         igb_reset_adaptive(&adapter->hw);
1286         igb_get_phy_info(&adapter->hw);
1287 }
1288
1289 static const struct net_device_ops igb_netdev_ops = {
1290         .ndo_open               = igb_open,
1291         .ndo_stop               = igb_close,
1292         .ndo_start_xmit         = igb_xmit_frame_adv,
1293         .ndo_get_stats          = igb_get_stats,
1294         .ndo_set_rx_mode        = igb_set_rx_mode,
1295         .ndo_set_multicast_list = igb_set_rx_mode,
1296         .ndo_set_mac_address    = igb_set_mac,
1297         .ndo_change_mtu         = igb_change_mtu,
1298         .ndo_do_ioctl           = igb_ioctl,
1299         .ndo_tx_timeout         = igb_tx_timeout,
1300         .ndo_validate_addr      = eth_validate_addr,
1301         .ndo_vlan_rx_register   = igb_vlan_rx_register,
1302         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
1303         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
1304 #ifdef CONFIG_NET_POLL_CONTROLLER
1305         .ndo_poll_controller    = igb_netpoll,
1306 #endif
1307 };
1308
1309 /**
1310  * igb_probe - Device Initialization Routine
1311  * @pdev: PCI device information struct
1312  * @ent: entry in igb_pci_tbl
1313  *
1314  * Returns 0 on success, negative on failure
1315  *
1316  * igb_probe initializes an adapter identified by a pci_dev structure.
1317  * The OS initialization, configuring of the adapter private structure,
1318  * and a hardware reset occur.
1319  **/
1320 static int __devinit igb_probe(struct pci_dev *pdev,
1321                                const struct pci_device_id *ent)
1322 {
1323         struct net_device *netdev;
1324         struct igb_adapter *adapter;
1325         struct e1000_hw *hw;
1326         u16 eeprom_data = 0;
1327         static int global_quad_port_a; /* global quad port a indication */
1328         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1329         unsigned long mmio_start, mmio_len;
1330         int err, pci_using_dac;
1331         u16 eeprom_apme_mask = IGB_EEPROM_APME;
1332         u32 part_num;
1333
1334         err = pci_enable_device_mem(pdev);
1335         if (err)
1336                 return err;
1337
1338         pci_using_dac = 0;
1339         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1340         if (!err) {
1341                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1342                 if (!err)
1343                         pci_using_dac = 1;
1344         } else {
1345                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1346                 if (err) {
1347                         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1348                         if (err) {
1349                                 dev_err(&pdev->dev, "No usable DMA "
1350                                         "configuration, aborting\n");
1351                                 goto err_dma;
1352                         }
1353                 }
1354         }
1355
1356         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1357                                            IORESOURCE_MEM),
1358                                            igb_driver_name);
1359         if (err)
1360                 goto err_pci_reg;
1361
1362         pci_enable_pcie_error_reporting(pdev);
1363
1364         pci_set_master(pdev);
1365         pci_save_state(pdev);
1366
1367         err = -ENOMEM;
1368         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1369                                    IGB_ABS_MAX_TX_QUEUES);
1370         if (!netdev)
1371                 goto err_alloc_etherdev;
1372
1373         SET_NETDEV_DEV(netdev, &pdev->dev);
1374
1375         pci_set_drvdata(pdev, netdev);
1376         adapter = netdev_priv(netdev);
1377         adapter->netdev = netdev;
1378         adapter->pdev = pdev;
1379         hw = &adapter->hw;
1380         hw->back = adapter;
1381         adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1382
1383         mmio_start = pci_resource_start(pdev, 0);
1384         mmio_len = pci_resource_len(pdev, 0);
1385
1386         err = -EIO;
1387         hw->hw_addr = ioremap(mmio_start, mmio_len);
1388         if (!hw->hw_addr)
1389                 goto err_ioremap;
1390
1391         netdev->netdev_ops = &igb_netdev_ops;
1392         igb_set_ethtool_ops(netdev);
1393         netdev->watchdog_timeo = 5 * HZ;
1394
1395         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1396
1397         netdev->mem_start = mmio_start;
1398         netdev->mem_end = mmio_start + mmio_len;
1399
1400         /* PCI config space info */
1401         hw->vendor_id = pdev->vendor;
1402         hw->device_id = pdev->device;
1403         hw->revision_id = pdev->revision;
1404         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1405         hw->subsystem_device_id = pdev->subsystem_device;
1406
1407         /* setup the private structure */
1408         hw->back = adapter;
1409         /* Copy the default MAC, PHY and NVM function pointers */
1410         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1411         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1412         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1413         /* Initialize skew-specific constants */
1414         err = ei->get_invariants(hw);
1415         if (err)
1416                 goto err_sw_init;
1417
1418         /* setup the private structure */
1419         err = igb_sw_init(adapter);
1420         if (err)
1421                 goto err_sw_init;
1422
1423         igb_get_bus_info_pcie(hw);
1424
1425         hw->phy.autoneg_wait_to_complete = false;
1426         hw->mac.adaptive_ifs = true;
1427
1428         /* Copper options */
1429         if (hw->phy.media_type == e1000_media_type_copper) {
1430                 hw->phy.mdix = AUTO_ALL_MODES;
1431                 hw->phy.disable_polarity_correction = false;
1432                 hw->phy.ms_type = e1000_ms_hw_default;
1433         }
1434
1435         if (igb_check_reset_block(hw))
1436                 dev_info(&pdev->dev,
1437                         "PHY reset is blocked due to SOL/IDER session.\n");
1438
1439         netdev->features = NETIF_F_SG |
1440                            NETIF_F_IP_CSUM |
1441                            NETIF_F_HW_VLAN_TX |
1442                            NETIF_F_HW_VLAN_RX |
1443                            NETIF_F_HW_VLAN_FILTER;
1444
1445         netdev->features |= NETIF_F_IPV6_CSUM;
1446         netdev->features |= NETIF_F_TSO;
1447         netdev->features |= NETIF_F_TSO6;
1448
1449         netdev->features |= NETIF_F_GRO;
1450
1451         netdev->vlan_features |= NETIF_F_TSO;
1452         netdev->vlan_features |= NETIF_F_TSO6;
1453         netdev->vlan_features |= NETIF_F_IP_CSUM;
1454         netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1455         netdev->vlan_features |= NETIF_F_SG;
1456
1457         if (pci_using_dac)
1458                 netdev->features |= NETIF_F_HIGHDMA;
1459
1460         if (adapter->hw.mac.type == e1000_82576)
1461                 netdev->features |= NETIF_F_SCTP_CSUM;
1462
1463         adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1464
1465         /* before reading the NVM, reset the controller to put the device in a
1466          * known good starting state */
1467         hw->mac.ops.reset_hw(hw);
1468
1469         /* make sure the NVM is good */
1470         if (igb_validate_nvm_checksum(hw) < 0) {
1471                 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1472                 err = -EIO;
1473                 goto err_eeprom;
1474         }
1475
1476         /* copy the MAC address out of the NVM */
1477         if (hw->mac.ops.read_mac_addr(hw))
1478                 dev_err(&pdev->dev, "NVM Read Error\n");
1479
1480         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1481         memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1482
1483         if (!is_valid_ether_addr(netdev->perm_addr)) {
1484                 dev_err(&pdev->dev, "Invalid MAC Address\n");
1485                 err = -EIO;
1486                 goto err_eeprom;
1487         }
1488
1489         setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1490                     (unsigned long) adapter);
1491         setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1492                     (unsigned long) adapter);
1493
1494         INIT_WORK(&adapter->reset_task, igb_reset_task);
1495         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1496
1497         /* Initialize link properties that are user-changeable */
1498         adapter->fc_autoneg = true;
1499         hw->mac.autoneg = true;
1500         hw->phy.autoneg_advertised = 0x2f;
1501
1502         hw->fc.requested_mode = e1000_fc_default;
1503         hw->fc.current_mode = e1000_fc_default;
1504
1505         igb_validate_mdi_setting(hw);
1506
1507         /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1508          * enable the ACPI Magic Packet filter
1509          */
1510
1511         if (hw->bus.func == 0)
1512                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1513         else if (hw->bus.func == 1)
1514                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1515
1516         if (eeprom_data & eeprom_apme_mask)
1517                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1518
1519         /* now that we have the eeprom settings, apply the special cases where
1520          * the eeprom may be wrong or the board simply won't support wake on
1521          * lan on a particular port */
1522         switch (pdev->device) {
1523         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1524                 adapter->eeprom_wol = 0;
1525                 break;
1526         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1527         case E1000_DEV_ID_82576_FIBER:
1528         case E1000_DEV_ID_82576_SERDES:
1529                 /* Wake events only supported on port A for dual fiber
1530                  * regardless of eeprom setting */
1531                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1532                         adapter->eeprom_wol = 0;
1533                 break;
1534         case E1000_DEV_ID_82576_QUAD_COPPER:
1535                 /* if quad port adapter, disable WoL on all but port A */
1536                 if (global_quad_port_a != 0)
1537                         adapter->eeprom_wol = 0;
1538                 else
1539                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1540                 /* Reset for multiple quad port adapters */
1541                 if (++global_quad_port_a == 4)
1542                         global_quad_port_a = 0;
1543                 break;
1544         }
1545
1546         /* initialize the wol settings based on the eeprom settings */
1547         adapter->wol = adapter->eeprom_wol;
1548         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1549
1550         /* reset the hardware with the new settings */
1551         igb_reset(adapter);
1552
1553         /* let the f/w know that the h/w is now under the control of the
1554          * driver. */
1555         igb_get_hw_control(adapter);
1556
1557         strcpy(netdev->name, "eth%d");
1558         err = register_netdev(netdev);
1559         if (err)
1560                 goto err_register;
1561
1562         /* carrier off reporting is important to ethtool even BEFORE open */
1563         netif_carrier_off(netdev);
1564
1565 #ifdef CONFIG_IGB_DCA
1566         if (dca_add_requester(&pdev->dev) == 0) {
1567                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1568                 dev_info(&pdev->dev, "DCA enabled\n");
1569                 igb_setup_dca(adapter);
1570         }
1571
1572 #endif
1573
1574         switch (hw->mac.type) {
1575         case e1000_82576:
1576                 /*
1577                  * Initialize hardware timer: we keep it running just in case
1578                  * that some program needs it later on.
1579                  */
1580                 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1581                 adapter->cycles.read = igb_read_clock;
1582                 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1583                 adapter->cycles.mult = 1;
1584                 /**
1585                  * Scale the NIC clock cycle by a large factor so that
1586                  * relatively small clock corrections can be added or
1587                  * substracted at each clock tick. The drawbacks of a large
1588                  * factor are a) that the clock register overflows more quickly
1589                  * (not such a big deal) and b) that the increment per tick has
1590                  * to fit into 24 bits.  As a result we need to use a shift of
1591                  * 19 so we can fit a value of 16 into the TIMINCA register.
1592                  */
1593                 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
1594                 wr32(E1000_TIMINCA,
1595                                 (1 << E1000_TIMINCA_16NS_SHIFT) |
1596                                 (16 << IGB_82576_TSYNC_SHIFT));
1597
1598                 /* Set registers so that rollover occurs soon to test this. */
1599                 wr32(E1000_SYSTIML, 0x00000000);
1600                 wr32(E1000_SYSTIMH, 0xFF800000);
1601                 wrfl();
1602
1603                 timecounter_init(&adapter->clock,
1604                                  &adapter->cycles,
1605                                  ktime_to_ns(ktime_get_real()));
1606                 /*
1607                  * Synchronize our NIC clock against system wall clock. NIC
1608                  * time stamp reading requires ~3us per sample, each sample
1609                  * was pretty stable even under load => only require 10
1610                  * samples for each offset comparison.
1611                  */
1612                 memset(&adapter->compare, 0, sizeof(adapter->compare));
1613                 adapter->compare.source = &adapter->clock;
1614                 adapter->compare.target = ktime_get_real;
1615                 adapter->compare.num_samples = 10;
1616                 timecompare_update(&adapter->compare, 0);
1617                 break;
1618         case e1000_82575:
1619                 /* 82575 does not support timesync */
1620         default:
1621                 break;
1622         }
1623
1624         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1625         /* print bus type/speed/width info */
1626         dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1627                  netdev->name,
1628                  ((hw->bus.speed == e1000_bus_speed_2500)
1629                   ? "2.5Gb/s" : "unknown"),
1630                  ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1631                   (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1632                   (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1633                    "unknown"),
1634                  netdev->dev_addr);
1635
1636         igb_read_part_num(hw, &part_num);
1637         dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1638                 (part_num >> 8), (part_num & 0xff));
1639
1640         dev_info(&pdev->dev,
1641                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1642                 adapter->msix_entries ? "MSI-X" :
1643                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1644                 adapter->num_rx_queues, adapter->num_tx_queues);
1645
1646         return 0;
1647
1648 err_register:
1649         igb_release_hw_control(adapter);
1650 err_eeprom:
1651         if (!igb_check_reset_block(hw))
1652                 igb_reset_phy(hw);
1653
1654         if (hw->flash_address)
1655                 iounmap(hw->flash_address);
1656 err_sw_init:
1657         igb_clear_interrupt_scheme(adapter);
1658         iounmap(hw->hw_addr);
1659 err_ioremap:
1660         free_netdev(netdev);
1661 err_alloc_etherdev:
1662         pci_release_selected_regions(pdev, pci_select_bars(pdev,
1663                                      IORESOURCE_MEM));
1664 err_pci_reg:
1665 err_dma:
1666         pci_disable_device(pdev);
1667         return err;
1668 }
1669
1670 /**
1671  * igb_remove - Device Removal Routine
1672  * @pdev: PCI device information struct
1673  *
1674  * igb_remove is called by the PCI subsystem to alert the driver
1675  * that it should release a PCI device.  The could be caused by a
1676  * Hot-Plug event, or because the driver is going to be removed from
1677  * memory.
1678  **/
1679 static void __devexit igb_remove(struct pci_dev *pdev)
1680 {
1681         struct net_device *netdev = pci_get_drvdata(pdev);
1682         struct igb_adapter *adapter = netdev_priv(netdev);
1683         struct e1000_hw *hw = &adapter->hw;
1684
1685         /* flush_scheduled work may reschedule our watchdog task, so
1686          * explicitly disable watchdog tasks from being rescheduled  */
1687         set_bit(__IGB_DOWN, &adapter->state);
1688         del_timer_sync(&adapter->watchdog_timer);
1689         del_timer_sync(&adapter->phy_info_timer);
1690
1691         flush_scheduled_work();
1692
1693 #ifdef CONFIG_IGB_DCA
1694         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1695                 dev_info(&pdev->dev, "DCA disabled\n");
1696                 dca_remove_requester(&pdev->dev);
1697                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1698                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
1699         }
1700 #endif
1701
1702         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1703          * would have already happened in close and is redundant. */
1704         igb_release_hw_control(adapter);
1705
1706         unregister_netdev(netdev);
1707
1708         if (!igb_check_reset_block(&adapter->hw))
1709                 igb_reset_phy(&adapter->hw);
1710
1711         igb_clear_interrupt_scheme(adapter);
1712
1713 #ifdef CONFIG_PCI_IOV
1714         /* reclaim resources allocated to VFs */
1715         if (adapter->vf_data) {
1716                 /* disable iov and allow time for transactions to clear */
1717                 pci_disable_sriov(pdev);
1718                 msleep(500);
1719
1720                 kfree(adapter->vf_data);
1721                 adapter->vf_data = NULL;
1722                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1723                 msleep(100);
1724                 dev_info(&pdev->dev, "IOV Disabled\n");
1725         }
1726 #endif
1727         iounmap(hw->hw_addr);
1728         if (hw->flash_address)
1729                 iounmap(hw->flash_address);
1730         pci_release_selected_regions(pdev, pci_select_bars(pdev,
1731                                      IORESOURCE_MEM));
1732
1733         free_netdev(netdev);
1734
1735         pci_disable_pcie_error_reporting(pdev);
1736
1737         pci_disable_device(pdev);
1738 }
1739
1740 /**
1741  * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
1742  * @adapter: board private structure to initialize
1743  *
1744  * This function initializes the vf specific data storage and then attempts to
1745  * allocate the VFs.  The reason for ordering it this way is because it is much
1746  * mor expensive time wise to disable SR-IOV than it is to allocate and free
1747  * the memory for the VFs.
1748  **/
1749 static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
1750 {
1751 #ifdef CONFIG_PCI_IOV
1752         struct pci_dev *pdev = adapter->pdev;
1753
1754         if (adapter->vfs_allocated_count > 7)
1755                 adapter->vfs_allocated_count = 7;
1756
1757         if (adapter->vfs_allocated_count) {
1758                 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
1759                                            sizeof(struct vf_data_storage),
1760                                            GFP_KERNEL);
1761                 /* if allocation failed then we do not support SR-IOV */
1762                 if (!adapter->vf_data) {
1763                         adapter->vfs_allocated_count = 0;
1764                         dev_err(&pdev->dev, "Unable to allocate memory for VF "
1765                                 "Data Storage\n");
1766                 }
1767         }
1768
1769         if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
1770                 kfree(adapter->vf_data);
1771                 adapter->vf_data = NULL;
1772 #endif /* CONFIG_PCI_IOV */
1773                 adapter->vfs_allocated_count = 0;
1774 #ifdef CONFIG_PCI_IOV
1775         } else {
1776                 unsigned char mac_addr[ETH_ALEN];
1777                 int i;
1778                 dev_info(&pdev->dev, "%d vfs allocated\n",
1779                          adapter->vfs_allocated_count);
1780                 for (i = 0; i < adapter->vfs_allocated_count; i++) {
1781                         random_ether_addr(mac_addr);
1782                         igb_set_vf_mac(adapter, i, mac_addr);
1783                 }
1784         }
1785 #endif /* CONFIG_PCI_IOV */
1786 }
1787
1788 /**
1789  * igb_sw_init - Initialize general software structures (struct igb_adapter)
1790  * @adapter: board private structure to initialize
1791  *
1792  * igb_sw_init initializes the Adapter private data structure.
1793  * Fields are initialized based on PCI device information and
1794  * OS network device settings (MTU size).
1795  **/
1796 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1797 {
1798         struct e1000_hw *hw = &adapter->hw;
1799         struct net_device *netdev = adapter->netdev;
1800         struct pci_dev *pdev = adapter->pdev;
1801
1802         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1803
1804         adapter->tx_ring_count = IGB_DEFAULT_TXD;
1805         adapter->rx_ring_count = IGB_DEFAULT_RXD;
1806         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
1807         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
1808
1809         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1810         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1811
1812 #ifdef CONFIG_PCI_IOV
1813         if (hw->mac.type == e1000_82576)
1814                 adapter->vfs_allocated_count = max_vfs;
1815
1816 #endif /* CONFIG_PCI_IOV */
1817         /* This call may decrease the number of queues */
1818         if (igb_init_interrupt_scheme(adapter)) {
1819                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1820                 return -ENOMEM;
1821         }
1822
1823         igb_probe_vfs(adapter);
1824
1825         /* Explicitly disable IRQ since the NIC can be in any state. */
1826         igb_irq_disable(adapter);
1827
1828         set_bit(__IGB_DOWN, &adapter->state);
1829         return 0;
1830 }
1831
1832 /**
1833  * igb_open - Called when a network interface is made active
1834  * @netdev: network interface device structure
1835  *
1836  * Returns 0 on success, negative value on failure
1837  *
1838  * The open entry point is called when a network interface is made
1839  * active by the system (IFF_UP).  At this point all resources needed
1840  * for transmit and receive operations are allocated, the interrupt
1841  * handler is registered with the OS, the watchdog timer is started,
1842  * and the stack is notified that the interface is ready.
