igb: add completion timeout workaround for 82575/82576
[safe/jmp/linux-2.6] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/pci-aspm.h>
43 #include <linux/delay.h>
44 #include <linux/interrupt.h>
45 #include <linux/if_ether.h>
46 #include <linux/aer.h>
47 #ifdef CONFIG_IGB_DCA
48 #include <linux/dca.h>
49 #endif
50 #include "igb.h"
51
52 #define DRV_VERSION "1.3.16-k2"
53 char igb_driver_name[] = "igb";
54 char igb_driver_version[] = DRV_VERSION;
55 static const char igb_driver_string[] =
56                                 "Intel(R) Gigabit Ethernet Network Driver";
57 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60         [board_82575] = &e1000_82575_info,
61 };
62
63 static struct pci_device_id igb_pci_tbl[] = {
64         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
65         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
66         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
67         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
68         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
69         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
70         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
71         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
72         /* required last entry */
73         {0, }
74 };
75
76 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
77
78 void igb_reset(struct igb_adapter *);
79 static int igb_setup_all_tx_resources(struct igb_adapter *);
80 static int igb_setup_all_rx_resources(struct igb_adapter *);
81 static void igb_free_all_tx_resources(struct igb_adapter *);
82 static void igb_free_all_rx_resources(struct igb_adapter *);
83 void igb_update_stats(struct igb_adapter *);
84 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
85 static void __devexit igb_remove(struct pci_dev *pdev);
86 static int igb_sw_init(struct igb_adapter *);
87 static int igb_open(struct net_device *);
88 static int igb_close(struct net_device *);
89 static void igb_configure_tx(struct igb_adapter *);
90 static void igb_configure_rx(struct igb_adapter *);
91 static void igb_setup_rctl(struct igb_adapter *);
92 static void igb_clean_all_tx_rings(struct igb_adapter *);
93 static void igb_clean_all_rx_rings(struct igb_adapter *);
94 static void igb_clean_tx_ring(struct igb_ring *);
95 static void igb_clean_rx_ring(struct igb_ring *);
96 static void igb_set_multi(struct net_device *);
97 static void igb_update_phy_info(unsigned long);
98 static void igb_watchdog(unsigned long);
99 static void igb_watchdog_task(struct work_struct *);
100 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
101                                   struct igb_ring *);
102 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
103 static struct net_device_stats *igb_get_stats(struct net_device *);
104 static int igb_change_mtu(struct net_device *, int);
105 static int igb_set_mac(struct net_device *, void *);
106 static irqreturn_t igb_intr(int irq, void *);
107 static irqreturn_t igb_intr_msi(int irq, void *);
108 static irqreturn_t igb_msix_other(int irq, void *);
109 static irqreturn_t igb_msix_rx(int irq, void *);
110 static irqreturn_t igb_msix_tx(int irq, void *);
111 #ifdef CONFIG_IGB_DCA
112 static void igb_update_rx_dca(struct igb_ring *);
113 static void igb_update_tx_dca(struct igb_ring *);
114 static void igb_setup_dca(struct igb_adapter *);
115 #endif /* CONFIG_IGB_DCA */
116 static bool igb_clean_tx_irq(struct igb_ring *);
117 static int igb_poll(struct napi_struct *, int);
118 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
119 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
120 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
121 static void igb_tx_timeout(struct net_device *);
122 static void igb_reset_task(struct work_struct *);
123 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
124 static void igb_vlan_rx_add_vid(struct net_device *, u16);
125 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
126 static void igb_restore_vlan(struct igb_adapter *);
127 static void igb_ping_all_vfs(struct igb_adapter *);
128 static void igb_msg_task(struct igb_adapter *);
129 static int igb_rcv_msg_from_vf(struct igb_adapter *, u32);
130 static void igb_set_mc_list_pools(struct igb_adapter *, int, u16);
131 static void igb_vmm_control(struct igb_adapter *);
132 static int igb_set_vf_mac(struct igb_adapter *adapter, int, unsigned char *);
133 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
134
135 static inline void igb_set_vmolr(struct e1000_hw *hw, int vfn)
136 {
137         u32 reg_data;
138
139         reg_data = rd32(E1000_VMOLR(vfn));
140         reg_data |= E1000_VMOLR_BAM |    /* Accept broadcast */
141                     E1000_VMOLR_ROPE |   /* Accept packets matched in UTA */
142                     E1000_VMOLR_ROMPE |  /* Accept packets matched in MTA */
143                     E1000_VMOLR_AUPE |   /* Accept untagged packets */
144                     E1000_VMOLR_STRVLAN; /* Strip vlan tags */
145         wr32(E1000_VMOLR(vfn), reg_data);
146 }
147
148 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
149                                  int vfn)
150 {
151         struct e1000_hw *hw = &adapter->hw;
152         u32 vmolr;
153
154         vmolr = rd32(E1000_VMOLR(vfn));
155         vmolr &= ~E1000_VMOLR_RLPML_MASK;
156         vmolr |= size | E1000_VMOLR_LPE;
157         wr32(E1000_VMOLR(vfn), vmolr);
158
159         return 0;
160 }
161
162 static inline void igb_set_rah_pool(struct e1000_hw *hw, int pool, int entry)
163 {
164         u32 reg_data;
165
166         reg_data = rd32(E1000_RAH(entry));
167         reg_data &= ~E1000_RAH_POOL_MASK;
168         reg_data |= E1000_RAH_POOL_1 << pool;;
169         wr32(E1000_RAH(entry), reg_data);
170 }
171
172 #ifdef CONFIG_PM
173 static int igb_suspend(struct pci_dev *, pm_message_t);
174 static int igb_resume(struct pci_dev *);
175 #endif
176 static void igb_shutdown(struct pci_dev *);
177 #ifdef CONFIG_IGB_DCA
178 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
179 static struct notifier_block dca_notifier = {
180         .notifier_call  = igb_notify_dca,
181         .next           = NULL,
182         .priority       = 0
183 };
184 #endif
185 #ifdef CONFIG_NET_POLL_CONTROLLER
186 /* for netdump / net console */
187 static void igb_netpoll(struct net_device *);
188 #endif
189 #ifdef CONFIG_PCI_IOV
190 static unsigned int max_vfs = 0;
191 module_param(max_vfs, uint, 0);
192 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
193                  "per physical function");
194 #endif /* CONFIG_PCI_IOV */
195
196 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
197                      pci_channel_state_t);
198 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
199 static void igb_io_resume(struct pci_dev *);
200
201 static struct pci_error_handlers igb_err_handler = {
202         .error_detected = igb_io_error_detected,
203         .slot_reset = igb_io_slot_reset,
204         .resume = igb_io_resume,
205 };
206
207
208 static struct pci_driver igb_driver = {
209         .name     = igb_driver_name,
210         .id_table = igb_pci_tbl,
211         .probe    = igb_probe,
212         .remove   = __devexit_p(igb_remove),
213 #ifdef CONFIG_PM
214         /* Power Managment Hooks */
215         .suspend  = igb_suspend,
216         .resume   = igb_resume,
217 #endif
218         .shutdown = igb_shutdown,
219         .err_handler = &igb_err_handler
220 };
221
222 static int global_quad_port_a; /* global quad port a indication */
223
224 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
225 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
226 MODULE_LICENSE("GPL");
227 MODULE_VERSION(DRV_VERSION);
228
229 /**
230  * Scale the NIC clock cycle by a large factor so that
231  * relatively small clock corrections can be added or
232  * substracted at each clock tick. The drawbacks of a
233  * large factor are a) that the clock register overflows
234  * more quickly (not such a big deal) and b) that the
235  * increment per tick has to fit into 24 bits.
236  *
237  * Note that
238  *   TIMINCA = IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS *
239  *             IGB_TSYNC_SCALE
240  *   TIMINCA += TIMINCA * adjustment [ppm] / 1e9
241  *
242  * The base scale factor is intentionally a power of two
243  * so that the division in %struct timecounter can be done with
244  * a shift.
245  */
246 #define IGB_TSYNC_SHIFT (19)
247 #define IGB_TSYNC_SCALE (1<<IGB_TSYNC_SHIFT)
248
249 /**
250  * The duration of one clock cycle of the NIC.
251  *
252  * @todo This hard-coded value is part of the specification and might change
253  * in future hardware revisions. Add revision check.
254  */
255 #define IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS 16
256
257 #if (IGB_TSYNC_SCALE * IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS) >= (1<<24)
258 # error IGB_TSYNC_SCALE and/or IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS are too large to fit into TIMINCA
259 #endif
260
261 /**
262  * igb_read_clock - read raw cycle counter (to be used by time counter)
263  */
264 static cycle_t igb_read_clock(const struct cyclecounter *tc)
265 {
266         struct igb_adapter *adapter =
267                 container_of(tc, struct igb_adapter, cycles);
268         struct e1000_hw *hw = &adapter->hw;
269         u64 stamp;
270
271         stamp =  rd32(E1000_SYSTIML);
272         stamp |= (u64)rd32(E1000_SYSTIMH) << 32ULL;
273
274         return stamp;
275 }
276
277 #ifdef DEBUG
278 /**
279  * igb_get_hw_dev_name - return device name string
280  * used by hardware layer to print debugging information
281  **/
282 char *igb_get_hw_dev_name(struct e1000_hw *hw)
283 {
284         struct igb_adapter *adapter = hw->back;
285         return adapter->netdev->name;
286 }
287
288 /**
289  * igb_get_time_str - format current NIC and system time as string
290  */
291 static char *igb_get_time_str(struct igb_adapter *adapter,
292                               char buffer[160])
293 {
294         cycle_t hw = adapter->cycles.read(&adapter->cycles);
295         struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
296         struct timespec sys;
297         struct timespec delta;
298         getnstimeofday(&sys);
299
300         delta = timespec_sub(nic, sys);
301
302         sprintf(buffer,
303                 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
304                 hw,
305                 (long)nic.tv_sec, nic.tv_nsec,
306                 (long)sys.tv_sec, sys.tv_nsec,
307                 (long)delta.tv_sec, delta.tv_nsec);
308
309         return buffer;
310 }
311 #endif
312
313 /**
314  * igb_desc_unused - calculate if we have unused descriptors
315  **/
316 static int igb_desc_unused(struct igb_ring *ring)
317 {
318         if (ring->next_to_clean > ring->next_to_use)
319                 return ring->next_to_clean - ring->next_to_use - 1;
320
321         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
322 }
323
324 /**
325  * igb_init_module - Driver Registration Routine
326  *
327  * igb_init_module is the first routine called when the driver is
328  * loaded. All it does is register with the PCI subsystem.
329  **/
330 static int __init igb_init_module(void)
331 {
332         int ret;
333         printk(KERN_INFO "%s - version %s\n",
334                igb_driver_string, igb_driver_version);
335
336         printk(KERN_INFO "%s\n", igb_copyright);
337
338         global_quad_port_a = 0;
339
340 #ifdef CONFIG_IGB_DCA
341         dca_register_notify(&dca_notifier);
342 #endif
343
344         ret = pci_register_driver(&igb_driver);
345         return ret;
346 }
347
348 module_init(igb_init_module);
349
350 /**
351  * igb_exit_module - Driver Exit Cleanup Routine
352  *
353  * igb_exit_module is called just before the driver is removed
354  * from memory.
355  **/
356 static void __exit igb_exit_module(void)
357 {
358 #ifdef CONFIG_IGB_DCA
359         dca_unregister_notify(&dca_notifier);
360 #endif
361         pci_unregister_driver(&igb_driver);
362 }
363
364 module_exit(igb_exit_module);
365
366 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
367 /**
368  * igb_cache_ring_register - Descriptor ring to register mapping
369  * @adapter: board private structure to initialize
370  *
371  * Once we know the feature-set enabled for the device, we'll cache
372  * the register offset the descriptor ring is assigned to.
373  **/
374 static void igb_cache_ring_register(struct igb_adapter *adapter)
375 {
376         int i;
377         unsigned int rbase_offset = adapter->vfs_allocated_count;
378
379         switch (adapter->hw.mac.type) {
380         case e1000_82576:
381                 /* The queues are allocated for virtualization such that VF 0
382                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
383                  * In order to avoid collision we start at the first free queue
384                  * and continue consuming queues in the same sequence
385                  */
386                 for (i = 0; i < adapter->num_rx_queues; i++)
387                         adapter->rx_ring[i].reg_idx = rbase_offset +
388                                                       Q_IDX_82576(i);
389                 for (i = 0; i < adapter->num_tx_queues; i++)
390                         adapter->tx_ring[i].reg_idx = rbase_offset +
391                                                       Q_IDX_82576(i);
392                 break;
393         case e1000_82575:
394         default:
395                 for (i = 0; i < adapter->num_rx_queues; i++)
396                         adapter->rx_ring[i].reg_idx = i;
397                 for (i = 0; i < adapter->num_tx_queues; i++)
398                         adapter->tx_ring[i].reg_idx = i;
399                 break;
400         }
401 }
402
403 /**
404  * igb_alloc_queues - Allocate memory for all rings
405  * @adapter: board private structure to initialize
406  *
407  * We allocate one ring per queue at run-time since we don't know the
408  * number of queues at compile-time.
409  **/
410 static int igb_alloc_queues(struct igb_adapter *adapter)
411 {
412         int i;
413
414         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
415                                    sizeof(struct igb_ring), GFP_KERNEL);
416         if (!adapter->tx_ring)
417                 return -ENOMEM;
418
419         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
420                                    sizeof(struct igb_ring), GFP_KERNEL);
421         if (!adapter->rx_ring) {
422                 kfree(adapter->tx_ring);
423                 return -ENOMEM;
424         }
425
426         adapter->rx_ring->buddy = adapter->tx_ring;
427
428         for (i = 0; i < adapter->num_tx_queues; i++) {
429                 struct igb_ring *ring = &(adapter->tx_ring[i]);
430                 ring->count = adapter->tx_ring_count;
431                 ring->adapter = adapter;
432                 ring->queue_index = i;
433         }
434         for (i = 0; i < adapter->num_rx_queues; i++) {
435                 struct igb_ring *ring = &(adapter->rx_ring[i]);
436                 ring->count = adapter->rx_ring_count;
437                 ring->adapter = adapter;
438                 ring->queue_index = i;
439                 ring->itr_register = E1000_ITR;
440
441                 /* set a default napi handler for each rx_ring */
442                 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
443         }
444
445         igb_cache_ring_register(adapter);
446         return 0;
447 }
448
449 static void igb_free_queues(struct igb_adapter *adapter)
450 {
451         int i;
452
453         for (i = 0; i < adapter->num_rx_queues; i++)
454                 netif_napi_del(&adapter->rx_ring[i].napi);
455
456         adapter->num_rx_queues = 0;
457         adapter->num_tx_queues = 0;
458
459         kfree(adapter->tx_ring);
460         kfree(adapter->rx_ring);
461 }
462
463 #define IGB_N0_QUEUE -1
464 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
465                               int tx_queue, int msix_vector)
466 {
467         u32 msixbm = 0;
468         struct e1000_hw *hw = &adapter->hw;
469         u32 ivar, index;
470
471         switch (hw->mac.type) {
472         case e1000_82575:
473                 /* The 82575 assigns vectors using a bitmask, which matches the
474                    bitmask for the EICR/EIMS/EIMC registers.  To assign one
475                    or more queues to a vector, we write the appropriate bits
476                    into the MSIXBM register for that vector. */
477                 if (rx_queue > IGB_N0_QUEUE) {
478                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
479                         adapter->rx_ring[rx_queue].eims_value = msixbm;
480                 }
481                 if (tx_queue > IGB_N0_QUEUE) {
482                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
483                         adapter->tx_ring[tx_queue].eims_value =
484                                   E1000_EICR_TX_QUEUE0 << tx_queue;
485                 }
486                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
487                 break;
488         case e1000_82576:
489                 /* 82576 uses a table-based method for assigning vectors.
490                    Each queue has a single entry in the table to which we write
491                    a vector number along with a "valid" bit.  Sadly, the layout
492                    of the table is somewhat counterintuitive. */
493                 if (rx_queue > IGB_N0_QUEUE) {
494                         index = (rx_queue >> 1) + adapter->vfs_allocated_count;
495                         ivar = array_rd32(E1000_IVAR0, index);
496                         if (rx_queue & 0x1) {
497                                 /* vector goes into third byte of register */
498                                 ivar = ivar & 0xFF00FFFF;
499                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
500                         } else {
501                                 /* vector goes into low byte of register */
502                                 ivar = ivar & 0xFFFFFF00;
503                                 ivar |= msix_vector | E1000_IVAR_VALID;
504                         }
505                         adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
506                         array_wr32(E1000_IVAR0, index, ivar);
507                 }
508                 if (tx_queue > IGB_N0_QUEUE) {
509                         index = (tx_queue >> 1) + adapter->vfs_allocated_count;
510                         ivar = array_rd32(E1000_IVAR0, index);
511                         if (tx_queue & 0x1) {
512                                 /* vector goes into high byte of register */
513                                 ivar = ivar & 0x00FFFFFF;
514                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
515                         } else {
516                                 /* vector goes into second byte of register */
517                                 ivar = ivar & 0xFFFF00FF;
518                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
519                         }
520                         adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
521                         array_wr32(E1000_IVAR0, index, ivar);
522                 }
523                 break;
524         default:
525                 BUG();
526                 break;
527         }
528 }
529
530 /**
531  * igb_configure_msix - Configure MSI-X hardware
532  *
533  * igb_configure_msix sets up the hardware to properly
534  * generate MSI-X interrupts.
535  **/
536 static void igb_configure_msix(struct igb_adapter *adapter)
537 {
538         u32 tmp;
539         int i, vector = 0;
540         struct e1000_hw *hw = &adapter->hw;
541
542         adapter->eims_enable_mask = 0;
543         if (hw->mac.type == e1000_82576)
544                 /* Turn on MSI-X capability first, or our settings
545                  * won't stick.  And it will take days to debug. */
546                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
547                                    E1000_GPIE_PBA | E1000_GPIE_EIAME |
548                                    E1000_GPIE_NSICR);
549
550         for (i = 0; i < adapter->num_tx_queues; i++) {
551                 struct igb_ring *tx_ring = &adapter->tx_ring[i];
552                 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
553                 adapter->eims_enable_mask |= tx_ring->eims_value;
554                 if (tx_ring->itr_val)
555                         writel(tx_ring->itr_val,
556                                hw->hw_addr + tx_ring->itr_register);
557                 else
558                         writel(1, hw->hw_addr + tx_ring->itr_register);
559         }
560
561         for (i = 0; i < adapter->num_rx_queues; i++) {
562                 struct igb_ring *rx_ring = &adapter->rx_ring[i];
563                 rx_ring->buddy = NULL;
564                 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
565                 adapter->eims_enable_mask |= rx_ring->eims_value;
566                 if (rx_ring->itr_val)
567                         writel(rx_ring->itr_val,
568                                hw->hw_addr + rx_ring->itr_register);
569                 else
570                         writel(1, hw->hw_addr + rx_ring->itr_register);
571         }
572
573
574         /* set vector for other causes, i.e. link changes */
575         switch (hw->mac.type) {
576         case e1000_82575:
577                 array_wr32(E1000_MSIXBM(0), vector++,
578                                       E1000_EIMS_OTHER);
579
580                 tmp = rd32(E1000_CTRL_EXT);
581                 /* enable MSI-X PBA support*/
582                 tmp |= E1000_CTRL_EXT_PBA_CLR;
583
584                 /* Auto-Mask interrupts upon ICR read. */
585                 tmp |= E1000_CTRL_EXT_EIAME;
586                 tmp |= E1000_CTRL_EXT_IRCA;
587
588                 wr32(E1000_CTRL_EXT, tmp);
589                 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
590                 adapter->eims_other = E1000_EIMS_OTHER;
591
592                 break;
593
594         case e1000_82576:
595                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
596                 wr32(E1000_IVAR_MISC, tmp);
597
598                 adapter->eims_enable_mask = (1 << (vector)) - 1;
599                 adapter->eims_other = 1 << (vector - 1);
600                 break;
601         default:
602                 /* do nothing, since nothing else supports MSI-X */
603                 break;
604         } /* switch (hw->mac.type) */
605         wrfl();
606 }
607
608 /**
609  * igb_request_msix - Initialize MSI-X interrupts
610  *
611  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
612  * kernel.
613  **/
614 static int igb_request_msix(struct igb_adapter *adapter)
615 {
616         struct net_device *netdev = adapter->netdev;
617         int i, err = 0, vector = 0;
618
619         vector = 0;
620
621         for (i = 0; i < adapter->num_tx_queues; i++) {
622                 struct igb_ring *ring = &(adapter->tx_ring[i]);
623                 sprintf(ring->name, "%s-tx-%d", netdev->name, i);
624                 err = request_irq(adapter->msix_entries[vector].vector,
625                                   &igb_msix_tx, 0, ring->name,
626                                   &(adapter->tx_ring[i]));
627                 if (err)
628                         goto out;
629                 ring->itr_register = E1000_EITR(0) + (vector << 2);
630                 ring->itr_val = 976; /* ~4000 ints/sec */
631                 vector++;
632         }
633         for (i = 0; i < adapter->num_rx_queues; i++) {
634                 struct igb_ring *ring = &(adapter->rx_ring[i]);
635                 if (strlen(netdev->name) < (IFNAMSIZ - 5))
636                         sprintf(ring->name, "%s-rx-%d", netdev->name, i);
637                 else
638                         memcpy(ring->name, netdev->name, IFNAMSIZ);
639                 err = request_irq(adapter->msix_entries[vector].vector,
640                                   &igb_msix_rx, 0, ring->name,
641                                   &(adapter->rx_ring[i]));
642                 if (err)
643                         goto out;
644                 ring->itr_register = E1000_EITR(0) + (vector << 2);
645                 ring->itr_val = adapter->itr;
646                 vector++;
647         }
648
649         err = request_irq(adapter->msix_entries[vector].vector,
650                           &igb_msix_other, 0, netdev->name, netdev);
651         if (err)
652                 goto out;
653
654         igb_configure_msix(adapter);
655         return 0;
656 out:
657         return err;
658 }
659
660 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
661 {
662         if (adapter->msix_entries) {
663                 pci_disable_msix(adapter->pdev);
664                 kfree(adapter->msix_entries);
665                 adapter->msix_entries = NULL;
666         } else if (adapter->flags & IGB_FLAG_HAS_MSI)
667                 pci_disable_msi(adapter->pdev);
668         return;
669 }
670
671
672 /**
673  * igb_set_interrupt_capability - set MSI or MSI-X if supported
674  *
675  * Attempt to configure interrupts using the best available
676  * capabilities of the hardware and kernel.
