83c083709d3282a8d91f5df2bd3ed9ef0d69b9c1
[safe/jmp/linux-2.6] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/pci-aspm.h>
43 #include <linux/delay.h>
44 #include <linux/interrupt.h>
45 #include <linux/if_ether.h>
46 #include <linux/aer.h>
47 #ifdef CONFIG_IGB_DCA
48 #include <linux/dca.h>
49 #endif
50 #include "igb.h"
51
52 #define DRV_VERSION "1.3.16-k2"
53 char igb_driver_name[] = "igb";
54 char igb_driver_version[] = DRV_VERSION;
55 static const char igb_driver_string[] =
56                                 "Intel(R) Gigabit Ethernet Network Driver";
57 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60         [board_82575] = &e1000_82575_info,
61 };
62
63 static struct pci_device_id igb_pci_tbl[] = {
64         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
65         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
66         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
67         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
68         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
69         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
70         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
71         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
72         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
73         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
74         /* required last entry */
75         {0, }
76 };
77
78 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
79
80 void igb_reset(struct igb_adapter *);
81 static int igb_setup_all_tx_resources(struct igb_adapter *);
82 static int igb_setup_all_rx_resources(struct igb_adapter *);
83 static void igb_free_all_tx_resources(struct igb_adapter *);
84 static void igb_free_all_rx_resources(struct igb_adapter *);
85 void igb_update_stats(struct igb_adapter *);
86 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
87 static void __devexit igb_remove(struct pci_dev *pdev);
88 static int igb_sw_init(struct igb_adapter *);
89 static int igb_open(struct net_device *);
90 static int igb_close(struct net_device *);
91 static void igb_configure_tx(struct igb_adapter *);
92 static void igb_configure_rx(struct igb_adapter *);
93 static void igb_setup_rctl(struct igb_adapter *);
94 static void igb_clean_all_tx_rings(struct igb_adapter *);
95 static void igb_clean_all_rx_rings(struct igb_adapter *);
96 static void igb_clean_tx_ring(struct igb_ring *);
97 static void igb_clean_rx_ring(struct igb_ring *);
98 static void igb_set_rx_mode(struct net_device *);
99 static void igb_update_phy_info(unsigned long);
100 static void igb_watchdog(unsigned long);
101 static void igb_watchdog_task(struct work_struct *);
102 static netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *,
103                                            struct net_device *,
104                                            struct igb_ring *);
105 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
106                                       struct net_device *);
107 static struct net_device_stats *igb_get_stats(struct net_device *);
108 static int igb_change_mtu(struct net_device *, int);
109 static int igb_set_mac(struct net_device *, void *);
110 static void igb_set_uta(struct igb_adapter *adapter);
111 static irqreturn_t igb_intr(int irq, void *);
112 static irqreturn_t igb_intr_msi(int irq, void *);
113 static irqreturn_t igb_msix_other(int irq, void *);
114 static irqreturn_t igb_msix_rx(int irq, void *);
115 static irqreturn_t igb_msix_tx(int irq, void *);
116 #ifdef CONFIG_IGB_DCA
117 static void igb_update_rx_dca(struct igb_ring *);
118 static void igb_update_tx_dca(struct igb_ring *);
119 static void igb_setup_dca(struct igb_adapter *);
120 #endif /* CONFIG_IGB_DCA */
121 static bool igb_clean_tx_irq(struct igb_ring *);
122 static int igb_poll(struct napi_struct *, int);
123 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
124 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
125 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
126 static void igb_tx_timeout(struct net_device *);
127 static void igb_reset_task(struct work_struct *);
128 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
129 static void igb_vlan_rx_add_vid(struct net_device *, u16);
130 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
131 static void igb_restore_vlan(struct igb_adapter *);
132 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
133 static void igb_ping_all_vfs(struct igb_adapter *);
134 static void igb_msg_task(struct igb_adapter *);
135 static int igb_rcv_msg_from_vf(struct igb_adapter *, u32);
136 static void igb_vmm_control(struct igb_adapter *);
137 static int igb_set_vf_mac(struct igb_adapter *adapter, int, unsigned char *);
138 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
139
140 static inline void igb_set_vmolr(struct e1000_hw *hw, int vfn)
141 {
142         u32 reg_data;
143
144         reg_data = rd32(E1000_VMOLR(vfn));
145         reg_data |= E1000_VMOLR_BAM |    /* Accept broadcast */
146                     E1000_VMOLR_ROMPE |  /* Accept packets matched in MTA */
147                     E1000_VMOLR_AUPE |   /* Accept untagged packets */
148                     E1000_VMOLR_STRVLAN; /* Strip vlan tags */
149         wr32(E1000_VMOLR(vfn), reg_data);
150 }
151
152 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
153                                  int vfn)
154 {
155         struct e1000_hw *hw = &adapter->hw;
156         u32 vmolr;
157
158         /* if it isn't the PF check to see if VFs are enabled and
159          * increase the size to support vlan tags */
160         if (vfn < adapter->vfs_allocated_count &&
161             adapter->vf_data[vfn].vlans_enabled)
162                 size += VLAN_TAG_SIZE;
163
164         vmolr = rd32(E1000_VMOLR(vfn));
165         vmolr &= ~E1000_VMOLR_RLPML_MASK;
166         vmolr |= size | E1000_VMOLR_LPE;
167         wr32(E1000_VMOLR(vfn), vmolr);
168
169         return 0;
170 }
171
172 #ifdef CONFIG_PM
173 static int igb_suspend(struct pci_dev *, pm_message_t);
174 static int igb_resume(struct pci_dev *);
175 #endif
176 static void igb_shutdown(struct pci_dev *);
177 #ifdef CONFIG_IGB_DCA
178 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
179 static struct notifier_block dca_notifier = {
180         .notifier_call  = igb_notify_dca,
181         .next           = NULL,
182         .priority       = 0
183 };
184 #endif
185 #ifdef CONFIG_NET_POLL_CONTROLLER
186 /* for netdump / net console */
187 static void igb_netpoll(struct net_device *);
188 #endif
189 #ifdef CONFIG_PCI_IOV
190 static unsigned int max_vfs = 0;
191 module_param(max_vfs, uint, 0);
192 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
193                  "per physical function");
194 #endif /* CONFIG_PCI_IOV */
195
196 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
197                      pci_channel_state_t);
198 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
199 static void igb_io_resume(struct pci_dev *);
200
201 static struct pci_error_handlers igb_err_handler = {
202         .error_detected = igb_io_error_detected,
203         .slot_reset = igb_io_slot_reset,
204         .resume = igb_io_resume,
205 };
206
207
208 static struct pci_driver igb_driver = {
209         .name     = igb_driver_name,
210         .id_table = igb_pci_tbl,
211         .probe    = igb_probe,
212         .remove   = __devexit_p(igb_remove),
213 #ifdef CONFIG_PM
214         /* Power Managment Hooks */
215         .suspend  = igb_suspend,
216         .resume   = igb_resume,
217 #endif
218         .shutdown = igb_shutdown,
219         .err_handler = &igb_err_handler
220 };
221
222 static int global_quad_port_a; /* global quad port a indication */
223
224 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
225 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
226 MODULE_LICENSE("GPL");
227 MODULE_VERSION(DRV_VERSION);
228
229 /**
230  * Scale the NIC clock cycle by a large factor so that
231  * relatively small clock corrections can be added or
232  * substracted at each clock tick. The drawbacks of a
233  * large factor are a) that the clock register overflows
234  * more quickly (not such a big deal) and b) that the
235  * increment per tick has to fit into 24 bits.
236  *
237  * Note that
238  *   TIMINCA = IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS *
239  *             IGB_TSYNC_SCALE
240  *   TIMINCA += TIMINCA * adjustment [ppm] / 1e9
241  *
242  * The base scale factor is intentionally a power of two
243  * so that the division in %struct timecounter can be done with
244  * a shift.
245  */
246 #define IGB_TSYNC_SHIFT (19)
247 #define IGB_TSYNC_SCALE (1<<IGB_TSYNC_SHIFT)
248
249 /**
250  * The duration of one clock cycle of the NIC.
251  *
252  * @todo This hard-coded value is part of the specification and might change
253  * in future hardware revisions. Add revision check.
254  */
255 #define IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS 16
256
257 #if (IGB_TSYNC_SCALE * IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS) >= (1<<24)
258 # error IGB_TSYNC_SCALE and/or IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS are too large to fit into TIMINCA
259 #endif
260
261 /**
262  * igb_read_clock - read raw cycle counter (to be used by time counter)
263  */
264 static cycle_t igb_read_clock(const struct cyclecounter *tc)
265 {
266         struct igb_adapter *adapter =
267                 container_of(tc, struct igb_adapter, cycles);
268         struct e1000_hw *hw = &adapter->hw;
269         u64 stamp;
270
271         stamp =  rd32(E1000_SYSTIML);
272         stamp |= (u64)rd32(E1000_SYSTIMH) << 32ULL;
273
274         return stamp;
275 }
276
277 #ifdef DEBUG
278 /**
279  * igb_get_hw_dev_name - return device name string
280  * used by hardware layer to print debugging information
281  **/
282 char *igb_get_hw_dev_name(struct e1000_hw *hw)
283 {
284         struct igb_adapter *adapter = hw->back;
285         return adapter->netdev->name;
286 }
287
288 /**
289  * igb_get_time_str - format current NIC and system time as string
290  */
291 static char *igb_get_time_str(struct igb_adapter *adapter,
292                               char buffer[160])
293 {
294         cycle_t hw = adapter->cycles.read(&adapter->cycles);
295         struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
296         struct timespec sys;
297         struct timespec delta;
298         getnstimeofday(&sys);
299
300         delta = timespec_sub(nic, sys);
301
302         sprintf(buffer,
303                 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
304                 hw,
305                 (long)nic.tv_sec, nic.tv_nsec,
306                 (long)sys.tv_sec, sys.tv_nsec,
307                 (long)delta.tv_sec, delta.tv_nsec);
308
309         return buffer;
310 }
311 #endif
312
313 /**
314  * igb_desc_unused - calculate if we have unused descriptors
315  **/
316 static int igb_desc_unused(struct igb_ring *ring)
317 {
318         if (ring->next_to_clean > ring->next_to_use)
319                 return ring->next_to_clean - ring->next_to_use - 1;
320
321         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
322 }
323
324 /**
325  * igb_init_module - Driver Registration Routine
326  *
327  * igb_init_module is the first routine called when the driver is
328  * loaded. All it does is register with the PCI subsystem.
329  **/
330 static int __init igb_init_module(void)
331 {
332         int ret;
333         printk(KERN_INFO "%s - version %s\n",
334                igb_driver_string, igb_driver_version);
335
336         printk(KERN_INFO "%s\n", igb_copyright);
337
338         global_quad_port_a = 0;
339
340 #ifdef CONFIG_IGB_DCA
341         dca_register_notify(&dca_notifier);
342 #endif
343
344         ret = pci_register_driver(&igb_driver);
345         return ret;
346 }
347
348 module_init(igb_init_module);
349
350 /**
351  * igb_exit_module - Driver Exit Cleanup Routine
352  *
353  * igb_exit_module is called just before the driver is removed
354  * from memory.
355  **/
356 static void __exit igb_exit_module(void)
357 {
358 #ifdef CONFIG_IGB_DCA
359         dca_unregister_notify(&dca_notifier);
360 #endif
361         pci_unregister_driver(&igb_driver);
362 }
363
364 module_exit(igb_exit_module);
365
366 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
367 /**
368  * igb_cache_ring_register - Descriptor ring to register mapping
369  * @adapter: board private structure to initialize
370  *
371  * Once we know the feature-set enabled for the device, we'll cache
372  * the register offset the descriptor ring is assigned to.
373  **/
374 static void igb_cache_ring_register(struct igb_adapter *adapter)
375 {
376         int i;
377         unsigned int rbase_offset = adapter->vfs_allocated_count;
378
379         switch (adapter->hw.mac.type) {
380         case e1000_82576:
381                 /* The queues are allocated for virtualization such that VF 0
382                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
383                  * In order to avoid collision we start at the first free queue
384                  * and continue consuming queues in the same sequence
385                  */
386                 for (i = 0; i < adapter->num_rx_queues; i++)
387                         adapter->rx_ring[i].reg_idx = rbase_offset +
388                                                       Q_IDX_82576(i);
389                 for (i = 0; i < adapter->num_tx_queues; i++)
390                         adapter->tx_ring[i].reg_idx = rbase_offset +
391                                                       Q_IDX_82576(i);
392                 break;
393         case e1000_82575:
394         default:
395                 for (i = 0; i < adapter->num_rx_queues; i++)
396                         adapter->rx_ring[i].reg_idx = i;
397                 for (i = 0; i < adapter->num_tx_queues; i++)
398                         adapter->tx_ring[i].reg_idx = i;
399                 break;
400         }
401 }
402
403 /**
404  * igb_alloc_queues - Allocate memory for all rings
405  * @adapter: board private structure to initialize
406  *
407  * We allocate one ring per queue at run-time since we don't know the
408  * number of queues at compile-time.
409  **/
410 static int igb_alloc_queues(struct igb_adapter *adapter)
411 {
412         int i;
413
414         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
415                                    sizeof(struct igb_ring), GFP_KERNEL);
416         if (!adapter->tx_ring)
417                 return -ENOMEM;
418
419         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
420                                    sizeof(struct igb_ring), GFP_KERNEL);
421         if (!adapter->rx_ring) {
422                 kfree(adapter->tx_ring);
423                 return -ENOMEM;
424         }
425
426         adapter->rx_ring->buddy = adapter->tx_ring;
427
428         for (i = 0; i < adapter->num_tx_queues; i++) {
429                 struct igb_ring *ring = &(adapter->tx_ring[i]);
430                 ring->count = adapter->tx_ring_count;
431                 ring->adapter = adapter;
432                 ring->queue_index = i;
433         }
434         for (i = 0; i < adapter->num_rx_queues; i++) {
435                 struct igb_ring *ring = &(adapter->rx_ring[i]);
436                 ring->count = adapter->rx_ring_count;
437                 ring->adapter = adapter;
438                 ring->queue_index = i;
439                 ring->itr_register = E1000_ITR;
440
441                 /* set a default napi handler for each rx_ring */
442                 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
443         }
444
445         igb_cache_ring_register(adapter);
446         return 0;
447 }
448
449 static void igb_free_queues(struct igb_adapter *adapter)
450 {
451         int i;
452
453         for (i = 0; i < adapter->num_rx_queues; i++)
454                 netif_napi_del(&adapter->rx_ring[i].napi);
455
456         adapter->num_rx_queues = 0;
457         adapter->num_tx_queues = 0;
458
459         kfree(adapter->tx_ring);
460         kfree(adapter->rx_ring);
461 }
462
463 #define IGB_N0_QUEUE -1
464 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
465                               int tx_queue, int msix_vector)
466 {
467         u32 msixbm = 0;
468         struct e1000_hw *hw = &adapter->hw;
469         u32 ivar, index;
470
471         switch (hw->mac.type) {
472         case e1000_82575:
473                 /* The 82575 assigns vectors using a bitmask, which matches the
474                    bitmask for the EICR/EIMS/EIMC registers.  To assign one
475                    or more queues to a vector, we write the appropriate bits
476                    into the MSIXBM register for that vector. */
477                 if (rx_queue > IGB_N0_QUEUE) {
478                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
479                         adapter->rx_ring[rx_queue].eims_value = msixbm;
480                 }
481                 if (tx_queue > IGB_N0_QUEUE) {
482                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
483                         adapter->tx_ring[tx_queue].eims_value =
484                                   E1000_EICR_TX_QUEUE0 << tx_queue;
485                 }
486                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
487                 break;
488         case e1000_82576:
489                 /* 82576 uses a table-based method for assigning vectors.
490                    Each queue has a single entry in the table to which we write
491                    a vector number along with a "valid" bit.  Sadly, the layout
492                    of the table is somewhat counterintuitive. */
493                 if (rx_queue > IGB_N0_QUEUE) {
494                         index = (rx_queue >> 1) + adapter->vfs_allocated_count;
495                         ivar = array_rd32(E1000_IVAR0, index);
496                         if (rx_queue & 0x1) {
497                                 /* vector goes into third byte of register */
498                                 ivar = ivar & 0xFF00FFFF;
499                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
500                         } else {
501                                 /* vector goes into low byte of register */
502                                 ivar = ivar & 0xFFFFFF00;
503                                 ivar |= msix_vector | E1000_IVAR_VALID;
504                         }
505                         adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
506                         array_wr32(E1000_IVAR0, index, ivar);
507                 }
508                 if (tx_queue > IGB_N0_QUEUE) {
509                         index = (tx_queue >> 1) + adapter->vfs_allocated_count;
510                         ivar = array_rd32(E1000_IVAR0, index);
511                         if (tx_queue & 0x1) {
512                                 /* vector goes into high byte of register */
513                                 ivar = ivar & 0x00FFFFFF;
514                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
515                         } else {
516                                 /* vector goes into second byte of register */
517                                 ivar = ivar & 0xFFFF00FF;
518                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
519                         }
520                         adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
521                         array_wr32(E1000_IVAR0, index, ivar);
522                 }
523                 break;
524         default:
525                 BUG();
526                 break;
527         }
528 }
529
530 /**
531  * igb_configure_msix - Configure MSI-X hardware
532  *
533  * igb_configure_msix sets up the hardware to properly
534  * generate MSI-X interrupts.
535  **/
536 static void igb_configure_msix(struct igb_adapter *adapter)
537 {
538         u32 tmp;
539         int i, vector = 0;
540         struct e1000_hw *hw = &adapter->hw;
541
542         adapter->eims_enable_mask = 0;
543         if (hw->mac.type == e1000_82576)
544                 /* Turn on MSI-X capability first, or our settings
545                  * won't stick.  And it will take days to debug. */
546                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
547                                    E1000_GPIE_PBA | E1000_GPIE_EIAME |
548                                    E1000_GPIE_NSICR);
549
550         for (i = 0; i < adapter->num_tx_queues; i++) {
551                 struct igb_ring *tx_ring = &adapter->tx_ring[i];
552                 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
553                 adapter->eims_enable_mask |= tx_ring->eims_value;
554                 if (tx_ring->itr_val)
555                         writel(tx_ring->itr_val,
556                                hw->hw_addr + tx_ring->itr_register);
557                 else
558                         writel(1, hw->hw_addr + tx_ring->itr_register);
559         }
560
561         for (i = 0; i < adapter->num_rx_queues; i++) {
562                 struct igb_ring *rx_ring = &adapter->rx_ring[i];
563                 rx_ring->buddy = NULL;
564                 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
565                 adapter->eims_enable_mask |= rx_ring->eims_value;
566                 if (rx_ring->itr_val)
567                         writel(rx_ring->itr_val,
568                                hw->hw_addr + rx_ring->itr_register);
569                 else
570                         writel(1, hw->hw_addr + rx_ring->itr_register);
571         }
572
573
574         /* set vector for other causes, i.e. link changes */
575         switch (hw->mac.type) {
576         case e1000_82575:
577                 array_wr32(E1000_MSIXBM(0), vector++,
578                                       E1000_EIMS_OTHER);
579
580                 tmp = rd32(E1000_CTRL_EXT);
581                 /* enable MSI-X PBA support*/
582                 tmp |= E1000_CTRL_EXT_PBA_CLR;
583
584                 /* Auto-Mask interrupts upon ICR read. */
585                 tmp |= E1000_CTRL_EXT_EIAME;
586                 tmp |= E1000_CTRL_EXT_IRCA;
587
588                 wr32(E1000_CTRL_EXT, tmp);
589                 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
590                 adapter->eims_other = E1000_EIMS_OTHER;
591
592                 break;
593
594         case e1000_82576:
595                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
596                 wr32(E1000_IVAR_MISC, tmp);
597
598                 adapter->eims_enable_mask = (1 << (vector)) - 1;
599                 adapter->eims_other = 1 << (vector - 1);
600                 break;
601         default:
602                 /* do nothing, since nothing else supports MSI-X */
603                 break;
604         } /* switch (hw->mac.type) */
605         wrfl();
606 }
607
608 /**
609  * igb_request_msix - Initialize MSI-X interrupts
610  *
611  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
612  * kernel.
613  **/
614 static int igb_request_msix(struct igb_adapter *adapter)
615 {
616         struct net_device *netdev = adapter->netdev;
617         int i, err = 0, vector = 0;
618
619         vector = 0;
620
621         for (i = 0; i < adapter->num_tx_queues; i++) {
622                 struct igb_ring *ring = &(adapter->tx_ring[i]);
623                 sprintf(ring->name, "%s-tx-%d", netdev->name, i);
624                 err = request_irq(adapter->msix_entries[vector].vector,
625                                   &igb_msix_tx, 0, ring->name,
626                                   &(adapter->tx_ring[i]));
627                 if (err)
628                         goto out;
629                 ring->itr_register = E1000_EITR(0) + (vector << 2);
630                 ring->itr_val = 976; /* ~4000 ints/sec */
631                 vector++;
632         }
633         for (i = 0; i < adapter->num_rx_queues; i++) {
634                 struct igb_ring *ring = &(adapter->rx_ring[i]);
635                 if (strlen(netdev->name) < (IFNAMSIZ - 5))
636                         sprintf(ring->name, "%s-rx-%d", netdev->name, i);
637                 else
638                         memcpy(ring->name, netdev->name, IFNAMSIZ);
639                 err = request_irq(adapter->msix_entries[vector].vector,
640                                   &igb_msix_rx, 0, ring->name,
641                                   &(adapter->rx_ring[i]));
642                 if (err)
643                         goto out;
644                 ring->itr_register = E1000_EITR(0) + (vector << 2);
645                 ring->itr_val = adapter->itr;
646                 vector++;
647         }
648
649         err = request_irq(adapter->msix_entries[vector].vector,
650                           &igb_msix_other, 0, netdev->name, netdev);
651         if (err)
652                 goto out;
653
654         igb_configure_msix(adapter);
655         return 0;
656 out:
657         return err;
658 }
659
660 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
661 {
662         if (adapter->msix_entries) {
663                 pci_disable_msix(adapter->pdev);
664                 kfree(adapter->msix_entries);
665                 adapter->msix_entries = NULL;
666         } else if (adapter->flags & IGB_FLAG_HAS_MSI)
667                 pci_disable_msi(adapter->pdev);
668         return;
669 }
670
671
672 /**
673  * igb_set_interrupt_capability - set MSI or MSI-X if supported
674  *
675  * Attempt to configure interrupts using the best available
676  * capabilities of the hardware and kernel.
677  **/
678 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
679 {
680         int err;
681         int numvecs, i;
682
683         /* Number of supported queues. */
684         /* Having more queues than CPUs doesn't make sense. */
685         adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
686         adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
687
688         numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
689         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
690                                         GFP_KERNEL);
691         if (!adapter->msix_entries)
692                 goto msi_only;
693
694         for (i = 0; i < numvecs; i++)
695                 adapter->msix_entries[i].entry = i;
696
697         err = pci_enable_msix(adapter->pdev,
698                               adapter->msix_entries,
699                               numvecs);
700         if (err == 0)
701                 goto out;
702
703         igb_reset_interrupt_capability(adapter);
704
705         /* If we can't do MSI-X, try MSI */
706 msi_only:
707 #ifdef CONFIG_PCI_IOV
708         /* disable SR-IOV for non MSI-X configurations */
709         if (adapter->vf_data) {
710                 struct e1000_hw *hw = &adapter->hw;
711                 /* disable iov and allow time for transactions to clear */
712                 pci_disable_sriov(adapter->pdev);
713                 msleep(500);
714
715                 kfree(adapter->vf_data);
716                 adapter->vf_data = NULL;
717                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
718                 msleep(100);
719                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
720         }
721 #endif
722         adapter->num_rx_queues = 1;
723         adapter->num_tx_queues = 1;
724         if (!pci_enable_msi(adapter->pdev))
725                 adapter->flags |= IGB_FLAG_HAS_MSI;
726 out:
727         /* Notify the stack of the (possibly) reduced Tx Queue count. */
728         adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
729         return;
730 }
731
732 /**
733  * igb_request_irq - initialize interrupts
734  *
735  * Attempts to configure interrupts using the best available
736  * capabilities of the hardware and kernel.