1843  **/
1844 static int igb_open(struct net_device *netdev)
1845 {
1846         struct igb_adapter *adapter = netdev_priv(netdev);
1847         struct e1000_hw *hw = &adapter->hw;
1848         int err;
1849         int i;
1850
1851         /* disallow open during test */
1852         if (test_bit(__IGB_TESTING, &adapter->state))
1853                 return -EBUSY;
1854
1855         netif_carrier_off(netdev);
1856
1857         /* allocate transmit descriptors */
1858         err = igb_setup_all_tx_resources(adapter);
1859         if (err)
1860                 goto err_setup_tx;
1861
1862         /* allocate receive descriptors */
1863         err = igb_setup_all_rx_resources(adapter);
1864         if (err)
1865                 goto err_setup_rx;
1866
1867         /* e1000_power_up_phy(adapter); */
1868
1869         /* before we allocate an interrupt, we must be ready to handle it.
1870          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1871          * as soon as we call pci_request_irq, so we have to setup our
1872          * clean_rx handler before we do so.  */
1873         igb_configure(adapter);
1874
1875         err = igb_request_irq(adapter);
1876         if (err)
1877                 goto err_req_irq;
1878
1879         /* From here on the code is the same as igb_up() */
1880         clear_bit(__IGB_DOWN, &adapter->state);
1881
1882         for (i = 0; i < adapter->num_q_vectors; i++) {
1883                 struct igb_q_vector *q_vector = adapter->q_vector[i];
1884                 napi_enable(&q_vector->napi);
1885         }
1886
1887         /* Clear any pending interrupts. */
1888         rd32(E1000_ICR);
1889
1890         igb_irq_enable(adapter);
1891
1892         /* notify VFs that reset has been completed */
1893         if (adapter->vfs_allocated_count) {
1894                 u32 reg_data = rd32(E1000_CTRL_EXT);
1895                 reg_data |= E1000_CTRL_EXT_PFRSTD;
1896                 wr32(E1000_CTRL_EXT, reg_data);
1897         }
1898
1899         netif_tx_start_all_queues(netdev);
1900
1901         /* start the watchdog. */
1902         hw->mac.get_link_status = 1;
1903         schedule_work(&adapter->watchdog_task);
1904
1905         return 0;
1906
1907 err_req_irq:
1908         igb_release_hw_control(adapter);
1909         /* e1000_power_down_phy(adapter); */
1910         igb_free_all_rx_resources(adapter);
1911 err_setup_rx:
1912         igb_free_all_tx_resources(adapter);
1913 err_setup_tx:
1914         igb_reset(adapter);
1915
1916         return err;
1917 }
1918
1919 /**
1920  * igb_close - Disables a network interface
1921  * @netdev: network interface device structure
1922  *
1923  * Returns 0, this is not allowed to fail
1924  *
1925  * The close entry point is called when an interface is de-activated
1926  * by the OS.  The hardware is still under the driver's control, but
1927  * needs to be disabled.  A global MAC reset is issued to stop the
1928  * hardware, and all transmit and receive resources are freed.
1929  **/
1930 static int igb_close(struct net_device *netdev)
1931 {
1932         struct igb_adapter *adapter = netdev_priv(netdev);
1933
1934         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1935         igb_down(adapter);
1936
1937         igb_free_irq(adapter);
1938
1939         igb_free_all_tx_resources(adapter);
1940         igb_free_all_rx_resources(adapter);
1941
1942         return 0;
1943 }
1944
1945 /**
1946  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1947  * @tx_ring: tx descriptor ring (for a specific queue) to setup
1948  *
1949  * Return 0 on success, negative on failure
1950  **/
1951 int igb_setup_tx_resources(struct igb_ring *tx_ring)
1952 {
1953         struct pci_dev *pdev = tx_ring->pdev;
1954         int size;
1955
1956         size = sizeof(struct igb_buffer) * tx_ring->count;
1957         tx_ring->buffer_info = vmalloc(size);
1958         if (!tx_ring->buffer_info)
1959                 goto err;
1960         memset(tx_ring->buffer_info, 0, size);
1961
1962         /* round up to nearest 4K */
1963         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
1964         tx_ring->size = ALIGN(tx_ring->size, 4096);
1965
1966         tx_ring->desc = pci_alloc_consistent(pdev,
1967                                              tx_ring->size,
1968                                              &tx_ring->dma);
1969
1970         if (!tx_ring->desc)
1971                 goto err;
1972
1973         tx_ring->next_to_use = 0;
1974         tx_ring->next_to_clean = 0;
1975         return 0;
1976
1977 err:
1978         vfree(tx_ring->buffer_info);
1979         dev_err(&pdev->dev,
1980                 "Unable to allocate memory for the transmit descriptor ring\n");
1981         return -ENOMEM;
1982 }
1983
1984 /**
1985  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1986  *                                (Descriptors) for all queues
1987  * @adapter: board private structure
1988  *
1989  * Return 0 on success, negative on failure
1990  **/
1991 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1992 {
1993         struct pci_dev *pdev = adapter->pdev;
1994         int i, err = 0;
1995
1996         for (i = 0; i < adapter->num_tx_queues; i++) {
1997                 err = igb_setup_tx_resources(&adapter->tx_ring[i]);
1998                 if (err) {
1999                         dev_err(&pdev->dev,
2000                                 "Allocation for Tx Queue %u failed\n", i);
2001                         for (i--; i >= 0; i--)
2002                                 igb_free_tx_resources(&adapter->tx_ring[i]);
2003                         break;
2004                 }
2005         }
2006
2007         for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
2008                 int r_idx = i % adapter->num_tx_queues;
2009                 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
2010         }
2011         return err;
2012 }
2013
2014 /**
2015  * igb_setup_tctl - configure the transmit control registers
2016  * @adapter: Board private structure
2017  **/
2018 void igb_setup_tctl(struct igb_adapter *adapter)
2019 {
2020         struct e1000_hw *hw = &adapter->hw;
2021         u32 tctl;
2022
2023         /* disable queue 0 which is enabled by default on 82575 and 82576 */
2024         wr32(E1000_TXDCTL(0), 0);
2025
2026         /* Program the Transmit Control Register */
2027         tctl = rd32(E1000_TCTL);
2028         tctl &= ~E1000_TCTL_CT;
2029         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2030                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2031
2032         igb_config_collision_dist(hw);
2033
2034         /* Enable transmits */
2035         tctl |= E1000_TCTL_EN;
2036
2037         wr32(E1000_TCTL, tctl);
2038 }
2039
2040 /**
2041  * igb_configure_tx_ring - Configure transmit ring after Reset
2042  * @adapter: board private structure
2043  * @ring: tx ring to configure
2044  *
2045  * Configure a transmit ring after a reset.
2046  **/
2047 void igb_configure_tx_ring(struct igb_adapter *adapter,
2048                            struct igb_ring *ring)
2049 {
2050         struct e1000_hw *hw = &adapter->hw;
2051         u32 txdctl;
2052         u64 tdba = ring->dma;
2053         int reg_idx = ring->reg_idx;
2054
2055         /* disable the queue */
2056         txdctl = rd32(E1000_TXDCTL(reg_idx));
2057         wr32(E1000_TXDCTL(reg_idx),
2058                         txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
2059         wrfl();
2060         mdelay(10);
2061
2062         wr32(E1000_TDLEN(reg_idx),
2063                         ring->count * sizeof(union e1000_adv_tx_desc));
2064         wr32(E1000_TDBAL(reg_idx),
2065                         tdba & 0x00000000ffffffffULL);
2066         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2067
2068         ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2069         ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2070         writel(0, ring->head);
2071         writel(0, ring->tail);
2072
2073         txdctl |= IGB_TX_PTHRESH;
2074         txdctl |= IGB_TX_HTHRESH << 8;
2075         txdctl |= IGB_TX_WTHRESH << 16;
2076
2077         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2078         wr32(E1000_TXDCTL(reg_idx), txdctl);
2079 }
2080
2081 /**
2082  * igb_configure_tx - Configure transmit Unit after Reset
2083  * @adapter: board private structure
2084  *
2085  * Configure the Tx unit of the MAC after a reset.
2086  **/
2087 static void igb_configure_tx(struct igb_adapter *adapter)
2088 {
2089         int i;
2090
2091         for (i = 0; i < adapter->num_tx_queues; i++)
2092                 igb_configure_tx_ring(adapter, &adapter->tx_ring[i]);
2093 }
2094
2095 /**
2096  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2097  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2098  *
2099  * Returns 0 on success, negative on failure
2100  **/
2101 int igb_setup_rx_resources(struct igb_ring *rx_ring)
2102 {
2103         struct pci_dev *pdev = rx_ring->pdev;
2104         int size, desc_len;
2105
2106         size = sizeof(struct igb_buffer) * rx_ring->count;
2107         rx_ring->buffer_info = vmalloc(size);
2108         if (!rx_ring->buffer_info)
2109                 goto err;
2110         memset(rx_ring->buffer_info, 0, size);
2111
2112         desc_len = sizeof(union e1000_adv_rx_desc);
2113
2114         /* Round up to nearest 4K */
2115         rx_ring->size = rx_ring->count * desc_len;
2116         rx_ring->size = ALIGN(rx_ring->size, 4096);
2117
2118         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
2119                                              &rx_ring->dma);
2120
2121         if (!rx_ring->desc)
2122                 goto err;
2123
2124         rx_ring->next_to_clean = 0;
2125         rx_ring->next_to_use = 0;
2126
2127         return 0;
2128
2129 err:
2130         vfree(rx_ring->buffer_info);
2131         rx_ring->buffer_info = NULL;
2132         dev_err(&pdev->dev, "Unable to allocate memory for "
2133                 "the receive descriptor ring\n");
2134         return -ENOMEM;
2135 }
2136
2137 /**
2138  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2139  *                                (Descriptors) for all queues
2140  * @adapter: board private structure
2141  *
2142  * Return 0 on success, negative on failure
2143  **/
2144 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2145 {
2146         struct pci_dev *pdev = adapter->pdev;
2147         int i, err = 0;
2148
2149         for (i = 0; i < adapter->num_rx_queues; i++) {
2150                 err = igb_setup_rx_resources(&adapter->rx_ring[i]);
2151                 if (err) {
2152                         dev_err(&pdev->dev,
2153                                 "Allocation for Rx Queue %u failed\n", i);
2154                         for (i--; i >= 0; i--)
2155                                 igb_free_rx_resources(&adapter->rx_ring[i]);
2156                         break;
2157                 }
2158         }
2159
2160         return err;
2161 }
2162
2163 /**
2164  * igb_setup_mrqc - configure the multiple receive queue control registers
2165  * @adapter: Board private structure
2166  **/
2167 static void igb_setup_mrqc(struct igb_adapter *adapter)
2168 {
2169         struct e1000_hw *hw = &adapter->hw;
2170         u32 mrqc, rxcsum;
2171         u32 j, num_rx_queues, shift = 0, shift2 = 0;
2172         union e1000_reta {
2173                 u32 dword;
2174                 u8  bytes[4];
2175         } reta;
2176         static const u8 rsshash[40] = {
2177                 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2178                 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2179                 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2180                 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2181
2182         /* Fill out hash function seeds */
2183         for (j = 0; j < 10; j++) {
2184                 u32 rsskey = rsshash[(j * 4)];
2185                 rsskey |= rsshash[(j * 4) + 1] << 8;
2186                 rsskey |= rsshash[(j * 4) + 2] << 16;
2187                 rsskey |= rsshash[(j * 4) + 3] << 24;
2188                 array_wr32(E1000_RSSRK(0), j, rsskey);
2189         }
2190
2191         num_rx_queues = adapter->num_rx_queues;
2192
2193         if (adapter->vfs_allocated_count) {
2194                 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2195                 switch (hw->mac.type) {
2196                 case e1000_82576:
2197                         shift = 3;
2198                         num_rx_queues = 2;
2199                         break;
2200                 case e1000_82575:
2201                         shift = 2;
2202                         shift2 = 6;
2203                 default:
2204                         break;
2205                 }
2206         } else {
2207                 if (hw->mac.type == e1000_82575)
2208                         shift = 6;
2209         }
2210
2211         for (j = 0; j < (32 * 4); j++) {
2212                 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2213                 if (shift2)
2214                         reta.bytes[j & 3] |= num_rx_queues << shift2;
2215                 if ((j & 3) == 3)
2216                         wr32(E1000_RETA(j >> 2), reta.dword);
2217         }
2218
2219         /*
2220          * Disable raw packet checksumming so that RSS hash is placed in
2221          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
2222          * offloads as they are enabled by default
2223          */
2224         rxcsum = rd32(E1000_RXCSUM);
2225         rxcsum |= E1000_RXCSUM_PCSD;
2226
2227         if (adapter->hw.mac.type >= e1000_82576)
2228                 /* Enable Receive Checksum Offload for SCTP */
2229                 rxcsum |= E1000_RXCSUM_CRCOFL;
2230
2231         /* Don't need to set TUOFL or IPOFL, they default to 1 */
2232         wr32(E1000_RXCSUM, rxcsum);
2233
2234         /* If VMDq is enabled then we set the appropriate mode for that, else
2235          * we default to RSS so that an RSS hash is calculated per packet even
2236          * if we are only using one queue */
2237         if (adapter->vfs_allocated_count) {
2238                 if (hw->mac.type > e1000_82575) {
2239                         /* Set the default pool for the PF's first queue */
2240                         u32 vtctl = rd32(E1000_VT_CTL);
2241                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2242                                    E1000_VT_CTL_DISABLE_DEF_POOL);
2243                         vtctl |= adapter->vfs_allocated_count <<
2244                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2245                         wr32(E1000_VT_CTL, vtctl);
2246                 }
2247                 if (adapter->num_rx_queues > 1)
2248                         mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2249                 else
2250                         mrqc = E1000_MRQC_ENABLE_VMDQ;
2251         } else {
2252                 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2253         }
2254         igb_vmm_control(adapter);
2255
2256         mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2257                  E1000_MRQC_RSS_FIELD_IPV4_TCP);
2258         mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2259                  E1000_MRQC_RSS_FIELD_IPV6_TCP);
2260         mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2261                  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2262         mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2263                  E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2264
2265         wr32(E1000_MRQC, mrqc);
2266 }
2267
2268 /**
2269  * igb_setup_rctl - configure the receive control registers
2270  * @adapter: Board private structure
2271  **/
2272 void igb_setup_rctl(struct igb_adapter *adapter)
2273 {
2274         struct e1000_hw *hw = &adapter->hw;
2275         u32 rctl;
2276
2277         rctl = rd32(E1000_RCTL);
2278
2279         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2280         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2281
2282         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2283                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2284
2285         /*
2286          * enable stripping of CRC. It's unlikely this will break BMC
2287          * redirection as it did with e1000. Newer features require
2288          * that the HW strips the CRC.
2289          */
2290         rctl |= E1000_RCTL_SECRC;
2291
2292         /*
2293          * disable store bad packets and clear size bits.
2294          */
2295         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2296
2297         /* enable LPE to prevent packets larger than max_frame_size */
2298         rctl |= E1000_RCTL_LPE;
2299
2300         /* disable queue 0 to prevent tail write w/o re-config */
2301         wr32(E1000_RXDCTL(0), 0);
2302
2303         /* Attention!!!  For SR-IOV PF driver operations you must enable
2304          * queue drop for all VF and PF queues to prevent head of line blocking
2305          * if an un-trusted VF does not provide descriptors to hardware.
2306          */
2307         if (adapter->vfs_allocated_count) {
2308                 /* set all queue drop enable bits */
2309                 wr32(E1000_QDE, ALL_QUEUES);
2310         }
2311
2312         wr32(E1000_RCTL, rctl);
2313 }
2314
2315 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2316                                    int vfn)
2317 {
2318         struct e1000_hw *hw = &adapter->hw;
2319         u32 vmolr;
2320
2321         /* if it isn't the PF check to see if VFs are enabled and
2322          * increase the size to support vlan tags */
2323         if (vfn < adapter->vfs_allocated_count &&
2324             adapter->vf_data[vfn].vlans_enabled)
2325                 size += VLAN_TAG_SIZE;
2326
2327         vmolr = rd32(E1000_VMOLR(vfn));
2328         vmolr &= ~E1000_VMOLR_RLPML_MASK;
2329         vmolr |= size | E1000_VMOLR_LPE;
2330         wr32(E1000_VMOLR(vfn), vmolr);
2331
2332         return 0;
2333 }
2334
2335 /**
2336  * igb_rlpml_set - set maximum receive packet size
2337  * @adapter: board private structure
2338  *
2339  * Configure maximum receivable packet size.
2340  **/
2341 static void igb_rlpml_set(struct igb_adapter *adapter)
2342 {
2343         u32 max_frame_size = adapter->max_frame_size;
2344         struct e1000_hw *hw = &adapter->hw;
2345         u16 pf_id = adapter->vfs_allocated_count;
2346
2347         if (adapter->vlgrp)
2348                 max_frame_size += VLAN_TAG_SIZE;
2349
2350         /* if vfs are enabled we set RLPML to the largest possible request
2351          * size and set the VMOLR RLPML to the size we need */
2352         if (pf_id) {
2353                 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2354                 max_frame_size = MAX_JUMBO_FRAME_SIZE;
2355         }
2356
2357         wr32(E1000_RLPML, max_frame_size);
2358 }
2359
2360 static inline void igb_set_vmolr(struct igb_adapter *adapter, int vfn)
2361 {
2362         struct e1000_hw *hw = &adapter->hw;
2363         u32 vmolr;
2364
2365         /*
2366          * This register exists only on 82576 and newer so if we are older then
2367          * we should exit and do nothing
2368          */
2369         if (hw->mac.type < e1000_82576)
2370                 return;
2371
2372         vmolr = rd32(E1000_VMOLR(vfn));
2373         vmolr |= E1000_VMOLR_AUPE |        /* Accept untagged packets */
2374                  E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
2375
2376         /* clear all bits that might not be set */
2377         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
2378
2379         if (adapter->num_rx_queues > 1 && vfn == adapter->vfs_allocated_count)
2380                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
2381         /*
2382          * for VMDq only allow the VFs and pool 0 to accept broadcast and
2383          * multicast packets
2384          */
2385         if (vfn <= adapter->vfs_allocated_count)
2386                 vmolr |= E1000_VMOLR_BAM;          /* Accept broadcast */
2387
2388         wr32(E1000_VMOLR(vfn), vmolr);
2389 }
2390
2391 /**
2392  * igb_configure_rx_ring - Configure a receive ring after Reset
2393  * @adapter: board private structure
2394  * @ring: receive ring to be configured
2395  *
2396  * Configure the Rx unit of the MAC after a reset.
