igb: rename igb_update_mc_addr_list_82575 to not include the 82575
[safe/jmp/linux-2.6] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/pci-aspm.h>
42 #include <linux/delay.h>
43 #include <linux/interrupt.h>
44 #include <linux/if_ether.h>
45 #include <linux/aer.h>
46 #ifdef CONFIG_IGB_DCA
47 #include <linux/dca.h>
48 #endif
49 #include "igb.h"
50
51 #define DRV_VERSION "1.2.45-k2"
52 char igb_driver_name[] = "igb";
53 char igb_driver_version[] = DRV_VERSION;
54 static const char igb_driver_string[] =
55                                 "Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] = "Copyright (c) 2008 Intel Corporation.";
57
58 static const struct e1000_info *igb_info_tbl[] = {
59         [board_82575] = &e1000_82575_info,
60 };
61
62 static struct pci_device_id igb_pci_tbl[] = {
63         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
64         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
65         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
66         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
67         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
68         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
69         /* required last entry */
70         {0, }
71 };
72
73 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
74
75 void igb_reset(struct igb_adapter *);
76 static int igb_setup_all_tx_resources(struct igb_adapter *);
77 static int igb_setup_all_rx_resources(struct igb_adapter *);
78 static void igb_free_all_tx_resources(struct igb_adapter *);
79 static void igb_free_all_rx_resources(struct igb_adapter *);
80 void igb_update_stats(struct igb_adapter *);
81 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
82 static void __devexit igb_remove(struct pci_dev *pdev);
83 static int igb_sw_init(struct igb_adapter *);
84 static int igb_open(struct net_device *);
85 static int igb_close(struct net_device *);
86 static void igb_configure_tx(struct igb_adapter *);
87 static void igb_configure_rx(struct igb_adapter *);
88 static void igb_setup_rctl(struct igb_adapter *);
89 static void igb_clean_all_tx_rings(struct igb_adapter *);
90 static void igb_clean_all_rx_rings(struct igb_adapter *);
91 static void igb_clean_tx_ring(struct igb_ring *);
92 static void igb_clean_rx_ring(struct igb_ring *);
93 static void igb_set_multi(struct net_device *);
94 static void igb_update_phy_info(unsigned long);
95 static void igb_watchdog(unsigned long);
96 static void igb_watchdog_task(struct work_struct *);
97 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
98                                   struct igb_ring *);
99 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
100 static struct net_device_stats *igb_get_stats(struct net_device *);
101 static int igb_change_mtu(struct net_device *, int);
102 static int igb_set_mac(struct net_device *, void *);
103 static irqreturn_t igb_intr(int irq, void *);
104 static irqreturn_t igb_intr_msi(int irq, void *);
105 static irqreturn_t igb_msix_other(int irq, void *);
106 static irqreturn_t igb_msix_rx(int irq, void *);
107 static irqreturn_t igb_msix_tx(int irq, void *);
108 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
109 #ifdef CONFIG_IGB_DCA
110 static void igb_update_rx_dca(struct igb_ring *);
111 static void igb_update_tx_dca(struct igb_ring *);
112 static void igb_setup_dca(struct igb_adapter *);
113 #endif /* CONFIG_IGB_DCA */
114 static bool igb_clean_tx_irq(struct igb_ring *);
115 static int igb_poll(struct napi_struct *, int);
116 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
117 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
118 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
119 static void igb_tx_timeout(struct net_device *);
120 static void igb_reset_task(struct work_struct *);
121 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
122 static void igb_vlan_rx_add_vid(struct net_device *, u16);
123 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
124 static void igb_restore_vlan(struct igb_adapter *);
125
126 static int igb_suspend(struct pci_dev *, pm_message_t);
127 #ifdef CONFIG_PM
128 static int igb_resume(struct pci_dev *);
129 #endif
130 static void igb_shutdown(struct pci_dev *);
131 #ifdef CONFIG_IGB_DCA
132 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
133 static struct notifier_block dca_notifier = {
134         .notifier_call  = igb_notify_dca,
135         .next           = NULL,
136         .priority       = 0
137 };
138 #endif
139
140 #ifdef CONFIG_NET_POLL_CONTROLLER
141 /* for netdump / net console */
142 static void igb_netpoll(struct net_device *);
143 #endif
144
145 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
146                      pci_channel_state_t);
147 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
148 static void igb_io_resume(struct pci_dev *);
149
150 static struct pci_error_handlers igb_err_handler = {
151         .error_detected = igb_io_error_detected,
152         .slot_reset = igb_io_slot_reset,
153         .resume = igb_io_resume,
154 };
155
156
157 static struct pci_driver igb_driver = {
158         .name     = igb_driver_name,
159         .id_table = igb_pci_tbl,
160         .probe    = igb_probe,
161         .remove   = __devexit_p(igb_remove),
162 #ifdef CONFIG_PM
163         /* Power Managment Hooks */
164         .suspend  = igb_suspend,
165         .resume   = igb_resume,
166 #endif
167         .shutdown = igb_shutdown,
168         .err_handler = &igb_err_handler
169 };
170
171 static int global_quad_port_a; /* global quad port a indication */
172
173 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
174 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
175 MODULE_LICENSE("GPL");
176 MODULE_VERSION(DRV_VERSION);
177
178 #ifdef DEBUG
179 /**
180  * igb_get_hw_dev_name - return device name string
181  * used by hardware layer to print debugging information
182  **/
183 char *igb_get_hw_dev_name(struct e1000_hw *hw)
184 {
185         struct igb_adapter *adapter = hw->back;
186         return adapter->netdev->name;
187 }
188 #endif
189
190 /**
191  * igb_init_module - Driver Registration Routine
192  *
193  * igb_init_module is the first routine called when the driver is
194  * loaded. All it does is register with the PCI subsystem.
195  **/
196 static int __init igb_init_module(void)
197 {
198         int ret;
199         printk(KERN_INFO "%s - version %s\n",
200                igb_driver_string, igb_driver_version);
201
202         printk(KERN_INFO "%s\n", igb_copyright);
203
204         global_quad_port_a = 0;
205
206 #ifdef CONFIG_IGB_DCA
207         dca_register_notify(&dca_notifier);
208 #endif
209
210         ret = pci_register_driver(&igb_driver);
211         return ret;
212 }
213
214 module_init(igb_init_module);
215
216 /**
217  * igb_exit_module - Driver Exit Cleanup Routine
218  *
219  * igb_exit_module is called just before the driver is removed
220  * from memory.
221  **/
222 static void __exit igb_exit_module(void)
223 {
224 #ifdef CONFIG_IGB_DCA
225         dca_unregister_notify(&dca_notifier);
226 #endif
227         pci_unregister_driver(&igb_driver);
228 }
229
230 module_exit(igb_exit_module);
231
232 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
233 /**
234  * igb_cache_ring_register - Descriptor ring to register mapping
235  * @adapter: board private structure to initialize
236  *
237  * Once we know the feature-set enabled for the device, we'll cache
238  * the register offset the descriptor ring is assigned to.
239  **/
240 static void igb_cache_ring_register(struct igb_adapter *adapter)
241 {
242         int i;
243
244         switch (adapter->hw.mac.type) {
245         case e1000_82576:
246                 /* The queues are allocated for virtualization such that VF 0
247                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
248                  * In order to avoid collision we start at the first free queue
249                  * and continue consuming queues in the same sequence
250                  */
251                 for (i = 0; i < adapter->num_rx_queues; i++)
252                         adapter->rx_ring[i].reg_idx = Q_IDX_82576(i);
253                 for (i = 0; i < adapter->num_tx_queues; i++)
254                         adapter->tx_ring[i].reg_idx = Q_IDX_82576(i);
255                 break;
256         case e1000_82575:
257         default:
258                 for (i = 0; i < adapter->num_rx_queues; i++)
259                         adapter->rx_ring[i].reg_idx = i;
260                 for (i = 0; i < adapter->num_tx_queues; i++)
261                         adapter->tx_ring[i].reg_idx = i;
262                 break;
263         }
264 }
265
266 /**
267  * igb_alloc_queues - Allocate memory for all rings
268  * @adapter: board private structure to initialize
269  *
270  * We allocate one ring per queue at run-time since we don't know the
271  * number of queues at compile-time.
272  **/
273 static int igb_alloc_queues(struct igb_adapter *adapter)
274 {
275         int i;
276
277         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
278                                    sizeof(struct igb_ring), GFP_KERNEL);
279         if (!adapter->tx_ring)
280                 return -ENOMEM;
281
282         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
283                                    sizeof(struct igb_ring), GFP_KERNEL);
284         if (!adapter->rx_ring) {
285                 kfree(adapter->tx_ring);
286                 return -ENOMEM;
287         }
288
289         adapter->rx_ring->buddy = adapter->tx_ring;
290
291         for (i = 0; i < adapter->num_tx_queues; i++) {
292                 struct igb_ring *ring = &(adapter->tx_ring[i]);
293                 ring->count = adapter->tx_ring_count;
294                 ring->adapter = adapter;
295                 ring->queue_index = i;
296         }
297         for (i = 0; i < adapter->num_rx_queues; i++) {
298                 struct igb_ring *ring = &(adapter->rx_ring[i]);
299                 ring->count = adapter->rx_ring_count;
300                 ring->adapter = adapter;
301                 ring->queue_index = i;
302                 ring->itr_register = E1000_ITR;
303
304                 /* set a default napi handler for each rx_ring */
305                 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
306         }
307
308         igb_cache_ring_register(adapter);
309         return 0;
310 }
311
312 static void igb_free_queues(struct igb_adapter *adapter)
313 {
314         int i;
315
316         for (i = 0; i < adapter->num_rx_queues; i++)
317                 netif_napi_del(&adapter->rx_ring[i].napi);
318
319         kfree(adapter->tx_ring);
320         kfree(adapter->rx_ring);
321 }
322
323 #define IGB_N0_QUEUE -1
324 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
325                               int tx_queue, int msix_vector)
326 {
327         u32 msixbm = 0;
328         struct e1000_hw *hw = &adapter->hw;
329         u32 ivar, index;
330
331         switch (hw->mac.type) {
332         case e1000_82575:
333                 /* The 82575 assigns vectors using a bitmask, which matches the
334                    bitmask for the EICR/EIMS/EIMC registers.  To assign one
335                    or more queues to a vector, we write the appropriate bits
336                    into the MSIXBM register for that vector. */
337                 if (rx_queue > IGB_N0_QUEUE) {
338                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
339                         adapter->rx_ring[rx_queue].eims_value = msixbm;
340                 }
341                 if (tx_queue > IGB_N0_QUEUE) {
342                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
343                         adapter->tx_ring[tx_queue].eims_value =
344                                   E1000_EICR_TX_QUEUE0 << tx_queue;
345                 }
346                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
347                 break;
348         case e1000_82576:
349                 /* 82576 uses a table-based method for assigning vectors.
350                    Each queue has a single entry in the table to which we write
351                    a vector number along with a "valid" bit.  Sadly, the layout
352                    of the table is somewhat counterintuitive. */
353                 if (rx_queue > IGB_N0_QUEUE) {
354                         index = (rx_queue >> 1);
355                         ivar = array_rd32(E1000_IVAR0, index);
356                         if (rx_queue & 0x1) {
357                                 /* vector goes into third byte of register */
358                                 ivar = ivar & 0xFF00FFFF;
359                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
360                         } else {
361                                 /* vector goes into low byte of register */
362                                 ivar = ivar & 0xFFFFFF00;
363                                 ivar |= msix_vector | E1000_IVAR_VALID;
364                         }
365                         adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
366                         array_wr32(E1000_IVAR0, index, ivar);
367                 }
368                 if (tx_queue > IGB_N0_QUEUE) {
369                         index = (tx_queue >> 1);
370                         ivar = array_rd32(E1000_IVAR0, index);
371                         if (tx_queue & 0x1) {
372                                 /* vector goes into high byte of register */
373                                 ivar = ivar & 0x00FFFFFF;
374                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
375                         } else {
376                                 /* vector goes into second byte of register */
377                                 ivar = ivar & 0xFFFF00FF;
378                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
379                         }
380                         adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
381                         array_wr32(E1000_IVAR0, index, ivar);
382                 }
383                 break;
384         default:
385                 BUG();
386                 break;
387         }
388 }
389
390 /**
391  * igb_configure_msix - Configure MSI-X hardware
392  *
393  * igb_configure_msix sets up the hardware to properly
394  * generate MSI-X interrupts.
395  **/
396 static void igb_configure_msix(struct igb_adapter *adapter)
397 {
398         u32 tmp;
399         int i, vector = 0;
400         struct e1000_hw *hw = &adapter->hw;
401
402         adapter->eims_enable_mask = 0;
403         if (hw->mac.type == e1000_82576)
404                 /* Turn on MSI-X capability first, or our settings
405                  * won't stick.  And it will take days to debug. */
406                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
407                                    E1000_GPIE_PBA | E1000_GPIE_EIAME |
408                                    E1000_GPIE_NSICR);
409
410         for (i = 0; i < adapter->num_tx_queues; i++) {
411                 struct igb_ring *tx_ring = &adapter->tx_ring[i];
412                 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
413                 adapter->eims_enable_mask |= tx_ring->eims_value;
414                 if (tx_ring->itr_val)
415                         writel(tx_ring->itr_val,
416                                hw->hw_addr + tx_ring->itr_register);
417                 else
418                         writel(1, hw->hw_addr + tx_ring->itr_register);
419         }
420
421         for (i = 0; i < adapter->num_rx_queues; i++) {
422                 struct igb_ring *rx_ring = &adapter->rx_ring[i];
423                 rx_ring->buddy = NULL;
424                 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
425                 adapter->eims_enable_mask |= rx_ring->eims_value;
426                 if (rx_ring->itr_val)
427                         writel(rx_ring->itr_val,
428                                hw->hw_addr + rx_ring->itr_register);
429                 else
430                         writel(1, hw->hw_addr + rx_ring->itr_register);
431         }
432
433
434         /* set vector for other causes, i.e. link changes */
435         switch (hw->mac.type) {
436         case e1000_82575:
437                 array_wr32(E1000_MSIXBM(0), vector++,
438                                       E1000_EIMS_OTHER);
439
440                 tmp = rd32(E1000_CTRL_EXT);
441                 /* enable MSI-X PBA support*/
442                 tmp |= E1000_CTRL_EXT_PBA_CLR;
443
444                 /* Auto-Mask interrupts upon ICR read. */
445                 tmp |= E1000_CTRL_EXT_EIAME;
446                 tmp |= E1000_CTRL_EXT_IRCA;
447
448                 wr32(E1000_CTRL_EXT, tmp);
449                 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
450                 adapter->eims_other = E1000_EIMS_OTHER;
451
452                 break;
453
454         case e1000_82576:
455                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
456                 wr32(E1000_IVAR_MISC, tmp);
457
458                 adapter->eims_enable_mask = (1 << (vector)) - 1;
459                 adapter->eims_other = 1 << (vector - 1);
460                 break;
461         default:
462                 /* do nothing, since nothing else supports MSI-X */
463                 break;
464         } /* switch (hw->mac.type) */
465         wrfl();
466 }
467
468 /**
469  * igb_request_msix - Initialize MSI-X interrupts
470  *
471  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
472  * kernel.
473  **/
474 static int igb_request_msix(struct igb_adapter *adapter)
475 {
476         struct net_device *netdev = adapter->netdev;
477         int i, err = 0, vector = 0;
478
479         vector = 0;
480
481         for (i = 0; i < adapter->num_tx_queues; i++) {
482                 struct igb_ring *ring = &(adapter->tx_ring[i]);
483                 sprintf(ring->name, "%s-tx-%d", netdev->name, i);
484                 err = request_irq(adapter->msix_entries[vector].vector,
485                                   &igb_msix_tx, 0, ring->name,
486                                   &(adapter->tx_ring[i]));
487                 if (err)
488                         goto out;
489                 ring->itr_register = E1000_EITR(0) + (vector << 2);
490                 ring->itr_val = 976; /* ~4000 ints/sec */
491                 vector++;
492         }
493         for (i = 0; i < adapter->num_rx_queues; i++) {
494                 struct igb_ring *ring = &(adapter->rx_ring[i]);
495                 if (strlen(netdev->name) < (IFNAMSIZ - 5))
496                         sprintf(ring->name, "%s-rx-%d", netdev->name, i);
497                 else
498                         memcpy(ring->name, netdev->name, IFNAMSIZ);
499                 err = request_irq(adapter->msix_entries[vector].vector,
500                                   &igb_msix_rx, 0, ring->name,
501                                   &(adapter->rx_ring[i]));
502                 if (err)
503                         goto out;
504                 ring->itr_register = E1000_EITR(0) + (vector << 2);
505                 ring->itr_val = adapter->itr;
506                 /* overwrite the poll routine for MSIX, we've already done
507                  * netif_napi_add */
508                 ring->napi.poll = &igb_clean_rx_ring_msix;
509                 vector++;
510         }
511
512         err = request_irq(adapter->msix_entries[vector].vector,
513                           &igb_msix_other, 0, netdev->name, netdev);
514         if (err)
515                 goto out;
516
517         igb_configure_msix(adapter);
518         return 0;
519 out:
520         return err;
521 }
522
523 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
524 {
525         if (adapter->msix_entries) {
526                 pci_disable_msix(adapter->pdev);
527                 kfree(adapter->msix_entries);
528                 adapter->msix_entries = NULL;
529         } else if (adapter->flags & IGB_FLAG_HAS_MSI)
530                 pci_disable_msi(adapter->pdev);
531         return;
532 }
533
534
535 /**
536  * igb_set_interrupt_capability - set MSI or MSI-X if supported
537  *
538  * Attempt to configure interrupts using the best available
539  * capabilities of the hardware and kernel.
540  **/
541 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
542 {
543         int err;
544         int numvecs, i;
545
546         /* Number of supported queues. */
547         /* Having more queues than CPUs doesn't make sense. */
548         adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
549         adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
550
551         numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
552         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
553                                         GFP_KERNEL);
554         if (!adapter->msix_entries)
555                 goto msi_only;
556
557         for (i = 0; i < numvecs; i++)
558                 adapter->msix_entries[i].entry = i;
559
560         err = pci_enable_msix(adapter->pdev,
561                               adapter->msix_entries,
562                               numvecs);
563         if (err == 0)
564                 goto out;
565
566         igb_reset_interrupt_capability(adapter);
567
568         /* If we can't do MSI-X, try MSI */
569 msi_only:
570         adapter->num_rx_queues = 1;
571         adapter->num_tx_queues = 1;
572         if (!pci_enable_msi(adapter->pdev))
573                 adapter->flags |= IGB_FLAG_HAS_MSI;
574 out:
575         /* Notify the stack of the (possibly) reduced Tx Queue count. */
576         adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
577         return;
578 }
579
580 /**
581  * igb_request_irq - initialize interrupts
582  *
583  * Attempts to configure interrupts using the best available
584  * capabilities of the hardware and kernel.