737  **/
738 static int igb_request_irq(struct igb_adapter *adapter)
739 {
740         struct net_device *netdev = adapter->netdev;
741         struct e1000_hw *hw = &adapter->hw;
742         int err = 0;
743
744         if (adapter->msix_entries) {
745                 err = igb_request_msix(adapter);
746                 if (!err)
747                         goto request_done;
748                 /* fall back to MSI */
749                 igb_reset_interrupt_capability(adapter);
750                 if (!pci_enable_msi(adapter->pdev))
751                         adapter->flags |= IGB_FLAG_HAS_MSI;
752                 igb_free_all_tx_resources(adapter);
753                 igb_free_all_rx_resources(adapter);
754                 adapter->num_rx_queues = 1;
755                 igb_alloc_queues(adapter);
756         } else {
757                 switch (hw->mac.type) {
758                 case e1000_82575:
759                         wr32(E1000_MSIXBM(0),
760                              (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
761                         break;
762                 case e1000_82576:
763                         wr32(E1000_IVAR0, E1000_IVAR_VALID);
764                         break;
765                 default:
766                         break;
767                 }
768         }
769
770         if (adapter->flags & IGB_FLAG_HAS_MSI) {
771                 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
772                                   netdev->name, netdev);
773                 if (!err)
774                         goto request_done;
775                 /* fall back to legacy interrupts */
776                 igb_reset_interrupt_capability(adapter);
777                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
778         }
779
780         err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
781                           netdev->name, netdev);
782
783         if (err)
784                 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
785                         err);
786
787 request_done:
788         return err;
789 }
790
791 static void igb_free_irq(struct igb_adapter *adapter)
792 {
793         struct net_device *netdev = adapter->netdev;
794
795         if (adapter->msix_entries) {
796                 int vector = 0, i;
797
798                 for (i = 0; i < adapter->num_tx_queues; i++)
799                         free_irq(adapter->msix_entries[vector++].vector,
800                                 &(adapter->tx_ring[i]));
801                 for (i = 0; i < adapter->num_rx_queues; i++)
802                         free_irq(adapter->msix_entries[vector++].vector,
803                                 &(adapter->rx_ring[i]));
804
805                 free_irq(adapter->msix_entries[vector++].vector, netdev);
806                 return;
807         }
808
809         free_irq(adapter->pdev->irq, netdev);
810 }
811
812 /**
813  * igb_irq_disable - Mask off interrupt generation on the NIC
814  * @adapter: board private structure
815  **/
816 static void igb_irq_disable(struct igb_adapter *adapter)
817 {
818         struct e1000_hw *hw = &adapter->hw;
819
820         if (adapter->msix_entries) {
821                 u32 regval = rd32(E1000_EIAM);
822                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
823                 wr32(E1000_EIMC, adapter->eims_enable_mask);
824                 regval = rd32(E1000_EIAC);
825                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
826         }
827
828         wr32(E1000_IAM, 0);
829         wr32(E1000_IMC, ~0);
830         wrfl();
831         synchronize_irq(adapter->pdev->irq);
832 }
833
834 /**
835  * igb_irq_enable - Enable default interrupt generation settings
836  * @adapter: board private structure
837  **/
838 static void igb_irq_enable(struct igb_adapter *adapter)
839 {
840         struct e1000_hw *hw = &adapter->hw;
841
842         if (adapter->msix_entries) {
843                 u32 regval = rd32(E1000_EIAC);
844                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
845                 regval = rd32(E1000_EIAM);
846                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
847                 wr32(E1000_EIMS, adapter->eims_enable_mask);
848                 if (adapter->vfs_allocated_count)
849                         wr32(E1000_MBVFIMR, 0xFF);
850                 wr32(E1000_IMS, (E1000_IMS_LSC | E1000_IMS_VMMB |
851                                  E1000_IMS_DOUTSYNC));
852         } else {
853                 wr32(E1000_IMS, IMS_ENABLE_MASK);
854                 wr32(E1000_IAM, IMS_ENABLE_MASK);
855         }
856 }
857
858 static void igb_update_mng_vlan(struct igb_adapter *adapter)
859 {
860         struct net_device *netdev = adapter->netdev;
861         u16 vid = adapter->hw.mng_cookie.vlan_id;
862         u16 old_vid = adapter->mng_vlan_id;
863         if (adapter->vlgrp) {
864                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
865                         if (adapter->hw.mng_cookie.status &
866                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
867                                 igb_vlan_rx_add_vid(netdev, vid);
868                                 adapter->mng_vlan_id = vid;
869                         } else
870                                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
871
872                         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
873                                         (vid != old_vid) &&
874                             !vlan_group_get_device(adapter->vlgrp, old_vid))
875                                 igb_vlan_rx_kill_vid(netdev, old_vid);
876                 } else
877                         adapter->mng_vlan_id = vid;
878         }
879 }
880
881 /**
882  * igb_release_hw_control - release control of the h/w to f/w
883  * @adapter: address of board private structure
884  *
885  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
886  * For ASF and Pass Through versions of f/w this means that the
887  * driver is no longer loaded.
888  *
889  **/
890 static void igb_release_hw_control(struct igb_adapter *adapter)
891 {
892         struct e1000_hw *hw = &adapter->hw;
893         u32 ctrl_ext;
894
895         /* Let firmware take over control of h/w */
896         ctrl_ext = rd32(E1000_CTRL_EXT);
897         wr32(E1000_CTRL_EXT,
898                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
899 }
900
901
902 /**
903  * igb_get_hw_control - get control of the h/w from f/w
904  * @adapter: address of board private structure
905  *
906  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
907  * For ASF and Pass Through versions of f/w this means that
908  * the driver is loaded.
909  *
910  **/
911 static void igb_get_hw_control(struct igb_adapter *adapter)
912 {
913         struct e1000_hw *hw = &adapter->hw;
914         u32 ctrl_ext;
915
916         /* Let firmware know the driver has taken over */
917         ctrl_ext = rd32(E1000_CTRL_EXT);
918         wr32(E1000_CTRL_EXT,
919                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
920 }
921
922 /**
923  * igb_configure - configure the hardware for RX and TX
924  * @adapter: private board structure
925  **/
926 static void igb_configure(struct igb_adapter *adapter)
927 {
928         struct net_device *netdev = adapter->netdev;
929         int i;
930
931         igb_get_hw_control(adapter);
932         igb_set_rx_mode(netdev);
933
934         igb_restore_vlan(adapter);
935
936         igb_configure_tx(adapter);
937         igb_setup_rctl(adapter);
938         igb_configure_rx(adapter);
939
940         igb_rx_fifo_flush_82575(&adapter->hw);
941
942         /* call igb_desc_unused which always leaves
943          * at least 1 descriptor unused to make sure
944          * next_to_use != next_to_clean */
945         for (i = 0; i < adapter->num_rx_queues; i++) {
946                 struct igb_ring *ring = &adapter->rx_ring[i];
947                 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
948         }
949
950
951         adapter->tx_queue_len = netdev->tx_queue_len;
952 }
953
954
955 /**
956  * igb_up - Open the interface and prepare it to handle traffic
957  * @adapter: board private structure
958  **/
959
960 int igb_up(struct igb_adapter *adapter)
961 {
962         struct e1000_hw *hw = &adapter->hw;
963         int i;
964
965         /* hardware has been reset, we need to reload some things */
966         igb_configure(adapter);
967
968         clear_bit(__IGB_DOWN, &adapter->state);
969
970         for (i = 0; i < adapter->num_rx_queues; i++)
971                 napi_enable(&adapter->rx_ring[i].napi);
972         if (adapter->msix_entries)
973                 igb_configure_msix(adapter);
974
975         igb_vmm_control(adapter);
976         igb_set_vmolr(hw, adapter->vfs_allocated_count);
977
978         /* Clear any pending interrupts. */
979         rd32(E1000_ICR);
980         igb_irq_enable(adapter);
981
982         netif_tx_start_all_queues(adapter->netdev);
983
984         /* Fire a link change interrupt to start the watchdog. */
985         wr32(E1000_ICS, E1000_ICS_LSC);
986         return 0;
987 }
988
989 void igb_down(struct igb_adapter *adapter)
990 {
991         struct e1000_hw *hw = &adapter->hw;
992         struct net_device *netdev = adapter->netdev;
993         u32 tctl, rctl;
994         int i;
995
996         /* signal that we're down so the interrupt handler does not
997          * reschedule our watchdog timer */
998         set_bit(__IGB_DOWN, &adapter->state);
999
1000         /* disable receives in the hardware */
1001         rctl = rd32(E1000_RCTL);
1002         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1003         /* flush and sleep below */
1004
1005         netif_tx_stop_all_queues(netdev);
1006
1007         /* disable transmits in the hardware */
1008         tctl = rd32(E1000_TCTL);
1009         tctl &= ~E1000_TCTL_EN;
1010         wr32(E1000_TCTL, tctl);
1011         /* flush both disables and wait for them to finish */
1012         wrfl();
1013         msleep(10);
1014
1015         for (i = 0; i < adapter->num_rx_queues; i++)
1016                 napi_disable(&adapter->rx_ring[i].napi);
1017
1018         igb_irq_disable(adapter);
1019
1020         del_timer_sync(&adapter->watchdog_timer);
1021         del_timer_sync(&adapter->phy_info_timer);
1022
1023         netdev->tx_queue_len = adapter->tx_queue_len;
1024         netif_carrier_off(netdev);
1025
1026         /* record the stats before reset*/
1027         igb_update_stats(adapter);
1028
1029         adapter->link_speed = 0;
1030         adapter->link_duplex = 0;
1031
1032         if (!pci_channel_offline(adapter->pdev))
1033                 igb_reset(adapter);
1034         igb_clean_all_tx_rings(adapter);
1035         igb_clean_all_rx_rings(adapter);
1036 #ifdef CONFIG_IGB_DCA
1037
1038         /* since we reset the hardware DCA settings were cleared */
1039         igb_setup_dca(adapter);
1040 #endif
1041 }
1042
1043 void igb_reinit_locked(struct igb_adapter *adapter)
1044 {
1045         WARN_ON(in_interrupt());
1046         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1047                 msleep(1);
1048         igb_down(adapter);
1049         igb_up(adapter);
1050         clear_bit(__IGB_RESETTING, &adapter->state);
1051 }
1052
1053 void igb_reset(struct igb_adapter *adapter)
1054 {
1055         struct e1000_hw *hw = &adapter->hw;
1056         struct e1000_mac_info *mac = &hw->mac;
1057         struct e1000_fc_info *fc = &hw->fc;
1058         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1059         u16 hwm;
1060
1061         /* Repartition Pba for greater than 9k mtu
1062          * To take effect CTRL.RST is required.
1063          */
1064         switch (mac->type) {
1065         case e1000_82576:
1066                 pba = E1000_PBA_64K;
1067                 break;
1068         case e1000_82575:
1069         default:
1070                 pba = E1000_PBA_34K;
1071                 break;
1072         }
1073
1074         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1075             (mac->type < e1000_82576)) {
1076                 /* adjust PBA for jumbo frames */
1077                 wr32(E1000_PBA, pba);
1078
1079                 /* To maintain wire speed transmits, the Tx FIFO should be
1080                  * large enough to accommodate two full transmit packets,
1081                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1082                  * the Rx FIFO should be large enough to accommodate at least
1083                  * one full receive packet and is similarly rounded up and
1084                  * expressed in KB. */
1085                 pba = rd32(E1000_PBA);
1086                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1087                 tx_space = pba >> 16;
1088                 /* lower 16 bits has Rx packet buffer allocation size in KB */
1089                 pba &= 0xffff;
1090                 /* the tx fifo also stores 16 bytes of information about the tx
1091                  * but don't include ethernet FCS because hardware appends it */
1092                 min_tx_space = (adapter->max_frame_size +
1093                                 sizeof(union e1000_adv_tx_desc) -
1094                                 ETH_FCS_LEN) * 2;
1095                 min_tx_space = ALIGN(min_tx_space, 1024);
1096                 min_tx_space >>= 10;
1097                 /* software strips receive CRC, so leave room for it */
1098                 min_rx_space = adapter->max_frame_size;
1099                 min_rx_space = ALIGN(min_rx_space, 1024);
1100                 min_rx_space >>= 10;
1101
1102                 /* If current Tx allocation is less than the min Tx FIFO size,
1103                  * and the min Tx FIFO size is less than the current Rx FIFO
1104                  * allocation, take space away from current Rx allocation */
1105                 if (tx_space < min_tx_space &&
1106                     ((min_tx_space - tx_space) < pba)) {
1107                         pba = pba - (min_tx_space - tx_space);
1108
1109                         /* if short on rx space, rx wins and must trump tx
1110                          * adjustment */
1111                         if (pba < min_rx_space)
1112                                 pba = min_rx_space;
1113                 }
1114                 wr32(E1000_PBA, pba);
1115         }
1116
1117         /* flow control settings */
1118         /* The high water mark must be low enough to fit one full frame
1119          * (or the size used for early receive) above it in the Rx FIFO.
1120          * Set it to the lower of:
1121          * - 90% of the Rx FIFO size, or
1122          * - the full Rx FIFO size minus one full frame */
1123         hwm = min(((pba << 10) * 9 / 10),
1124                         ((pba << 10) - 2 * adapter->max_frame_size));
1125
1126         if (mac->type < e1000_82576) {
1127                 fc->high_water = hwm & 0xFFF8;  /* 8-byte granularity */
1128                 fc->low_water = fc->high_water - 8;
1129         } else {
1130                 fc->high_water = hwm & 0xFFF0;  /* 16-byte granularity */
1131                 fc->low_water = fc->high_water - 16;
1132         }
1133         fc->pause_time = 0xFFFF;
1134         fc->send_xon = 1;
1135         fc->current_mode = fc->requested_mode;
1136
1137         /* disable receive for all VFs and wait one second */
1138         if (adapter->vfs_allocated_count) {
1139                 int i;
1140                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1141                         adapter->vf_data[i].clear_to_send = false;
1142
1143                 /* ping all the active vfs to let them know we are going down */
1144                         igb_ping_all_vfs(adapter);
1145
1146                 /* disable transmits and receives */
1147                 wr32(E1000_VFRE, 0);
1148                 wr32(E1000_VFTE, 0);
1149         }
1150
1151         /* Allow time for pending master requests to run */
1152         adapter->hw.mac.ops.reset_hw(&adapter->hw);
1153         wr32(E1000_WUC, 0);
1154
1155         if (adapter->hw.mac.ops.init_hw(&adapter->hw))
1156                 dev_err(&adapter->pdev->dev, "Hardware Error\n");
1157
1158         igb_update_mng_vlan(adapter);
1159
1160         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1161         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1162
1163         igb_reset_adaptive(&adapter->hw);
1164         igb_get_phy_info(&adapter->hw);
1165 }
1166
1167 static const struct net_device_ops igb_netdev_ops = {
1168         .ndo_open               = igb_open,
1169         .ndo_stop               = igb_close,
1170         .ndo_start_xmit         = igb_xmit_frame_adv,
1171         .ndo_get_stats          = igb_get_stats,
1172         .ndo_set_rx_mode        = igb_set_rx_mode,
1173         .ndo_set_multicast_list = igb_set_rx_mode,
1174         .ndo_set_mac_address    = igb_set_mac,
1175         .ndo_change_mtu         = igb_change_mtu,
1176         .ndo_do_ioctl           = igb_ioctl,
1177         .ndo_tx_timeout         = igb_tx_timeout,
1178         .ndo_validate_addr      = eth_validate_addr,
1179         .ndo_vlan_rx_register   = igb_vlan_rx_register,
1180         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
1181         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
1182 #ifdef CONFIG_NET_POLL_CONTROLLER
1183         .ndo_poll_controller    = igb_netpoll,
1184 #endif
1185 };
1186
1187 /**
1188  * igb_probe - Device Initialization Routine
1189  * @pdev: PCI device information struct
1190  * @ent: entry in igb_pci_tbl
1191  *
1192  * Returns 0 on success, negative on failure
1193  *
1194  * igb_probe initializes an adapter identified by a pci_dev structure.
1195  * The OS initialization, configuring of the adapter private structure,
1196  * and a hardware reset occur.
1197  **/
1198 static int __devinit igb_probe(struct pci_dev *pdev,
1199                                const struct pci_device_id *ent)
1200 {
1201         struct net_device *netdev;
1202         struct igb_adapter *adapter;
1203         struct e1000_hw *hw;
1204         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1205         unsigned long mmio_start, mmio_len;
1206         int err, pci_using_dac;
1207         u16 eeprom_data = 0;
1208         u16 eeprom_apme_mask = IGB_EEPROM_APME;
1209         u32 part_num;
1210
1211         err = pci_enable_device_mem(pdev);
1212         if (err)
1213                 return err;
1214
1215         pci_using_dac = 0;
1216         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1217         if (!err) {
1218                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1219                 if (!err)
1220                         pci_using_dac = 1;
1221         } else {
1222                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1223                 if (err) {
1224                         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1225                         if (err) {
1226                                 dev_err(&pdev->dev, "No usable DMA "
1227                                         "configuration, aborting\n");
1228                                 goto err_dma;
1229                         }
1230                 }
1231         }
1232
1233         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1234                                            IORESOURCE_MEM),
1235                                            igb_driver_name);
1236         if (err)
1237                 goto err_pci_reg;
1238
1239         pci_enable_pcie_error_reporting(pdev);
1240
1241         pci_set_master(pdev);
1242         pci_save_state(pdev);
1243
1244         err = -ENOMEM;
1245         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1246                                    IGB_ABS_MAX_TX_QUEUES);
1247         if (!netdev)
1248                 goto err_alloc_etherdev;
1249
1250         SET_NETDEV_DEV(netdev, &pdev->dev);
1251
1252         pci_set_drvdata(pdev, netdev);
1253         adapter = netdev_priv(netdev);
1254         adapter->netdev = netdev;
1255         adapter->pdev = pdev;
1256         hw = &adapter->hw;
1257         hw->back = adapter;
1258         adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1259
1260         mmio_start = pci_resource_start(pdev, 0);
1261         mmio_len = pci_resource_len(pdev, 0);
1262
1263         err = -EIO;
1264         hw->hw_addr = ioremap(mmio_start, mmio_len);
1265         if (!hw->hw_addr)
1266                 goto err_ioremap;
1267
1268         netdev->netdev_ops = &igb_netdev_ops;
1269         igb_set_ethtool_ops(netdev);
1270         netdev->watchdog_timeo = 5 * HZ;
1271
1272         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1273
1274         netdev->mem_start = mmio_start;
1275         netdev->mem_end = mmio_start + mmio_len;
1276
1277         /* PCI config space info */
1278         hw->vendor_id = pdev->vendor;
1279         hw->device_id = pdev->device;
1280         hw->revision_id = pdev->revision;
1281         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1282         hw->subsystem_device_id = pdev->subsystem_device;
1283
1284         /* setup the private structure */
1285         hw->back = adapter;
1286         /* Copy the default MAC, PHY and NVM function pointers */
1287         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1288         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1289         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1290         /* Initialize skew-specific constants */
1291         err = ei->get_invariants(hw);
1292         if (err)
1293                 goto err_sw_init;
1294
1295 #ifdef CONFIG_PCI_IOV
1296         /* since iov functionality isn't critical to base device function we
1297          * can accept failure.  If it fails we don't allow iov to be enabled */
1298         if (hw->mac.type == e1000_82576) {
1299                 /* 82576 supports a maximum of 7 VFs in addition to the PF */
1300                 unsigned int num_vfs = (max_vfs > 7) ? 7 : max_vfs;
1301                 int i;
1302                 unsigned char mac_addr[ETH_ALEN];
1303
1304                 if (num_vfs) {
1305                         adapter->vf_data = kcalloc(num_vfs,
1306                                                 sizeof(struct vf_data_storage),
1307                                                 GFP_KERNEL);
1308                         if (!adapter->vf_data) {
1309                                 dev_err(&pdev->dev,
1310                                         "Could not allocate VF private data - "
1311                                         "IOV enable failed\n");
1312                         } else {
1313                                 err = pci_enable_sriov(pdev, num_vfs);
1314                                 if (!err) {
1315                                         adapter->vfs_allocated_count = num_vfs;
1316                                         dev_info(&pdev->dev,
1317                                                  "%d vfs allocated\n",
1318                                                  num_vfs);
1319                                         for (i = 0;
1320                                              i < adapter->vfs_allocated_count;
1321                                              i++) {
1322                                                 random_ether_addr(mac_addr);
1323                                                 igb_set_vf_mac(adapter, i,
1324                                                                mac_addr);
1325                                         }
1326                                 } else {
1327                                         kfree(adapter->vf_data);
1328                                         adapter->vf_data = NULL;
1329                                 }
1330                         }
1331                 }
1332         }
1333
1334 #endif
1335         /* setup the private structure */
1336         err = igb_sw_init(adapter);
1337         if (err)
1338                 goto err_sw_init;
1339
1340         igb_get_bus_info_pcie(hw);
1341
1342         /* set flags */
1343         switch (hw->mac.type) {
1344         case e1000_82575:
1345                 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1346                 break;
1347         case e1000_82576:
1348         default:
1349                 break;
1350         }
1351
1352         hw->phy.autoneg_wait_to_complete = false;
1353         hw->mac.adaptive_ifs = true;
1354
1355         /* Copper options */
1356         if (hw->phy.media_type == e1000_media_type_copper) {
1357                 hw->phy.mdix = AUTO_ALL_MODES;
1358                 hw->phy.disable_polarity_correction = false;
1359                 hw->phy.ms_type = e1000_ms_hw_default;
1360         }
1361
1362         if (igb_check_reset_block(hw))
1363                 dev_info(&pdev->dev,
1364                         "PHY reset is blocked due to SOL/IDER session.\n");
1365
1366         netdev->features = NETIF_F_SG |
1367                            NETIF_F_IP_CSUM |
1368                            NETIF_F_HW_VLAN_TX |
1369                            NETIF_F_HW_VLAN_RX |
1370                            NETIF_F_HW_VLAN_FILTER;
1371
1372         netdev->features |= NETIF_F_IPV6_CSUM;
1373         netdev->features |= NETIF_F_TSO;
1374         netdev->features |= NETIF_F_TSO6;
1375
1376         netdev->features |= NETIF_F_GRO;
1377
1378         netdev->vlan_features |= NETIF_F_TSO;
1379         netdev->vlan_features |= NETIF_F_TSO6;
1380         netdev->vlan_features |= NETIF_F_IP_CSUM;
1381         netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1382         netdev->vlan_features |= NETIF_F_SG;
1383
1384         if (pci_using_dac)
1385                 netdev->features |= NETIF_F_HIGHDMA;
1386
1387         if (adapter->hw.mac.type == e1000_82576)
1388                 netdev->features |= NETIF_F_SCTP_CSUM;
1389
1390         adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1391
1392         /* before reading the NVM, reset the controller to put the device in a
1393          * known good starting state */
1394         hw->mac.ops.reset_hw(hw);
1395
1396         /* make sure the NVM is good */
1397         if (igb_validate_nvm_checksum(hw) < 0) {
1398                 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1399                 err = -EIO;
1400                 goto err_eeprom;
1401         }
1402
1403         /* copy the MAC address out of the NVM */
1404         if (hw->mac.ops.read_mac_addr(hw))
1405                 dev_err(&pdev->dev, "NVM Read Error\n");
1406
1407         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1408         memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1409
1410         if (!is_valid_ether_addr(netdev->perm_addr)) {
1411                 dev_err(&pdev->dev, "Invalid MAC Address\n");
1412                 err = -EIO;
1413                 goto err_eeprom;
1414         }
1415
1416         setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1417                     (unsigned long) adapter);
1418         setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1419                     (unsigned long) adapter);
1420
1421         INIT_WORK(&adapter->reset_task, igb_reset_task);
1422         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1423
1424         /* Initialize link properties that are user-changeable */
1425         adapter->fc_autoneg = true;
1426         hw->mac.autoneg = true;
1427         hw->phy.autoneg_advertised = 0x2f;
1428
1429         hw->fc.requested_mode = e1000_fc_default;
1430         hw->fc.current_mode = e1000_fc_default;
1431
1432         adapter->itr_setting = IGB_DEFAULT_ITR;
1433         adapter->itr = IGB_START_ITR;
1434
1435         igb_validate_mdi_setting(hw);
1436
1437         /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1438          * enable the ACPI Magic Packet filter
1439          */
1440
1441         if (hw->bus.func == 0)
1442                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1443         else if (hw->bus.func == 1)
1444                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1445
1446         if (eeprom_data & eeprom_apme_mask)
1447                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1448
1449         /* now that we have the eeprom settings, apply the special cases where
1450          * the eeprom may be wrong or the board simply won't support wake on
1451          * lan on a particular port */
1452         switch (pdev->device) {
1453         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1454                 adapter->eeprom_wol = 0;
1455                 break;
1456         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1457         case E1000_DEV_ID_82576_FIBER:
1458         case E1000_DEV_ID_82576_SERDES:
1459                 /* Wake events only supported on port A for dual fiber
1460                  * regardless of eeprom setting */
1461                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1462                         adapter->eeprom_wol = 0;
1463                 break;
1464         case E1000_DEV_ID_82576_QUAD_COPPER:
1465                 /* if quad port adapter, disable WoL on all but port A */
1466                 if (global_quad_port_a != 0)
1467                         adapter->eeprom_wol = 0;
1468                 else
1469                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1470                 /* Reset for multiple quad port adapters */
1471                 if (++global_quad_port_a == 4)
1472                         global_quad_port_a = 0;
1473                 break;
1474         }
1475
1476         /* initialize the wol settings based on the eeprom settings */
1477         adapter->wol = adapter->eeprom_wol;
1478         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1479
1480         /* reset the hardware with the new settings */
1481         igb_reset(adapter);
1482
1483         /* let the f/w know that the h/w is now under the control of the
1484          * driver. */
1485         igb_get_hw_control(adapter);
1486
1487         strcpy(netdev->name, "eth%d");
1488         err = register_netdev(netdev);
1489         if (err)
1490                 goto err_register;
1491
1492         /* carrier off reporting is important to ethtool even BEFORE open */
1493         netif_carrier_off(netdev);
1494
1495 #ifdef CONFIG_IGB_DCA
1496         if (dca_add_requester(&pdev->dev) == 0) {
1497                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1498                 dev_info(&pdev->dev, "DCA enabled\n");
1499                 igb_setup_dca(adapter);
1500         }
1501 #endif
1502
1503         /*
1504          * Initialize hardware timer: we keep it running just in case
1505          * that some program needs it later on.
