igb: add 82576 MAC support
[safe/jmp/linux-2.6] / drivers / net / igb / igb_ethtool.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* ethtool support for igb */
29
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37
38 #include "igb.h"
39
40 struct igb_stats {
41         char stat_string[ETH_GSTRING_LEN];
42         int sizeof_stat;
43         int stat_offset;
44 };
45
46 #define IGB_STAT(m) FIELD_SIZEOF(struct igb_adapter, m), \
47                       offsetof(struct igb_adapter, m)
48 static const struct igb_stats igb_gstrings_stats[] = {
49         { "rx_packets", IGB_STAT(stats.gprc) },
50         { "tx_packets", IGB_STAT(stats.gptc) },
51         { "rx_bytes", IGB_STAT(stats.gorc) },
52         { "tx_bytes", IGB_STAT(stats.gotc) },
53         { "rx_broadcast", IGB_STAT(stats.bprc) },
54         { "tx_broadcast", IGB_STAT(stats.bptc) },
55         { "rx_multicast", IGB_STAT(stats.mprc) },
56         { "tx_multicast", IGB_STAT(stats.mptc) },
57         { "rx_errors", IGB_STAT(net_stats.rx_errors) },
58         { "tx_errors", IGB_STAT(net_stats.tx_errors) },
59         { "tx_dropped", IGB_STAT(net_stats.tx_dropped) },
60         { "multicast", IGB_STAT(stats.mprc) },
61         { "collisions", IGB_STAT(stats.colc) },
62         { "rx_length_errors", IGB_STAT(net_stats.rx_length_errors) },
63         { "rx_over_errors", IGB_STAT(net_stats.rx_over_errors) },
64         { "rx_crc_errors", IGB_STAT(stats.crcerrs) },
65         { "rx_frame_errors", IGB_STAT(net_stats.rx_frame_errors) },
66         { "rx_no_buffer_count", IGB_STAT(stats.rnbc) },
67         { "rx_missed_errors", IGB_STAT(stats.mpc) },
68         { "tx_aborted_errors", IGB_STAT(stats.ecol) },
69         { "tx_carrier_errors", IGB_STAT(stats.tncrs) },
70         { "tx_fifo_errors", IGB_STAT(net_stats.tx_fifo_errors) },
71         { "tx_heartbeat_errors", IGB_STAT(net_stats.tx_heartbeat_errors) },
72         { "tx_window_errors", IGB_STAT(stats.latecol) },
73         { "tx_abort_late_coll", IGB_STAT(stats.latecol) },
74         { "tx_deferred_ok", IGB_STAT(stats.dc) },
75         { "tx_single_coll_ok", IGB_STAT(stats.scc) },
76         { "tx_multi_coll_ok", IGB_STAT(stats.mcc) },
77         { "tx_timeout_count", IGB_STAT(tx_timeout_count) },
78         { "tx_restart_queue", IGB_STAT(restart_queue) },
79         { "rx_long_length_errors", IGB_STAT(stats.roc) },
80         { "rx_short_length_errors", IGB_STAT(stats.ruc) },
81         { "rx_align_errors", IGB_STAT(stats.algnerrc) },
82         { "tx_tcp_seg_good", IGB_STAT(stats.tsctc) },
83         { "tx_tcp_seg_failed", IGB_STAT(stats.tsctfc) },
84         { "rx_flow_control_xon", IGB_STAT(stats.xonrxc) },
85         { "rx_flow_control_xoff", IGB_STAT(stats.xoffrxc) },
86         { "tx_flow_control_xon", IGB_STAT(stats.xontxc) },
87         { "tx_flow_control_xoff", IGB_STAT(stats.xofftxc) },
88         { "rx_long_byte_count", IGB_STAT(stats.gorc) },
89         { "rx_csum_offload_good", IGB_STAT(hw_csum_good) },
90         { "rx_csum_offload_errors", IGB_STAT(hw_csum_err) },
91         { "rx_header_split", IGB_STAT(rx_hdr_split) },
92         { "alloc_rx_buff_failed", IGB_STAT(alloc_rx_buff_failed) },
93         { "tx_smbus", IGB_STAT(stats.mgptc) },
94         { "rx_smbus", IGB_STAT(stats.mgprc) },
95         { "dropped_smbus", IGB_STAT(stats.mgpdc) },
96 };
97
98 #define IGB_QUEUE_STATS_LEN \
99         ((((struct igb_adapter *)netdev->priv)->num_rx_queues + \
100          ((struct igb_adapter *)netdev->priv)->num_tx_queues) * \
101         (sizeof(struct igb_queue_stats) / sizeof(u64)))
102 #define IGB_GLOBAL_STATS_LEN    \
103         sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)
104 #define IGB_STATS_LEN (IGB_GLOBAL_STATS_LEN + IGB_QUEUE_STATS_LEN)
105 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
106         "Register test  (offline)", "Eeprom test    (offline)",
107         "Interrupt test (offline)", "Loopback test  (offline)",
108         "Link test   (on/offline)"
109 };
110 #define IGB_TEST_LEN sizeof(igb_gstrings_test) / ETH_GSTRING_LEN
111
112 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
113 {
114         struct igb_adapter *adapter = netdev_priv(netdev);
115         struct e1000_hw *hw = &adapter->hw;
116
117         if (hw->phy.media_type == e1000_media_type_copper) {
118
119                 ecmd->supported = (SUPPORTED_10baseT_Half |