2397  **/
2398 void igb_configure_rx_ring(struct igb_adapter *adapter,
2399                            struct igb_ring *ring)
2400 {
2401         struct e1000_hw *hw = &adapter->hw;
2402         u64 rdba = ring->dma;
2403         int reg_idx = ring->reg_idx;
2404         u32 srrctl, rxdctl;
2405
2406         /* disable the queue */
2407         rxdctl = rd32(E1000_RXDCTL(reg_idx));
2408         wr32(E1000_RXDCTL(reg_idx),
2409                         rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
2410
2411         /* Set DMA base address registers */
2412         wr32(E1000_RDBAL(reg_idx),
2413              rdba & 0x00000000ffffffffULL);
2414         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
2415         wr32(E1000_RDLEN(reg_idx),
2416                        ring->count * sizeof(union e1000_adv_rx_desc));
2417
2418         /* initialize head and tail */
2419         ring->head = hw->hw_addr + E1000_RDH(reg_idx);
2420         ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
2421         writel(0, ring->head);
2422         writel(0, ring->tail);
2423
2424         /* set descriptor configuration */
2425         if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
2426                 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
2427                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2428 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
2429                 srrctl |= IGB_RXBUFFER_16384 >>
2430                           E1000_SRRCTL_BSIZEPKT_SHIFT;
2431 #else
2432                 srrctl |= (PAGE_SIZE / 2) >>
2433                           E1000_SRRCTL_BSIZEPKT_SHIFT;
2434 #endif
2435                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2436         } else {
2437                 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
2438                          E1000_SRRCTL_BSIZEPKT_SHIFT;
2439                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2440         }
2441
2442         wr32(E1000_SRRCTL(reg_idx), srrctl);
2443
2444         /* set filtering for VMDQ pools */
2445         igb_set_vmolr(adapter, reg_idx & 0x7);
2446
2447         /* enable receive descriptor fetching */
2448         rxdctl = rd32(E1000_RXDCTL(reg_idx));
2449         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2450         rxdctl &= 0xFFF00000;
2451         rxdctl |= IGB_RX_PTHRESH;
2452         rxdctl |= IGB_RX_HTHRESH << 8;
2453         rxdctl |= IGB_RX_WTHRESH << 16;
2454         wr32(E1000_RXDCTL(reg_idx), rxdctl);
2455 }
2456
2457 /**
2458  * igb_configure_rx - Configure receive Unit after Reset
2459  * @adapter: board private structure
2460  *
2461  * Configure the Rx unit of the MAC after a reset.
2462  **/
2463 static void igb_configure_rx(struct igb_adapter *adapter)
2464 {
2465         int i;
2466
2467         /* set UTA to appropriate mode */
2468         igb_set_uta(adapter);
2469
2470         /* set the correct pool for the PF default MAC address in entry 0 */
2471         igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
2472                          adapter->vfs_allocated_count);
2473
2474         /* Setup the HW Rx Head and Tail Descriptor Pointers and
2475          * the Base and Length of the Rx Descriptor Ring */
2476         for (i = 0; i < adapter->num_rx_queues; i++)
2477                 igb_configure_rx_ring(adapter, &adapter->rx_ring[i]);
2478 }
2479
2480 /**
2481  * igb_free_tx_resources - Free Tx Resources per Queue
2482  * @tx_ring: Tx descriptor ring for a specific queue
2483  *
2484  * Free all transmit software resources
2485  **/
2486 void igb_free_tx_resources(struct igb_ring *tx_ring)
2487 {
2488         igb_clean_tx_ring(tx_ring);
2489
2490         vfree(tx_ring->buffer_info);
2491         tx_ring->buffer_info = NULL;
2492
2493         /* if not set, then don't free */
2494         if (!tx_ring->desc)
2495                 return;
2496
2497         pci_free_consistent(tx_ring->pdev, tx_ring->size,
2498                             tx_ring->desc, tx_ring->dma);
2499
2500         tx_ring->desc = NULL;
2501 }
2502
2503 /**
2504  * igb_free_all_tx_resources - Free Tx Resources for All Queues
2505  * @adapter: board private structure
2506  *
2507  * Free all transmit software resources
2508  **/
2509 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2510 {
2511         int i;
2512
2513         for (i = 0; i < adapter->num_tx_queues; i++)
2514                 igb_free_tx_resources(&adapter->tx_ring[i]);
2515 }
2516
2517 void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
2518                                     struct igb_buffer *buffer_info)
2519 {
2520         buffer_info->dma = 0;
2521         if (buffer_info->skb) {
2522                 skb_dma_unmap(&tx_ring->pdev->dev,
2523                               buffer_info->skb,
2524                               DMA_TO_DEVICE);
2525                 dev_kfree_skb_any(buffer_info->skb);
2526                 buffer_info->skb = NULL;
2527         }
2528         buffer_info->time_stamp = 0;
2529         /* buffer_info must be completely set up in the transmit path */
2530 }
2531
2532 /**
2533  * igb_clean_tx_ring - Free Tx Buffers
2534  * @tx_ring: ring to be cleaned
2535  **/
2536 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2537 {
2538         struct igb_buffer *buffer_info;
2539         unsigned long size;
2540         unsigned int i;
2541
2542         if (!tx_ring->buffer_info)
2543                 return;
2544         /* Free all the Tx ring sk_buffs */
2545
2546         for (i = 0; i < tx_ring->count; i++) {
2547                 buffer_info = &tx_ring->buffer_info[i];
2548                 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
2549         }
2550
2551         size = sizeof(struct igb_buffer) * tx_ring->count;
2552         memset(tx_ring->buffer_info, 0, size);
2553
2554         /* Zero out the descriptor ring */
2555         memset(tx_ring->desc, 0, tx_ring->size);
2556
2557         tx_ring->next_to_use = 0;
2558         tx_ring->next_to_clean = 0;
2559 }
2560
2561 /**
2562  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2563  * @adapter: board private structure
2564  **/
2565 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2566 {
2567         int i;
2568
2569         for (i = 0; i < adapter->num_tx_queues; i++)
2570                 igb_clean_tx_ring(&adapter->tx_ring[i]);
2571 }
2572
2573 /**
2574  * igb_free_rx_resources - Free Rx Resources
2575  * @rx_ring: ring to clean the resources from
2576  *
2577  * Free all receive software resources
2578  **/
2579 void igb_free_rx_resources(struct igb_ring *rx_ring)
2580 {
2581         igb_clean_rx_ring(rx_ring);
2582
2583         vfree(rx_ring->buffer_info);
2584         rx_ring->buffer_info = NULL;
2585
2586         /* if not set, then don't free */
2587         if (!rx_ring->desc)
2588                 return;
2589
2590         pci_free_consistent(rx_ring->pdev, rx_ring->size,
2591                             rx_ring->desc, rx_ring->dma);
2592
2593         rx_ring->desc = NULL;
2594 }
2595
2596 /**
2597  * igb_free_all_rx_resources - Free Rx Resources for All Queues
2598  * @adapter: board private structure
2599  *
2600  * Free all receive software resources
2601  **/
2602 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2603 {
2604         int i;
2605
2606         for (i = 0; i < adapter->num_rx_queues; i++)
2607                 igb_free_rx_resources(&adapter->rx_ring[i]);
2608 }
2609
2610 /**
2611  * igb_clean_rx_ring - Free Rx Buffers per Queue
2612  * @rx_ring: ring to free buffers from
2613  **/
2614 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2615 {
2616         struct igb_buffer *buffer_info;
2617         unsigned long size;
2618         unsigned int i;
2619
2620         if (!rx_ring->buffer_info)
2621                 return;
2622
2623         /* Free all the Rx ring sk_buffs */
2624         for (i = 0; i < rx_ring->count; i++) {
2625                 buffer_info = &rx_ring->buffer_info[i];
2626                 if (buffer_info->dma) {
2627                         pci_unmap_single(rx_ring->pdev,
2628                                          buffer_info->dma,
2629                                          rx_ring->rx_buffer_len,
2630                                          PCI_DMA_FROMDEVICE);
2631                         buffer_info->dma = 0;
2632                 }
2633
2634                 if (buffer_info->skb) {
2635                         dev_kfree_skb(buffer_info->skb);
2636                         buffer_info->skb = NULL;
2637                 }
2638                 if (buffer_info->page_dma) {
2639                         pci_unmap_page(rx_ring->pdev,
2640                                        buffer_info->page_dma,
2641                                        PAGE_SIZE / 2,
2642                                        PCI_DMA_FROMDEVICE);
2643                         buffer_info->page_dma = 0;
2644                 }
2645                 if (buffer_info->page) {
2646                         put_page(buffer_info->page);
2647                         buffer_info->page = NULL;
2648                         buffer_info->page_offset = 0;
2649                 }
2650         }
2651
2652         size = sizeof(struct igb_buffer) * rx_ring->count;
2653         memset(rx_ring->buffer_info, 0, size);
2654
2655         /* Zero out the descriptor ring */
2656         memset(rx_ring->desc, 0, rx_ring->size);
2657
2658         rx_ring->next_to_clean = 0;
2659         rx_ring->next_to_use = 0;
2660 }
2661
2662 /**
2663  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2664  * @adapter: board private structure
2665  **/
2666 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2667 {
2668         int i;
2669
2670         for (i = 0; i < adapter->num_rx_queues; i++)
2671                 igb_clean_rx_ring(&adapter->rx_ring[i]);
2672 }
2673
2674 /**
2675  * igb_set_mac - Change the Ethernet Address of the NIC
2676  * @netdev: network interface device structure
2677  * @p: pointer to an address structure
2678  *
2679  * Returns 0 on success, negative on failure
2680  **/
2681 static int igb_set_mac(struct net_device *netdev, void *p)
2682 {
2683         struct igb_adapter *adapter = netdev_priv(netdev);
2684         struct e1000_hw *hw = &adapter->hw;
2685         struct sockaddr *addr = p;
2686
2687         if (!is_valid_ether_addr(addr->sa_data))
2688                 return -EADDRNOTAVAIL;
2689
2690         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2691         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2692
2693         /* set the correct pool for the new PF MAC address in entry 0 */
2694         igb_rar_set_qsel(adapter, hw->mac.addr, 0,
2695                          adapter->vfs_allocated_count);
2696
2697         return 0;
2698 }
2699
2700 /**
2701  * igb_write_mc_addr_list - write multicast addresses to MTA
2702  * @netdev: network interface device structure
2703  *
2704  * Writes multicast address list to the MTA hash table.
2705  * Returns: -ENOMEM on failure
2706  *                0 on no addresses written
2707  *                X on writing X addresses to MTA
2708  **/
2709 static int igb_write_mc_addr_list(struct net_device *netdev)
2710 {
2711         struct igb_adapter *adapter = netdev_priv(netdev);
2712         struct e1000_hw *hw = &adapter->hw;
2713         struct dev_mc_list *mc_ptr = netdev->mc_list;
2714         u8  *mta_list;
2715         u32 vmolr = 0;
2716         int i;
2717
2718         if (!netdev->mc_count) {
2719                 /* nothing to program, so clear mc list */
2720                 igb_update_mc_addr_list(hw, NULL, 0);
2721                 igb_restore_vf_multicasts(adapter);
2722                 return 0;
2723         }
2724
2725         mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2726         if (!mta_list)
2727                 return -ENOMEM;
2728
2729         /* set vmolr receive overflow multicast bit */
2730         vmolr |= E1000_VMOLR_ROMPE;
2731
2732         /* The shared function expects a packed array of only addresses. */
2733         mc_ptr = netdev->mc_list;
2734
2735         for (i = 0; i < netdev->mc_count; i++) {
2736                 if (!mc_ptr)
2737                         break;
2738                 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2739                 mc_ptr = mc_ptr->next;
2740         }
2741         igb_update_mc_addr_list(hw, mta_list, i);
2742         kfree(mta_list);
2743
2744         return netdev->mc_count;
2745 }
2746
2747 /**
2748  * igb_write_uc_addr_list - write unicast addresses to RAR table
2749  * @netdev: network interface device structure
2750  *
2751  * Writes unicast address list to the RAR table.
2752  * Returns: -ENOMEM on failure/insufficient address space
2753  *                0 on no addresses written
2754  *                X on writing X addresses to the RAR table
2755  **/
2756 static int igb_write_uc_addr_list(struct net_device *netdev)
2757 {
2758         struct igb_adapter *adapter = netdev_priv(netdev);
2759         struct e1000_hw *hw = &adapter->hw;
2760         unsigned int vfn = adapter->vfs_allocated_count;
2761         unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2762         int count = 0;
2763
2764         /* return ENOMEM indicating insufficient memory for addresses */
2765         if (netdev->uc.count > rar_entries)
2766                 return -ENOMEM;
2767
2768         if (netdev->uc.count && rar_entries) {
2769                 struct netdev_hw_addr *ha;
2770                 list_for_each_entry(ha, &netdev->uc.list, list) {
2771                         if (!rar_entries)
2772                                 break;
2773                         igb_rar_set_qsel(adapter, ha->addr,
2774                                          rar_entries--,
2775                                          vfn);
2776                         count++;
2777                 }
2778         }
2779         /* write the addresses in reverse order to avoid write combining */
2780         for (; rar_entries > 0 ; rar_entries--) {
2781                 wr32(E1000_RAH(rar_entries), 0);
2782                 wr32(E1000_RAL(rar_entries), 0);
2783         }
2784         wrfl();
2785
2786         return count;
2787 }
2788
2789 /**
2790  * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2791  * @netdev: network interface device structure
2792  *
2793  * The set_rx_mode entry point is called whenever the unicast or multicast
2794  * address lists or the network interface flags are updated.  This routine is
2795  * responsible for configuring the hardware for proper unicast, multicast,
2796  * promiscuous mode, and all-multi behavior.
2797  **/
2798 static void igb_set_rx_mode(struct net_device *netdev)
2799 {
2800         struct igb_adapter *adapter = netdev_priv(netdev);
2801         struct e1000_hw *hw = &adapter->hw;
2802         unsigned int vfn = adapter->vfs_allocated_count;
2803         u32 rctl, vmolr = 0;
2804         int count;
2805
2806         /* Check for Promiscuous and All Multicast modes */
2807         rctl = rd32(E1000_RCTL);
2808
2809         /* clear the effected bits */
2810         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
2811
2812         if (netdev->flags & IFF_PROMISC) {
2813                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2814                 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
2815         } else {
2816                 if (netdev->flags & IFF_ALLMULTI) {
2817                         rctl |= E1000_RCTL_MPE;
2818                         vmolr |= E1000_VMOLR_MPME;
2819                 } else {
2820                         /*
2821                          * Write addresses to the MTA, if the attempt fails
2822                          * then we should just turn on promiscous mode so
2823                          * that we can at least receive multicast traffic
2824                          */
2825                         count = igb_write_mc_addr_list(netdev);
2826                         if (count < 0) {
2827                                 rctl |= E1000_RCTL_MPE;
2828                                 vmolr |= E1000_VMOLR_MPME;
2829                         } else if (count) {
2830                                 vmolr |= E1000_VMOLR_ROMPE;
2831                         }
2832                 }
2833                 /*
2834                  * Write addresses to available RAR registers, if there is not
2835                  * sufficient space to store all the addresses then enable
2836                  * unicast promiscous mode
2837                  */
2838                 count = igb_write_uc_addr_list(netdev);
2839                 if (count < 0) {
2840                         rctl |= E1000_RCTL_UPE;
2841                         vmolr |= E1000_VMOLR_ROPE;
2842                 }
2843                 rctl |= E1000_RCTL_VFE;
2844         }
2845         wr32(E1000_RCTL, rctl);
2846
2847         /*
2848          * In order to support SR-IOV and eventually VMDq it is necessary to set
2849          * the VMOLR to enable the appropriate modes.  Without this workaround
2850          * we will have issues with VLAN tag stripping not being done for frames
2851          * that are only arriving because we are the default pool
2852          */
2853         if (hw->mac.type < e1000_82576)
2854                 return;
2855
2856         vmolr |= rd32(E1000_VMOLR(vfn)) &
2857                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
2858         wr32(E1000_VMOLR(vfn), vmolr);
2859         igb_restore_vf_multicasts(adapter);
2860 }
2861
2862 /* Need to wait a few seconds after link up to get diagnostic information from
2863  * the phy */
2864 static void igb_update_phy_info(unsigned long data)
2865 {
2866         struct igb_adapter *adapter = (struct igb_adapter *) data;
2867         igb_get_phy_info(&adapter->hw);
2868 }
2869
2870 /**
2871  * igb_has_link - check shared code for link and determine up/down
2872  * @adapter: pointer to driver private info
2873  **/
2874 static bool igb_has_link(struct igb_adapter *adapter)
2875 {
2876         struct e1000_hw *hw = &adapter->hw;
2877         bool link_active = false;
2878         s32 ret_val = 0;
2879
2880         /* get_link_status is set on LSC (link status) interrupt or
2881          * rx sequence error interrupt.  get_link_status will stay
2882          * false until the e1000_check_for_link establishes link
2883          * for copper adapters ONLY
2884          */
2885         switch (hw->phy.media_type) {
2886         case e1000_media_type_copper:
2887                 if (hw->mac.get_link_status) {
2888                         ret_val = hw->mac.ops.check_for_link(hw);
2889                         link_active = !hw->mac.get_link_status;
2890                 } else {
2891                         link_active = true;
2892                 }
2893                 break;
2894         case e1000_media_type_internal_serdes:
2895                 ret_val = hw->mac.ops.check_for_link(hw);
2896                 link_active = hw->mac.serdes_has_link;
2897                 break;
2898         default:
2899         case e1000_media_type_unknown:
2900                 break;
2901         }
2902
2903         return link_active;
2904 }
2905
2906 /**
2907  * igb_watchdog - Timer Call-back
2908  * @data: pointer to adapter cast into an unsigned long
2909  **/
2910 static void igb_watchdog(unsigned long data)
2911 {
2912         struct igb_adapter *adapter = (struct igb_adapter *)data;
2913         /* Do the rest outside of interrupt context */
2914         schedule_work(&adapter->watchdog_task);
2915 }
2916
2917 static void igb_watchdog_task(struct work_struct *work)
2918 {
2919         struct igb_adapter *adapter = container_of(work,
2920                                         struct igb_adapter, watchdog_task);
2921         struct e1000_hw *hw = &adapter->hw;
2922         struct net_device *netdev = adapter->netdev;
2923         struct igb_ring *tx_ring = adapter->tx_ring;
2924         u32 link;
2925         int i;
2926
2927         link = igb_has_link(adapter);
2928         if ((netif_carrier_ok(netdev)) && link)
2929                 goto link_up;
2930
2931         if (link) {
2932                 if (!netif_carrier_ok(netdev)) {
2933                         u32 ctrl;
2934                         hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2935                                                    &adapter->link_speed,
2936                                                    &adapter->link_duplex);
2937
2938                         ctrl = rd32(E1000_CTRL);
2939                         /* Links status message must follow this format */
2940                         printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2941                                  "Flow Control: %s\n",
2942                                  netdev->name,
2943                                  adapter->link_speed,
2944                                  adapter->link_duplex == FULL_DUPLEX ?