1506          */
1507         memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1508         adapter->cycles.read = igb_read_clock;
1509         adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1510         adapter->cycles.mult = 1;
1511         adapter->cycles.shift = IGB_TSYNC_SHIFT;
1512         wr32(E1000_TIMINCA,
1513              (1<<24) |
1514              IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS * IGB_TSYNC_SCALE);
1515 #if 0
1516         /*
1517          * Avoid rollover while we initialize by resetting the time counter.
1518          */
1519         wr32(E1000_SYSTIML, 0x00000000);
1520         wr32(E1000_SYSTIMH, 0x00000000);
1521 #else
1522         /*
1523          * Set registers so that rollover occurs soon to test this.
1524          */
1525         wr32(E1000_SYSTIML, 0x00000000);
1526         wr32(E1000_SYSTIMH, 0xFF800000);
1527 #endif
1528         wrfl();
1529         timecounter_init(&adapter->clock,
1530                          &adapter->cycles,
1531                          ktime_to_ns(ktime_get_real()));
1532
1533         /*
1534          * Synchronize our NIC clock against system wall clock. NIC
1535          * time stamp reading requires ~3us per sample, each sample
1536          * was pretty stable even under load => only require 10
1537          * samples for each offset comparison.
1538          */
1539         memset(&adapter->compare, 0, sizeof(adapter->compare));
1540         adapter->compare.source = &adapter->clock;
1541         adapter->compare.target = ktime_get_real;
1542         adapter->compare.num_samples = 10;
1543         timecompare_update(&adapter->compare, 0);
1544
1545 #ifdef DEBUG
1546         {
1547                 char buffer[160];
1548                 printk(KERN_DEBUG
1549                         "igb: %s: hw %p initialized timer\n",
1550                         igb_get_time_str(adapter, buffer),
1551                         &adapter->hw);
1552         }
1553 #endif
1554
1555         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1556         /* print bus type/speed/width info */
1557         dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1558                  netdev->name,
1559                  ((hw->bus.speed == e1000_bus_speed_2500)
1560                   ? "2.5Gb/s" : "unknown"),
1561                  ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1562                   (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1563                   (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1564                    "unknown"),
1565                  netdev->dev_addr);
1566
1567         igb_read_part_num(hw, &part_num);
1568         dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1569                 (part_num >> 8), (part_num & 0xff));
1570
1571         dev_info(&pdev->dev,
1572                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1573                 adapter->msix_entries ? "MSI-X" :
1574                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1575                 adapter->num_rx_queues, adapter->num_tx_queues);
1576
1577         return 0;
1578
1579 err_register:
1580         igb_release_hw_control(adapter);
1581 err_eeprom:
1582         if (!igb_check_reset_block(hw))
1583                 igb_reset_phy(hw);
1584
1585         if (hw->flash_address)
1586                 iounmap(hw->flash_address);
1587
1588         igb_free_queues(adapter);
1589 err_sw_init:
1590         iounmap(hw->hw_addr);
1591 err_ioremap:
1592         free_netdev(netdev);
1593 err_alloc_etherdev:
1594         pci_release_selected_regions(pdev, pci_select_bars(pdev,
1595                                      IORESOURCE_MEM));
1596 err_pci_reg:
1597 err_dma:
1598         pci_disable_device(pdev);
1599         return err;
1600 }
1601
1602 /**
1603  * igb_remove - Device Removal Routine
1604  * @pdev: PCI device information struct
1605  *
1606  * igb_remove is called by the PCI subsystem to alert the driver
1607  * that it should release a PCI device.  The could be caused by a
1608  * Hot-Plug event, or because the driver is going to be removed from
1609  * memory.
1610  **/
1611 static void __devexit igb_remove(struct pci_dev *pdev)
1612 {
1613         struct net_device *netdev = pci_get_drvdata(pdev);
1614         struct igb_adapter *adapter = netdev_priv(netdev);
1615         struct e1000_hw *hw = &adapter->hw;
1616
1617         /* flush_scheduled work may reschedule our watchdog task, so
1618          * explicitly disable watchdog tasks from being rescheduled  */
1619         set_bit(__IGB_DOWN, &adapter->state);
1620         del_timer_sync(&adapter->watchdog_timer);
1621         del_timer_sync(&adapter->phy_info_timer);
1622
1623         flush_scheduled_work();
1624
1625 #ifdef CONFIG_IGB_DCA
1626         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1627                 dev_info(&pdev->dev, "DCA disabled\n");
1628                 dca_remove_requester(&pdev->dev);
1629                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1630                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
1631         }
1632 #endif
1633
1634         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1635          * would have already happened in close and is redundant. */
1636         igb_release_hw_control(adapter);
1637
1638         unregister_netdev(netdev);
1639
1640         if (!igb_check_reset_block(&adapter->hw))
1641                 igb_reset_phy(&adapter->hw);
1642
1643         igb_reset_interrupt_capability(adapter);
1644
1645         igb_free_queues(adapter);
1646
1647 #ifdef CONFIG_PCI_IOV
1648         /* reclaim resources allocated to VFs */
1649         if (adapter->vf_data) {
1650                 /* disable iov and allow time for transactions to clear */
1651                 pci_disable_sriov(pdev);
1652                 msleep(500);
1653
1654                 kfree(adapter->vf_data);
1655                 adapter->vf_data = NULL;
1656                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1657                 msleep(100);
1658                 dev_info(&pdev->dev, "IOV Disabled\n");
1659         }
1660 #endif
1661         iounmap(hw->hw_addr);
1662         if (hw->flash_address)
1663                 iounmap(hw->flash_address);
1664         pci_release_selected_regions(pdev, pci_select_bars(pdev,
1665                                      IORESOURCE_MEM));
1666
1667         free_netdev(netdev);
1668
1669         pci_disable_pcie_error_reporting(pdev);
1670
1671         pci_disable_device(pdev);
1672 }
1673
1674 /**
1675  * igb_sw_init - Initialize general software structures (struct igb_adapter)
1676  * @adapter: board private structure to initialize
1677  *
1678  * igb_sw_init initializes the Adapter private data structure.
1679  * Fields are initialized based on PCI device information and
1680  * OS network device settings (MTU size).
1681  **/
1682 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1683 {
1684         struct e1000_hw *hw = &adapter->hw;
1685         struct net_device *netdev = adapter->netdev;
1686         struct pci_dev *pdev = adapter->pdev;
1687
1688         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1689
1690         adapter->tx_ring_count = IGB_DEFAULT_TXD;
1691         adapter->rx_ring_count = IGB_DEFAULT_RXD;
1692         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1693         adapter->rx_ps_hdr_size = 0; /* disable packet split */
1694         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1695         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1696
1697         /* This call may decrease the number of queues depending on
1698          * interrupt mode. */
1699         igb_set_interrupt_capability(adapter);
1700
1701         if (igb_alloc_queues(adapter)) {
1702                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1703                 return -ENOMEM;
1704         }
1705
1706         /* Explicitly disable IRQ since the NIC can be in any state. */
1707         igb_irq_disable(adapter);
1708
1709         set_bit(__IGB_DOWN, &adapter->state);
1710         return 0;
1711 }
1712
1713 /**
1714  * igb_open - Called when a network interface is made active
1715  * @netdev: network interface device structure
1716  *
1717  * Returns 0 on success, negative value on failure
1718  *
1719  * The open entry point is called when a network interface is made
1720  * active by the system (IFF_UP).  At this point all resources needed
1721  * for transmit and receive operations are allocated, the interrupt
1722  * handler is registered with the OS, the watchdog timer is started,
1723  * and the stack is notified that the interface is ready.
1724  **/
1725 static int igb_open(struct net_device *netdev)
1726 {
1727         struct igb_adapter *adapter = netdev_priv(netdev);
1728         struct e1000_hw *hw = &adapter->hw;
1729         int err;
1730         int i;
1731
1732         /* disallow open during test */
1733         if (test_bit(__IGB_TESTING, &adapter->state))
1734                 return -EBUSY;
1735
1736         netif_carrier_off(netdev);
1737
1738         /* allocate transmit descriptors */
1739         err = igb_setup_all_tx_resources(adapter);
1740         if (err)
1741                 goto err_setup_tx;
1742
1743         /* allocate receive descriptors */
1744         err = igb_setup_all_rx_resources(adapter);
1745         if (err)
1746                 goto err_setup_rx;
1747
1748         /* e1000_power_up_phy(adapter); */
1749
1750         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1751         if ((adapter->hw.mng_cookie.status &
1752              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1753                 igb_update_mng_vlan(adapter);
1754
1755         /* before we allocate an interrupt, we must be ready to handle it.
1756          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1757          * as soon as we call pci_request_irq, so we have to setup our
1758          * clean_rx handler before we do so.  */
1759         igb_configure(adapter);
1760
1761         igb_vmm_control(adapter);
1762         igb_set_vmolr(hw, adapter->vfs_allocated_count);
1763
1764         err = igb_request_irq(adapter);
1765         if (err)
1766                 goto err_req_irq;
1767
1768         /* From here on the code is the same as igb_up() */
1769         clear_bit(__IGB_DOWN, &adapter->state);
1770
1771         for (i = 0; i < adapter->num_rx_queues; i++)
1772                 napi_enable(&adapter->rx_ring[i].napi);
1773
1774         /* Clear any pending interrupts. */
1775         rd32(E1000_ICR);
1776
1777         igb_irq_enable(adapter);
1778
1779         netif_tx_start_all_queues(netdev);
1780
1781         /* Fire a link status change interrupt to start the watchdog. */
1782         wr32(E1000_ICS, E1000_ICS_LSC);
1783
1784         return 0;
1785
1786 err_req_irq:
1787         igb_release_hw_control(adapter);
1788         /* e1000_power_down_phy(adapter); */
1789         igb_free_all_rx_resources(adapter);
1790 err_setup_rx:
1791         igb_free_all_tx_resources(adapter);
1792 err_setup_tx:
1793         igb_reset(adapter);
1794
1795         return err;
1796 }
1797
1798 /**
1799  * igb_close - Disables a network interface
1800  * @netdev: network interface device structure
1801  *
1802  * Returns 0, this is not allowed to fail
1803  *
1804  * The close entry point is called when an interface is de-activated
1805  * by the OS.  The hardware is still under the driver's control, but
1806  * needs to be disabled.  A global MAC reset is issued to stop the
1807  * hardware, and all transmit and receive resources are freed.
1808  **/
1809 static int igb_close(struct net_device *netdev)
1810 {
1811         struct igb_adapter *adapter = netdev_priv(netdev);
1812
1813         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1814         igb_down(adapter);
1815
1816         igb_free_irq(adapter);
1817
1818         igb_free_all_tx_resources(adapter);
1819         igb_free_all_rx_resources(adapter);
1820
1821         /* kill manageability vlan ID if supported, but not if a vlan with
1822          * the same ID is registered on the host OS (let 8021q kill it) */
1823         if ((adapter->hw.mng_cookie.status &
1824                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1825              !(adapter->vlgrp &&
1826                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1827                 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1828
1829         return 0;
1830 }
1831
1832 /**
1833  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1834  * @adapter: board private structure
1835  * @tx_ring: tx descriptor ring (for a specific queue) to setup
1836  *
1837  * Return 0 on success, negative on failure
1838  **/
1839 int igb_setup_tx_resources(struct igb_adapter *adapter,
1840                            struct igb_ring *tx_ring)
1841 {
1842         struct pci_dev *pdev = adapter->pdev;
1843         int size;
1844
1845         size = sizeof(struct igb_buffer) * tx_ring->count;
1846         tx_ring->buffer_info = vmalloc(size);
1847         if (!tx_ring->buffer_info)
1848                 goto err;
1849         memset(tx_ring->buffer_info, 0, size);
1850
1851         /* round up to nearest 4K */
1852         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
1853         tx_ring->size = ALIGN(tx_ring->size, 4096);
1854
1855         tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1856                                              &tx_ring->dma);
1857
1858         if (!tx_ring->desc)
1859                 goto err;
1860
1861         tx_ring->adapter = adapter;
1862         tx_ring->next_to_use = 0;
1863         tx_ring->next_to_clean = 0;
1864         return 0;
1865
1866 err:
1867         vfree(tx_ring->buffer_info);
1868         dev_err(&adapter->pdev->dev,
1869                 "Unable to allocate memory for the transmit descriptor ring\n");
1870         return -ENOMEM;
1871 }
1872
1873 /**
1874  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1875  *                                (Descriptors) for all queues
1876  * @adapter: board private structure
1877  *
1878  * Return 0 on success, negative on failure
1879  **/
1880 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1881 {
1882         int i, err = 0;
1883         int r_idx;
1884
1885         for (i = 0; i < adapter->num_tx_queues; i++) {
1886                 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1887                 if (err) {
1888                         dev_err(&adapter->pdev->dev,
1889                                 "Allocation for Tx Queue %u failed\n", i);
1890                         for (i--; i >= 0; i--)
1891                                 igb_free_tx_resources(&adapter->tx_ring[i]);
1892                         break;
1893                 }
1894         }
1895
1896         for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1897                 r_idx = i % adapter->num_tx_queues;
1898                 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1899         }
1900         return err;
1901 }
1902
1903 /**
1904  * igb_configure_tx - Configure transmit Unit after Reset
1905  * @adapter: board private structure
1906  *
1907  * Configure the Tx unit of the MAC after a reset.
1908  **/
1909 static void igb_configure_tx(struct igb_adapter *adapter)
1910 {
1911         u64 tdba;
1912         struct e1000_hw *hw = &adapter->hw;
1913         u32 tctl;
1914         u32 txdctl, txctrl;
1915         int i, j;
1916
1917         for (i = 0; i < adapter->num_tx_queues; i++) {
1918                 struct igb_ring *ring = &adapter->tx_ring[i];
1919                 j = ring->reg_idx;
1920                 wr32(E1000_TDLEN(j),
1921                      ring->count * sizeof(union e1000_adv_tx_desc));
1922                 tdba = ring->dma;
1923                 wr32(E1000_TDBAL(j),
1924                      tdba & 0x00000000ffffffffULL);
1925                 wr32(E1000_TDBAH(j), tdba >> 32);
1926
1927                 ring->head = E1000_TDH(j);
1928                 ring->tail = E1000_TDT(j);
1929                 writel(0, hw->hw_addr + ring->tail);
1930                 writel(0, hw->hw_addr + ring->head);
1931                 txdctl = rd32(E1000_TXDCTL(j));
1932                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1933                 wr32(E1000_TXDCTL(j), txdctl);
1934
1935                 /* Turn off Relaxed Ordering on head write-backs.  The
1936                  * writebacks MUST be delivered in order or it will
1937                  * completely screw up our bookeeping.
1938                  */
1939                 txctrl = rd32(E1000_DCA_TXCTRL(j));
1940                 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1941                 wr32(E1000_DCA_TXCTRL(j), txctrl);
1942         }
1943
1944         /* disable queue 0 to prevent tail bump w/o re-configuration */
1945         if (adapter->vfs_allocated_count)
1946                 wr32(E1000_TXDCTL(0), 0);
1947
1948         /* Program the Transmit Control Register */
1949         tctl = rd32(E1000_TCTL);
1950         tctl &= ~E1000_TCTL_CT;
1951         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1952                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1953
1954         igb_config_collision_dist(hw);
1955
1956         /* Setup Transmit Descriptor Settings for eop descriptor */
1957         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1958
1959         /* Enable transmits */
1960         tctl |= E1000_TCTL_EN;
1961
1962         wr32(E1000_TCTL, tctl);
1963 }
1964
1965 /**
1966  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1967  * @adapter: board private structure
1968  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
1969  *
1970  * Returns 0 on success, negative on failure
1971  **/
1972 int igb_setup_rx_resources(struct igb_adapter *adapter,
1973                            struct igb_ring *rx_ring)
1974 {
1975         struct pci_dev *pdev = adapter->pdev;
1976         int size, desc_len;
1977
1978         size = sizeof(struct igb_buffer) * rx_ring->count;
1979         rx_ring->buffer_info = vmalloc(size);
1980         if (!rx_ring->buffer_info)
1981                 goto err;
1982         memset(rx_ring->buffer_info, 0, size);
1983
1984         desc_len = sizeof(union e1000_adv_rx_desc);
1985
1986         /* Round up to nearest 4K */
1987         rx_ring->size = rx_ring->count * desc_len;
1988         rx_ring->size = ALIGN(rx_ring->size, 4096);
1989
1990         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1991                                              &rx_ring->dma);
1992
1993         if (!rx_ring->desc)
1994                 goto err;
1995
1996         rx_ring->next_to_clean = 0;
1997         rx_ring->next_to_use = 0;
1998
1999         rx_ring->adapter = adapter;
2000
2001         return 0;
2002
2003 err:
2004         vfree(rx_ring->buffer_info);
2005         dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
2006                 "the receive descriptor ring\n");
2007         return -ENOMEM;
2008 }
2009
2010 /**
2011  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2012  *                                (Descriptors) for all queues
2013  * @adapter: board private structure
2014  *
2015  * Return 0 on success, negative on failure
2016  **/
2017 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2018 {
2019         int i, err = 0;
2020
2021         for (i = 0; i < adapter->num_rx_queues; i++) {
2022                 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
2023                 if (err) {
2024                         dev_err(&adapter->pdev->dev,
2025                                 "Allocation for Rx Queue %u failed\n", i);
2026                         for (i--; i >= 0; i--)
2027                                 igb_free_rx_resources(&adapter->rx_ring[i]);
2028                         break;
2029                 }
2030         }
2031
2032         return err;
2033 }
2034
2035 /**
2036  * igb_setup_rctl - configure the receive control registers
2037  * @adapter: Board private structure
2038  **/
2039 static void igb_setup_rctl(struct igb_adapter *adapter)
2040 {
2041         struct e1000_hw *hw = &adapter->hw;
2042         u32 rctl;
2043         u32 srrctl = 0;
2044         int i;
2045
2046         rctl = rd32(E1000_RCTL);
2047
2048         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2049         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2050
2051         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2052                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2053
2054         /*
2055          * enable stripping of CRC. It's unlikely this will break BMC
2056          * redirection as it did with e1000. Newer features require
2057          * that the HW strips the CRC.
2058          */
2059         rctl |= E1000_RCTL_SECRC;
2060
2061         /*
2062          * disable store bad packets and clear size bits.
2063          */
2064         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2065
2066         /* enable LPE when to prevent packets larger than max_frame_size */
2067                 rctl |= E1000_RCTL_LPE;
2068
2069         /* Setup buffer sizes */
2070         switch (adapter->rx_buffer_len) {
2071         case IGB_RXBUFFER_256:
2072                 rctl |= E1000_RCTL_SZ_256;
2073                 break;
2074         case IGB_RXBUFFER_512:
2075                 rctl |= E1000_RCTL_SZ_512;
2076                 break;
2077         default:
2078                 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
2079                          >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2080                 break;
2081         }
2082
2083         /* 82575 and greater support packet-split where the protocol
2084          * header is placed in skb->data and the packet data is
2085          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2086          * In the case of a non-split, skb->data is linearly filled,
2087          * followed by the page buffers.  Therefore, skb->data is
2088          * sized to hold the largest protocol header.
2089          */
2090         /* allocations using alloc_page take too long for regular MTU
2091          * so only enable packet split for jumbo frames */
2092         if (adapter->netdev->mtu > ETH_DATA_LEN) {
2093                 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
2094                 srrctl |= adapter->rx_ps_hdr_size <<
2095                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2096                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2097         } else {
2098                 adapter->rx_ps_hdr_size = 0;
2099                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2100         }
2101
2102         /* Attention!!!  For SR-IOV PF driver operations you must enable
2103          * queue drop for all VF and PF queues to prevent head of line blocking
2104          * if an un-trusted VF does not provide descriptors to hardware.
2105          */
2106         if (adapter->vfs_allocated_count) {
2107                 u32 vmolr;
2108
2109                 /* set all queue drop enable bits */
2110                 wr32(E1000_QDE, ALL_QUEUES);
2111                 srrctl |= E1000_SRRCTL_DROP_EN;
2112
2113                 /* disable queue 0 to prevent tail write w/o re-config */
2114                 wr32(E1000_RXDCTL(0), 0);
2115
2116                 vmolr = rd32(E1000_VMOLR(adapter->vfs_allocated_count));
2117                 if (rctl & E1000_RCTL_LPE)
2118                         vmolr |= E1000_VMOLR_LPE;
2119                 if (adapter->num_rx_queues > 1)
2120                         vmolr |= E1000_VMOLR_RSSE;
2121                 wr32(E1000_VMOLR(adapter->vfs_allocated_count), vmolr);
2122         }
2123
2124         for (i = 0; i < adapter->num_rx_queues; i++) {
2125                 int j = adapter->rx_ring[i].reg_idx;
2126                 wr32(E1000_SRRCTL(j), srrctl);
2127         }
2128
2129         wr32(E1000_RCTL, rctl);
2130 }
2131
2132 /**
2133  * igb_rlpml_set - set maximum receive packet size
2134  * @adapter: board private structure
2135  *
2136  * Configure maximum receivable packet size.
2137  **/
2138 static void igb_rlpml_set(struct igb_adapter *adapter)
2139 {
2140         u32 max_frame_size = adapter->max_frame_size;
2141         struct e1000_hw *hw = &adapter->hw;
2142         u16 pf_id = adapter->vfs_allocated_count;
2143
2144         if (adapter->vlgrp)
2145                 max_frame_size += VLAN_TAG_SIZE;
2146
2147         /* if vfs are enabled we set RLPML to the largest possible request
2148          * size and set the VMOLR RLPML to the size we need */
2149         if (pf_id) {
2150                 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2151                 max_frame_size = MAX_STD_JUMBO_FRAME_SIZE + VLAN_TAG_SIZE;
2152         }
2153
2154         wr32(E1000_RLPML, max_frame_size);
2155 }
2156
2157 /**
2158  * igb_configure_vt_default_pool - Configure VT default pool
2159  * @adapter: board private structure
2160  *
2161  * Configure the default pool
2162  **/
2163 static void igb_configure_vt_default_pool(struct igb_adapter *adapter)
2164 {
2165         struct e1000_hw *hw = &adapter->hw;
2166         u16 pf_id = adapter->vfs_allocated_count;
2167         u32 vtctl;
2168
2169         /* not in sr-iov mode - do nothing */
2170         if (!pf_id)
2171                 return;
2172
2173         vtctl = rd32(E1000_VT_CTL);
2174         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2175                    E1000_VT_CTL_DISABLE_DEF_POOL);
2176         vtctl |= pf_id << E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2177         wr32(E1000_VT_CTL, vtctl);
2178 }
2179
2180 /**
2181  * igb_configure_rx - Configure receive Unit after Reset
2182  * @adapter: board private structure
2183  *
2184  * Configure the Rx unit of the MAC after a reset.