677  **/
678 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
679 {
680         int err;
681         int numvecs, i;
682
683         /* Number of supported queues. */
684         /* Having more queues than CPUs doesn't make sense. */
685         adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
686         adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
687
688         numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
689         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
690                                         GFP_KERNEL);
691         if (!adapter->msix_entries)
692                 goto msi_only;
693
694         for (i = 0; i < numvecs; i++)
695                 adapter->msix_entries[i].entry = i;
696
697         err = pci_enable_msix(adapter->pdev,
698                               adapter->msix_entries,
699                               numvecs);
700         if (err == 0)
701                 goto out;
702
703         igb_reset_interrupt_capability(adapter);
704
705         /* If we can't do MSI-X, try MSI */
706 msi_only:
707 #ifdef CONFIG_PCI_IOV
708         /* disable SR-IOV for non MSI-X configurations */
709         if (adapter->vf_data) {
710                 struct e1000_hw *hw = &adapter->hw;
711                 /* disable iov and allow time for transactions to clear */
712                 pci_disable_sriov(adapter->pdev);
713                 msleep(500);
714
715                 kfree(adapter->vf_data);
716                 adapter->vf_data = NULL;
717                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
718                 msleep(100);
719                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
720         }
721 #endif
722         adapter->num_rx_queues = 1;
723         adapter->num_tx_queues = 1;
724         if (!pci_enable_msi(adapter->pdev))
725                 adapter->flags |= IGB_FLAG_HAS_MSI;
726 out:
727         /* Notify the stack of the (possibly) reduced Tx Queue count. */
728         adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
729         return;
730 }
731
732 /**
733  * igb_request_irq - initialize interrupts
734  *
735  * Attempts to configure interrupts using the best available
736  * capabilities of the hardware and kernel.
737  **/
738 static int igb_request_irq(struct igb_adapter *adapter)
739 {
740         struct net_device *netdev = adapter->netdev;
741         struct e1000_hw *hw = &adapter->hw;
742         int err = 0;
743
744         if (adapter->msix_entries) {
745                 err = igb_request_msix(adapter);
746                 if (!err)
747                         goto request_done;
748                 /* fall back to MSI */
749                 igb_reset_interrupt_capability(adapter);
750                 if (!pci_enable_msi(adapter->pdev))
751                         adapter->flags |= IGB_FLAG_HAS_MSI;
752                 igb_free_all_tx_resources(adapter);
753                 igb_free_all_rx_resources(adapter);
754                 adapter->num_rx_queues = 1;
755                 igb_alloc_queues(adapter);
756         } else {
757                 switch (hw->mac.type) {
758                 case e1000_82575:
759                         wr32(E1000_MSIXBM(0),
760                              (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
761                         break;
762                 case e1000_82576:
763                         wr32(E1000_IVAR0, E1000_IVAR_VALID);
764                         break;
765                 default:
766                         break;
767                 }
768         }
769
770         if (adapter->flags & IGB_FLAG_HAS_MSI) {
771                 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
772                                   netdev->name, netdev);
773                 if (!err)
774                         goto request_done;
775                 /* fall back to legacy interrupts */
776                 igb_reset_interrupt_capability(adapter);
777                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
778         }
779
780         err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
781                           netdev->name, netdev);
782
783         if (err)
784                 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
785                         err);
786
787 request_done:
788         return err;
789 }
790
791 static void igb_free_irq(struct igb_adapter *adapter)
792 {
793         struct net_device *netdev = adapter->netdev;
794
795         if (adapter->msix_entries) {
796                 int vector = 0, i;
797
798                 for (i = 0; i < adapter->num_tx_queues; i++)
799                         free_irq(adapter->msix_entries[vector++].vector,
800                                 &(adapter->tx_ring[i]));
801                 for (i = 0; i < adapter->num_rx_queues; i++)
802                         free_irq(adapter->msix_entries[vector++].vector,
803                                 &(adapter->rx_ring[i]));
804
805                 free_irq(adapter->msix_entries[vector++].vector, netdev);
806                 return;
807         }
808
809         free_irq(adapter->pdev->irq, netdev);
810 }
811
812 /**
813  * igb_irq_disable - Mask off interrupt generation on the NIC
814  * @adapter: board private structure
815  **/
816 static void igb_irq_disable(struct igb_adapter *adapter)
817 {
818         struct e1000_hw *hw = &adapter->hw;
819
820         if (adapter->msix_entries) {
821                 wr32(E1000_EIAM, 0);
822                 wr32(E1000_EIMC, ~0);
823                 wr32(E1000_EIAC, 0);
824         }
825
826         wr32(E1000_IAM, 0);
827         wr32(E1000_IMC, ~0);
828         wrfl();
829         synchronize_irq(adapter->pdev->irq);
830 }
831
832 /**
833  * igb_irq_enable - Enable default interrupt generation settings
834  * @adapter: board private structure
835  **/
836 static void igb_irq_enable(struct igb_adapter *adapter)
837 {
838         struct e1000_hw *hw = &adapter->hw;
839
840         if (adapter->msix_entries) {
841                 wr32(E1000_EIAC, adapter->eims_enable_mask);
842                 wr32(E1000_EIAM, adapter->eims_enable_mask);
843                 wr32(E1000_EIMS, adapter->eims_enable_mask);
844                 if (adapter->vfs_allocated_count)
845                         wr32(E1000_MBVFIMR, 0xFF);
846                 wr32(E1000_IMS, (E1000_IMS_LSC | E1000_IMS_VMMB |
847                                  E1000_IMS_DOUTSYNC));
848         } else {
849                 wr32(E1000_IMS, IMS_ENABLE_MASK);
850                 wr32(E1000_IAM, IMS_ENABLE_MASK);
851         }
852 }
853
854 static void igb_update_mng_vlan(struct igb_adapter *adapter)
855 {
856         struct net_device *netdev = adapter->netdev;
857         u16 vid = adapter->hw.mng_cookie.vlan_id;
858         u16 old_vid = adapter->mng_vlan_id;
859         if (adapter->vlgrp) {
860                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
861                         if (adapter->hw.mng_cookie.status &
862                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
863                                 igb_vlan_rx_add_vid(netdev, vid);
864                                 adapter->mng_vlan_id = vid;
865                         } else
866                                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
867
868                         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
869                                         (vid != old_vid) &&
870                             !vlan_group_get_device(adapter->vlgrp, old_vid))
871                                 igb_vlan_rx_kill_vid(netdev, old_vid);
872                 } else
873                         adapter->mng_vlan_id = vid;
874         }
875 }
876
877 /**
878  * igb_release_hw_control - release control of the h/w to f/w
879  * @adapter: address of board private structure
880  *
881  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
882  * For ASF and Pass Through versions of f/w this means that the
883  * driver is no longer loaded.
884  *
885  **/
886 static void igb_release_hw_control(struct igb_adapter *adapter)
887 {
888         struct e1000_hw *hw = &adapter->hw;
889         u32 ctrl_ext;
890
891         /* Let firmware take over control of h/w */
892         ctrl_ext = rd32(E1000_CTRL_EXT);
893         wr32(E1000_CTRL_EXT,
894                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
895 }
896
897
898 /**
899  * igb_get_hw_control - get control of the h/w from f/w
900  * @adapter: address of board private structure
901  *
902  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
903  * For ASF and Pass Through versions of f/w this means that
904  * the driver is loaded.
905  *
906  **/
907 static void igb_get_hw_control(struct igb_adapter *adapter)
908 {
909         struct e1000_hw *hw = &adapter->hw;
910         u32 ctrl_ext;
911
912         /* Let firmware know the driver has taken over */
913         ctrl_ext = rd32(E1000_CTRL_EXT);
914         wr32(E1000_CTRL_EXT,
915                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
916 }
917
918 /**
919  * igb_configure - configure the hardware for RX and TX
920  * @adapter: private board structure
921  **/
922 static void igb_configure(struct igb_adapter *adapter)
923 {
924         struct net_device *netdev = adapter->netdev;
925         int i;
926
927         igb_get_hw_control(adapter);
928         igb_set_multi(netdev);
929
930         igb_restore_vlan(adapter);
931
932         igb_configure_tx(adapter);
933         igb_setup_rctl(adapter);
934         igb_configure_rx(adapter);
935
936         igb_rx_fifo_flush_82575(&adapter->hw);
937
938         /* call igb_desc_unused which always leaves
939          * at least 1 descriptor unused to make sure
940          * next_to_use != next_to_clean */
941         for (i = 0; i < adapter->num_rx_queues; i++) {
942                 struct igb_ring *ring = &adapter->rx_ring[i];
943                 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
944         }
945
946
947         adapter->tx_queue_len = netdev->tx_queue_len;
948 }
949
950
951 /**
952  * igb_up - Open the interface and prepare it to handle traffic
953  * @adapter: board private structure
954  **/
955
956 int igb_up(struct igb_adapter *adapter)
957 {
958         struct e1000_hw *hw = &adapter->hw;
959         int i;
960
961         /* hardware has been reset, we need to reload some things */
962         igb_configure(adapter);
963
964         clear_bit(__IGB_DOWN, &adapter->state);
965
966         for (i = 0; i < adapter->num_rx_queues; i++)
967                 napi_enable(&adapter->rx_ring[i].napi);
968         if (adapter->msix_entries)
969                 igb_configure_msix(adapter);
970
971         igb_vmm_control(adapter);
972         igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
973         igb_set_vmolr(hw, adapter->vfs_allocated_count);
974
975         /* Clear any pending interrupts. */
976         rd32(E1000_ICR);
977         igb_irq_enable(adapter);
978
979         netif_tx_start_all_queues(adapter->netdev);
980
981         /* Fire a link change interrupt to start the watchdog. */
982         wr32(E1000_ICS, E1000_ICS_LSC);
983         return 0;
984 }
985
986 void igb_down(struct igb_adapter *adapter)
987 {
988         struct e1000_hw *hw = &adapter->hw;
989         struct net_device *netdev = adapter->netdev;
990         u32 tctl, rctl;
991         int i;
992
993         /* signal that we're down so the interrupt handler does not
994          * reschedule our watchdog timer */
995         set_bit(__IGB_DOWN, &adapter->state);
996
997         /* disable receives in the hardware */
998         rctl = rd32(E1000_RCTL);
999         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1000         /* flush and sleep below */
1001
1002         netif_tx_stop_all_queues(netdev);
1003
1004         /* disable transmits in the hardware */
1005         tctl = rd32(E1000_TCTL);
1006         tctl &= ~E1000_TCTL_EN;
1007         wr32(E1000_TCTL, tctl);
1008         /* flush both disables and wait for them to finish */
1009         wrfl();
1010         msleep(10);
1011
1012         for (i = 0; i < adapter->num_rx_queues; i++)
1013                 napi_disable(&adapter->rx_ring[i].napi);
1014
1015         igb_irq_disable(adapter);
1016
1017         del_timer_sync(&adapter->watchdog_timer);
1018         del_timer_sync(&adapter->phy_info_timer);
1019
1020         netdev->tx_queue_len = adapter->tx_queue_len;
1021         netif_carrier_off(netdev);
1022
1023         /* record the stats before reset*/
1024         igb_update_stats(adapter);
1025
1026         adapter->link_speed = 0;
1027         adapter->link_duplex = 0;
1028
1029         if (!pci_channel_offline(adapter->pdev))
1030                 igb_reset(adapter);
1031         igb_clean_all_tx_rings(adapter);
1032         igb_clean_all_rx_rings(adapter);
1033 #ifdef CONFIG_IGB_DCA
1034
1035         /* since we reset the hardware DCA settings were cleared */
1036         igb_setup_dca(adapter);
1037 #endif
1038 }
1039
1040 void igb_reinit_locked(struct igb_adapter *adapter)
1041 {
1042         WARN_ON(in_interrupt());
1043         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1044                 msleep(1);
1045         igb_down(adapter);
1046         igb_up(adapter);
1047         clear_bit(__IGB_RESETTING, &adapter->state);
1048 }
1049
1050 void igb_reset(struct igb_adapter *adapter)
1051 {
1052         struct e1000_hw *hw = &adapter->hw;
1053         struct e1000_mac_info *mac = &hw->mac;
1054         struct e1000_fc_info *fc = &hw->fc;
1055         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1056         u16 hwm;
1057
1058         /* Repartition Pba for greater than 9k mtu
1059          * To take effect CTRL.RST is required.
1060          */
1061         switch (mac->type) {
1062         case e1000_82576:
1063                 pba = E1000_PBA_64K;
1064                 break;
1065         case e1000_82575:
1066         default:
1067                 pba = E1000_PBA_34K;
1068                 break;
1069         }
1070
1071         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1072             (mac->type < e1000_82576)) {
1073                 /* adjust PBA for jumbo frames */
1074                 wr32(E1000_PBA, pba);
1075
1076                 /* To maintain wire speed transmits, the Tx FIFO should be
1077                  * large enough to accommodate two full transmit packets,
1078                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1079                  * the Rx FIFO should be large enough to accommodate at least
1080                  * one full receive packet and is similarly rounded up and
1081                  * expressed in KB. */
1082                 pba = rd32(E1000_PBA);
1083                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1084                 tx_space = pba >> 16;
1085                 /* lower 16 bits has Rx packet buffer allocation size in KB */
1086                 pba &= 0xffff;
1087                 /* the tx fifo also stores 16 bytes of information about the tx
1088                  * but don't include ethernet FCS because hardware appends it */
1089                 min_tx_space = (adapter->max_frame_size +
1090                                 sizeof(union e1000_adv_tx_desc) -
1091                                 ETH_FCS_LEN) * 2;
1092                 min_tx_space = ALIGN(min_tx_space, 1024);
1093                 min_tx_space >>= 10;
1094                 /* software strips receive CRC, so leave room for it */
1095                 min_rx_space = adapter->max_frame_size;
1096                 min_rx_space = ALIGN(min_rx_space, 1024);
1097                 min_rx_space >>= 10;
1098
1099                 /* If current Tx allocation is less than the min Tx FIFO size,
1100                  * and the min Tx FIFO size is less than the current Rx FIFO
1101                  * allocation, take space away from current Rx allocation */
1102                 if (tx_space < min_tx_space &&
1103                     ((min_tx_space - tx_space) < pba)) {
1104                         pba = pba - (min_tx_space - tx_space);
1105
1106                         /* if short on rx space, rx wins and must trump tx
1107                          * adjustment */
1108                         if (pba < min_rx_space)
1109                                 pba = min_rx_space;
1110                 }
1111                 wr32(E1000_PBA, pba);
1112         }
1113
1114         /* flow control settings */
1115         /* The high water mark must be low enough to fit one full frame
1116          * (or the size used for early receive) above it in the Rx FIFO.
1117          * Set it to the lower of:
1118          * - 90% of the Rx FIFO size, or
1119          * - the full Rx FIFO size minus one full frame */
1120         hwm = min(((pba << 10) * 9 / 10),
1121                         ((pba << 10) - 2 * adapter->max_frame_size));
1122
1123         if (mac->type < e1000_82576) {
1124                 fc->high_water = hwm & 0xFFF8;  /* 8-byte granularity */
1125                 fc->low_water = fc->high_water - 8;
1126         } else {
1127                 fc->high_water = hwm & 0xFFF0;  /* 16-byte granularity */
1128                 fc->low_water = fc->high_water - 16;
1129         }
1130         fc->pause_time = 0xFFFF;
1131         fc->send_xon = 1;
1132         fc->type = fc->original_type;
1133
1134         /* disable receive for all VFs and wait one second */
1135         if (adapter->vfs_allocated_count) {
1136                 int i;
1137                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1138                         adapter->vf_data[i].clear_to_send = false;
1139
1140                 /* ping all the active vfs to let them know we are going down */
1141                         igb_ping_all_vfs(adapter);
1142
1143                 /* disable transmits and receives */
1144                 wr32(E1000_VFRE, 0);
1145                 wr32(E1000_VFTE, 0);
1146         }
1147
1148         /* Allow time for pending master requests to run */
1149         adapter->hw.mac.ops.reset_hw(&adapter->hw);
1150         wr32(E1000_WUC, 0);
1151
1152         if (adapter->hw.mac.ops.init_hw(&adapter->hw))
1153                 dev_err(&adapter->pdev->dev, "Hardware Error\n");
1154
1155         igb_update_mng_vlan(adapter);
1156
1157         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1158         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1159
1160         igb_reset_adaptive(&adapter->hw);
1161         igb_get_phy_info(&adapter->hw);
1162 }
1163
1164 static const struct net_device_ops igb_netdev_ops = {
1165         .ndo_open               = igb_open,
1166         .ndo_stop               = igb_close,
1167         .ndo_start_xmit         = igb_xmit_frame_adv,
1168         .ndo_get_stats          = igb_get_stats,
1169         .ndo_set_multicast_list = igb_set_multi,
1170         .ndo_set_mac_address    = igb_set_mac,
1171         .ndo_change_mtu         = igb_change_mtu,
1172         .ndo_do_ioctl           = igb_ioctl,
1173         .ndo_tx_timeout         = igb_tx_timeout,
1174         .ndo_validate_addr      = eth_validate_addr,
1175         .ndo_vlan_rx_register   = igb_vlan_rx_register,
1176         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
1177         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
1178 #ifdef CONFIG_NET_POLL_CONTROLLER
1179         .ndo_poll_controller    = igb_netpoll,
1180 #endif
1181 };
1182
1183 /**
1184  * igb_probe - Device Initialization Routine
1185  * @pdev: PCI device information struct
1186  * @ent: entry in igb_pci_tbl
1187  *
1188  * Returns 0 on success, negative on failure
1189  *
1190  * igb_probe initializes an adapter identified by a pci_dev structure.
1191  * The OS initialization, configuring of the adapter private structure,
1192  * and a hardware reset occur.
1193  **/
1194 static int __devinit igb_probe(struct pci_dev *pdev,
1195                                const struct pci_device_id *ent)
1196 {
1197         struct net_device *netdev;
1198         struct igb_adapter *adapter;
1199         struct e1000_hw *hw;
1200         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1201         unsigned long mmio_start, mmio_len;
1202         int err, pci_using_dac;
1203         u16 eeprom_data = 0;
1204         u16 eeprom_apme_mask = IGB_EEPROM_APME;
1205         u32 part_num;
1206
1207         err = pci_enable_device_mem(pdev);
1208         if (err)
1209                 return err;
1210
1211         pci_using_dac = 0;
1212         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1213         if (!err) {
1214                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1215                 if (!err)
1216                         pci_using_dac = 1;
1217         } else {
1218                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1219                 if (err) {
1220                         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1221                         if (err) {
1222                                 dev_err(&pdev->dev, "No usable DMA "
1223                                         "configuration, aborting\n");
1224                                 goto err_dma;
1225                         }
1226                 }
1227         }
1228
1229         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1230                                            IORESOURCE_MEM),
1231                                            igb_driver_name);
1232         if (err)
1233                 goto err_pci_reg;
1234
1235         err = pci_enable_pcie_error_reporting(pdev);
1236         if (err) {
1237                 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
1238                         "0x%x\n", err);
1239                 /* non-fatal, continue */
1240         }
1241
1242         pci_set_master(pdev);
1243         pci_save_state(pdev);
1244
1245         err = -ENOMEM;
1246         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1247                                    IGB_ABS_MAX_TX_QUEUES);
1248         if (!netdev)
1249                 goto err_alloc_etherdev;
1250
1251         SET_NETDEV_DEV(netdev, &pdev->dev);
1252
1253         pci_set_drvdata(pdev, netdev);
1254         adapter = netdev_priv(netdev);
1255         adapter->netdev = netdev;
1256         adapter->pdev = pdev;
1257         hw = &adapter->hw;
1258         hw->back = adapter;
1259         adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1260
1261         mmio_start = pci_resource_start(pdev, 0);
1262         mmio_len = pci_resource_len(pdev, 0);
1263
1264         err = -EIO;
1265         hw->hw_addr = ioremap(mmio_start, mmio_len);
1266         if (!hw->hw_addr)
1267                 goto err_ioremap;
1268
1269         netdev->netdev_ops = &igb_netdev_ops;
1270         igb_set_ethtool_ops(netdev);
1271         netdev->watchdog_timeo = 5 * HZ;
1272
1273         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1274
1275         netdev->mem_start = mmio_start;
1276         netdev->mem_end = mmio_start + mmio_len;
1277
1278         /* PCI config space info */
1279         hw->vendor_id = pdev->vendor;
1280         hw->device_id = pdev->device;
1281         hw->revision_id = pdev->revision;
1282         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1283         hw->subsystem_device_id = pdev->subsystem_device;
1284
1285         /* setup the private structure */
1286         hw->back = adapter;
1287         /* Copy the default MAC, PHY and NVM function pointers */
1288         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1289         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1290         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1291         /* Initialize skew-specific constants */
1292         err = ei->get_invariants(hw);
1293         if (err)
1294                 goto err_sw_init;
1295
1296 #ifdef CONFIG_PCI_IOV
1297         /* since iov functionality isn't critical to base device function we
1298          * can accept failure.  If it fails we don't allow iov to be enabled */
1299         if (hw->mac.type == e1000_82576) {
1300                 /* 82576 supports a maximum of 7 VFs in addition to the PF */
1301                 unsigned int num_vfs = (max_vfs > 7) ? 7 : max_vfs;
1302                 int i;
1303                 unsigned char mac_addr[ETH_ALEN];
1304
1305                 if (num_vfs) {
1306                         adapter->vf_data = kcalloc(num_vfs,
1307                                                 sizeof(struct vf_data_storage),
1308                                                 GFP_KERNEL);
1309                         if (!adapter->vf_data) {
1310                                 dev_err(&pdev->dev,
1311                                         "Could not allocate VF private data - "
1312                                         "IOV enable failed\n");
1313                         } else {
1314                                 err = pci_enable_sriov(pdev, num_vfs);
1315                                 if (!err) {
1316                                         adapter->vfs_allocated_count = num_vfs;
1317                                         dev_info(&pdev->dev,
1318                                                  "%d vfs allocated\n",
1319                                                  num_vfs);
1320                                         for (i = 0;
1321                                              i < adapter->vfs_allocated_count;
1322                                              i++) {
1323                                                 random_ether_addr(mac_addr);
1324                                                 igb_set_vf_mac(adapter, i,
1325                                                                mac_addr);
1326                                         }
1327                                 } else {
1328                                         kfree(adapter->vf_data);
1329                                         adapter->vf_data = NULL;
1330                                 }
1331                         }
1332                 }
1333         }
1334
1335 #endif
1336         /* setup the private structure */
1337         err = igb_sw_init(adapter);
1338         if (err)
1339                 goto err_sw_init;
1340
1341         igb_get_bus_info_pcie(hw);
1342
1343         /* set flags */
1344         switch (hw->mac.type) {
1345         case e1000_82575:
1346                 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1347                 break;
1348         case e1000_82576:
1349         default:
1350                 break;
1351         }
1352
1353         hw->phy.autoneg_wait_to_complete = false;
1354         hw->mac.adaptive_ifs = true;
1355
1356         /* Copper options */
1357         if (hw->phy.media_type == e1000_media_type_copper) {
1358                 hw->phy.mdix = AUTO_ALL_MODES;
1359                 hw->phy.disable_polarity_correction = false;
1360                 hw->phy.ms_type = e1000_ms_hw_default;
1361         }
1362
1363         if (igb_check_reset_block(hw))
1364                 dev_info(&pdev->dev,
1365                         "PHY reset is blocked due to SOL/IDER session.\n");
1366
1367         netdev->features = NETIF_F_SG |
1368                            NETIF_F_IP_CSUM |
1369                            NETIF_F_HW_VLAN_TX |
1370                            NETIF_F_HW_VLAN_RX |
1371                            NETIF_F_HW_VLAN_FILTER;
1372
1373         netdev->features |= NETIF_F_IPV6_CSUM;
1374         netdev->features |= NETIF_F_TSO;
1375         netdev->features |= NETIF_F_TSO6;
1376
1377         netdev->features |= NETIF_F_GRO;
1378
1379         netdev->vlan_features |= NETIF_F_TSO;
1380         netdev->vlan_features |= NETIF_F_TSO6;
1381         netdev->vlan_features |= NETIF_F_IP_CSUM;
1382         netdev->vlan_features |= NETIF_F_SG;
1383
1384         if (pci_using_dac)
1385                 netdev->features |= NETIF_F_HIGHDMA;
1386
1387         if (adapter->hw.mac.type == e1000_82576)
1388                 netdev->features |= NETIF_F_SCTP_CSUM;
1389
1390         adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1391
1392         /* before reading the NVM, reset the controller to put the device in a
1393          * known good starting state */
1394         hw->mac.ops.reset_hw(hw);
1395
1396         /* make sure the NVM is good */
1397         if (igb_validate_nvm_checksum(hw) < 0) {
1398                 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1399                 err = -EIO;
1400                 goto err_eeprom;
1401         }
1402
1403         /* copy the MAC address out of the NVM */
1404         if (hw->mac.ops.read_mac_addr(hw))
1405                 dev_err(&pdev->dev, "NVM Read Error\n");
1406
1407         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1408         memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1409
1410         if (!is_valid_ether_addr(netdev->perm_addr)) {
1411                 dev_err(&pdev->dev, "Invalid MAC Address\n");
1412                 err = -EIO;
1413                 goto err_eeprom;
1414         }
1415
1416         setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1417                     (unsigned long) adapter);
1418         setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1419                     (unsigned long) adapter);
1420
1421         INIT_WORK(&adapter->reset_task, igb_reset_task);
1422         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1423
1424         /* Initialize link properties that are user-changeable */
1425         adapter->fc_autoneg = true;
1426         hw->mac.autoneg = true;
1427         hw->phy.autoneg_advertised = 0x2f;
1428
1429         hw->fc.original_type = e1000_fc_default;
1430         hw->fc.type = e1000_fc_default;
1431
1432         adapter->itr_setting = IGB_DEFAULT_ITR;
1433         adapter->itr = IGB_START_ITR;
1434
1435         igb_validate_mdi_setting(hw);
1436
1437         /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1438          * enable the ACPI Magic Packet filter
1439          */
1440
1441         if (hw->bus.func == 0)
1442                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1443         else if (hw->bus.func == 1)
1444                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1445
1446         if (eeprom_data & eeprom_apme_mask)
1447                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1448
1449         /* now that we have the eeprom settings, apply the special cases where
1450          * the eeprom may be wrong or the board simply won't support wake on
1451          * lan on a particular port */
1452         switch (pdev->device) {
1453         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1454                 adapter->eeprom_wol = 0;
1455                 break;
1456         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1457         case E1000_DEV_ID_82576_FIBER:
1458         case E1000_DEV_ID_82576_SERDES:
1459                 /* Wake events only supported on port A for dual fiber
1460                  * regardless of eeprom setting */
1461                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1462                         adapter->eeprom_wol = 0;
1463                 break;
1464         case E1000_DEV_ID_82576_QUAD_COPPER:
1465                 /* if quad port adapter, disable WoL on all but port A */
1466                 if (global_quad_port_a != 0)
1467                         adapter->eeprom_wol = 0;
1468                 else
1469                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1470                 /* Reset for multiple quad port adapters */
1471                 if (++global_quad_port_a == 4)
1472                         global_quad_port_a = 0;
1473                 break;
1474         }
1475
1476         /* initialize the wol settings based on the eeprom settings */
1477         adapter->wol = adapter->eeprom_wol;
1478         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1479
1480         /* reset the hardware with the new settings */
1481         igb_reset(adapter);
1482
1483         /* let the f/w know that the h/w is now under the control of the
1484          * driver. */
1485         igb_get_hw_control(adapter);
1486
1487         strcpy(netdev->name, "eth%d");
1488         err = register_netdev(netdev);
1489         if (err)
1490                 goto err_register;
1491
1492         /* carrier off reporting is important to ethtool even BEFORE open */
1493         netif_carrier_off(netdev);
1494
1495 #ifdef CONFIG_IGB_DCA
1496         if (dca_add_requester(&pdev->dev) == 0) {
1497                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1498                 dev_info(&pdev->dev, "DCA enabled\n");
1499                 igb_setup_dca(adapter);
1500         }
1501 #endif
1502
1503         /*
1504          * Initialize hardware timer: we keep it running just in case
1505          * that some program needs it later on.