585  **/
586 static int igb_request_irq(struct igb_adapter *adapter)
587 {
588         struct net_device *netdev = adapter->netdev;
589         struct e1000_hw *hw = &adapter->hw;
590         int err = 0;
591
592         if (adapter->msix_entries) {
593                 err = igb_request_msix(adapter);
594                 if (!err)
595                         goto request_done;
596                 /* fall back to MSI */
597                 igb_reset_interrupt_capability(adapter);
598                 if (!pci_enable_msi(adapter->pdev))
599                         adapter->flags |= IGB_FLAG_HAS_MSI;
600                 igb_free_all_tx_resources(adapter);
601                 igb_free_all_rx_resources(adapter);
602                 adapter->num_rx_queues = 1;
603                 igb_alloc_queues(adapter);
604         } else {
605                 switch (hw->mac.type) {
606                 case e1000_82575:
607                         wr32(E1000_MSIXBM(0),
608                              (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
609                         break;
610                 case e1000_82576:
611                         wr32(E1000_IVAR0, E1000_IVAR_VALID);
612                         break;
613                 default:
614                         break;
615                 }
616         }
617
618         if (adapter->flags & IGB_FLAG_HAS_MSI) {
619                 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
620                                   netdev->name, netdev);
621                 if (!err)
622                         goto request_done;
623                 /* fall back to legacy interrupts */
624                 igb_reset_interrupt_capability(adapter);
625                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
626         }
627
628         err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
629                           netdev->name, netdev);
630
631         if (err)
632                 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
633                         err);
634
635 request_done:
636         return err;
637 }
638
639 static void igb_free_irq(struct igb_adapter *adapter)
640 {
641         struct net_device *netdev = adapter->netdev;
642
643         if (adapter->msix_entries) {
644                 int vector = 0, i;
645
646                 for (i = 0; i < adapter->num_tx_queues; i++)
647                         free_irq(adapter->msix_entries[vector++].vector,
648                                 &(adapter->tx_ring[i]));
649                 for (i = 0; i < adapter->num_rx_queues; i++)
650                         free_irq(adapter->msix_entries[vector++].vector,
651                                 &(adapter->rx_ring[i]));
652
653                 free_irq(adapter->msix_entries[vector++].vector, netdev);
654                 return;
655         }
656
657         free_irq(adapter->pdev->irq, netdev);
658 }
659
660 /**
661  * igb_irq_disable - Mask off interrupt generation on the NIC
662  * @adapter: board private structure
663  **/
664 static void igb_irq_disable(struct igb_adapter *adapter)
665 {
666         struct e1000_hw *hw = &adapter->hw;
667
668         if (adapter->msix_entries) {
669                 wr32(E1000_EIAM, 0);
670                 wr32(E1000_EIMC, ~0);
671                 wr32(E1000_EIAC, 0);
672         }
673
674         wr32(E1000_IAM, 0);
675         wr32(E1000_IMC, ~0);
676         wrfl();
677         synchronize_irq(adapter->pdev->irq);
678 }
679
680 /**
681  * igb_irq_enable - Enable default interrupt generation settings
682  * @adapter: board private structure
683  **/
684 static void igb_irq_enable(struct igb_adapter *adapter)
685 {
686         struct e1000_hw *hw = &adapter->hw;
687
688         if (adapter->msix_entries) {
689                 wr32(E1000_EIAC, adapter->eims_enable_mask);
690                 wr32(E1000_EIAM, adapter->eims_enable_mask);
691                 wr32(E1000_EIMS, adapter->eims_enable_mask);
692                 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
693         } else {
694                 wr32(E1000_IMS, IMS_ENABLE_MASK);
695                 wr32(E1000_IAM, IMS_ENABLE_MASK);
696         }
697 }
698
699 static void igb_update_mng_vlan(struct igb_adapter *adapter)
700 {
701         struct net_device *netdev = adapter->netdev;
702         u16 vid = adapter->hw.mng_cookie.vlan_id;
703         u16 old_vid = adapter->mng_vlan_id;
704         if (adapter->vlgrp) {
705                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
706                         if (adapter->hw.mng_cookie.status &
707                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
708                                 igb_vlan_rx_add_vid(netdev, vid);
709                                 adapter->mng_vlan_id = vid;
710                         } else
711                                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
712
713                         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
714                                         (vid != old_vid) &&
715                             !vlan_group_get_device(adapter->vlgrp, old_vid))
716                                 igb_vlan_rx_kill_vid(netdev, old_vid);
717                 } else
718                         adapter->mng_vlan_id = vid;
719         }
720 }
721
722 /**
723  * igb_release_hw_control - release control of the h/w to f/w
724  * @adapter: address of board private structure
725  *
726  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
727  * For ASF and Pass Through versions of f/w this means that the
728  * driver is no longer loaded.
729  *
730  **/
731 static void igb_release_hw_control(struct igb_adapter *adapter)
732 {
733         struct e1000_hw *hw = &adapter->hw;
734         u32 ctrl_ext;
735
736         /* Let firmware take over control of h/w */
737         ctrl_ext = rd32(E1000_CTRL_EXT);
738         wr32(E1000_CTRL_EXT,
739                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
740 }
741
742
743 /**
744  * igb_get_hw_control - get control of the h/w from f/w
745  * @adapter: address of board private structure
746  *
747  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
748  * For ASF and Pass Through versions of f/w this means that
749  * the driver is loaded.
750  *
751  **/
752 static void igb_get_hw_control(struct igb_adapter *adapter)
753 {
754         struct e1000_hw *hw = &adapter->hw;
755         u32 ctrl_ext;
756
757         /* Let firmware know the driver has taken over */
758         ctrl_ext = rd32(E1000_CTRL_EXT);
759         wr32(E1000_CTRL_EXT,
760                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
761 }
762
763 /**
764  * igb_configure - configure the hardware for RX and TX
765  * @adapter: private board structure
766  **/
767 static void igb_configure(struct igb_adapter *adapter)
768 {
769         struct net_device *netdev = adapter->netdev;
770         int i;
771
772         igb_get_hw_control(adapter);
773         igb_set_multi(netdev);
774
775         igb_restore_vlan(adapter);
776
777         igb_configure_tx(adapter);
778         igb_setup_rctl(adapter);
779         igb_configure_rx(adapter);
780
781         igb_rx_fifo_flush_82575(&adapter->hw);
782
783         /* call IGB_DESC_UNUSED which always leaves
784          * at least 1 descriptor unused to make sure
785          * next_to_use != next_to_clean */
786         for (i = 0; i < adapter->num_rx_queues; i++) {
787                 struct igb_ring *ring = &adapter->rx_ring[i];
788                 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
789         }
790
791
792         adapter->tx_queue_len = netdev->tx_queue_len;
793 }
794
795
796 /**
797  * igb_up - Open the interface and prepare it to handle traffic
798  * @adapter: board private structure
799  **/
800
801 int igb_up(struct igb_adapter *adapter)
802 {
803         struct e1000_hw *hw = &adapter->hw;
804         int i;
805
806         /* hardware has been reset, we need to reload some things */
807         igb_configure(adapter);
808
809         clear_bit(__IGB_DOWN, &adapter->state);
810
811         for (i = 0; i < adapter->num_rx_queues; i++)
812                 napi_enable(&adapter->rx_ring[i].napi);
813         if (adapter->msix_entries)
814                 igb_configure_msix(adapter);
815
816         /* Clear any pending interrupts. */
817         rd32(E1000_ICR);
818         igb_irq_enable(adapter);
819
820         /* Fire a link change interrupt to start the watchdog. */
821         wr32(E1000_ICS, E1000_ICS_LSC);
822         return 0;
823 }
824
825 void igb_down(struct igb_adapter *adapter)
826 {
827         struct e1000_hw *hw = &adapter->hw;
828         struct net_device *netdev = adapter->netdev;
829         u32 tctl, rctl;
830         int i;
831
832         /* signal that we're down so the interrupt handler does not
833          * reschedule our watchdog timer */
834         set_bit(__IGB_DOWN, &adapter->state);
835
836         /* disable receives in the hardware */
837         rctl = rd32(E1000_RCTL);
838         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
839         /* flush and sleep below */
840
841         netif_tx_stop_all_queues(netdev);
842
843         /* disable transmits in the hardware */
844         tctl = rd32(E1000_TCTL);
845         tctl &= ~E1000_TCTL_EN;
846         wr32(E1000_TCTL, tctl);
847         /* flush both disables and wait for them to finish */
848         wrfl();
849         msleep(10);
850
851         for (i = 0; i < adapter->num_rx_queues; i++)
852                 napi_disable(&adapter->rx_ring[i].napi);
853
854         igb_irq_disable(adapter);
855
856         del_timer_sync(&adapter->watchdog_timer);
857         del_timer_sync(&adapter->phy_info_timer);
858
859         netdev->tx_queue_len = adapter->tx_queue_len;
860         netif_carrier_off(netdev);
861         adapter->link_speed = 0;
862         adapter->link_duplex = 0;
863
864         if (!pci_channel_offline(adapter->pdev))
865                 igb_reset(adapter);
866         igb_clean_all_tx_rings(adapter);
867         igb_clean_all_rx_rings(adapter);
868 }
869
870 void igb_reinit_locked(struct igb_adapter *adapter)
871 {
872         WARN_ON(in_interrupt());
873         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
874                 msleep(1);
875         igb_down(adapter);
876         igb_up(adapter);
877         clear_bit(__IGB_RESETTING, &adapter->state);
878 }
879
880 void igb_reset(struct igb_adapter *adapter)
881 {
882         struct e1000_hw *hw = &adapter->hw;
883         struct e1000_mac_info *mac = &hw->mac;
884         struct e1000_fc_info *fc = &hw->fc;
885         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
886         u16 hwm;
887
888         /* Repartition Pba for greater than 9k mtu
889          * To take effect CTRL.RST is required.
890          */
891         if (mac->type != e1000_82576) {
892         pba = E1000_PBA_34K;
893         }
894         else {
895                 pba = E1000_PBA_64K;
896         }
897
898         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
899             (mac->type < e1000_82576)) {
900                 /* adjust PBA for jumbo frames */
901                 wr32(E1000_PBA, pba);
902
903                 /* To maintain wire speed transmits, the Tx FIFO should be
904                  * large enough to accommodate two full transmit packets,
905                  * rounded up to the next 1KB and expressed in KB.  Likewise,
906                  * the Rx FIFO should be large enough to accommodate at least
907                  * one full receive packet and is similarly rounded up and
908                  * expressed in KB. */
909                 pba = rd32(E1000_PBA);
910                 /* upper 16 bits has Tx packet buffer allocation size in KB */
911                 tx_space = pba >> 16;
912                 /* lower 16 bits has Rx packet buffer allocation size in KB */
913                 pba &= 0xffff;
914                 /* the tx fifo also stores 16 bytes of information about the tx
915                  * but don't include ethernet FCS because hardware appends it */
916                 min_tx_space = (adapter->max_frame_size +
917                                 sizeof(struct e1000_tx_desc) -
918                                 ETH_FCS_LEN) * 2;
919                 min_tx_space = ALIGN(min_tx_space, 1024);
920                 min_tx_space >>= 10;
921                 /* software strips receive CRC, so leave room for it */
922                 min_rx_space = adapter->max_frame_size;
923                 min_rx_space = ALIGN(min_rx_space, 1024);
924                 min_rx_space >>= 10;
925
926                 /* If current Tx allocation is less than the min Tx FIFO size,
927                  * and the min Tx FIFO size is less than the current Rx FIFO
928                  * allocation, take space away from current Rx allocation */
929                 if (tx_space < min_tx_space &&
930                     ((min_tx_space - tx_space) < pba)) {
931                         pba = pba - (min_tx_space - tx_space);
932
933                         /* if short on rx space, rx wins and must trump tx
934                          * adjustment */
935                         if (pba < min_rx_space)
936                                 pba = min_rx_space;
937                 }
938                 wr32(E1000_PBA, pba);
939         }
940
941         /* flow control settings */
942         /* The high water mark must be low enough to fit one full frame
943          * (or the size used for early receive) above it in the Rx FIFO.
944          * Set it to the lower of:
945          * - 90% of the Rx FIFO size, or
946          * - the full Rx FIFO size minus one full frame */
947         hwm = min(((pba << 10) * 9 / 10),
948                         ((pba << 10) - 2 * adapter->max_frame_size));
949
950         if (mac->type < e1000_82576) {
951                 fc->high_water = hwm & 0xFFF8;  /* 8-byte granularity */
952                 fc->low_water = fc->high_water - 8;
953         } else {
954                 fc->high_water = hwm & 0xFFF0;  /* 16-byte granularity */
955                 fc->low_water = fc->high_water - 16;
956         }
957         fc->pause_time = 0xFFFF;
958         fc->send_xon = 1;
959         fc->type = fc->original_type;
960
961         /* Allow time for pending master requests to run */
962         adapter->hw.mac.ops.reset_hw(&adapter->hw);
963         wr32(E1000_WUC, 0);
964
965         if (adapter->hw.mac.ops.init_hw(&adapter->hw))
966                 dev_err(&adapter->pdev->dev, "Hardware Error\n");
967
968         igb_update_mng_vlan(adapter);
969
970         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
971         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
972
973         igb_reset_adaptive(&adapter->hw);
974         igb_get_phy_info(&adapter->hw);
975 }
976
977 static const struct net_device_ops igb_netdev_ops = {
978         .ndo_open               = igb_open,
979         .ndo_stop               = igb_close,
980         .ndo_start_xmit         = igb_xmit_frame_adv,
981         .ndo_get_stats          = igb_get_stats,
982         .ndo_set_multicast_list = igb_set_multi,
983         .ndo_set_mac_address    = igb_set_mac,
984         .ndo_change_mtu         = igb_change_mtu,
985         .ndo_do_ioctl           = igb_ioctl,
986         .ndo_tx_timeout         = igb_tx_timeout,
987         .ndo_validate_addr      = eth_validate_addr,
988         .ndo_vlan_rx_register   = igb_vlan_rx_register,
989         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
990         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
991 #ifdef CONFIG_NET_POLL_CONTROLLER
992         .ndo_poll_controller    = igb_netpoll,
993 #endif
994 };
995
996 /**
997  * igb_probe - Device Initialization Routine
998  * @pdev: PCI device information struct
999  * @ent: entry in igb_pci_tbl
1000  *
1001  * Returns 0 on success, negative on failure
1002  *
1003  * igb_probe initializes an adapter identified by a pci_dev structure.
1004  * The OS initialization, configuring of the adapter private structure,
1005  * and a hardware reset occur.