2185  **/
2186 static void igb_configure_rx(struct igb_adapter *adapter)
2187 {
2188         u64 rdba;
2189         struct e1000_hw *hw = &adapter->hw;
2190         u32 rctl, rxcsum;
2191         u32 rxdctl;
2192         int i;
2193
2194         /* disable receives while setting up the descriptors */
2195         rctl = rd32(E1000_RCTL);
2196         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2197         wrfl();
2198         mdelay(10);
2199
2200         if (adapter->itr_setting > 3)
2201                 wr32(E1000_ITR, adapter->itr);
2202
2203         /* Setup the HW Rx Head and Tail Descriptor Pointers and
2204          * the Base and Length of the Rx Descriptor Ring */
2205         for (i = 0; i < adapter->num_rx_queues; i++) {
2206                 struct igb_ring *ring = &adapter->rx_ring[i];
2207                 int j = ring->reg_idx;
2208                 rdba = ring->dma;
2209                 wr32(E1000_RDBAL(j),
2210                      rdba & 0x00000000ffffffffULL);
2211                 wr32(E1000_RDBAH(j), rdba >> 32);
2212                 wr32(E1000_RDLEN(j),
2213                      ring->count * sizeof(union e1000_adv_rx_desc));
2214
2215                 ring->head = E1000_RDH(j);
2216                 ring->tail = E1000_RDT(j);
2217                 writel(0, hw->hw_addr + ring->tail);
2218                 writel(0, hw->hw_addr + ring->head);
2219
2220                 rxdctl = rd32(E1000_RXDCTL(j));
2221                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2222                 rxdctl &= 0xFFF00000;
2223                 rxdctl |= IGB_RX_PTHRESH;
2224                 rxdctl |= IGB_RX_HTHRESH << 8;
2225                 rxdctl |= IGB_RX_WTHRESH << 16;
2226                 wr32(E1000_RXDCTL(j), rxdctl);
2227         }
2228
2229         if (adapter->num_rx_queues > 1) {
2230                 u32 random[10];
2231                 u32 mrqc;
2232                 u32 j, shift;
2233                 union e1000_reta {
2234                         u32 dword;
2235                         u8  bytes[4];
2236                 } reta;
2237
2238                 get_random_bytes(&random[0], 40);
2239
2240                 if (hw->mac.type >= e1000_82576)
2241                         shift = 0;
2242                 else
2243                         shift = 6;
2244                 for (j = 0; j < (32 * 4); j++) {
2245                         reta.bytes[j & 3] =
2246                                 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
2247                         if ((j & 3) == 3)
2248                                 writel(reta.dword,
2249                                        hw->hw_addr + E1000_RETA(0) + (j & ~3));
2250                 }
2251                 if (adapter->vfs_allocated_count)
2252                         mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2253                 else
2254                         mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2255
2256                 /* Fill out hash function seeds */
2257                 for (j = 0; j < 10; j++)
2258                         array_wr32(E1000_RSSRK(0), j, random[j]);
2259
2260                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2261                          E1000_MRQC_RSS_FIELD_IPV4_TCP);
2262                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2263                          E1000_MRQC_RSS_FIELD_IPV6_TCP);
2264                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2265                          E1000_MRQC_RSS_FIELD_IPV6_UDP);
2266                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2267                          E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2268
2269                 wr32(E1000_MRQC, mrqc);
2270         } else if (adapter->vfs_allocated_count) {
2271                 /* Enable multi-queue for sr-iov */
2272                 wr32(E1000_MRQC, E1000_MRQC_ENABLE_VMDQ);
2273         }
2274
2275         /* Enable Receive Checksum Offload for TCP and UDP */
2276         rxcsum = rd32(E1000_RXCSUM);
2277         /* Disable raw packet checksumming */
2278         rxcsum |= E1000_RXCSUM_PCSD;
2279
2280         if (adapter->hw.mac.type == e1000_82576)
2281                 /* Enable Receive Checksum Offload for SCTP */
2282                 rxcsum |= E1000_RXCSUM_CRCOFL;
2283
2284         /* Don't need to set TUOFL or IPOFL, they default to 1 */
2285         wr32(E1000_RXCSUM, rxcsum);
2286
2287         /* Set the default pool for the PF's first queue */
2288         igb_configure_vt_default_pool(adapter);
2289
2290         /* set UTA to appropriate mode */
2291         igb_set_uta(adapter);
2292
2293         /* set the correct pool for the PF default MAC address in entry 0 */
2294         igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
2295                          adapter->vfs_allocated_count);
2296
2297         igb_rlpml_set(adapter);
2298
2299         /* Enable Receives */
2300         wr32(E1000_RCTL, rctl);
2301 }
2302
2303 /**
2304  * igb_free_tx_resources - Free Tx Resources per Queue
2305  * @tx_ring: Tx descriptor ring for a specific queue
2306  *
2307  * Free all transmit software resources
2308  **/
2309 void igb_free_tx_resources(struct igb_ring *tx_ring)
2310 {
2311         struct pci_dev *pdev = tx_ring->adapter->pdev;
2312
2313         igb_clean_tx_ring(tx_ring);
2314
2315         vfree(tx_ring->buffer_info);
2316         tx_ring->buffer_info = NULL;
2317
2318         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2319
2320         tx_ring->desc = NULL;
2321 }
2322
2323 /**
2324  * igb_free_all_tx_resources - Free Tx Resources for All Queues
2325  * @adapter: board private structure
2326  *
2327  * Free all transmit software resources
2328  **/
2329 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2330 {
2331         int i;
2332
2333         for (i = 0; i < adapter->num_tx_queues; i++)
2334                 igb_free_tx_resources(&adapter->tx_ring[i]);
2335 }
2336
2337 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2338                                            struct igb_buffer *buffer_info)
2339 {
2340         buffer_info->dma = 0;
2341         if (buffer_info->skb) {
2342                 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
2343                               DMA_TO_DEVICE);
2344                 dev_kfree_skb_any(buffer_info->skb);
2345                 buffer_info->skb = NULL;
2346         }
2347         buffer_info->time_stamp = 0;
2348         /* buffer_info must be completely set up in the transmit path */
2349 }
2350
2351 /**
2352  * igb_clean_tx_ring - Free Tx Buffers
2353  * @tx_ring: ring to be cleaned
2354  **/
2355 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2356 {
2357         struct igb_adapter *adapter = tx_ring->adapter;
2358         struct igb_buffer *buffer_info;
2359         unsigned long size;
2360         unsigned int i;
2361
2362         if (!tx_ring->buffer_info)
2363                 return;
2364         /* Free all the Tx ring sk_buffs */
2365
2366         for (i = 0; i < tx_ring->count; i++) {
2367                 buffer_info = &tx_ring->buffer_info[i];
2368                 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2369         }
2370
2371         size = sizeof(struct igb_buffer) * tx_ring->count;
2372         memset(tx_ring->buffer_info, 0, size);
2373
2374         /* Zero out the descriptor ring */
2375
2376         memset(tx_ring->desc, 0, tx_ring->size);
2377
2378         tx_ring->next_to_use = 0;
2379         tx_ring->next_to_clean = 0;
2380
2381         writel(0, adapter->hw.hw_addr + tx_ring->head);
2382         writel(0, adapter->hw.hw_addr + tx_ring->tail);
2383 }
2384
2385 /**
2386  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2387  * @adapter: board private structure
2388  **/
2389 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2390 {
2391         int i;
2392
2393         for (i = 0; i < adapter->num_tx_queues; i++)
2394                 igb_clean_tx_ring(&adapter->tx_ring[i]);
2395 }
2396
2397 /**
2398  * igb_free_rx_resources - Free Rx Resources
2399  * @rx_ring: ring to clean the resources from
2400  *
2401  * Free all receive software resources
2402  **/
2403 void igb_free_rx_resources(struct igb_ring *rx_ring)
2404 {
2405         struct pci_dev *pdev = rx_ring->adapter->pdev;
2406
2407         igb_clean_rx_ring(rx_ring);
2408
2409         vfree(rx_ring->buffer_info);
2410         rx_ring->buffer_info = NULL;
2411
2412         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2413
2414         rx_ring->desc = NULL;
2415 }
2416
2417 /**
2418  * igb_free_all_rx_resources - Free Rx Resources for All Queues
2419  * @adapter: board private structure
2420  *
2421  * Free all receive software resources
2422  **/
2423 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2424 {
2425         int i;
2426
2427         for (i = 0; i < adapter->num_rx_queues; i++)
2428                 igb_free_rx_resources(&adapter->rx_ring[i]);
2429 }
2430
2431 /**
2432  * igb_clean_rx_ring - Free Rx Buffers per Queue
2433  * @rx_ring: ring to free buffers from
2434  **/
2435 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2436 {
2437         struct igb_adapter *adapter = rx_ring->adapter;
2438         struct igb_buffer *buffer_info;
2439         struct pci_dev *pdev = adapter->pdev;
2440         unsigned long size;
2441         unsigned int i;
2442
2443         if (!rx_ring->buffer_info)
2444                 return;
2445         /* Free all the Rx ring sk_buffs */
2446         for (i = 0; i < rx_ring->count; i++) {
2447                 buffer_info = &rx_ring->buffer_info[i];
2448                 if (buffer_info->dma) {
2449                         if (adapter->rx_ps_hdr_size)
2450                                 pci_unmap_single(pdev, buffer_info->dma,
2451                                                  adapter->rx_ps_hdr_size,
2452                                                  PCI_DMA_FROMDEVICE);
2453                         else
2454                                 pci_unmap_single(pdev, buffer_info->dma,
2455                                                  adapter->rx_buffer_len,
2456                                                  PCI_DMA_FROMDEVICE);
2457                         buffer_info->dma = 0;
2458                 }
2459
2460                 if (buffer_info->skb) {
2461                         dev_kfree_skb(buffer_info->skb);
2462                         buffer_info->skb = NULL;
2463                 }
2464                 if (buffer_info->page) {
2465                         if (buffer_info->page_dma)
2466                                 pci_unmap_page(pdev, buffer_info->page_dma,
2467                                                PAGE_SIZE / 2,
2468                                                PCI_DMA_FROMDEVICE);
2469                         put_page(buffer_info->page);
2470                         buffer_info->page = NULL;
2471                         buffer_info->page_dma = 0;
2472                         buffer_info->page_offset = 0;
2473                 }
2474         }
2475
2476         size = sizeof(struct igb_buffer) * rx_ring->count;
2477         memset(rx_ring->buffer_info, 0, size);
2478
2479         /* Zero out the descriptor ring */
2480         memset(rx_ring->desc, 0, rx_ring->size);
2481
2482         rx_ring->next_to_clean = 0;
2483         rx_ring->next_to_use = 0;
2484
2485         writel(0, adapter->hw.hw_addr + rx_ring->head);
2486         writel(0, adapter->hw.hw_addr + rx_ring->tail);
2487 }
2488
2489 /**
2490  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2491  * @adapter: board private structure
2492  **/
2493 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2494 {
2495         int i;
2496
2497         for (i = 0; i < adapter->num_rx_queues; i++)
2498                 igb_clean_rx_ring(&adapter->rx_ring[i]);
2499 }
2500
2501 /**
2502  * igb_set_mac - Change the Ethernet Address of the NIC
2503  * @netdev: network interface device structure
2504  * @p: pointer to an address structure
2505  *
2506  * Returns 0 on success, negative on failure
2507  **/
2508 static int igb_set_mac(struct net_device *netdev, void *p)
2509 {
2510         struct igb_adapter *adapter = netdev_priv(netdev);
2511         struct e1000_hw *hw = &adapter->hw;
2512         struct sockaddr *addr = p;
2513
2514         if (!is_valid_ether_addr(addr->sa_data))
2515                 return -EADDRNOTAVAIL;
2516
2517         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2518         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2519
2520         /* set the correct pool for the new PF MAC address in entry 0 */
2521         igb_rar_set_qsel(adapter, hw->mac.addr, 0,
2522                          adapter->vfs_allocated_count);
2523
2524         return 0;
2525 }
2526
2527 /**
2528  * igb_write_mc_addr_list - write multicast addresses to MTA
2529  * @netdev: network interface device structure
2530  *
2531  * Writes multicast address list to the MTA hash table.
2532  * Returns: -ENOMEM on failure
2533  *                0 on no addresses written
2534  *                X on writing X addresses to MTA
2535  **/
2536 static int igb_write_mc_addr_list(struct net_device *netdev)
2537 {
2538         struct igb_adapter *adapter = netdev_priv(netdev);
2539         struct e1000_hw *hw = &adapter->hw;
2540         struct dev_mc_list *mc_ptr = netdev->mc_list;
2541         u8  *mta_list;
2542         u32 vmolr = 0;
2543         int i;
2544
2545         if (!netdev->mc_count) {
2546                 /* nothing to program, so clear mc list */
2547                 igb_update_mc_addr_list(hw, NULL, 0);
2548                 igb_restore_vf_multicasts(adapter);
2549                 return 0;
2550         }
2551
2552         mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2553         if (!mta_list)
2554                 return -ENOMEM;
2555
2556         /* set vmolr receive overflow multicast bit */
2557         vmolr |= E1000_VMOLR_ROMPE;
2558
2559         /* The shared function expects a packed array of only addresses. */
2560         mc_ptr = netdev->mc_list;
2561
2562         for (i = 0; i < netdev->mc_count; i++) {
2563                 if (!mc_ptr)
2564                         break;
2565                 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2566                 mc_ptr = mc_ptr->next;
2567         }
2568         igb_update_mc_addr_list(hw, mta_list, i);
2569         kfree(mta_list);
2570
2571         return netdev->mc_count;
2572 }
2573
2574 /**
2575  * igb_write_uc_addr_list - write unicast addresses to RAR table
2576  * @netdev: network interface device structure
2577  *
2578  * Writes unicast address list to the RAR table.
2579  * Returns: -ENOMEM on failure/insufficient address space
2580  *                0 on no addresses written
2581  *                X on writing X addresses to the RAR table
2582  **/
2583 static int igb_write_uc_addr_list(struct net_device *netdev)
2584 {
2585         struct igb_adapter *adapter = netdev_priv(netdev);
2586         struct e1000_hw *hw = &adapter->hw;
2587         unsigned int vfn = adapter->vfs_allocated_count;
2588         unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2589         int count = 0;
2590
2591         /* return ENOMEM indicating insufficient memory for addresses */
2592         if (netdev->uc.count > rar_entries)
2593                 return -ENOMEM;
2594
2595         if (netdev->uc.count && rar_entries) {
2596                 struct netdev_hw_addr *ha;
2597                 list_for_each_entry(ha, &netdev->uc.list, list) {
2598                         if (!rar_entries)
2599                                 break;
2600                         igb_rar_set_qsel(adapter, ha->addr,
2601                                          rar_entries--,
2602                                          vfn);
2603                         count++;
2604                 }
2605         }
2606         /* write the addresses in reverse order to avoid write combining */
2607         for (; rar_entries > 0 ; rar_entries--) {
2608                 wr32(E1000_RAH(rar_entries), 0);
2609                 wr32(E1000_RAL(rar_entries), 0);
2610         }
2611         wrfl();
2612
2613         return count;
2614 }
2615
2616 /**
2617  * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2618  * @netdev: network interface device structure
2619  *
2620  * The set_rx_mode entry point is called whenever the unicast or multicast
2621  * address lists or the network interface flags are updated.  This routine is
2622  * responsible for configuring the hardware for proper unicast, multicast,
2623  * promiscuous mode, and all-multi behavior.
2624  **/
2625 static void igb_set_rx_mode(struct net_device *netdev)
2626 {
2627         struct igb_adapter *adapter = netdev_priv(netdev);
2628         struct e1000_hw *hw = &adapter->hw;
2629         unsigned int vfn = adapter->vfs_allocated_count;
2630         u32 rctl, vmolr = 0;
2631         int count;
2632
2633         /* Check for Promiscuous and All Multicast modes */
2634         rctl = rd32(E1000_RCTL);
2635
2636         /* clear the effected bits */
2637         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
2638
2639         if (netdev->flags & IFF_PROMISC) {
2640                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2641                 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
2642         } else {
2643                 if (netdev->flags & IFF_ALLMULTI) {
2644                         rctl |= E1000_RCTL_MPE;
2645                         vmolr |= E1000_VMOLR_MPME;
2646                 } else {
2647                         /*
2648                          * Write addresses to the MTA, if the attempt fails
2649                          * then we should just turn on promiscous mode so
2650                          * that we can at least receive multicast traffic
2651                          */
2652                         count = igb_write_mc_addr_list(netdev);
2653                         if (count < 0) {
2654                                 rctl |= E1000_RCTL_MPE;
2655                                 vmolr |= E1000_VMOLR_MPME;
2656                         } else if (count) {
2657                                 vmolr |= E1000_VMOLR_ROMPE;
2658                         }
2659                 }
2660                 /*
2661                  * Write addresses to available RAR registers, if there is not
2662                  * sufficient space to store all the addresses then enable
2663                  * unicast promiscous mode
2664                  */
2665                 count = igb_write_uc_addr_list(netdev);
2666                 if (count < 0) {
2667                         rctl |= E1000_RCTL_UPE;
2668                         vmolr |= E1000_VMOLR_ROPE;
2669                 }
2670                 rctl |= E1000_RCTL_VFE;
2671         }
2672         wr32(E1000_RCTL, rctl);
2673
2674         /*
2675          * In order to support SR-IOV and eventually VMDq it is necessary to set
2676          * the VMOLR to enable the appropriate modes.  Without this workaround
2677          * we will have issues with VLAN tag stripping not being done for frames
2678          * that are only arriving because we are the default pool
2679          */
2680         if (hw->mac.type < e1000_82576)
2681                 return;
2682
2683         vmolr |= rd32(E1000_VMOLR(vfn)) &
2684                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
2685         wr32(E1000_VMOLR(vfn), vmolr);
2686         igb_restore_vf_multicasts(adapter);
2687 }
2688
2689 /* Need to wait a few seconds after link up to get diagnostic information from
2690  * the phy */
2691 static void igb_update_phy_info(unsigned long data)
2692 {
2693         struct igb_adapter *adapter = (struct igb_adapter *) data;
2694         igb_get_phy_info(&adapter->hw);
2695 }
2696
2697 /**
2698  * igb_has_link - check shared code for link and determine up/down
2699  * @adapter: pointer to driver private info
2700  **/
2701 static bool igb_has_link(struct igb_adapter *adapter)
2702 {
2703         struct e1000_hw *hw = &adapter->hw;
2704         bool link_active = false;
2705         s32 ret_val = 0;
2706
2707         /* get_link_status is set on LSC (link status) interrupt or
2708          * rx sequence error interrupt.  get_link_status will stay
2709          * false until the e1000_check_for_link establishes link
2710          * for copper adapters ONLY
2711          */
2712         switch (hw->phy.media_type) {
2713         case e1000_media_type_copper:
2714                 if (hw->mac.get_link_status) {
2715                         ret_val = hw->mac.ops.check_for_link(hw);
2716                         link_active = !hw->mac.get_link_status;
2717                 } else {
2718                         link_active = true;
2719                 }
2720                 break;
2721         case e1000_media_type_internal_serdes:
2722                 ret_val = hw->mac.ops.check_for_link(hw);
2723                 link_active = hw->mac.serdes_has_link;
2724                 break;
2725         default:
2726         case e1000_media_type_unknown:
2727                 break;
2728         }
2729
2730         return link_active;
2731 }
2732
2733 /**
2734  * igb_watchdog - Timer Call-back
2735  * @data: pointer to adapter cast into an unsigned long
2736  **/
2737 static void igb_watchdog(unsigned long data)
2738 {
2739         struct igb_adapter *adapter = (struct igb_adapter *)data;
2740         /* Do the rest outside of interrupt context */
2741         schedule_work(&adapter->watchdog_task);
2742 }
2743
2744 static void igb_watchdog_task(struct work_struct *work)
2745 {
2746         struct igb_adapter *adapter = container_of(work,
2747                                         struct igb_adapter, watchdog_task);
2748         struct e1000_hw *hw = &adapter->hw;
2749         struct net_device *netdev = adapter->netdev;
2750         struct igb_ring *tx_ring = adapter->tx_ring;
2751         u32 link;
2752         u32 eics = 0;
2753         int i;
2754
2755         link = igb_has_link(adapter);
2756         if ((netif_carrier_ok(netdev)) && link)
2757                 goto link_up;
2758
2759         if (link) {
2760                 if (!netif_carrier_ok(netdev)) {
2761                         u32 ctrl;
2762                         hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2763                                                    &adapter->link_speed,
2764                                                    &adapter->link_duplex);
2765
2766                         ctrl = rd32(E1000_CTRL);
2767                         /* Links status message must follow this format */
2768                         printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2769                                  "Flow Control: %s\n",
2770                                  netdev->name,
2771                                  adapter->link_speed,
2772                                  adapter->link_duplex == FULL_DUPLEX ?
2773                                  "Full Duplex" : "Half Duplex",
2774                                  ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2775                                  E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2776                                  E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2777                                  E1000_CTRL_TFCE) ? "TX" : "None")));
2778
2779                         /* tweak tx_queue_len according to speed/duplex and
2780                          * adjust the timeout factor */
2781                         netdev->tx_queue_len = adapter->tx_queue_len;
2782                         adapter->tx_timeout_factor = 1;
2783                         switch (adapter->link_speed) {
2784                         case SPEED_10:
2785                                 netdev->tx_queue_len = 10;
2786                                 adapter->tx_timeout_factor = 14;
2787                                 break;
2788                         case SPEED_100:
2789                                 netdev->tx_queue_len = 100;
2790                                 /* maybe add some timeout factor ? */
2791                                 break;
2792                         }
2793
2794                         netif_carrier_on(netdev);
2795
2796                         igb_ping_all_vfs(adapter);
2797
2798                         /* link state has changed, schedule phy info update */
2799                         if (!test_bit(__IGB_DOWN, &adapter->state))
2800                                 mod_timer(&adapter->phy_info_timer,
2801                                           round_jiffies(jiffies + 2 * HZ));
2802                 }
2803         } else {
2804                 if (netif_carrier_ok(netdev)) {
2805                         adapter->link_speed = 0;
2806                         adapter->link_duplex = 0;
2807                         /* Links status message must follow this format */
2808                         printk(KERN_INFO "igb: %s NIC Link is Down\n",
2809                                netdev->name);
2810                         netif_carrier_off(netdev);
2811
2812                         igb_ping_all_vfs(adapter);
2813
2814                         /* link state has changed, schedule phy info update */
2815                         if (!test_bit(__IGB_DOWN, &adapter->state))
2816                                 mod_timer(&adapter->phy_info_timer,
2817                                           round_jiffies(jiffies + 2 * HZ));
2818                 }
2819         }
2820
2821 link_up:
2822         igb_update_stats(adapter);
2823
2824         hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2825         adapter->tpt_old = adapter->stats.tpt;
2826         hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
2827         adapter->colc_old = adapter->stats.colc;
2828
2829         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2830         adapter->gorc_old = adapter->stats.gorc;
2831         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2832         adapter->gotc_old = adapter->stats.gotc;
2833
2834         igb_update_adaptive(&adapter->hw);
2835
2836         if (!netif_carrier_ok(netdev)) {
2837                 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
2838                         /* We've lost link, so the controller stops DMA,
2839                          * but we've got queued Tx work that's never going
2840                          * to get done, so reset controller to flush Tx.