1506          */
1507         memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1508         adapter->cycles.read = igb_read_clock;
1509         adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1510         adapter->cycles.mult = 1;
1511         adapter->cycles.shift = IGB_TSYNC_SHIFT;
1512         wr32(E1000_TIMINCA,
1513              (1<<24) |
1514              IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS * IGB_TSYNC_SCALE);
1515 #if 0
1516         /*
1517          * Avoid rollover while we initialize by resetting the time counter.
1518          */
1519         wr32(E1000_SYSTIML, 0x00000000);
1520         wr32(E1000_SYSTIMH, 0x00000000);
1521 #else
1522         /*
1523          * Set registers so that rollover occurs soon to test this.
1524          */
1525         wr32(E1000_SYSTIML, 0x00000000);
1526         wr32(E1000_SYSTIMH, 0xFF800000);
1527 #endif
1528         wrfl();
1529         timecounter_init(&adapter->clock,
1530                          &adapter->cycles,
1531                          ktime_to_ns(ktime_get_real()));
1532
1533         /*
1534          * Synchronize our NIC clock against system wall clock. NIC
1535          * time stamp reading requires ~3us per sample, each sample
1536          * was pretty stable even under load => only require 10
1537          * samples for each offset comparison.
1538          */
1539         memset(&adapter->compare, 0, sizeof(adapter->compare));
1540         adapter->compare.source = &adapter->clock;
1541         adapter->compare.target = ktime_get_real;
1542         adapter->compare.num_samples = 10;
1543         timecompare_update(&adapter->compare, 0);
1544
1545 #ifdef DEBUG
1546         {
1547                 char buffer[160];
1548                 printk(KERN_DEBUG
1549                         "igb: %s: hw %p initialized timer\n",
1550                         igb_get_time_str(adapter, buffer),
1551                         &adapter->hw);
1552         }
1553 #endif
1554
1555         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1556         /* print bus type/speed/width info */
1557         dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1558                  netdev->name,
1559                  ((hw->bus.speed == e1000_bus_speed_2500)
1560                   ? "2.5Gb/s" : "unknown"),
1561                  ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1562                   (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1563                   (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1564                    "unknown"),
1565                  netdev->dev_addr);
1566
1567         igb_read_part_num(hw, &part_num);
1568         dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1569                 (part_num >> 8), (part_num & 0xff));
1570
1571         dev_info(&pdev->dev,
1572                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1573                 adapter->msix_entries ? "MSI-X" :
1574                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1575                 adapter->num_rx_queues, adapter->num_tx_queues);
1576
1577         return 0;
1578
1579 err_register:
1580         igb_release_hw_control(adapter);
1581 err_eeprom:
1582         if (!igb_check_reset_block(hw))
1583                 igb_reset_phy(hw);
1584
1585         if (hw->flash_address)
1586                 iounmap(hw->flash_address);
1587
1588         igb_free_queues(adapter);
1589 err_sw_init:
1590         iounmap(hw->hw_addr);
1591 err_ioremap:
1592         free_netdev(netdev);
1593 err_alloc_etherdev:
1594         pci_release_selected_regions(pdev, pci_select_bars(pdev,
1595                                      IORESOURCE_MEM));
1596 err_pci_reg:
1597 err_dma:
1598         pci_disable_device(pdev);
1599         return err;
1600 }
1601
1602 /**
1603  * igb_remove - Device Removal Routine
1604  * @pdev: PCI device information struct
1605  *
1606  * igb_remove is called by the PCI subsystem to alert the driver
1607  * that it should release a PCI device.  The could be caused by a
1608  * Hot-Plug event, or because the driver is going to be removed from
1609  * memory.
1610  **/
1611 static void __devexit igb_remove(struct pci_dev *pdev)
1612 {
1613         struct net_device *netdev = pci_get_drvdata(pdev);
1614         struct igb_adapter *adapter = netdev_priv(netdev);
1615         struct e1000_hw *hw = &adapter->hw;
1616         int err;
1617
1618         /* flush_scheduled work may reschedule our watchdog task, so
1619          * explicitly disable watchdog tasks from being rescheduled  */
1620         set_bit(__IGB_DOWN, &adapter->state);
1621         del_timer_sync(&adapter->watchdog_timer);
1622         del_timer_sync(&adapter->phy_info_timer);
1623
1624         flush_scheduled_work();
1625
1626 #ifdef CONFIG_IGB_DCA
1627         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1628                 dev_info(&pdev->dev, "DCA disabled\n");
1629                 dca_remove_requester(&pdev->dev);
1630                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1631                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
1632         }
1633 #endif
1634
1635         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1636          * would have already happened in close and is redundant. */
1637         igb_release_hw_control(adapter);
1638
1639         unregister_netdev(netdev);
1640
1641         if (!igb_check_reset_block(&adapter->hw))
1642                 igb_reset_phy(&adapter->hw);
1643
1644         igb_reset_interrupt_capability(adapter);
1645
1646         igb_free_queues(adapter);
1647
1648 #ifdef CONFIG_PCI_IOV
1649         /* reclaim resources allocated to VFs */
1650         if (adapter->vf_data) {
1651                 /* disable iov and allow time for transactions to clear */
1652                 pci_disable_sriov(pdev);
1653                 msleep(500);
1654
1655                 kfree(adapter->vf_data);
1656                 adapter->vf_data = NULL;
1657                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1658                 msleep(100);
1659                 dev_info(&pdev->dev, "IOV Disabled\n");
1660         }
1661 #endif
1662         iounmap(hw->hw_addr);
1663         if (hw->flash_address)
1664                 iounmap(hw->flash_address);
1665         pci_release_selected_regions(pdev, pci_select_bars(pdev,
1666                                      IORESOURCE_MEM));
1667
1668         free_netdev(netdev);
1669
1670         err = pci_disable_pcie_error_reporting(pdev);
1671         if (err)
1672                 dev_err(&pdev->dev,
1673                         "pci_disable_pcie_error_reporting failed 0x%x\n", err);
1674
1675         pci_disable_device(pdev);
1676 }
1677
1678 /**
1679  * igb_sw_init - Initialize general software structures (struct igb_adapter)
1680  * @adapter: board private structure to initialize
1681  *
1682  * igb_sw_init initializes the Adapter private data structure.
1683  * Fields are initialized based on PCI device information and
1684  * OS network device settings (MTU size).
1685  **/
1686 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1687 {
1688         struct e1000_hw *hw = &adapter->hw;
1689         struct net_device *netdev = adapter->netdev;
1690         struct pci_dev *pdev = adapter->pdev;
1691
1692         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1693
1694         adapter->tx_ring_count = IGB_DEFAULT_TXD;
1695         adapter->rx_ring_count = IGB_DEFAULT_RXD;
1696         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1697         adapter->rx_ps_hdr_size = 0; /* disable packet split */
1698         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1699         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1700
1701         /* This call may decrease the number of queues depending on
1702          * interrupt mode. */
1703         igb_set_interrupt_capability(adapter);
1704
1705         if (igb_alloc_queues(adapter)) {
1706                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1707                 return -ENOMEM;
1708         }
1709
1710         /* Explicitly disable IRQ since the NIC can be in any state. */
1711         igb_irq_disable(adapter);
1712
1713         set_bit(__IGB_DOWN, &adapter->state);
1714         return 0;
1715 }
1716
1717 /**
1718  * igb_open - Called when a network interface is made active
1719  * @netdev: network interface device structure
1720  *
1721  * Returns 0 on success, negative value on failure
1722  *
1723  * The open entry point is called when a network interface is made
1724  * active by the system (IFF_UP).  At this point all resources needed
1725  * for transmit and receive operations are allocated, the interrupt
1726  * handler is registered with the OS, the watchdog timer is started,
1727  * and the stack is notified that the interface is ready.
1728  **/
1729 static int igb_open(struct net_device *netdev)
1730 {
1731         struct igb_adapter *adapter = netdev_priv(netdev);
1732         struct e1000_hw *hw = &adapter->hw;
1733         int err;
1734         int i;
1735
1736         /* disallow open during test */
1737         if (test_bit(__IGB_TESTING, &adapter->state))
1738                 return -EBUSY;
1739
1740         netif_carrier_off(netdev);
1741
1742         /* allocate transmit descriptors */
1743         err = igb_setup_all_tx_resources(adapter);
1744         if (err)
1745                 goto err_setup_tx;
1746
1747         /* allocate receive descriptors */
1748         err = igb_setup_all_rx_resources(adapter);
1749         if (err)
1750                 goto err_setup_rx;
1751
1752         /* e1000_power_up_phy(adapter); */
1753
1754         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1755         if ((adapter->hw.mng_cookie.status &
1756              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1757                 igb_update_mng_vlan(adapter);
1758
1759         /* before we allocate an interrupt, we must be ready to handle it.
1760          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1761          * as soon as we call pci_request_irq, so we have to setup our
1762          * clean_rx handler before we do so.  */
1763         igb_configure(adapter);
1764
1765         igb_vmm_control(adapter);
1766         igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
1767         igb_set_vmolr(hw, adapter->vfs_allocated_count);
1768
1769         err = igb_request_irq(adapter);
1770         if (err)
1771                 goto err_req_irq;
1772
1773         /* From here on the code is the same as igb_up() */
1774         clear_bit(__IGB_DOWN, &adapter->state);
1775
1776         for (i = 0; i < adapter->num_rx_queues; i++)
1777                 napi_enable(&adapter->rx_ring[i].napi);
1778
1779         /* Clear any pending interrupts. */
1780         rd32(E1000_ICR);
1781
1782         igb_irq_enable(adapter);
1783
1784         netif_tx_start_all_queues(netdev);
1785
1786         /* Fire a link status change interrupt to start the watchdog. */
1787         wr32(E1000_ICS, E1000_ICS_LSC);
1788
1789         return 0;
1790
1791 err_req_irq:
1792         igb_release_hw_control(adapter);
1793         /* e1000_power_down_phy(adapter); */
1794         igb_free_all_rx_resources(adapter);
1795 err_setup_rx:
1796         igb_free_all_tx_resources(adapter);
1797 err_setup_tx:
1798         igb_reset(adapter);
1799
1800         return err;
1801 }
1802
1803 /**
1804  * igb_close - Disables a network interface
1805  * @netdev: network interface device structure
1806  *
1807  * Returns 0, this is not allowed to fail
1808  *
1809  * The close entry point is called when an interface is de-activated
1810  * by the OS.  The hardware is still under the driver's control, but
1811  * needs to be disabled.  A global MAC reset is issued to stop the
1812  * hardware, and all transmit and receive resources are freed.
1813  **/
1814 static int igb_close(struct net_device *netdev)
1815 {
1816         struct igb_adapter *adapter = netdev_priv(netdev);
1817
1818         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1819         igb_down(adapter);
1820
1821         igb_free_irq(adapter);
1822
1823         igb_free_all_tx_resources(adapter);
1824         igb_free_all_rx_resources(adapter);
1825
1826         /* kill manageability vlan ID if supported, but not if a vlan with
1827          * the same ID is registered on the host OS (let 8021q kill it) */
1828         if ((adapter->hw.mng_cookie.status &
1829                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1830              !(adapter->vlgrp &&
1831                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1832                 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1833
1834         return 0;
1835 }
1836
1837 /**
1838  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1839  * @adapter: board private structure
1840  * @tx_ring: tx descriptor ring (for a specific queue) to setup
1841  *
1842  * Return 0 on success, negative on failure
1843  **/
1844 int igb_setup_tx_resources(struct igb_adapter *adapter,
1845                            struct igb_ring *tx_ring)
1846 {
1847         struct pci_dev *pdev = adapter->pdev;
1848         int size;
1849
1850         size = sizeof(struct igb_buffer) * tx_ring->count;
1851         tx_ring->buffer_info = vmalloc(size);
1852         if (!tx_ring->buffer_info)
1853                 goto err;
1854         memset(tx_ring->buffer_info, 0, size);
1855
1856         /* round up to nearest 4K */
1857         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
1858         tx_ring->size = ALIGN(tx_ring->size, 4096);
1859
1860         tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1861                                              &tx_ring->dma);
1862
1863         if (!tx_ring->desc)
1864                 goto err;
1865
1866         tx_ring->adapter = adapter;
1867         tx_ring->next_to_use = 0;
1868         tx_ring->next_to_clean = 0;
1869         return 0;
1870
1871 err:
1872         vfree(tx_ring->buffer_info);
1873         dev_err(&adapter->pdev->dev,
1874                 "Unable to allocate memory for the transmit descriptor ring\n");
1875         return -ENOMEM;
1876 }
1877
1878 /**
1879  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1880  *                                (Descriptors) for all queues
1881  * @adapter: board private structure
1882  *
1883  * Return 0 on success, negative on failure
1884  **/
1885 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1886 {
1887         int i, err = 0;
1888         int r_idx;
1889
1890         for (i = 0; i < adapter->num_tx_queues; i++) {
1891                 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1892                 if (err) {
1893                         dev_err(&adapter->pdev->dev,
1894                                 "Allocation for Tx Queue %u failed\n", i);
1895                         for (i--; i >= 0; i--)
1896                                 igb_free_tx_resources(&adapter->tx_ring[i]);
1897                         break;
1898                 }
1899         }
1900
1901         for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1902                 r_idx = i % adapter->num_tx_queues;
1903                 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1904         }
1905         return err;
1906 }
1907
1908 /**
1909  * igb_configure_tx - Configure transmit Unit after Reset
1910  * @adapter: board private structure
1911  *
1912  * Configure the Tx unit of the MAC after a reset.
1913  **/
1914 static void igb_configure_tx(struct igb_adapter *adapter)
1915 {
1916         u64 tdba;
1917         struct e1000_hw *hw = &adapter->hw;
1918         u32 tctl;
1919         u32 txdctl, txctrl;
1920         int i, j;
1921
1922         for (i = 0; i < adapter->num_tx_queues; i++) {
1923                 struct igb_ring *ring = &adapter->tx_ring[i];
1924                 j = ring->reg_idx;
1925                 wr32(E1000_TDLEN(j),
1926                      ring->count * sizeof(union e1000_adv_tx_desc));
1927                 tdba = ring->dma;
1928                 wr32(E1000_TDBAL(j),
1929                      tdba & 0x00000000ffffffffULL);
1930                 wr32(E1000_TDBAH(j), tdba >> 32);
1931
1932                 ring->head = E1000_TDH(j);
1933                 ring->tail = E1000_TDT(j);
1934                 writel(0, hw->hw_addr + ring->tail);
1935                 writel(0, hw->hw_addr + ring->head);
1936                 txdctl = rd32(E1000_TXDCTL(j));
1937                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1938                 wr32(E1000_TXDCTL(j), txdctl);
1939
1940                 /* Turn off Relaxed Ordering on head write-backs.  The
1941                  * writebacks MUST be delivered in order or it will
1942                  * completely screw up our bookeeping.
1943                  */
1944                 txctrl = rd32(E1000_DCA_TXCTRL(j));
1945                 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1946                 wr32(E1000_DCA_TXCTRL(j), txctrl);
1947         }
1948
1949         /* disable queue 0 to prevent tail bump w/o re-configuration */
1950         if (adapter->vfs_allocated_count)
1951                 wr32(E1000_TXDCTL(0), 0);
1952
1953         /* Program the Transmit Control Register */
1954         tctl = rd32(E1000_TCTL);
1955         tctl &= ~E1000_TCTL_CT;
1956         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1957                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1958
1959         igb_config_collision_dist(hw);
1960
1961         /* Setup Transmit Descriptor Settings for eop descriptor */
1962         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1963
1964         /* Enable transmits */
1965         tctl |= E1000_TCTL_EN;
1966
1967         wr32(E1000_TCTL, tctl);
1968 }
1969
1970 /**
1971  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1972  * @adapter: board private structure
1973  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
1974  *
1975  * Returns 0 on success, negative on failure
1976  **/
1977 int igb_setup_rx_resources(struct igb_adapter *adapter,
1978                            struct igb_ring *rx_ring)
1979 {
1980         struct pci_dev *pdev = adapter->pdev;
1981         int size, desc_len;
1982
1983         size = sizeof(struct igb_buffer) * rx_ring->count;
1984         rx_ring->buffer_info = vmalloc(size);
1985         if (!rx_ring->buffer_info)
1986                 goto err;
1987         memset(rx_ring->buffer_info, 0, size);
1988
1989         desc_len = sizeof(union e1000_adv_rx_desc);
1990
1991         /* Round up to nearest 4K */
1992         rx_ring->size = rx_ring->count * desc_len;
1993         rx_ring->size = ALIGN(rx_ring->size, 4096);
1994
1995         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1996                                              &rx_ring->dma);
1997
1998         if (!rx_ring->desc)
1999                 goto err;
2000
2001         rx_ring->next_to_clean = 0;
2002         rx_ring->next_to_use = 0;
2003
2004         rx_ring->adapter = adapter;
2005
2006         return 0;
2007
2008 err:
2009         vfree(rx_ring->buffer_info);
2010         dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
2011                 "the receive descriptor ring\n");
2012         return -ENOMEM;
2013 }
2014
2015 /**
2016  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2017  *                                (Descriptors) for all queues
2018  * @adapter: board private structure
2019  *
2020  * Return 0 on success, negative on failure
2021  **/
2022 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2023 {
2024         int i, err = 0;
2025
2026         for (i = 0; i < adapter->num_rx_queues; i++) {
2027                 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
2028                 if (err) {
2029                         dev_err(&adapter->pdev->dev,
2030                                 "Allocation for Rx Queue %u failed\n", i);
2031                         for (i--; i >= 0; i--)
2032                                 igb_free_rx_resources(&adapter->rx_ring[i]);
2033                         break;
2034                 }
2035         }
2036
2037         return err;
2038 }
2039
2040 /**
2041  * igb_setup_rctl - configure the receive control registers
2042  * @adapter: Board private structure
2043  **/
2044 static void igb_setup_rctl(struct igb_adapter *adapter)
2045 {
2046         struct e1000_hw *hw = &adapter->hw;
2047         u32 rctl;
2048         u32 srrctl = 0;
2049         int i;
2050
2051         rctl = rd32(E1000_RCTL);
2052
2053         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2054         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2055
2056         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2057                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2058
2059         /*
2060          * enable stripping of CRC. It's unlikely this will break BMC
2061          * redirection as it did with e1000. Newer features require
2062          * that the HW strips the CRC.
2063          */
2064         rctl |= E1000_RCTL_SECRC;
2065
2066         /*
2067          * disable store bad packets and clear size bits.
2068          */
2069         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2070
2071         /* enable LPE when to prevent packets larger than max_frame_size */
2072                 rctl |= E1000_RCTL_LPE;
2073
2074         /* Setup buffer sizes */
2075         switch (adapter->rx_buffer_len) {
2076         case IGB_RXBUFFER_256:
2077                 rctl |= E1000_RCTL_SZ_256;
2078                 break;
2079         case IGB_RXBUFFER_512:
2080                 rctl |= E1000_RCTL_SZ_512;
2081                 break;
2082         default:
2083                 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
2084                          >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2085                 break;
2086         }
2087
2088         /* 82575 and greater support packet-split where the protocol
2089          * header is placed in skb->data and the packet data is
2090          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2091          * In the case of a non-split, skb->data is linearly filled,
2092          * followed by the page buffers.  Therefore, skb->data is
2093          * sized to hold the largest protocol header.