1006  **/
1007 static int __devinit igb_probe(struct pci_dev *pdev,
1008                                const struct pci_device_id *ent)
1009 {
1010         struct net_device *netdev;
1011         struct igb_adapter *adapter;
1012         struct e1000_hw *hw;
1013         struct pci_dev *us_dev;
1014         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1015         unsigned long mmio_start, mmio_len;
1016         int i, err, pci_using_dac, pos;
1017         u16 eeprom_data = 0, state = 0;
1018         u16 eeprom_apme_mask = IGB_EEPROM_APME;
1019         u32 part_num;
1020
1021         err = pci_enable_device_mem(pdev);
1022         if (err)
1023                 return err;
1024
1025         pci_using_dac = 0;
1026         err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1027         if (!err) {
1028                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1029                 if (!err)
1030                         pci_using_dac = 1;
1031         } else {
1032                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1033                 if (err) {
1034                         err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1035                         if (err) {
1036                                 dev_err(&pdev->dev, "No usable DMA "
1037                                         "configuration, aborting\n");
1038                                 goto err_dma;
1039                         }
1040                 }
1041         }
1042
1043         /* 82575 requires that the pci-e link partner disable the L0s state */
1044         switch (pdev->device) {
1045         case E1000_DEV_ID_82575EB_COPPER:
1046         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1047         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1048                 us_dev = pdev->bus->self;
1049                 pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
1050                 if (pos) {
1051                         pci_read_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1052                                              &state);
1053                         state &= ~PCIE_LINK_STATE_L0S;
1054                         pci_write_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1055                                               state);
1056                         dev_info(&pdev->dev,
1057                                  "Disabling ASPM L0s upstream switch port %s\n",
1058                                  pci_name(us_dev));
1059                 }
1060         default:
1061                 break;
1062         }
1063
1064         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1065                                            IORESOURCE_MEM),
1066                                            igb_driver_name);
1067         if (err)
1068                 goto err_pci_reg;
1069
1070         err = pci_enable_pcie_error_reporting(pdev);
1071         if (err) {
1072                 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
1073                         "0x%x\n", err);
1074                 /* non-fatal, continue */
1075         }
1076
1077         pci_set_master(pdev);
1078         pci_save_state(pdev);
1079
1080         err = -ENOMEM;
1081         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES);
1082         if (!netdev)
1083                 goto err_alloc_etherdev;
1084
1085         SET_NETDEV_DEV(netdev, &pdev->dev);
1086
1087         pci_set_drvdata(pdev, netdev);
1088         adapter = netdev_priv(netdev);
1089         adapter->netdev = netdev;
1090         adapter->pdev = pdev;
1091         hw = &adapter->hw;
1092         hw->back = adapter;
1093         adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1094
1095         mmio_start = pci_resource_start(pdev, 0);
1096         mmio_len = pci_resource_len(pdev, 0);
1097
1098         err = -EIO;
1099         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
1100         if (!adapter->hw.hw_addr)
1101                 goto err_ioremap;
1102
1103         netdev->netdev_ops = &igb_netdev_ops;
1104         igb_set_ethtool_ops(netdev);
1105         netdev->watchdog_timeo = 5 * HZ;
1106
1107         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1108
1109         netdev->mem_start = mmio_start;
1110         netdev->mem_end = mmio_start + mmio_len;
1111
1112         /* PCI config space info */
1113         hw->vendor_id = pdev->vendor;
1114         hw->device_id = pdev->device;
1115         hw->revision_id = pdev->revision;
1116         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1117         hw->subsystem_device_id = pdev->subsystem_device;
1118
1119         /* setup the private structure */
1120         hw->back = adapter;
1121         /* Copy the default MAC, PHY and NVM function pointers */
1122         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1123         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1124         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1125         /* Initialize skew-specific constants */
1126         err = ei->get_invariants(hw);
1127         if (err)
1128                 goto err_hw_init;
1129
1130         err = igb_sw_init(adapter);
1131         if (err)
1132                 goto err_sw_init;
1133
1134         igb_get_bus_info_pcie(hw);
1135
1136         /* set flags */
1137         switch (hw->mac.type) {
1138         case e1000_82575:
1139                 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1140                 break;
1141         case e1000_82576:
1142         default:
1143                 break;
1144         }
1145
1146         hw->phy.autoneg_wait_to_complete = false;
1147         hw->mac.adaptive_ifs = true;
1148
1149         /* Copper options */
1150         if (hw->phy.media_type == e1000_media_type_copper) {
1151                 hw->phy.mdix = AUTO_ALL_MODES;
1152                 hw->phy.disable_polarity_correction = false;
1153                 hw->phy.ms_type = e1000_ms_hw_default;
1154         }
1155
1156         if (igb_check_reset_block(hw))
1157                 dev_info(&pdev->dev,
1158                         "PHY reset is blocked due to SOL/IDER session.\n");
1159
1160         netdev->features = NETIF_F_SG |
1161                            NETIF_F_IP_CSUM |
1162                            NETIF_F_HW_VLAN_TX |
1163                            NETIF_F_HW_VLAN_RX |
1164                            NETIF_F_HW_VLAN_FILTER;
1165
1166         netdev->features |= NETIF_F_IPV6_CSUM;
1167         netdev->features |= NETIF_F_TSO;
1168         netdev->features |= NETIF_F_TSO6;
1169
1170 #ifdef CONFIG_IGB_LRO
1171         netdev->features |= NETIF_F_GRO;
1172 #endif
1173
1174         netdev->vlan_features |= NETIF_F_TSO;
1175         netdev->vlan_features |= NETIF_F_TSO6;
1176         netdev->vlan_features |= NETIF_F_IP_CSUM;
1177         netdev->vlan_features |= NETIF_F_SG;
1178
1179         if (pci_using_dac)
1180                 netdev->features |= NETIF_F_HIGHDMA;
1181
1182         adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1183
1184         /* before reading the NVM, reset the controller to put the device in a
1185          * known good starting state */
1186         hw->mac.ops.reset_hw(hw);
1187
1188         /* make sure the NVM is good */
1189         if (igb_validate_nvm_checksum(hw) < 0) {
1190                 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1191                 err = -EIO;
1192                 goto err_eeprom;
1193         }
1194
1195         /* copy the MAC address out of the NVM */
1196         if (hw->mac.ops.read_mac_addr(hw))
1197                 dev_err(&pdev->dev, "NVM Read Error\n");
1198
1199         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1200         memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1201
1202         if (!is_valid_ether_addr(netdev->perm_addr)) {
1203                 dev_err(&pdev->dev, "Invalid MAC Address\n");
1204                 err = -EIO;
1205                 goto err_eeprom;
1206         }
1207
1208         init_timer(&adapter->watchdog_timer);
1209         adapter->watchdog_timer.function = &igb_watchdog;
1210         adapter->watchdog_timer.data = (unsigned long) adapter;
1211
1212         init_timer(&adapter->phy_info_timer);
1213         adapter->phy_info_timer.function = &igb_update_phy_info;
1214         adapter->phy_info_timer.data = (unsigned long) adapter;
1215
1216         INIT_WORK(&adapter->reset_task, igb_reset_task);
1217         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1218
1219         /* Initialize link & ring properties that are user-changeable */
1220         adapter->tx_ring->count = 256;
1221         for (i = 0; i < adapter->num_tx_queues; i++)
1222                 adapter->tx_ring[i].count = adapter->tx_ring->count;
1223         adapter->rx_ring->count = 256;
1224         for (i = 0; i < adapter->num_rx_queues; i++)
1225                 adapter->rx_ring[i].count = adapter->rx_ring->count;
1226
1227         adapter->fc_autoneg = true;
1228         hw->mac.autoneg = true;
1229         hw->phy.autoneg_advertised = 0x2f;
1230
1231         hw->fc.original_type = e1000_fc_default;
1232         hw->fc.type = e1000_fc_default;
1233
1234         adapter->itr_setting = 3;
1235         adapter->itr = IGB_START_ITR;
1236
1237         igb_validate_mdi_setting(hw);
1238
1239         adapter->rx_csum = 1;
1240
1241         /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1242          * enable the ACPI Magic Packet filter
1243          */
1244
1245         if (hw->bus.func == 0 ||
1246             hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1247                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1248
1249         if (eeprom_data & eeprom_apme_mask)
1250                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1251
1252         /* now that we have the eeprom settings, apply the special cases where
1253          * the eeprom may be wrong or the board simply won't support wake on
1254          * lan on a particular port */
1255         switch (pdev->device) {
1256         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1257                 adapter->eeprom_wol = 0;
1258                 break;
1259         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1260         case E1000_DEV_ID_82576_FIBER:
1261         case E1000_DEV_ID_82576_SERDES:
1262                 /* Wake events only supported on port A for dual fiber
1263                  * regardless of eeprom setting */
1264                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1265                         adapter->eeprom_wol = 0;
1266                 break;
1267         }
1268
1269         /* initialize the wol settings based on the eeprom settings */
1270         adapter->wol = adapter->eeprom_wol;
1271         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1272
1273         /* reset the hardware with the new settings */
1274         igb_reset(adapter);
1275
1276         /* let the f/w know that the h/w is now under the control of the
1277          * driver. */
1278         igb_get_hw_control(adapter);
1279
1280         /* tell the stack to leave us alone until igb_open() is called */
1281         netif_carrier_off(netdev);
1282         netif_tx_stop_all_queues(netdev);
1283
1284         strcpy(netdev->name, "eth%d");
1285         err = register_netdev(netdev);
1286         if (err)
1287                 goto err_register;
1288
1289 #ifdef CONFIG_IGB_DCA
1290         if (dca_add_requester(&pdev->dev) == 0) {
1291                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1292                 dev_info(&pdev->dev, "DCA enabled\n");
1293                 /* Always use CB2 mode, difference is masked
1294                  * in the CB driver. */
1295                 wr32(E1000_DCA_CTRL, 2);
1296                 igb_setup_dca(adapter);
1297         }
1298 #endif
1299
1300         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1301         /* print bus type/speed/width info */
1302         dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1303                  netdev->name,
1304                  ((hw->bus.speed == e1000_bus_speed_2500)
1305                   ? "2.5Gb/s" : "unknown"),
1306                  ((hw->bus.width == e1000_bus_width_pcie_x4)
1307                   ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1308                   ? "Width x1" : "unknown"),
1309                  netdev->dev_addr);
1310
1311         igb_read_part_num(hw, &part_num);
1312         dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1313                 (part_num >> 8), (part_num & 0xff));
1314
1315         dev_info(&pdev->dev,
1316                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1317                 adapter->msix_entries ? "MSI-X" :
1318                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1319                 adapter->num_rx_queues, adapter->num_tx_queues);
1320
1321         return 0;
1322
1323 err_register:
1324         igb_release_hw_control(adapter);
1325 err_eeprom:
1326         if (!igb_check_reset_block(hw))
1327                 igb_reset_phy(hw);
1328
1329         if (hw->flash_address)
1330                 iounmap(hw->flash_address);
1331
1332         igb_free_queues(adapter);
1333 err_sw_init:
1334 err_hw_init:
1335         iounmap(hw->hw_addr);
1336 err_ioremap:
1337         free_netdev(netdev);
1338 err_alloc_etherdev:
1339         pci_release_selected_regions(pdev, pci_select_bars(pdev,
1340                                      IORESOURCE_MEM));
1341 err_pci_reg:
1342 err_dma:
1343         pci_disable_device(pdev);
1344         return err;
1345 }
1346
1347 /**
1348  * igb_remove - Device Removal Routine
1349  * @pdev: PCI device information struct
1350  *
1351  * igb_remove is called by the PCI subsystem to alert the driver
1352  * that it should release a PCI device.  The could be caused by a
1353  * Hot-Plug event, or because the driver is going to be removed from
1354  * memory.
1355  **/
1356 static void __devexit igb_remove(struct pci_dev *pdev)
1357 {
1358         struct net_device *netdev = pci_get_drvdata(pdev);
1359         struct igb_adapter *adapter = netdev_priv(netdev);
1360 #ifdef CONFIG_IGB_DCA
1361         struct e1000_hw *hw = &adapter->hw;
1362 #endif
1363         int err;
1364
1365         /* flush_scheduled work may reschedule our watchdog task, so
1366          * explicitly disable watchdog tasks from being rescheduled  */
1367         set_bit(__IGB_DOWN, &adapter->state);
1368         del_timer_sync(&adapter->watchdog_timer);
1369         del_timer_sync(&adapter->phy_info_timer);
1370
1371         flush_scheduled_work();
1372
1373 #ifdef CONFIG_IGB_DCA
1374         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1375                 dev_info(&pdev->dev, "DCA disabled\n");
1376                 dca_remove_requester(&pdev->dev);
1377                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1378                 wr32(E1000_DCA_CTRL, 1);
1379         }
1380 #endif
1381
1382         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1383          * would have already happened in close and is redundant. */
1384         igb_release_hw_control(adapter);
1385
1386         unregister_netdev(netdev);
1387
1388         if (!igb_check_reset_block(&adapter->hw))
1389                 igb_reset_phy(&adapter->hw);
1390
1391         igb_reset_interrupt_capability(adapter);
1392
1393         igb_free_queues(adapter);
1394
1395         iounmap(adapter->hw.hw_addr);
1396         if (adapter->hw.flash_address)
1397                 iounmap(adapter->hw.flash_address);
1398         pci_release_selected_regions(pdev, pci_select_bars(pdev,
1399                                      IORESOURCE_MEM));
1400
1401         free_netdev(netdev);
1402
1403         err = pci_disable_pcie_error_reporting(pdev);
1404         if (err)
1405                 dev_err(&pdev->dev,
1406                         "pci_disable_pcie_error_reporting failed 0x%x\n", err);
1407
1408         pci_disable_device(pdev);
1409 }
1410
1411 /**
1412  * igb_sw_init - Initialize general software structures (struct igb_adapter)
1413  * @adapter: board private structure to initialize
1414  *
1415  * igb_sw_init initializes the Adapter private data structure.
1416  * Fields are initialized based on PCI device information and
1417  * OS network device settings (MTU size).
1418  **/
1419 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1420 {
1421         struct e1000_hw *hw = &adapter->hw;
1422         struct net_device *netdev = adapter->netdev;
1423         struct pci_dev *pdev = adapter->pdev;
1424
1425         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1426
1427         adapter->tx_ring_count = IGB_DEFAULT_TXD;
1428         adapter->rx_ring_count = IGB_DEFAULT_RXD;
1429         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1430         adapter->rx_ps_hdr_size = 0; /* disable packet split */
1431         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1432         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1433
1434         /* This call may decrease the number of queues depending on
1435          * interrupt mode. */
1436         igb_set_interrupt_capability(adapter);
1437
1438         if (igb_alloc_queues(adapter)) {
1439                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1440                 return -ENOMEM;
1441         }
1442
1443         /* Explicitly disable IRQ since the NIC can be in any state. */
1444         igb_irq_disable(adapter);
1445
1446         set_bit(__IGB_DOWN, &adapter->state);
1447         return 0;
1448 }
1449
1450 /**
1451  * igb_open - Called when a network interface is made active
1452  * @netdev: network interface device structure
1453  *
1454  * Returns 0 on success, negative value on failure
1455  *
1456  * The open entry point is called when a network interface is made
1457  * active by the system (IFF_UP).  At this point all resources needed
1458  * for transmit and receive operations are allocated, the interrupt
1459  * handler is registered with the OS, the watchdog timer is started,
1460  * and the stack is notified that the interface is ready.
1461  **/
1462 static int igb_open(struct net_device *netdev)
1463 {
1464         struct igb_adapter *adapter = netdev_priv(netdev);
1465         struct e1000_hw *hw = &adapter->hw;
1466         int err;
1467         int i;
1468
1469         /* disallow open during test */
1470         if (test_bit(__IGB_TESTING, &adapter->state))
1471                 return -EBUSY;
1472
1473         /* allocate transmit descriptors */
1474         err = igb_setup_all_tx_resources(adapter);
1475         if (err)
1476                 goto err_setup_tx;
1477
1478         /* allocate receive descriptors */
1479         err = igb_setup_all_rx_resources(adapter);
1480         if (err)
1481                 goto err_setup_rx;
1482
1483         /* e1000_power_up_phy(adapter); */
1484
1485         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1486         if ((adapter->hw.mng_cookie.status &
1487              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1488                 igb_update_mng_vlan(adapter);
1489
1490         /* before we allocate an interrupt, we must be ready to handle it.
1491          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1492          * as soon as we call pci_request_irq, so we have to setup our
1493          * clean_rx handler before we do so.  */
1494         igb_configure(adapter);
1495
1496         err = igb_request_irq(adapter);
1497         if (err)
1498                 goto err_req_irq;
1499
1500         /* From here on the code is the same as igb_up() */
1501         clear_bit(__IGB_DOWN, &adapter->state);
1502
1503         for (i = 0; i < adapter->num_rx_queues; i++)
1504                 napi_enable(&adapter->rx_ring[i].napi);
1505
1506         /* Clear any pending interrupts. */
1507         rd32(E1000_ICR);
1508
1509         igb_irq_enable(adapter);
1510
1511         netif_tx_start_all_queues(netdev);
1512
1513         /* Fire a link status change interrupt to start the watchdog. */
1514         wr32(E1000_ICS, E1000_ICS_LSC);
1515
1516         return 0;
1517
1518 err_req_irq:
1519         igb_release_hw_control(adapter);
1520         /* e1000_power_down_phy(adapter); */
1521         igb_free_all_rx_resources(adapter);
1522 err_setup_rx:
1523         igb_free_all_tx_resources(adapter);
1524 err_setup_tx:
1525         igb_reset(adapter);
1526
1527         return err;
1528 }
1529
1530 /**
1531  * igb_close - Disables a network interface
1532  * @netdev: network interface device structure
1533  *
1534  * Returns 0, this is not allowed to fail
1535  *
1536  * The close entry point is called when an interface is de-activated
1537  * by the OS.  The hardware is still under the driver's control, but
1538  * needs to be disabled.  A global MAC reset is issued to stop the
1539  * hardware, and all transmit and receive resources are freed.
1540  **/
1541 static int igb_close(struct net_device *netdev)
1542 {
1543         struct igb_adapter *adapter = netdev_priv(netdev);
1544
1545         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1546         igb_down(adapter);
1547
1548         igb_free_irq(adapter);
1549
1550         igb_free_all_tx_resources(adapter);
1551         igb_free_all_rx_resources(adapter);
1552
1553         /* kill manageability vlan ID if supported, but not if a vlan with
1554          * the same ID is registered on the host OS (let 8021q kill it) */
1555         if ((adapter->hw.mng_cookie.status &
1556                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1557              !(adapter->vlgrp &&
1558                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1559                 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1560
1561         return 0;
1562 }
1563
1564 /**
1565  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1566  * @adapter: board private structure
1567  * @tx_ring: tx descriptor ring (for a specific queue) to setup
1568  *
1569  * Return 0 on success, negative on failure
1570  **/
1571
1572 int igb_setup_tx_resources(struct igb_adapter *adapter,
1573                            struct igb_ring *tx_ring)
1574 {
1575         struct pci_dev *pdev = adapter->pdev;
1576         int size;
1577
1578         size = sizeof(struct igb_buffer) * tx_ring->count;
1579         tx_ring->buffer_info = vmalloc(size);
1580         if (!tx_ring->buffer_info)
1581                 goto err;
1582         memset(tx_ring->buffer_info, 0, size);
1583
1584         /* round up to nearest 4K */
1585         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1586         tx_ring->size = ALIGN(tx_ring->size, 4096);
1587
1588         tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1589                                              &tx_ring->dma);
1590
1591         if (!tx_ring->desc)
1592                 goto err;
1593
1594         tx_ring->adapter = adapter;
1595         tx_ring->next_to_use = 0;
1596         tx_ring->next_to_clean = 0;
1597         return 0;
1598
1599 err:
1600         vfree(tx_ring->buffer_info);
1601         dev_err(&adapter->pdev->dev,
1602                 "Unable to allocate memory for the transmit descriptor ring\n");
1603         return -ENOMEM;
1604 }
1605
1606 /**
1607  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1608  *                                (Descriptors) for all queues
1609  * @adapter: board private structure
1610  *
1611  * Return 0 on success, negative on failure
1612  **/
1613 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1614 {
1615         int i, err = 0;
1616         int r_idx;
1617
1618         for (i = 0; i < adapter->num_tx_queues; i++) {
1619                 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1620                 if (err) {
1621                         dev_err(&adapter->pdev->dev,
1622                                 "Allocation for Tx Queue %u failed\n", i);
1623                         for (i--; i >= 0; i--)
1624                                 igb_free_tx_resources(&adapter->tx_ring[i]);
1625                         break;
1626                 }
1627         }
1628
1629         for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1630                 r_idx = i % adapter->num_tx_queues;
1631                 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1632         }
1633         return err;
1634 }
1635
1636 /**
1637  * igb_configure_tx - Configure transmit Unit after Reset
1638  * @adapter: board private structure
1639  *
1640  * Configure the Tx unit of the MAC after a reset.
1641  **/
1642 static void igb_configure_tx(struct igb_adapter *adapter)
1643 {
1644         u64 tdba;
1645         struct e1000_hw *hw = &adapter->hw;
1646         u32 tctl;
1647         u32 txdctl, txctrl;
1648         int i, j;
1649
1650         for (i = 0; i < adapter->num_tx_queues; i++) {
1651                 struct igb_ring *ring = &(adapter->tx_ring[i]);
1652                 j = ring->reg_idx;
1653                 wr32(E1000_TDLEN(j),
1654                                 ring->count * sizeof(struct e1000_tx_desc));
1655                 tdba = ring->dma;
1656                 wr32(E1000_TDBAL(j),
1657                                 tdba & 0x00000000ffffffffULL);
1658                 wr32(E1000_TDBAH(j), tdba >> 32);
1659
1660                 ring->head = E1000_TDH(j);
1661                 ring->tail = E1000_TDT(j);
1662                 writel(0, hw->hw_addr + ring->tail);
1663                 writel(0, hw->hw_addr + ring->head);
1664                 txdctl = rd32(E1000_TXDCTL(j));
1665                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1666                 wr32(E1000_TXDCTL(j), txdctl);
1667
1668                 /* Turn off Relaxed Ordering on head write-backs.  The
1669                  * writebacks MUST be delivered in order or it will
1670                  * completely screw up our bookeeping.