2945                                  "Full Duplex" : "Half Duplex",
2946                                  ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2947                                  E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2948                                  E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2949                                  E1000_CTRL_TFCE) ? "TX" : "None")));
2950
2951                         /* tweak tx_queue_len according to speed/duplex and
2952                          * adjust the timeout factor */
2953                         netdev->tx_queue_len = adapter->tx_queue_len;
2954                         adapter->tx_timeout_factor = 1;
2955                         switch (adapter->link_speed) {
2956                         case SPEED_10:
2957                                 netdev->tx_queue_len = 10;
2958                                 adapter->tx_timeout_factor = 14;
2959                                 break;
2960                         case SPEED_100:
2961                                 netdev->tx_queue_len = 100;
2962                                 /* maybe add some timeout factor ? */
2963                                 break;
2964                         }
2965
2966                         netif_carrier_on(netdev);
2967
2968                         igb_ping_all_vfs(adapter);
2969
2970                         /* link state has changed, schedule phy info update */
2971                         if (!test_bit(__IGB_DOWN, &adapter->state))
2972                                 mod_timer(&adapter->phy_info_timer,
2973                                           round_jiffies(jiffies + 2 * HZ));
2974                 }
2975         } else {
2976                 if (netif_carrier_ok(netdev)) {
2977                         adapter->link_speed = 0;
2978                         adapter->link_duplex = 0;
2979                         /* Links status message must follow this format */
2980                         printk(KERN_INFO "igb: %s NIC Link is Down\n",
2981                                netdev->name);
2982                         netif_carrier_off(netdev);
2983
2984                         igb_ping_all_vfs(adapter);
2985
2986                         /* link state has changed, schedule phy info update */
2987                         if (!test_bit(__IGB_DOWN, &adapter->state))
2988                                 mod_timer(&adapter->phy_info_timer,
2989                                           round_jiffies(jiffies + 2 * HZ));
2990                 }
2991         }
2992
2993 link_up:
2994         igb_update_stats(adapter);
2995
2996         hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2997         adapter->tpt_old = adapter->stats.tpt;
2998         hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
2999         adapter->colc_old = adapter->stats.colc;
3000
3001         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
3002         adapter->gorc_old = adapter->stats.gorc;
3003         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
3004         adapter->gotc_old = adapter->stats.gotc;
3005
3006         igb_update_adaptive(&adapter->hw);
3007
3008         if (!netif_carrier_ok(netdev)) {
3009                 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3010                         /* We've lost link, so the controller stops DMA,
3011                          * but we've got queued Tx work that's never going
3012                          * to get done, so reset controller to flush Tx.
3013                          * (Do the reset outside of interrupt context). */
3014                         adapter->tx_timeout_count++;
3015                         schedule_work(&adapter->reset_task);
3016                         /* return immediately since reset is imminent */
3017                         return;
3018                 }
3019         }
3020
3021         /* Force detection of hung controller every watchdog period */
3022         for (i = 0; i < adapter->num_tx_queues; i++)
3023                 adapter->tx_ring[i].detect_tx_hung = true;
3024
3025         /* Cause software interrupt to ensure rx ring is cleaned */
3026         if (adapter->msix_entries) {
3027                 u32 eics = 0;
3028                 for (i = 0; i < adapter->num_q_vectors; i++) {
3029                         struct igb_q_vector *q_vector = adapter->q_vector[i];
3030                         eics |= q_vector->eims_value;
3031                 }
3032                 wr32(E1000_EICS, eics);
3033         } else {
3034                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3035         }
3036
3037         /* Reset the timer */
3038         if (!test_bit(__IGB_DOWN, &adapter->state))
3039                 mod_timer(&adapter->watchdog_timer,
3040                           round_jiffies(jiffies + 2 * HZ));
3041 }
3042
3043 enum latency_range {
3044         lowest_latency = 0,
3045         low_latency = 1,
3046         bulk_latency = 2,
3047         latency_invalid = 255
3048 };
3049
3050 /**
3051  * igb_update_ring_itr - update the dynamic ITR value based on packet size
3052  *
3053  *      Stores a new ITR value based on strictly on packet size.  This
3054  *      algorithm is less sophisticated than that used in igb_update_itr,
3055  *      due to the difficulty of synchronizing statistics across multiple
3056  *      receive rings.  The divisors and thresholds used by this fuction
3057  *      were determined based on theoretical maximum wire speed and testing
3058  *      data, in order to minimize response time while increasing bulk
3059  *      throughput.
3060  *      This functionality is controlled by the InterruptThrottleRate module
3061  *      parameter (see igb_param.c)
3062  *      NOTE:  This function is called only when operating in a multiqueue
3063  *             receive environment.
3064  * @q_vector: pointer to q_vector
3065  **/
3066 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3067 {
3068         int new_val = q_vector->itr_val;
3069         int avg_wire_size = 0;
3070         struct igb_adapter *adapter = q_vector->adapter;
3071
3072         /* For non-gigabit speeds, just fix the interrupt rate at 4000
3073          * ints/sec - ITR timer value of 120 ticks.
3074          */
3075         if (adapter->link_speed != SPEED_1000) {
3076                 new_val = 976;
3077                 goto set_itr_val;
3078         }
3079
3080         if (q_vector->rx_ring && q_vector->rx_ring->total_packets) {
3081                 struct igb_ring *ring = q_vector->rx_ring;
3082                 avg_wire_size = ring->total_bytes / ring->total_packets;
3083         }
3084
3085         if (q_vector->tx_ring && q_vector->tx_ring->total_packets) {
3086                 struct igb_ring *ring = q_vector->tx_ring;
3087                 avg_wire_size = max_t(u32, avg_wire_size,
3088                                       (ring->total_bytes /
3089                                        ring->total_packets));
3090         }
3091
3092         /* if avg_wire_size isn't set no work was done */
3093         if (!avg_wire_size)
3094                 goto clear_counts;
3095
3096         /* Add 24 bytes to size to account for CRC, preamble, and gap */
3097         avg_wire_size += 24;
3098
3099         /* Don't starve jumbo frames */
3100         avg_wire_size = min(avg_wire_size, 3000);
3101
3102         /* Give a little boost to mid-size frames */
3103         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3104                 new_val = avg_wire_size / 3;
3105         else
3106                 new_val = avg_wire_size / 2;
3107
3108 set_itr_val:
3109         if (new_val != q_vector->itr_val) {
3110                 q_vector->itr_val = new_val;
3111                 q_vector->set_itr = 1;
3112         }
3113 clear_counts:
3114         if (q_vector->rx_ring) {
3115                 q_vector->rx_ring->total_bytes = 0;
3116                 q_vector->rx_ring->total_packets = 0;
3117         }
3118         if (q_vector->tx_ring) {
3119                 q_vector->tx_ring->total_bytes = 0;
3120                 q_vector->tx_ring->total_packets = 0;
3121         }
3122 }
3123
3124 /**
3125  * igb_update_itr - update the dynamic ITR value based on statistics
3126  *      Stores a new ITR value based on packets and byte
3127  *      counts during the last interrupt.  The advantage of per interrupt
3128  *      computation is faster updates and more accurate ITR for the current
3129  *      traffic pattern.  Constants in this function were computed
3130  *      based on theoretical maximum wire speed and thresholds were set based
3131  *      on testing data as well as attempting to minimize response time
3132  *      while increasing bulk throughput.
3133  *      this functionality is controlled by the InterruptThrottleRate module
3134  *      parameter (see igb_param.c)
3135  *      NOTE:  These calculations are only valid when operating in a single-
3136  *             queue environment.
3137  * @adapter: pointer to adapter
3138  * @itr_setting: current q_vector->itr_val
3139  * @packets: the number of packets during this measurement interval
3140  * @bytes: the number of bytes during this measurement interval
3141  **/
3142 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3143                                    int packets, int bytes)
3144 {
3145         unsigned int retval = itr_setting;
3146
3147         if (packets == 0)
3148                 goto update_itr_done;
3149
3150         switch (itr_setting) {
3151         case lowest_latency:
3152                 /* handle TSO and jumbo frames */
3153                 if (bytes/packets > 8000)
3154                         retval = bulk_latency;
3155                 else if ((packets < 5) && (bytes > 512))
3156                         retval = low_latency;
3157                 break;
3158         case low_latency:  /* 50 usec aka 20000 ints/s */
3159                 if (bytes > 10000) {
3160                         /* this if handles the TSO accounting */
3161                         if (bytes/packets > 8000) {
3162                                 retval = bulk_latency;
3163                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3164                                 retval = bulk_latency;
3165                         } else if ((packets > 35)) {
3166                                 retval = lowest_latency;
3167                         }
3168                 } else if (bytes/packets > 2000) {
3169                         retval = bulk_latency;
3170                 } else if (packets <= 2 && bytes < 512) {
3171                         retval = lowest_latency;
3172                 }
3173                 break;
3174         case bulk_latency: /* 250 usec aka 4000 ints/s */
3175                 if (bytes > 25000) {
3176                         if (packets > 35)
3177                                 retval = low_latency;
3178                 } else if (bytes < 1500) {
3179                         retval = low_latency;
3180                 }
3181                 break;
3182         }
3183
3184 update_itr_done:
3185         return retval;
3186 }
3187
3188 static void igb_set_itr(struct igb_adapter *adapter)
3189 {
3190         struct igb_q_vector *q_vector = adapter->q_vector[0];
3191         u16 current_itr;
3192         u32 new_itr = q_vector->itr_val;
3193
3194         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3195         if (adapter->link_speed != SPEED_1000) {
3196                 current_itr = 0;
3197                 new_itr = 4000;
3198                 goto set_itr_now;
3199         }
3200
3201         adapter->rx_itr = igb_update_itr(adapter,
3202                                     adapter->rx_itr,
3203                                     adapter->rx_ring->total_packets,
3204                                     adapter->rx_ring->total_bytes);
3205
3206         adapter->tx_itr = igb_update_itr(adapter,
3207                                     adapter->tx_itr,
3208                                     adapter->tx_ring->total_packets,
3209                                     adapter->tx_ring->total_bytes);
3210         current_itr = max(adapter->rx_itr, adapter->tx_itr);
3211
3212         /* conservative mode (itr 3) eliminates the lowest_latency setting */
3213         if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
3214                 current_itr = low_latency;
3215
3216         switch (current_itr) {
3217         /* counts and packets in update_itr are dependent on these numbers */
3218         case lowest_latency:
3219                 new_itr = 56;  /* aka 70,000 ints/sec */
3220                 break;
3221         case low_latency:
3222                 new_itr = 196; /* aka 20,000 ints/sec */
3223                 break;
3224         case bulk_latency:
3225                 new_itr = 980; /* aka 4,000 ints/sec */
3226                 break;
3227         default:
3228                 break;
3229         }
3230
3231 set_itr_now:
3232         adapter->rx_ring->total_bytes = 0;
3233         adapter->rx_ring->total_packets = 0;
3234         adapter->tx_ring->total_bytes = 0;
3235         adapter->tx_ring->total_packets = 0;
3236
3237         if (new_itr != q_vector->itr_val) {
3238                 /* this attempts to bias the interrupt rate towards Bulk
3239                  * by adding intermediate steps when interrupt rate is
3240                  * increasing */
3241                 new_itr = new_itr > q_vector->itr_val ?
3242                              max((new_itr * q_vector->itr_val) /
3243                                  (new_itr + (q_vector->itr_val >> 2)),
3244                                  new_itr) :
3245                              new_itr;
3246                 /* Don't write the value here; it resets the adapter's
3247                  * internal timer, and causes us to delay far longer than
3248                  * we should between interrupts.  Instead, we write the ITR
3249                  * value at the beginning of the next interrupt so the timing
3250                  * ends up being correct.
3251                  */
3252                 q_vector->itr_val = new_itr;
3253                 q_vector->set_itr = 1;
3254         }
3255
3256         return;
3257 }
3258
3259 #define IGB_TX_FLAGS_CSUM               0x00000001
3260 #define IGB_TX_FLAGS_VLAN               0x00000002
3261 #define IGB_TX_FLAGS_TSO                0x00000004
3262 #define IGB_TX_FLAGS_IPV4               0x00000008
3263 #define IGB_TX_FLAGS_TSTAMP             0x00000010
3264 #define IGB_TX_FLAGS_VLAN_MASK  0xffff0000
3265 #define IGB_TX_FLAGS_VLAN_SHIFT 16
3266
3267 static inline int igb_tso_adv(struct igb_ring *tx_ring,
3268                               struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3269 {
3270         struct e1000_adv_tx_context_desc *context_desc;
3271         unsigned int i;
3272         int err;
3273         struct igb_buffer *buffer_info;
3274         u32 info = 0, tu_cmd = 0;
3275         u32 mss_l4len_idx, l4len;
3276         *hdr_len = 0;
3277
3278         if (skb_header_cloned(skb)) {
3279                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3280                 if (err)
3281                         return err;
3282         }
3283
3284         l4len = tcp_hdrlen(skb);
3285         *hdr_len += l4len;
3286
3287         if (skb->protocol == htons(ETH_P_IP)) {
3288                 struct iphdr *iph = ip_hdr(skb);
3289                 iph->tot_len = 0;
3290                 iph->check = 0;
3291                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3292                                                          iph->daddr, 0,
3293                                                          IPPROTO_TCP,
3294                                                          0);
3295         } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3296                 ipv6_hdr(skb)->payload_len = 0;
3297                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3298                                                        &ipv6_hdr(skb)->daddr,
3299                                                        0, IPPROTO_TCP, 0);
3300         }
3301
3302         i = tx_ring->next_to_use;
3303
3304         buffer_info = &tx_ring->buffer_info[i];
3305         context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3306         /* VLAN MACLEN IPLEN */
3307         if (tx_flags & IGB_TX_FLAGS_VLAN)
3308                 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3309         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3310         *hdr_len += skb_network_offset(skb);
3311         info |= skb_network_header_len(skb);
3312         *hdr_len += skb_network_header_len(skb);
3313         context_desc->vlan_macip_lens = cpu_to_le32(info);
3314
3315         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3316         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3317
3318         if (skb->protocol == htons(ETH_P_IP))
3319                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3320         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3321
3322         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3323
3324         /* MSS L4LEN IDX */
3325         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3326         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3327
3328         /* For 82575, context index must be unique per ring. */
3329         if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3330                 mss_l4len_idx |= tx_ring->reg_idx << 4;
3331
3332         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3333         context_desc->seqnum_seed = 0;
3334
3335         buffer_info->time_stamp = jiffies;
3336         buffer_info->next_to_watch = i;
3337         buffer_info->dma = 0;
3338         i++;
3339         if (i == tx_ring->count)
3340                 i = 0;
3341
3342         tx_ring->next_to_use = i;
3343
3344         return true;
3345 }
3346
3347 static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
3348                                    struct sk_buff *skb, u32 tx_flags)
3349 {
3350         struct e1000_adv_tx_context_desc *context_desc;
3351         struct pci_dev *pdev = tx_ring->pdev;
3352         struct igb_buffer *buffer_info;
3353         u32 info = 0, tu_cmd = 0;
3354         unsigned int i;
3355
3356         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3357             (tx_flags & IGB_TX_FLAGS_VLAN)) {
3358                 i = tx_ring->next_to_use;
3359                 buffer_info = &tx_ring->buffer_info[i];
3360                 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3361
3362                 if (tx_flags & IGB_TX_FLAGS_VLAN)
3363                         info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3364                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3365                 if (skb->ip_summed == CHECKSUM_PARTIAL)
3366                         info |= skb_network_header_len(skb);
3367
3368                 context_desc->vlan_macip_lens = cpu_to_le32(info);
3369
3370                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3371
3372                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3373                         __be16 protocol;
3374
3375                         if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3376                                 const struct vlan_ethhdr *vhdr =
3377                                           (const struct vlan_ethhdr*)skb->data;
3378
3379                                 protocol = vhdr->h_vlan_encapsulated_proto;
3380                         } else {
3381                                 protocol = skb->protocol;
3382                         }
3383
3384                         switch (protocol) {
3385                         case cpu_to_be16(ETH_P_IP):
3386                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3387                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3388                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3389                                 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3390                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3391                                 break;
3392                         case cpu_to_be16(ETH_P_IPV6):
3393                                 /* XXX what about other V6 headers?? */
3394                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3395                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3396                                 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3397                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3398                                 break;
3399                         default:
3400                                 if (unlikely(net_ratelimit()))
3401                                         dev_warn(&pdev->dev,
3402                                             "partial checksum but proto=%x!\n",
3403                                             skb->protocol);
3404                                 break;
3405                         }
3406                 }
3407
3408                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3409                 context_desc->seqnum_seed = 0;
3410                 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3411                         context_desc->mss_l4len_idx =
3412                                 cpu_to_le32(tx_ring->reg_idx << 4);
3413
3414                 buffer_info->time_stamp = jiffies;
3415                 buffer_info->next_to_watch = i;
3416                 buffer_info->dma = 0;
3417
3418                 i++;
3419                 if (i == tx_ring->count)
3420                         i = 0;
3421                 tx_ring->next_to_use = i;
3422
3423                 return true;
3424         }
3425         return false;
3426 }
3427
3428 #define IGB_MAX_TXD_PWR 16
3429 #define IGB_MAX_DATA_PER_TXD    (1<<IGB_MAX_TXD_PWR)
3430
3431 static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
3432                                  unsigned int first)
3433 {
3434         struct igb_buffer *buffer_info;
3435         struct pci_dev *pdev = tx_ring->pdev;
3436         unsigned int len = skb_headlen(skb);
3437         unsigned int count = 0, i;
3438         unsigned int f;
3439         dma_addr_t *map;
3440
3441         i = tx_ring->next_to_use;
3442
3443         if (skb_dma_map(&pdev->dev, skb, DMA_TO_DEVICE)) {
3444                 dev_err(&pdev->dev, "TX DMA map failed\n");
3445                 return 0;
3446         }
3447
3448         map = skb_shinfo(skb)->dma_maps;
3449
3450         buffer_info = &tx_ring->buffer_info[i];
3451         BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3452         buffer_info->length = len;
3453         /* set time_stamp *before* dma to help avoid a possible race */
3454         buffer_info->time_stamp = jiffies;
3455         buffer_info->next_to_watch = i;
3456         buffer_info->dma = skb_shinfo(skb)->dma_head;
3457
3458         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3459                 struct skb_frag_struct *frag;
3460
3461                 i++;
3462                 if (i == tx_ring->count)
3463                         i = 0;
3464
3465                 frag = &skb_shinfo(skb)->frags[f];
3466                 len = frag->size;
3467
3468                 buffer_info = &tx_ring->buffer_info[i];
3469                 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3470                 buffer_info->length = len;
3471                 buffer_info->time_stamp = jiffies;
3472                 buffer_info->next_to_watch = i;
3473                 buffer_info->dma = map[count];
3474                 count++;
3475         }
3476
3477         tx_ring->buffer_info[i].skb = skb;
3478         tx_ring->buffer_info[first].next_to_watch = i;
3479
3480         return count + 1;
3481 }
3482
3483 static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
3484                                     int tx_flags, int count, u32 paylen,