2094          */
2095         /* allocations using alloc_page take too long for regular MTU
2096          * so only enable packet split for jumbo frames */
2097         if (adapter->netdev->mtu > ETH_DATA_LEN) {
2098                 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
2099                 srrctl |= adapter->rx_ps_hdr_size <<
2100                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2101                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2102         } else {
2103                 adapter->rx_ps_hdr_size = 0;
2104                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2105         }
2106
2107         /* Attention!!!  For SR-IOV PF driver operations you must enable
2108          * queue drop for all VF and PF queues to prevent head of line blocking
2109          * if an un-trusted VF does not provide descriptors to hardware.
2110          */
2111         if (adapter->vfs_allocated_count) {
2112                 u32 vmolr;
2113
2114                 /* set all queue drop enable bits */
2115                 wr32(E1000_QDE, ALL_QUEUES);
2116                 srrctl |= E1000_SRRCTL_DROP_EN;
2117
2118                 /* disable queue 0 to prevent tail write w/o re-config */
2119                 wr32(E1000_RXDCTL(0), 0);
2120
2121                 vmolr = rd32(E1000_VMOLR(adapter->vfs_allocated_count));
2122                 if (rctl & E1000_RCTL_LPE)
2123                         vmolr |= E1000_VMOLR_LPE;
2124                 if (adapter->num_rx_queues > 1)
2125                         vmolr |= E1000_VMOLR_RSSE;
2126                 wr32(E1000_VMOLR(adapter->vfs_allocated_count), vmolr);
2127         }
2128
2129         for (i = 0; i < adapter->num_rx_queues; i++) {
2130                 int j = adapter->rx_ring[i].reg_idx;
2131                 wr32(E1000_SRRCTL(j), srrctl);
2132         }
2133
2134         wr32(E1000_RCTL, rctl);
2135 }
2136
2137 /**
2138  * igb_rlpml_set - set maximum receive packet size
2139  * @adapter: board private structure
2140  *
2141  * Configure maximum receivable packet size.
2142  **/
2143 static void igb_rlpml_set(struct igb_adapter *adapter)
2144 {
2145         u32 max_frame_size = adapter->max_frame_size;
2146         struct e1000_hw *hw = &adapter->hw;
2147         u16 pf_id = adapter->vfs_allocated_count;
2148
2149         if (adapter->vlgrp)
2150                 max_frame_size += VLAN_TAG_SIZE;
2151
2152         /* if vfs are enabled we set RLPML to the largest possible request
2153          * size and set the VMOLR RLPML to the size we need */
2154         if (pf_id) {
2155                 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2156                 max_frame_size = MAX_STD_JUMBO_FRAME_SIZE + VLAN_TAG_SIZE;
2157         }
2158
2159         wr32(E1000_RLPML, max_frame_size);
2160 }
2161
2162 /**
2163  * igb_configure_vt_default_pool - Configure VT default pool
2164  * @adapter: board private structure
2165  *
2166  * Configure the default pool
2167  **/
2168 static void igb_configure_vt_default_pool(struct igb_adapter *adapter)
2169 {
2170         struct e1000_hw *hw = &adapter->hw;
2171         u16 pf_id = adapter->vfs_allocated_count;
2172         u32 vtctl;
2173
2174         /* not in sr-iov mode - do nothing */
2175         if (!pf_id)
2176                 return;
2177
2178         vtctl = rd32(E1000_VT_CTL);
2179         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2180                    E1000_VT_CTL_DISABLE_DEF_POOL);
2181         vtctl |= pf_id << E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2182         wr32(E1000_VT_CTL, vtctl);
2183 }
2184
2185 /**
2186  * igb_configure_rx - Configure receive Unit after Reset
2187  * @adapter: board private structure
2188  *
2189  * Configure the Rx unit of the MAC after a reset.
2190  **/
2191 static void igb_configure_rx(struct igb_adapter *adapter)
2192 {
2193         u64 rdba;
2194         struct e1000_hw *hw = &adapter->hw;
2195         u32 rctl, rxcsum;
2196         u32 rxdctl;
2197         int i;
2198
2199         /* disable receives while setting up the descriptors */
2200         rctl = rd32(E1000_RCTL);
2201         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2202         wrfl();
2203         mdelay(10);
2204
2205         if (adapter->itr_setting > 3)
2206                 wr32(E1000_ITR, adapter->itr);
2207
2208         /* Setup the HW Rx Head and Tail Descriptor Pointers and
2209          * the Base and Length of the Rx Descriptor Ring */
2210         for (i = 0; i < adapter->num_rx_queues; i++) {
2211                 struct igb_ring *ring = &adapter->rx_ring[i];
2212                 int j = ring->reg_idx;
2213                 rdba = ring->dma;
2214                 wr32(E1000_RDBAL(j),
2215                      rdba & 0x00000000ffffffffULL);
2216                 wr32(E1000_RDBAH(j), rdba >> 32);
2217                 wr32(E1000_RDLEN(j),
2218                      ring->count * sizeof(union e1000_adv_rx_desc));
2219
2220                 ring->head = E1000_RDH(j);
2221                 ring->tail = E1000_RDT(j);
2222                 writel(0, hw->hw_addr + ring->tail);
2223                 writel(0, hw->hw_addr + ring->head);
2224
2225                 rxdctl = rd32(E1000_RXDCTL(j));
2226                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2227                 rxdctl &= 0xFFF00000;
2228                 rxdctl |= IGB_RX_PTHRESH;
2229                 rxdctl |= IGB_RX_HTHRESH << 8;
2230                 rxdctl |= IGB_RX_WTHRESH << 16;
2231                 wr32(E1000_RXDCTL(j), rxdctl);
2232         }
2233
2234         if (adapter->num_rx_queues > 1) {
2235                 u32 random[10];
2236                 u32 mrqc;
2237                 u32 j, shift;
2238                 union e1000_reta {
2239                         u32 dword;
2240                         u8  bytes[4];
2241                 } reta;
2242
2243                 get_random_bytes(&random[0], 40);
2244
2245                 if (hw->mac.type >= e1000_82576)
2246                         shift = 0;
2247                 else
2248                         shift = 6;
2249                 for (j = 0; j < (32 * 4); j++) {
2250                         reta.bytes[j & 3] =
2251                                 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
2252                         if ((j & 3) == 3)
2253                                 writel(reta.dword,
2254                                        hw->hw_addr + E1000_RETA(0) + (j & ~3));
2255                 }
2256                 if (adapter->vfs_allocated_count)
2257                         mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2258                 else
2259                         mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2260
2261                 /* Fill out hash function seeds */
2262                 for (j = 0; j < 10; j++)
2263                         array_wr32(E1000_RSSRK(0), j, random[j]);
2264
2265                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2266                          E1000_MRQC_RSS_FIELD_IPV4_TCP);
2267                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2268                          E1000_MRQC_RSS_FIELD_IPV6_TCP);
2269                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2270                          E1000_MRQC_RSS_FIELD_IPV6_UDP);
2271                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2272                          E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2273
2274                 wr32(E1000_MRQC, mrqc);
2275         } else if (adapter->vfs_allocated_count) {
2276                 /* Enable multi-queue for sr-iov */
2277                 wr32(E1000_MRQC, E1000_MRQC_ENABLE_VMDQ);
2278         }
2279
2280         /* Enable Receive Checksum Offload for TCP and UDP */
2281         rxcsum = rd32(E1000_RXCSUM);
2282         /* Disable raw packet checksumming */
2283         rxcsum |= E1000_RXCSUM_PCSD;
2284
2285         if (adapter->hw.mac.type == e1000_82576)
2286                 /* Enable Receive Checksum Offload for SCTP */
2287                 rxcsum |= E1000_RXCSUM_CRCOFL;
2288
2289         /* Don't need to set TUOFL or IPOFL, they default to 1 */
2290         wr32(E1000_RXCSUM, rxcsum);
2291
2292         /* Set the default pool for the PF's first queue */
2293         igb_configure_vt_default_pool(adapter);
2294
2295         igb_rlpml_set(adapter);
2296
2297         /* Enable Receives */
2298         wr32(E1000_RCTL, rctl);
2299 }
2300
2301 /**
2302  * igb_free_tx_resources - Free Tx Resources per Queue
2303  * @tx_ring: Tx descriptor ring for a specific queue
2304  *
2305  * Free all transmit software resources
2306  **/
2307 void igb_free_tx_resources(struct igb_ring *tx_ring)
2308 {
2309         struct pci_dev *pdev = tx_ring->adapter->pdev;
2310
2311         igb_clean_tx_ring(tx_ring);
2312
2313         vfree(tx_ring->buffer_info);
2314         tx_ring->buffer_info = NULL;
2315
2316         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2317
2318         tx_ring->desc = NULL;
2319 }
2320
2321 /**
2322  * igb_free_all_tx_resources - Free Tx Resources for All Queues
2323  * @adapter: board private structure
2324  *
2325  * Free all transmit software resources
2326  **/
2327 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2328 {
2329         int i;
2330
2331         for (i = 0; i < adapter->num_tx_queues; i++)
2332                 igb_free_tx_resources(&adapter->tx_ring[i]);
2333 }
2334
2335 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2336                                            struct igb_buffer *buffer_info)
2337 {
2338         buffer_info->dma = 0;
2339         if (buffer_info->skb) {
2340                 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
2341                               DMA_TO_DEVICE);
2342                 dev_kfree_skb_any(buffer_info->skb);
2343                 buffer_info->skb = NULL;
2344         }
2345         buffer_info->time_stamp = 0;
2346         /* buffer_info must be completely set up in the transmit path */
2347 }
2348
2349 /**
2350  * igb_clean_tx_ring - Free Tx Buffers
2351  * @tx_ring: ring to be cleaned
2352  **/
2353 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2354 {
2355         struct igb_adapter *adapter = tx_ring->adapter;
2356         struct igb_buffer *buffer_info;
2357         unsigned long size;
2358         unsigned int i;
2359
2360         if (!tx_ring->buffer_info)
2361                 return;
2362         /* Free all the Tx ring sk_buffs */
2363
2364         for (i = 0; i < tx_ring->count; i++) {
2365                 buffer_info = &tx_ring->buffer_info[i];
2366                 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2367         }
2368
2369         size = sizeof(struct igb_buffer) * tx_ring->count;
2370         memset(tx_ring->buffer_info, 0, size);
2371
2372         /* Zero out the descriptor ring */
2373
2374         memset(tx_ring->desc, 0, tx_ring->size);
2375
2376         tx_ring->next_to_use = 0;
2377         tx_ring->next_to_clean = 0;
2378
2379         writel(0, adapter->hw.hw_addr + tx_ring->head);
2380         writel(0, adapter->hw.hw_addr + tx_ring->tail);
2381 }
2382
2383 /**
2384  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2385  * @adapter: board private structure
2386  **/
2387 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2388 {
2389         int i;
2390
2391         for (i = 0; i < adapter->num_tx_queues; i++)
2392                 igb_clean_tx_ring(&adapter->tx_ring[i]);
2393 }
2394
2395 /**
2396  * igb_free_rx_resources - Free Rx Resources
2397  * @rx_ring: ring to clean the resources from
2398  *
2399  * Free all receive software resources
2400  **/
2401 void igb_free_rx_resources(struct igb_ring *rx_ring)
2402 {
2403         struct pci_dev *pdev = rx_ring->adapter->pdev;
2404
2405         igb_clean_rx_ring(rx_ring);
2406
2407         vfree(rx_ring->buffer_info);
2408         rx_ring->buffer_info = NULL;
2409
2410         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2411
2412         rx_ring->desc = NULL;
2413 }
2414
2415 /**
2416  * igb_free_all_rx_resources - Free Rx Resources for All Queues
2417  * @adapter: board private structure
2418  *
2419  * Free all receive software resources
2420  **/
2421 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2422 {
2423         int i;
2424
2425         for (i = 0; i < adapter->num_rx_queues; i++)
2426                 igb_free_rx_resources(&adapter->rx_ring[i]);
2427 }
2428
2429 /**
2430  * igb_clean_rx_ring - Free Rx Buffers per Queue
2431  * @rx_ring: ring to free buffers from
2432  **/
2433 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2434 {
2435         struct igb_adapter *adapter = rx_ring->adapter;
2436         struct igb_buffer *buffer_info;
2437         struct pci_dev *pdev = adapter->pdev;
2438         unsigned long size;
2439         unsigned int i;
2440
2441         if (!rx_ring->buffer_info)
2442                 return;
2443         /* Free all the Rx ring sk_buffs */
2444         for (i = 0; i < rx_ring->count; i++) {
2445                 buffer_info = &rx_ring->buffer_info[i];
2446                 if (buffer_info->dma) {
2447                         if (adapter->rx_ps_hdr_size)
2448                                 pci_unmap_single(pdev, buffer_info->dma,
2449                                                  adapter->rx_ps_hdr_size,
2450                                                  PCI_DMA_FROMDEVICE);
2451                         else
2452                                 pci_unmap_single(pdev, buffer_info->dma,
2453                                                  adapter->rx_buffer_len,
2454                                                  PCI_DMA_FROMDEVICE);
2455                         buffer_info->dma = 0;
2456                 }
2457
2458                 if (buffer_info->skb) {
2459                         dev_kfree_skb(buffer_info->skb);
2460                         buffer_info->skb = NULL;
2461                 }
2462                 if (buffer_info->page) {
2463                         if (buffer_info->page_dma)
2464                                 pci_unmap_page(pdev, buffer_info->page_dma,
2465                                                PAGE_SIZE / 2,
2466                                                PCI_DMA_FROMDEVICE);
2467                         put_page(buffer_info->page);
2468                         buffer_info->page = NULL;
2469                         buffer_info->page_dma = 0;
2470                         buffer_info->page_offset = 0;
2471                 }
2472         }
2473
2474         size = sizeof(struct igb_buffer) * rx_ring->count;
2475         memset(rx_ring->buffer_info, 0, size);
2476
2477         /* Zero out the descriptor ring */
2478         memset(rx_ring->desc, 0, rx_ring->size);
2479
2480         rx_ring->next_to_clean = 0;
2481         rx_ring->next_to_use = 0;
2482
2483         writel(0, adapter->hw.hw_addr + rx_ring->head);
2484         writel(0, adapter->hw.hw_addr + rx_ring->tail);
2485 }
2486
2487 /**
2488  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2489  * @adapter: board private structure
2490  **/
2491 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2492 {
2493         int i;
2494
2495         for (i = 0; i < adapter->num_rx_queues; i++)
2496                 igb_clean_rx_ring(&adapter->rx_ring[i]);
2497 }
2498
2499 /**
2500  * igb_set_mac - Change the Ethernet Address of the NIC
2501  * @netdev: network interface device structure
2502  * @p: pointer to an address structure
2503  *
2504  * Returns 0 on success, negative on failure
2505  **/
2506 static int igb_set_mac(struct net_device *netdev, void *p)
2507 {
2508         struct igb_adapter *adapter = netdev_priv(netdev);
2509         struct e1000_hw *hw = &adapter->hw;
2510         struct sockaddr *addr = p;
2511
2512         if (!is_valid_ether_addr(addr->sa_data))
2513                 return -EADDRNOTAVAIL;
2514
2515         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2516         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2517
2518         hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
2519
2520         igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
2521
2522         return 0;
2523 }
2524
2525 /**
2526  * igb_set_multi - Multicast and Promiscuous mode set
2527  * @netdev: network interface device structure
2528  *
2529  * The set_multi entry point is called whenever the multicast address
2530  * list or the network interface flags are updated.  This routine is
2531  * responsible for configuring the hardware for proper multicast,
2532  * promiscuous mode, and all-multi behavior.
2533  **/
2534 static void igb_set_multi(struct net_device *netdev)
2535 {
2536         struct igb_adapter *adapter = netdev_priv(netdev);
2537         struct e1000_hw *hw = &adapter->hw;
2538         struct e1000_mac_info *mac = &hw->mac;
2539         struct dev_mc_list *mc_ptr;
2540         u8  *mta_list = NULL;
2541         u32 rctl;
2542         int i;
2543
2544         /* Check for Promiscuous and All Multicast modes */
2545
2546         rctl = rd32(E1000_RCTL);
2547
2548         if (netdev->flags & IFF_PROMISC) {
2549                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2550                 rctl &= ~E1000_RCTL_VFE;
2551         } else {
2552                 if (netdev->flags & IFF_ALLMULTI) {
2553                         rctl |= E1000_RCTL_MPE;
2554                         rctl &= ~E1000_RCTL_UPE;
2555                 } else
2556                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2557                 rctl |= E1000_RCTL_VFE;
2558         }
2559         wr32(E1000_RCTL, rctl);
2560
2561         if (netdev->mc_count) {
2562                 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2563                 if (!mta_list) {
2564                         dev_err(&adapter->pdev->dev,
2565                                 "failed to allocate multicast filter list\n");
2566                         return;
2567                 }
2568         }
2569
2570         /* The shared function expects a packed array of only addresses. */
2571         mc_ptr = netdev->mc_list;
2572
2573         for (i = 0; i < netdev->mc_count; i++) {
2574                 if (!mc_ptr)
2575                         break;
2576                 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2577                 mc_ptr = mc_ptr->next;
2578         }
2579         igb_update_mc_addr_list(hw, mta_list, i,
2580                                 adapter->vfs_allocated_count + 1,
2581                                 mac->rar_entry_count);
2582
2583         igb_set_mc_list_pools(adapter, i, mac->rar_entry_count);
2584         igb_restore_vf_multicasts(adapter);
2585
2586         kfree(mta_list);
2587 }
2588
2589 /* Need to wait a few seconds after link up to get diagnostic information from
2590  * the phy */
2591 static void igb_update_phy_info(unsigned long data)
2592 {
2593         struct igb_adapter *adapter = (struct igb_adapter *) data;
2594         igb_get_phy_info(&adapter->hw);
2595 }
2596
2597 /**
2598  * igb_has_link - check shared code for link and determine up/down
2599  * @adapter: pointer to driver private info
2600  **/
2601 static bool igb_has_link(struct igb_adapter *adapter)
2602 {
2603         struct e1000_hw *hw = &adapter->hw;
2604         bool link_active = false;
2605         s32 ret_val = 0;
2606
2607         /* get_link_status is set on LSC (link status) interrupt or
2608          * rx sequence error interrupt.  get_link_status will stay
2609          * false until the e1000_check_for_link establishes link
2610          * for copper adapters ONLY
2611          */
2612         switch (hw->phy.media_type) {
2613         case e1000_media_type_copper:
2614                 if (hw->mac.get_link_status) {
2615                         ret_val = hw->mac.ops.check_for_link(hw);
2616                         link_active = !hw->mac.get_link_status;
2617                 } else {
2618                         link_active = true;
2619                 }
2620                 break;
2621         case e1000_media_type_internal_serdes:
2622                 ret_val = hw->mac.ops.check_for_link(hw);
2623                 link_active = hw->mac.serdes_has_link;
2624                 break;
2625         default:
2626         case e1000_media_type_unknown:
2627                 break;
2628         }
2629
2630         return link_active;
2631 }
2632
2633 /**
2634  * igb_watchdog - Timer Call-back
2635  * @data: pointer to adapter cast into an unsigned long
2636  **/
2637 static void igb_watchdog(unsigned long data)
2638 {
2639         struct igb_adapter *adapter = (struct igb_adapter *)data;
2640         /* Do the rest outside of interrupt context */
2641         schedule_work(&adapter->watchdog_task);
2642 }
2643
2644 static void igb_watchdog_task(struct work_struct *work)
2645 {
2646         struct igb_adapter *adapter = container_of(work,
2647                                         struct igb_adapter, watchdog_task);
2648         struct e1000_hw *hw = &adapter->hw;
2649         struct net_device *netdev = adapter->netdev;
2650         struct igb_ring *tx_ring = adapter->tx_ring;
2651         u32 link;
2652         u32 eics = 0;
2653         int i;
2654
2655         link = igb_has_link(adapter);
2656         if ((netif_carrier_ok(netdev)) && link)
2657                 goto link_up;
2658
2659         if (link) {
2660                 if (!netif_carrier_ok(netdev)) {
2661                         u32 ctrl;
2662                         hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2663                                                    &adapter->link_speed,
2664                                                    &adapter->link_duplex);
2665
2666                         ctrl = rd32(E1000_CTRL);
2667                         /* Links status message must follow this format */
2668                         printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2669                                  "Flow Control: %s\n",
2670                                  netdev->name,
2671                                  adapter->link_speed,
2672                                  adapter->link_duplex == FULL_DUPLEX ?
2673                                  "Full Duplex" : "Half Duplex",
2674                                  ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2675                                  E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2676                                  E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2677                                  E1000_CTRL_TFCE) ? "TX" : "None")));
2678
2679                         /* tweak tx_queue_len according to speed/duplex and
2680                          * adjust the timeout factor */
2681                         netdev->tx_queue_len = adapter->tx_queue_len;
2682                         adapter->tx_timeout_factor = 1;
2683                         switch (adapter->link_speed) {
2684                         case SPEED_10:
2685                                 netdev->tx_queue_len = 10;
2686                                 adapter->tx_timeout_factor = 14;
2687                                 break;
2688                         case SPEED_100:
2689                                 netdev->tx_queue_len = 100;
2690                                 /* maybe add some timeout factor ? */
2691                                 break;
2692                         }
2693
2694                         netif_carrier_on(netdev);
2695
2696                         igb_ping_all_vfs(adapter);
2697
2698                         /* link state has changed, schedule phy info update */
2699                         if (!test_bit(__IGB_DOWN, &adapter->state))
2700                                 mod_timer(&adapter->phy_info_timer,
2701                                           round_jiffies(jiffies + 2 * HZ));
2702                 }
2703         } else {
2704                 if (netif_carrier_ok(netdev)) {
2705                         adapter->link_speed = 0;
2706                         adapter->link_duplex = 0;
2707                         /* Links status message must follow this format */
2708                         printk(KERN_INFO "igb: %s NIC Link is Down\n",
2709                                netdev->name);
2710                         netif_carrier_off(netdev);
2711
2712                         igb_ping_all_vfs(adapter);
2713
2714                         /* link state has changed, schedule phy info update */
2715                         if (!test_bit(__IGB_DOWN, &adapter->state))
2716                                 mod_timer(&adapter->phy_info_timer,
2717                                           round_jiffies(jiffies + 2 * HZ));
2718                 }
2719         }
2720
2721 link_up:
2722         igb_update_stats(adapter);
2723
2724         hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2725         adapter->tpt_old = adapter->stats.tpt;
2726         hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
2727         adapter->colc_old = adapter->stats.colc;
2728
2729         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2730         adapter->gorc_old = adapter->stats.gorc;
2731         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2732         adapter->gotc_old = adapter->stats.gotc;
2733
2734         igb_update_adaptive(&adapter->hw);
2735
2736         if (!netif_carrier_ok(netdev)) {
2737                 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
2738                         /* We've lost link, so the controller stops DMA,
2739                          * but we've got queued Tx work that's never going
2740                          * to get done, so reset controller to flush Tx.