1671                  */
1672                 txctrl = rd32(E1000_DCA_TXCTRL(j));
1673                 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1674                 wr32(E1000_DCA_TXCTRL(j), txctrl);
1675         }
1676
1677
1678
1679         /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1680
1681         /* Program the Transmit Control Register */
1682
1683         tctl = rd32(E1000_TCTL);
1684         tctl &= ~E1000_TCTL_CT;
1685         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1686                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1687
1688         igb_config_collision_dist(hw);
1689
1690         /* Setup Transmit Descriptor Settings for eop descriptor */
1691         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1692
1693         /* Enable transmits */
1694         tctl |= E1000_TCTL_EN;
1695
1696         wr32(E1000_TCTL, tctl);
1697 }
1698
1699 /**
1700  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1701  * @adapter: board private structure
1702  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
1703  *
1704  * Returns 0 on success, negative on failure
1705  **/
1706
1707 int igb_setup_rx_resources(struct igb_adapter *adapter,
1708                            struct igb_ring *rx_ring)
1709 {
1710         struct pci_dev *pdev = adapter->pdev;
1711         int size, desc_len;
1712
1713         size = sizeof(struct igb_buffer) * rx_ring->count;
1714         rx_ring->buffer_info = vmalloc(size);
1715         if (!rx_ring->buffer_info)
1716                 goto err;
1717         memset(rx_ring->buffer_info, 0, size);
1718
1719         desc_len = sizeof(union e1000_adv_rx_desc);
1720
1721         /* Round up to nearest 4K */
1722         rx_ring->size = rx_ring->count * desc_len;
1723         rx_ring->size = ALIGN(rx_ring->size, 4096);
1724
1725         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1726                                              &rx_ring->dma);
1727
1728         if (!rx_ring->desc)
1729                 goto err;
1730
1731         rx_ring->next_to_clean = 0;
1732         rx_ring->next_to_use = 0;
1733
1734         rx_ring->adapter = adapter;
1735
1736         return 0;
1737
1738 err:
1739         vfree(rx_ring->buffer_info);
1740         dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1741                 "the receive descriptor ring\n");
1742         return -ENOMEM;
1743 }
1744
1745 /**
1746  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1747  *                                (Descriptors) for all queues
1748  * @adapter: board private structure
1749  *
1750  * Return 0 on success, negative on failure
1751  **/
1752 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1753 {
1754         int i, err = 0;
1755
1756         for (i = 0; i < adapter->num_rx_queues; i++) {
1757                 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1758                 if (err) {
1759                         dev_err(&adapter->pdev->dev,
1760                                 "Allocation for Rx Queue %u failed\n", i);
1761                         for (i--; i >= 0; i--)
1762                                 igb_free_rx_resources(&adapter->rx_ring[i]);
1763                         break;
1764                 }
1765         }
1766
1767         return err;
1768 }
1769
1770 /**
1771  * igb_setup_rctl - configure the receive control registers
1772  * @adapter: Board private structure
1773  **/
1774 static void igb_setup_rctl(struct igb_adapter *adapter)
1775 {
1776         struct e1000_hw *hw = &adapter->hw;
1777         u32 rctl;
1778         u32 srrctl = 0;
1779         int i, j;
1780
1781         rctl = rd32(E1000_RCTL);
1782
1783         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1784         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1785
1786         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
1787                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1788
1789         /*
1790          * enable stripping of CRC. It's unlikely this will break BMC
1791          * redirection as it did with e1000. Newer features require
1792          * that the HW strips the CRC.
1793         */
1794         rctl |= E1000_RCTL_SECRC;
1795
1796         /*
1797          * disable store bad packets and clear size bits.
1798          */
1799         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
1800
1801         /* enable LPE when to prevent packets larger than max_frame_size */
1802                 rctl |= E1000_RCTL_LPE;
1803
1804         /* Setup buffer sizes */
1805         switch (adapter->rx_buffer_len) {
1806         case IGB_RXBUFFER_256:
1807                 rctl |= E1000_RCTL_SZ_256;
1808                 break;
1809         case IGB_RXBUFFER_512:
1810                 rctl |= E1000_RCTL_SZ_512;
1811                 break;
1812         default:
1813                 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
1814                          >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1815                 break;
1816         }
1817
1818         /* 82575 and greater support packet-split where the protocol
1819          * header is placed in skb->data and the packet data is
1820          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1821          * In the case of a non-split, skb->data is linearly filled,
1822          * followed by the page buffers.  Therefore, skb->data is
1823          * sized to hold the largest protocol header.
1824          */
1825         /* allocations using alloc_page take too long for regular MTU
1826          * so only enable packet split for jumbo frames */
1827         if (adapter->netdev->mtu > ETH_DATA_LEN) {
1828                 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1829                 srrctl |= adapter->rx_ps_hdr_size <<
1830                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1831                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1832         } else {
1833                 adapter->rx_ps_hdr_size = 0;
1834                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1835         }
1836
1837         for (i = 0; i < adapter->num_rx_queues; i++) {
1838                 j = adapter->rx_ring[i].reg_idx;
1839                 wr32(E1000_SRRCTL(j), srrctl);
1840         }
1841
1842         wr32(E1000_RCTL, rctl);
1843 }
1844
1845 /**
1846  * igb_configure_rx - Configure receive Unit after Reset
1847  * @adapter: board private structure
1848  *
1849  * Configure the Rx unit of the MAC after a reset.
1850  **/
1851 static void igb_configure_rx(struct igb_adapter *adapter)
1852 {
1853         u64 rdba;
1854         struct e1000_hw *hw = &adapter->hw;
1855         u32 rctl, rxcsum;
1856         u32 rxdctl;
1857         int i, j;
1858
1859         /* disable receives while setting up the descriptors */
1860         rctl = rd32(E1000_RCTL);
1861         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1862         wrfl();
1863         mdelay(10);
1864
1865         if (adapter->itr_setting > 3)
1866                 wr32(E1000_ITR, adapter->itr);
1867
1868         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1869          * the Base and Length of the Rx Descriptor Ring */
1870         for (i = 0; i < adapter->num_rx_queues; i++) {
1871                 struct igb_ring *ring = &(adapter->rx_ring[i]);
1872                 j = ring->reg_idx;
1873                 rdba = ring->dma;
1874                 wr32(E1000_RDBAL(j),
1875                                 rdba & 0x00000000ffffffffULL);
1876                 wr32(E1000_RDBAH(j), rdba >> 32);
1877                 wr32(E1000_RDLEN(j),
1878                                ring->count * sizeof(union e1000_adv_rx_desc));
1879
1880                 ring->head = E1000_RDH(j);
1881                 ring->tail = E1000_RDT(j);
1882                 writel(0, hw->hw_addr + ring->tail);
1883                 writel(0, hw->hw_addr + ring->head);
1884
1885                 rxdctl = rd32(E1000_RXDCTL(j));
1886                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1887                 rxdctl &= 0xFFF00000;
1888                 rxdctl |= IGB_RX_PTHRESH;
1889                 rxdctl |= IGB_RX_HTHRESH << 8;
1890                 rxdctl |= IGB_RX_WTHRESH << 16;
1891                 wr32(E1000_RXDCTL(j), rxdctl);
1892         }
1893
1894         if (adapter->num_rx_queues > 1) {
1895                 u32 random[10];
1896                 u32 mrqc;
1897                 u32 j, shift;
1898                 union e1000_reta {
1899                         u32 dword;
1900                         u8  bytes[4];
1901                 } reta;
1902
1903                 get_random_bytes(&random[0], 40);
1904
1905                 if (hw->mac.type >= e1000_82576)
1906                         shift = 0;
1907                 else
1908                         shift = 6;
1909                 for (j = 0; j < (32 * 4); j++) {
1910                         reta.bytes[j & 3] =
1911                                 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
1912                         if ((j & 3) == 3)
1913                                 writel(reta.dword,
1914                                        hw->hw_addr + E1000_RETA(0) + (j & ~3));
1915                 }
1916                 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1917
1918                 /* Fill out hash function seeds */
1919                 for (j = 0; j < 10; j++)
1920                         array_wr32(E1000_RSSRK(0), j, random[j]);
1921
1922                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1923                          E1000_MRQC_RSS_FIELD_IPV4_TCP);
1924                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1925                          E1000_MRQC_RSS_FIELD_IPV6_TCP);
1926                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1927                          E1000_MRQC_RSS_FIELD_IPV6_UDP);
1928                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1929                          E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1930
1931
1932                 wr32(E1000_MRQC, mrqc);
1933
1934                 /* Multiqueue and raw packet checksumming are mutually
1935                  * exclusive.  Note that this not the same as TCP/IP
1936                  * checksumming, which works fine. */
1937                 rxcsum = rd32(E1000_RXCSUM);
1938                 rxcsum |= E1000_RXCSUM_PCSD;
1939                 wr32(E1000_RXCSUM, rxcsum);
1940         } else {
1941                 /* Enable Receive Checksum Offload for TCP and UDP */
1942                 rxcsum = rd32(E1000_RXCSUM);
1943                 if (adapter->rx_csum) {
1944                         rxcsum |= E1000_RXCSUM_TUOFL;
1945
1946                         /* Enable IPv4 payload checksum for UDP fragments
1947                          * Must be used in conjunction with packet-split. */
1948                         if (adapter->rx_ps_hdr_size)
1949                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1950                 } else {
1951                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1952                         /* don't need to clear IPPCSE as it defaults to 0 */
1953                 }
1954                 wr32(E1000_RXCSUM, rxcsum);
1955         }
1956
1957         if (adapter->vlgrp)
1958                 wr32(E1000_RLPML,
1959                                 adapter->max_frame_size + VLAN_TAG_SIZE);
1960         else
1961                 wr32(E1000_RLPML, adapter->max_frame_size);
1962
1963         /* Enable Receives */
1964         wr32(E1000_RCTL, rctl);
1965 }
1966
1967 /**
1968  * igb_free_tx_resources - Free Tx Resources per Queue
1969  * @tx_ring: Tx descriptor ring for a specific queue
1970  *
1971  * Free all transmit software resources
1972  **/
1973 void igb_free_tx_resources(struct igb_ring *tx_ring)
1974 {
1975         struct pci_dev *pdev = tx_ring->adapter->pdev;
1976
1977         igb_clean_tx_ring(tx_ring);
1978
1979         vfree(tx_ring->buffer_info);
1980         tx_ring->buffer_info = NULL;
1981
1982         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1983
1984         tx_ring->desc = NULL;
1985 }
1986
1987 /**
1988  * igb_free_all_tx_resources - Free Tx Resources for All Queues
1989  * @adapter: board private structure
1990  *
1991  * Free all transmit software resources
1992  **/
1993 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
1994 {
1995         int i;
1996
1997         for (i = 0; i < adapter->num_tx_queues; i++)
1998                 igb_free_tx_resources(&adapter->tx_ring[i]);
1999 }
2000
2001 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2002                                            struct igb_buffer *buffer_info)
2003 {
2004         if (buffer_info->dma) {
2005                 pci_unmap_page(adapter->pdev,
2006                                 buffer_info->dma,
2007                                 buffer_info->length,
2008                                 PCI_DMA_TODEVICE);
2009                 buffer_info->dma = 0;
2010         }
2011         if (buffer_info->skb) {
2012                 dev_kfree_skb_any(buffer_info->skb);
2013                 buffer_info->skb = NULL;
2014         }
2015         buffer_info->time_stamp = 0;
2016         /* buffer_info must be completely set up in the transmit path */
2017 }
2018
2019 /**
2020  * igb_clean_tx_ring - Free Tx Buffers
2021  * @tx_ring: ring to be cleaned
2022  **/
2023 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2024 {
2025         struct igb_adapter *adapter = tx_ring->adapter;
2026         struct igb_buffer *buffer_info;
2027         unsigned long size;
2028         unsigned int i;
2029
2030         if (!tx_ring->buffer_info)
2031                 return;
2032         /* Free all the Tx ring sk_buffs */
2033
2034         for (i = 0; i < tx_ring->count; i++) {
2035                 buffer_info = &tx_ring->buffer_info[i];
2036                 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2037         }
2038
2039         size = sizeof(struct igb_buffer) * tx_ring->count;
2040         memset(tx_ring->buffer_info, 0, size);
2041
2042         /* Zero out the descriptor ring */
2043
2044         memset(tx_ring->desc, 0, tx_ring->size);
2045
2046         tx_ring->next_to_use = 0;
2047         tx_ring->next_to_clean = 0;
2048
2049         writel(0, adapter->hw.hw_addr + tx_ring->head);
2050         writel(0, adapter->hw.hw_addr + tx_ring->tail);
2051 }
2052
2053 /**
2054  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2055  * @adapter: board private structure
2056  **/
2057 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2058 {
2059         int i;
2060
2061         for (i = 0; i < adapter->num_tx_queues; i++)
2062                 igb_clean_tx_ring(&adapter->tx_ring[i]);
2063 }
2064
2065 /**
2066  * igb_free_rx_resources - Free Rx Resources
2067  * @rx_ring: ring to clean the resources from
2068  *
2069  * Free all receive software resources
2070  **/
2071 void igb_free_rx_resources(struct igb_ring *rx_ring)
2072 {
2073         struct pci_dev *pdev = rx_ring->adapter->pdev;
2074
2075         igb_clean_rx_ring(rx_ring);
2076
2077         vfree(rx_ring->buffer_info);
2078         rx_ring->buffer_info = NULL;
2079
2080         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2081
2082         rx_ring->desc = NULL;
2083 }
2084
2085 /**
2086  * igb_free_all_rx_resources - Free Rx Resources for All Queues
2087  * @adapter: board private structure
2088  *
2089  * Free all receive software resources
2090  **/
2091 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2092 {
2093         int i;
2094
2095         for (i = 0; i < adapter->num_rx_queues; i++)
2096                 igb_free_rx_resources(&adapter->rx_ring[i]);
2097 }
2098
2099 /**
2100  * igb_clean_rx_ring - Free Rx Buffers per Queue
2101  * @rx_ring: ring to free buffers from
2102  **/
2103 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2104 {
2105         struct igb_adapter *adapter = rx_ring->adapter;
2106         struct igb_buffer *buffer_info;
2107         struct pci_dev *pdev = adapter->pdev;
2108         unsigned long size;
2109         unsigned int i;
2110
2111         if (!rx_ring->buffer_info)
2112                 return;
2113         /* Free all the Rx ring sk_buffs */
2114         for (i = 0; i < rx_ring->count; i++) {
2115                 buffer_info = &rx_ring->buffer_info[i];
2116                 if (buffer_info->dma) {
2117                         if (adapter->rx_ps_hdr_size)
2118                                 pci_unmap_single(pdev, buffer_info->dma,
2119                                                  adapter->rx_ps_hdr_size,
2120                                                  PCI_DMA_FROMDEVICE);
2121                         else
2122                                 pci_unmap_single(pdev, buffer_info->dma,
2123                                                  adapter->rx_buffer_len,
2124                                                  PCI_DMA_FROMDEVICE);
2125                         buffer_info->dma = 0;
2126                 }
2127
2128                 if (buffer_info->skb) {
2129                         dev_kfree_skb(buffer_info->skb);
2130                         buffer_info->skb = NULL;
2131                 }
2132                 if (buffer_info->page) {
2133                         if (buffer_info->page_dma)
2134                                 pci_unmap_page(pdev, buffer_info->page_dma,
2135                                                PAGE_SIZE / 2,
2136                                                PCI_DMA_FROMDEVICE);
2137                         put_page(buffer_info->page);
2138                         buffer_info->page = NULL;
2139                         buffer_info->page_dma = 0;
2140                         buffer_info->page_offset = 0;
2141                 }
2142         }
2143
2144         size = sizeof(struct igb_buffer) * rx_ring->count;
2145         memset(rx_ring->buffer_info, 0, size);
2146
2147         /* Zero out the descriptor ring */
2148         memset(rx_ring->desc, 0, rx_ring->size);
2149
2150         rx_ring->next_to_clean = 0;
2151         rx_ring->next_to_use = 0;
2152
2153         writel(0, adapter->hw.hw_addr + rx_ring->head);
2154         writel(0, adapter->hw.hw_addr + rx_ring->tail);
2155 }
2156
2157 /**
2158  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2159  * @adapter: board private structure
2160  **/
2161 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2162 {
2163         int i;
2164
2165         for (i = 0; i < adapter->num_rx_queues; i++)
2166                 igb_clean_rx_ring(&adapter->rx_ring[i]);
2167 }
2168
2169 /**
2170  * igb_set_mac - Change the Ethernet Address of the NIC
2171  * @netdev: network interface device structure
2172  * @p: pointer to an address structure
2173  *
2174  * Returns 0 on success, negative on failure
2175  **/
2176 static int igb_set_mac(struct net_device *netdev, void *p)
2177 {
2178         struct igb_adapter *adapter = netdev_priv(netdev);
2179         struct sockaddr *addr = p;
2180
2181         if (!is_valid_ether_addr(addr->sa_data))
2182                 return -EADDRNOTAVAIL;
2183
2184         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2185         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2186
2187         adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2188
2189         return 0;
2190 }
2191
2192 /**
2193  * igb_set_multi - Multicast and Promiscuous mode set
2194  * @netdev: network interface device structure
2195  *
2196  * The set_multi entry point is called whenever the multicast address
2197  * list or the network interface flags are updated.  This routine is
2198  * responsible for configuring the hardware for proper multicast,
2199  * promiscuous mode, and all-multi behavior.
2200  **/
2201 static void igb_set_multi(struct net_device *netdev)
2202 {
2203         struct igb_adapter *adapter = netdev_priv(netdev);
2204         struct e1000_hw *hw = &adapter->hw;
2205         struct e1000_mac_info *mac = &hw->mac;
2206         struct dev_mc_list *mc_ptr;
2207         u8  *mta_list;
2208         u32 rctl;
2209         int i;
2210
2211         /* Check for Promiscuous and All Multicast modes */
2212
2213         rctl = rd32(E1000_RCTL);
2214
2215         if (netdev->flags & IFF_PROMISC) {
2216                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2217                 rctl &= ~E1000_RCTL_VFE;
2218         } else {
2219                 if (netdev->flags & IFF_ALLMULTI) {
2220                         rctl |= E1000_RCTL_MPE;
2221                         rctl &= ~E1000_RCTL_UPE;
2222                 } else
2223                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2224                 rctl |= E1000_RCTL_VFE;
2225         }
2226         wr32(E1000_RCTL, rctl);
2227
2228         if (!netdev->mc_count) {
2229                 /* nothing to program, so clear mc list */
2230                 igb_update_mc_addr_list(hw, NULL, 0, 1,
2231                                         mac->rar_entry_count);
2232                 return;
2233         }
2234
2235         mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2236         if (!mta_list)
2237                 return;
2238
2239         /* The shared function expects a packed array of only addresses. */
2240         mc_ptr = netdev->mc_list;
2241
2242         for (i = 0; i < netdev->mc_count; i++) {
2243                 if (!mc_ptr)
2244                         break;
2245                 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2246                 mc_ptr = mc_ptr->next;
2247         }
2248         igb_update_mc_addr_list(hw, mta_list, i, 1, mac->rar_entry_count);
2249         kfree(mta_list);
2250 }
2251
2252 /* Need to wait a few seconds after link up to get diagnostic information from
2253  * the phy */
2254 static void igb_update_phy_info(unsigned long data)
2255 {
2256         struct igb_adapter *adapter = (struct igb_adapter *) data;
2257         igb_get_phy_info(&adapter->hw);
2258 }
2259
2260 /**
2261  * igb_has_link - check shared code for link and determine up/down
2262  * @adapter: pointer to driver private info
2263  **/
2264 static bool igb_has_link(struct igb_adapter *adapter)
2265 {
2266         struct e1000_hw *hw = &adapter->hw;
2267         bool link_active = false;
2268         s32 ret_val = 0;
2269
2270         /* get_link_status is set on LSC (link status) interrupt or
2271          * rx sequence error interrupt.  get_link_status will stay
2272          * false until the e1000_check_for_link establishes link
2273          * for copper adapters ONLY
2274          */
2275         switch (hw->phy.media_type) {
2276         case e1000_media_type_copper:
2277                 if (hw->mac.get_link_status) {
2278                         ret_val = hw->mac.ops.check_for_link(hw);
2279                         link_active = !hw->mac.get_link_status;
2280                 } else {
2281                         link_active = true;
2282                 }
2283                 break;
2284         case e1000_media_type_fiber:
2285                 ret_val = hw->mac.ops.check_for_link(hw);
2286                 link_active = !!(rd32(E1000_STATUS) & E1000_STATUS_LU);
2287                 break;
2288         case e1000_media_type_internal_serdes:
2289                 ret_val = hw->mac.ops.check_for_link(hw);
2290                 link_active = hw->mac.serdes_has_link;
2291                 break;
2292         default:
2293         case e1000_media_type_unknown:
2294                 break;
2295         }
2296
2297         return link_active;
2298 }
2299
2300 /**
2301  * igb_watchdog - Timer Call-back
2302  * @data: pointer to adapter cast into an unsigned long
2303  **/
2304 static void igb_watchdog(unsigned long data)
2305 {
2306         struct igb_adapter *adapter = (struct igb_adapter *)data;
2307         /* Do the rest outside of interrupt context */
2308         schedule_work(&adapter->watchdog_task);
2309 }
2310
2311 static void igb_watchdog_task(struct work_struct *work)
2312 {
2313         struct igb_adapter *adapter = container_of(work,
2314                                         struct igb_adapter, watchdog_task);
2315         struct e1000_hw *hw = &adapter->hw;
2316         struct net_device *netdev = adapter->netdev;
2317         struct igb_ring *tx_ring = adapter->tx_ring;
2318         u32 link;
2319         u32 eics = 0;
2320         int i;
2321
2322         link = igb_has_link(adapter);
2323         if ((netif_carrier_ok(netdev)) && link)
2324                 goto link_up;
2325
2326         if (link) {
2327                 if (!netif_carrier_ok(netdev)) {
2328                         u32 ctrl;
2329                         hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2330                                                    &adapter->link_speed,
2331                                                    &adapter->link_duplex);
2332
2333                         ctrl = rd32(E1000_CTRL);
2334                         /* Links status message must follow this format */
2335                         printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2336                                  "Flow Control: %s\n",
2337                                  netdev->name,
2338                                  adapter->link_speed,
2339                                  adapter->link_duplex == FULL_DUPLEX ?