2841                          * (Do the reset outside of interrupt context). */
2842                         adapter->tx_timeout_count++;
2843                         schedule_work(&adapter->reset_task);
2844                         /* return immediately since reset is imminent */
2845                         return;
2846                 }
2847         }
2848
2849         /* Cause software interrupt to ensure rx ring is cleaned */
2850         if (adapter->msix_entries) {
2851                 for (i = 0; i < adapter->num_rx_queues; i++)
2852                         eics |= adapter->rx_ring[i].eims_value;
2853                 wr32(E1000_EICS, eics);
2854         } else {
2855                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2856         }
2857
2858         /* Force detection of hung controller every watchdog period */
2859         tx_ring->detect_tx_hung = true;
2860
2861         /* Reset the timer */
2862         if (!test_bit(__IGB_DOWN, &adapter->state))
2863                 mod_timer(&adapter->watchdog_timer,
2864                           round_jiffies(jiffies + 2 * HZ));
2865 }
2866
2867 enum latency_range {
2868         lowest_latency = 0,
2869         low_latency = 1,
2870         bulk_latency = 2,
2871         latency_invalid = 255
2872 };
2873
2874
2875 /**
2876  * igb_update_ring_itr - update the dynamic ITR value based on packet size
2877  *
2878  *      Stores a new ITR value based on strictly on packet size.  This
2879  *      algorithm is less sophisticated than that used in igb_update_itr,
2880  *      due to the difficulty of synchronizing statistics across multiple
2881  *      receive rings.  The divisors and thresholds used by this fuction
2882  *      were determined based on theoretical maximum wire speed and testing
2883  *      data, in order to minimize response time while increasing bulk
2884  *      throughput.
2885  *      This functionality is controlled by the InterruptThrottleRate module
2886  *      parameter (see igb_param.c)
2887  *      NOTE:  This function is called only when operating in a multiqueue
2888  *             receive environment.
2889  * @rx_ring: pointer to ring
2890  **/
2891 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2892 {
2893         int new_val = rx_ring->itr_val;
2894         int avg_wire_size = 0;
2895         struct igb_adapter *adapter = rx_ring->adapter;
2896
2897         if (!rx_ring->total_packets)
2898                 goto clear_counts; /* no packets, so don't do anything */
2899
2900         /* For non-gigabit speeds, just fix the interrupt rate at 4000
2901          * ints/sec - ITR timer value of 120 ticks.
2902          */
2903         if (adapter->link_speed != SPEED_1000) {
2904                 new_val = 120;
2905                 goto set_itr_val;
2906         }
2907         avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2908
2909         /* Add 24 bytes to size to account for CRC, preamble, and gap */
2910         avg_wire_size += 24;
2911
2912         /* Don't starve jumbo frames */
2913         avg_wire_size = min(avg_wire_size, 3000);
2914
2915         /* Give a little boost to mid-size frames */
2916         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2917                 new_val = avg_wire_size / 3;
2918         else
2919                 new_val = avg_wire_size / 2;
2920
2921 set_itr_val:
2922         if (new_val != rx_ring->itr_val) {
2923                 rx_ring->itr_val = new_val;
2924                 rx_ring->set_itr = 1;
2925         }
2926 clear_counts:
2927         rx_ring->total_bytes = 0;
2928         rx_ring->total_packets = 0;
2929 }
2930
2931 /**
2932  * igb_update_itr - update the dynamic ITR value based on statistics
2933  *      Stores a new ITR value based on packets and byte
2934  *      counts during the last interrupt.  The advantage of per interrupt
2935  *      computation is faster updates and more accurate ITR for the current
2936  *      traffic pattern.  Constants in this function were computed
2937  *      based on theoretical maximum wire speed and thresholds were set based
2938  *      on testing data as well as attempting to minimize response time
2939  *      while increasing bulk throughput.
2940  *      this functionality is controlled by the InterruptThrottleRate module
2941  *      parameter (see igb_param.c)
2942  *      NOTE:  These calculations are only valid when operating in a single-
2943  *             queue environment.
2944  * @adapter: pointer to adapter
2945  * @itr_setting: current adapter->itr
2946  * @packets: the number of packets during this measurement interval
2947  * @bytes: the number of bytes during this measurement interval
2948  **/
2949 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2950                                    int packets, int bytes)
2951 {
2952         unsigned int retval = itr_setting;
2953
2954         if (packets == 0)
2955                 goto update_itr_done;
2956
2957         switch (itr_setting) {
2958         case lowest_latency:
2959                 /* handle TSO and jumbo frames */
2960                 if (bytes/packets > 8000)
2961                         retval = bulk_latency;
2962                 else if ((packets < 5) && (bytes > 512))
2963                         retval = low_latency;
2964                 break;
2965         case low_latency:  /* 50 usec aka 20000 ints/s */
2966                 if (bytes > 10000) {
2967                         /* this if handles the TSO accounting */
2968                         if (bytes/packets > 8000) {
2969                                 retval = bulk_latency;
2970                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2971                                 retval = bulk_latency;
2972                         } else if ((packets > 35)) {
2973                                 retval = lowest_latency;
2974                         }
2975                 } else if (bytes/packets > 2000) {
2976                         retval = bulk_latency;
2977                 } else if (packets <= 2 && bytes < 512) {
2978                         retval = lowest_latency;
2979                 }
2980                 break;
2981         case bulk_latency: /* 250 usec aka 4000 ints/s */
2982                 if (bytes > 25000) {
2983                         if (packets > 35)
2984                                 retval = low_latency;
2985                 } else if (bytes < 1500) {
2986                         retval = low_latency;
2987                 }
2988                 break;
2989         }
2990
2991 update_itr_done:
2992         return retval;
2993 }
2994
2995 static void igb_set_itr(struct igb_adapter *adapter)
2996 {
2997         u16 current_itr;
2998         u32 new_itr = adapter->itr;
2999
3000         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3001         if (adapter->link_speed != SPEED_1000) {
3002                 current_itr = 0;
3003                 new_itr = 4000;
3004                 goto set_itr_now;
3005         }
3006
3007         adapter->rx_itr = igb_update_itr(adapter,
3008                                     adapter->rx_itr,
3009                                     adapter->rx_ring->total_packets,
3010                                     adapter->rx_ring->total_bytes);
3011
3012         if (adapter->rx_ring->buddy) {
3013                 adapter->tx_itr = igb_update_itr(adapter,
3014                                             adapter->tx_itr,
3015                                             adapter->tx_ring->total_packets,
3016                                             adapter->tx_ring->total_bytes);
3017                 current_itr = max(adapter->rx_itr, adapter->tx_itr);
3018         } else {
3019                 current_itr = adapter->rx_itr;
3020         }
3021
3022         /* conservative mode (itr 3) eliminates the lowest_latency setting */
3023         if (adapter->itr_setting == 3 && current_itr == lowest_latency)
3024                 current_itr = low_latency;
3025
3026         switch (current_itr) {
3027         /* counts and packets in update_itr are dependent on these numbers */
3028         case lowest_latency:
3029                 new_itr = 56;  /* aka 70,000 ints/sec */
3030                 break;
3031         case low_latency:
3032                 new_itr = 196; /* aka 20,000 ints/sec */
3033                 break;
3034         case bulk_latency:
3035                 new_itr = 980; /* aka 4,000 ints/sec */
3036                 break;
3037         default:
3038                 break;
3039         }
3040
3041 set_itr_now:
3042         adapter->rx_ring->total_bytes = 0;
3043         adapter->rx_ring->total_packets = 0;
3044         if (adapter->rx_ring->buddy) {
3045                 adapter->rx_ring->buddy->total_bytes = 0;
3046                 adapter->rx_ring->buddy->total_packets = 0;
3047         }
3048
3049         if (new_itr != adapter->itr) {
3050                 /* this attempts to bias the interrupt rate towards Bulk
3051                  * by adding intermediate steps when interrupt rate is
3052                  * increasing */
3053                 new_itr = new_itr > adapter->itr ?
3054                              max((new_itr * adapter->itr) /
3055                                  (new_itr + (adapter->itr >> 2)), new_itr) :
3056                              new_itr;
3057                 /* Don't write the value here; it resets the adapter's
3058                  * internal timer, and causes us to delay far longer than
3059                  * we should between interrupts.  Instead, we write the ITR
3060                  * value at the beginning of the next interrupt so the timing
3061                  * ends up being correct.
3062                  */
3063                 adapter->itr = new_itr;
3064                 adapter->rx_ring->itr_val = new_itr;
3065                 adapter->rx_ring->set_itr = 1;
3066         }
3067
3068         return;
3069 }
3070
3071
3072 #define IGB_TX_FLAGS_CSUM               0x00000001
3073 #define IGB_TX_FLAGS_VLAN               0x00000002
3074 #define IGB_TX_FLAGS_TSO                0x00000004
3075 #define IGB_TX_FLAGS_IPV4               0x00000008
3076 #define IGB_TX_FLAGS_TSTAMP             0x00000010
3077 #define IGB_TX_FLAGS_VLAN_MASK  0xffff0000
3078 #define IGB_TX_FLAGS_VLAN_SHIFT 16
3079
3080 static inline int igb_tso_adv(struct igb_adapter *adapter,
3081                               struct igb_ring *tx_ring,
3082                               struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3083 {
3084         struct e1000_adv_tx_context_desc *context_desc;
3085         unsigned int i;
3086         int err;
3087         struct igb_buffer *buffer_info;
3088         u32 info = 0, tu_cmd = 0;
3089         u32 mss_l4len_idx, l4len;
3090         *hdr_len = 0;
3091
3092         if (skb_header_cloned(skb)) {
3093                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3094                 if (err)
3095                         return err;
3096         }
3097
3098         l4len = tcp_hdrlen(skb);
3099         *hdr_len += l4len;
3100
3101         if (skb->protocol == htons(ETH_P_IP)) {
3102                 struct iphdr *iph = ip_hdr(skb);
3103                 iph->tot_len = 0;
3104                 iph->check = 0;
3105                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3106                                                          iph->daddr, 0,
3107                                                          IPPROTO_TCP,
3108                                                          0);
3109         } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3110                 ipv6_hdr(skb)->payload_len = 0;
3111                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3112                                                        &ipv6_hdr(skb)->daddr,
3113                                                        0, IPPROTO_TCP, 0);
3114         }
3115
3116         i = tx_ring->next_to_use;
3117
3118         buffer_info = &tx_ring->buffer_info[i];
3119         context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3120         /* VLAN MACLEN IPLEN */
3121         if (tx_flags & IGB_TX_FLAGS_VLAN)
3122                 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3123         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3124         *hdr_len += skb_network_offset(skb);
3125         info |= skb_network_header_len(skb);
3126         *hdr_len += skb_network_header_len(skb);
3127         context_desc->vlan_macip_lens = cpu_to_le32(info);
3128
3129         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3130         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3131
3132         if (skb->protocol == htons(ETH_P_IP))
3133                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3134         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3135
3136         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3137
3138         /* MSS L4LEN IDX */
3139         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3140         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3141
3142         /* For 82575, context index must be unique per ring. */
3143         if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
3144                 mss_l4len_idx |= tx_ring->queue_index << 4;
3145
3146         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3147         context_desc->seqnum_seed = 0;
3148
3149         buffer_info->time_stamp = jiffies;
3150         buffer_info->next_to_watch = i;
3151         buffer_info->dma = 0;
3152         i++;
3153         if (i == tx_ring->count)
3154                 i = 0;
3155
3156         tx_ring->next_to_use = i;
3157
3158         return true;
3159 }
3160
3161 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
3162                                         struct igb_ring *tx_ring,
3163                                         struct sk_buff *skb, u32 tx_flags)
3164 {
3165         struct e1000_adv_tx_context_desc *context_desc;
3166         unsigned int i;
3167         struct igb_buffer *buffer_info;
3168         u32 info = 0, tu_cmd = 0;
3169
3170         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3171             (tx_flags & IGB_TX_FLAGS_VLAN)) {
3172                 i = tx_ring->next_to_use;
3173                 buffer_info = &tx_ring->buffer_info[i];
3174                 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3175
3176                 if (tx_flags & IGB_TX_FLAGS_VLAN)
3177                         info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3178                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3179                 if (skb->ip_summed == CHECKSUM_PARTIAL)
3180                         info |= skb_network_header_len(skb);
3181
3182                 context_desc->vlan_macip_lens = cpu_to_le32(info);
3183
3184                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3185
3186                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3187                         __be16 protocol;
3188
3189                         if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3190                                 const struct vlan_ethhdr *vhdr =
3191                                           (const struct vlan_ethhdr*)skb->data;
3192
3193                                 protocol = vhdr->h_vlan_encapsulated_proto;
3194                         } else {
3195                                 protocol = skb->protocol;
3196                         }
3197
3198                         switch (protocol) {
3199                         case cpu_to_be16(ETH_P_IP):
3200                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3201                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3202                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3203                                 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3204                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3205                                 break;
3206                         case cpu_to_be16(ETH_P_IPV6):
3207                                 /* XXX what about other V6 headers?? */
3208                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3209                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3210                                 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3211                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3212                                 break;
3213                         default:
3214                                 if (unlikely(net_ratelimit()))
3215                                         dev_warn(&adapter->pdev->dev,
3216                                             "partial checksum but proto=%x!\n",
3217                                             skb->protocol);
3218                                 break;
3219                         }
3220                 }
3221
3222                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3223                 context_desc->seqnum_seed = 0;
3224                 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
3225                         context_desc->mss_l4len_idx =
3226                                 cpu_to_le32(tx_ring->queue_index << 4);
3227                 else
3228                         context_desc->mss_l4len_idx = 0;
3229
3230                 buffer_info->time_stamp = jiffies;
3231                 buffer_info->next_to_watch = i;
3232                 buffer_info->dma = 0;
3233
3234                 i++;
3235                 if (i == tx_ring->count)
3236                         i = 0;
3237                 tx_ring->next_to_use = i;
3238
3239                 return true;
3240         }
3241         return false;
3242 }
3243
3244 #define IGB_MAX_TXD_PWR 16
3245 #define IGB_MAX_DATA_PER_TXD    (1<<IGB_MAX_TXD_PWR)
3246
3247 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
3248                                  struct igb_ring *tx_ring, struct sk_buff *skb,
3249                                  unsigned int first)
3250 {
3251         struct igb_buffer *buffer_info;
3252         unsigned int len = skb_headlen(skb);
3253         unsigned int count = 0, i;
3254         unsigned int f;
3255         dma_addr_t *map;
3256
3257         i = tx_ring->next_to_use;
3258
3259         if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
3260                 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3261                 return 0;
3262         }
3263
3264         map = skb_shinfo(skb)->dma_maps;
3265
3266         buffer_info = &tx_ring->buffer_info[i];
3267         BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3268         buffer_info->length = len;
3269         /* set time_stamp *before* dma to help avoid a possible race */
3270         buffer_info->time_stamp = jiffies;
3271         buffer_info->next_to_watch = i;
3272         buffer_info->dma = skb_shinfo(skb)->dma_head;
3273
3274         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3275                 struct skb_frag_struct *frag;
3276
3277                 i++;
3278                 if (i == tx_ring->count)
3279                         i = 0;
3280
3281                 frag = &skb_shinfo(skb)->frags[f];
3282                 len = frag->size;
3283
3284                 buffer_info = &tx_ring->buffer_info[i];
3285                 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3286                 buffer_info->length = len;
3287                 buffer_info->time_stamp = jiffies;
3288                 buffer_info->next_to_watch = i;
3289                 buffer_info->dma = map[count];
3290                 count++;
3291         }
3292
3293         tx_ring->buffer_info[i].skb = skb;
3294         tx_ring->buffer_info[first].next_to_watch = i;
3295
3296         return count + 1;
3297 }
3298
3299 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
3300                                     struct igb_ring *tx_ring,
3301                                     int tx_flags, int count, u32 paylen,
3302                                     u8 hdr_len)
3303 {
3304         union e1000_adv_tx_desc *tx_desc = NULL;
3305         struct igb_buffer *buffer_info;
3306         u32 olinfo_status = 0, cmd_type_len;
3307         unsigned int i;
3308
3309         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3310                         E1000_ADVTXD_DCMD_DEXT);
3311
3312         if (tx_flags & IGB_TX_FLAGS_VLAN)
3313                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3314
3315         if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3316                 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3317
3318         if (tx_flags & IGB_TX_FLAGS_TSO) {
3319                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3320
3321                 /* insert tcp checksum */
3322                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3323
3324                 /* insert ip checksum */
3325                 if (tx_flags & IGB_TX_FLAGS_IPV4)
3326                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3327
3328         } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3329                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3330         }
3331
3332         if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
3333             (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
3334                          IGB_TX_FLAGS_VLAN)))
3335                 olinfo_status |= tx_ring->queue_index << 4;
3336
3337         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3338
3339         i = tx_ring->next_to_use;
3340         while (count--) {
3341                 buffer_info = &tx_ring->buffer_info[i];
3342                 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3343                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3344                 tx_desc->read.cmd_type_len =
3345                         cpu_to_le32(cmd_type_len | buffer_info->length);
3346                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3347                 i++;
3348                 if (i == tx_ring->count)
3349                         i = 0;
3350         }
3351
3352         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
3353         /* Force memory writes to complete before letting h/w
3354          * know there are new descriptors to fetch.  (Only
3355          * applicable for weak-ordered memory model archs,
3356          * such as IA-64). */
3357         wmb();
3358
3359         tx_ring->next_to_use = i;
3360         writel(i, adapter->hw.hw_addr + tx_ring->tail);
3361         /* we need this if more than one processor can write to our tail
3362          * at a time, it syncronizes IO on IA64/Altix systems */
3363         mmiowb();
3364 }
3365
3366 static int __igb_maybe_stop_tx(struct net_device *netdev,
3367                                struct igb_ring *tx_ring, int size)
3368 {
3369         struct igb_adapter *adapter = netdev_priv(netdev);
3370
3371         netif_stop_subqueue(netdev, tx_ring->queue_index);
3372
3373         /* Herbert's original patch had:
3374          *  smp_mb__after_netif_stop_queue();
3375          * but since that doesn't exist yet, just open code it. */
3376         smp_mb();
3377
3378         /* We need to check again in a case another CPU has just
3379          * made room available. */
3380         if (igb_desc_unused(tx_ring) < size)
3381                 return -EBUSY;
3382
3383         /* A reprieve! */
3384         netif_wake_subqueue(netdev, tx_ring->queue_index);
3385         ++adapter->restart_queue;
3386         return 0;
3387 }
3388
3389 static int igb_maybe_stop_tx(struct net_device *netdev,
3390                              struct igb_ring *tx_ring, int size)
3391 {
3392         if (igb_desc_unused(tx_ring) >= size)
3393                 return 0;
3394         return __igb_maybe_stop_tx(netdev, tx_ring, size);
3395 }
3396
3397 static netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
3398                                            struct net_device *netdev,
3399                                            struct igb_ring *tx_ring)
3400 {
3401         struct igb_adapter *adapter = netdev_priv(netdev);
3402         unsigned int first;
3403         unsigned int tx_flags = 0;
3404         u8 hdr_len = 0;
3405         int count = 0;
3406         int tso = 0;
3407         union skb_shared_tx *shtx;
3408
3409         if (test_bit(__IGB_DOWN, &adapter->state)) {
3410                 dev_kfree_skb_any(skb);
3411                 return NETDEV_TX_OK;
3412         }
3413
3414         if (skb->len <= 0) {
3415                 dev_kfree_skb_any(skb);
3416                 return NETDEV_TX_OK;
3417         }
3418
3419         /* need: 1 descriptor per page,
3420          *       + 2 desc gap to keep tail from touching head,
3421          *       + 1 desc for skb->data,
3422          *       + 1 desc for context descriptor,
3423          * otherwise try next time */
3424         if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3425                 /* this is a hard error */
3426                 return NETDEV_TX_BUSY;
3427         }
3428
3429         /*
3430          * TODO: check that there currently is no other packet with
3431          * time stamping in the queue
3432          *
3433          * When doing time stamping, keep the connection to the socket
3434          * a while longer: it is still needed by skb_hwtstamp_tx(),
3435          * called either in igb_tx_hwtstamp() or by our caller when
3436          * doing software time stamping.
3437          */
3438         shtx = skb_tx(skb);
3439         if (unlikely(shtx->hardware)) {
3440                 shtx->in_progress = 1;
3441                 tx_flags |= IGB_TX_FLAGS_TSTAMP;
3442         }
3443
3444         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3445                 tx_flags |= IGB_TX_FLAGS_VLAN;
3446                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3447         }
3448
3449         if (skb->protocol == htons(ETH_P_IP))
3450                 tx_flags |= IGB_TX_FLAGS_IPV4;
3451
3452         first = tx_ring->next_to_use;
3453         tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
3454                                               &hdr_len) : 0;
3455
3456         if (tso < 0) {
3457                 dev_kfree_skb_any(skb);
3458                 return NETDEV_TX_OK;
3459         }
3460
3461         if (tso)
3462                 tx_flags |= IGB_TX_FLAGS_TSO;
3463         else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags) &&
3464                  (skb->ip_summed == CHECKSUM_PARTIAL))
3465                 tx_flags |= IGB_TX_FLAGS_CSUM;
3466
3467         /*
3468          * count reflects descriptors mapped, if 0 then mapping error
3469          * has occured and we need to rewind the descriptor queue
3470          */
3471         count = igb_tx_map_adv(adapter, tx_ring, skb, first);
3472
3473         if (count) {
3474                 igb_tx_queue_adv(adapter, tx_ring, tx_flags, count,
3475                                  skb->len, hdr_len);
3476                 /* Make sure there is space in the ring for the next send. */
3477                 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3478         } else {
3479                 dev_kfree_skb_any(skb);
3480                 tx_ring->buffer_info[first].time_stamp = 0;
3481                 tx_ring->next_to_use = first;
3482         }
3483
3484         return NETDEV_TX_OK;
3485 }
3486
3487 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
3488                                       struct net_device *netdev)
3489 {
3490         struct igb_adapter *adapter = netdev_priv(netdev);
3491         struct igb_ring *tx_ring;
3492
3493         int r_idx = 0;
3494         r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3495         tx_ring = adapter->multi_tx_table[r_idx];
3496
3497         /* This goes back to the question of how to logically map a tx queue
3498          * to a flow.  Right now, performance is impacted slightly negatively
3499          * if using multiple tx queues.  If the stack breaks away from a
3500          * single qdisc implementation, we can look at this again. */
3501         return igb_xmit_frame_ring_adv(skb, netdev, tx_ring);
3502 }
3503
3504 /**
3505  * igb_tx_timeout - Respond to a Tx Hang
3506  * @netdev: network interface device structure
3507  **/
3508 static void igb_tx_timeout(struct net_device *netdev)
3509 {
3510         struct igb_adapter *adapter = netdev_priv(netdev);
3511         struct e1000_hw *hw = &adapter->hw;
3512
3513         /* Do the reset outside of interrupt context */
3514         adapter->tx_timeout_count++;
3515         schedule_work(&adapter->reset_task);
3516         wr32(E1000_EICS,
3517              (adapter->eims_enable_mask & ~adapter->eims_other));
3518 }
3519
3520 static void igb_reset_task(struct work_struct *work)
3521 {
3522         struct igb_adapter *adapter;
3523         adapter = container_of(work, struct igb_adapter, reset_task);
3524
3525         igb_reinit_locked(adapter);
3526 }
3527
3528 /**
3529  * igb_get_stats - Get System Network Statistics
3530  * @netdev: network interface device structure
3531  *
3532  * Returns the address of the device statistics structure.
3533  * The statistics are actually updated from the timer callback.
3534  **/
3535 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3536 {
3537         struct igb_adapter *adapter = netdev_priv(netdev);
3538
3539         /* only return the current stats */
3540         return &adapter->net_stats;
3541 }
3542
3543 /**
3544  * igb_change_mtu - Change the Maximum Transfer Unit
3545  * @netdev: network interface device structure
3546  * @new_mtu: new value for maximum frame size
3547  *
3548  * Returns 0 on success, negative on failure
3549  **/
3550 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3551 {
3552         struct igb_adapter *adapter = netdev_priv(netdev);
3553         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3554
3555         if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3556             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3557                 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3558                 return -EINVAL;
3559         }
3560
3561         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3562                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3563                 return -EINVAL;
3564         }
3565
3566         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3567                 msleep(1);
3568
3569         /* igb_down has a dependency on max_frame_size */
3570         adapter->max_frame_size = max_frame;
3571         if (netif_running(netdev))
3572                 igb_down(adapter);
3573
3574         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3575          * means we reserve 2 more, this pushes us to allocate from the next
3576          * larger slab size.