3485                                     u8 hdr_len)
3486 {
3487         union e1000_adv_tx_desc *tx_desc = NULL;
3488         struct igb_buffer *buffer_info;
3489         u32 olinfo_status = 0, cmd_type_len;
3490         unsigned int i;
3491
3492         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3493                         E1000_ADVTXD_DCMD_DEXT);
3494
3495         if (tx_flags & IGB_TX_FLAGS_VLAN)
3496                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3497
3498         if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3499                 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3500
3501         if (tx_flags & IGB_TX_FLAGS_TSO) {
3502                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3503
3504                 /* insert tcp checksum */
3505                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3506
3507                 /* insert ip checksum */
3508                 if (tx_flags & IGB_TX_FLAGS_IPV4)
3509                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3510
3511         } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3512                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3513         }
3514
3515         if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
3516             (tx_flags & (IGB_TX_FLAGS_CSUM |
3517                          IGB_TX_FLAGS_TSO |
3518                          IGB_TX_FLAGS_VLAN)))
3519                 olinfo_status |= tx_ring->reg_idx << 4;
3520
3521         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3522
3523         i = tx_ring->next_to_use;
3524         while (count--) {
3525                 buffer_info = &tx_ring->buffer_info[i];
3526                 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3527                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3528                 tx_desc->read.cmd_type_len =
3529                         cpu_to_le32(cmd_type_len | buffer_info->length);
3530                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3531                 i++;
3532                 if (i == tx_ring->count)
3533                         i = 0;
3534         }
3535
3536         tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
3537         /* Force memory writes to complete before letting h/w
3538          * know there are new descriptors to fetch.  (Only
3539          * applicable for weak-ordered memory model archs,
3540          * such as IA-64). */
3541         wmb();
3542
3543         tx_ring->next_to_use = i;
3544         writel(i, tx_ring->tail);
3545         /* we need this if more than one processor can write to our tail
3546          * at a time, it syncronizes IO on IA64/Altix systems */
3547         mmiowb();
3548 }
3549
3550 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3551 {
3552         struct net_device *netdev = tx_ring->netdev;
3553
3554         netif_stop_subqueue(netdev, tx_ring->queue_index);
3555
3556         /* Herbert's original patch had:
3557          *  smp_mb__after_netif_stop_queue();
3558          * but since that doesn't exist yet, just open code it. */
3559         smp_mb();
3560
3561         /* We need to check again in a case another CPU has just
3562          * made room available. */
3563         if (igb_desc_unused(tx_ring) < size)
3564                 return -EBUSY;
3565
3566         /* A reprieve! */
3567         netif_wake_subqueue(netdev, tx_ring->queue_index);
3568         tx_ring->tx_stats.restart_queue++;
3569         return 0;
3570 }
3571
3572 static int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3573 {
3574         if (igb_desc_unused(tx_ring) >= size)
3575                 return 0;
3576         return __igb_maybe_stop_tx(tx_ring, size);
3577 }
3578
3579 netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
3580                                     struct igb_ring *tx_ring)
3581 {
3582         struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
3583         unsigned int first;
3584         unsigned int tx_flags = 0;
3585         u8 hdr_len = 0;
3586         int count = 0;
3587         int tso = 0;
3588         union skb_shared_tx *shtx = skb_tx(skb);
3589
3590         /* need: 1 descriptor per page,
3591          *       + 2 desc gap to keep tail from touching head,
3592          *       + 1 desc for skb->data,
3593          *       + 1 desc for context descriptor,
3594          * otherwise try next time */
3595         if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3596                 /* this is a hard error */
3597                 return NETDEV_TX_BUSY;
3598         }
3599
3600         if (unlikely(shtx->hardware)) {
3601                 shtx->in_progress = 1;
3602                 tx_flags |= IGB_TX_FLAGS_TSTAMP;
3603         }
3604
3605         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3606                 tx_flags |= IGB_TX_FLAGS_VLAN;
3607                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3608         }
3609
3610         if (skb->protocol == htons(ETH_P_IP))
3611                 tx_flags |= IGB_TX_FLAGS_IPV4;
3612
3613         first = tx_ring->next_to_use;
3614         if (skb_is_gso(skb)) {
3615                 tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
3616                 if (tso < 0) {
3617                         dev_kfree_skb_any(skb);
3618                         return NETDEV_TX_OK;
3619                 }
3620         }
3621
3622         if (tso)
3623                 tx_flags |= IGB_TX_FLAGS_TSO;
3624         else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
3625                  (skb->ip_summed == CHECKSUM_PARTIAL))
3626                 tx_flags |= IGB_TX_FLAGS_CSUM;
3627
3628         /*
3629          * count reflects descriptors mapped, if 0 then mapping error
3630          * has occured and we need to rewind the descriptor queue
3631          */
3632         count = igb_tx_map_adv(tx_ring, skb, first);
3633
3634         if (!count) {
3635                 dev_kfree_skb_any(skb);
3636                 tx_ring->buffer_info[first].time_stamp = 0;
3637                 tx_ring->next_to_use = first;
3638                 return NETDEV_TX_OK;
3639         }
3640
3641         igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
3642
3643         /* Make sure there is space in the ring for the next send. */
3644         igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
3645
3646         return NETDEV_TX_OK;
3647 }
3648
3649 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
3650                                       struct net_device *netdev)
3651 {
3652         struct igb_adapter *adapter = netdev_priv(netdev);
3653         struct igb_ring *tx_ring;
3654         int r_idx = 0;
3655
3656         if (test_bit(__IGB_DOWN, &adapter->state)) {
3657                 dev_kfree_skb_any(skb);
3658                 return NETDEV_TX_OK;
3659         }
3660
3661         if (skb->len <= 0) {
3662                 dev_kfree_skb_any(skb);
3663                 return NETDEV_TX_OK;
3664         }
3665
3666         r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3667         tx_ring = adapter->multi_tx_table[r_idx];
3668
3669         /* This goes back to the question of how to logically map a tx queue
3670          * to a flow.  Right now, performance is impacted slightly negatively
3671          * if using multiple tx queues.  If the stack breaks away from a
3672          * single qdisc implementation, we can look at this again. */
3673         return igb_xmit_frame_ring_adv(skb, tx_ring);
3674 }
3675
3676 /**
3677  * igb_tx_timeout - Respond to a Tx Hang
3678  * @netdev: network interface device structure
3679  **/
3680 static void igb_tx_timeout(struct net_device *netdev)
3681 {
3682         struct igb_adapter *adapter = netdev_priv(netdev);
3683         struct e1000_hw *hw = &adapter->hw;
3684
3685         /* Do the reset outside of interrupt context */
3686         adapter->tx_timeout_count++;
3687
3688         schedule_work(&adapter->reset_task);
3689         wr32(E1000_EICS,
3690              (adapter->eims_enable_mask & ~adapter->eims_other));
3691 }
3692
3693 static void igb_reset_task(struct work_struct *work)
3694 {
3695         struct igb_adapter *adapter;
3696         adapter = container_of(work, struct igb_adapter, reset_task);
3697
3698         igb_reinit_locked(adapter);
3699 }
3700
3701 /**
3702  * igb_get_stats - Get System Network Statistics
3703  * @netdev: network interface device structure
3704  *
3705  * Returns the address of the device statistics structure.
3706  * The statistics are actually updated from the timer callback.
3707  **/
3708 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3709 {
3710         /* only return the current stats */
3711         return &netdev->stats;
3712 }
3713
3714 /**
3715  * igb_change_mtu - Change the Maximum Transfer Unit
3716  * @netdev: network interface device structure
3717  * @new_mtu: new value for maximum frame size
3718  *
3719  * Returns 0 on success, negative on failure
3720  **/
3721 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3722 {
3723         struct igb_adapter *adapter = netdev_priv(netdev);
3724         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3725         u32 rx_buffer_len, i;
3726
3727         if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3728             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3729                 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3730                 return -EINVAL;
3731         }
3732
3733         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3734                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3735                 return -EINVAL;
3736         }
3737
3738         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3739                 msleep(1);
3740
3741         /* igb_down has a dependency on max_frame_size */
3742         adapter->max_frame_size = max_frame;
3743         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3744          * means we reserve 2 more, this pushes us to allocate from the next
3745          * larger slab size.
3746          * i.e. RXBUFFER_2048 --> size-4096 slab
3747          */
3748
3749         if (max_frame <= IGB_RXBUFFER_1024)
3750                 rx_buffer_len = IGB_RXBUFFER_1024;
3751         else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
3752                 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3753         else
3754                 rx_buffer_len = IGB_RXBUFFER_128;
3755
3756         if (netif_running(netdev))
3757                 igb_down(adapter);
3758
3759         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3760                  netdev->mtu, new_mtu);
3761         netdev->mtu = new_mtu;
3762
3763         for (i = 0; i < adapter->num_rx_queues; i++)
3764                 adapter->rx_ring[i].rx_buffer_len = rx_buffer_len;
3765
3766         if (netif_running(netdev))
3767                 igb_up(adapter);
3768         else
3769                 igb_reset(adapter);
3770
3771         clear_bit(__IGB_RESETTING, &adapter->state);
3772
3773         return 0;
3774 }
3775
3776 /**
3777  * igb_update_stats - Update the board statistics counters
3778  * @adapter: board private structure
3779  **/
3780
3781 void igb_update_stats(struct igb_adapter *adapter)
3782 {
3783         struct net_device *netdev = adapter->netdev;
3784         struct e1000_hw *hw = &adapter->hw;
3785         struct pci_dev *pdev = adapter->pdev;
3786         u32 rnbc;
3787         u16 phy_tmp;
3788         int i;
3789         u64 bytes, packets;
3790
3791 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3792
3793         /*
3794          * Prevent stats update while adapter is being reset, or if the pci
3795          * connection is down.
3796          */
3797         if (adapter->link_speed == 0)
3798                 return;
3799         if (pci_channel_offline(pdev))
3800                 return;
3801
3802         bytes = 0;
3803         packets = 0;
3804         for (i = 0; i < adapter->num_rx_queues; i++) {
3805                 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3806                 adapter->rx_ring[i].rx_stats.drops += rqdpc_tmp;
3807                 netdev->stats.rx_fifo_errors += rqdpc_tmp;
3808                 bytes += adapter->rx_ring[i].rx_stats.bytes;
3809                 packets += adapter->rx_ring[i].rx_stats.packets;
3810         }
3811
3812         netdev->stats.rx_bytes = bytes;
3813         netdev->stats.rx_packets = packets;
3814
3815         bytes = 0;
3816         packets = 0;
3817         for (i = 0; i < adapter->num_tx_queues; i++) {
3818                 bytes += adapter->tx_ring[i].tx_stats.bytes;
3819                 packets += adapter->tx_ring[i].tx_stats.packets;
3820         }
3821         netdev->stats.tx_bytes = bytes;
3822         netdev->stats.tx_packets = packets;
3823
3824         /* read stats registers */
3825         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3826         adapter->stats.gprc += rd32(E1000_GPRC);
3827         adapter->stats.gorc += rd32(E1000_GORCL);
3828         rd32(E1000_GORCH); /* clear GORCL */
3829         adapter->stats.bprc += rd32(E1000_BPRC);
3830         adapter->stats.mprc += rd32(E1000_MPRC);
3831         adapter->stats.roc += rd32(E1000_ROC);
3832
3833         adapter->stats.prc64 += rd32(E1000_PRC64);
3834         adapter->stats.prc127 += rd32(E1000_PRC127);
3835         adapter->stats.prc255 += rd32(E1000_PRC255);
3836         adapter->stats.prc511 += rd32(E1000_PRC511);
3837         adapter->stats.prc1023 += rd32(E1000_PRC1023);
3838         adapter->stats.prc1522 += rd32(E1000_PRC1522);
3839         adapter->stats.symerrs += rd32(E1000_SYMERRS);
3840         adapter->stats.sec += rd32(E1000_SEC);
3841
3842         adapter->stats.mpc += rd32(E1000_MPC);
3843         adapter->stats.scc += rd32(E1000_SCC);
3844         adapter->stats.ecol += rd32(E1000_ECOL);
3845         adapter->stats.mcc += rd32(E1000_MCC);
3846         adapter->stats.latecol += rd32(E1000_LATECOL);
3847         adapter->stats.dc += rd32(E1000_DC);
3848         adapter->stats.rlec += rd32(E1000_RLEC);
3849         adapter->stats.xonrxc += rd32(E1000_XONRXC);
3850         adapter->stats.xontxc += rd32(E1000_XONTXC);
3851         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3852         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3853         adapter->stats.fcruc += rd32(E1000_FCRUC);
3854         adapter->stats.gptc += rd32(E1000_GPTC);
3855         adapter->stats.gotc += rd32(E1000_GOTCL);
3856         rd32(E1000_GOTCH); /* clear GOTCL */
3857         rnbc = rd32(E1000_RNBC);
3858         adapter->stats.rnbc += rnbc;
3859         netdev->stats.rx_fifo_errors += rnbc;
3860         adapter->stats.ruc += rd32(E1000_RUC);
3861         adapter->stats.rfc += rd32(E1000_RFC);
3862         adapter->stats.rjc += rd32(E1000_RJC);
3863         adapter->stats.tor += rd32(E1000_TORH);
3864         adapter->stats.tot += rd32(E1000_TOTH);
3865         adapter->stats.tpr += rd32(E1000_TPR);
3866
3867         adapter->stats.ptc64 += rd32(E1000_PTC64);
3868         adapter->stats.ptc127 += rd32(E1000_PTC127);
3869         adapter->stats.ptc255 += rd32(E1000_PTC255);
3870         adapter->stats.ptc511 += rd32(E1000_PTC511);
3871         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3872         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3873
3874         adapter->stats.mptc += rd32(E1000_MPTC);
3875         adapter->stats.bptc += rd32(E1000_BPTC);
3876
3877         /* used for adaptive IFS */
3878
3879         hw->mac.tx_packet_delta = rd32(E1000_TPT);
3880         adapter->stats.tpt += hw->mac.tx_packet_delta;
3881         hw->mac.collision_delta = rd32(E1000_COLC);
3882         adapter->stats.colc += hw->mac.collision_delta;
3883
3884         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3885         adapter->stats.rxerrc += rd32(E1000_RXERRC);
3886         adapter->stats.tncrs += rd32(E1000_TNCRS);
3887         adapter->stats.tsctc += rd32(E1000_TSCTC);
3888         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3889
3890         adapter->stats.iac += rd32(E1000_IAC);
3891         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3892         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3893         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3894         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3895         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3896         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3897         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3898         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3899
3900         /* Fill out the OS statistics structure */
3901         netdev->stats.multicast = adapter->stats.mprc;
3902         netdev->stats.collisions = adapter->stats.colc;
3903
3904         /* Rx Errors */
3905
3906         /* RLEC on some newer hardware can be incorrect so build
3907          * our own version based on RUC and ROC */
3908         netdev->stats.rx_errors = adapter->stats.rxerrc +
3909                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3910                 adapter->stats.ruc + adapter->stats.roc +
3911                 adapter->stats.cexterr;
3912         netdev->stats.rx_length_errors = adapter->stats.ruc +
3913                                               adapter->stats.roc;
3914         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3915         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3916         netdev->stats.rx_missed_errors = adapter->stats.mpc;
3917
3918         /* Tx Errors */
3919         netdev->stats.tx_errors = adapter->stats.ecol +
3920                                        adapter->stats.latecol;
3921         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3922         netdev->stats.tx_window_errors = adapter->stats.latecol;
3923         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3924
3925         /* Tx Dropped needs to be maintained elsewhere */
3926
3927         /* Phy Stats */
3928         if (hw->phy.media_type == e1000_media_type_copper) {
3929                 if ((adapter->link_speed == SPEED_1000) &&
3930                    (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3931                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3932                         adapter->phy_stats.idle_errors += phy_tmp;
3933                 }
3934         }
3935
3936         /* Management Stats */
3937         adapter->stats.mgptc += rd32(E1000_MGTPTC);
3938         adapter->stats.mgprc += rd32(E1000_MGTPRC);
3939         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3940 }
3941
3942 static irqreturn_t igb_msix_other(int irq, void *data)
3943 {
3944         struct igb_adapter *adapter = data;
3945         struct e1000_hw *hw = &adapter->hw;
3946         u32 icr = rd32(E1000_ICR);
3947         /* reading ICR causes bit 31 of EICR to be cleared */
3948
3949         if (icr & E1000_ICR_DOUTSYNC) {
3950                 /* HW is reporting DMA is out of sync */
3951                 adapter->stats.doosync++;
3952         }
3953
3954         /* Check for a mailbox event */
3955         if (icr & E1000_ICR_VMMB)
3956                 igb_msg_task(adapter);
3957
3958         if (icr & E1000_ICR_LSC) {
3959                 hw->mac.get_link_status = 1;
3960                 /* guard against interrupt when we're going down */
3961                 if (!test_bit(__IGB_DOWN, &adapter->state))
3962                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3963         }
3964
3965         if (adapter->vfs_allocated_count)
3966                 wr32(E1000_IMS, E1000_IMS_LSC |
3967                                 E1000_IMS_VMMB |
3968                                 E1000_IMS_DOUTSYNC);
3969         else
3970                 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
3971         wr32(E1000_EIMS, adapter->eims_other);
3972
3973         return IRQ_HANDLED;
3974 }
3975
3976 static void igb_write_itr(struct igb_q_vector *q_vector)
3977 {
3978         u32 itr_val = q_vector->itr_val & 0x7FFC;
3979
3980         if (!q_vector->set_itr)
3981                 return;
3982
3983         if (!itr_val)
3984                 itr_val = 0x4;
3985
3986         if (q_vector->itr_shift)
3987                 itr_val |= itr_val << q_vector->itr_shift;
3988         else
3989                 itr_val |= 0x8000000;
3990
3991         writel(itr_val, q_vector->itr_register);
3992         q_vector->set_itr = 0;
3993 }
3994
3995 static irqreturn_t igb_msix_ring(int irq, void *data)
3996 {
3997         struct igb_q_vector *q_vector = data;
3998
3999         /* Write the ITR value calculated from the previous interrupt. */
4000         igb_write_itr(q_vector);
4001
4002         napi_schedule(&q_vector->napi);
4003
4004         return IRQ_HANDLED;
4005 }
4006
4007 #ifdef CONFIG_IGB_DCA
4008 static void igb_update_dca(struct igb_q_vector *q_vector)
4009 {
4010         struct igb_adapter *adapter = q_vector->adapter;
4011         struct e1000_hw *hw = &adapter->hw;
4012         int cpu = get_cpu();
4013
4014         if (q_vector->cpu == cpu)
4015                 goto out_no_update;
4016
4017         if (q_vector->tx_ring) {
4018                 int q = q_vector->tx_ring->reg_idx;
4019                 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4020                 if (hw->mac.type == e1000_82575) {
4021                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4022                         dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4023                 } else {
4024                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4025                         dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4026                                       E1000_DCA_TXCTRL_CPUID_SHIFT;
4027                 }
4028                 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4029                 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4030         }
4031         if (q_vector->rx_ring) {
4032                 int q = q_vector->rx_ring->reg_idx;
4033                 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4034                 if (hw->mac.type == e1000_82575) {
4035                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
4036                         dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4037                 } else {
4038                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4039                         dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4040                                       E1000_DCA_RXCTRL_CPUID_SHIFT;
4041                 }
4042                 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4043                 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4044                 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4045                 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
4046         }
4047         q_vector->cpu = cpu;
4048 out_no_update:
4049         put_cpu();
4050 }
4051
4052 static void igb_setup_dca(struct igb_adapter *adapter)
4053 {
4054         struct e1000_hw *hw = &adapter->hw;
4055         int i;
4056
4057         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
4058                 return;
4059
4060         /* Always use CB2 mode, difference is masked in the CB driver. */
4061         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4062
4063         for (i = 0; i < adapter->num_q_vectors; i++) {
4064                 struct igb_q_vector *q_vector = adapter->q_vector[i];
4065                 q_vector->cpu = -1;
4066                 igb_update_dca(q_vector);
4067         }
4068 }
4069
4070 static int __igb_notify_dca(struct device *dev, void *data)
4071 {
4072         struct net_device *netdev = dev_get_drvdata(dev);
4073         struct igb_adapter *adapter = netdev_priv(netdev);
4074         struct e1000_hw *hw = &adapter->hw;
4075         unsigned long event = *(unsigned long *)data;