2340                                  "Full Duplex" : "Half Duplex",
2341                                  ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2342                                  E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2343                                  E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2344                                  E1000_CTRL_TFCE) ? "TX" : "None")));
2345
2346                         /* tweak tx_queue_len according to speed/duplex and
2347                          * adjust the timeout factor */
2348                         netdev->tx_queue_len = adapter->tx_queue_len;
2349                         adapter->tx_timeout_factor = 1;
2350                         switch (adapter->link_speed) {
2351                         case SPEED_10:
2352                                 netdev->tx_queue_len = 10;
2353                                 adapter->tx_timeout_factor = 14;
2354                                 break;
2355                         case SPEED_100:
2356                                 netdev->tx_queue_len = 100;
2357                                 /* maybe add some timeout factor ? */
2358                                 break;
2359                         }
2360
2361                         netif_carrier_on(netdev);
2362                         netif_tx_wake_all_queues(netdev);
2363
2364                         /* link state has changed, schedule phy info update */
2365                         if (!test_bit(__IGB_DOWN, &adapter->state))
2366                                 mod_timer(&adapter->phy_info_timer,
2367                                           round_jiffies(jiffies + 2 * HZ));
2368                 }
2369         } else {
2370                 if (netif_carrier_ok(netdev)) {
2371                         adapter->link_speed = 0;
2372                         adapter->link_duplex = 0;
2373                         /* Links status message must follow this format */
2374                         printk(KERN_INFO "igb: %s NIC Link is Down\n",
2375                                netdev->name);
2376                         netif_carrier_off(netdev);
2377                         netif_tx_stop_all_queues(netdev);
2378
2379                         /* link state has changed, schedule phy info update */
2380                         if (!test_bit(__IGB_DOWN, &adapter->state))
2381                                 mod_timer(&adapter->phy_info_timer,
2382                                           round_jiffies(jiffies + 2 * HZ));
2383                 }
2384         }
2385
2386 link_up:
2387         igb_update_stats(adapter);
2388
2389         hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2390         adapter->tpt_old = adapter->stats.tpt;
2391         hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
2392         adapter->colc_old = adapter->stats.colc;
2393
2394         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2395         adapter->gorc_old = adapter->stats.gorc;
2396         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2397         adapter->gotc_old = adapter->stats.gotc;
2398
2399         igb_update_adaptive(&adapter->hw);
2400
2401         if (!netif_carrier_ok(netdev)) {
2402                 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2403                         /* We've lost link, so the controller stops DMA,
2404                          * but we've got queued Tx work that's never going
2405                          * to get done, so reset controller to flush Tx.
2406                          * (Do the reset outside of interrupt context). */
2407                         adapter->tx_timeout_count++;
2408                         schedule_work(&adapter->reset_task);
2409                 }
2410         }
2411
2412         /* Cause software interrupt to ensure rx ring is cleaned */
2413         if (adapter->msix_entries) {
2414                 for (i = 0; i < adapter->num_rx_queues; i++)
2415                         eics |= adapter->rx_ring[i].eims_value;
2416                 wr32(E1000_EICS, eics);
2417         } else {
2418                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2419         }
2420
2421         /* Force detection of hung controller every watchdog period */
2422         tx_ring->detect_tx_hung = true;
2423
2424         /* Reset the timer */
2425         if (!test_bit(__IGB_DOWN, &adapter->state))
2426                 mod_timer(&adapter->watchdog_timer,
2427                           round_jiffies(jiffies + 2 * HZ));
2428 }
2429
2430 enum latency_range {
2431         lowest_latency = 0,
2432         low_latency = 1,
2433         bulk_latency = 2,
2434         latency_invalid = 255
2435 };
2436
2437
2438 /**
2439  * igb_update_ring_itr - update the dynamic ITR value based on packet size
2440  *
2441  *      Stores a new ITR value based on strictly on packet size.  This
2442  *      algorithm is less sophisticated than that used in igb_update_itr,
2443  *      due to the difficulty of synchronizing statistics across multiple
2444  *      receive rings.  The divisors and thresholds used by this fuction
2445  *      were determined based on theoretical maximum wire speed and testing
2446  *      data, in order to minimize response time while increasing bulk
2447  *      throughput.
2448  *      This functionality is controlled by the InterruptThrottleRate module
2449  *      parameter (see igb_param.c)
2450  *      NOTE:  This function is called only when operating in a multiqueue
2451  *             receive environment.
2452  * @rx_ring: pointer to ring
2453  **/
2454 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2455 {
2456         int new_val = rx_ring->itr_val;
2457         int avg_wire_size = 0;
2458         struct igb_adapter *adapter = rx_ring->adapter;
2459
2460         if (!rx_ring->total_packets)
2461                 goto clear_counts; /* no packets, so don't do anything */
2462
2463         /* For non-gigabit speeds, just fix the interrupt rate at 4000
2464          * ints/sec - ITR timer value of 120 ticks.
2465          */
2466         if (adapter->link_speed != SPEED_1000) {
2467                 new_val = 120;
2468                 goto set_itr_val;
2469         }
2470         avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2471
2472         /* Add 24 bytes to size to account for CRC, preamble, and gap */
2473         avg_wire_size += 24;
2474
2475         /* Don't starve jumbo frames */
2476         avg_wire_size = min(avg_wire_size, 3000);
2477
2478         /* Give a little boost to mid-size frames */
2479         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2480                 new_val = avg_wire_size / 3;
2481         else
2482                 new_val = avg_wire_size / 2;
2483
2484 set_itr_val:
2485         if (new_val != rx_ring->itr_val) {
2486                 rx_ring->itr_val = new_val;
2487                 rx_ring->set_itr = 1;
2488         }
2489 clear_counts:
2490         rx_ring->total_bytes = 0;
2491         rx_ring->total_packets = 0;
2492 }
2493
2494 /**
2495  * igb_update_itr - update the dynamic ITR value based on statistics
2496  *      Stores a new ITR value based on packets and byte
2497  *      counts during the last interrupt.  The advantage of per interrupt
2498  *      computation is faster updates and more accurate ITR for the current
2499  *      traffic pattern.  Constants in this function were computed
2500  *      based on theoretical maximum wire speed and thresholds were set based
2501  *      on testing data as well as attempting to minimize response time
2502  *      while increasing bulk throughput.
2503  *      this functionality is controlled by the InterruptThrottleRate module
2504  *      parameter (see igb_param.c)
2505  *      NOTE:  These calculations are only valid when operating in a single-
2506  *             queue environment.
2507  * @adapter: pointer to adapter
2508  * @itr_setting: current adapter->itr
2509  * @packets: the number of packets during this measurement interval
2510  * @bytes: the number of bytes during this measurement interval
2511  **/
2512 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2513                                    int packets, int bytes)
2514 {
2515         unsigned int retval = itr_setting;
2516
2517         if (packets == 0)
2518                 goto update_itr_done;
2519
2520         switch (itr_setting) {
2521         case lowest_latency:
2522                 /* handle TSO and jumbo frames */
2523                 if (bytes/packets > 8000)
2524                         retval = bulk_latency;
2525                 else if ((packets < 5) && (bytes > 512))
2526                         retval = low_latency;
2527                 break;
2528         case low_latency:  /* 50 usec aka 20000 ints/s */
2529                 if (bytes > 10000) {
2530                         /* this if handles the TSO accounting */
2531                         if (bytes/packets > 8000) {
2532                                 retval = bulk_latency;
2533                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2534                                 retval = bulk_latency;
2535                         } else if ((packets > 35)) {
2536                                 retval = lowest_latency;
2537                         }
2538                 } else if (bytes/packets > 2000) {
2539                         retval = bulk_latency;
2540                 } else if (packets <= 2 && bytes < 512) {
2541                         retval = lowest_latency;
2542                 }
2543                 break;
2544         case bulk_latency: /* 250 usec aka 4000 ints/s */
2545                 if (bytes > 25000) {
2546                         if (packets > 35)
2547                                 retval = low_latency;
2548                 } else if (bytes < 6000) {
2549                         retval = low_latency;
2550                 }
2551                 break;
2552         }
2553
2554 update_itr_done:
2555         return retval;
2556 }
2557
2558 static void igb_set_itr(struct igb_adapter *adapter)
2559 {
2560         u16 current_itr;
2561         u32 new_itr = adapter->itr;
2562
2563         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2564         if (adapter->link_speed != SPEED_1000) {
2565                 current_itr = 0;
2566                 new_itr = 4000;
2567                 goto set_itr_now;
2568         }
2569
2570         adapter->rx_itr = igb_update_itr(adapter,
2571                                     adapter->rx_itr,
2572                                     adapter->rx_ring->total_packets,
2573                                     adapter->rx_ring->total_bytes);
2574
2575         if (adapter->rx_ring->buddy) {
2576                 adapter->tx_itr = igb_update_itr(adapter,
2577                                             adapter->tx_itr,
2578                                             adapter->tx_ring->total_packets,
2579                                             adapter->tx_ring->total_bytes);
2580
2581                 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2582         } else {
2583                 current_itr = adapter->rx_itr;
2584         }
2585
2586         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2587         if (adapter->itr_setting == 3 &&
2588             current_itr == lowest_latency)
2589                 current_itr = low_latency;
2590
2591         switch (current_itr) {
2592         /* counts and packets in update_itr are dependent on these numbers */
2593         case lowest_latency:
2594                 new_itr = 70000;
2595                 break;
2596         case low_latency:
2597                 new_itr = 20000; /* aka hwitr = ~200 */
2598                 break;
2599         case bulk_latency:
2600                 new_itr = 4000;
2601                 break;
2602         default:
2603                 break;
2604         }
2605
2606 set_itr_now:
2607         adapter->rx_ring->total_bytes = 0;
2608         adapter->rx_ring->total_packets = 0;
2609         if (adapter->rx_ring->buddy) {
2610                 adapter->rx_ring->buddy->total_bytes = 0;
2611                 adapter->rx_ring->buddy->total_packets = 0;
2612         }
2613
2614         if (new_itr != adapter->itr) {
2615                 /* this attempts to bias the interrupt rate towards Bulk
2616                  * by adding intermediate steps when interrupt rate is
2617                  * increasing */
2618                 new_itr = new_itr > adapter->itr ?
2619                              min(adapter->itr + (new_itr >> 2), new_itr) :
2620                              new_itr;
2621                 /* Don't write the value here; it resets the adapter's
2622                  * internal timer, and causes us to delay far longer than
2623                  * we should between interrupts.  Instead, we write the ITR
2624                  * value at the beginning of the next interrupt so the timing
2625                  * ends up being correct.
2626                  */
2627                 adapter->itr = new_itr;
2628                 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2629                 adapter->rx_ring->set_itr = 1;
2630         }
2631
2632         return;
2633 }
2634
2635
2636 #define IGB_TX_FLAGS_CSUM               0x00000001
2637 #define IGB_TX_FLAGS_VLAN               0x00000002
2638 #define IGB_TX_FLAGS_TSO                0x00000004
2639 #define IGB_TX_FLAGS_IPV4               0x00000008
2640 #define IGB_TX_FLAGS_VLAN_MASK  0xffff0000
2641 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2642
2643 static inline int igb_tso_adv(struct igb_adapter *adapter,
2644                               struct igb_ring *tx_ring,
2645                               struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2646 {
2647         struct e1000_adv_tx_context_desc *context_desc;
2648         unsigned int i;
2649         int err;
2650         struct igb_buffer *buffer_info;
2651         u32 info = 0, tu_cmd = 0;
2652         u32 mss_l4len_idx, l4len;
2653         *hdr_len = 0;
2654
2655         if (skb_header_cloned(skb)) {
2656                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2657                 if (err)
2658                         return err;
2659         }
2660
2661         l4len = tcp_hdrlen(skb);
2662         *hdr_len += l4len;
2663
2664         if (skb->protocol == htons(ETH_P_IP)) {
2665                 struct iphdr *iph = ip_hdr(skb);
2666                 iph->tot_len = 0;
2667                 iph->check = 0;
2668                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2669                                                          iph->daddr, 0,
2670                                                          IPPROTO_TCP,
2671                                                          0);
2672         } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2673                 ipv6_hdr(skb)->payload_len = 0;
2674                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2675                                                        &ipv6_hdr(skb)->daddr,
2676                                                        0, IPPROTO_TCP, 0);
2677         }
2678
2679         i = tx_ring->next_to_use;
2680
2681         buffer_info = &tx_ring->buffer_info[i];
2682         context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2683         /* VLAN MACLEN IPLEN */
2684         if (tx_flags & IGB_TX_FLAGS_VLAN)
2685                 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2686         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2687         *hdr_len += skb_network_offset(skb);
2688         info |= skb_network_header_len(skb);
2689         *hdr_len += skb_network_header_len(skb);
2690         context_desc->vlan_macip_lens = cpu_to_le32(info);
2691
2692         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2693         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2694
2695         if (skb->protocol == htons(ETH_P_IP))
2696                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2697         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2698
2699         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2700
2701         /* MSS L4LEN IDX */
2702         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2703         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2704
2705         /* Context index must be unique per ring. */
2706         if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2707                 mss_l4len_idx |= tx_ring->queue_index << 4;
2708
2709         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2710         context_desc->seqnum_seed = 0;
2711
2712         buffer_info->time_stamp = jiffies;
2713         buffer_info->next_to_watch = i;
2714         buffer_info->dma = 0;
2715         i++;
2716         if (i == tx_ring->count)
2717                 i = 0;
2718
2719         tx_ring->next_to_use = i;
2720
2721         return true;
2722 }
2723
2724 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2725                                         struct igb_ring *tx_ring,
2726                                         struct sk_buff *skb, u32 tx_flags)
2727 {
2728         struct e1000_adv_tx_context_desc *context_desc;
2729         unsigned int i;
2730         struct igb_buffer *buffer_info;
2731         u32 info = 0, tu_cmd = 0;
2732
2733         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2734             (tx_flags & IGB_TX_FLAGS_VLAN)) {
2735                 i = tx_ring->next_to_use;
2736                 buffer_info = &tx_ring->buffer_info[i];
2737                 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2738
2739                 if (tx_flags & IGB_TX_FLAGS_VLAN)
2740                         info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2741                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2742                 if (skb->ip_summed == CHECKSUM_PARTIAL)
2743                         info |= skb_network_header_len(skb);
2744
2745                 context_desc->vlan_macip_lens = cpu_to_le32(info);
2746
2747                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2748
2749                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2750                         switch (skb->protocol) {
2751                         case cpu_to_be16(ETH_P_IP):
2752                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2753                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2754                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2755                                 break;
2756                         case cpu_to_be16(ETH_P_IPV6):
2757                                 /* XXX what about other V6 headers?? */
2758                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2759                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2760                                 break;
2761                         default:
2762                                 if (unlikely(net_ratelimit()))
2763                                         dev_warn(&adapter->pdev->dev,
2764                                             "partial checksum but proto=%x!\n",
2765                                             skb->protocol);
2766                                 break;
2767                         }
2768                 }
2769
2770                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2771                 context_desc->seqnum_seed = 0;
2772                 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2773                         context_desc->mss_l4len_idx =
2774                                 cpu_to_le32(tx_ring->queue_index << 4);
2775
2776                 buffer_info->time_stamp = jiffies;
2777                 buffer_info->next_to_watch = i;
2778                 buffer_info->dma = 0;
2779
2780                 i++;
2781                 if (i == tx_ring->count)
2782                         i = 0;
2783                 tx_ring->next_to_use = i;
2784
2785                 return true;
2786         }
2787
2788
2789         return false;
2790 }
2791
2792 #define IGB_MAX_TXD_PWR 16
2793 #define IGB_MAX_DATA_PER_TXD    (1<<IGB_MAX_TXD_PWR)
2794
2795 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2796                                  struct igb_ring *tx_ring, struct sk_buff *skb,
2797                                  unsigned int first)
2798 {
2799         struct igb_buffer *buffer_info;
2800         unsigned int len = skb_headlen(skb);
2801         unsigned int count = 0, i;
2802         unsigned int f;
2803
2804         i = tx_ring->next_to_use;
2805
2806         buffer_info = &tx_ring->buffer_info[i];
2807         BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2808         buffer_info->length = len;
2809         /* set time_stamp *before* dma to help avoid a possible race */
2810         buffer_info->time_stamp = jiffies;
2811         buffer_info->next_to_watch = i;
2812         buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2813                                           PCI_DMA_TODEVICE);
2814         count++;
2815         i++;
2816         if (i == tx_ring->count)
2817                 i = 0;
2818
2819         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2820                 struct skb_frag_struct *frag;
2821
2822                 frag = &skb_shinfo(skb)->frags[f];
2823                 len = frag->size;
2824
2825                 buffer_info = &tx_ring->buffer_info[i];
2826                 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2827                 buffer_info->length = len;
2828                 buffer_info->time_stamp = jiffies;
2829                 buffer_info->next_to_watch = i;