3577          * i.e. RXBUFFER_2048 --> size-4096 slab
3578          */
3579
3580         if (max_frame <= IGB_RXBUFFER_256)
3581                 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3582         else if (max_frame <= IGB_RXBUFFER_512)
3583                 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3584         else if (max_frame <= IGB_RXBUFFER_1024)
3585                 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3586         else if (max_frame <= IGB_RXBUFFER_2048)
3587                 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3588         else
3589 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3590                 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3591 #else
3592                 adapter->rx_buffer_len = PAGE_SIZE / 2;
3593 #endif
3594
3595         /* if sr-iov is enabled we need to force buffer size to 1K or larger */
3596         if (adapter->vfs_allocated_count &&
3597             (adapter->rx_buffer_len < IGB_RXBUFFER_1024))
3598                 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3599
3600         /* adjust allocation if LPE protects us, and we aren't using SBP */
3601         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3602              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3603                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3604
3605         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3606                  netdev->mtu, new_mtu);
3607         netdev->mtu = new_mtu;
3608
3609         if (netif_running(netdev))
3610                 igb_up(adapter);
3611         else
3612                 igb_reset(adapter);
3613
3614         clear_bit(__IGB_RESETTING, &adapter->state);
3615
3616         return 0;
3617 }
3618
3619 /**
3620  * igb_update_stats - Update the board statistics counters
3621  * @adapter: board private structure
3622  **/
3623
3624 void igb_update_stats(struct igb_adapter *adapter)
3625 {
3626         struct e1000_hw *hw = &adapter->hw;
3627         struct pci_dev *pdev = adapter->pdev;
3628         u16 phy_tmp;
3629
3630 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3631
3632         /*
3633          * Prevent stats update while adapter is being reset, or if the pci
3634          * connection is down.
3635          */
3636         if (adapter->link_speed == 0)
3637                 return;
3638         if (pci_channel_offline(pdev))
3639                 return;
3640
3641         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3642         adapter->stats.gprc += rd32(E1000_GPRC);
3643         adapter->stats.gorc += rd32(E1000_GORCL);
3644         rd32(E1000_GORCH); /* clear GORCL */
3645         adapter->stats.bprc += rd32(E1000_BPRC);
3646         adapter->stats.mprc += rd32(E1000_MPRC);
3647         adapter->stats.roc += rd32(E1000_ROC);
3648
3649         adapter->stats.prc64 += rd32(E1000_PRC64);
3650         adapter->stats.prc127 += rd32(E1000_PRC127);
3651         adapter->stats.prc255 += rd32(E1000_PRC255);
3652         adapter->stats.prc511 += rd32(E1000_PRC511);
3653         adapter->stats.prc1023 += rd32(E1000_PRC1023);
3654         adapter->stats.prc1522 += rd32(E1000_PRC1522);
3655         adapter->stats.symerrs += rd32(E1000_SYMERRS);
3656         adapter->stats.sec += rd32(E1000_SEC);
3657
3658         adapter->stats.mpc += rd32(E1000_MPC);
3659         adapter->stats.scc += rd32(E1000_SCC);
3660         adapter->stats.ecol += rd32(E1000_ECOL);
3661         adapter->stats.mcc += rd32(E1000_MCC);
3662         adapter->stats.latecol += rd32(E1000_LATECOL);
3663         adapter->stats.dc += rd32(E1000_DC);
3664         adapter->stats.rlec += rd32(E1000_RLEC);
3665         adapter->stats.xonrxc += rd32(E1000_XONRXC);
3666         adapter->stats.xontxc += rd32(E1000_XONTXC);
3667         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3668         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3669         adapter->stats.fcruc += rd32(E1000_FCRUC);
3670         adapter->stats.gptc += rd32(E1000_GPTC);
3671         adapter->stats.gotc += rd32(E1000_GOTCL);
3672         rd32(E1000_GOTCH); /* clear GOTCL */
3673         adapter->stats.rnbc += rd32(E1000_RNBC);
3674         adapter->stats.ruc += rd32(E1000_RUC);
3675         adapter->stats.rfc += rd32(E1000_RFC);
3676         adapter->stats.rjc += rd32(E1000_RJC);
3677         adapter->stats.tor += rd32(E1000_TORH);
3678         adapter->stats.tot += rd32(E1000_TOTH);
3679         adapter->stats.tpr += rd32(E1000_TPR);
3680
3681         adapter->stats.ptc64 += rd32(E1000_PTC64);
3682         adapter->stats.ptc127 += rd32(E1000_PTC127);
3683         adapter->stats.ptc255 += rd32(E1000_PTC255);
3684         adapter->stats.ptc511 += rd32(E1000_PTC511);
3685         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3686         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3687
3688         adapter->stats.mptc += rd32(E1000_MPTC);
3689         adapter->stats.bptc += rd32(E1000_BPTC);
3690
3691         /* used for adaptive IFS */
3692
3693         hw->mac.tx_packet_delta = rd32(E1000_TPT);
3694         adapter->stats.tpt += hw->mac.tx_packet_delta;
3695         hw->mac.collision_delta = rd32(E1000_COLC);
3696         adapter->stats.colc += hw->mac.collision_delta;
3697
3698         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3699         adapter->stats.rxerrc += rd32(E1000_RXERRC);
3700         adapter->stats.tncrs += rd32(E1000_TNCRS);
3701         adapter->stats.tsctc += rd32(E1000_TSCTC);
3702         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3703
3704         adapter->stats.iac += rd32(E1000_IAC);
3705         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3706         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3707         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3708         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3709         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3710         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3711         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3712         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3713
3714         /* Fill out the OS statistics structure */
3715         adapter->net_stats.multicast = adapter->stats.mprc;
3716         adapter->net_stats.collisions = adapter->stats.colc;
3717
3718         /* Rx Errors */
3719
3720         if (hw->mac.type != e1000_82575) {
3721                 u32 rqdpc_tmp;
3722                 u64 rqdpc_total = 0;
3723                 int i;
3724                 /* Read out drops stats per RX queue.  Notice RQDPC (Receive
3725                  * Queue Drop Packet Count) stats only gets incremented, if
3726                  * the DROP_EN but it set (in the SRRCTL register for that
3727                  * queue).  If DROP_EN bit is NOT set, then the some what
3728                  * equivalent count is stored in RNBC (not per queue basis).
3729                  * Also note the drop count is due to lack of available
3730                  * descriptors.
3731                  */
3732                 for (i = 0; i < adapter->num_rx_queues; i++) {
3733                         rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0xFFF;
3734                         adapter->rx_ring[i].rx_stats.drops += rqdpc_tmp;
3735                         rqdpc_total += adapter->rx_ring[i].rx_stats.drops;
3736                 }
3737                 adapter->net_stats.rx_fifo_errors = rqdpc_total;
3738         }
3739
3740         /* Note RNBC (Receive No Buffers Count) is an not an exact
3741          * drop count as the hardware FIFO might save the day.  Thats
3742          * one of the reason for saving it in rx_fifo_errors, as its
3743          * potentially not a true drop.
3744          */
3745         adapter->net_stats.rx_fifo_errors += adapter->stats.rnbc;
3746
3747         /* RLEC on some newer hardware can be incorrect so build
3748          * our own version based on RUC and ROC */
3749         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3750                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3751                 adapter->stats.ruc + adapter->stats.roc +
3752                 adapter->stats.cexterr;
3753         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3754                                               adapter->stats.roc;
3755         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3756         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3757         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3758
3759         /* Tx Errors */
3760         adapter->net_stats.tx_errors = adapter->stats.ecol +
3761                                        adapter->stats.latecol;
3762         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3763         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3764         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3765
3766         /* Tx Dropped needs to be maintained elsewhere */
3767
3768         /* Phy Stats */
3769         if (hw->phy.media_type == e1000_media_type_copper) {
3770                 if ((adapter->link_speed == SPEED_1000) &&
3771                    (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3772                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3773                         adapter->phy_stats.idle_errors += phy_tmp;
3774                 }
3775         }
3776
3777         /* Management Stats */
3778         adapter->stats.mgptc += rd32(E1000_MGTPTC);
3779         adapter->stats.mgprc += rd32(E1000_MGTPRC);
3780         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3781 }
3782
3783 static irqreturn_t igb_msix_other(int irq, void *data)
3784 {
3785         struct net_device *netdev = data;
3786         struct igb_adapter *adapter = netdev_priv(netdev);
3787         struct e1000_hw *hw = &adapter->hw;
3788         u32 icr = rd32(E1000_ICR);
3789
3790         /* reading ICR causes bit 31 of EICR to be cleared */
3791
3792         if(icr & E1000_ICR_DOUTSYNC) {
3793                 /* HW is reporting DMA is out of sync */
3794                 adapter->stats.doosync++;
3795         }
3796
3797         /* Check for a mailbox event */
3798         if (icr & E1000_ICR_VMMB)
3799                 igb_msg_task(adapter);
3800
3801         if (icr & E1000_ICR_LSC) {
3802                 hw->mac.get_link_status = 1;
3803                 /* guard against interrupt when we're going down */
3804                 if (!test_bit(__IGB_DOWN, &adapter->state))
3805                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3806         }
3807
3808         wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_VMMB);
3809         wr32(E1000_EIMS, adapter->eims_other);
3810
3811         return IRQ_HANDLED;
3812 }
3813
3814 static irqreturn_t igb_msix_tx(int irq, void *data)
3815 {
3816         struct igb_ring *tx_ring = data;
3817         struct igb_adapter *adapter = tx_ring->adapter;
3818         struct e1000_hw *hw = &adapter->hw;
3819
3820 #ifdef CONFIG_IGB_DCA
3821         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3822                 igb_update_tx_dca(tx_ring);
3823 #endif
3824
3825         tx_ring->total_bytes = 0;
3826         tx_ring->total_packets = 0;
3827
3828         /* auto mask will automatically reenable the interrupt when we write
3829          * EICS */
3830         if (!igb_clean_tx_irq(tx_ring))
3831                 /* Ring was not completely cleaned, so fire another interrupt */
3832                 wr32(E1000_EICS, tx_ring->eims_value);
3833         else
3834                 wr32(E1000_EIMS, tx_ring->eims_value);
3835
3836         return IRQ_HANDLED;
3837 }
3838
3839 static void igb_write_itr(struct igb_ring *ring)
3840 {
3841         struct e1000_hw *hw = &ring->adapter->hw;
3842         if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3843                 switch (hw->mac.type) {
3844                 case e1000_82576:
3845                         wr32(ring->itr_register, ring->itr_val |
3846                              0x80000000);
3847                         break;
3848                 default:
3849                         wr32(ring->itr_register, ring->itr_val |
3850                              (ring->itr_val << 16));
3851                         break;
3852                 }
3853                 ring->set_itr = 0;
3854         }
3855 }
3856
3857 static irqreturn_t igb_msix_rx(int irq, void *data)
3858 {
3859         struct igb_ring *rx_ring = data;
3860
3861         /* Write the ITR value calculated at the end of the
3862          * previous interrupt.
3863          */
3864
3865         igb_write_itr(rx_ring);
3866
3867         if (napi_schedule_prep(&rx_ring->napi))
3868                 __napi_schedule(&rx_ring->napi);
3869
3870 #ifdef CONFIG_IGB_DCA
3871         if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
3872                 igb_update_rx_dca(rx_ring);
3873 #endif
3874                 return IRQ_HANDLED;
3875 }
3876
3877 #ifdef CONFIG_IGB_DCA
3878 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3879 {
3880         u32 dca_rxctrl;
3881         struct igb_adapter *adapter = rx_ring->adapter;
3882         struct e1000_hw *hw = &adapter->hw;
3883         int cpu = get_cpu();
3884         int q = rx_ring->reg_idx;
3885
3886         if (rx_ring->cpu != cpu) {
3887                 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3888                 if (hw->mac.type == e1000_82576) {
3889                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3890                         dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
3891                                       E1000_DCA_RXCTRL_CPUID_SHIFT;
3892                 } else {
3893                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3894                         dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
3895                 }
3896                 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3897                 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3898                 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3899                 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3900                 rx_ring->cpu = cpu;
3901         }
3902         put_cpu();
3903 }
3904
3905 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3906 {
3907         u32 dca_txctrl;
3908         struct igb_adapter *adapter = tx_ring->adapter;
3909         struct e1000_hw *hw = &adapter->hw;
3910         int cpu = get_cpu();
3911         int q = tx_ring->reg_idx;
3912
3913         if (tx_ring->cpu != cpu) {
3914                 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3915                 if (hw->mac.type == e1000_82576) {
3916                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3917                         dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
3918                                       E1000_DCA_TXCTRL_CPUID_SHIFT;
3919                 } else {
3920                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3921                         dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
3922                 }
3923                 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3924                 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3925                 tx_ring->cpu = cpu;
3926         }
3927         put_cpu();
3928 }
3929
3930 static void igb_setup_dca(struct igb_adapter *adapter)
3931 {
3932         struct e1000_hw *hw = &adapter->hw;
3933         int i;
3934
3935         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3936                 return;
3937
3938         /* Always use CB2 mode, difference is masked in the CB driver. */
3939         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
3940
3941         for (i = 0; i < adapter->num_tx_queues; i++) {
3942                 adapter->tx_ring[i].cpu = -1;
3943                 igb_update_tx_dca(&adapter->tx_ring[i]);
3944         }
3945         for (i = 0; i < adapter->num_rx_queues; i++) {
3946                 adapter->rx_ring[i].cpu = -1;
3947                 igb_update_rx_dca(&adapter->rx_ring[i]);
3948         }
3949 }
3950
3951 static int __igb_notify_dca(struct device *dev, void *data)
3952 {
3953         struct net_device *netdev = dev_get_drvdata(dev);
3954         struct igb_adapter *adapter = netdev_priv(netdev);
3955         struct e1000_hw *hw = &adapter->hw;
3956         unsigned long event = *(unsigned long *)data;
3957
3958         switch (event) {
3959         case DCA_PROVIDER_ADD:
3960                 /* if already enabled, don't do it again */
3961                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3962                         break;
3963                 /* Always use CB2 mode, difference is masked
3964                  * in the CB driver. */
3965                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
3966                 if (dca_add_requester(dev) == 0) {
3967                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
3968                         dev_info(&adapter->pdev->dev, "DCA enabled\n");
3969                         igb_setup_dca(adapter);
3970                         break;
3971                 }
3972                 /* Fall Through since DCA is disabled. */
3973         case DCA_PROVIDER_REMOVE:
3974                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3975                         /* without this a class_device is left
3976                          * hanging around in the sysfs model */
3977                         dca_remove_requester(dev);
3978                         dev_info(&adapter->pdev->dev, "DCA disabled\n");
3979                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3980                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3981                 }
3982                 break;
3983         }
3984
3985         return 0;
3986 }
3987
3988 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3989                           void *p)
3990 {
3991         int ret_val;
3992
3993         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3994                                          __igb_notify_dca);
3995
3996         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3997 }
3998 #endif /* CONFIG_IGB_DCA */
3999
4000 static void igb_ping_all_vfs(struct igb_adapter *adapter)
4001 {
4002         struct e1000_hw *hw = &adapter->hw;
4003         u32 ping;
4004         int i;
4005
4006         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4007                 ping = E1000_PF_CONTROL_MSG;
4008                 if (adapter->vf_data[i].clear_to_send)
4009                         ping |= E1000_VT_MSGTYPE_CTS;
4010                 igb_write_mbx(hw, &ping, 1, i);
4011         }
4012 }
4013
4014 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4015                                   u32 *msgbuf, u32 vf)
4016 {
4017         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4018         u16 *hash_list = (u16 *)&msgbuf[1];
4019         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4020         int i;
4021
4022         /* only up to 30 hash values supported */
4023         if (n > 30)
4024                 n = 30;
4025
4026         /* salt away the number of multi cast addresses assigned
4027          * to this VF for later use to restore when the PF multi cast
4028          * list changes
4029          */
4030         vf_data->num_vf_mc_hashes = n;
4031
4032         /* VFs are limited to using the MTA hash table for their multicast
4033          * addresses */
4034         for (i = 0; i < n; i++)
4035                 vf_data->vf_mc_hashes[i] = hash_list[i];
4036
4037         /* Flush and reset the mta with the new values */
4038         igb_set_rx_mode(adapter->netdev);
4039
4040         return 0;
4041 }
4042
4043 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4044 {
4045         struct e1000_hw *hw = &adapter->hw;
4046         struct vf_data_storage *vf_data;
4047         int i, j;
4048
4049         for (i = 0; i < adapter->vfs_allocated_count; i++) {
4050                 vf_data = &adapter->vf_data[i];
4051                 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4052                         igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4053         }
4054 }
4055
4056 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4057 {
4058         struct e1000_hw *hw = &adapter->hw;
4059         u32 pool_mask, reg, vid;
4060         int i;
4061
4062         pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4063
4064         /* Find the vlan filter for this id */
4065         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4066                 reg = rd32(E1000_VLVF(i));
4067
4068                 /* remove the vf from the pool */
4069                 reg &= ~pool_mask;
4070
4071                 /* if pool is empty then remove entry from vfta */
4072                 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4073                     (reg & E1000_VLVF_VLANID_ENABLE)) {
4074                         reg = 0;
4075                         vid = reg & E1000_VLVF_VLANID_MASK;
4076                         igb_vfta_set(hw, vid, false);
4077                 }
4078
4079                 wr32(E1000_VLVF(i), reg);
4080         }
4081
4082         adapter->vf_data[vf].vlans_enabled = 0;
4083 }
4084
4085 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4086 {
4087         struct e1000_hw *hw = &adapter->hw;
4088         u32 reg, i;
4089
4090         /* It is an error to call this function when VFs are not enabled */
4091         if (!adapter->vfs_allocated_count)
4092                 return -1;
4093
4094         /* Find the vlan filter for this id */
4095         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4096                 reg = rd32(E1000_VLVF(i));
4097                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
4098                     vid == (reg & E1000_VLVF_VLANID_MASK))
4099                         break;
4100         }
4101
4102         if (add) {
4103                 if (i == E1000_VLVF_ARRAY_SIZE) {
4104                         /* Did not find a matching VLAN ID entry that was
4105                          * enabled.  Search for a free filter entry, i.e.
4106                          * one without the enable bit set
4107                          */
4108                         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4109                                 reg = rd32(E1000_VLVF(i));
4110                                 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4111                                         break;
4112                         }
4113                 }
4114                 if (i < E1000_VLVF_ARRAY_SIZE) {
4115                         /* Found an enabled/available entry */
4116                         reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4117
4118                         /* if !enabled we need to set this up in vfta */
4119                         if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
4120                                 /* add VID to filter table, if bit already set
4121                                  * PF must have added it outside of table */
4122                                 if (igb_vfta_set(hw, vid, true))
4123                                         reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT +
4124                                                 adapter->vfs_allocated_count);
4125                                 reg |= E1000_VLVF_VLANID_ENABLE;
4126                         }
4127                         reg &= ~E1000_VLVF_VLANID_MASK;
4128                         reg |= vid;
4129
4130                         wr32(E1000_VLVF(i), reg);
4131
4132                         /* do not modify RLPML for PF devices */
4133                         if (vf >= adapter->vfs_allocated_count)
4134                                 return 0;
4135
4136                         if (!adapter->vf_data[vf].vlans_enabled) {
4137                                 u32 size;
4138                                 reg = rd32(E1000_VMOLR(vf));
4139                                 size = reg & E1000_VMOLR_RLPML_MASK;
4140                                 size += 4;
4141                                 reg &= ~E1000_VMOLR_RLPML_MASK;
4142                                 reg |= size;
4143                                 wr32(E1000_VMOLR(vf), reg);
4144                         }
4145                         adapter->vf_data[vf].vlans_enabled++;
4146
4147                         return 0;
4148                 }
4149         } else {
4150                 if (i < E1000_VLVF_ARRAY_SIZE) {
4151                         /* remove vf from the pool */
4152                         reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4153                         /* if pool is empty then remove entry from vfta */
4154                         if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4155                                 reg = 0;
4156                                 igb_vfta_set(hw, vid, false);
4157                         }
4158                         wr32(E1000_VLVF(i), reg);
4159
4160                         /* do not modify RLPML for PF devices */
4161                         if (vf >= adapter->vfs_allocated_count)
4162                                 return 0;
4163
4164                         adapter->vf_data[vf].vlans_enabled--;
4165                         if (!adapter->vf_data[vf].vlans_enabled) {
4166                                 u32 size;
4167                                 reg = rd32(E1000_VMOLR(vf));
4168                                 size = reg & E1000_VMOLR_RLPML_MASK;
4169                                 size -= 4;
4170                                 reg &= ~E1000_VMOLR_RLPML_MASK;
4171                                 reg |= size;
4172                                 wr32(E1000_VMOLR(vf), reg);
4173                         }
4174                         return 0;
4175                 }
4176         }
4177         return -1;
4178 }
4179
4180 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4181 {
4182         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4183         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4184
4185         return igb_vlvf_set(adapter, vid, add, vf);
4186 }
4187
4188 static inline void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4189 {
4190         struct e1000_hw *hw = &adapter->hw;
4191
4192         /* disable mailbox functionality for vf */
4193         adapter->vf_data[vf].clear_to_send = false;
4194
4195         /* reset offloads to defaults */
4196         igb_set_vmolr(hw, vf);
4197
4198         /* reset vlans for device */
4199         igb_clear_vf_vfta(adapter, vf);
4200
4201         /* reset multicast table array for vf */
4202         adapter->vf_data[vf].num_vf_mc_hashes = 0;
4203
4204         /* Flush and reset the mta with the new values */
4205         igb_set_rx_mode(adapter->netdev);
4206 }
4207
4208 static inline void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4209 {
4210         struct e1000_hw *hw = &adapter->hw;
4211         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4212         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4213         u32 reg, msgbuf[3];
4214         u8 *addr = (u8 *)(&msgbuf[1]);
4215
4216         /* process all the same items cleared in a function level reset */
4217         igb_vf_reset_event(adapter, vf);
4218
4219         /* set vf mac address */
4220         igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4221
4222         /* enable transmit and receive for vf */
4223         reg = rd32(E1000_VFTE);
4224         wr32(E1000_VFTE, reg | (1 << vf));
4225         reg = rd32(E1000_VFRE);
4226         wr32(E1000_VFRE, reg | (1 << vf));
4227
4228         /* enable mailbox functionality for vf */
4229         adapter->vf_data[vf].clear_to_send = true;
4230
4231         /* reply to reset with ack and vf mac address */
4232         msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4233         memcpy(addr, vf_mac, 6);
4234         igb_write_mbx(hw, msgbuf, 3, vf);
4235 }
4236
4237 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4238 {
4239                 unsigned char *addr = (char *)&msg[1];
4240                 int err = -1;
4241
4242                 if (is_valid_ether_addr(addr))
4243                         err = igb_set_vf_mac(adapter, vf, addr);
4244
4245                 return err;
4246
4247 }
4248
4249 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4250 {
4251         struct e1000_hw *hw = &adapter->hw;
4252         u32 msg = E1000_VT_MSGTYPE_NACK;
4253
4254         /* if device isn't clear to send it shouldn't be reading either */
4255         if (!adapter->vf_data[vf].clear_to_send)
4256                 igb_write_mbx(hw, &msg, 1, vf);
4257 }
4258
4259
4260 static void igb_msg_task(struct igb_adapter *adapter)
4261 {
4262         struct e1000_hw *hw = &adapter->hw;
4263         u32 vf;
4264
4265         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4266                 /* process any reset requests */
4267                 if (!igb_check_for_rst(hw, vf)) {
4268                         adapter->vf_data[vf].clear_to_send = false;
4269                         igb_vf_reset_event(adapter, vf);
4270                 }
4271
4272                 /* process any messages pending */
4273                 if (!igb_check_for_msg(hw, vf))
4274                         igb_rcv_msg_from_vf(adapter, vf);
4275
4276                 /* process any acks */
4277                 if (!igb_check_for_ack(hw, vf))
4278                         igb_rcv_ack_from_vf(adapter, vf);
4279
4280         }
4281 }
4282
4283 static int igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4284 {
4285         u32 mbx_size = E1000_VFMAILBOX_SIZE;
4286         u32 msgbuf[mbx_size];
4287         struct e1000_hw *hw = &adapter->hw;
4288         s32 retval;
4289
4290         retval = igb_read_mbx(hw, msgbuf, mbx_size, vf);
4291
4292         if (retval)
4293                 dev_err(&adapter->pdev->dev,
4294                         "Error receiving message from VF\n");
4295
4296         /* this is a message we already processed, do nothing */
4297         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4298                 return retval;
4299
4300         /*
4301          * until the vf completes a reset it should not be
4302          * allowed to start any configuration.