4076
4077         switch (event) {
4078         case DCA_PROVIDER_ADD:
4079                 /* if already enabled, don't do it again */
4080                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
4081                         break;
4082                 /* Always use CB2 mode, difference is masked
4083                  * in the CB driver. */
4084                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4085                 if (dca_add_requester(dev) == 0) {
4086                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
4087                         dev_info(&adapter->pdev->dev, "DCA enabled\n");
4088                         igb_setup_dca(adapter);
4089                         break;
4090                 }
4091                 /* Fall Through since DCA is disabled. */
4092         case DCA_PROVIDER_REMOVE:
4093                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
4094                         /* without this a class_device is left
4095                          * hanging around in the sysfs model */
4096                         dca_remove_requester(dev);
4097                         dev_info(&adapter->pdev->dev, "DCA disabled\n");
4098                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
4099                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
4100                 }
4101                 break;
4102         }
4103
4104         return 0;
4105 }
4106
4107 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4108                           void *p)
4109 {
4110         int ret_val;
4111
4112         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4113                                          __igb_notify_dca);
4114
4115         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4116 }
4117 #endif /* CONFIG_IGB_DCA */
4118
4119 static void igb_ping_all_vfs(struct igb_adapter *adapter)
4120 {
4121         struct e1000_hw *hw = &adapter->hw;
4122         u32 ping;
4123         int i;
4124
4125         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4126                 ping = E1000_PF_CONTROL_MSG;
4127                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4128                         ping |= E1000_VT_MSGTYPE_CTS;
4129                 igb_write_mbx(hw, &ping, 1, i);
4130         }
4131 }
4132
4133 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4134 {
4135         struct e1000_hw *hw = &adapter->hw;
4136         u32 vmolr = rd32(E1000_VMOLR(vf));
4137         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4138
4139         vf_data->flags |= ~(IGB_VF_FLAG_UNI_PROMISC |
4140                             IGB_VF_FLAG_MULTI_PROMISC);
4141         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4142
4143         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4144                 vmolr |= E1000_VMOLR_MPME;
4145                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4146         } else {
4147                 /*
4148                  * if we have hashes and we are clearing a multicast promisc
4149                  * flag we need to write the hashes to the MTA as this step
4150                  * was previously skipped
4151                  */
4152                 if (vf_data->num_vf_mc_hashes > 30) {
4153                         vmolr |= E1000_VMOLR_MPME;
4154                 } else if (vf_data->num_vf_mc_hashes) {
4155                         int j;
4156                         vmolr |= E1000_VMOLR_ROMPE;
4157                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4158                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4159                 }
4160         }
4161
4162         wr32(E1000_VMOLR(vf), vmolr);
4163
4164         /* there are flags left unprocessed, likely not supported */
4165         if (*msgbuf & E1000_VT_MSGINFO_MASK)
4166                 return -EINVAL;
4167
4168         return 0;
4169
4170 }
4171
4172 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4173                                   u32 *msgbuf, u32 vf)
4174 {
4175         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4176         u16 *hash_list = (u16 *)&msgbuf[1];
4177         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4178         int i;
4179
4180         /* salt away the number of multicast addresses assigned
4181          * to this VF for later use to restore when the PF multi cast
4182          * list changes
4183          */
4184         vf_data->num_vf_mc_hashes = n;
4185
4186         /* only up to 30 hash values supported */
4187         if (n > 30)
4188                 n = 30;
4189
4190         /* store the hashes for later use */
4191         for (i = 0; i < n; i++)
4192                 vf_data->vf_mc_hashes[i] = hash_list[i];
4193
4194         /* Flush and reset the mta with the new values */
4195         igb_set_rx_mode(adapter->netdev);
4196
4197         return 0;
4198 }
4199
4200 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4201 {
4202         struct e1000_hw *hw = &adapter->hw;
4203         struct vf_data_storage *vf_data;
4204         int i, j;
4205
4206         for (i = 0; i < adapter->vfs_allocated_count; i++) {
4207                 u32 vmolr = rd32(E1000_VMOLR(i));
4208                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4209
4210                 vf_data = &adapter->vf_data[i];
4211
4212                 if ((vf_data->num_vf_mc_hashes > 30) ||
4213                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4214                         vmolr |= E1000_VMOLR_MPME;
4215                 } else if (vf_data->num_vf_mc_hashes) {
4216                         vmolr |= E1000_VMOLR_ROMPE;
4217                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4218                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4219                 }
4220                 wr32(E1000_VMOLR(i), vmolr);
4221         }
4222 }
4223
4224 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4225 {
4226         struct e1000_hw *hw = &adapter->hw;
4227         u32 pool_mask, reg, vid;
4228         int i;
4229
4230         pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4231
4232         /* Find the vlan filter for this id */
4233         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4234                 reg = rd32(E1000_VLVF(i));
4235
4236                 /* remove the vf from the pool */
4237                 reg &= ~pool_mask;
4238
4239                 /* if pool is empty then remove entry from vfta */
4240                 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4241                     (reg & E1000_VLVF_VLANID_ENABLE)) {
4242                         reg = 0;
4243                         vid = reg & E1000_VLVF_VLANID_MASK;
4244                         igb_vfta_set(hw, vid, false);
4245                 }
4246
4247                 wr32(E1000_VLVF(i), reg);
4248         }
4249
4250         adapter->vf_data[vf].vlans_enabled = 0;
4251 }
4252
4253 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4254 {
4255         struct e1000_hw *hw = &adapter->hw;
4256         u32 reg, i;
4257
4258         /* The vlvf table only exists on 82576 hardware and newer */
4259         if (hw->mac.type < e1000_82576)
4260                 return -1;
4261
4262         /* we only need to do this if VMDq is enabled */
4263         if (!adapter->vfs_allocated_count)
4264                 return -1;
4265
4266         /* Find the vlan filter for this id */
4267         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4268                 reg = rd32(E1000_VLVF(i));
4269                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
4270                     vid == (reg & E1000_VLVF_VLANID_MASK))
4271                         break;
4272         }
4273
4274         if (add) {
4275                 if (i == E1000_VLVF_ARRAY_SIZE) {
4276                         /* Did not find a matching VLAN ID entry that was
4277                          * enabled.  Search for a free filter entry, i.e.
4278                          * one without the enable bit set
4279                          */
4280                         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4281                                 reg = rd32(E1000_VLVF(i));
4282                                 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4283                                         break;
4284                         }
4285                 }
4286                 if (i < E1000_VLVF_ARRAY_SIZE) {
4287                         /* Found an enabled/available entry */
4288                         reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4289
4290                         /* if !enabled we need to set this up in vfta */
4291                         if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
4292                                 /* add VID to filter table */
4293                                 igb_vfta_set(hw, vid, true);
4294                                 reg |= E1000_VLVF_VLANID_ENABLE;
4295                         }
4296                         reg &= ~E1000_VLVF_VLANID_MASK;
4297                         reg |= vid;
4298                         wr32(E1000_VLVF(i), reg);
4299
4300                         /* do not modify RLPML for PF devices */
4301                         if (vf >= adapter->vfs_allocated_count)
4302                                 return 0;
4303
4304                         if (!adapter->vf_data[vf].vlans_enabled) {
4305                                 u32 size;
4306                                 reg = rd32(E1000_VMOLR(vf));
4307                                 size = reg & E1000_VMOLR_RLPML_MASK;
4308                                 size += 4;
4309                                 reg &= ~E1000_VMOLR_RLPML_MASK;
4310                                 reg |= size;
4311                                 wr32(E1000_VMOLR(vf), reg);
4312                         }
4313
4314                         adapter->vf_data[vf].vlans_enabled++;
4315                         return 0;
4316                 }
4317         } else {
4318                 if (i < E1000_VLVF_ARRAY_SIZE) {
4319                         /* remove vf from the pool */
4320                         reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4321                         /* if pool is empty then remove entry from vfta */
4322                         if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4323                                 reg = 0;
4324                                 igb_vfta_set(hw, vid, false);
4325                         }
4326                         wr32(E1000_VLVF(i), reg);
4327
4328                         /* do not modify RLPML for PF devices */
4329                         if (vf >= adapter->vfs_allocated_count)
4330                                 return 0;
4331
4332                         adapter->vf_data[vf].vlans_enabled--;
4333                         if (!adapter->vf_data[vf].vlans_enabled) {
4334                                 u32 size;
4335                                 reg = rd32(E1000_VMOLR(vf));
4336                                 size = reg & E1000_VMOLR_RLPML_MASK;
4337                                 size -= 4;
4338                                 reg &= ~E1000_VMOLR_RLPML_MASK;
4339                                 reg |= size;
4340                                 wr32(E1000_VMOLR(vf), reg);
4341                         }
4342                         return 0;
4343                 }
4344         }
4345         return -1;
4346 }
4347
4348 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4349 {
4350         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4351         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4352
4353         return igb_vlvf_set(adapter, vid, add, vf);
4354 }
4355
4356 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4357 {
4358         /* clear all flags */
4359         adapter->vf_data[vf].flags = 0;
4360         adapter->vf_data[vf].last_nack = jiffies;
4361
4362         /* reset offloads to defaults */
4363         igb_set_vmolr(adapter, vf);
4364
4365         /* reset vlans for device */
4366         igb_clear_vf_vfta(adapter, vf);
4367
4368         /* reset multicast table array for vf */
4369         adapter->vf_data[vf].num_vf_mc_hashes = 0;
4370
4371         /* Flush and reset the mta with the new values */
4372         igb_set_rx_mode(adapter->netdev);
4373 }
4374
4375 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4376 {
4377         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4378
4379         /* generate a new mac address as we were hotplug removed/added */
4380         random_ether_addr(vf_mac);
4381
4382         /* process remaining reset events */
4383         igb_vf_reset(adapter, vf);
4384 }
4385
4386 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4387 {
4388         struct e1000_hw *hw = &adapter->hw;
4389         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4390         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4391         u32 reg, msgbuf[3];
4392         u8 *addr = (u8 *)(&msgbuf[1]);
4393
4394         /* process all the same items cleared in a function level reset */
4395         igb_vf_reset(adapter, vf);
4396
4397         /* set vf mac address */
4398         igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4399
4400         /* enable transmit and receive for vf */
4401         reg = rd32(E1000_VFTE);
4402         wr32(E1000_VFTE, reg | (1 << vf));
4403         reg = rd32(E1000_VFRE);
4404         wr32(E1000_VFRE, reg | (1 << vf));
4405
4406         adapter->vf_data[vf].flags = IGB_VF_FLAG_CTS;
4407
4408         /* reply to reset with ack and vf mac address */
4409         msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4410         memcpy(addr, vf_mac, 6);
4411         igb_write_mbx(hw, msgbuf, 3, vf);
4412 }
4413
4414 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4415 {
4416         unsigned char *addr = (char *)&msg[1];
4417         int err = -1;
4418
4419         if (is_valid_ether_addr(addr))
4420                 err = igb_set_vf_mac(adapter, vf, addr);
4421
4422         return err;
4423 }
4424
4425 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4426 {
4427         struct e1000_hw *hw = &adapter->hw;
4428         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4429         u32 msg = E1000_VT_MSGTYPE_NACK;
4430
4431         /* if device isn't clear to send it shouldn't be reading either */
4432         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
4433             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4434                 igb_write_mbx(hw, &msg, 1, vf);
4435                 vf_data->last_nack = jiffies;
4436         }
4437 }
4438
4439 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4440 {
4441         struct pci_dev *pdev = adapter->pdev;
4442         u32 msgbuf[E1000_VFMAILBOX_SIZE];
4443         struct e1000_hw *hw = &adapter->hw;
4444         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4445         s32 retval;
4446
4447         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4448
4449         if (retval)
4450                 dev_err(&pdev->dev, "Error receiving message from VF\n");
4451
4452         /* this is a message we already processed, do nothing */
4453         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4454                 return;
4455
4456         /*
4457          * until the vf completes a reset it should not be
4458          * allowed to start any configuration.
4459          */
4460
4461         if (msgbuf[0] == E1000_VF_RESET) {
4462                 igb_vf_reset_msg(adapter, vf);
4463                 return;
4464         }
4465
4466         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
4467                 msgbuf[0] = E1000_VT_MSGTYPE_NACK;
4468                 if (time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4469                         igb_write_mbx(hw, msgbuf, 1, vf);
4470                         vf_data->last_nack = jiffies;
4471                 }
4472                 return;
4473         }
4474
4475         switch ((msgbuf[0] & 0xFFFF)) {
4476         case E1000_VF_SET_MAC_ADDR:
4477                 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4478                 break;
4479         case E1000_VF_SET_PROMISC:
4480                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
4481                 break;
4482         case E1000_VF_SET_MULTICAST:
4483                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4484                 break;
4485         case E1000_VF_SET_LPE:
4486                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4487                 break;
4488         case E1000_VF_SET_VLAN:
4489                 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4490                 break;
4491         default:
4492                 dev_err(&adapter->pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4493                 retval = -1;
4494                 break;
4495         }
4496
4497         /* notify the VF of the results of what it sent us */
4498         if (retval)
4499                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4500         else
4501                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4502
4503         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4504
4505         igb_write_mbx(hw, msgbuf, 1, vf);
4506 }
4507
4508 static void igb_msg_task(struct igb_adapter *adapter)
4509 {
4510         struct e1000_hw *hw = &adapter->hw;
4511         u32 vf;
4512
4513         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4514                 /* process any reset requests */
4515                 if (!igb_check_for_rst(hw, vf))
4516                         igb_vf_reset_event(adapter, vf);
4517
4518                 /* process any messages pending */
4519                 if (!igb_check_for_msg(hw, vf))
4520                         igb_rcv_msg_from_vf(adapter, vf);
4521
4522                 /* process any acks */
4523                 if (!igb_check_for_ack(hw, vf))
4524                         igb_rcv_ack_from_vf(adapter, vf);
4525         }
4526 }
4527
4528 /**
4529  *  igb_set_uta - Set unicast filter table address
4530  *  @adapter: board private structure
4531  *
4532  *  The unicast table address is a register array of 32-bit registers.
4533  *  The table is meant to be used in a way similar to how the MTA is used
4534  *  however due to certain limitations in the hardware it is necessary to
4535  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
4536  *  enable bit to allow vlan tag stripping when promiscous mode is enabled
4537  **/
4538 static void igb_set_uta(struct igb_adapter *adapter)
4539 {
4540         struct e1000_hw *hw = &adapter->hw;
4541         int i;
4542
4543         /* The UTA table only exists on 82576 hardware and newer */
4544         if (hw->mac.type < e1000_82576)
4545                 return;
4546
4547         /* we only need to do this if VMDq is enabled */
4548         if (!adapter->vfs_allocated_count)
4549                 return;
4550
4551         for (i = 0; i < hw->mac.uta_reg_count; i++)
4552                 array_wr32(E1000_UTA, i, ~0);
4553 }
4554
4555 /**
4556  * igb_intr_msi - Interrupt Handler
4557  * @irq: interrupt number
4558  * @data: pointer to a network interface device structure
4559  **/
4560 static irqreturn_t igb_intr_msi(int irq, void *data)
4561 {
4562         struct igb_adapter *adapter = data;
4563         struct igb_q_vector *q_vector = adapter->q_vector[0];
4564         struct e1000_hw *hw = &adapter->hw;
4565         /* read ICR disables interrupts using IAM */
4566         u32 icr = rd32(E1000_ICR);
4567
4568         igb_write_itr(q_vector);
4569
4570         if (icr & E1000_ICR_DOUTSYNC) {
4571                 /* HW is reporting DMA is out of sync */
4572                 adapter->stats.doosync++;
4573         }
4574
4575         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4576                 hw->mac.get_link_status = 1;
4577                 if (!test_bit(__IGB_DOWN, &adapter->state))
4578                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
4579         }
4580
4581         napi_schedule(&q_vector->napi);
4582
4583         return IRQ_HANDLED;
4584 }
4585
4586 /**
4587  * igb_intr - Legacy Interrupt Handler
4588  * @irq: interrupt number
4589  * @data: pointer to a network interface device structure
4590  **/
4591 static irqreturn_t igb_intr(int irq, void *data)
4592 {
4593         struct igb_adapter *adapter = data;
4594         struct igb_q_vector *q_vector = adapter->q_vector[0];
4595         struct e1000_hw *hw = &adapter->hw;
4596         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
4597          * need for the IMC write */
4598         u32 icr = rd32(E1000_ICR);
4599         if (!icr)
4600                 return IRQ_NONE;  /* Not our interrupt */
4601
4602         igb_write_itr(q_vector);
4603
4604         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4605          * not set, then the adapter didn't send an interrupt */
4606         if (!(icr & E1000_ICR_INT_ASSERTED))
4607                 return IRQ_NONE;
4608
4609         if (icr & E1000_ICR_DOUTSYNC) {
4610                 /* HW is reporting DMA is out of sync */
4611                 adapter->stats.doosync++;
4612         }
4613
4614         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4615                 hw->mac.get_link_status = 1;
4616                 /* guard against interrupt when we're going down */
4617                 if (!test_bit(__IGB_DOWN, &adapter->state))
4618                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
4619         }
4620
4621         napi_schedule(&q_vector->napi);
4622
4623         return IRQ_HANDLED;
4624 }
4625
4626 static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
4627 {
4628         struct igb_adapter *adapter = q_vector->adapter;
4629         struct e1000_hw *hw = &adapter->hw;
4630
4631         if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
4632             (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
4633                 if (!adapter->msix_entries)
4634                         igb_set_itr(adapter);
4635                 else
4636                         igb_update_ring_itr(q_vector);
4637         }
4638
4639         if (!test_bit(__IGB_DOWN, &adapter->state)) {
4640                 if (adapter->msix_entries)
4641                         wr32(E1000_EIMS, q_vector->eims_value);
4642                 else
4643                         igb_irq_enable(adapter);
4644         }
4645 }
4646
4647 /**
4648  * igb_poll - NAPI Rx polling callback
4649  * @napi: napi polling structure
4650  * @budget: count of how many packets we should handle
4651  **/
4652 static int igb_poll(struct napi_struct *napi, int budget)
4653 {
4654         struct igb_q_vector *q_vector = container_of(napi,
4655                                                      struct igb_q_vector,
4656                                                      napi);
4657         int tx_clean_complete = 1, work_done = 0;
4658
4659 #ifdef CONFIG_IGB_DCA
4660         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
4661                 igb_update_dca(q_vector);
4662 #endif
4663         if (q_vector->tx_ring)
4664                 tx_clean_complete = igb_clean_tx_irq(q_vector);
4665
4666         if (q_vector->rx_ring)
4667                 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
4668
4669         if (!tx_clean_complete)
4670                 work_done = budget;
4671
4672         /* If not enough Rx work done, exit the polling mode */
4673         if (work_done < budget) {
4674                 napi_complete(napi);
4675                 igb_ring_irq_enable(q_vector);
4676         }
4677
4678         return work_done;
4679 }
4680
4681 /**
4682  * igb_systim_to_hwtstamp - convert system time value to hw timestamp
4683  * @adapter: board private structure
4684  * @shhwtstamps: timestamp structure to update
4685  * @regval: unsigned 64bit system time value.