2741                          * (Do the reset outside of interrupt context). */
2742                         adapter->tx_timeout_count++;
2743                         schedule_work(&adapter->reset_task);
2744                         /* return immediately since reset is imminent */
2745                         return;
2746                 }
2747         }
2748
2749         /* Cause software interrupt to ensure rx ring is cleaned */
2750         if (adapter->msix_entries) {
2751                 for (i = 0; i < adapter->num_rx_queues; i++)
2752                         eics |= adapter->rx_ring[i].eims_value;
2753                 wr32(E1000_EICS, eics);
2754         } else {
2755                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2756         }
2757
2758         /* Force detection of hung controller every watchdog period */
2759         tx_ring->detect_tx_hung = true;
2760
2761         /* Reset the timer */
2762         if (!test_bit(__IGB_DOWN, &adapter->state))
2763                 mod_timer(&adapter->watchdog_timer,
2764                           round_jiffies(jiffies + 2 * HZ));
2765 }
2766
2767 enum latency_range {
2768         lowest_latency = 0,
2769         low_latency = 1,
2770         bulk_latency = 2,
2771         latency_invalid = 255
2772 };
2773
2774
2775 /**
2776  * igb_update_ring_itr - update the dynamic ITR value based on packet size
2777  *
2778  *      Stores a new ITR value based on strictly on packet size.  This
2779  *      algorithm is less sophisticated than that used in igb_update_itr,
2780  *      due to the difficulty of synchronizing statistics across multiple
2781  *      receive rings.  The divisors and thresholds used by this fuction
2782  *      were determined based on theoretical maximum wire speed and testing
2783  *      data, in order to minimize response time while increasing bulk
2784  *      throughput.
2785  *      This functionality is controlled by the InterruptThrottleRate module
2786  *      parameter (see igb_param.c)
2787  *      NOTE:  This function is called only when operating in a multiqueue
2788  *             receive environment.
2789  * @rx_ring: pointer to ring
2790  **/
2791 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2792 {
2793         int new_val = rx_ring->itr_val;
2794         int avg_wire_size = 0;
2795         struct igb_adapter *adapter = rx_ring->adapter;
2796
2797         if (!rx_ring->total_packets)
2798                 goto clear_counts; /* no packets, so don't do anything */
2799
2800         /* For non-gigabit speeds, just fix the interrupt rate at 4000
2801          * ints/sec - ITR timer value of 120 ticks.
2802          */
2803         if (adapter->link_speed != SPEED_1000) {
2804                 new_val = 120;
2805                 goto set_itr_val;
2806         }
2807         avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2808
2809         /* Add 24 bytes to size to account for CRC, preamble, and gap */
2810         avg_wire_size += 24;
2811
2812         /* Don't starve jumbo frames */
2813         avg_wire_size = min(avg_wire_size, 3000);
2814
2815         /* Give a little boost to mid-size frames */
2816         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2817                 new_val = avg_wire_size / 3;
2818         else
2819                 new_val = avg_wire_size / 2;
2820
2821 set_itr_val:
2822         if (new_val != rx_ring->itr_val) {
2823                 rx_ring->itr_val = new_val;
2824                 rx_ring->set_itr = 1;
2825         }
2826 clear_counts:
2827         rx_ring->total_bytes = 0;
2828         rx_ring->total_packets = 0;
2829 }
2830
2831 /**
2832  * igb_update_itr - update the dynamic ITR value based on statistics
2833  *      Stores a new ITR value based on packets and byte
2834  *      counts during the last interrupt.  The advantage of per interrupt
2835  *      computation is faster updates and more accurate ITR for the current
2836  *      traffic pattern.  Constants in this function were computed
2837  *      based on theoretical maximum wire speed and thresholds were set based
2838  *      on testing data as well as attempting to minimize response time
2839  *      while increasing bulk throughput.
2840  *      this functionality is controlled by the InterruptThrottleRate module
2841  *      parameter (see igb_param.c)
2842  *      NOTE:  These calculations are only valid when operating in a single-
2843  *             queue environment.
2844  * @adapter: pointer to adapter
2845  * @itr_setting: current adapter->itr
2846  * @packets: the number of packets during this measurement interval
2847  * @bytes: the number of bytes during this measurement interval
2848  **/
2849 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2850                                    int packets, int bytes)
2851 {
2852         unsigned int retval = itr_setting;
2853
2854         if (packets == 0)
2855                 goto update_itr_done;
2856
2857         switch (itr_setting) {
2858         case lowest_latency:
2859                 /* handle TSO and jumbo frames */
2860                 if (bytes/packets > 8000)
2861                         retval = bulk_latency;
2862                 else if ((packets < 5) && (bytes > 512))
2863                         retval = low_latency;
2864                 break;
2865         case low_latency:  /* 50 usec aka 20000 ints/s */
2866                 if (bytes > 10000) {
2867                         /* this if handles the TSO accounting */
2868                         if (bytes/packets > 8000) {
2869                                 retval = bulk_latency;
2870                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2871                                 retval = bulk_latency;
2872                         } else if ((packets > 35)) {
2873                                 retval = lowest_latency;
2874                         }
2875                 } else if (bytes/packets > 2000) {
2876                         retval = bulk_latency;
2877                 } else if (packets <= 2 && bytes < 512) {
2878                         retval = lowest_latency;
2879                 }
2880                 break;
2881         case bulk_latency: /* 250 usec aka 4000 ints/s */
2882                 if (bytes > 25000) {
2883                         if (packets > 35)
2884                                 retval = low_latency;
2885                 } else if (bytes < 1500) {
2886                         retval = low_latency;
2887                 }
2888                 break;
2889         }
2890
2891 update_itr_done:
2892         return retval;
2893 }
2894
2895 static void igb_set_itr(struct igb_adapter *adapter)
2896 {
2897         u16 current_itr;
2898         u32 new_itr = adapter->itr;
2899
2900         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2901         if (adapter->link_speed != SPEED_1000) {
2902                 current_itr = 0;
2903                 new_itr = 4000;
2904                 goto set_itr_now;
2905         }
2906
2907         adapter->rx_itr = igb_update_itr(adapter,
2908                                     adapter->rx_itr,
2909                                     adapter->rx_ring->total_packets,
2910                                     adapter->rx_ring->total_bytes);
2911
2912         if (adapter->rx_ring->buddy) {
2913                 adapter->tx_itr = igb_update_itr(adapter,
2914                                             adapter->tx_itr,
2915                                             adapter->tx_ring->total_packets,
2916                                             adapter->tx_ring->total_bytes);
2917                 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2918         } else {
2919                 current_itr = adapter->rx_itr;
2920         }
2921
2922         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2923         if (adapter->itr_setting == 3 && current_itr == lowest_latency)
2924                 current_itr = low_latency;
2925
2926         switch (current_itr) {
2927         /* counts and packets in update_itr are dependent on these numbers */
2928         case lowest_latency:
2929                 new_itr = 56;  /* aka 70,000 ints/sec */
2930                 break;
2931         case low_latency:
2932                 new_itr = 196; /* aka 20,000 ints/sec */
2933                 break;
2934         case bulk_latency:
2935                 new_itr = 980; /* aka 4,000 ints/sec */
2936                 break;
2937         default:
2938                 break;
2939         }
2940
2941 set_itr_now:
2942         adapter->rx_ring->total_bytes = 0;
2943         adapter->rx_ring->total_packets = 0;
2944         if (adapter->rx_ring->buddy) {
2945                 adapter->rx_ring->buddy->total_bytes = 0;
2946                 adapter->rx_ring->buddy->total_packets = 0;
2947         }
2948
2949         if (new_itr != adapter->itr) {
2950                 /* this attempts to bias the interrupt rate towards Bulk
2951                  * by adding intermediate steps when interrupt rate is
2952                  * increasing */
2953                 new_itr = new_itr > adapter->itr ?
2954                              max((new_itr * adapter->itr) /
2955                                  (new_itr + (adapter->itr >> 2)), new_itr) :
2956                              new_itr;
2957                 /* Don't write the value here; it resets the adapter's
2958                  * internal timer, and causes us to delay far longer than
2959                  * we should between interrupts.  Instead, we write the ITR
2960                  * value at the beginning of the next interrupt so the timing
2961                  * ends up being correct.
2962                  */
2963                 adapter->itr = new_itr;
2964                 adapter->rx_ring->itr_val = new_itr;
2965                 adapter->rx_ring->set_itr = 1;
2966         }
2967
2968         return;
2969 }
2970
2971
2972 #define IGB_TX_FLAGS_CSUM               0x00000001
2973 #define IGB_TX_FLAGS_VLAN               0x00000002
2974 #define IGB_TX_FLAGS_TSO                0x00000004
2975 #define IGB_TX_FLAGS_IPV4               0x00000008
2976 #define IGB_TX_FLAGS_TSTAMP             0x00000010
2977 #define IGB_TX_FLAGS_VLAN_MASK  0xffff0000
2978 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2979
2980 static inline int igb_tso_adv(struct igb_adapter *adapter,
2981                               struct igb_ring *tx_ring,
2982                               struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2983 {
2984         struct e1000_adv_tx_context_desc *context_desc;
2985         unsigned int i;
2986         int err;
2987         struct igb_buffer *buffer_info;
2988         u32 info = 0, tu_cmd = 0;
2989         u32 mss_l4len_idx, l4len;
2990         *hdr_len = 0;
2991
2992         if (skb_header_cloned(skb)) {
2993                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2994                 if (err)
2995                         return err;
2996         }
2997
2998         l4len = tcp_hdrlen(skb);
2999         *hdr_len += l4len;
3000
3001         if (skb->protocol == htons(ETH_P_IP)) {
3002                 struct iphdr *iph = ip_hdr(skb);
3003                 iph->tot_len = 0;
3004                 iph->check = 0;
3005                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3006                                                          iph->daddr, 0,
3007                                                          IPPROTO_TCP,
3008                                                          0);
3009         } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3010                 ipv6_hdr(skb)->payload_len = 0;
3011                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3012                                                        &ipv6_hdr(skb)->daddr,
3013                                                        0, IPPROTO_TCP, 0);
3014         }
3015
3016         i = tx_ring->next_to_use;
3017
3018         buffer_info = &tx_ring->buffer_info[i];
3019         context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3020         /* VLAN MACLEN IPLEN */
3021         if (tx_flags & IGB_TX_FLAGS_VLAN)
3022                 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3023         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3024         *hdr_len += skb_network_offset(skb);
3025         info |= skb_network_header_len(skb);
3026         *hdr_len += skb_network_header_len(skb);
3027         context_desc->vlan_macip_lens = cpu_to_le32(info);
3028
3029         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3030         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3031
3032         if (skb->protocol == htons(ETH_P_IP))
3033                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3034         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3035
3036         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3037
3038         /* MSS L4LEN IDX */
3039         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3040         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3041
3042         /* For 82575, context index must be unique per ring. */
3043         if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
3044                 mss_l4len_idx |= tx_ring->queue_index << 4;
3045
3046         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3047         context_desc->seqnum_seed = 0;
3048
3049         buffer_info->time_stamp = jiffies;
3050         buffer_info->next_to_watch = i;
3051         buffer_info->dma = 0;
3052         i++;
3053         if (i == tx_ring->count)
3054                 i = 0;
3055
3056         tx_ring->next_to_use = i;
3057
3058         return true;
3059 }
3060
3061 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
3062                                         struct igb_ring *tx_ring,
3063                                         struct sk_buff *skb, u32 tx_flags)
3064 {
3065         struct e1000_adv_tx_context_desc *context_desc;
3066         unsigned int i;
3067         struct igb_buffer *buffer_info;
3068         u32 info = 0, tu_cmd = 0;
3069
3070         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3071             (tx_flags & IGB_TX_FLAGS_VLAN)) {
3072                 i = tx_ring->next_to_use;
3073                 buffer_info = &tx_ring->buffer_info[i];
3074                 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3075
3076                 if (tx_flags & IGB_TX_FLAGS_VLAN)
3077                         info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3078                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3079                 if (skb->ip_summed == CHECKSUM_PARTIAL)
3080                         info |= skb_network_header_len(skb);
3081
3082                 context_desc->vlan_macip_lens = cpu_to_le32(info);
3083
3084                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3085
3086                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3087                         __be16 protocol;
3088
3089                         if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3090                                 const struct vlan_ethhdr *vhdr =
3091                                           (const struct vlan_ethhdr*)skb->data;
3092
3093                                 protocol = vhdr->h_vlan_encapsulated_proto;
3094                         } else {
3095                                 protocol = skb->protocol;
3096                         }
3097
3098                         switch (protocol) {
3099                         case cpu_to_be16(ETH_P_IP):
3100                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3101                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3102                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3103                                 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3104                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3105                                 break;
3106                         case cpu_to_be16(ETH_P_IPV6):
3107                                 /* XXX what about other V6 headers?? */
3108                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3109                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3110                                 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3111                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3112                                 break;
3113                         default:
3114                                 if (unlikely(net_ratelimit()))
3115                                         dev_warn(&adapter->pdev->dev,
3116                                             "partial checksum but proto=%x!\n",
3117                                             skb->protocol);
3118                                 break;
3119                         }
3120                 }
3121
3122                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3123                 context_desc->seqnum_seed = 0;
3124                 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
3125                         context_desc->mss_l4len_idx =
3126                                 cpu_to_le32(tx_ring->queue_index << 4);
3127                 else
3128                         context_desc->mss_l4len_idx = 0;
3129
3130                 buffer_info->time_stamp = jiffies;
3131                 buffer_info->next_to_watch = i;
3132                 buffer_info->dma = 0;
3133
3134                 i++;
3135                 if (i == tx_ring->count)
3136                         i = 0;
3137                 tx_ring->next_to_use = i;
3138
3139                 return true;
3140         }
3141         return false;
3142 }
3143
3144 #define IGB_MAX_TXD_PWR 16
3145 #define IGB_MAX_DATA_PER_TXD    (1<<IGB_MAX_TXD_PWR)
3146
3147 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
3148                                  struct igb_ring *tx_ring, struct sk_buff *skb,
3149                                  unsigned int first)
3150 {
3151         struct igb_buffer *buffer_info;
3152         unsigned int len = skb_headlen(skb);
3153         unsigned int count = 0, i;
3154         unsigned int f;
3155         dma_addr_t *map;
3156
3157         i = tx_ring->next_to_use;
3158
3159         if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
3160                 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3161                 return 0;
3162         }
3163
3164         map = skb_shinfo(skb)->dma_maps;
3165
3166         buffer_info = &tx_ring->buffer_info[i];
3167         BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3168         buffer_info->length = len;
3169         /* set time_stamp *before* dma to help avoid a possible race */
3170         buffer_info->time_stamp = jiffies;
3171         buffer_info->next_to_watch = i;
3172         buffer_info->dma = skb_shinfo(skb)->dma_head;
3173
3174         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3175                 struct skb_frag_struct *frag;
3176
3177                 i++;
3178                 if (i == tx_ring->count)
3179                         i = 0;
3180
3181                 frag = &skb_shinfo(skb)->frags[f];
3182                 len = frag->size;
3183
3184                 buffer_info = &tx_ring->buffer_info[i];
3185                 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3186                 buffer_info->length = len;
3187                 buffer_info->time_stamp = jiffies;
3188                 buffer_info->next_to_watch = i;
3189                 buffer_info->dma = map[count];
3190                 count++;
3191         }
3192
3193         tx_ring->buffer_info[i].skb = skb;
3194         tx_ring->buffer_info[first].next_to_watch = i;
3195
3196         return count + 1;
3197 }
3198
3199 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
3200                                     struct igb_ring *tx_ring,
3201                                     int tx_flags, int count, u32 paylen,
3202                                     u8 hdr_len)
3203 {
3204         union e1000_adv_tx_desc *tx_desc = NULL;
3205         struct igb_buffer *buffer_info;
3206         u32 olinfo_status = 0, cmd_type_len;
3207         unsigned int i;
3208
3209         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3210                         E1000_ADVTXD_DCMD_DEXT);
3211
3212         if (tx_flags & IGB_TX_FLAGS_VLAN)
3213                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3214
3215         if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3216                 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3217
3218         if (tx_flags & IGB_TX_FLAGS_TSO) {
3219                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3220
3221                 /* insert tcp checksum */
3222                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3223
3224                 /* insert ip checksum */
3225                 if (tx_flags & IGB_TX_FLAGS_IPV4)
3226                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3227
3228         } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3229                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3230         }
3231
3232         if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
3233             (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
3234                          IGB_TX_FLAGS_VLAN)))
3235                 olinfo_status |= tx_ring->queue_index << 4;
3236
3237         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3238
3239         i = tx_ring->next_to_use;
3240         while (count--) {
3241                 buffer_info = &tx_ring->buffer_info[i];
3242                 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3243                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3244                 tx_desc->read.cmd_type_len =
3245                         cpu_to_le32(cmd_type_len | buffer_info->length);
3246                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3247                 i++;
3248                 if (i == tx_ring->count)
3249                         i = 0;
3250         }
3251
3252         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
3253         /* Force memory writes to complete before letting h/w
3254          * know there are new descriptors to fetch.  (Only
3255          * applicable for weak-ordered memory model archs,
3256          * such as IA-64). */
3257         wmb();
3258
3259         tx_ring->next_to_use = i;
3260         writel(i, adapter->hw.hw_addr + tx_ring->tail);
3261         /* we need this if more than one processor can write to our tail
3262          * at a time, it syncronizes IO on IA64/Altix systems */
3263         mmiowb();
3264 }
3265
3266 static int __igb_maybe_stop_tx(struct net_device *netdev,
3267                                struct igb_ring *tx_ring, int size)
3268 {
3269         struct igb_adapter *adapter = netdev_priv(netdev);
3270
3271         netif_stop_subqueue(netdev, tx_ring->queue_index);
3272
3273         /* Herbert's original patch had:
3274          *  smp_mb__after_netif_stop_queue();
3275          * but since that doesn't exist yet, just open code it. */
3276         smp_mb();
3277
3278         /* We need to check again in a case another CPU has just
3279          * made room available. */
3280         if (igb_desc_unused(tx_ring) < size)
3281                 return -EBUSY;
3282
3283         /* A reprieve! */
3284         netif_wake_subqueue(netdev, tx_ring->queue_index);
3285         ++adapter->restart_queue;
3286         return 0;
3287 }
3288
3289 static int igb_maybe_stop_tx(struct net_device *netdev,
3290                              struct igb_ring *tx_ring, int size)
3291 {
3292         if (igb_desc_unused(tx_ring) >= size)
3293                 return 0;
3294         return __igb_maybe_stop_tx(netdev, tx_ring, size);
3295 }
3296
3297 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
3298                                    struct net_device *netdev,
3299                                    struct igb_ring *tx_ring)
3300 {
3301         struct igb_adapter *adapter = netdev_priv(netdev);
3302         unsigned int first;
3303         unsigned int tx_flags = 0;
3304         u8 hdr_len = 0;
3305         int count = 0;
3306         int tso = 0;
3307         union skb_shared_tx *shtx;
3308
3309         if (test_bit(__IGB_DOWN, &adapter->state)) {
3310                 dev_kfree_skb_any(skb);
3311                 return NETDEV_TX_OK;
3312         }
3313
3314         if (skb->len <= 0) {
3315                 dev_kfree_skb_any(skb);
3316                 return NETDEV_TX_OK;
3317         }
3318
3319         /* need: 1 descriptor per page,
3320          *       + 2 desc gap to keep tail from touching head,
3321          *       + 1 desc for skb->data,
3322          *       + 1 desc for context descriptor,
3323          * otherwise try next time */
3324         if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3325                 /* this is a hard error */
3326                 return NETDEV_TX_BUSY;
3327         }
3328
3329         /*
3330          * TODO: check that there currently is no other packet with
3331          * time stamping in the queue
3332          *
3333          * When doing time stamping, keep the connection to the socket
3334          * a while longer: it is still needed by skb_hwtstamp_tx(),
3335          * called either in igb_tx_hwtstamp() or by our caller when
3336          * doing software time stamping.
3337          */
3338         shtx = skb_tx(skb);
3339         if (unlikely(shtx->hardware)) {
3340                 shtx->in_progress = 1;
3341                 tx_flags |= IGB_TX_FLAGS_TSTAMP;
3342         }
3343
3344         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3345                 tx_flags |= IGB_TX_FLAGS_VLAN;
3346                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3347         }
3348
3349         if (skb->protocol == htons(ETH_P_IP))
3350                 tx_flags |= IGB_TX_FLAGS_IPV4;
3351
3352         first = tx_ring->next_to_use;
3353         tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
3354                                               &hdr_len) : 0;
3355
3356         if (tso < 0) {
3357                 dev_kfree_skb_any(skb);
3358                 return NETDEV_TX_OK;
3359         }
3360
3361         if (tso)
3362                 tx_flags |= IGB_TX_FLAGS_TSO;
3363         else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags) &&
3364                  (skb->ip_summed == CHECKSUM_PARTIAL))
3365                 tx_flags |= IGB_TX_FLAGS_CSUM;
3366
3367         /*
3368          * count reflects descriptors mapped, if 0 then mapping error
3369          * has occured and we need to rewind the descriptor queue
3370          */
3371         count = igb_tx_map_adv(adapter, tx_ring, skb, first);
3372
3373         if (count) {
3374                 igb_tx_queue_adv(adapter, tx_ring, tx_flags, count,
3375                                  skb->len, hdr_len);
3376                 /* Make sure there is space in the ring for the next send. */
3377                 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3378         } else {
3379                 dev_kfree_skb_any(skb);
3380                 tx_ring->buffer_info[first].time_stamp = 0;
3381                 tx_ring->next_to_use = first;
3382         }
3383
3384         return NETDEV_TX_OK;
3385 }
3386
3387 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3388 {
3389         struct igb_adapter *adapter = netdev_priv(netdev);
3390         struct igb_ring *tx_ring;
3391
3392         int r_idx = 0;
3393         r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3394         tx_ring = adapter->multi_tx_table[r_idx];
3395
3396         /* This goes back to the question of how to logically map a tx queue
3397          * to a flow.  Right now, performance is impacted slightly negatively
3398          * if using multiple tx queues.  If the stack breaks away from a
3399          * single qdisc implementation, we can look at this again. */
3400         return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3401 }
3402
3403 /**
3404  * igb_tx_timeout - Respond to a Tx Hang
3405  * @netdev: network interface device structure
3406  **/
3407 static void igb_tx_timeout(struct net_device *netdev)
3408 {
3409         struct igb_adapter *adapter = netdev_priv(netdev);
3410         struct e1000_hw *hw = &adapter->hw;
3411
3412         /* Do the reset outside of interrupt context */
3413         adapter->tx_timeout_count++;
3414         schedule_work(&adapter->reset_task);
3415         wr32(E1000_EICS,
3416              (adapter->eims_enable_mask & ~adapter->eims_other));
3417 }
3418
3419 static void igb_reset_task(struct work_struct *work)
3420 {
3421         struct igb_adapter *adapter;
3422         adapter = container_of(work, struct igb_adapter, reset_task);
3423
3424         igb_reinit_locked(adapter);
3425 }
3426
3427 /**
3428  * igb_get_stats - Get System Network Statistics
3429  * @netdev: network interface device structure
3430  *
3431  * Returns the address of the device statistics structure.
3432  * The statistics are actually updated from the timer callback.
3433  **/
3434 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3435 {
3436         struct igb_adapter *adapter = netdev_priv(netdev);
3437
3438         /* only return the current stats */
3439         return &adapter->net_stats;
3440 }
3441
3442 /**
3443  * igb_change_mtu - Change the Maximum Transfer Unit
3444  * @netdev: network interface device structure
3445  * @new_mtu: new value for maximum frame size
3446  *
3447  * Returns 0 on success, negative on failure
3448  **/
3449 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3450 {
3451         struct igb_adapter *adapter = netdev_priv(netdev);
3452         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3453
3454         if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3455             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3456                 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3457                 return -EINVAL;
3458         }
3459
3460         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3461                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3462                 return -EINVAL;
3463         }
3464
3465         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3466                 msleep(1);
3467
3468         /* igb_down has a dependency on max_frame_size */
3469         adapter->max_frame_size = max_frame;
3470         if (netif_running(netdev))
3471                 igb_down(adapter);
3472
3473         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3474          * means we reserve 2 more, this pushes us to allocate from the next
3475          * larger slab size.