4303          */
4304
4305         if (msgbuf[0] == E1000_VF_RESET) {
4306                 igb_vf_reset_msg(adapter, vf);
4307
4308                 return retval;
4309         }
4310
4311         if (!adapter->vf_data[vf].clear_to_send) {
4312                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4313                 igb_write_mbx(hw, msgbuf, 1, vf);
4314                 return retval;
4315         }
4316
4317         switch ((msgbuf[0] & 0xFFFF)) {
4318         case E1000_VF_SET_MAC_ADDR:
4319                 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4320                 break;
4321         case E1000_VF_SET_MULTICAST:
4322                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4323                 break;
4324         case E1000_VF_SET_LPE:
4325                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4326                 break;
4327         case E1000_VF_SET_VLAN:
4328                 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4329                 break;
4330         default:
4331                 dev_err(&adapter->pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4332                 retval = -1;
4333                 break;
4334         }
4335
4336         /* notify the VF of the results of what it sent us */
4337         if (retval)
4338                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4339         else
4340                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4341
4342         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4343
4344         igb_write_mbx(hw, msgbuf, 1, vf);
4345
4346         return retval;
4347 }
4348
4349 /**
4350  *  igb_set_uta - Set unicast filter table address
4351  *  @adapter: board private structure
4352  *
4353  *  The unicast table address is a register array of 32-bit registers.
4354  *  The table is meant to be used in a way similar to how the MTA is used
4355  *  however due to certain limitations in the hardware it is necessary to
4356  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
4357  *  enable bit to allow vlan tag stripping when promiscous mode is enabled
4358  **/
4359 static void igb_set_uta(struct igb_adapter *adapter)
4360 {
4361         struct e1000_hw *hw = &adapter->hw;
4362         int i;
4363
4364         /* The UTA table only exists on 82576 hardware and newer */
4365         if (hw->mac.type < e1000_82576)
4366                 return;
4367
4368         /* we only need to do this if VMDq is enabled */
4369         if (!adapter->vfs_allocated_count)
4370                 return;
4371
4372         for (i = 0; i < hw->mac.uta_reg_count; i++)
4373                 array_wr32(E1000_UTA, i, ~0);
4374 }
4375
4376 /**
4377  * igb_intr_msi - Interrupt Handler
4378  * @irq: interrupt number
4379  * @data: pointer to a network interface device structure
4380  **/
4381 static irqreturn_t igb_intr_msi(int irq, void *data)
4382 {
4383         struct net_device *netdev = data;
4384         struct igb_adapter *adapter = netdev_priv(netdev);
4385         struct e1000_hw *hw = &adapter->hw;
4386         /* read ICR disables interrupts using IAM */
4387         u32 icr = rd32(E1000_ICR);
4388
4389         igb_write_itr(adapter->rx_ring);
4390
4391         if(icr & E1000_ICR_DOUTSYNC) {
4392                 /* HW is reporting DMA is out of sync */
4393                 adapter->stats.doosync++;
4394         }
4395
4396         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4397                 hw->mac.get_link_status = 1;
4398                 if (!test_bit(__IGB_DOWN, &adapter->state))
4399                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
4400         }
4401
4402         napi_schedule(&adapter->rx_ring[0].napi);
4403
4404         return IRQ_HANDLED;
4405 }
4406
4407 /**
4408  * igb_intr - Legacy Interrupt Handler
4409  * @irq: interrupt number
4410  * @data: pointer to a network interface device structure
4411  **/
4412 static irqreturn_t igb_intr(int irq, void *data)
4413 {
4414         struct net_device *netdev = data;
4415         struct igb_adapter *adapter = netdev_priv(netdev);
4416         struct e1000_hw *hw = &adapter->hw;
4417         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
4418          * need for the IMC write */
4419         u32 icr = rd32(E1000_ICR);
4420         if (!icr)
4421                 return IRQ_NONE;  /* Not our interrupt */
4422
4423         igb_write_itr(adapter->rx_ring);
4424
4425         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4426          * not set, then the adapter didn't send an interrupt */
4427         if (!(icr & E1000_ICR_INT_ASSERTED))
4428                 return IRQ_NONE;
4429
4430         if(icr & E1000_ICR_DOUTSYNC) {
4431                 /* HW is reporting DMA is out of sync */
4432                 adapter->stats.doosync++;
4433         }
4434
4435         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4436                 hw->mac.get_link_status = 1;
4437                 /* guard against interrupt when we're going down */
4438                 if (!test_bit(__IGB_DOWN, &adapter->state))
4439                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
4440         }
4441
4442         napi_schedule(&adapter->rx_ring[0].napi);
4443
4444         return IRQ_HANDLED;
4445 }
4446
4447 static inline void igb_rx_irq_enable(struct igb_ring *rx_ring)
4448 {
4449         struct igb_adapter *adapter = rx_ring->adapter;
4450         struct e1000_hw *hw = &adapter->hw;
4451
4452         if (adapter->itr_setting & 3) {
4453                 if (adapter->num_rx_queues == 1)
4454                         igb_set_itr(adapter);
4455                 else
4456                         igb_update_ring_itr(rx_ring);
4457         }
4458
4459         if (!test_bit(__IGB_DOWN, &adapter->state)) {
4460                 if (adapter->msix_entries)
4461                         wr32(E1000_EIMS, rx_ring->eims_value);
4462                 else
4463                         igb_irq_enable(adapter);
4464         }
4465 }
4466
4467 /**
4468  * igb_poll - NAPI Rx polling callback
4469  * @napi: napi polling structure
4470  * @budget: count of how many packets we should handle
4471  **/
4472 static int igb_poll(struct napi_struct *napi, int budget)
4473 {
4474         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
4475         int work_done = 0;
4476
4477 #ifdef CONFIG_IGB_DCA
4478         if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
4479                 igb_update_rx_dca(rx_ring);
4480 #endif
4481         igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
4482
4483         if (rx_ring->buddy) {
4484 #ifdef CONFIG_IGB_DCA
4485                 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
4486                         igb_update_tx_dca(rx_ring->buddy);
4487 #endif
4488                 if (!igb_clean_tx_irq(rx_ring->buddy))
4489                         work_done = budget;
4490         }
4491
4492         /* If not enough Rx work done, exit the polling mode */
4493         if (work_done < budget) {
4494                 napi_complete(napi);
4495                 igb_rx_irq_enable(rx_ring);
4496         }
4497
4498         return work_done;
4499 }
4500
4501 /**
4502  * igb_hwtstamp - utility function which checks for TX time stamp
4503  * @adapter: board private structure
4504  * @skb: packet that was just sent
4505  *
4506  * If we were asked to do hardware stamping and such a time stamp is
4507  * available, then it must have been for this skb here because we only
4508  * allow only one such packet into the queue.
4509  */
4510 static void igb_tx_hwtstamp(struct igb_adapter *adapter, struct sk_buff *skb)
4511 {
4512         union skb_shared_tx *shtx = skb_tx(skb);
4513         struct e1000_hw *hw = &adapter->hw;
4514
4515         if (unlikely(shtx->hardware)) {
4516                 u32 valid = rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID;
4517                 if (valid) {
4518                         u64 regval = rd32(E1000_TXSTMPL);
4519                         u64 ns;
4520                         struct skb_shared_hwtstamps shhwtstamps;
4521
4522                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
4523                         regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4524                         ns = timecounter_cyc2time(&adapter->clock,
4525                                                   regval);
4526                         timecompare_update(&adapter->compare, ns);
4527                         shhwtstamps.hwtstamp = ns_to_ktime(ns);
4528                         shhwtstamps.syststamp =
4529                                 timecompare_transform(&adapter->compare, ns);
4530                         skb_tstamp_tx(skb, &shhwtstamps);
4531                 }
4532         }
4533 }
4534
4535 /**
4536  * igb_clean_tx_irq - Reclaim resources after transmit completes
4537  * @adapter: board private structure
4538  * returns true if ring is completely cleaned
4539  **/
4540 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
4541 {
4542         struct igb_adapter *adapter = tx_ring->adapter;
4543         struct net_device *netdev = adapter->netdev;
4544         struct e1000_hw *hw = &adapter->hw;
4545         struct igb_buffer *buffer_info;
4546         struct sk_buff *skb;
4547         union e1000_adv_tx_desc *tx_desc, *eop_desc;
4548         unsigned int total_bytes = 0, total_packets = 0;
4549         unsigned int i, eop, count = 0;
4550         bool cleaned = false;
4551
4552         i = tx_ring->next_to_clean;
4553         eop = tx_ring->buffer_info[i].next_to_watch;
4554         eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4555
4556         while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4557                (count < tx_ring->count)) {
4558                 for (cleaned = false; !cleaned; count++) {
4559                         tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4560                         buffer_info = &tx_ring->buffer_info[i];
4561                         cleaned = (i == eop);
4562                         skb = buffer_info->skb;
4563
4564                         if (skb) {
4565                                 unsigned int segs, bytecount;
4566                                 /* gso_segs is currently only valid for tcp */
4567                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
4568                                 /* multiply data chunks by size of headers */
4569                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
4570                                             skb->len;
4571                                 total_packets += segs;
4572                                 total_bytes += bytecount;
4573
4574                                 igb_tx_hwtstamp(adapter, skb);
4575                         }
4576
4577                         igb_unmap_and_free_tx_resource(adapter, buffer_info);
4578                         tx_desc->wb.status = 0;
4579
4580                         i++;
4581                         if (i == tx_ring->count)
4582                                 i = 0;
4583                 }
4584                 eop = tx_ring->buffer_info[i].next_to_watch;
4585                 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4586         }
4587
4588         tx_ring->next_to_clean = i;
4589
4590         if (unlikely(count &&
4591                      netif_carrier_ok(netdev) &&
4592                      igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4593                 /* Make sure that anybody stopping the queue after this
4594                  * sees the new next_to_clean.
4595                  */
4596                 smp_mb();
4597                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
4598                     !(test_bit(__IGB_DOWN, &adapter->state))) {
4599                         netif_wake_subqueue(netdev, tx_ring->queue_index);
4600                         ++adapter->restart_queue;
4601                 }
4602         }
4603
4604         if (tx_ring->detect_tx_hung) {
4605                 /* Detect a transmit hang in hardware, this serializes the
4606                  * check with the clearing of time_stamp and movement of i */
4607                 tx_ring->detect_tx_hung = false;
4608                 if (tx_ring->buffer_info[i].time_stamp &&
4609                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
4610                                (adapter->tx_timeout_factor * HZ))
4611                     && !(rd32(E1000_STATUS) &
4612                          E1000_STATUS_TXOFF)) {
4613
4614                         /* detected Tx unit hang */
4615                         dev_err(&adapter->pdev->dev,
4616                                 "Detected Tx Unit Hang\n"
4617                                 "  Tx Queue             <%d>\n"
4618                                 "  TDH                  <%x>\n"
4619                                 "  TDT                  <%x>\n"
4620                                 "  next_to_use          <%x>\n"
4621                                 "  next_to_clean        <%x>\n"
4622                                 "buffer_info[next_to_clean]\n"
4623                                 "  time_stamp           <%lx>\n"
4624                                 "  next_to_watch        <%x>\n"
4625                                 "  jiffies              <%lx>\n"
4626                                 "  desc.status          <%x>\n",
4627                                 tx_ring->queue_index,
4628                                 readl(adapter->hw.hw_addr + tx_ring->head),
4629                                 readl(adapter->hw.hw_addr + tx_ring->tail),
4630                                 tx_ring->next_to_use,
4631                                 tx_ring->next_to_clean,
4632                                 tx_ring->buffer_info[i].time_stamp,
4633                                 eop,
4634                                 jiffies,
4635                                 eop_desc->wb.status);
4636                         netif_stop_subqueue(netdev, tx_ring->queue_index);
4637                 }
4638         }
4639         tx_ring->total_bytes += total_bytes;
4640         tx_ring->total_packets += total_packets;
4641         tx_ring->tx_stats.bytes += total_bytes;
4642         tx_ring->tx_stats.packets += total_packets;
4643         adapter->net_stats.tx_bytes += total_bytes;
4644         adapter->net_stats.tx_packets += total_packets;
4645         return (count < tx_ring->count);
4646 }
4647
4648 /**
4649  * igb_receive_skb - helper function to handle rx indications
4650  * @ring: pointer to receive ring receving this packet
4651  * @status: descriptor status field as written by hardware
4652  * @rx_desc: receive descriptor containing vlan and type information.
4653  * @skb: pointer to sk_buff to be indicated to stack
4654  **/
4655 static void igb_receive_skb(struct igb_ring *ring, u8 status,
4656                             union e1000_adv_rx_desc * rx_desc,
4657                             struct sk_buff *skb)
4658 {
4659         struct igb_adapter * adapter = ring->adapter;
4660         bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
4661
4662         skb_record_rx_queue(skb, ring->queue_index);
4663         if (vlan_extracted)
4664                 vlan_gro_receive(&ring->napi, adapter->vlgrp,
4665                                  le16_to_cpu(rx_desc->wb.upper.vlan),
4666                                  skb);
4667         else
4668                 napi_gro_receive(&ring->napi, skb);
4669 }
4670
4671 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
4672                                        u32 status_err, struct sk_buff *skb)
4673 {
4674         skb->ip_summed = CHECKSUM_NONE;
4675
4676         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
4677         if ((status_err & E1000_RXD_STAT_IXSM) ||
4678             (adapter->flags & IGB_FLAG_RX_CSUM_DISABLED))
4679                 return;
4680         /* TCP/UDP checksum error bit is set */
4681         if (status_err &
4682             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
4683                 /*
4684                  * work around errata with sctp packets where the TCPE aka
4685                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
4686                  * packets, (aka let the stack check the crc32c)
4687                  */
4688                 if (!((adapter->hw.mac.type == e1000_82576) &&
4689                       (skb->len == 60)))
4690                         adapter->hw_csum_err++;
4691                 /* let the stack verify checksum errors */
4692                 return;
4693         }
4694         /* It must be a TCP or UDP packet with a valid checksum */
4695         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
4696                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4697
4698         dev_dbg(&adapter->pdev->dev, "cksum success: bits %08X\n", status_err);
4699         adapter->hw_csum_good++;
4700 }
4701
4702 static inline u16 igb_get_hlen(struct igb_adapter *adapter,
4703                                union e1000_adv_rx_desc *rx_desc)
4704 {
4705         /* HW will not DMA in data larger than the given buffer, even if it
4706          * parses the (NFS, of course) header to be larger.  In that case, it
4707          * fills the header buffer and spills the rest into the page.
4708          */
4709         u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
4710                    E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4711         if (hlen > adapter->rx_ps_hdr_size)
4712                 hlen = adapter->rx_ps_hdr_size;
4713         return hlen;
4714 }
4715
4716 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
4717                                  int *work_done, int budget)
4718 {
4719         struct igb_adapter *adapter = rx_ring->adapter;
4720         struct net_device *netdev = adapter->netdev;
4721         struct e1000_hw *hw = &adapter->hw;
4722         struct pci_dev *pdev = adapter->pdev;
4723         union e1000_adv_rx_desc *rx_desc , *next_rxd;
4724         struct igb_buffer *buffer_info , *next_buffer;
4725         struct sk_buff *skb;
4726         bool cleaned = false;
4727         int cleaned_count = 0;
4728         unsigned int total_bytes = 0, total_packets = 0;
4729         unsigned int i;
4730         u32 staterr;
4731         u16 length;
4732
4733         i = rx_ring->next_to_clean;
4734         buffer_info = &rx_ring->buffer_info[i];
4735         rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4736         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4737
4738         while (staterr & E1000_RXD_STAT_DD) {
4739                 if (*work_done >= budget)
4740                         break;
4741                 (*work_done)++;
4742
4743                 skb = buffer_info->skb;
4744                 prefetch(skb->data - NET_IP_ALIGN);
4745                 buffer_info->skb = NULL;
4746
4747                 i++;
4748                 if (i == rx_ring->count)
4749                         i = 0;
4750                 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
4751                 prefetch(next_rxd);
4752                 next_buffer = &rx_ring->buffer_info[i];
4753
4754                 length = le16_to_cpu(rx_desc->wb.upper.length);
4755                 cleaned = true;
4756                 cleaned_count++;
4757
4758                 /* this is the fast path for the non-packet split case */
4759                 if (!adapter->rx_ps_hdr_size) {
4760                         pci_unmap_single(pdev, buffer_info->dma,
4761                                          adapter->rx_buffer_len,
4762                                          PCI_DMA_FROMDEVICE);
4763                         buffer_info->dma = 0;
4764                         skb_put(skb, length);
4765                         goto send_up;
4766                 }
4767
4768                 if (buffer_info->dma) {
4769                         u16 hlen = igb_get_hlen(adapter, rx_desc);
4770                         pci_unmap_single(pdev, buffer_info->dma,
4771                                          adapter->rx_ps_hdr_size,
4772                                          PCI_DMA_FROMDEVICE);
4773                         buffer_info->dma = 0;
4774                         skb_put(skb, hlen);
4775                 }
4776
4777                 if (length) {
4778                         pci_unmap_page(pdev, buffer_info->page_dma,
4779                                        PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
4780                         buffer_info->page_dma = 0;
4781
4782                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
4783                                                 buffer_info->page,
4784                                                 buffer_info->page_offset,
4785                                                 length);
4786
4787                         if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
4788                             (page_count(buffer_info->page) != 1))
4789                                 buffer_info->page = NULL;
4790                         else
4791                                 get_page(buffer_info->page);
4792
4793                         skb->len += length;
4794                         skb->data_len += length;
4795
4796                         skb->truesize += length;
4797                 }
4798
4799                 if (!(staterr & E1000_RXD_STAT_EOP)) {
4800                         buffer_info->skb = next_buffer->skb;
4801                         buffer_info->dma = next_buffer->dma;
4802                         next_buffer->skb = skb;
4803                         next_buffer->dma = 0;
4804                         goto next_desc;
4805                 }
4806 send_up:
4807                 /*
4808                  * If this bit is set, then the RX registers contain
4809                  * the time stamp. No other packet will be time
4810                  * stamped until we read these registers, so read the
4811                  * registers to make them available again. Because
4812                  * only one packet can be time stamped at a time, we
4813                  * know that the register values must belong to this
4814                  * one here and therefore we don't need to compare
4815                  * any of the additional attributes stored for it.
4816                  *
4817                  * If nothing went wrong, then it should have a
4818                  * skb_shared_tx that we can turn into a
4819                  * skb_shared_hwtstamps.
4820                  *
4821                  * TODO: can time stamping be triggered (thus locking
4822                  * the registers) without the packet reaching this point
4823                  * here? In that case RX time stamping would get stuck.
4824                  *
4825                  * TODO: in "time stamp all packets" mode this bit is
4826                  * not set. Need a global flag for this mode and then
4827                  * always read the registers. Cannot be done without
4828                  * a race condition.
4829                  */
4830                 if (unlikely(staterr & E1000_RXD_STAT_TS)) {
4831                         u64 regval;
4832                         u64 ns;
4833                         struct skb_shared_hwtstamps *shhwtstamps =
4834                                 skb_hwtstamps(skb);
4835
4836                         WARN(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID),
4837                              "igb: no RX time stamp available for time stamped packet");
4838                         regval = rd32(E1000_RXSTMPL);
4839                         regval |= (u64)rd32(E1000_RXSTMPH) << 32;
4840                         ns = timecounter_cyc2time(&adapter->clock, regval);
4841                         timecompare_update(&adapter->compare, ns);
4842                         memset(shhwtstamps, 0, sizeof(*shhwtstamps));
4843                         shhwtstamps->hwtstamp = ns_to_ktime(ns);
4844                         shhwtstamps->syststamp =
4845                                 timecompare_transform(&adapter->compare, ns);
4846                 }
4847
4848                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
4849                         dev_kfree_skb_irq(skb);
4850                         goto next_desc;
4851                 }
4852
4853                 total_bytes += skb->len;
4854                 total_packets++;
4855
4856                 igb_rx_checksum_adv(adapter, staterr, skb);
4857
4858                 skb->protocol = eth_type_trans(skb, netdev);
4859
4860                 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
4861
4862 next_desc:
4863                 rx_desc->wb.upper.status_error = 0;
4864
4865                 /* return some buffers to hardware, one at a time is too slow */
4866                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
4867                         igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4868                         cleaned_count = 0;
4869                 }
4870
4871                 /* use prefetched values */
4872                 rx_desc = next_rxd;
4873                 buffer_info = next_buffer;
4874                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4875         }
4876
4877         rx_ring->next_to_clean = i;
4878         cleaned_count = igb_desc_unused(rx_ring);
4879
4880         if (cleaned_count)
4881                 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4882
4883         rx_ring->total_packets += total_packets;
4884         rx_ring->total_bytes += total_bytes;
4885         rx_ring->rx_stats.packets += total_packets;
4886         rx_ring->rx_stats.bytes += total_bytes;
4887         adapter->net_stats.rx_bytes += total_bytes;
4888         adapter->net_stats.rx_packets += total_packets;
4889         return cleaned;
4890 }
4891
4892 /**
4893  * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
4894  * @adapter: address of board private structure
4895  **/
4896 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
4897                                      int cleaned_count)
4898 {
4899         struct igb_adapter *adapter = rx_ring->adapter;
4900         struct net_device *netdev = adapter->netdev;
4901         struct pci_dev *pdev = adapter->pdev;
4902         union e1000_adv_rx_desc *rx_desc;
4903         struct igb_buffer *buffer_info;
4904         struct sk_buff *skb;
4905         unsigned int i;
4906         int bufsz;
4907
4908         i = rx_ring->next_to_use;
4909         buffer_info = &rx_ring->buffer_info[i];
4910
4911         if (adapter->rx_ps_hdr_size)
4912                 bufsz = adapter->rx_ps_hdr_size;
4913         else
4914                 bufsz = adapter->rx_buffer_len;
4915
4916         while (cleaned_count--) {
4917                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4918
4919                 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
4920                         if (!buffer_info->page) {
4921                                 buffer_info->page = alloc_page(GFP_ATOMIC);
4922                                 if (!buffer_info->page) {
4923                                         adapter->alloc_rx_buff_failed++;
4924                                         goto no_buffers;
4925                                 }
4926                                 buffer_info->page_offset = 0;
4927                         } else {
4928                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
4929                         }
4930                         buffer_info->page_dma =
4931                                 pci_map_page(pdev, buffer_info->page,
4932                                              buffer_info->page_offset,
4933                                              PAGE_SIZE / 2,
4934                                              PCI_DMA_FROMDEVICE);
4935                 }
4936
4937                 if (!buffer_info->skb) {
4938                         skb = netdev_alloc_skb(netdev, bufsz + NET_IP_ALIGN);
4939                         if (!skb) {
4940                                 adapter->alloc_rx_buff_failed++;
4941                                 goto no_buffers;
4942                         }
4943
4944                         /* Make buffer alignment 2 beyond a 16 byte boundary
4945                          * this will result in a 16 byte aligned IP header after
4946                          * the 14 byte MAC header is removed
4947                          */
4948                         skb_reserve(skb, NET_IP_ALIGN);
4949
4950                         buffer_info->skb = skb;
4951                         buffer_info->dma = pci_map_single(pdev, skb->data,
4952                                                           bufsz,
4953                                                           PCI_DMA_FROMDEVICE);
4954                 }
4955                 /* Refresh the desc even if buffer_addrs didn't change because
4956                  * each write-back erases this info. */
4957                 if (adapter->rx_ps_hdr_size) {
4958                         rx_desc->read.pkt_addr =
4959                              cpu_to_le64(buffer_info->page_dma);
4960                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4961                 } else {
4962                         rx_desc->read.pkt_addr =
4963                              cpu_to_le64(buffer_info->dma);
4964                         rx_desc->read.hdr_addr = 0;
4965                 }
4966
4967                 i++;
4968                 if (i == rx_ring->count)
4969                         i = 0;
4970                 buffer_info = &rx_ring->buffer_info[i];
4971         }
4972
4973 no_buffers:
4974         if (rx_ring->next_to_use != i) {
4975                 rx_ring->next_to_use = i;
4976                 if (i == 0)
4977                         i = (rx_ring->count - 1);
4978                 else
4979                         i--;
4980
4981                 /* Force memory writes to complete before letting h/w
4982                  * know there are new descriptors to fetch.  (Only
4983                  * applicable for weak-ordered memory model archs,
4984                  * such as IA-64). */
4985                 wmb();
4986                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4987         }
4988 }
4989
4990 /**
4991  * igb_mii_ioctl -
4992  * @netdev:
4993  * @ifreq:
4994  * @cmd:
4995  **/
4996 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4997 {
4998         struct igb_adapter *adapter = netdev_priv(netdev);
4999         struct mii_ioctl_data *data = if_mii(ifr);
5000
5001         if (adapter->hw.phy.media_type != e1000_media_type_copper)
5002                 return -EOPNOTSUPP;
5003
5004         switch (cmd) {
5005         case SIOCGMIIPHY:
5006                 data->phy_id = adapter->hw.phy.addr;
5007                 break;
5008         case SIOCGMIIREG:
5009                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
5010                                      &data->val_out))
5011                         return -EIO;
5012                 break;
5013         case SIOCSMIIREG:
5014         default:
5015                 return -EOPNOTSUPP;
5016         }
5017         return 0;
5018 }
5019
5020 /**
5021  * igb_hwtstamp_ioctl - control hardware time stamping
5022  * @netdev:
5023  * @ifreq:
5024  * @cmd:
5025  *
5026  * Outgoing time stamping can be enabled and disabled. Play nice and
5027  * disable it when requested, although it shouldn't case any overhead
5028  * when no packet needs it. At most one packet in the queue may be
5029  * marked for time stamping, otherwise it would be impossible to tell
5030  * for sure to which packet the hardware time stamp belongs.