4686  *
4687  * We need to convert the system time value stored in the RX/TXSTMP registers
4688  * into a hwtstamp which can be used by the upper level timestamping functions
4689  */
4690 static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
4691                                    struct skb_shared_hwtstamps *shhwtstamps,
4692                                    u64 regval)
4693 {
4694         u64 ns;
4695
4696         ns = timecounter_cyc2time(&adapter->clock, regval);
4697         timecompare_update(&adapter->compare, ns);
4698         memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
4699         shhwtstamps->hwtstamp = ns_to_ktime(ns);
4700         shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
4701 }
4702
4703 /**
4704  * igb_tx_hwtstamp - utility function which checks for TX time stamp
4705  * @q_vector: pointer to q_vector containing needed info
4706  * @skb: packet that was just sent
4707  *
4708  * If we were asked to do hardware stamping and such a time stamp is
4709  * available, then it must have been for this skb here because we only
4710  * allow only one such packet into the queue.
4711  */
4712 static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
4713 {
4714         struct igb_adapter *adapter = q_vector->adapter;
4715         union skb_shared_tx *shtx = skb_tx(skb);
4716         struct e1000_hw *hw = &adapter->hw;
4717         struct skb_shared_hwtstamps shhwtstamps;
4718         u64 regval;
4719
4720         /* if skb does not support hw timestamp or TX stamp not valid exit */
4721         if (likely(!shtx->hardware) ||
4722             !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
4723                 return;
4724
4725         regval = rd32(E1000_TXSTMPL);
4726         regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4727
4728         igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
4729         skb_tstamp_tx(skb, &shhwtstamps);
4730 }
4731
4732 /**
4733  * igb_clean_tx_irq - Reclaim resources after transmit completes
4734  * @q_vector: pointer to q_vector containing needed info
4735  * returns true if ring is completely cleaned
4736  **/
4737 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
4738 {
4739         struct igb_adapter *adapter = q_vector->adapter;
4740         struct igb_ring *tx_ring = q_vector->tx_ring;
4741         struct net_device *netdev = tx_ring->netdev;
4742         struct e1000_hw *hw = &adapter->hw;
4743         struct igb_buffer *buffer_info;
4744         struct sk_buff *skb;
4745         union e1000_adv_tx_desc *tx_desc, *eop_desc;
4746         unsigned int total_bytes = 0, total_packets = 0;
4747         unsigned int i, eop, count = 0;
4748         bool cleaned = false;
4749
4750         i = tx_ring->next_to_clean;
4751         eop = tx_ring->buffer_info[i].next_to_watch;
4752         eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4753
4754         while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4755                (count < tx_ring->count)) {
4756                 for (cleaned = false; !cleaned; count++) {
4757                         tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4758                         buffer_info = &tx_ring->buffer_info[i];
4759                         cleaned = (i == eop);
4760                         skb = buffer_info->skb;
4761
4762                         if (skb) {
4763                                 unsigned int segs, bytecount;
4764                                 /* gso_segs is currently only valid for tcp */
4765                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
4766                                 /* multiply data chunks by size of headers */
4767                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
4768                                             skb->len;
4769                                 total_packets += segs;
4770                                 total_bytes += bytecount;
4771
4772                                 igb_tx_hwtstamp(q_vector, skb);
4773                         }
4774
4775                         igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
4776                         tx_desc->wb.status = 0;
4777
4778                         i++;
4779                         if (i == tx_ring->count)
4780                                 i = 0;
4781                 }
4782                 eop = tx_ring->buffer_info[i].next_to_watch;
4783                 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4784         }
4785
4786         tx_ring->next_to_clean = i;
4787
4788         if (unlikely(count &&
4789                      netif_carrier_ok(netdev) &&
4790                      igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4791                 /* Make sure that anybody stopping the queue after this
4792                  * sees the new next_to_clean.
4793                  */
4794                 smp_mb();
4795                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
4796                     !(test_bit(__IGB_DOWN, &adapter->state))) {
4797                         netif_wake_subqueue(netdev, tx_ring->queue_index);
4798                         tx_ring->tx_stats.restart_queue++;
4799                 }
4800         }
4801
4802         if (tx_ring->detect_tx_hung) {
4803                 /* Detect a transmit hang in hardware, this serializes the
4804                  * check with the clearing of time_stamp and movement of i */
4805                 tx_ring->detect_tx_hung = false;
4806                 if (tx_ring->buffer_info[i].time_stamp &&
4807                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
4808                                (adapter->tx_timeout_factor * HZ))
4809                     && !(rd32(E1000_STATUS) &
4810                          E1000_STATUS_TXOFF)) {
4811
4812                         /* detected Tx unit hang */
4813                         dev_err(&tx_ring->pdev->dev,
4814                                 "Detected Tx Unit Hang\n"
4815                                 "  Tx Queue             <%d>\n"
4816                                 "  TDH                  <%x>\n"
4817                                 "  TDT                  <%x>\n"
4818                                 "  next_to_use          <%x>\n"
4819                                 "  next_to_clean        <%x>\n"
4820                                 "buffer_info[next_to_clean]\n"
4821                                 "  time_stamp           <%lx>\n"
4822                                 "  next_to_watch        <%x>\n"
4823                                 "  jiffies              <%lx>\n"
4824                                 "  desc.status          <%x>\n",
4825                                 tx_ring->queue_index,
4826                                 readl(tx_ring->head),
4827                                 readl(tx_ring->tail),
4828                                 tx_ring->next_to_use,
4829                                 tx_ring->next_to_clean,
4830                                 tx_ring->buffer_info[eop].time_stamp,
4831                                 eop,
4832                                 jiffies,
4833                                 eop_desc->wb.status);
4834                         netif_stop_subqueue(netdev, tx_ring->queue_index);
4835                 }
4836         }
4837         tx_ring->total_bytes += total_bytes;
4838         tx_ring->total_packets += total_packets;
4839         tx_ring->tx_stats.bytes += total_bytes;
4840         tx_ring->tx_stats.packets += total_packets;
4841         return (count < tx_ring->count);
4842 }
4843
4844 /**
4845  * igb_receive_skb - helper function to handle rx indications
4846  * @q_vector: structure containing interrupt and ring information
4847  * @skb: packet to send up
4848  * @vlan_tag: vlan tag for packet
4849  **/
4850 static void igb_receive_skb(struct igb_q_vector *q_vector,
4851                             struct sk_buff *skb,
4852                             u16 vlan_tag)
4853 {
4854         struct igb_adapter *adapter = q_vector->adapter;
4855
4856         if (vlan_tag)
4857                 vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
4858                                  vlan_tag, skb);
4859         else
4860                 napi_gro_receive(&q_vector->napi, skb);
4861 }
4862
4863 static inline void igb_rx_checksum_adv(struct igb_ring *ring,
4864                                        u32 status_err, struct sk_buff *skb)
4865 {
4866         skb->ip_summed = CHECKSUM_NONE;
4867
4868         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
4869         if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
4870              (status_err & E1000_RXD_STAT_IXSM))
4871                 return;
4872
4873         /* TCP/UDP checksum error bit is set */
4874         if (status_err &
4875             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
4876                 /*
4877                  * work around errata with sctp packets where the TCPE aka
4878                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
4879                  * packets, (aka let the stack check the crc32c)
4880                  */
4881                 if ((skb->len == 60) &&
4882                     (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM))
4883                         ring->rx_stats.csum_err++;
4884
4885                 /* let the stack verify checksum errors */
4886                 return;
4887         }
4888         /* It must be a TCP or UDP packet with a valid checksum */
4889         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
4890                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4891
4892         dev_dbg(&ring->pdev->dev, "cksum success: bits %08X\n", status_err);
4893 }
4894
4895 static inline void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
4896                                    struct sk_buff *skb)
4897 {
4898         struct igb_adapter *adapter = q_vector->adapter;
4899         struct e1000_hw *hw = &adapter->hw;
4900         u64 regval;
4901
4902         /*
4903          * If this bit is set, then the RX registers contain the time stamp. No
4904          * other packet will be time stamped until we read these registers, so
4905          * read the registers to make them available again. Because only one
4906          * packet can be time stamped at a time, we know that the register
4907          * values must belong to this one here and therefore we don't need to
4908          * compare any of the additional attributes stored for it.
4909          *
4910          * If nothing went wrong, then it should have a skb_shared_tx that we
4911          * can turn into a skb_shared_hwtstamps.
4912          */
4913         if (likely(!(staterr & E1000_RXDADV_STAT_TS)))
4914                 return;
4915         if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
4916                 return;
4917
4918         regval = rd32(E1000_RXSTMPL);
4919         regval |= (u64)rd32(E1000_RXSTMPH) << 32;
4920
4921         igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
4922 }
4923 static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
4924                                union e1000_adv_rx_desc *rx_desc)
4925 {
4926         /* HW will not DMA in data larger than the given buffer, even if it
4927          * parses the (NFS, of course) header to be larger.  In that case, it
4928          * fills the header buffer and spills the rest into the page.
4929          */
4930         u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
4931                    E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4932         if (hlen > rx_ring->rx_buffer_len)
4933                 hlen = rx_ring->rx_buffer_len;
4934         return hlen;
4935 }
4936
4937 static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
4938                                  int *work_done, int budget)
4939 {
4940         struct igb_ring *rx_ring = q_vector->rx_ring;
4941         struct net_device *netdev = rx_ring->netdev;
4942         struct pci_dev *pdev = rx_ring->pdev;
4943         union e1000_adv_rx_desc *rx_desc , *next_rxd;
4944         struct igb_buffer *buffer_info , *next_buffer;
4945         struct sk_buff *skb;
4946         bool cleaned = false;
4947         int cleaned_count = 0;
4948         unsigned int total_bytes = 0, total_packets = 0;
4949         unsigned int i;
4950         u32 staterr;
4951         u16 length;
4952         u16 vlan_tag;
4953
4954         i = rx_ring->next_to_clean;
4955         buffer_info = &rx_ring->buffer_info[i];
4956         rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4957         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4958
4959         while (staterr & E1000_RXD_STAT_DD) {
4960                 if (*work_done >= budget)
4961                         break;
4962                 (*work_done)++;
4963
4964                 skb = buffer_info->skb;
4965                 prefetch(skb->data - NET_IP_ALIGN);
4966                 buffer_info->skb = NULL;
4967
4968                 i++;
4969                 if (i == rx_ring->count)
4970                         i = 0;
4971                 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
4972                 prefetch(next_rxd);
4973                 next_buffer = &rx_ring->buffer_info[i];
4974
4975                 length = le16_to_cpu(rx_desc->wb.upper.length);
4976                 cleaned = true;
4977                 cleaned_count++;
4978
4979                 if (buffer_info->dma) {
4980                         pci_unmap_single(pdev, buffer_info->dma,
4981                                          rx_ring->rx_buffer_len,
4982                                          PCI_DMA_FROMDEVICE);
4983                         buffer_info->dma = 0;
4984                         if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
4985                                 skb_put(skb, length);
4986                                 goto send_up;
4987                         }
4988                         skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
4989                 }
4990
4991                 if (length) {
4992                         pci_unmap_page(pdev, buffer_info->page_dma,
4993                                        PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
4994                         buffer_info->page_dma = 0;
4995
4996                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
4997                                                 buffer_info->page,
4998                                                 buffer_info->page_offset,
4999                                                 length);
5000
5001                         if (page_count(buffer_info->page) != 1)
5002                                 buffer_info->page = NULL;
5003                         else
5004                                 get_page(buffer_info->page);
5005
5006                         skb->len += length;
5007                         skb->data_len += length;
5008
5009                         skb->truesize += length;
5010                 }
5011
5012                 if (!(staterr & E1000_RXD_STAT_EOP)) {
5013                         buffer_info->skb = next_buffer->skb;
5014                         buffer_info->dma = next_buffer->dma;
5015                         next_buffer->skb = skb;
5016                         next_buffer->dma = 0;
5017                         goto next_desc;
5018                 }
5019 send_up:
5020                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5021                         dev_kfree_skb_irq(skb);
5022                         goto next_desc;
5023                 }
5024
5025                 igb_rx_hwtstamp(q_vector, staterr, skb);
5026                 total_bytes += skb->len;
5027                 total_packets++;
5028
5029                 igb_rx_checksum_adv(rx_ring, staterr, skb);
5030
5031                 skb->protocol = eth_type_trans(skb, netdev);
5032                 skb_record_rx_queue(skb, rx_ring->queue_index);
5033
5034                 vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
5035                             le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
5036
5037                 igb_receive_skb(q_vector, skb, vlan_tag);
5038
5039 next_desc:
5040                 rx_desc->wb.upper.status_error = 0;
5041
5042                 /* return some buffers to hardware, one at a time is too slow */
5043                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
5044                         igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5045                         cleaned_count = 0;
5046                 }
5047
5048                 /* use prefetched values */
5049                 rx_desc = next_rxd;
5050                 buffer_info = next_buffer;
5051                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5052         }
5053
5054         rx_ring->next_to_clean = i;
5055         cleaned_count = igb_desc_unused(rx_ring);
5056
5057         if (cleaned_count)
5058                 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5059
5060         rx_ring->total_packets += total_packets;
5061         rx_ring->total_bytes += total_bytes;
5062         rx_ring->rx_stats.packets += total_packets;
5063         rx_ring->rx_stats.bytes += total_bytes;
5064         return cleaned;
5065 }
5066
5067 /**
5068  * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5069  * @adapter: address of board private structure
5070  **/
5071 void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
5072 {
5073         struct net_device *netdev = rx_ring->netdev;
5074         union e1000_adv_rx_desc *rx_desc;
5075         struct igb_buffer *buffer_info;
5076         struct sk_buff *skb;
5077         unsigned int i;
5078         int bufsz;
5079
5080         i = rx_ring->next_to_use;
5081         buffer_info = &rx_ring->buffer_info[i];
5082
5083         bufsz = rx_ring->rx_buffer_len;
5084
5085         while (cleaned_count--) {
5086                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5087
5088                 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
5089                         if (!buffer_info->page) {
5090                                 buffer_info->page = alloc_page(GFP_ATOMIC);
5091                                 if (!buffer_info->page) {
5092                                         rx_ring->rx_stats.alloc_failed++;
5093                                         goto no_buffers;
5094                                 }
5095                                 buffer_info->page_offset = 0;
5096                         } else {
5097                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
5098                         }
5099                         buffer_info->page_dma =
5100                                 pci_map_page(rx_ring->pdev, buffer_info->page,
5101                                              buffer_info->page_offset,
5102                                              PAGE_SIZE / 2,
5103                                              PCI_DMA_FROMDEVICE);
5104                 }
5105
5106                 if (!buffer_info->skb) {
5107                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
5108                         if (!skb) {
5109                                 rx_ring->rx_stats.alloc_failed++;
5110                                 goto no_buffers;
5111                         }
5112
5113                         buffer_info->skb = skb;
5114                         buffer_info->dma = pci_map_single(rx_ring->pdev,
5115                                                           skb->data,
5116                                                           bufsz,
5117                                                           PCI_DMA_FROMDEVICE);
5118                 }
5119                 /* Refresh the desc even if buffer_addrs didn't change because
5120                  * each write-back erases this info. */
5121                 if (bufsz < IGB_RXBUFFER_1024) {
5122                         rx_desc->read.pkt_addr =
5123                              cpu_to_le64(buffer_info->page_dma);
5124                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
5125                 } else {
5126                         rx_desc->read.pkt_addr =
5127                              cpu_to_le64(buffer_info->dma);
5128                         rx_desc->read.hdr_addr = 0;
5129                 }
5130
5131                 i++;
5132                 if (i == rx_ring->count)
5133                         i = 0;
5134                 buffer_info = &rx_ring->buffer_info[i];
5135         }
5136
5137 no_buffers:
5138         if (rx_ring->next_to_use != i) {
5139                 rx_ring->next_to_use = i;
5140                 if (i == 0)
5141                         i = (rx_ring->count - 1);
5142                 else
5143                         i--;
5144
5145                 /* Force memory writes to complete before letting h/w
5146                  * know there are new descriptors to fetch.  (Only
5147                  * applicable for weak-ordered memory model archs,
5148                  * such as IA-64). */
5149                 wmb();
5150                 writel(i, rx_ring->tail);
5151         }
5152 }
5153
5154 /**
5155  * igb_mii_ioctl -
5156  * @netdev:
5157  * @ifreq:
5158  * @cmd:
5159  **/
5160 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5161 {
5162         struct igb_adapter *adapter = netdev_priv(netdev);
5163         struct mii_ioctl_data *data = if_mii(ifr);
5164
5165         if (adapter->hw.phy.media_type != e1000_media_type_copper)
5166                 return -EOPNOTSUPP;
5167
5168         switch (cmd) {
5169         case SIOCGMIIPHY:
5170                 data->phy_id = adapter->hw.phy.addr;
5171                 break;
5172         case SIOCGMIIREG:
5173                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
5174                                      &data->val_out))
5175                         return -EIO;
5176                 break;
5177         case SIOCSMIIREG:
5178         default:
5179                 return -EOPNOTSUPP;
5180         }
5181         return 0;
5182 }
5183
5184 /**
5185  * igb_hwtstamp_ioctl - control hardware time stamping
5186  * @netdev:
5187  * @ifreq:
5188  * @cmd:
5189  *
5190  * Outgoing time stamping can be enabled and disabled. Play nice and
5191  * disable it when requested, although it shouldn't case any overhead
5192  * when no packet needs it. At most one packet in the queue may be
5193  * marked for time stamping, otherwise it would be impossible to tell
5194  * for sure to which packet the hardware time stamp belongs.
5195  *
5196  * Incoming time stamping has to be configured via the hardware
5197  * filters. Not all combinations are supported, in particular event
5198  * type has to be specified. Matching the kind of event packet is
5199  * not supported, with the exception of "all V2 events regardless of
5200  * level 2 or 4".