3476          * i.e. RXBUFFER_2048 --> size-4096 slab
3477          */
3478
3479         if (max_frame <= IGB_RXBUFFER_256)
3480                 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3481         else if (max_frame <= IGB_RXBUFFER_512)
3482                 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3483         else if (max_frame <= IGB_RXBUFFER_1024)
3484                 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3485         else if (max_frame <= IGB_RXBUFFER_2048)
3486                 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3487         else
3488 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3489                 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3490 #else
3491                 adapter->rx_buffer_len = PAGE_SIZE / 2;
3492 #endif
3493
3494         /* if sr-iov is enabled we need to force buffer size to 1K or larger */
3495         if (adapter->vfs_allocated_count &&
3496             (adapter->rx_buffer_len < IGB_RXBUFFER_1024))
3497                 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3498
3499         /* adjust allocation if LPE protects us, and we aren't using SBP */
3500         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3501              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3502                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3503
3504         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3505                  netdev->mtu, new_mtu);
3506         netdev->mtu = new_mtu;
3507
3508         if (netif_running(netdev))
3509                 igb_up(adapter);
3510         else
3511                 igb_reset(adapter);
3512
3513         clear_bit(__IGB_RESETTING, &adapter->state);
3514
3515         return 0;
3516 }
3517
3518 /**
3519  * igb_update_stats - Update the board statistics counters
3520  * @adapter: board private structure
3521  **/
3522
3523 void igb_update_stats(struct igb_adapter *adapter)
3524 {
3525         struct e1000_hw *hw = &adapter->hw;
3526         struct pci_dev *pdev = adapter->pdev;
3527         u16 phy_tmp;
3528
3529 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3530
3531         /*
3532          * Prevent stats update while adapter is being reset, or if the pci
3533          * connection is down.
3534          */
3535         if (adapter->link_speed == 0)
3536                 return;
3537         if (pci_channel_offline(pdev))
3538                 return;
3539
3540         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3541         adapter->stats.gprc += rd32(E1000_GPRC);
3542         adapter->stats.gorc += rd32(E1000_GORCL);
3543         rd32(E1000_GORCH); /* clear GORCL */
3544         adapter->stats.bprc += rd32(E1000_BPRC);
3545         adapter->stats.mprc += rd32(E1000_MPRC);
3546         adapter->stats.roc += rd32(E1000_ROC);
3547
3548         adapter->stats.prc64 += rd32(E1000_PRC64);
3549         adapter->stats.prc127 += rd32(E1000_PRC127);
3550         adapter->stats.prc255 += rd32(E1000_PRC255);
3551         adapter->stats.prc511 += rd32(E1000_PRC511);
3552         adapter->stats.prc1023 += rd32(E1000_PRC1023);
3553         adapter->stats.prc1522 += rd32(E1000_PRC1522);
3554         adapter->stats.symerrs += rd32(E1000_SYMERRS);
3555         adapter->stats.sec += rd32(E1000_SEC);
3556
3557         adapter->stats.mpc += rd32(E1000_MPC);
3558         adapter->stats.scc += rd32(E1000_SCC);
3559         adapter->stats.ecol += rd32(E1000_ECOL);
3560         adapter->stats.mcc += rd32(E1000_MCC);
3561         adapter->stats.latecol += rd32(E1000_LATECOL);
3562         adapter->stats.dc += rd32(E1000_DC);
3563         adapter->stats.rlec += rd32(E1000_RLEC);
3564         adapter->stats.xonrxc += rd32(E1000_XONRXC);
3565         adapter->stats.xontxc += rd32(E1000_XONTXC);
3566         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3567         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3568         adapter->stats.fcruc += rd32(E1000_FCRUC);
3569         adapter->stats.gptc += rd32(E1000_GPTC);
3570         adapter->stats.gotc += rd32(E1000_GOTCL);
3571         rd32(E1000_GOTCH); /* clear GOTCL */
3572         adapter->stats.rnbc += rd32(E1000_RNBC);
3573         adapter->stats.ruc += rd32(E1000_RUC);
3574         adapter->stats.rfc += rd32(E1000_RFC);
3575         adapter->stats.rjc += rd32(E1000_RJC);
3576         adapter->stats.tor += rd32(E1000_TORH);
3577         adapter->stats.tot += rd32(E1000_TOTH);
3578         adapter->stats.tpr += rd32(E1000_TPR);
3579
3580         adapter->stats.ptc64 += rd32(E1000_PTC64);
3581         adapter->stats.ptc127 += rd32(E1000_PTC127);
3582         adapter->stats.ptc255 += rd32(E1000_PTC255);
3583         adapter->stats.ptc511 += rd32(E1000_PTC511);
3584         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3585         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3586
3587         adapter->stats.mptc += rd32(E1000_MPTC);
3588         adapter->stats.bptc += rd32(E1000_BPTC);
3589
3590         /* used for adaptive IFS */
3591
3592         hw->mac.tx_packet_delta = rd32(E1000_TPT);
3593         adapter->stats.tpt += hw->mac.tx_packet_delta;
3594         hw->mac.collision_delta = rd32(E1000_COLC);
3595         adapter->stats.colc += hw->mac.collision_delta;
3596
3597         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3598         adapter->stats.rxerrc += rd32(E1000_RXERRC);
3599         adapter->stats.tncrs += rd32(E1000_TNCRS);
3600         adapter->stats.tsctc += rd32(E1000_TSCTC);
3601         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3602
3603         adapter->stats.iac += rd32(E1000_IAC);
3604         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3605         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3606         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3607         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3608         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3609         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3610         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3611         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3612
3613         /* Fill out the OS statistics structure */
3614         adapter->net_stats.multicast = adapter->stats.mprc;
3615         adapter->net_stats.collisions = adapter->stats.colc;
3616
3617         /* Rx Errors */
3618
3619         if (hw->mac.type != e1000_82575) {
3620                 u32 rqdpc_tmp;
3621                 u64 rqdpc_total = 0;
3622                 int i;
3623                 /* Read out drops stats per RX queue.  Notice RQDPC (Receive
3624                  * Queue Drop Packet Count) stats only gets incremented, if
3625                  * the DROP_EN but it set (in the SRRCTL register for that
3626                  * queue).  If DROP_EN bit is NOT set, then the some what
3627                  * equivalent count is stored in RNBC (not per queue basis).
3628                  * Also note the drop count is due to lack of available
3629                  * descriptors.
3630                  */
3631                 for (i = 0; i < adapter->num_rx_queues; i++) {
3632                         rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0xFFF;
3633                         adapter->rx_ring[i].rx_stats.drops += rqdpc_tmp;
3634                         rqdpc_total += adapter->rx_ring[i].rx_stats.drops;
3635                 }
3636                 adapter->net_stats.rx_fifo_errors = rqdpc_total;
3637         }
3638
3639         /* Note RNBC (Receive No Buffers Count) is an not an exact
3640          * drop count as the hardware FIFO might save the day.  Thats
3641          * one of the reason for saving it in rx_fifo_errors, as its
3642          * potentially not a true drop.
3643          */
3644         adapter->net_stats.rx_fifo_errors += adapter->stats.rnbc;
3645
3646         /* RLEC on some newer hardware can be incorrect so build
3647          * our own version based on RUC and ROC */
3648         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3649                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3650                 adapter->stats.ruc + adapter->stats.roc +
3651                 adapter->stats.cexterr;
3652         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3653                                               adapter->stats.roc;
3654         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3655         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3656         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3657
3658         /* Tx Errors */
3659         adapter->net_stats.tx_errors = adapter->stats.ecol +
3660                                        adapter->stats.latecol;
3661         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3662         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3663         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3664
3665         /* Tx Dropped needs to be maintained elsewhere */
3666
3667         /* Phy Stats */
3668         if (hw->phy.media_type == e1000_media_type_copper) {
3669                 if ((adapter->link_speed == SPEED_1000) &&
3670                    (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3671                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3672                         adapter->phy_stats.idle_errors += phy_tmp;
3673                 }
3674         }
3675
3676         /* Management Stats */
3677         adapter->stats.mgptc += rd32(E1000_MGTPTC);
3678         adapter->stats.mgprc += rd32(E1000_MGTPRC);
3679         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3680 }
3681
3682 static irqreturn_t igb_msix_other(int irq, void *data)
3683 {
3684         struct net_device *netdev = data;
3685         struct igb_adapter *adapter = netdev_priv(netdev);
3686         struct e1000_hw *hw = &adapter->hw;
3687         u32 icr = rd32(E1000_ICR);
3688
3689         /* reading ICR causes bit 31 of EICR to be cleared */
3690
3691         if(icr & E1000_ICR_DOUTSYNC) {
3692                 /* HW is reporting DMA is out of sync */
3693                 adapter->stats.doosync++;
3694         }
3695
3696         /* Check for a mailbox event */
3697         if (icr & E1000_ICR_VMMB)
3698                 igb_msg_task(adapter);
3699
3700         if (icr & E1000_ICR_LSC) {
3701                 hw->mac.get_link_status = 1;
3702                 /* guard against interrupt when we're going down */
3703                 if (!test_bit(__IGB_DOWN, &adapter->state))
3704                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3705         }
3706
3707         wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_VMMB);
3708         wr32(E1000_EIMS, adapter->eims_other);
3709
3710         return IRQ_HANDLED;
3711 }
3712
3713 static irqreturn_t igb_msix_tx(int irq, void *data)
3714 {
3715         struct igb_ring *tx_ring = data;
3716         struct igb_adapter *adapter = tx_ring->adapter;
3717         struct e1000_hw *hw = &adapter->hw;
3718
3719 #ifdef CONFIG_IGB_DCA
3720         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3721                 igb_update_tx_dca(tx_ring);
3722 #endif
3723
3724         tx_ring->total_bytes = 0;
3725         tx_ring->total_packets = 0;
3726
3727         /* auto mask will automatically reenable the interrupt when we write
3728          * EICS */
3729         if (!igb_clean_tx_irq(tx_ring))
3730                 /* Ring was not completely cleaned, so fire another interrupt */
3731                 wr32(E1000_EICS, tx_ring->eims_value);
3732         else
3733                 wr32(E1000_EIMS, tx_ring->eims_value);
3734
3735         return IRQ_HANDLED;
3736 }
3737
3738 static void igb_write_itr(struct igb_ring *ring)
3739 {
3740         struct e1000_hw *hw = &ring->adapter->hw;
3741         if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3742                 switch (hw->mac.type) {
3743                 case e1000_82576:
3744                         wr32(ring->itr_register, ring->itr_val |
3745                              0x80000000);
3746                         break;
3747                 default:
3748                         wr32(ring->itr_register, ring->itr_val |
3749                              (ring->itr_val << 16));
3750                         break;
3751                 }
3752                 ring->set_itr = 0;
3753         }
3754 }
3755
3756 static irqreturn_t igb_msix_rx(int irq, void *data)
3757 {
3758         struct igb_ring *rx_ring = data;
3759
3760         /* Write the ITR value calculated at the end of the
3761          * previous interrupt.
3762          */
3763
3764         igb_write_itr(rx_ring);
3765
3766         if (napi_schedule_prep(&rx_ring->napi))
3767                 __napi_schedule(&rx_ring->napi);
3768
3769 #ifdef CONFIG_IGB_DCA
3770         if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
3771                 igb_update_rx_dca(rx_ring);
3772 #endif
3773                 return IRQ_HANDLED;
3774 }
3775
3776 #ifdef CONFIG_IGB_DCA
3777 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3778 {
3779         u32 dca_rxctrl;
3780         struct igb_adapter *adapter = rx_ring->adapter;
3781         struct e1000_hw *hw = &adapter->hw;
3782         int cpu = get_cpu();
3783         int q = rx_ring->reg_idx;
3784
3785         if (rx_ring->cpu != cpu) {
3786                 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3787                 if (hw->mac.type == e1000_82576) {
3788                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3789                         dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
3790                                       E1000_DCA_RXCTRL_CPUID_SHIFT;
3791                 } else {
3792                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3793                         dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
3794                 }
3795                 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3796                 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3797                 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3798                 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3799                 rx_ring->cpu = cpu;
3800         }
3801         put_cpu();
3802 }
3803
3804 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3805 {
3806         u32 dca_txctrl;
3807         struct igb_adapter *adapter = tx_ring->adapter;
3808         struct e1000_hw *hw = &adapter->hw;
3809         int cpu = get_cpu();
3810         int q = tx_ring->reg_idx;
3811
3812         if (tx_ring->cpu != cpu) {
3813                 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3814                 if (hw->mac.type == e1000_82576) {
3815                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3816                         dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
3817                                       E1000_DCA_TXCTRL_CPUID_SHIFT;
3818                 } else {
3819                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3820                         dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
3821                 }
3822                 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3823                 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3824                 tx_ring->cpu = cpu;
3825         }
3826         put_cpu();
3827 }
3828
3829 static void igb_setup_dca(struct igb_adapter *adapter)
3830 {
3831         struct e1000_hw *hw = &adapter->hw;
3832         int i;
3833
3834         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3835                 return;
3836
3837         /* Always use CB2 mode, difference is masked in the CB driver. */
3838         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
3839
3840         for (i = 0; i < adapter->num_tx_queues; i++) {
3841                 adapter->tx_ring[i].cpu = -1;
3842                 igb_update_tx_dca(&adapter->tx_ring[i]);
3843         }
3844         for (i = 0; i < adapter->num_rx_queues; i++) {
3845                 adapter->rx_ring[i].cpu = -1;
3846                 igb_update_rx_dca(&adapter->rx_ring[i]);
3847         }
3848 }
3849
3850 static int __igb_notify_dca(struct device *dev, void *data)
3851 {
3852         struct net_device *netdev = dev_get_drvdata(dev);
3853         struct igb_adapter *adapter = netdev_priv(netdev);
3854         struct e1000_hw *hw = &adapter->hw;
3855         unsigned long event = *(unsigned long *)data;
3856
3857         switch (event) {
3858         case DCA_PROVIDER_ADD:
3859                 /* if already enabled, don't do it again */
3860                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3861                         break;
3862                 /* Always use CB2 mode, difference is masked
3863                  * in the CB driver. */
3864                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
3865                 if (dca_add_requester(dev) == 0) {
3866                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
3867                         dev_info(&adapter->pdev->dev, "DCA enabled\n");
3868                         igb_setup_dca(adapter);
3869                         break;
3870                 }
3871                 /* Fall Through since DCA is disabled. */
3872         case DCA_PROVIDER_REMOVE:
3873                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3874                         /* without this a class_device is left
3875                          * hanging around in the sysfs model */
3876                         dca_remove_requester(dev);
3877                         dev_info(&adapter->pdev->dev, "DCA disabled\n");
3878                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3879                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3880                 }
3881                 break;
3882         }
3883
3884         return 0;
3885 }
3886
3887 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3888                           void *p)
3889 {
3890         int ret_val;
3891
3892         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3893                                          __igb_notify_dca);
3894
3895         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3896 }
3897 #endif /* CONFIG_IGB_DCA */
3898
3899 static void igb_ping_all_vfs(struct igb_adapter *adapter)
3900 {
3901         struct e1000_hw *hw = &adapter->hw;
3902         u32 ping;
3903         int i;
3904
3905         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
3906                 ping = E1000_PF_CONTROL_MSG;
3907                 if (adapter->vf_data[i].clear_to_send)
3908                         ping |= E1000_VT_MSGTYPE_CTS;
3909                 igb_write_mbx(hw, &ping, 1, i);
3910         }
3911 }
3912
3913 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
3914                                   u32 *msgbuf, u32 vf)
3915 {
3916         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
3917         u16 *hash_list = (u16 *)&msgbuf[1];
3918         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
3919         int i;
3920
3921         /* only up to 30 hash values supported */
3922         if (n > 30)
3923                 n = 30;
3924
3925         /* salt away the number of multi cast addresses assigned
3926          * to this VF for later use to restore when the PF multi cast
3927          * list changes
3928          */
3929         vf_data->num_vf_mc_hashes = n;
3930
3931         /* VFs are limited to using the MTA hash table for their multicast
3932          * addresses */
3933         for (i = 0; i < n; i++)
3934                 vf_data->vf_mc_hashes[i] = hash_list[i];;
3935
3936         /* Flush and reset the mta with the new values */
3937         igb_set_multi(adapter->netdev);
3938
3939         return 0;
3940 }
3941
3942 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
3943 {
3944         struct e1000_hw *hw = &adapter->hw;
3945         struct vf_data_storage *vf_data;
3946         int i, j;
3947
3948         for (i = 0; i < adapter->vfs_allocated_count; i++) {
3949                 vf_data = &adapter->vf_data[i];
3950                 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
3951                         igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
3952         }
3953 }
3954
3955 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
3956 {
3957         struct e1000_hw *hw = &adapter->hw;
3958         u32 pool_mask, reg, vid;
3959         int i;
3960
3961         pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
3962
3963         /* Find the vlan filter for this id */
3964         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3965                 reg = rd32(E1000_VLVF(i));
3966
3967                 /* remove the vf from the pool */
3968                 reg &= ~pool_mask;
3969
3970                 /* if pool is empty then remove entry from vfta */
3971                 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
3972                     (reg & E1000_VLVF_VLANID_ENABLE)) {
3973                         reg = 0;
3974                         vid = reg & E1000_VLVF_VLANID_MASK;
3975                         igb_vfta_set(hw, vid, false);
3976                 }
3977
3978                 wr32(E1000_VLVF(i), reg);
3979         }
3980 }
3981
3982 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
3983 {
3984         struct e1000_hw *hw = &adapter->hw;
3985         u32 reg, i;
3986
3987         /* It is an error to call this function when VFs are not enabled */
3988         if (!adapter->vfs_allocated_count)
3989                 return -1;
3990
3991         /* Find the vlan filter for this id */
3992         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3993                 reg = rd32(E1000_VLVF(i));
3994                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
3995                     vid == (reg & E1000_VLVF_VLANID_MASK))
3996                         break;
3997         }
3998
3999         if (add) {
4000                 if (i == E1000_VLVF_ARRAY_SIZE) {
4001                         /* Did not find a matching VLAN ID entry that was
4002                          * enabled.  Search for a free filter entry, i.e.
4003                          * one without the enable bit set
4004                          */
4005                         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4006                                 reg = rd32(E1000_VLVF(i));
4007                                 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4008                                         break;
4009                         }
4010                 }
4011                 if (i < E1000_VLVF_ARRAY_SIZE) {
4012                         /* Found an enabled/available entry */
4013                         reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4014
4015                         /* if !enabled we need to set this up in vfta */
4016                         if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
4017                                 /* add VID to filter table, if bit already set
4018                                  * PF must have added it outside of table */
4019                                 if (igb_vfta_set(hw, vid, true))
4020                                         reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT +
4021                                                 adapter->vfs_allocated_count);
4022                                 reg |= E1000_VLVF_VLANID_ENABLE;
4023                         }
4024                         reg &= ~E1000_VLVF_VLANID_MASK;
4025                         reg |= vid;
4026
4027                         wr32(E1000_VLVF(i), reg);
4028                         return 0;
4029                 }
4030         } else {
4031                 if (i < E1000_VLVF_ARRAY_SIZE) {
4032                         /* remove vf from the pool */
4033                         reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4034                         /* if pool is empty then remove entry from vfta */
4035                         if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4036                                 reg = 0;
4037                                 igb_vfta_set(hw, vid, false);
4038                         }
4039                         wr32(E1000_VLVF(i), reg);
4040                         return 0;
4041                 }
4042         }
4043         return -1;
4044 }
4045
4046 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4047 {
4048         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4049         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4050
4051         return igb_vlvf_set(adapter, vid, add, vf);
4052 }
4053
4054 static inline void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4055 {
4056         struct e1000_hw *hw = &adapter->hw;
4057
4058         /* disable mailbox functionality for vf */
4059         adapter->vf_data[vf].clear_to_send = false;
4060
4061         /* reset offloads to defaults */
4062         igb_set_vmolr(hw, vf);
4063
4064         /* reset vlans for device */
4065         igb_clear_vf_vfta(adapter, vf);
4066
4067         /* reset multicast table array for vf */
4068         adapter->vf_data[vf].num_vf_mc_hashes = 0;
4069
4070         /* Flush and reset the mta with the new values */
4071         igb_set_multi(adapter->netdev);
4072 }
4073
4074 static inline void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4075 {
4076         struct e1000_hw *hw = &adapter->hw;
4077         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4078         u32 reg, msgbuf[3];
4079         u8 *addr = (u8 *)(&msgbuf[1]);
4080
4081         /* process all the same items cleared in a function level reset */
4082         igb_vf_reset_event(adapter, vf);
4083
4084         /* set vf mac address */
4085         igb_rar_set(hw, vf_mac, vf + 1);
4086         igb_set_rah_pool(hw, vf, vf + 1);
4087
4088         /* enable transmit and receive for vf */
4089         reg = rd32(E1000_VFTE);
4090         wr32(E1000_VFTE, reg | (1 << vf));
4091         reg = rd32(E1000_VFRE);
4092         wr32(E1000_VFRE, reg | (1 << vf));
4093
4094         /* enable mailbox functionality for vf */
4095         adapter->vf_data[vf].clear_to_send = true;
4096
4097         /* reply to reset with ack and vf mac address */
4098         msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4099         memcpy(addr, vf_mac, 6);
4100         igb_write_mbx(hw, msgbuf, 3, vf);
4101 }
4102
4103 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4104 {
4105                 unsigned char *addr = (char *)&msg[1];
4106                 int err = -1;
4107
4108                 if (is_valid_ether_addr(addr))
4109                         err = igb_set_vf_mac(adapter, vf, addr);
4110
4111                 return err;
4112
4113 }
4114
4115 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4116 {
4117         struct e1000_hw *hw = &adapter->hw;
4118         u32 msg = E1000_VT_MSGTYPE_NACK;
4119
4120         /* if device isn't clear to send it shouldn't be reading either */
4121         if (!adapter->vf_data[vf].clear_to_send)
4122                 igb_write_mbx(hw, &msg, 1, vf);
4123 }
4124
4125
4126 static void igb_msg_task(struct igb_adapter *adapter)
4127 {
4128         struct e1000_hw *hw = &adapter->hw;
4129         u32 vf;
4130
4131         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4132                 /* process any reset requests */
4133                 if (!igb_check_for_rst(hw, vf)) {
4134                         adapter->vf_data[vf].clear_to_send = false;
4135                         igb_vf_reset_event(adapter, vf);
4136                 }
4137
4138                 /* process any messages pending */
4139                 if (!igb_check_for_msg(hw, vf))
4140                         igb_rcv_msg_from_vf(adapter, vf);
4141
4142                 /* process any acks */
4143                 if (!igb_check_for_ack(hw, vf))
4144                         igb_rcv_ack_from_vf(adapter, vf);
4145
4146         }
4147 }
4148
4149 static int igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4150 {
4151         u32 mbx_size = E1000_VFMAILBOX_SIZE;
4152         u32 msgbuf[mbx_size];
4153         struct e1000_hw *hw = &adapter->hw;
4154         s32 retval;
4155
4156         retval = igb_read_mbx(hw, msgbuf, mbx_size, vf);
4157
4158         if (retval)
4159                 dev_err(&adapter->pdev->dev,
4160                         "Error receiving message from VF\n");
4161
4162         /* this is a message we already processed, do nothing */
4163         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4164                 return retval;
4165
4166         /*
4167          * until the vf completes a reset it should not be
4168          * allowed to start any configuration.