2830                 buffer_info->dma = pci_map_page(adapter->pdev,
2831                                                 frag->page,
2832                                                 frag->page_offset,
2833                                                 len,
2834                                                 PCI_DMA_TODEVICE);
2835
2836                 count++;
2837                 i++;
2838                 if (i == tx_ring->count)
2839                         i = 0;
2840         }
2841
2842         i = ((i == 0) ? tx_ring->count - 1 : i - 1);
2843         tx_ring->buffer_info[i].skb = skb;
2844         tx_ring->buffer_info[first].next_to_watch = i;
2845
2846         return count;
2847 }
2848
2849 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2850                                     struct igb_ring *tx_ring,
2851                                     int tx_flags, int count, u32 paylen,
2852                                     u8 hdr_len)
2853 {
2854         union e1000_adv_tx_desc *tx_desc = NULL;
2855         struct igb_buffer *buffer_info;
2856         u32 olinfo_status = 0, cmd_type_len;
2857         unsigned int i;
2858
2859         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2860                         E1000_ADVTXD_DCMD_DEXT);
2861
2862         if (tx_flags & IGB_TX_FLAGS_VLAN)
2863                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2864
2865         if (tx_flags & IGB_TX_FLAGS_TSO) {
2866                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2867
2868                 /* insert tcp checksum */
2869                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2870
2871                 /* insert ip checksum */
2872                 if (tx_flags & IGB_TX_FLAGS_IPV4)
2873                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2874
2875         } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2876                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2877         }
2878
2879         if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
2880             (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2881                          IGB_TX_FLAGS_VLAN)))
2882                 olinfo_status |= tx_ring->queue_index << 4;
2883
2884         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2885
2886         i = tx_ring->next_to_use;
2887         while (count--) {
2888                 buffer_info = &tx_ring->buffer_info[i];
2889                 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2890                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2891                 tx_desc->read.cmd_type_len =
2892                         cpu_to_le32(cmd_type_len | buffer_info->length);
2893                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2894                 i++;
2895                 if (i == tx_ring->count)
2896                         i = 0;
2897         }
2898
2899         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2900         /* Force memory writes to complete before letting h/w
2901          * know there are new descriptors to fetch.  (Only
2902          * applicable for weak-ordered memory model archs,
2903          * such as IA-64). */
2904         wmb();
2905
2906         tx_ring->next_to_use = i;
2907         writel(i, adapter->hw.hw_addr + tx_ring->tail);
2908         /* we need this if more than one processor can write to our tail
2909          * at a time, it syncronizes IO on IA64/Altix systems */
2910         mmiowb();
2911 }
2912
2913 static int __igb_maybe_stop_tx(struct net_device *netdev,
2914                                struct igb_ring *tx_ring, int size)
2915 {
2916         struct igb_adapter *adapter = netdev_priv(netdev);
2917
2918         netif_stop_subqueue(netdev, tx_ring->queue_index);
2919
2920         /* Herbert's original patch had:
2921          *  smp_mb__after_netif_stop_queue();
2922          * but since that doesn't exist yet, just open code it. */
2923         smp_mb();
2924
2925         /* We need to check again in a case another CPU has just
2926          * made room available. */
2927         if (IGB_DESC_UNUSED(tx_ring) < size)
2928                 return -EBUSY;
2929
2930         /* A reprieve! */
2931         netif_wake_subqueue(netdev, tx_ring->queue_index);
2932         ++adapter->restart_queue;
2933         return 0;
2934 }
2935
2936 static int igb_maybe_stop_tx(struct net_device *netdev,
2937                              struct igb_ring *tx_ring, int size)
2938 {
2939         if (IGB_DESC_UNUSED(tx_ring) >= size)
2940                 return 0;
2941         return __igb_maybe_stop_tx(netdev, tx_ring, size);
2942 }
2943
2944 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2945
2946 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2947                                    struct net_device *netdev,
2948                                    struct igb_ring *tx_ring)
2949 {
2950         struct igb_adapter *adapter = netdev_priv(netdev);
2951         unsigned int first;
2952         unsigned int tx_flags = 0;
2953         unsigned int len;
2954         u8 hdr_len = 0;
2955         int tso = 0;
2956
2957         len = skb_headlen(skb);
2958
2959         if (test_bit(__IGB_DOWN, &adapter->state)) {
2960                 dev_kfree_skb_any(skb);
2961                 return NETDEV_TX_OK;
2962         }
2963
2964         if (skb->len <= 0) {
2965                 dev_kfree_skb_any(skb);
2966                 return NETDEV_TX_OK;
2967         }
2968
2969         /* need: 1 descriptor per page,
2970          *       + 2 desc gap to keep tail from touching head,
2971          *       + 1 desc for skb->data,
2972          *       + 1 desc for context descriptor,
2973          * otherwise try next time */
2974         if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2975                 /* this is a hard error */
2976                 return NETDEV_TX_BUSY;
2977         }
2978         skb_orphan(skb);
2979
2980         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2981                 tx_flags |= IGB_TX_FLAGS_VLAN;
2982                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2983         }
2984
2985         if (skb->protocol == htons(ETH_P_IP))
2986                 tx_flags |= IGB_TX_FLAGS_IPV4;
2987
2988         first = tx_ring->next_to_use;
2989
2990         tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2991                                               &hdr_len) : 0;
2992
2993         if (tso < 0) {
2994                 dev_kfree_skb_any(skb);
2995                 return NETDEV_TX_OK;
2996         }
2997
2998         if (tso)
2999                 tx_flags |= IGB_TX_FLAGS_TSO;
3000         else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
3001                         if (skb->ip_summed == CHECKSUM_PARTIAL)
3002                                 tx_flags |= IGB_TX_FLAGS_CSUM;
3003
3004         igb_tx_queue_adv(adapter, tx_ring, tx_flags,
3005                          igb_tx_map_adv(adapter, tx_ring, skb, first),
3006                          skb->len, hdr_len);
3007
3008         netdev->trans_start = jiffies;
3009
3010         /* Make sure there is space in the ring for the next send. */
3011         igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3012
3013         return NETDEV_TX_OK;
3014 }
3015
3016 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3017 {
3018         struct igb_adapter *adapter = netdev_priv(netdev);
3019         struct igb_ring *tx_ring;
3020
3021         int r_idx = 0;
3022         r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1);
3023         tx_ring = adapter->multi_tx_table[r_idx];
3024
3025         /* This goes back to the question of how to logically map a tx queue
3026          * to a flow.  Right now, performance is impacted slightly negatively
3027          * if using multiple tx queues.  If the stack breaks away from a
3028          * single qdisc implementation, we can look at this again. */
3029         return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3030 }
3031
3032 /**
3033  * igb_tx_timeout - Respond to a Tx Hang
3034  * @netdev: network interface device structure
3035  **/
3036 static void igb_tx_timeout(struct net_device *netdev)
3037 {
3038         struct igb_adapter *adapter = netdev_priv(netdev);
3039         struct e1000_hw *hw = &adapter->hw;
3040
3041         /* Do the reset outside of interrupt context */
3042         adapter->tx_timeout_count++;
3043         schedule_work(&adapter->reset_task);
3044         wr32(E1000_EICS, adapter->eims_enable_mask &
3045                 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
3046 }
3047
3048 static void igb_reset_task(struct work_struct *work)
3049 {
3050         struct igb_adapter *adapter;
3051         adapter = container_of(work, struct igb_adapter, reset_task);
3052
3053         igb_reinit_locked(adapter);
3054 }
3055
3056 /**
3057  * igb_get_stats - Get System Network Statistics
3058  * @netdev: network interface device structure
3059  *
3060  * Returns the address of the device statistics structure.
3061  * The statistics are actually updated from the timer callback.
3062  **/
3063 static struct net_device_stats *
3064 igb_get_stats(struct net_device *netdev)
3065 {
3066         struct igb_adapter *adapter = netdev_priv(netdev);
3067
3068         /* only return the current stats */
3069         return &adapter->net_stats;
3070 }
3071
3072 /**
3073  * igb_change_mtu - Change the Maximum Transfer Unit
3074  * @netdev: network interface device structure
3075  * @new_mtu: new value for maximum frame size
3076  *
3077  * Returns 0 on success, negative on failure
3078  **/
3079 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3080 {
3081         struct igb_adapter *adapter = netdev_priv(netdev);
3082         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3083
3084         if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3085             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3086                 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3087                 return -EINVAL;
3088         }
3089
3090 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3091         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3092                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3093                 return -EINVAL;
3094         }
3095
3096         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3097                 msleep(1);
3098         /* igb_down has a dependency on max_frame_size */
3099         adapter->max_frame_size = max_frame;
3100         if (netif_running(netdev))
3101                 igb_down(adapter);
3102
3103         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3104          * means we reserve 2 more, this pushes us to allocate from the next
3105          * larger slab size.
3106          * i.e. RXBUFFER_2048 --> size-4096 slab
3107          */
3108
3109         if (max_frame <= IGB_RXBUFFER_256)
3110                 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3111         else if (max_frame <= IGB_RXBUFFER_512)
3112                 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3113         else if (max_frame <= IGB_RXBUFFER_1024)
3114                 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3115         else if (max_frame <= IGB_RXBUFFER_2048)
3116                 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3117         else
3118 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3119                 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3120 #else
3121                 adapter->rx_buffer_len = PAGE_SIZE / 2;
3122 #endif
3123         /* adjust allocation if LPE protects us, and we aren't using SBP */
3124         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3125              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3126                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3127
3128         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3129                  netdev->mtu, new_mtu);
3130         netdev->mtu = new_mtu;
3131
3132         if (netif_running(netdev))
3133                 igb_up(adapter);
3134         else
3135                 igb_reset(adapter);
3136
3137         clear_bit(__IGB_RESETTING, &adapter->state);
3138
3139         return 0;
3140 }
3141
3142 /**
3143  * igb_update_stats - Update the board statistics counters
3144  * @adapter: board private structure
3145  **/
3146
3147 void igb_update_stats(struct igb_adapter *adapter)
3148 {
3149         struct e1000_hw *hw = &adapter->hw;
3150         struct pci_dev *pdev = adapter->pdev;
3151         u16 phy_tmp;
3152
3153 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3154
3155         /*
3156          * Prevent stats update while adapter is being reset, or if the pci
3157          * connection is down.
3158          */
3159         if (adapter->link_speed == 0)
3160                 return;
3161         if (pci_channel_offline(pdev))
3162                 return;
3163
3164         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3165         adapter->stats.gprc += rd32(E1000_GPRC);
3166         adapter->stats.gorc += rd32(E1000_GORCL);
3167         rd32(E1000_GORCH); /* clear GORCL */
3168         adapter->stats.bprc += rd32(E1000_BPRC);
3169         adapter->stats.mprc += rd32(E1000_MPRC);
3170         adapter->stats.roc += rd32(E1000_ROC);
3171
3172         adapter->stats.prc64 += rd32(E1000_PRC64);
3173         adapter->stats.prc127 += rd32(E1000_PRC127);
3174         adapter->stats.prc255 += rd32(E1000_PRC255);
3175         adapter->stats.prc511 += rd32(E1000_PRC511);
3176         adapter->stats.prc1023 += rd32(E1000_PRC1023);
3177         adapter->stats.prc1522 += rd32(E1000_PRC1522);
3178         adapter->stats.symerrs += rd32(E1000_SYMERRS);
3179         adapter->stats.sec += rd32(E1000_SEC);
3180
3181         adapter->stats.mpc += rd32(E1000_MPC);
3182         adapter->stats.scc += rd32(E1000_SCC);
3183         adapter->stats.ecol += rd32(E1000_ECOL);
3184         adapter->stats.mcc += rd32(E1000_MCC);
3185         adapter->stats.latecol += rd32(E1000_LATECOL);
3186         adapter->stats.dc += rd32(E1000_DC);
3187         adapter->stats.rlec += rd32(E1000_RLEC);
3188         adapter->stats.xonrxc += rd32(E1000_XONRXC);
3189         adapter->stats.xontxc += rd32(E1000_XONTXC);
3190         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3191         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3192         adapter->stats.fcruc += rd32(E1000_FCRUC);
3193         adapter->stats.gptc += rd32(E1000_GPTC);
3194         adapter->stats.gotc += rd32(E1000_GOTCL);
3195         rd32(E1000_GOTCH); /* clear GOTCL */
3196         adapter->stats.rnbc += rd32(E1000_RNBC);
3197         adapter->stats.ruc += rd32(E1000_RUC);
3198         adapter->stats.rfc += rd32(E1000_RFC);
3199         adapter->stats.rjc += rd32(E1000_RJC);
3200         adapter->stats.tor += rd32(E1000_TORH);
3201         adapter->stats.tot += rd32(E1000_TOTH);
3202         adapter->stats.tpr += rd32(E1000_TPR);
3203
3204         adapter->stats.ptc64 += rd32(E1000_PTC64);
3205         adapter->stats.ptc127 += rd32(E1000_PTC127);
3206         adapter->stats.ptc255 += rd32(E1000_PTC255);
3207         adapter->stats.ptc511 += rd32(E1000_PTC511);
3208         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3209         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3210
3211         adapter->stats.mptc += rd32(E1000_MPTC);
3212         adapter->stats.bptc += rd32(E1000_BPTC);
3213
3214         /* used for adaptive IFS */
3215
3216         hw->mac.tx_packet_delta = rd32(E1000_TPT);
3217         adapter->stats.tpt += hw->mac.tx_packet_delta;
3218         hw->mac.collision_delta = rd32(E1000_COLC);
3219         adapter->stats.colc += hw->mac.collision_delta;
3220
3221         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3222         adapter->stats.rxerrc += rd32(E1000_RXERRC);
3223         adapter->stats.tncrs += rd32(E1000_TNCRS);
3224         adapter->stats.tsctc += rd32(E1000_TSCTC);
3225         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3226
3227         adapter->stats.iac += rd32(E1000_IAC);
3228         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3229         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3230         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3231         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3232         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3233         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3234         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3235         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3236
3237         /* Fill out the OS statistics structure */
3238         adapter->net_stats.multicast = adapter->stats.mprc;
3239         adapter->net_stats.collisions = adapter->stats.colc;
3240
3241         /* Rx Errors */
3242
3243         /* RLEC on some newer hardware can be incorrect so build
3244         * our own version based on RUC and ROC */
3245         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3246                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3247                 adapter->stats.ruc + adapter->stats.roc +
3248                 adapter->stats.cexterr;
3249         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3250                                               adapter->stats.roc;
3251         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3252         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3253         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3254
3255         /* Tx Errors */
3256         adapter->net_stats.tx_errors = adapter->stats.ecol +
3257                                        adapter->stats.latecol;
3258         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3259         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3260         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3261
3262         /* Tx Dropped needs to be maintained elsewhere */
3263
3264         /* Phy Stats */
3265         if (hw->phy.media_type == e1000_media_type_copper) {
3266                 if ((adapter->link_speed == SPEED_1000) &&
3267                    (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
3268                                               &phy_tmp))) {
3269                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3270                         adapter->phy_stats.idle_errors += phy_tmp;
3271                 }
3272         }
3273
3274         /* Management Stats */
3275         adapter->stats.mgptc += rd32(E1000_MGTPTC);
3276         adapter->stats.mgprc += rd32(E1000_MGTPRC);
3277         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3278 }
3279
3280
3281 static irqreturn_t igb_msix_other(int irq, void *data)
3282 {
3283         struct net_device *netdev = data;
3284         struct igb_adapter *adapter = netdev_priv(netdev);
3285         struct e1000_hw *hw = &adapter->hw;
3286         u32 icr = rd32(E1000_ICR);
3287
3288         /* reading ICR causes bit 31 of EICR to be cleared */
3289
3290         if(icr & E1000_ICR_DOUTSYNC) {
3291                 /* HW is reporting DMA is out of sync */
3292                 adapter->stats.doosync++;
3293         }
3294         if (!(icr & E1000_ICR_LSC))
3295                 goto no_link_interrupt;
3296         hw->mac.get_link_status = 1;
3297         /* guard against interrupt when we're going down */
3298         if (!test_bit(__IGB_DOWN, &adapter->state))
3299                 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3300
3301 no_link_interrupt:
3302         wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
3303         wr32(E1000_EIMS, adapter->eims_other);
3304
3305         return IRQ_HANDLED;
3306 }
3307
3308 static irqreturn_t igb_msix_tx(int irq, void *data)
3309 {
3310         struct igb_ring *tx_ring = data;
3311         struct igb_adapter *adapter = tx_ring->adapter;
3312         struct e1000_hw *hw = &adapter->hw;
3313
3314 #ifdef CONFIG_IGB_DCA
3315         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3316                 igb_update_tx_dca(tx_ring);
3317 #endif
3318         tx_ring->total_bytes = 0;
3319         tx_ring->total_packets = 0;
3320
3321         /* auto mask will automatically reenable the interrupt when we write
3322          * EICS */
3323         if (!igb_clean_tx_irq(tx_ring))
3324                 /* Ring was not completely cleaned, so fire another interrupt */
3325                 wr32(E1000_EICS, tx_ring->eims_value);
3326         else
3327                 wr32(E1000_EIMS, tx_ring->eims_value);
3328
3329         return IRQ_HANDLED;
3330 }
3331
3332 static void igb_write_itr(struct igb_ring *ring)
3333 {
3334         struct e1000_hw *hw = &ring->adapter->hw;
3335         if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3336                 switch (hw->mac.type) {
3337                 case e1000_82576:
3338                         wr32(ring->itr_register,
3339                              ring->itr_val |
3340                              0x80000000);
3341                         break;
3342                 default:
3343                         wr32(ring->itr_register,
3344                              ring->itr_val |
3345                              (ring->itr_val << 16));
3346                         break;
3347                 }
3348                 ring->set_itr = 0;
3349         }
3350 }
3351
3352 static irqreturn_t igb_msix_rx(int irq, void *data)
3353 {
3354         struct igb_ring *rx_ring = data;
3355
3356         /* Write the ITR value calculated at the end of the
3357          * previous interrupt.