5201  *
5202  **/
5203 static int igb_hwtstamp_ioctl(struct net_device *netdev,
5204                               struct ifreq *ifr, int cmd)
5205 {
5206         struct igb_adapter *adapter = netdev_priv(netdev);
5207         struct e1000_hw *hw = &adapter->hw;
5208         struct hwtstamp_config config;
5209         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
5210         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
5211         u32 tsync_rx_cfg = 0;
5212         bool is_l4 = false;
5213         bool is_l2 = false;
5214         u32 regval;
5215
5216         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5217                 return -EFAULT;
5218
5219         /* reserved for future extensions */
5220         if (config.flags)
5221                 return -EINVAL;
5222
5223         switch (config.tx_type) {
5224         case HWTSTAMP_TX_OFF:
5225                 tsync_tx_ctl = 0;
5226         case HWTSTAMP_TX_ON:
5227                 break;
5228         default:
5229                 return -ERANGE;
5230         }
5231
5232         switch (config.rx_filter) {
5233         case HWTSTAMP_FILTER_NONE:
5234                 tsync_rx_ctl = 0;
5235                 break;
5236         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5237         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5238         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5239         case HWTSTAMP_FILTER_ALL:
5240                 /*
5241                  * register TSYNCRXCFG must be set, therefore it is not
5242                  * possible to time stamp both Sync and Delay_Req messages
5243                  * => fall back to time stamping all packets
5244                  */
5245                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
5246                 config.rx_filter = HWTSTAMP_FILTER_ALL;
5247                 break;
5248         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
5249                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5250                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
5251                 is_l4 = true;
5252                 break;
5253         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
5254                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5255                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
5256                 is_l4 = true;
5257                 break;
5258         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5259         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5260                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5261                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
5262                 is_l2 = true;
5263                 is_l4 = true;
5264                 config.rx_filter = HWTSTAMP_FILTER_SOME;
5265                 break;
5266         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5267         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5268                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5269                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
5270                 is_l2 = true;
5271                 is_l4 = true;
5272                 config.rx_filter = HWTSTAMP_FILTER_SOME;
5273                 break;
5274         case HWTSTAMP_FILTER_PTP_V2_EVENT:
5275         case HWTSTAMP_FILTER_PTP_V2_SYNC:
5276         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5277                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
5278                 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
5279                 is_l2 = true;
5280                 break;
5281         default:
5282                 return -ERANGE;
5283         }
5284
5285         if (hw->mac.type == e1000_82575) {
5286                 if (tsync_rx_ctl | tsync_tx_ctl)
5287                         return -EINVAL;
5288                 return 0;
5289         }
5290
5291         /* enable/disable TX */
5292         regval = rd32(E1000_TSYNCTXCTL);
5293         regval &= ~E1000_TSYNCTXCTL_ENABLED;
5294         regval |= tsync_tx_ctl;
5295         wr32(E1000_TSYNCTXCTL, regval);
5296
5297         /* enable/disable RX */
5298         regval = rd32(E1000_TSYNCRXCTL);
5299         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
5300         regval |= tsync_rx_ctl;
5301         wr32(E1000_TSYNCRXCTL, regval);
5302
5303         /* define which PTP packets are time stamped */
5304         wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
5305
5306         /* define ethertype filter for timestamped packets */
5307         if (is_l2)
5308                 wr32(E1000_ETQF(3),
5309                                 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
5310                                  E1000_ETQF_1588 | /* enable timestamping */
5311                                  ETH_P_1588));     /* 1588 eth protocol type */
5312         else
5313                 wr32(E1000_ETQF(3), 0);
5314
5315 #define PTP_PORT 319
5316         /* L4 Queue Filter[3]: filter by destination port and protocol */
5317         if (is_l4) {
5318                 u32 ftqf = (IPPROTO_UDP /* UDP */
5319                         | E1000_FTQF_VF_BP /* VF not compared */
5320                         | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
5321                         | E1000_FTQF_MASK); /* mask all inputs */
5322                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
5323
5324                 wr32(E1000_IMIR(3), htons(PTP_PORT));
5325                 wr32(E1000_IMIREXT(3),
5326                      (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
5327                 if (hw->mac.type == e1000_82576) {
5328                         /* enable source port check */
5329                         wr32(E1000_SPQF(3), htons(PTP_PORT));
5330                         ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
5331                 }
5332                 wr32(E1000_FTQF(3), ftqf);
5333         } else {
5334                 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
5335         }
5336         wrfl();
5337
5338         adapter->hwtstamp_config = config;
5339
5340         /* clear TX/RX time stamp registers, just to be sure */
5341         regval = rd32(E1000_TXSTMPH);
5342         regval = rd32(E1000_RXSTMPH);
5343
5344         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
5345                 -EFAULT : 0;
5346 }
5347
5348 /**
5349  * igb_ioctl -
5350  * @netdev:
5351  * @ifreq:
5352  * @cmd:
5353  **/
5354 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5355 {
5356         switch (cmd) {
5357         case SIOCGMIIPHY:
5358         case SIOCGMIIREG:
5359         case SIOCSMIIREG:
5360                 return igb_mii_ioctl(netdev, ifr, cmd);
5361         case SIOCSHWTSTAMP:
5362                 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
5363         default:
5364                 return -EOPNOTSUPP;
5365         }
5366 }
5367
5368 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5369 {
5370         struct igb_adapter *adapter = hw->back;
5371         u16 cap_offset;
5372
5373         cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5374         if (!cap_offset)
5375                 return -E1000_ERR_CONFIG;
5376
5377         pci_read_config_word(adapter->pdev, cap_offset + reg, value);
5378
5379         return 0;
5380 }
5381
5382 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5383 {
5384         struct igb_adapter *adapter = hw->back;
5385         u16 cap_offset;
5386
5387         cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5388         if (!cap_offset)
5389                 return -E1000_ERR_CONFIG;
5390
5391         pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
5392
5393         return 0;
5394 }
5395
5396 static void igb_vlan_rx_register(struct net_device *netdev,
5397                                  struct vlan_group *grp)
5398 {
5399         struct igb_adapter *adapter = netdev_priv(netdev);
5400         struct e1000_hw *hw = &adapter->hw;
5401         u32 ctrl, rctl;
5402
5403         igb_irq_disable(adapter);
5404         adapter->vlgrp = grp;
5405
5406         if (grp) {
5407                 /* enable VLAN tag insert/strip */
5408                 ctrl = rd32(E1000_CTRL);
5409                 ctrl |= E1000_CTRL_VME;
5410                 wr32(E1000_CTRL, ctrl);
5411
5412                 /* Disable CFI check */
5413                 rctl = rd32(E1000_RCTL);
5414                 rctl &= ~E1000_RCTL_CFIEN;
5415                 wr32(E1000_RCTL, rctl);
5416         } else {
5417                 /* disable VLAN tag insert/strip */
5418                 ctrl = rd32(E1000_CTRL);
5419                 ctrl &= ~E1000_CTRL_VME;
5420                 wr32(E1000_CTRL, ctrl);
5421         }
5422
5423         igb_rlpml_set(adapter);
5424
5425         if (!test_bit(__IGB_DOWN, &adapter->state))
5426                 igb_irq_enable(adapter);
5427 }
5428
5429 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
5430 {
5431         struct igb_adapter *adapter = netdev_priv(netdev);
5432         struct e1000_hw *hw = &adapter->hw;
5433         int pf_id = adapter->vfs_allocated_count;
5434
5435         /* attempt to add filter to vlvf array */
5436         igb_vlvf_set(adapter, vid, true, pf_id);
5437
5438         /* add the filter since PF can receive vlans w/o entry in vlvf */
5439         igb_vfta_set(hw, vid, true);
5440 }
5441
5442 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
5443 {
5444         struct igb_adapter *adapter = netdev_priv(netdev);
5445         struct e1000_hw *hw = &adapter->hw;
5446         int pf_id = adapter->vfs_allocated_count;
5447         s32 err;
5448
5449         igb_irq_disable(adapter);
5450         vlan_group_set_device(adapter->vlgrp, vid, NULL);
5451
5452         if (!test_bit(__IGB_DOWN, &adapter->state))
5453                 igb_irq_enable(adapter);
5454
5455         /* remove vlan from VLVF table array */
5456         err = igb_vlvf_set(adapter, vid, false, pf_id);
5457
5458         /* if vid was not present in VLVF just remove it from table */
5459         if (err)
5460                 igb_vfta_set(hw, vid, false);
5461 }
5462
5463 static void igb_restore_vlan(struct igb_adapter *adapter)
5464 {
5465         igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5466
5467         if (adapter->vlgrp) {
5468                 u16 vid;
5469                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5470                         if (!vlan_group_get_device(adapter->vlgrp, vid))
5471                                 continue;
5472                         igb_vlan_rx_add_vid(adapter->netdev, vid);
5473                 }
5474         }
5475 }
5476
5477 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5478 {
5479         struct e1000_mac_info *mac = &adapter->hw.mac;
5480
5481         mac->autoneg = 0;
5482
5483         switch (spddplx) {
5484         case SPEED_10 + DUPLEX_HALF:
5485                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5486                 break;
5487         case SPEED_10 + DUPLEX_FULL:
5488                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5489                 break;
5490         case SPEED_100 + DUPLEX_HALF:
5491                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5492                 break;
5493         case SPEED_100 + DUPLEX_FULL:
5494                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5495                 break;
5496         case SPEED_1000 + DUPLEX_FULL:
5497                 mac->autoneg = 1;
5498                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5499                 break;
5500         case SPEED_1000 + DUPLEX_HALF: /* not supported */
5501         default:
5502                 dev_err(&adapter->pdev->dev,
5503                         "Unsupported Speed/Duplex configuration\n");
5504                 return -EINVAL;
5505         }
5506         return 0;
5507 }
5508
5509 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
5510 {
5511         struct net_device *netdev = pci_get_drvdata(pdev);
5512         struct igb_adapter *adapter = netdev_priv(netdev);
5513         struct e1000_hw *hw = &adapter->hw;
5514         u32 ctrl, rctl, status;
5515         u32 wufc = adapter->wol;
5516 #ifdef CONFIG_PM
5517         int retval = 0;
5518 #endif
5519
5520         netif_device_detach(netdev);
5521
5522         if (netif_running(netdev))
5523                 igb_close(netdev);
5524
5525         igb_clear_interrupt_scheme(adapter);
5526
5527 #ifdef CONFIG_PM
5528         retval = pci_save_state(pdev);
5529         if (retval)
5530                 return retval;
5531 #endif
5532
5533         status = rd32(E1000_STATUS);
5534         if (status & E1000_STATUS_LU)
5535                 wufc &= ~E1000_WUFC_LNKC;
5536
5537         if (wufc) {
5538                 igb_setup_rctl(adapter);
5539                 igb_set_rx_mode(netdev);
5540
5541                 /* turn on all-multi mode if wake on multicast is enabled */
5542                 if (wufc & E1000_WUFC_MC) {
5543                         rctl = rd32(E1000_RCTL);
5544                         rctl |= E1000_RCTL_MPE;
5545                         wr32(E1000_RCTL, rctl);
5546                 }
5547
5548                 ctrl = rd32(E1000_CTRL);
5549                 /* advertise wake from D3Cold */
5550                 #define E1000_CTRL_ADVD3WUC 0x00100000
5551                 /* phy power management enable */
5552                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5553                 ctrl |= E1000_CTRL_ADVD3WUC;
5554                 wr32(E1000_CTRL, ctrl);
5555
5556                 /* Allow time for pending master requests to run */
5557                 igb_disable_pcie_master(&adapter->hw);
5558
5559                 wr32(E1000_WUC, E1000_WUC_PME_EN);
5560                 wr32(E1000_WUFC, wufc);
5561         } else {
5562                 wr32(E1000_WUC, 0);
5563                 wr32(E1000_WUFC, 0);
5564         }
5565
5566         *enable_wake = wufc || adapter->en_mng_pt;
5567         if (!*enable_wake)
5568                 igb_shutdown_serdes_link_82575(hw);
5569
5570         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5571          * would have already happened in close and is redundant. */
5572         igb_release_hw_control(adapter);
5573
5574         pci_disable_device(pdev);
5575
5576         return 0;
5577 }
5578
5579 #ifdef CONFIG_PM
5580 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5581 {
5582         int retval;
5583         bool wake;
5584
5585         retval = __igb_shutdown(pdev, &wake);
5586         if (retval)
5587                 return retval;
5588
5589         if (wake) {
5590                 pci_prepare_to_sleep(pdev);
5591         } else {
5592                 pci_wake_from_d3(pdev, false);
5593                 pci_set_power_state(pdev, PCI_D3hot);
5594         }
5595
5596         return 0;
5597 }
5598
5599 static int igb_resume(struct pci_dev *pdev)
5600 {
5601         struct net_device *netdev = pci_get_drvdata(pdev);
5602         struct igb_adapter *adapter = netdev_priv(netdev);
5603         struct e1000_hw *hw = &adapter->hw;
5604         u32 err;
5605
5606         pci_set_power_state(pdev, PCI_D0);
5607         pci_restore_state(pdev);
5608
5609         err = pci_enable_device_mem(pdev);
5610         if (err) {
5611                 dev_err(&pdev->dev,
5612                         "igb: Cannot enable PCI device from suspend\n");
5613                 return err;
5614         }
5615         pci_set_master(pdev);
5616
5617         pci_enable_wake(pdev, PCI_D3hot, 0);
5618         pci_enable_wake(pdev, PCI_D3cold, 0);
5619
5620         if (igb_init_interrupt_scheme(adapter)) {
5621                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5622                 return -ENOMEM;
5623         }
5624
5625         /* e1000_power_up_phy(adapter); */
5626
5627         igb_reset(adapter);
5628
5629         /* let the f/w know that the h/w is now under the control of the
5630          * driver. */
5631         igb_get_hw_control(adapter);
5632
5633         wr32(E1000_WUS, ~0);
5634
5635         if (netif_running(netdev)) {
5636                 err = igb_open(netdev);
5637                 if (err)
5638                         return err;
5639         }
5640
5641         netif_device_attach(netdev);
5642
5643         return 0;
5644 }
5645 #endif
5646
5647 static void igb_shutdown(struct pci_dev *pdev)
5648 {
5649         bool wake;
5650
5651         __igb_shutdown(pdev, &wake);
5652
5653         if (system_state == SYSTEM_POWER_OFF) {
5654                 pci_wake_from_d3(pdev, wake);
5655                 pci_set_power_state(pdev, PCI_D3hot);
5656         }
5657 }
5658
5659 #ifdef CONFIG_NET_POLL_CONTROLLER
5660 /*
5661  * Polling 'interrupt' - used by things like netconsole to send skbs
5662  * without having to re-enable interrupts. It's not called while
5663  * the interrupt routine is executing.
5664  */
5665 static void igb_netpoll(struct net_device *netdev)
5666 {
5667         struct igb_adapter *adapter = netdev_priv(netdev);
5668         struct e1000_hw *hw = &adapter->hw;
5669         int i;
5670
5671         if (!adapter->msix_entries) {
5672                 struct igb_q_vector *q_vector = adapter->q_vector[0];
5673                 igb_irq_disable(adapter);
5674                 napi_schedule(&q_vector->napi);
5675                 return;
5676         }
5677
5678         for (i = 0; i < adapter->num_q_vectors; i++) {
5679                 struct igb_q_vector *q_vector = adapter->q_vector[i];
5680                 wr32(E1000_EIMC, q_vector->eims_value);
5681                 napi_schedule(&q_vector->napi);
5682         }
5683 }
5684 #endif /* CONFIG_NET_POLL_CONTROLLER */
5685
5686 /**
5687  * igb_io_error_detected - called when PCI error is detected
5688  * @pdev: Pointer to PCI device
5689  * @state: The current pci connection state
5690  *
5691  * This function is called after a PCI bus error affecting
5692  * this device has been detected.
5693  */
5694 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5695                                               pci_channel_state_t state)
5696 {
5697         struct net_device *netdev = pci_get_drvdata(pdev);
5698         struct igb_adapter *adapter = netdev_priv(netdev);
5699
5700         netif_device_detach(netdev);
5701
5702         if (state == pci_channel_io_perm_failure)
5703                 return PCI_ERS_RESULT_DISCONNECT;
5704
5705         if (netif_running(netdev))
5706                 igb_down(adapter);
5707         pci_disable_device(pdev);
5708
5709         /* Request a slot slot reset. */
5710         return PCI_ERS_RESULT_NEED_RESET;
5711 }
5712
5713 /**
5714  * igb_io_slot_reset - called after the pci bus has been reset.
5715  * @pdev: Pointer to PCI device
5716  *
5717  * Restart the card from scratch, as if from a cold-boot. Implementation
5718  * resembles the first-half of the igb_resume routine.
5719  */
5720 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5721 {
5722         struct net_device *netdev = pci_get_drvdata(pdev);
5723         struct igb_adapter *adapter = netdev_priv(netdev);
5724         struct e1000_hw *hw = &adapter->hw;
5725         pci_ers_result_t result;
5726         int err;
5727
5728         if (pci_enable_device_mem(pdev)) {
5729                 dev_err(&pdev->dev,
5730                         "Cannot re-enable PCI device after reset.\n");
5731                 result = PCI_ERS_RESULT_DISCONNECT;
5732         } else {
5733                 pci_set_master(pdev);
5734                 pci_restore_state(pdev);
5735
5736                 pci_enable_wake(pdev, PCI_D3hot, 0);
5737                 pci_enable_wake(pdev, PCI_D3cold, 0);
5738
5739                 igb_reset(adapter);
5740                 wr32(E1000_WUS, ~0);
5741                 result = PCI_ERS_RESULT_RECOVERED;
5742         }
5743
5744         err = pci_cleanup_aer_uncorrect_error_status(pdev);
5745         if (err) {
5746                 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
5747                         "failed 0x%0x\n", err);
5748                 /* non-fatal, continue */
5749         }
5750
5751         return result;
5752 }
5753
5754 /**
5755  * igb_io_resume - called when traffic can start flowing again.
5756  * @pdev: Pointer to PCI device
5757  *
5758  * This callback is called when the error recovery driver tells us that
5759  * its OK to resume normal operation. Implementation resembles the
5760  * second-half of the igb_resume routine.
5761  */
5762 static void igb_io_resume(struct pci_dev *pdev)
5763 {
5764         struct net_device *netdev = pci_get_drvdata(pdev);
5765         struct igb_adapter *adapter = netdev_priv(netdev);
5766
5767         if (netif_running(netdev)) {
5768                 if (igb_up(adapter)) {
5769                         dev_err(&pdev->dev, "igb_up failed after reset\n");
5770                         return;
5771                 }
5772         }
5773
5774         netif_device_attach(netdev);
5775
5776         /* let the f/w know that the h/w is now under the control of the
5777          * driver. */
5778         igb_get_hw_control(adapter);
5779 }
5780
5781 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
5782                              u8 qsel)
5783 {
5784         u32 rar_low, rar_high;
5785         struct e1000_hw *hw = &adapter->hw;
5786
5787         /* HW expects these in little endian so we reverse the byte order
5788          * from network order (big endian) to little endian
5789          */
5790         rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
5791                   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
5792         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
5793
5794         /* Indicate to hardware the Address is Valid. */
5795         rar_high |= E1000_RAH_AV;
5796
5797         if (hw->mac.type == e1000_82575)
5798                 rar_high |= E1000_RAH_POOL_1 * qsel;
5799         else
5800                 rar_high |= E1000_RAH_POOL_1 << qsel;
5801
5802         wr32(E1000_RAL(index), rar_low);
5803         wrfl();
5804         wr32(E1000_RAH(index), rar_high);
5805         wrfl();
5806 }
5807
5808 static int igb_set_vf_mac(struct igb_adapter *adapter,
5809                           int vf, unsigned char *mac_addr)
5810 {
5811         struct e1000_hw *hw = &adapter->hw;
5812         /* VF MAC addresses start at end of receive addresses and moves
5813          * torwards the first, as a result a collision should not be possible */
5814         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5815
5816         memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
5817
5818         igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
5819
5820         return 0;
5821 }
5822
5823 static void igb_vmm_control(struct igb_adapter *adapter)
5824 {
5825         struct e1000_hw *hw = &adapter->hw;
5826         u32 reg;
5827
5828         /* replication is not supported for 82575 */
5829         if (hw->mac.type == e1000_82575)
5830                 return;
5831
5832         /* enable replication vlan tag stripping */
5833         reg = rd32(E1000_RPLOLR);
5834         reg |= E1000_RPLOLR_STRVLAN;
5835         wr32(E1000_RPLOLR, reg);
5836
5837         /* notify HW that the MAC is adding vlan tags */
5838         reg = rd32(E1000_DTXCTL);
5839         reg |= E1000_DTXCTL_VLAN_ADDED;
5840         wr32(E1000_DTXCTL, reg);
5841
5842         if (adapter->vfs_allocated_count) {
5843                 igb_vmdq_set_loopback_pf(hw, true);
5844                 igb_vmdq_set_replication_pf(hw, true);
5845         } else {
5846                 igb_vmdq_set_loopback_pf(hw, false);
5847                 igb_vmdq_set_replication_pf(hw, false);
5848         }
5849 }
5850
5851 /* igb_main.c */