4169          */
4170
4171         if (msgbuf[0] == E1000_VF_RESET) {
4172                 igb_vf_reset_msg(adapter, vf);
4173
4174                 return retval;
4175         }
4176
4177         if (!adapter->vf_data[vf].clear_to_send) {
4178                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4179                 igb_write_mbx(hw, msgbuf, 1, vf);
4180                 return retval;
4181         }
4182
4183         switch ((msgbuf[0] & 0xFFFF)) {
4184         case E1000_VF_SET_MAC_ADDR:
4185                 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4186                 break;
4187         case E1000_VF_SET_MULTICAST:
4188                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4189                 break;
4190         case E1000_VF_SET_LPE:
4191                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4192                 break;
4193         case E1000_VF_SET_VLAN:
4194                 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4195                 break;
4196         default:
4197                 dev_err(&adapter->pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4198                 retval = -1;
4199                 break;
4200         }
4201
4202         /* notify the VF of the results of what it sent us */
4203         if (retval)
4204                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4205         else
4206                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4207
4208         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4209
4210         igb_write_mbx(hw, msgbuf, 1, vf);
4211
4212         return retval;
4213 }
4214
4215 /**
4216  * igb_intr_msi - Interrupt Handler
4217  * @irq: interrupt number
4218  * @data: pointer to a network interface device structure
4219  **/
4220 static irqreturn_t igb_intr_msi(int irq, void *data)
4221 {
4222         struct net_device *netdev = data;
4223         struct igb_adapter *adapter = netdev_priv(netdev);
4224         struct e1000_hw *hw = &adapter->hw;
4225         /* read ICR disables interrupts using IAM */
4226         u32 icr = rd32(E1000_ICR);
4227
4228         igb_write_itr(adapter->rx_ring);
4229
4230         if(icr & E1000_ICR_DOUTSYNC) {
4231                 /* HW is reporting DMA is out of sync */
4232                 adapter->stats.doosync++;
4233         }
4234
4235         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4236                 hw->mac.get_link_status = 1;
4237                 if (!test_bit(__IGB_DOWN, &adapter->state))
4238                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
4239         }
4240
4241         napi_schedule(&adapter->rx_ring[0].napi);
4242
4243         return IRQ_HANDLED;
4244 }
4245
4246 /**
4247  * igb_intr - Legacy Interrupt Handler
4248  * @irq: interrupt number
4249  * @data: pointer to a network interface device structure
4250  **/
4251 static irqreturn_t igb_intr(int irq, void *data)
4252 {
4253         struct net_device *netdev = data;
4254         struct igb_adapter *adapter = netdev_priv(netdev);
4255         struct e1000_hw *hw = &adapter->hw;
4256         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
4257          * need for the IMC write */
4258         u32 icr = rd32(E1000_ICR);
4259         if (!icr)
4260                 return IRQ_NONE;  /* Not our interrupt */
4261
4262         igb_write_itr(adapter->rx_ring);
4263
4264         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4265          * not set, then the adapter didn't send an interrupt */
4266         if (!(icr & E1000_ICR_INT_ASSERTED))
4267                 return IRQ_NONE;
4268
4269         if(icr & E1000_ICR_DOUTSYNC) {
4270                 /* HW is reporting DMA is out of sync */
4271                 adapter->stats.doosync++;
4272         }
4273
4274         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4275                 hw->mac.get_link_status = 1;
4276                 /* guard against interrupt when we're going down */
4277                 if (!test_bit(__IGB_DOWN, &adapter->state))
4278                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
4279         }
4280
4281         napi_schedule(&adapter->rx_ring[0].napi);
4282
4283         return IRQ_HANDLED;
4284 }
4285
4286 static inline void igb_rx_irq_enable(struct igb_ring *rx_ring)
4287 {
4288         struct igb_adapter *adapter = rx_ring->adapter;
4289         struct e1000_hw *hw = &adapter->hw;
4290
4291         if (adapter->itr_setting & 3) {
4292                 if (adapter->num_rx_queues == 1)
4293                         igb_set_itr(adapter);
4294                 else
4295                         igb_update_ring_itr(rx_ring);
4296         }
4297
4298         if (!test_bit(__IGB_DOWN, &adapter->state)) {
4299                 if (adapter->msix_entries)
4300                         wr32(E1000_EIMS, rx_ring->eims_value);
4301                 else
4302                         igb_irq_enable(adapter);
4303         }
4304 }
4305
4306 /**
4307  * igb_poll - NAPI Rx polling callback
4308  * @napi: napi polling structure
4309  * @budget: count of how many packets we should handle
4310  **/
4311 static int igb_poll(struct napi_struct *napi, int budget)
4312 {
4313         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
4314         int work_done = 0;
4315
4316 #ifdef CONFIG_IGB_DCA
4317         if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
4318                 igb_update_rx_dca(rx_ring);
4319 #endif
4320         igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
4321
4322         if (rx_ring->buddy) {
4323 #ifdef CONFIG_IGB_DCA
4324                 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
4325                         igb_update_tx_dca(rx_ring->buddy);
4326 #endif
4327                 if (!igb_clean_tx_irq(rx_ring->buddy))
4328                         work_done = budget;
4329         }
4330
4331         /* If not enough Rx work done, exit the polling mode */
4332         if (work_done < budget) {
4333                 napi_complete(napi);
4334                 igb_rx_irq_enable(rx_ring);
4335         }
4336
4337         return work_done;
4338 }
4339
4340 /**
4341  * igb_hwtstamp - utility function which checks for TX time stamp
4342  * @adapter: board private structure
4343  * @skb: packet that was just sent
4344  *
4345  * If we were asked to do hardware stamping and such a time stamp is
4346  * available, then it must have been for this skb here because we only
4347  * allow only one such packet into the queue.
4348  */
4349 static void igb_tx_hwtstamp(struct igb_adapter *adapter, struct sk_buff *skb)
4350 {
4351         union skb_shared_tx *shtx = skb_tx(skb);
4352         struct e1000_hw *hw = &adapter->hw;
4353
4354         if (unlikely(shtx->hardware)) {
4355                 u32 valid = rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID;
4356                 if (valid) {
4357                         u64 regval = rd32(E1000_TXSTMPL);
4358                         u64 ns;
4359                         struct skb_shared_hwtstamps shhwtstamps;
4360
4361                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
4362                         regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4363                         ns = timecounter_cyc2time(&adapter->clock,
4364                                                   regval);
4365                         timecompare_update(&adapter->compare, ns);
4366                         shhwtstamps.hwtstamp = ns_to_ktime(ns);
4367                         shhwtstamps.syststamp =
4368                                 timecompare_transform(&adapter->compare, ns);
4369                         skb_tstamp_tx(skb, &shhwtstamps);
4370                 }
4371         }
4372 }
4373
4374 /**
4375  * igb_clean_tx_irq - Reclaim resources after transmit completes
4376  * @adapter: board private structure
4377  * returns true if ring is completely cleaned
4378  **/
4379 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
4380 {
4381         struct igb_adapter *adapter = tx_ring->adapter;
4382         struct net_device *netdev = adapter->netdev;
4383         struct e1000_hw *hw = &adapter->hw;
4384         struct igb_buffer *buffer_info;
4385         struct sk_buff *skb;
4386         union e1000_adv_tx_desc *tx_desc, *eop_desc;
4387         unsigned int total_bytes = 0, total_packets = 0;
4388         unsigned int i, eop, count = 0;
4389         bool cleaned = false;
4390
4391         i = tx_ring->next_to_clean;
4392         eop = tx_ring->buffer_info[i].next_to_watch;
4393         eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4394
4395         while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4396                (count < tx_ring->count)) {
4397                 for (cleaned = false; !cleaned; count++) {
4398                         tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4399                         buffer_info = &tx_ring->buffer_info[i];
4400                         cleaned = (i == eop);
4401                         skb = buffer_info->skb;
4402
4403                         if (skb) {
4404                                 unsigned int segs, bytecount;
4405                                 /* gso_segs is currently only valid for tcp */
4406                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
4407                                 /* multiply data chunks by size of headers */
4408                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
4409                                             skb->len;
4410                                 total_packets += segs;
4411                                 total_bytes += bytecount;
4412
4413                                 igb_tx_hwtstamp(adapter, skb);
4414                         }
4415
4416                         igb_unmap_and_free_tx_resource(adapter, buffer_info);
4417                         tx_desc->wb.status = 0;
4418
4419                         i++;
4420                         if (i == tx_ring->count)
4421                                 i = 0;
4422                 }
4423                 eop = tx_ring->buffer_info[i].next_to_watch;
4424                 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4425         }
4426
4427         tx_ring->next_to_clean = i;
4428
4429         if (unlikely(count &&
4430                      netif_carrier_ok(netdev) &&
4431                      igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4432                 /* Make sure that anybody stopping the queue after this
4433                  * sees the new next_to_clean.
4434                  */
4435                 smp_mb();
4436                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
4437                     !(test_bit(__IGB_DOWN, &adapter->state))) {
4438                         netif_wake_subqueue(netdev, tx_ring->queue_index);
4439                         ++adapter->restart_queue;
4440                 }
4441         }
4442
4443         if (tx_ring->detect_tx_hung) {
4444                 /* Detect a transmit hang in hardware, this serializes the
4445                  * check with the clearing of time_stamp and movement of i */
4446                 tx_ring->detect_tx_hung = false;
4447                 if (tx_ring->buffer_info[i].time_stamp &&
4448                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
4449                                (adapter->tx_timeout_factor * HZ))
4450                     && !(rd32(E1000_STATUS) &
4451                          E1000_STATUS_TXOFF)) {
4452
4453                         /* detected Tx unit hang */
4454                         dev_err(&adapter->pdev->dev,
4455                                 "Detected Tx Unit Hang\n"
4456                                 "  Tx Queue             <%d>\n"
4457                                 "  TDH                  <%x>\n"
4458                                 "  TDT                  <%x>\n"
4459                                 "  next_to_use          <%x>\n"
4460                                 "  next_to_clean        <%x>\n"
4461                                 "buffer_info[next_to_clean]\n"
4462                                 "  time_stamp           <%lx>\n"
4463                                 "  next_to_watch        <%x>\n"
4464                                 "  jiffies              <%lx>\n"
4465                                 "  desc.status          <%x>\n",
4466                                 tx_ring->queue_index,
4467                                 readl(adapter->hw.hw_addr + tx_ring->head),
4468                                 readl(adapter->hw.hw_addr + tx_ring->tail),
4469                                 tx_ring->next_to_use,
4470                                 tx_ring->next_to_clean,
4471                                 tx_ring->buffer_info[i].time_stamp,
4472                                 eop,
4473                                 jiffies,
4474                                 eop_desc->wb.status);
4475                         netif_stop_subqueue(netdev, tx_ring->queue_index);
4476                 }
4477         }
4478         tx_ring->total_bytes += total_bytes;
4479         tx_ring->total_packets += total_packets;
4480         tx_ring->tx_stats.bytes += total_bytes;
4481         tx_ring->tx_stats.packets += total_packets;
4482         adapter->net_stats.tx_bytes += total_bytes;
4483         adapter->net_stats.tx_packets += total_packets;
4484         return (count < tx_ring->count);
4485 }
4486
4487 /**
4488  * igb_receive_skb - helper function to handle rx indications
4489  * @ring: pointer to receive ring receving this packet
4490  * @status: descriptor status field as written by hardware
4491  * @rx_desc: receive descriptor containing vlan and type information.
4492  * @skb: pointer to sk_buff to be indicated to stack
4493  **/
4494 static void igb_receive_skb(struct igb_ring *ring, u8 status,
4495                             union e1000_adv_rx_desc * rx_desc,
4496                             struct sk_buff *skb)
4497 {
4498         struct igb_adapter * adapter = ring->adapter;
4499         bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
4500
4501         skb_record_rx_queue(skb, ring->queue_index);
4502         if (vlan_extracted)
4503                 vlan_gro_receive(&ring->napi, adapter->vlgrp,
4504                                  le16_to_cpu(rx_desc->wb.upper.vlan),
4505                                  skb);
4506         else
4507                 napi_gro_receive(&ring->napi, skb);
4508 }
4509
4510 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
4511                                        u32 status_err, struct sk_buff *skb)
4512 {
4513         skb->ip_summed = CHECKSUM_NONE;
4514
4515         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
4516         if ((status_err & E1000_RXD_STAT_IXSM) ||
4517             (adapter->flags & IGB_FLAG_RX_CSUM_DISABLED))
4518                 return;
4519         /* TCP/UDP checksum error bit is set */
4520         if (status_err &
4521             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
4522                 /*
4523                  * work around errata with sctp packets where the TCPE aka
4524                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
4525                  * packets, (aka let the stack check the crc32c)
4526                  */
4527                 if (!((adapter->hw.mac.type == e1000_82576) &&
4528                       (skb->len == 60)))
4529                         adapter->hw_csum_err++;
4530                 /* let the stack verify checksum errors */
4531                 return;
4532         }
4533         /* It must be a TCP or UDP packet with a valid checksum */
4534         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
4535                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4536
4537         dev_dbg(&adapter->pdev->dev, "cksum success: bits %08X\n", status_err);
4538         adapter->hw_csum_good++;
4539 }
4540
4541 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
4542                                  int *work_done, int budget)
4543 {
4544         struct igb_adapter *adapter = rx_ring->adapter;
4545         struct net_device *netdev = adapter->netdev;
4546         struct e1000_hw *hw = &adapter->hw;
4547         struct pci_dev *pdev = adapter->pdev;
4548         union e1000_adv_rx_desc *rx_desc , *next_rxd;
4549         struct igb_buffer *buffer_info , *next_buffer;
4550         struct sk_buff *skb;
4551         bool cleaned = false;
4552         int cleaned_count = 0;
4553         unsigned int total_bytes = 0, total_packets = 0;
4554         unsigned int i;
4555         u32 length, hlen, staterr;
4556
4557         i = rx_ring->next_to_clean;
4558         buffer_info = &rx_ring->buffer_info[i];
4559         rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4560         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4561
4562         while (staterr & E1000_RXD_STAT_DD) {
4563                 if (*work_done >= budget)
4564                         break;
4565                 (*work_done)++;
4566
4567                 skb = buffer_info->skb;
4568                 prefetch(skb->data - NET_IP_ALIGN);
4569                 buffer_info->skb = NULL;
4570
4571                 i++;
4572                 if (i == rx_ring->count)
4573                         i = 0;
4574                 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
4575                 prefetch(next_rxd);
4576                 next_buffer = &rx_ring->buffer_info[i];
4577
4578                 length = le16_to_cpu(rx_desc->wb.upper.length);
4579                 cleaned = true;
4580                 cleaned_count++;
4581
4582                 /* this is the fast path for the non-packet split case */
4583                 if (!adapter->rx_ps_hdr_size) {
4584                         pci_unmap_single(pdev, buffer_info->dma,
4585                                          adapter->rx_buffer_len,
4586                                          PCI_DMA_FROMDEVICE);
4587                         buffer_info->dma = 0;
4588                         skb_put(skb, length);
4589                         goto send_up;
4590                 }
4591
4592                 /* HW will not DMA in data larger than the given buffer, even
4593                  * if it parses the (NFS, of course) header to be larger.  In
4594                  * that case, it fills the header buffer and spills the rest
4595                  * into the page.
4596                  */
4597                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
4598                   E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4599                 if (hlen > adapter->rx_ps_hdr_size)
4600                         hlen = adapter->rx_ps_hdr_size;
4601
4602                 if (!skb_shinfo(skb)->nr_frags) {
4603                         pci_unmap_single(pdev, buffer_info->dma,
4604                                          adapter->rx_ps_hdr_size,
4605                                          PCI_DMA_FROMDEVICE);
4606                         buffer_info->dma = 0;
4607                         skb_put(skb, hlen);
4608                 }
4609
4610                 if (length) {
4611                         pci_unmap_page(pdev, buffer_info->page_dma,
4612                                        PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
4613                         buffer_info->page_dma = 0;
4614
4615                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
4616                                                 buffer_info->page,
4617                                                 buffer_info->page_offset,
4618                                                 length);
4619
4620                         if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
4621                             (page_count(buffer_info->page) != 1))
4622                                 buffer_info->page = NULL;
4623                         else
4624                                 get_page(buffer_info->page);
4625
4626                         skb->len += length;
4627                         skb->data_len += length;
4628
4629                         skb->truesize += length;
4630                 }
4631
4632                 if (!(staterr & E1000_RXD_STAT_EOP)) {
4633                         buffer_info->skb = next_buffer->skb;
4634                         buffer_info->dma = next_buffer->dma;
4635                         next_buffer->skb = skb;
4636                         next_buffer->dma = 0;
4637                         goto next_desc;
4638                 }
4639 send_up:
4640                 /*
4641                  * If this bit is set, then the RX registers contain
4642                  * the time stamp. No other packet will be time
4643                  * stamped until we read these registers, so read the
4644                  * registers to make them available again. Because
4645                  * only one packet can be time stamped at a time, we
4646                  * know that the register values must belong to this
4647                  * one here and therefore we don't need to compare
4648                  * any of the additional attributes stored for it.
4649                  *
4650                  * If nothing went wrong, then it should have a
4651                  * skb_shared_tx that we can turn into a
4652                  * skb_shared_hwtstamps.
4653                  *
4654                  * TODO: can time stamping be triggered (thus locking
4655                  * the registers) without the packet reaching this point
4656                  * here? In that case RX time stamping would get stuck.
4657                  *
4658                  * TODO: in "time stamp all packets" mode this bit is
4659                  * not set. Need a global flag for this mode and then
4660                  * always read the registers. Cannot be done without
4661                  * a race condition.
4662                  */
4663                 if (unlikely(staterr & E1000_RXD_STAT_TS)) {
4664                         u64 regval;
4665                         u64 ns;
4666                         struct skb_shared_hwtstamps *shhwtstamps =
4667                                 skb_hwtstamps(skb);
4668
4669                         WARN(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID),
4670                              "igb: no RX time stamp available for time stamped packet");
4671                         regval = rd32(E1000_RXSTMPL);
4672                         regval |= (u64)rd32(E1000_RXSTMPH) << 32;
4673                         ns = timecounter_cyc2time(&adapter->clock, regval);
4674                         timecompare_update(&adapter->compare, ns);
4675                         memset(shhwtstamps, 0, sizeof(*shhwtstamps));
4676                         shhwtstamps->hwtstamp = ns_to_ktime(ns);
4677                         shhwtstamps->syststamp =
4678                                 timecompare_transform(&adapter->compare, ns);
4679                 }
4680
4681                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
4682                         dev_kfree_skb_irq(skb);
4683                         goto next_desc;
4684                 }
4685
4686                 total_bytes += skb->len;
4687                 total_packets++;
4688
4689                 igb_rx_checksum_adv(adapter, staterr, skb);
4690
4691                 skb->protocol = eth_type_trans(skb, netdev);
4692
4693                 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
4694
4695 next_desc:
4696                 rx_desc->wb.upper.status_error = 0;
4697
4698                 /* return some buffers to hardware, one at a time is too slow */
4699                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
4700                         igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4701                         cleaned_count = 0;
4702                 }
4703
4704                 /* use prefetched values */
4705                 rx_desc = next_rxd;
4706                 buffer_info = next_buffer;
4707                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4708         }
4709
4710         rx_ring->next_to_clean = i;
4711         cleaned_count = igb_desc_unused(rx_ring);
4712
4713         if (cleaned_count)
4714                 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4715
4716         rx_ring->total_packets += total_packets;
4717         rx_ring->total_bytes += total_bytes;
4718         rx_ring->rx_stats.packets += total_packets;
4719         rx_ring->rx_stats.bytes += total_bytes;
4720         adapter->net_stats.rx_bytes += total_bytes;
4721         adapter->net_stats.rx_packets += total_packets;
4722         return cleaned;
4723 }
4724
4725 /**
4726  * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
4727  * @adapter: address of board private structure
4728  **/
4729 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
4730                                      int cleaned_count)
4731 {
4732         struct igb_adapter *adapter = rx_ring->adapter;
4733         struct net_device *netdev = adapter->netdev;
4734         struct pci_dev *pdev = adapter->pdev;
4735         union e1000_adv_rx_desc *rx_desc;
4736         struct igb_buffer *buffer_info;
4737         struct sk_buff *skb;
4738         unsigned int i;
4739         int bufsz;
4740
4741         i = rx_ring->next_to_use;
4742         buffer_info = &rx_ring->buffer_info[i];
4743
4744         if (adapter->rx_ps_hdr_size)
4745                 bufsz = adapter->rx_ps_hdr_size;
4746         else
4747                 bufsz = adapter->rx_buffer_len;
4748
4749         while (cleaned_count--) {
4750                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4751
4752                 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
4753                         if (!buffer_info->page) {
4754                                 buffer_info->page = alloc_page(GFP_ATOMIC);
4755                                 if (!buffer_info->page) {
4756                                         adapter->alloc_rx_buff_failed++;
4757                                         goto no_buffers;
4758                                 }
4759                                 buffer_info->page_offset = 0;
4760                         } else {
4761                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
4762                         }
4763                         buffer_info->page_dma =
4764                                 pci_map_page(pdev, buffer_info->page,
4765                                              buffer_info->page_offset,
4766                                              PAGE_SIZE / 2,
4767                                              PCI_DMA_FROMDEVICE);
4768                 }
4769
4770                 if (!buffer_info->skb) {
4771                         skb = netdev_alloc_skb(netdev, bufsz + NET_IP_ALIGN);
4772                         if (!skb) {
4773                                 adapter->alloc_rx_buff_failed++;
4774                                 goto no_buffers;
4775                         }
4776
4777                         /* Make buffer alignment 2 beyond a 16 byte boundary
4778                          * this will result in a 16 byte aligned IP header after
4779                          * the 14 byte MAC header is removed
4780                          */
4781                         skb_reserve(skb, NET_IP_ALIGN);
4782
4783                         buffer_info->skb = skb;
4784                         buffer_info->dma = pci_map_single(pdev, skb->data,
4785                                                           bufsz,
4786                                                           PCI_DMA_FROMDEVICE);
4787                 }
4788                 /* Refresh the desc even if buffer_addrs didn't change because
4789                  * each write-back erases this info. */
4790                 if (adapter->rx_ps_hdr_size) {
4791                         rx_desc->read.pkt_addr =
4792                              cpu_to_le64(buffer_info->page_dma);
4793                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4794                 } else {
4795                         rx_desc->read.pkt_addr =
4796                              cpu_to_le64(buffer_info->dma);
4797                         rx_desc->read.hdr_addr = 0;
4798                 }
4799
4800                 i++;
4801                 if (i == rx_ring->count)
4802                         i = 0;
4803                 buffer_info = &rx_ring->buffer_info[i];
4804         }
4805
4806 no_buffers:
4807         if (rx_ring->next_to_use != i) {
4808                 rx_ring->next_to_use = i;
4809                 if (i == 0)
4810                         i = (rx_ring->count - 1);
4811                 else
4812                         i--;
4813
4814                 /* Force memory writes to complete before letting h/w
4815                  * know there are new descriptors to fetch.  (Only
4816                  * applicable for weak-ordered memory model archs,
4817                  * such as IA-64). */
4818                 wmb();
4819                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4820         }
4821 }
4822
4823 /**
4824  * igb_mii_ioctl -
4825  * @netdev:
4826  * @ifreq:
4827  * @cmd:
4828  **/
4829 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4830 {
4831         struct igb_adapter *adapter = netdev_priv(netdev);
4832         struct mii_ioctl_data *data = if_mii(ifr);
4833
4834         if (adapter->hw.phy.media_type != e1000_media_type_copper)
4835                 return -EOPNOTSUPP;
4836
4837         switch (cmd) {
4838         case SIOCGMIIPHY:
4839                 data->phy_id = adapter->hw.phy.addr;
4840                 break;
4841         case SIOCGMIIREG:
4842                 if (!capable(CAP_NET_ADMIN))
4843                         return -EPERM;
4844                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4845                                      &data->val_out))
4846                         return -EIO;
4847                 break;
4848         case SIOCSMIIREG:
4849         default:
4850                 return -EOPNOTSUPP;
4851         }
4852         return 0;
4853 }
4854
4855 /**
4856  * igb_hwtstamp_ioctl - control hardware time stamping
4857  * @netdev:
4858  * @ifreq:
4859  * @cmd:
4860  *
4861  * Outgoing time stamping can be enabled and disabled. Play nice and
4862  * disable it when requested, although it shouldn't case any overhead
4863  * when no packet needs it. At most one packet in the queue may be
4864  * marked for time stamping, otherwise it would be impossible to tell
4865  * for sure to which packet the hardware time stamp belongs.