3358          */
3359
3360         igb_write_itr(rx_ring);
3361
3362         if (napi_schedule_prep(&rx_ring->napi))
3363                 __napi_schedule(&rx_ring->napi);
3364
3365 #ifdef CONFIG_IGB_DCA
3366         if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
3367                 igb_update_rx_dca(rx_ring);
3368 #endif
3369                 return IRQ_HANDLED;
3370 }
3371
3372 #ifdef CONFIG_IGB_DCA
3373 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3374 {
3375         u32 dca_rxctrl;
3376         struct igb_adapter *adapter = rx_ring->adapter;
3377         struct e1000_hw *hw = &adapter->hw;
3378         int cpu = get_cpu();
3379         int q = rx_ring->reg_idx;
3380
3381         if (rx_ring->cpu != cpu) {
3382                 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3383                 if (hw->mac.type == e1000_82576) {
3384                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3385                         dca_rxctrl |= dca_get_tag(cpu) <<
3386                                       E1000_DCA_RXCTRL_CPUID_SHIFT;
3387                 } else {
3388                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3389                         dca_rxctrl |= dca_get_tag(cpu);
3390                 }
3391                 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3392                 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3393                 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3394                 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3395                 rx_ring->cpu = cpu;
3396         }
3397         put_cpu();
3398 }
3399
3400 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3401 {
3402         u32 dca_txctrl;
3403         struct igb_adapter *adapter = tx_ring->adapter;
3404         struct e1000_hw *hw = &adapter->hw;
3405         int cpu = get_cpu();
3406         int q = tx_ring->reg_idx;
3407
3408         if (tx_ring->cpu != cpu) {
3409                 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3410                 if (hw->mac.type == e1000_82576) {
3411                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3412                         dca_txctrl |= dca_get_tag(cpu) <<
3413                                       E1000_DCA_TXCTRL_CPUID_SHIFT;
3414                 } else {
3415                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3416                         dca_txctrl |= dca_get_tag(cpu);
3417                 }
3418                 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3419                 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3420                 tx_ring->cpu = cpu;
3421         }
3422         put_cpu();
3423 }
3424
3425 static void igb_setup_dca(struct igb_adapter *adapter)
3426 {
3427         int i;
3428
3429         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3430                 return;
3431
3432         for (i = 0; i < adapter->num_tx_queues; i++) {
3433                 adapter->tx_ring[i].cpu = -1;
3434                 igb_update_tx_dca(&adapter->tx_ring[i]);
3435         }
3436         for (i = 0; i < adapter->num_rx_queues; i++) {
3437                 adapter->rx_ring[i].cpu = -1;
3438                 igb_update_rx_dca(&adapter->rx_ring[i]);
3439         }
3440 }
3441
3442 static int __igb_notify_dca(struct device *dev, void *data)
3443 {
3444         struct net_device *netdev = dev_get_drvdata(dev);
3445         struct igb_adapter *adapter = netdev_priv(netdev);
3446         struct e1000_hw *hw = &adapter->hw;
3447         unsigned long event = *(unsigned long *)data;
3448
3449         switch (event) {
3450         case DCA_PROVIDER_ADD:
3451                 /* if already enabled, don't do it again */
3452                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3453                         break;
3454                 /* Always use CB2 mode, difference is masked
3455                  * in the CB driver. */
3456                 wr32(E1000_DCA_CTRL, 2);
3457                 if (dca_add_requester(dev) == 0) {
3458                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
3459                         dev_info(&adapter->pdev->dev, "DCA enabled\n");
3460                         igb_setup_dca(adapter);
3461                         break;
3462                 }
3463                 /* Fall Through since DCA is disabled. */
3464         case DCA_PROVIDER_REMOVE:
3465                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3466                         /* without this a class_device is left
3467                          * hanging around in the sysfs model */
3468                         dca_remove_requester(dev);
3469                         dev_info(&adapter->pdev->dev, "DCA disabled\n");
3470                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3471                         wr32(E1000_DCA_CTRL, 1);
3472                 }
3473                 break;
3474         }
3475
3476         return 0;
3477 }
3478
3479 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3480                           void *p)
3481 {
3482         int ret_val;
3483
3484         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3485                                          __igb_notify_dca);
3486
3487         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3488 }
3489 #endif /* CONFIG_IGB_DCA */
3490
3491 /**
3492  * igb_intr_msi - Interrupt Handler
3493  * @irq: interrupt number
3494  * @data: pointer to a network interface device structure
3495  **/
3496 static irqreturn_t igb_intr_msi(int irq, void *data)
3497 {
3498         struct net_device *netdev = data;
3499         struct igb_adapter *adapter = netdev_priv(netdev);
3500         struct e1000_hw *hw = &adapter->hw;
3501         /* read ICR disables interrupts using IAM */
3502         u32 icr = rd32(E1000_ICR);
3503
3504         igb_write_itr(adapter->rx_ring);
3505
3506         if(icr & E1000_ICR_DOUTSYNC) {
3507                 /* HW is reporting DMA is out of sync */
3508                 adapter->stats.doosync++;
3509         }
3510
3511         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3512                 hw->mac.get_link_status = 1;
3513                 if (!test_bit(__IGB_DOWN, &adapter->state))
3514                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3515         }
3516
3517         napi_schedule(&adapter->rx_ring[0].napi);
3518
3519         return IRQ_HANDLED;
3520 }
3521
3522 /**
3523  * igb_intr - Interrupt Handler
3524  * @irq: interrupt number
3525  * @data: pointer to a network interface device structure
3526  **/
3527 static irqreturn_t igb_intr(int irq, void *data)
3528 {
3529         struct net_device *netdev = data;
3530         struct igb_adapter *adapter = netdev_priv(netdev);
3531         struct e1000_hw *hw = &adapter->hw;
3532         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3533          * need for the IMC write */
3534         u32 icr = rd32(E1000_ICR);
3535         u32 eicr = 0;
3536         if (!icr)
3537                 return IRQ_NONE;  /* Not our interrupt */
3538
3539         igb_write_itr(adapter->rx_ring);
3540
3541         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3542          * not set, then the adapter didn't send an interrupt */
3543         if (!(icr & E1000_ICR_INT_ASSERTED))
3544                 return IRQ_NONE;
3545
3546         if(icr & E1000_ICR_DOUTSYNC) {
3547                 /* HW is reporting DMA is out of sync */
3548                 adapter->stats.doosync++;
3549         }
3550
3551         eicr = rd32(E1000_EICR);
3552
3553         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3554                 hw->mac.get_link_status = 1;
3555                 /* guard against interrupt when we're going down */
3556                 if (!test_bit(__IGB_DOWN, &adapter->state))
3557                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3558         }
3559
3560         napi_schedule(&adapter->rx_ring[0].napi);
3561
3562         return IRQ_HANDLED;
3563 }
3564
3565 /**
3566  * igb_poll - NAPI Rx polling callback
3567  * @napi: napi polling structure
3568  * @budget: count of how many packets we should handle
3569  **/
3570 static int igb_poll(struct napi_struct *napi, int budget)
3571 {
3572         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3573         struct igb_adapter *adapter = rx_ring->adapter;
3574         struct net_device *netdev = adapter->netdev;
3575         int tx_clean_complete, work_done = 0;
3576
3577         /* this poll routine only supports one tx and one rx queue */
3578 #ifdef CONFIG_IGB_DCA
3579         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3580                 igb_update_tx_dca(&adapter->tx_ring[0]);
3581 #endif
3582         tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]);
3583
3584 #ifdef CONFIG_IGB_DCA
3585         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3586                 igb_update_rx_dca(&adapter->rx_ring[0]);
3587 #endif
3588         igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget);
3589
3590         /* If no Tx and not enough Rx work done, exit the polling mode */
3591         if ((tx_clean_complete && (work_done < budget)) ||
3592             !netif_running(netdev)) {
3593                 if (adapter->itr_setting & 3)
3594                         igb_set_itr(adapter);
3595                 napi_complete(napi);
3596                 if (!test_bit(__IGB_DOWN, &adapter->state))
3597                         igb_irq_enable(adapter);
3598                 return 0;
3599         }
3600
3601         return 1;
3602 }
3603
3604 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3605 {
3606         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3607         struct igb_adapter *adapter = rx_ring->adapter;
3608         struct e1000_hw *hw = &adapter->hw;
3609         struct net_device *netdev = adapter->netdev;
3610         int work_done = 0;
3611
3612 #ifdef CONFIG_IGB_DCA
3613         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3614                 igb_update_rx_dca(rx_ring);
3615 #endif
3616         igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
3617
3618
3619         /* If not enough Rx work done, exit the polling mode */
3620         if ((work_done == 0) || !netif_running(netdev)) {
3621                 napi_complete(napi);
3622
3623                 if (adapter->itr_setting & 3) {
3624                         if (adapter->num_rx_queues == 1)
3625                                 igb_set_itr(adapter);
3626                         else
3627                                 igb_update_ring_itr(rx_ring);
3628                 }
3629
3630                 if (!test_bit(__IGB_DOWN, &adapter->state))
3631                         wr32(E1000_EIMS, rx_ring->eims_value);
3632
3633                 return 0;
3634         }
3635
3636         return 1;
3637 }
3638
3639 /**
3640  * igb_clean_tx_irq - Reclaim resources after transmit completes
3641  * @adapter: board private structure
3642  * returns true if ring is completely cleaned
3643  **/
3644 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
3645 {
3646         struct igb_adapter *adapter = tx_ring->adapter;
3647         struct net_device *netdev = adapter->netdev;
3648         struct e1000_hw *hw = &adapter->hw;
3649         struct igb_buffer *buffer_info;
3650         struct sk_buff *skb;
3651         union e1000_adv_tx_desc *tx_desc, *eop_desc;
3652         unsigned int total_bytes = 0, total_packets = 0;
3653         unsigned int i, eop, count = 0;
3654         bool cleaned = false;
3655
3656         i = tx_ring->next_to_clean;
3657         eop = tx_ring->buffer_info[i].next_to_watch;
3658         eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
3659
3660         while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3661                (count < tx_ring->count)) {
3662                 for (cleaned = false; !cleaned; count++) {
3663                         tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3664                         buffer_info = &tx_ring->buffer_info[i];
3665                         cleaned = (i == eop);
3666                         skb = buffer_info->skb;
3667
3668                         if (skb) {
3669                                 unsigned int segs, bytecount;
3670                                 /* gso_segs is currently only valid for tcp */
3671                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3672                                 /* multiply data chunks by size of headers */
3673                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3674                                             skb->len;
3675                                 total_packets += segs;
3676                                 total_bytes += bytecount;
3677                         }
3678
3679                         igb_unmap_and_free_tx_resource(adapter, buffer_info);
3680                         tx_desc->wb.status = 0;
3681
3682                         i++;
3683                         if (i == tx_ring->count)
3684                                 i = 0;
3685                 }
3686
3687                 eop = tx_ring->buffer_info[i].next_to_watch;
3688                 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
3689         }
3690
3691         tx_ring->next_to_clean = i;
3692
3693         if (unlikely(count &&
3694                      netif_carrier_ok(netdev) &&
3695                      IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3696                 /* Make sure that anybody stopping the queue after this
3697                  * sees the new next_to_clean.
3698                  */
3699                 smp_mb();
3700                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
3701                     !(test_bit(__IGB_DOWN, &adapter->state))) {
3702                         netif_wake_subqueue(netdev, tx_ring->queue_index);
3703                         ++adapter->restart_queue;
3704                 }
3705         }
3706
3707         if (tx_ring->detect_tx_hung) {
3708                 /* Detect a transmit hang in hardware, this serializes the
3709                  * check with the clearing of time_stamp and movement of i */
3710                 tx_ring->detect_tx_hung = false;
3711                 if (tx_ring->buffer_info[i].time_stamp &&
3712                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3713                                (adapter->tx_timeout_factor * HZ))
3714                     && !(rd32(E1000_STATUS) &
3715                          E1000_STATUS_TXOFF)) {
3716
3717                         /* detected Tx unit hang */
3718                         dev_err(&adapter->pdev->dev,
3719                                 "Detected Tx Unit Hang\n"
3720                                 "  Tx Queue             <%d>\n"
3721                                 "  TDH                  <%x>\n"
3722                                 "  TDT                  <%x>\n"
3723                                 "  next_to_use          <%x>\n"
3724                                 "  next_to_clean        <%x>\n"
3725                                 "buffer_info[next_to_clean]\n"
3726                                 "  time_stamp           <%lx>\n"
3727                                 "  next_to_watch        <%x>\n"
3728                                 "  jiffies              <%lx>\n"
3729                                 "  desc.status          <%x>\n",
3730                                 tx_ring->queue_index,
3731                                 readl(adapter->hw.hw_addr + tx_ring->head),
3732                                 readl(adapter->hw.hw_addr + tx_ring->tail),
3733                                 tx_ring->next_to_use,
3734                                 tx_ring->next_to_clean,
3735                                 tx_ring->buffer_info[i].time_stamp,
3736                                 eop,
3737                                 jiffies,
3738                                 eop_desc->wb.status);
3739                         netif_stop_subqueue(netdev, tx_ring->queue_index);
3740                 }
3741         }
3742         tx_ring->total_bytes += total_bytes;
3743         tx_ring->total_packets += total_packets;
3744         tx_ring->tx_stats.bytes += total_bytes;
3745         tx_ring->tx_stats.packets += total_packets;
3746         adapter->net_stats.tx_bytes += total_bytes;
3747         adapter->net_stats.tx_packets += total_packets;
3748         return (count < tx_ring->count);
3749 }
3750
3751 /**
3752  * igb_receive_skb - helper function to handle rx indications
3753  * @ring: pointer to receive ring receving this packet
3754  * @status: descriptor status field as written by hardware
3755  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3756  * @skb: pointer to sk_buff to be indicated to stack
3757  **/
3758 static void igb_receive_skb(struct igb_ring *ring, u8 status,
3759                             union e1000_adv_rx_desc * rx_desc,
3760                             struct sk_buff *skb)
3761 {
3762         struct igb_adapter * adapter = ring->adapter;
3763         bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
3764
3765         skb_record_rx_queue(skb, ring->queue_index);
3766         if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3767                 if (vlan_extracted)
3768                         vlan_gro_receive(&ring->napi, adapter->vlgrp,
3769                                          le16_to_cpu(rx_desc->wb.upper.vlan),
3770                                          skb);
3771                 else
3772                         napi_gro_receive(&ring->napi, skb);
3773         } else {
3774                 if (vlan_extracted)
3775                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3776                                           le16_to_cpu(rx_desc->wb.upper.vlan));
3777                 else
3778                         netif_receive_skb(skb);
3779         }
3780 }
3781
3782
3783 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3784                                        u32 status_err, struct sk_buff *skb)
3785 {
3786         skb->ip_summed = CHECKSUM_NONE;
3787
3788         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3789         if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3790                 return;
3791         /* TCP/UDP checksum error bit is set */
3792         if (status_err &
3793             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3794                 /* let the stack verify checksum errors */
3795                 adapter->hw_csum_err++;
3796                 return;
3797         }
3798         /* It must be a TCP or UDP packet with a valid checksum */
3799         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3800                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3801
3802         adapter->hw_csum_good++;
3803 }
3804
3805 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3806                                  int *work_done, int budget)
3807 {
3808         struct igb_adapter *adapter = rx_ring->adapter;
3809         struct net_device *netdev = adapter->netdev;
3810         struct pci_dev *pdev = adapter->pdev;
3811         union e1000_adv_rx_desc *rx_desc , *next_rxd;
3812         struct igb_buffer *buffer_info , *next_buffer;
3813         struct sk_buff *skb;
3814         unsigned int i;
3815         u32 length, hlen, staterr;
3816         bool cleaned = false;
3817         int cleaned_count = 0;
3818         unsigned int total_bytes = 0, total_packets = 0;
3819
3820         i = rx_ring->next_to_clean;
3821         buffer_info = &rx_ring->buffer_info[i];
3822         rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3823         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3824
3825         while (staterr & E1000_RXD_STAT_DD) {
3826                 if (*work_done >= budget)
3827                         break;
3828                 (*work_done)++;
3829
3830                 skb = buffer_info->skb;
3831                 prefetch(skb->data - NET_IP_ALIGN);
3832                 buffer_info->skb = NULL;
3833
3834                 i++;
3835                 if (i == rx_ring->count)
3836                         i = 0;
3837                 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3838                 prefetch(next_rxd);
3839                 next_buffer = &rx_ring->buffer_info[i];
3840
3841                 length = le16_to_cpu(rx_desc->wb.upper.length);
3842                 cleaned = true;
3843                 cleaned_count++;
3844
3845                 if (!adapter->rx_ps_hdr_size) {
3846                         pci_unmap_single(pdev, buffer_info->dma,
3847                                          adapter->rx_buffer_len +
3848                                            NET_IP_ALIGN,
3849                                          PCI_DMA_FROMDEVICE);
3850                         skb_put(skb, length);
3851                         goto send_up;
3852                 }
3853
3854                 /* HW will not DMA in data larger than the given buffer, even
3855                  * if it parses the (NFS, of course) header to be larger.  In
3856                  * that case, it fills the header buffer and spills the rest
3857                  * into the page.