5031  *
5032  * Incoming time stamping has to be configured via the hardware
5033  * filters. Not all combinations are supported, in particular event
5034  * type has to be specified. Matching the kind of event packet is
5035  * not supported, with the exception of "all V2 events regardless of
5036  * level 2 or 4".
5037  *
5038  **/
5039 static int igb_hwtstamp_ioctl(struct net_device *netdev,
5040                               struct ifreq *ifr, int cmd)
5041 {
5042         struct igb_adapter *adapter = netdev_priv(netdev);
5043         struct e1000_hw *hw = &adapter->hw;
5044         struct hwtstamp_config config;
5045         u32 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
5046         u32 tsync_rx_ctl_bit = E1000_TSYNCRXCTL_ENABLED;
5047         u32 tsync_rx_ctl_type = 0;
5048         u32 tsync_rx_cfg = 0;
5049         int is_l4 = 0;
5050         int is_l2 = 0;
5051         short port = 319; /* PTP */
5052         u32 regval;
5053
5054         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5055                 return -EFAULT;
5056
5057         /* reserved for future extensions */
5058         if (config.flags)
5059                 return -EINVAL;
5060
5061         switch (config.tx_type) {
5062         case HWTSTAMP_TX_OFF:
5063                 tsync_tx_ctl_bit = 0;
5064                 break;
5065         case HWTSTAMP_TX_ON:
5066                 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
5067                 break;
5068         default:
5069                 return -ERANGE;
5070         }
5071
5072         switch (config.rx_filter) {
5073         case HWTSTAMP_FILTER_NONE:
5074                 tsync_rx_ctl_bit = 0;
5075                 break;
5076         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5077         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5078         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5079         case HWTSTAMP_FILTER_ALL:
5080                 /*
5081                  * register TSYNCRXCFG must be set, therefore it is not
5082                  * possible to time stamp both Sync and Delay_Req messages
5083                  * => fall back to time stamping all packets
5084                  */
5085                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_ALL;
5086                 config.rx_filter = HWTSTAMP_FILTER_ALL;
5087                 break;
5088         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
5089                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
5090                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
5091                 is_l4 = 1;
5092                 break;
5093         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
5094                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
5095                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
5096                 is_l4 = 1;
5097                 break;
5098         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5099         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5100                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5101                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
5102                 is_l2 = 1;
5103                 is_l4 = 1;
5104                 config.rx_filter = HWTSTAMP_FILTER_SOME;
5105                 break;
5106         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5107         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5108                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5109                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
5110                 is_l2 = 1;
5111                 is_l4 = 1;
5112                 config.rx_filter = HWTSTAMP_FILTER_SOME;
5113                 break;
5114         case HWTSTAMP_FILTER_PTP_V2_EVENT:
5115         case HWTSTAMP_FILTER_PTP_V2_SYNC:
5116         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5117                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_EVENT_V2;
5118                 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
5119                 is_l2 = 1;
5120                 break;
5121         default:
5122                 return -ERANGE;
5123         }
5124
5125         /* enable/disable TX */
5126         regval = rd32(E1000_TSYNCTXCTL);
5127         regval = (regval & ~E1000_TSYNCTXCTL_ENABLED) | tsync_tx_ctl_bit;
5128         wr32(E1000_TSYNCTXCTL, regval);
5129
5130         /* enable/disable RX, define which PTP packets are time stamped */
5131         regval = rd32(E1000_TSYNCRXCTL);
5132         regval = (regval & ~E1000_TSYNCRXCTL_ENABLED) | tsync_rx_ctl_bit;
5133         regval = (regval & ~0xE) | tsync_rx_ctl_type;
5134         wr32(E1000_TSYNCRXCTL, regval);
5135         wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
5136
5137         /*
5138          * Ethertype Filter Queue Filter[0][15:0] = 0x88F7
5139          *                                          (Ethertype to filter on)
5140          * Ethertype Filter Queue Filter[0][26] = 0x1 (Enable filter)
5141          * Ethertype Filter Queue Filter[0][30] = 0x1 (Enable Timestamping)
5142          */
5143         wr32(E1000_ETQF0, is_l2 ? 0x440088f7 : 0);
5144
5145         /* L4 Queue Filter[0]: only filter by source and destination port */
5146         wr32(E1000_SPQF0, htons(port));
5147         wr32(E1000_IMIREXT(0), is_l4 ?
5148              ((1<<12) | (1<<19) /* bypass size and control flags */) : 0);
5149         wr32(E1000_IMIR(0), is_l4 ?
5150              (htons(port)
5151               | (0<<16) /* immediate interrupt disabled */
5152               | 0 /* (1<<17) bit cleared: do not bypass
5153                      destination port check */)
5154                 : 0);
5155         wr32(E1000_FTQF0, is_l4 ?
5156              (0x11 /* UDP */
5157               | (1<<15) /* VF not compared */
5158               | (1<<27) /* Enable Timestamping */
5159               | (7<<28) /* only source port filter enabled,
5160                            source/target address and protocol
5161                            masked */)
5162              : ((1<<15) | (15<<28) /* all mask bits set = filter not
5163                                       enabled */));
5164
5165         wrfl();
5166
5167         adapter->hwtstamp_config = config;
5168
5169         /* clear TX/RX time stamp registers, just to be sure */
5170         regval = rd32(E1000_TXSTMPH);
5171         regval = rd32(E1000_RXSTMPH);
5172
5173         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
5174                 -EFAULT : 0;
5175 }
5176
5177 /**
5178  * igb_ioctl -
5179  * @netdev:
5180  * @ifreq:
5181  * @cmd:
5182  **/
5183 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5184 {
5185         switch (cmd) {
5186         case SIOCGMIIPHY:
5187         case SIOCGMIIREG:
5188         case SIOCSMIIREG:
5189                 return igb_mii_ioctl(netdev, ifr, cmd);
5190         case SIOCSHWTSTAMP:
5191                 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
5192         default:
5193                 return -EOPNOTSUPP;
5194         }
5195 }
5196
5197 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5198 {
5199         struct igb_adapter *adapter = hw->back;
5200         u16 cap_offset;
5201
5202         cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5203         if (!cap_offset)
5204                 return -E1000_ERR_CONFIG;
5205
5206         pci_read_config_word(adapter->pdev, cap_offset + reg, value);
5207
5208         return 0;
5209 }
5210
5211 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5212 {
5213         struct igb_adapter *adapter = hw->back;
5214         u16 cap_offset;
5215
5216         cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5217         if (!cap_offset)
5218                 return -E1000_ERR_CONFIG;
5219
5220         pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
5221
5222         return 0;
5223 }
5224
5225 static void igb_vlan_rx_register(struct net_device *netdev,
5226                                  struct vlan_group *grp)
5227 {
5228         struct igb_adapter *adapter = netdev_priv(netdev);
5229         struct e1000_hw *hw = &adapter->hw;
5230         u32 ctrl, rctl;
5231
5232         igb_irq_disable(adapter);
5233         adapter->vlgrp = grp;
5234
5235         if (grp) {
5236                 /* enable VLAN tag insert/strip */
5237                 ctrl = rd32(E1000_CTRL);
5238                 ctrl |= E1000_CTRL_VME;
5239                 wr32(E1000_CTRL, ctrl);
5240
5241                 /* enable VLAN receive filtering */
5242                 rctl = rd32(E1000_RCTL);
5243                 rctl &= ~E1000_RCTL_CFIEN;
5244                 wr32(E1000_RCTL, rctl);
5245                 igb_update_mng_vlan(adapter);
5246         } else {
5247                 /* disable VLAN tag insert/strip */
5248                 ctrl = rd32(E1000_CTRL);
5249                 ctrl &= ~E1000_CTRL_VME;
5250                 wr32(E1000_CTRL, ctrl);
5251
5252                 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
5253                         igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
5254                         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
5255                 }
5256         }
5257
5258         igb_rlpml_set(adapter);
5259
5260         if (!test_bit(__IGB_DOWN, &adapter->state))
5261                 igb_irq_enable(adapter);
5262 }
5263
5264 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
5265 {
5266         struct igb_adapter *adapter = netdev_priv(netdev);
5267         struct e1000_hw *hw = &adapter->hw;
5268         int pf_id = adapter->vfs_allocated_count;
5269
5270         if ((hw->mng_cookie.status &
5271              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
5272             (vid == adapter->mng_vlan_id))
5273                 return;
5274
5275         /* add vid to vlvf if sr-iov is enabled,
5276          * if that fails add directly to filter table */
5277         if (igb_vlvf_set(adapter, vid, true, pf_id))
5278                 igb_vfta_set(hw, vid, true);
5279
5280 }
5281
5282 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
5283 {
5284         struct igb_adapter *adapter = netdev_priv(netdev);
5285         struct e1000_hw *hw = &adapter->hw;
5286         int pf_id = adapter->vfs_allocated_count;
5287
5288         igb_irq_disable(adapter);
5289         vlan_group_set_device(adapter->vlgrp, vid, NULL);
5290
5291         if (!test_bit(__IGB_DOWN, &adapter->state))
5292                 igb_irq_enable(adapter);
5293
5294         if ((adapter->hw.mng_cookie.status &
5295              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
5296             (vid == adapter->mng_vlan_id)) {
5297                 /* release control to f/w */
5298                 igb_release_hw_control(adapter);
5299                 return;
5300         }
5301
5302         /* remove vid from vlvf if sr-iov is enabled,
5303          * if not in vlvf remove from vfta */
5304         if (igb_vlvf_set(adapter, vid, false, pf_id))
5305                 igb_vfta_set(hw, vid, false);
5306 }
5307
5308 static void igb_restore_vlan(struct igb_adapter *adapter)
5309 {
5310         igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5311
5312         if (adapter->vlgrp) {
5313                 u16 vid;
5314                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5315                         if (!vlan_group_get_device(adapter->vlgrp, vid))
5316                                 continue;
5317                         igb_vlan_rx_add_vid(adapter->netdev, vid);
5318                 }
5319         }
5320 }
5321
5322 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5323 {
5324         struct e1000_mac_info *mac = &adapter->hw.mac;
5325
5326         mac->autoneg = 0;
5327
5328         switch (spddplx) {
5329         case SPEED_10 + DUPLEX_HALF:
5330                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5331                 break;
5332         case SPEED_10 + DUPLEX_FULL:
5333                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5334                 break;
5335         case SPEED_100 + DUPLEX_HALF:
5336                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5337                 break;
5338         case SPEED_100 + DUPLEX_FULL:
5339                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5340                 break;
5341         case SPEED_1000 + DUPLEX_FULL:
5342                 mac->autoneg = 1;
5343                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5344                 break;
5345         case SPEED_1000 + DUPLEX_HALF: /* not supported */
5346         default:
5347                 dev_err(&adapter->pdev->dev,
5348                         "Unsupported Speed/Duplex configuration\n");
5349                 return -EINVAL;
5350         }
5351         return 0;
5352 }
5353
5354 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
5355 {
5356         struct net_device *netdev = pci_get_drvdata(pdev);
5357         struct igb_adapter *adapter = netdev_priv(netdev);
5358         struct e1000_hw *hw = &adapter->hw;
5359         u32 ctrl, rctl, status;
5360         u32 wufc = adapter->wol;
5361 #ifdef CONFIG_PM
5362         int retval = 0;
5363 #endif
5364
5365         netif_device_detach(netdev);
5366
5367         if (netif_running(netdev))
5368                 igb_close(netdev);
5369
5370         igb_reset_interrupt_capability(adapter);
5371
5372         igb_free_queues(adapter);
5373
5374 #ifdef CONFIG_PM
5375         retval = pci_save_state(pdev);
5376         if (retval)
5377                 return retval;
5378 #endif
5379
5380         status = rd32(E1000_STATUS);
5381         if (status & E1000_STATUS_LU)
5382                 wufc &= ~E1000_WUFC_LNKC;
5383
5384         if (wufc) {
5385                 igb_setup_rctl(adapter);
5386                 igb_set_rx_mode(netdev);
5387
5388                 /* turn on all-multi mode if wake on multicast is enabled */
5389                 if (wufc & E1000_WUFC_MC) {
5390                         rctl = rd32(E1000_RCTL);
5391                         rctl |= E1000_RCTL_MPE;
5392                         wr32(E1000_RCTL, rctl);
5393                 }
5394
5395                 ctrl = rd32(E1000_CTRL);
5396                 /* advertise wake from D3Cold */
5397                 #define E1000_CTRL_ADVD3WUC 0x00100000
5398                 /* phy power management enable */
5399                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5400                 ctrl |= E1000_CTRL_ADVD3WUC;
5401                 wr32(E1000_CTRL, ctrl);
5402
5403                 /* Allow time for pending master requests to run */
5404                 igb_disable_pcie_master(&adapter->hw);
5405
5406                 wr32(E1000_WUC, E1000_WUC_PME_EN);
5407                 wr32(E1000_WUFC, wufc);
5408         } else {
5409                 wr32(E1000_WUC, 0);
5410                 wr32(E1000_WUFC, 0);
5411         }
5412
5413         *enable_wake = wufc || adapter->en_mng_pt;
5414         if (!*enable_wake)
5415                 igb_shutdown_serdes_link_82575(hw);
5416
5417         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5418          * would have already happened in close and is redundant. */
5419         igb_release_hw_control(adapter);
5420
5421         pci_disable_device(pdev);
5422
5423         return 0;
5424 }
5425
5426 #ifdef CONFIG_PM
5427 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5428 {
5429         int retval;
5430         bool wake;
5431
5432         retval = __igb_shutdown(pdev, &wake);
5433         if (retval)
5434                 return retval;
5435
5436         if (wake) {
5437                 pci_prepare_to_sleep(pdev);
5438         } else {
5439                 pci_wake_from_d3(pdev, false);
5440                 pci_set_power_state(pdev, PCI_D3hot);
5441         }
5442
5443         return 0;
5444 }
5445
5446 static int igb_resume(struct pci_dev *pdev)
5447 {
5448         struct net_device *netdev = pci_get_drvdata(pdev);
5449         struct igb_adapter *adapter = netdev_priv(netdev);
5450         struct e1000_hw *hw = &adapter->hw;
5451         u32 err;
5452
5453         pci_set_power_state(pdev, PCI_D0);
5454         pci_restore_state(pdev);
5455
5456         err = pci_enable_device_mem(pdev);
5457         if (err) {
5458                 dev_err(&pdev->dev,
5459                         "igb: Cannot enable PCI device from suspend\n");
5460                 return err;
5461         }
5462         pci_set_master(pdev);
5463
5464         pci_enable_wake(pdev, PCI_D3hot, 0);
5465         pci_enable_wake(pdev, PCI_D3cold, 0);
5466
5467         igb_set_interrupt_capability(adapter);
5468
5469         if (igb_alloc_queues(adapter)) {
5470                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5471                 return -ENOMEM;
5472         }
5473
5474         /* e1000_power_up_phy(adapter); */
5475
5476         igb_reset(adapter);
5477
5478         /* let the f/w know that the h/w is now under the control of the
5479          * driver. */
5480         igb_get_hw_control(adapter);
5481
5482         wr32(E1000_WUS, ~0);
5483
5484         if (netif_running(netdev)) {
5485                 err = igb_open(netdev);
5486                 if (err)
5487                         return err;
5488         }
5489
5490         netif_device_attach(netdev);
5491
5492         return 0;
5493 }
5494 #endif
5495
5496 static void igb_shutdown(struct pci_dev *pdev)
5497 {
5498         bool wake;
5499
5500         __igb_shutdown(pdev, &wake);
5501
5502         if (system_state == SYSTEM_POWER_OFF) {
5503                 pci_wake_from_d3(pdev, wake);
5504                 pci_set_power_state(pdev, PCI_D3hot);
5505         }
5506 }
5507
5508 #ifdef CONFIG_NET_POLL_CONTROLLER
5509 /*
5510  * Polling 'interrupt' - used by things like netconsole to send skbs
5511  * without having to re-enable interrupts. It's not called while
5512  * the interrupt routine is executing.
5513  */
5514 static void igb_netpoll(struct net_device *netdev)
5515 {
5516         struct igb_adapter *adapter = netdev_priv(netdev);
5517         struct e1000_hw *hw = &adapter->hw;
5518         int i;
5519
5520         if (!adapter->msix_entries) {
5521                 igb_irq_disable(adapter);
5522                 napi_schedule(&adapter->rx_ring[0].napi);
5523                 return;
5524         }
5525
5526         for (i = 0; i < adapter->num_tx_queues; i++) {
5527                 struct igb_ring *tx_ring = &adapter->tx_ring[i];
5528                 wr32(E1000_EIMC, tx_ring->eims_value);
5529                 igb_clean_tx_irq(tx_ring);
5530                 wr32(E1000_EIMS, tx_ring->eims_value);
5531         }
5532
5533         for (i = 0; i < adapter->num_rx_queues; i++) {
5534                 struct igb_ring *rx_ring = &adapter->rx_ring[i];
5535                 wr32(E1000_EIMC, rx_ring->eims_value);
5536                 napi_schedule(&rx_ring->napi);
5537         }
5538 }
5539 #endif /* CONFIG_NET_POLL_CONTROLLER */
5540
5541 /**
5542  * igb_io_error_detected - called when PCI error is detected
5543  * @pdev: Pointer to PCI device
5544  * @state: The current pci connection state
5545  *
5546  * This function is called after a PCI bus error affecting
5547  * this device has been detected.
5548  */
5549 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5550                                               pci_channel_state_t state)
5551 {
5552         struct net_device *netdev = pci_get_drvdata(pdev);
5553         struct igb_adapter *adapter = netdev_priv(netdev);
5554
5555         netif_device_detach(netdev);
5556
5557         if (state == pci_channel_io_perm_failure)
5558                 return PCI_ERS_RESULT_DISCONNECT;
5559
5560         if (netif_running(netdev))
5561                 igb_down(adapter);
5562         pci_disable_device(pdev);
5563
5564         /* Request a slot slot reset. */
5565         return PCI_ERS_RESULT_NEED_RESET;
5566 }
5567
5568 /**
5569  * igb_io_slot_reset - called after the pci bus has been reset.
5570  * @pdev: Pointer to PCI device
5571  *
5572  * Restart the card from scratch, as if from a cold-boot. Implementation
5573  * resembles the first-half of the igb_resume routine.
5574  */
5575 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5576 {
5577         struct net_device *netdev = pci_get_drvdata(pdev);
5578         struct igb_adapter *adapter = netdev_priv(netdev);
5579         struct e1000_hw *hw = &adapter->hw;
5580         pci_ers_result_t result;
5581         int err;
5582
5583         if (pci_enable_device_mem(pdev)) {
5584                 dev_err(&pdev->dev,
5585                         "Cannot re-enable PCI device after reset.\n");
5586                 result = PCI_ERS_RESULT_DISCONNECT;
5587         } else {
5588                 pci_set_master(pdev);
5589                 pci_restore_state(pdev);
5590
5591                 pci_enable_wake(pdev, PCI_D3hot, 0);
5592                 pci_enable_wake(pdev, PCI_D3cold, 0);
5593
5594                 igb_reset(adapter);
5595                 wr32(E1000_WUS, ~0);
5596                 result = PCI_ERS_RESULT_RECOVERED;
5597         }
5598
5599         err = pci_cleanup_aer_uncorrect_error_status(pdev);
5600         if (err) {
5601                 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
5602                         "failed 0x%0x\n", err);
5603                 /* non-fatal, continue */
5604         }
5605
5606         return result;
5607 }
5608
5609 /**
5610  * igb_io_resume - called when traffic can start flowing again.
5611  * @pdev: Pointer to PCI device
5612  *
5613  * This callback is called when the error recovery driver tells us that
5614  * its OK to resume normal operation. Implementation resembles the
5615  * second-half of the igb_resume routine.
5616  */
5617 static void igb_io_resume(struct pci_dev *pdev)
5618 {
5619         struct net_device *netdev = pci_get_drvdata(pdev);
5620         struct igb_adapter *adapter = netdev_priv(netdev);
5621
5622         if (netif_running(netdev)) {
5623                 if (igb_up(adapter)) {
5624                         dev_err(&pdev->dev, "igb_up failed after reset\n");
5625                         return;
5626                 }
5627         }
5628
5629         netif_device_attach(netdev);
5630
5631         /* let the f/w know that the h/w is now under the control of the
5632          * driver. */
5633         igb_get_hw_control(adapter);
5634 }
5635
5636 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
5637                              u8 qsel)
5638 {
5639         u32 rar_low, rar_high;
5640         struct e1000_hw *hw = &adapter->hw;
5641
5642         /* HW expects these in little endian so we reverse the byte order
5643          * from network order (big endian) to little endian
5644          */
5645         rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
5646                   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
5647         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
5648
5649         /* Indicate to hardware the Address is Valid. */
5650         rar_high |= E1000_RAH_AV;
5651
5652         if (hw->mac.type == e1000_82575)
5653                 rar_high |= E1000_RAH_POOL_1 * qsel;
5654         else
5655                 rar_high |= E1000_RAH_POOL_1 << qsel;
5656
5657         wr32(E1000_RAL(index), rar_low);
5658         wrfl();
5659         wr32(E1000_RAH(index), rar_high);
5660         wrfl();
5661 }
5662
5663 static int igb_set_vf_mac(struct igb_adapter *adapter,
5664                           int vf, unsigned char *mac_addr)
5665 {
5666         struct e1000_hw *hw = &adapter->hw;
5667         /* VF MAC addresses start at end of receive addresses and moves
5668          * torwards the first, as a result a collision should not be possible */
5669         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5670
5671         memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
5672
5673         igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
5674
5675         return 0;
5676 }
5677
5678 static void igb_vmm_control(struct igb_adapter *adapter)
5679 {
5680         struct e1000_hw *hw = &adapter->hw;
5681         u32 reg_data;
5682
5683         if (!adapter->vfs_allocated_count)
5684                 return;
5685
5686         /* VF's need PF reset indication before they
5687          * can send/receive mail */
5688         reg_data = rd32(E1000_CTRL_EXT);
5689         reg_data |= E1000_CTRL_EXT_PFRSTD;
5690         wr32(E1000_CTRL_EXT, reg_data);
5691
5692         igb_vmdq_set_loopback_pf(hw, true);
5693         igb_vmdq_set_replication_pf(hw, true);
5694 }
5695
5696 /* igb_main.c */