4866  *
4867  * Incoming time stamping has to be configured via the hardware
4868  * filters. Not all combinations are supported, in particular event
4869  * type has to be specified. Matching the kind of event packet is
4870  * not supported, with the exception of "all V2 events regardless of
4871  * level 2 or 4".
4872  *
4873  **/
4874 static int igb_hwtstamp_ioctl(struct net_device *netdev,
4875                               struct ifreq *ifr, int cmd)
4876 {
4877         struct igb_adapter *adapter = netdev_priv(netdev);
4878         struct e1000_hw *hw = &adapter->hw;
4879         struct hwtstamp_config config;
4880         u32 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4881         u32 tsync_rx_ctl_bit = E1000_TSYNCRXCTL_ENABLED;
4882         u32 tsync_rx_ctl_type = 0;
4883         u32 tsync_rx_cfg = 0;
4884         int is_l4 = 0;
4885         int is_l2 = 0;
4886         short port = 319; /* PTP */
4887         u32 regval;
4888
4889         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
4890                 return -EFAULT;
4891
4892         /* reserved for future extensions */
4893         if (config.flags)
4894                 return -EINVAL;
4895
4896         switch (config.tx_type) {
4897         case HWTSTAMP_TX_OFF:
4898                 tsync_tx_ctl_bit = 0;
4899                 break;
4900         case HWTSTAMP_TX_ON:
4901                 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4902                 break;
4903         default:
4904                 return -ERANGE;
4905         }
4906
4907         switch (config.rx_filter) {
4908         case HWTSTAMP_FILTER_NONE:
4909                 tsync_rx_ctl_bit = 0;
4910                 break;
4911         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
4912         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4913         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4914         case HWTSTAMP_FILTER_ALL:
4915                 /*
4916                  * register TSYNCRXCFG must be set, therefore it is not
4917                  * possible to time stamp both Sync and Delay_Req messages
4918                  * => fall back to time stamping all packets
4919                  */
4920                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_ALL;
4921                 config.rx_filter = HWTSTAMP_FILTER_ALL;
4922                 break;
4923         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
4924                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4925                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
4926                 is_l4 = 1;
4927                 break;
4928         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
4929                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4930                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
4931                 is_l4 = 1;
4932                 break;
4933         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
4934         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
4935                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
4936                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
4937                 is_l2 = 1;
4938                 is_l4 = 1;
4939                 config.rx_filter = HWTSTAMP_FILTER_SOME;
4940                 break;
4941         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
4942         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
4943                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
4944                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
4945                 is_l2 = 1;
4946                 is_l4 = 1;
4947                 config.rx_filter = HWTSTAMP_FILTER_SOME;
4948                 break;
4949         case HWTSTAMP_FILTER_PTP_V2_EVENT:
4950         case HWTSTAMP_FILTER_PTP_V2_SYNC:
4951         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
4952                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_EVENT_V2;
4953                 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
4954                 is_l2 = 1;
4955                 break;
4956         default:
4957                 return -ERANGE;
4958         }
4959
4960         /* enable/disable TX */
4961         regval = rd32(E1000_TSYNCTXCTL);
4962         regval = (regval & ~E1000_TSYNCTXCTL_ENABLED) | tsync_tx_ctl_bit;
4963         wr32(E1000_TSYNCTXCTL, regval);
4964
4965         /* enable/disable RX, define which PTP packets are time stamped */
4966         regval = rd32(E1000_TSYNCRXCTL);
4967         regval = (regval & ~E1000_TSYNCRXCTL_ENABLED) | tsync_rx_ctl_bit;
4968         regval = (regval & ~0xE) | tsync_rx_ctl_type;
4969         wr32(E1000_TSYNCRXCTL, regval);
4970         wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
4971
4972         /*
4973          * Ethertype Filter Queue Filter[0][15:0] = 0x88F7
4974          *                                          (Ethertype to filter on)
4975          * Ethertype Filter Queue Filter[0][26] = 0x1 (Enable filter)
4976          * Ethertype Filter Queue Filter[0][30] = 0x1 (Enable Timestamping)
4977          */
4978         wr32(E1000_ETQF0, is_l2 ? 0x440088f7 : 0);
4979
4980         /* L4 Queue Filter[0]: only filter by source and destination port */
4981         wr32(E1000_SPQF0, htons(port));
4982         wr32(E1000_IMIREXT(0), is_l4 ?
4983              ((1<<12) | (1<<19) /* bypass size and control flags */) : 0);
4984         wr32(E1000_IMIR(0), is_l4 ?
4985              (htons(port)
4986               | (0<<16) /* immediate interrupt disabled */
4987               | 0 /* (1<<17) bit cleared: do not bypass
4988                      destination port check */)
4989                 : 0);
4990         wr32(E1000_FTQF0, is_l4 ?
4991              (0x11 /* UDP */
4992               | (1<<15) /* VF not compared */
4993               | (1<<27) /* Enable Timestamping */
4994               | (7<<28) /* only source port filter enabled,
4995                            source/target address and protocol
4996                            masked */)
4997              : ((1<<15) | (15<<28) /* all mask bits set = filter not
4998                                       enabled */));
4999
5000         wrfl();
5001
5002         adapter->hwtstamp_config = config;
5003
5004         /* clear TX/RX time stamp registers, just to be sure */
5005         regval = rd32(E1000_TXSTMPH);
5006         regval = rd32(E1000_RXSTMPH);
5007
5008         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
5009                 -EFAULT : 0;
5010 }
5011
5012 /**
5013  * igb_ioctl -
5014  * @netdev:
5015  * @ifreq:
5016  * @cmd:
5017  **/
5018 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5019 {
5020         switch (cmd) {
5021         case SIOCGMIIPHY:
5022         case SIOCGMIIREG:
5023         case SIOCSMIIREG:
5024                 return igb_mii_ioctl(netdev, ifr, cmd);
5025         case SIOCSHWTSTAMP:
5026                 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
5027         default:
5028                 return -EOPNOTSUPP;
5029         }
5030 }
5031
5032 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5033 {
5034         struct igb_adapter *adapter = hw->back;
5035         u16 cap_offset;
5036
5037         cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5038         if (!cap_offset)
5039                 return -E1000_ERR_CONFIG;
5040
5041         pci_read_config_word(adapter->pdev, cap_offset + reg, value);
5042
5043         return 0;
5044 }
5045
5046 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5047 {
5048         struct igb_adapter *adapter = hw->back;
5049         u16 cap_offset;
5050
5051         cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5052         if (!cap_offset)
5053                 return -E1000_ERR_CONFIG;
5054
5055         pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
5056
5057         return 0;
5058 }
5059
5060 static void igb_vlan_rx_register(struct net_device *netdev,
5061                                  struct vlan_group *grp)
5062 {
5063         struct igb_adapter *adapter = netdev_priv(netdev);
5064         struct e1000_hw *hw = &adapter->hw;
5065         u32 ctrl, rctl;
5066
5067         igb_irq_disable(adapter);
5068         adapter->vlgrp = grp;
5069
5070         if (grp) {
5071                 /* enable VLAN tag insert/strip */
5072                 ctrl = rd32(E1000_CTRL);
5073                 ctrl |= E1000_CTRL_VME;
5074                 wr32(E1000_CTRL, ctrl);
5075
5076                 /* enable VLAN receive filtering */
5077                 rctl = rd32(E1000_RCTL);
5078                 rctl &= ~E1000_RCTL_CFIEN;
5079                 wr32(E1000_RCTL, rctl);
5080                 igb_update_mng_vlan(adapter);
5081         } else {
5082                 /* disable VLAN tag insert/strip */
5083                 ctrl = rd32(E1000_CTRL);
5084                 ctrl &= ~E1000_CTRL_VME;
5085                 wr32(E1000_CTRL, ctrl);
5086
5087                 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
5088                         igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
5089                         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
5090                 }
5091         }
5092
5093         igb_rlpml_set(adapter);
5094
5095         if (!test_bit(__IGB_DOWN, &adapter->state))
5096                 igb_irq_enable(adapter);
5097 }
5098
5099 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
5100 {
5101         struct igb_adapter *adapter = netdev_priv(netdev);
5102         struct e1000_hw *hw = &adapter->hw;
5103         int pf_id = adapter->vfs_allocated_count;
5104
5105         if ((hw->mng_cookie.status &
5106              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
5107             (vid == adapter->mng_vlan_id))
5108                 return;
5109
5110         /* add vid to vlvf if sr-iov is enabled,
5111          * if that fails add directly to filter table */
5112         if (igb_vlvf_set(adapter, vid, true, pf_id))
5113                 igb_vfta_set(hw, vid, true);
5114
5115 }
5116
5117 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
5118 {
5119         struct igb_adapter *adapter = netdev_priv(netdev);
5120         struct e1000_hw *hw = &adapter->hw;
5121         int pf_id = adapter->vfs_allocated_count;
5122
5123         igb_irq_disable(adapter);
5124         vlan_group_set_device(adapter->vlgrp, vid, NULL);
5125
5126         if (!test_bit(__IGB_DOWN, &adapter->state))
5127                 igb_irq_enable(adapter);
5128
5129         if ((adapter->hw.mng_cookie.status &
5130              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
5131             (vid == adapter->mng_vlan_id)) {
5132                 /* release control to f/w */
5133                 igb_release_hw_control(adapter);
5134                 return;
5135         }
5136
5137         /* remove vid from vlvf if sr-iov is enabled,
5138          * if not in vlvf remove from vfta */
5139         if (igb_vlvf_set(adapter, vid, false, pf_id))
5140                 igb_vfta_set(hw, vid, false);
5141 }
5142
5143 static void igb_restore_vlan(struct igb_adapter *adapter)
5144 {
5145         igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5146
5147         if (adapter->vlgrp) {
5148                 u16 vid;
5149                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5150                         if (!vlan_group_get_device(adapter->vlgrp, vid))
5151                                 continue;
5152                         igb_vlan_rx_add_vid(adapter->netdev, vid);
5153                 }
5154         }
5155 }
5156
5157 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5158 {
5159         struct e1000_mac_info *mac = &adapter->hw.mac;
5160
5161         mac->autoneg = 0;
5162
5163         switch (spddplx) {
5164         case SPEED_10 + DUPLEX_HALF:
5165                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5166                 break;
5167         case SPEED_10 + DUPLEX_FULL:
5168                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5169                 break;
5170         case SPEED_100 + DUPLEX_HALF:
5171                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5172                 break;
5173         case SPEED_100 + DUPLEX_FULL:
5174                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5175                 break;
5176         case SPEED_1000 + DUPLEX_FULL:
5177                 mac->autoneg = 1;
5178                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5179                 break;
5180         case SPEED_1000 + DUPLEX_HALF: /* not supported */
5181         default:
5182                 dev_err(&adapter->pdev->dev,
5183                         "Unsupported Speed/Duplex configuration\n");
5184                 return -EINVAL;
5185         }
5186         return 0;
5187 }
5188
5189 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
5190 {
5191         struct net_device *netdev = pci_get_drvdata(pdev);
5192         struct igb_adapter *adapter = netdev_priv(netdev);
5193         struct e1000_hw *hw = &adapter->hw;
5194         u32 ctrl, rctl, status;
5195         u32 wufc = adapter->wol;
5196 #ifdef CONFIG_PM
5197         int retval = 0;
5198 #endif
5199
5200         netif_device_detach(netdev);
5201
5202         if (netif_running(netdev))
5203                 igb_close(netdev);
5204
5205         igb_reset_interrupt_capability(adapter);
5206
5207         igb_free_queues(adapter);
5208
5209 #ifdef CONFIG_PM
5210         retval = pci_save_state(pdev);
5211         if (retval)
5212                 return retval;
5213 #endif
5214
5215         status = rd32(E1000_STATUS);
5216         if (status & E1000_STATUS_LU)
5217                 wufc &= ~E1000_WUFC_LNKC;
5218
5219         if (wufc) {
5220                 igb_setup_rctl(adapter);
5221                 igb_set_multi(netdev);
5222
5223                 /* turn on all-multi mode if wake on multicast is enabled */
5224                 if (wufc & E1000_WUFC_MC) {
5225                         rctl = rd32(E1000_RCTL);
5226                         rctl |= E1000_RCTL_MPE;
5227                         wr32(E1000_RCTL, rctl);
5228                 }
5229
5230                 ctrl = rd32(E1000_CTRL);
5231                 /* advertise wake from D3Cold */
5232                 #define E1000_CTRL_ADVD3WUC 0x00100000
5233                 /* phy power management enable */
5234                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5235                 ctrl |= E1000_CTRL_ADVD3WUC;
5236                 wr32(E1000_CTRL, ctrl);
5237
5238                 /* Allow time for pending master requests to run */
5239                 igb_disable_pcie_master(&adapter->hw);
5240
5241                 wr32(E1000_WUC, E1000_WUC_PME_EN);
5242                 wr32(E1000_WUFC, wufc);
5243         } else {
5244                 wr32(E1000_WUC, 0);
5245                 wr32(E1000_WUFC, 0);
5246         }
5247
5248         *enable_wake = wufc || adapter->en_mng_pt;
5249         if (!*enable_wake)
5250                 igb_shutdown_fiber_serdes_link_82575(hw);
5251
5252         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5253          * would have already happened in close and is redundant. */
5254         igb_release_hw_control(adapter);
5255
5256         pci_disable_device(pdev);
5257
5258         return 0;
5259 }
5260
5261 #ifdef CONFIG_PM
5262 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5263 {
5264         int retval;
5265         bool wake;
5266
5267         retval = __igb_shutdown(pdev, &wake);
5268         if (retval)
5269                 return retval;
5270
5271         if (wake) {
5272                 pci_prepare_to_sleep(pdev);
5273         } else {
5274                 pci_wake_from_d3(pdev, false);
5275                 pci_set_power_state(pdev, PCI_D3hot);
5276         }
5277
5278         return 0;
5279 }
5280
5281 static int igb_resume(struct pci_dev *pdev)
5282 {
5283         struct net_device *netdev = pci_get_drvdata(pdev);
5284         struct igb_adapter *adapter = netdev_priv(netdev);
5285         struct e1000_hw *hw = &adapter->hw;
5286         u32 err;
5287
5288         pci_set_power_state(pdev, PCI_D0);
5289         pci_restore_state(pdev);
5290
5291         err = pci_enable_device_mem(pdev);
5292         if (err) {
5293                 dev_err(&pdev->dev,
5294                         "igb: Cannot enable PCI device from suspend\n");
5295                 return err;
5296         }
5297         pci_set_master(pdev);
5298
5299         pci_enable_wake(pdev, PCI_D3hot, 0);
5300         pci_enable_wake(pdev, PCI_D3cold, 0);
5301
5302         igb_set_interrupt_capability(adapter);
5303
5304         if (igb_alloc_queues(adapter)) {
5305                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5306                 return -ENOMEM;
5307         }
5308
5309         /* e1000_power_up_phy(adapter); */
5310
5311         igb_reset(adapter);
5312
5313         /* let the f/w know that the h/w is now under the control of the
5314          * driver. */
5315         igb_get_hw_control(adapter);
5316
5317         wr32(E1000_WUS, ~0);
5318
5319         if (netif_running(netdev)) {
5320                 err = igb_open(netdev);
5321                 if (err)
5322                         return err;
5323         }
5324
5325         netif_device_attach(netdev);
5326
5327         return 0;
5328 }
5329 #endif
5330
5331 static void igb_shutdown(struct pci_dev *pdev)
5332 {
5333         bool wake;
5334
5335         __igb_shutdown(pdev, &wake);
5336
5337         if (system_state == SYSTEM_POWER_OFF) {
5338                 pci_wake_from_d3(pdev, wake);
5339                 pci_set_power_state(pdev, PCI_D3hot);
5340         }
5341 }
5342
5343 #ifdef CONFIG_NET_POLL_CONTROLLER
5344 /*
5345  * Polling 'interrupt' - used by things like netconsole to send skbs
5346  * without having to re-enable interrupts. It's not called while
5347  * the interrupt routine is executing.
5348  */
5349 static void igb_netpoll(struct net_device *netdev)
5350 {
5351         struct igb_adapter *adapter = netdev_priv(netdev);
5352         struct e1000_hw *hw = &adapter->hw;
5353         int i;
5354
5355         if (!adapter->msix_entries) {
5356                 igb_irq_disable(adapter);
5357                 napi_schedule(&adapter->rx_ring[0].napi);
5358                 return;
5359         }
5360
5361         for (i = 0; i < adapter->num_tx_queues; i++) {
5362                 struct igb_ring *tx_ring = &adapter->tx_ring[i];
5363                 wr32(E1000_EIMC, tx_ring->eims_value);
5364                 igb_clean_tx_irq(tx_ring);
5365                 wr32(E1000_EIMS, tx_ring->eims_value);
5366         }
5367
5368         for (i = 0; i < adapter->num_rx_queues; i++) {
5369                 struct igb_ring *rx_ring = &adapter->rx_ring[i];
5370                 wr32(E1000_EIMC, rx_ring->eims_value);
5371                 napi_schedule(&rx_ring->napi);
5372         }
5373 }
5374 #endif /* CONFIG_NET_POLL_CONTROLLER */
5375
5376 /**
5377  * igb_io_error_detected - called when PCI error is detected
5378  * @pdev: Pointer to PCI device
5379  * @state: The current pci connection state
5380  *
5381  * This function is called after a PCI bus error affecting
5382  * this device has been detected.
5383  */
5384 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5385                                               pci_channel_state_t state)
5386 {
5387         struct net_device *netdev = pci_get_drvdata(pdev);
5388         struct igb_adapter *adapter = netdev_priv(netdev);
5389
5390         netif_device_detach(netdev);
5391
5392         if (state == pci_channel_io_perm_failure)
5393                 return PCI_ERS_RESULT_DISCONNECT;
5394
5395         if (netif_running(netdev))
5396                 igb_down(adapter);
5397         pci_disable_device(pdev);
5398
5399         /* Request a slot slot reset. */
5400         return PCI_ERS_RESULT_NEED_RESET;
5401 }
5402
5403 /**
5404  * igb_io_slot_reset - called after the pci bus has been reset.
5405  * @pdev: Pointer to PCI device
5406  *
5407  * Restart the card from scratch, as if from a cold-boot. Implementation
5408  * resembles the first-half of the igb_resume routine.
5409  */
5410 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5411 {
5412         struct net_device *netdev = pci_get_drvdata(pdev);
5413         struct igb_adapter *adapter = netdev_priv(netdev);
5414         struct e1000_hw *hw = &adapter->hw;
5415         pci_ers_result_t result;
5416         int err;
5417
5418         if (pci_enable_device_mem(pdev)) {
5419                 dev_err(&pdev->dev,
5420                         "Cannot re-enable PCI device after reset.\n");
5421                 result = PCI_ERS_RESULT_DISCONNECT;
5422         } else {
5423                 pci_set_master(pdev);
5424                 pci_restore_state(pdev);
5425
5426                 pci_enable_wake(pdev, PCI_D3hot, 0);
5427                 pci_enable_wake(pdev, PCI_D3cold, 0);
5428
5429                 igb_reset(adapter);
5430                 wr32(E1000_WUS, ~0);
5431                 result = PCI_ERS_RESULT_RECOVERED;
5432         }
5433
5434         err = pci_cleanup_aer_uncorrect_error_status(pdev);
5435         if (err) {
5436                 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
5437                         "failed 0x%0x\n", err);
5438                 /* non-fatal, continue */
5439         }
5440
5441         return result;
5442 }
5443
5444 /**
5445  * igb_io_resume - called when traffic can start flowing again.
5446  * @pdev: Pointer to PCI device
5447  *
5448  * This callback is called when the error recovery driver tells us that
5449  * its OK to resume normal operation. Implementation resembles the
5450  * second-half of the igb_resume routine.
5451  */
5452 static void igb_io_resume(struct pci_dev *pdev)
5453 {
5454         struct net_device *netdev = pci_get_drvdata(pdev);
5455         struct igb_adapter *adapter = netdev_priv(netdev);
5456
5457         if (netif_running(netdev)) {
5458                 if (igb_up(adapter)) {
5459                         dev_err(&pdev->dev, "igb_up failed after reset\n");
5460                         return;
5461                 }
5462         }
5463
5464         netif_device_attach(netdev);
5465
5466         /* let the f/w know that the h/w is now under the control of the
5467          * driver. */
5468         igb_get_hw_control(adapter);
5469 }
5470
5471 static void igb_set_mc_list_pools(struct igb_adapter *adapter,
5472                                   int entry_count, u16 total_rar_filters)
5473 {
5474         struct e1000_hw *hw = &adapter->hw;
5475         int i = adapter->vfs_allocated_count + 1;
5476
5477         if ((i + entry_count) < total_rar_filters)
5478                 total_rar_filters = i + entry_count;
5479
5480         for (; i < total_rar_filters; i++)
5481                 igb_set_rah_pool(hw, adapter->vfs_allocated_count, i);
5482 }
5483
5484 static int igb_set_vf_mac(struct igb_adapter *adapter,
5485                           int vf, unsigned char *mac_addr)
5486 {
5487         struct e1000_hw *hw = &adapter->hw;
5488         int rar_entry = vf + 1; /* VF MAC addresses start at entry 1 */
5489
5490         igb_rar_set(hw, mac_addr, rar_entry);
5491
5492         memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
5493
5494         igb_set_rah_pool(hw, vf, rar_entry);
5495
5496         return 0;
5497 }
5498
5499 static void igb_vmm_control(struct igb_adapter *adapter)
5500 {
5501         struct e1000_hw *hw = &adapter->hw;
5502         u32 reg_data;
5503
5504         if (!adapter->vfs_allocated_count)
5505                 return;
5506
5507         /* VF's need PF reset indication before they
5508          * can send/receive mail */
5509         reg_data = rd32(E1000_CTRL_EXT);
5510         reg_data |= E1000_CTRL_EXT_PFRSTD;
5511         wr32(E1000_CTRL_EXT, reg_data);
5512
5513         igb_vmdq_set_loopback_pf(hw, true);
5514         igb_vmdq_set_replication_pf(hw, true);
5515 }
5516
5517 /* igb_main.c */