3858                  */
3859                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3860                   E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
3861                 if (hlen > adapter->rx_ps_hdr_size)
3862                         hlen = adapter->rx_ps_hdr_size;
3863
3864                 if (!skb_shinfo(skb)->nr_frags) {
3865                         pci_unmap_single(pdev, buffer_info->dma,
3866                                          adapter->rx_ps_hdr_size +
3867                                            NET_IP_ALIGN,
3868                                          PCI_DMA_FROMDEVICE);
3869                         skb_put(skb, hlen);
3870                 }
3871
3872                 if (length) {
3873                         pci_unmap_page(pdev, buffer_info->page_dma,
3874                                        PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
3875                         buffer_info->page_dma = 0;
3876
3877                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
3878                                                 buffer_info->page,
3879                                                 buffer_info->page_offset,
3880                                                 length);
3881
3882                         if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
3883                             (page_count(buffer_info->page) != 1))
3884                                 buffer_info->page = NULL;
3885                         else
3886                                 get_page(buffer_info->page);
3887
3888                         skb->len += length;
3889                         skb->data_len += length;
3890
3891                         skb->truesize += length;
3892                 }
3893
3894                 if (!(staterr & E1000_RXD_STAT_EOP)) {
3895                         buffer_info->skb = next_buffer->skb;
3896                         buffer_info->dma = next_buffer->dma;
3897                         next_buffer->skb = skb;
3898                         next_buffer->dma = 0;
3899                         goto next_desc;
3900                 }
3901 send_up:
3902                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3903                         dev_kfree_skb_irq(skb);
3904                         goto next_desc;
3905                 }
3906
3907                 total_bytes += skb->len;
3908                 total_packets++;
3909
3910                 igb_rx_checksum_adv(adapter, staterr, skb);
3911
3912                 skb->protocol = eth_type_trans(skb, netdev);
3913
3914                 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
3915
3916 next_desc:
3917                 rx_desc->wb.upper.status_error = 0;
3918
3919                 /* return some buffers to hardware, one at a time is too slow */
3920                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3921                         igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3922                         cleaned_count = 0;
3923                 }
3924
3925                 /* use prefetched values */
3926                 rx_desc = next_rxd;
3927                 buffer_info = next_buffer;
3928                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3929         }
3930
3931         rx_ring->next_to_clean = i;
3932         cleaned_count = IGB_DESC_UNUSED(rx_ring);
3933
3934         if (cleaned_count)
3935                 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3936
3937         rx_ring->total_packets += total_packets;
3938         rx_ring->total_bytes += total_bytes;
3939         rx_ring->rx_stats.packets += total_packets;
3940         rx_ring->rx_stats.bytes += total_bytes;
3941         adapter->net_stats.rx_bytes += total_bytes;
3942         adapter->net_stats.rx_packets += total_packets;
3943         return cleaned;
3944 }
3945
3946
3947 /**
3948  * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3949  * @adapter: address of board private structure
3950  **/
3951 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
3952                                      int cleaned_count)
3953 {
3954         struct igb_adapter *adapter = rx_ring->adapter;
3955         struct net_device *netdev = adapter->netdev;
3956         struct pci_dev *pdev = adapter->pdev;
3957         union e1000_adv_rx_desc *rx_desc;
3958         struct igb_buffer *buffer_info;
3959         struct sk_buff *skb;
3960         unsigned int i;
3961         int bufsz;
3962
3963         i = rx_ring->next_to_use;
3964         buffer_info = &rx_ring->buffer_info[i];
3965
3966         if (adapter->rx_ps_hdr_size)
3967                 bufsz = adapter->rx_ps_hdr_size;
3968         else
3969                 bufsz = adapter->rx_buffer_len;
3970         bufsz += NET_IP_ALIGN;
3971
3972         while (cleaned_count--) {
3973                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3974
3975                 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
3976                         if (!buffer_info->page) {
3977                                 buffer_info->page = alloc_page(GFP_ATOMIC);
3978                                 if (!buffer_info->page) {
3979                                         adapter->alloc_rx_buff_failed++;
3980                                         goto no_buffers;
3981                                 }
3982                                 buffer_info->page_offset = 0;
3983                         } else {
3984                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
3985                         }
3986                         buffer_info->page_dma =
3987                                 pci_map_page(pdev, buffer_info->page,
3988                                              buffer_info->page_offset,
3989                                              PAGE_SIZE / 2,
3990                                              PCI_DMA_FROMDEVICE);
3991                 }
3992
3993                 if (!buffer_info->skb) {
3994                         skb = netdev_alloc_skb(netdev, bufsz);
3995                         if (!skb) {
3996                                 adapter->alloc_rx_buff_failed++;
3997                                 goto no_buffers;
3998                         }
3999
4000                         /* Make buffer alignment 2 beyond a 16 byte boundary
4001                          * this will result in a 16 byte aligned IP header after
4002                          * the 14 byte MAC header is removed
4003                          */
4004                         skb_reserve(skb, NET_IP_ALIGN);
4005
4006                         buffer_info->skb = skb;
4007                         buffer_info->dma = pci_map_single(pdev, skb->data,
4008                                                           bufsz,
4009                                                           PCI_DMA_FROMDEVICE);
4010                 }
4011                 /* Refresh the desc even if buffer_addrs didn't change because
4012                  * each write-back erases this info. */
4013                 if (adapter->rx_ps_hdr_size) {
4014                         rx_desc->read.pkt_addr =
4015                              cpu_to_le64(buffer_info->page_dma);
4016                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4017                 } else {
4018                         rx_desc->read.pkt_addr =
4019                              cpu_to_le64(buffer_info->dma);
4020                         rx_desc->read.hdr_addr = 0;
4021                 }
4022
4023                 i++;
4024                 if (i == rx_ring->count)
4025                         i = 0;
4026                 buffer_info = &rx_ring->buffer_info[i];
4027         }
4028
4029 no_buffers:
4030         if (rx_ring->next_to_use != i) {
4031                 rx_ring->next_to_use = i;
4032                 if (i == 0)
4033                         i = (rx_ring->count - 1);
4034                 else
4035                         i--;
4036
4037                 /* Force memory writes to complete before letting h/w
4038                  * know there are new descriptors to fetch.  (Only
4039                  * applicable for weak-ordered memory model archs,
4040                  * such as IA-64). */
4041                 wmb();
4042                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4043         }
4044 }
4045
4046 /**
4047  * igb_mii_ioctl -
4048  * @netdev:
4049  * @ifreq:
4050  * @cmd:
4051  **/
4052 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4053 {
4054         struct igb_adapter *adapter = netdev_priv(netdev);
4055         struct mii_ioctl_data *data = if_mii(ifr);
4056
4057         if (adapter->hw.phy.media_type != e1000_media_type_copper)
4058                 return -EOPNOTSUPP;
4059
4060         switch (cmd) {
4061         case SIOCGMIIPHY:
4062                 data->phy_id = adapter->hw.phy.addr;
4063                 break;
4064         case SIOCGMIIREG:
4065                 if (!capable(CAP_NET_ADMIN))
4066                         return -EPERM;
4067                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4068                                      &data->val_out))
4069                         return -EIO;
4070                 break;
4071         case SIOCSMIIREG:
4072         default:
4073                 return -EOPNOTSUPP;
4074         }
4075         return 0;
4076 }
4077
4078 /**
4079  * igb_ioctl -
4080  * @netdev:
4081  * @ifreq:
4082  * @cmd:
4083  **/
4084 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4085 {
4086         switch (cmd) {
4087         case SIOCGMIIPHY:
4088         case SIOCGMIIREG:
4089         case SIOCSMIIREG:
4090                 return igb_mii_ioctl(netdev, ifr, cmd);
4091         default:
4092                 return -EOPNOTSUPP;
4093         }
4094 }
4095
4096 static void igb_vlan_rx_register(struct net_device *netdev,
4097                                  struct vlan_group *grp)
4098 {
4099         struct igb_adapter *adapter = netdev_priv(netdev);
4100         struct e1000_hw *hw = &adapter->hw;
4101         u32 ctrl, rctl;
4102
4103         igb_irq_disable(adapter);
4104         adapter->vlgrp = grp;
4105
4106         if (grp) {
4107                 /* enable VLAN tag insert/strip */
4108                 ctrl = rd32(E1000_CTRL);
4109                 ctrl |= E1000_CTRL_VME;
4110                 wr32(E1000_CTRL, ctrl);
4111
4112                 /* enable VLAN receive filtering */
4113                 rctl = rd32(E1000_RCTL);
4114                 rctl &= ~E1000_RCTL_CFIEN;
4115                 wr32(E1000_RCTL, rctl);
4116                 igb_update_mng_vlan(adapter);
4117                 wr32(E1000_RLPML,
4118                                 adapter->max_frame_size + VLAN_TAG_SIZE);
4119         } else {
4120                 /* disable VLAN tag insert/strip */
4121                 ctrl = rd32(E1000_CTRL);
4122                 ctrl &= ~E1000_CTRL_VME;
4123                 wr32(E1000_CTRL, ctrl);
4124
4125                 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4126                         igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4127                         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4128                 }
4129                 wr32(E1000_RLPML,
4130                                 adapter->max_frame_size);
4131         }
4132
4133         if (!test_bit(__IGB_DOWN, &adapter->state))
4134                 igb_irq_enable(adapter);
4135 }
4136
4137 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4138 {
4139         struct igb_adapter *adapter = netdev_priv(netdev);
4140         struct e1000_hw *hw = &adapter->hw;
4141         u32 vfta, index;
4142
4143         if ((adapter->hw.mng_cookie.status &
4144              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4145             (vid == adapter->mng_vlan_id))
4146                 return;
4147         /* add VID to filter table */
4148         index = (vid >> 5) & 0x7F;
4149         vfta = array_rd32(E1000_VFTA, index);
4150         vfta |= (1 << (vid & 0x1F));
4151         igb_write_vfta(&adapter->hw, index, vfta);
4152 }
4153
4154 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4155 {
4156         struct igb_adapter *adapter = netdev_priv(netdev);
4157         struct e1000_hw *hw = &adapter->hw;
4158         u32 vfta, index;
4159
4160         igb_irq_disable(adapter);
4161         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4162
4163         if (!test_bit(__IGB_DOWN, &adapter->state))
4164                 igb_irq_enable(adapter);
4165
4166         if ((adapter->hw.mng_cookie.status &
4167              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4168             (vid == adapter->mng_vlan_id)) {
4169                 /* release control to f/w */
4170                 igb_release_hw_control(adapter);
4171                 return;
4172         }
4173
4174         /* remove VID from filter table */
4175         index = (vid >> 5) & 0x7F;
4176         vfta = array_rd32(E1000_VFTA, index);
4177         vfta &= ~(1 << (vid & 0x1F));
4178         igb_write_vfta(&adapter->hw, index, vfta);
4179 }
4180
4181 static void igb_restore_vlan(struct igb_adapter *adapter)
4182 {
4183         igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4184
4185         if (adapter->vlgrp) {
4186                 u16 vid;
4187                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4188                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4189                                 continue;
4190                         igb_vlan_rx_add_vid(adapter->netdev, vid);
4191                 }
4192         }
4193 }
4194
4195 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4196 {
4197         struct e1000_mac_info *mac = &adapter->hw.mac;
4198
4199         mac->autoneg = 0;
4200
4201         /* Fiber NICs only allow 1000 gbps Full duplex */
4202         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
4203                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4204                 dev_err(&adapter->pdev->dev,
4205                         "Unsupported Speed/Duplex configuration\n");
4206                 return -EINVAL;
4207         }
4208
4209         switch (spddplx) {
4210         case SPEED_10 + DUPLEX_HALF:
4211                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4212                 break;
4213         case SPEED_10 + DUPLEX_FULL:
4214                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4215                 break;
4216         case SPEED_100 + DUPLEX_HALF:
4217                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4218                 break;
4219         case SPEED_100 + DUPLEX_FULL:
4220                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4221                 break;
4222         case SPEED_1000 + DUPLEX_FULL:
4223                 mac->autoneg = 1;
4224                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4225                 break;
4226         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4227         default:
4228                 dev_err(&adapter->pdev->dev,
4229                         "Unsupported Speed/Duplex configuration\n");
4230                 return -EINVAL;
4231         }
4232         return 0;
4233 }
4234
4235
4236 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
4237 {
4238         struct net_device *netdev = pci_get_drvdata(pdev);
4239         struct igb_adapter *adapter = netdev_priv(netdev);
4240         struct e1000_hw *hw = &adapter->hw;
4241         u32 ctrl, rctl, status;
4242         u32 wufc = adapter->wol;
4243 #ifdef CONFIG_PM
4244         int retval = 0;
4245 #endif
4246
4247         netif_device_detach(netdev);
4248
4249         if (netif_running(netdev))
4250                 igb_close(netdev);
4251
4252         igb_reset_interrupt_capability(adapter);
4253
4254         igb_free_queues(adapter);
4255
4256 #ifdef CONFIG_PM
4257         retval = pci_save_state(pdev);
4258         if (retval)
4259                 return retval;
4260 #endif
4261
4262         status = rd32(E1000_STATUS);
4263         if (status & E1000_STATUS_LU)
4264                 wufc &= ~E1000_WUFC_LNKC;
4265
4266         if (wufc) {
4267                 igb_setup_rctl(adapter);
4268                 igb_set_multi(netdev);
4269
4270                 /* turn on all-multi mode if wake on multicast is enabled */
4271                 if (wufc & E1000_WUFC_MC) {
4272                         rctl = rd32(E1000_RCTL);
4273                         rctl |= E1000_RCTL_MPE;
4274                         wr32(E1000_RCTL, rctl);
4275                 }
4276
4277                 ctrl = rd32(E1000_CTRL);
4278                 /* advertise wake from D3Cold */
4279                 #define E1000_CTRL_ADVD3WUC 0x00100000
4280                 /* phy power management enable */
4281                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4282                 ctrl |= E1000_CTRL_ADVD3WUC;
4283                 wr32(E1000_CTRL, ctrl);
4284
4285                 /* Allow time for pending master requests to run */
4286                 igb_disable_pcie_master(&adapter->hw);
4287
4288                 wr32(E1000_WUC, E1000_WUC_PME_EN);
4289                 wr32(E1000_WUFC, wufc);
4290         } else {
4291                 wr32(E1000_WUC, 0);
4292                 wr32(E1000_WUFC, 0);
4293         }
4294
4295         /* make sure adapter isn't asleep if manageability/wol is enabled */
4296         if (wufc || adapter->en_mng_pt) {
4297                 pci_enable_wake(pdev, PCI_D3hot, 1);
4298                 pci_enable_wake(pdev, PCI_D3cold, 1);
4299         } else {
4300                 igb_shutdown_fiber_serdes_link_82575(hw);
4301                 pci_enable_wake(pdev, PCI_D3hot, 0);
4302                 pci_enable_wake(pdev, PCI_D3cold, 0);
4303         }
4304
4305         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4306          * would have already happened in close and is redundant. */
4307         igb_release_hw_control(adapter);
4308
4309         pci_disable_device(pdev);
4310
4311         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4312
4313         return 0;
4314 }
4315
4316 #ifdef CONFIG_PM
4317 static int igb_resume(struct pci_dev *pdev)
4318 {
4319         struct net_device *netdev = pci_get_drvdata(pdev);
4320         struct igb_adapter *adapter = netdev_priv(netdev);
4321         struct e1000_hw *hw = &adapter->hw;
4322         u32 err;
4323
4324         pci_set_power_state(pdev, PCI_D0);
4325         pci_restore_state(pdev);
4326
4327         err = pci_enable_device_mem(pdev);
4328         if (err) {
4329                 dev_err(&pdev->dev,
4330                         "igb: Cannot enable PCI device from suspend\n");
4331                 return err;
4332         }
4333         pci_set_master(pdev);
4334
4335         pci_enable_wake(pdev, PCI_D3hot, 0);
4336         pci_enable_wake(pdev, PCI_D3cold, 0);
4337
4338         igb_set_interrupt_capability(adapter);
4339
4340         if (igb_alloc_queues(adapter)) {
4341                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4342                 return -ENOMEM;
4343         }
4344
4345         /* e1000_power_up_phy(adapter); */
4346
4347         igb_reset(adapter);
4348         wr32(E1000_WUS, ~0);
4349
4350         if (netif_running(netdev)) {
4351                 err = igb_open(netdev);
4352                 if (err)
4353                         return err;
4354         }
4355
4356         netif_device_attach(netdev);
4357
4358         /* let the f/w know that the h/w is now under the control of the
4359          * driver. */
4360         igb_get_hw_control(adapter);
4361
4362         return 0;
4363 }
4364 #endif
4365
4366 static void igb_shutdown(struct pci_dev *pdev)
4367 {
4368         igb_suspend(pdev, PMSG_SUSPEND);
4369 }
4370
4371 #ifdef CONFIG_NET_POLL_CONTROLLER
4372 /*
4373  * Polling 'interrupt' - used by things like netconsole to send skbs
4374  * without having to re-enable interrupts. It's not called while
4375  * the interrupt routine is executing.
4376  */
4377 static void igb_netpoll(struct net_device *netdev)
4378 {
4379         struct igb_adapter *adapter = netdev_priv(netdev);
4380         struct e1000_hw *hw = &adapter->hw;
4381         int i;
4382
4383         if (!adapter->msix_entries) {
4384                 igb_irq_disable(adapter);
4385                 napi_schedule(&adapter->rx_ring[0].napi);
4386                 return;
4387         }
4388
4389         for (i = 0; i < adapter->num_tx_queues; i++) {
4390                 struct igb_ring *tx_ring = &adapter->tx_ring[i];
4391                 wr32(E1000_EIMC, tx_ring->eims_value);
4392                 igb_clean_tx_irq(tx_ring);
4393                 wr32(E1000_EIMS, tx_ring->eims_value);
4394         }
4395
4396         for (i = 0; i < adapter->num_rx_queues; i++) {
4397                 struct igb_ring *rx_ring = &adapter->rx_ring[i];
4398                 wr32(E1000_EIMC, rx_ring->eims_value);
4399                 napi_schedule(&rx_ring->napi);
4400         }
4401 }
4402 #endif /* CONFIG_NET_POLL_CONTROLLER */
4403
4404 /**
4405  * igb_io_error_detected - called when PCI error is detected
4406  * @pdev: Pointer to PCI device
4407  * @state: The current pci connection state
4408  *
4409  * This function is called after a PCI bus error affecting
4410  * this device has been detected.
4411  */
4412 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4413                                               pci_channel_state_t state)
4414 {
4415         struct net_device *netdev = pci_get_drvdata(pdev);
4416         struct igb_adapter *adapter = netdev_priv(netdev);
4417
4418         netif_device_detach(netdev);
4419
4420         if (netif_running(netdev))
4421                 igb_down(adapter);
4422         pci_disable_device(pdev);
4423
4424         /* Request a slot slot reset. */
4425         return PCI_ERS_RESULT_NEED_RESET;
4426 }
4427
4428 /**
4429  * igb_io_slot_reset - called after the pci bus has been reset.
4430  * @pdev: Pointer to PCI device
4431  *
4432  * Restart the card from scratch, as if from a cold-boot. Implementation
4433  * resembles the first-half of the igb_resume routine.
4434  */
4435 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4436 {
4437         struct net_device *netdev = pci_get_drvdata(pdev);
4438         struct igb_adapter *adapter = netdev_priv(netdev);
4439         struct e1000_hw *hw = &adapter->hw;
4440         pci_ers_result_t result;
4441         int err;
4442
4443         if (pci_enable_device_mem(pdev)) {
4444                 dev_err(&pdev->dev,
4445                         "Cannot re-enable PCI device after reset.\n");
4446                 result = PCI_ERS_RESULT_DISCONNECT;
4447         } else {
4448                 pci_set_master(pdev);
4449                 pci_restore_state(pdev);
4450
4451                 pci_enable_wake(pdev, PCI_D3hot, 0);
4452                 pci_enable_wake(pdev, PCI_D3cold, 0);
4453
4454                 igb_reset(adapter);
4455                 wr32(E1000_WUS, ~0);
4456                 result = PCI_ERS_RESULT_RECOVERED;
4457         }
4458
4459         err = pci_cleanup_aer_uncorrect_error_status(pdev);
4460         if (err) {
4461                 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
4462                         "failed 0x%0x\n", err);
4463                 /* non-fatal, continue */
4464         }
4465
4466         return result;
4467 }
4468
4469 /**
4470  * igb_io_resume - called when traffic can start flowing again.
4471  * @pdev: Pointer to PCI device
4472  *
4473  * This callback is called when the error recovery driver tells us that
4474  * its OK to resume normal operation. Implementation resembles the
4475  * second-half of the igb_resume routine.
4476  */
4477 static void igb_io_resume(struct pci_dev *pdev)
4478 {
4479         struct net_device *netdev = pci_get_drvdata(pdev);
4480         struct igb_adapter *adapter = netdev_priv(netdev);
4481
4482         if (netif_running(netdev)) {
4483                 if (igb_up(adapter)) {
4484                         dev_err(&pdev->dev, "igb_up failed after reset\n");
4485                         return;
4486                 }
4487         }
4488
4489         netif_device_attach(netdev);
4490
4491         /* let the f/w know that the h/w is now under the control of the
4492          * driver. */
4493         igb_get_hw_control(adapter);
4494 }
4495
4496 /* igb_main.c */