120                                    SUPPORTED_10baseT_Full |
121                                    SUPPORTED_100baseT_Half |
122                                    SUPPORTED_100baseT_Full |
123                                    SUPPORTED_1000baseT_Full|
124                                    SUPPORTED_Autoneg |
125                                    SUPPORTED_TP);
126                 ecmd->advertising = ADVERTISED_TP;
127
128                 if (hw->mac.autoneg == 1) {
129                         ecmd->advertising |= ADVERTISED_Autoneg;
130                         /* the e1000 autoneg seems to match ethtool nicely */
131                         ecmd->advertising |= hw->phy.autoneg_advertised;
132                 }
133
134                 ecmd->port = PORT_TP;
135                 ecmd->phy_address = hw->phy.addr;
136         } else {
137                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
138                                      SUPPORTED_FIBRE |
139                                      SUPPORTED_Autoneg);
140
141                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
142                                      ADVERTISED_FIBRE |
143                                      ADVERTISED_Autoneg);
144
145                 ecmd->port = PORT_FIBRE;
146         }
147
148         ecmd->transceiver = XCVR_INTERNAL;
149
150         if (rd32(E1000_STATUS) & E1000_STATUS_LU) {
151
152                 adapter->hw.mac.ops.get_speed_and_duplex(hw,
153                                         &adapter->link_speed,
154                                         &adapter->link_duplex);
155                 ecmd->speed = adapter->link_speed;
156
157                 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
158                  *          and HALF_DUPLEX != DUPLEX_HALF */
159
160                 if (adapter->link_duplex == FULL_DUPLEX)
161                         ecmd->duplex = DUPLEX_FULL;
162                 else
163                         ecmd->duplex = DUPLEX_HALF;
164         } else {
165                 ecmd->speed = -1;
166                 ecmd->duplex = -1;
167         }
168
169         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
170                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
171         return 0;
172 }
173
174 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
175 {
176         struct igb_adapter *adapter = netdev_priv(netdev);
177         struct e1000_hw *hw = &adapter->hw;
178
179         /* When SoL/IDER sessions are active, autoneg/speed/duplex
180          * cannot be changed */
181         if (igb_check_reset_block(hw)) {
182                 dev_err(&adapter->pdev->dev, "Cannot change link "
183                         "characteristics when SoL/IDER is active.\n");
184                 return -EINVAL;
185         }
186
187         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
188                 msleep(1);
189
190         if (ecmd->autoneg == AUTONEG_ENABLE) {
191                 hw->mac.autoneg = 1;
192                 if (hw->phy.media_type == e1000_media_type_fiber)
193                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
194                                                      ADVERTISED_FIBRE |
195                                                      ADVERTISED_Autoneg;
196                 else
197                         hw->phy.autoneg_advertised = ecmd->advertising |
198                                                      ADVERTISED_TP |
199                                                      ADVERTISED_Autoneg;
200                 ecmd->advertising = hw->phy.autoneg_advertised;
201         } else
202                 if (igb_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
203                         clear_bit(__IGB_RESETTING, &adapter->state);
204                         return -EINVAL;
205                 }
206
207         /* reset the link */
208
209         if (netif_running(adapter->netdev)) {
210                 igb_down(adapter);
211                 igb_up(adapter);
212         } else
213                 igb_reset(adapter);
214
215         clear_bit(__IGB_RESETTING, &adapter->state);
216         return 0;
217 }
218
219 static void igb_get_pauseparam(struct net_device *netdev,
220                                struct ethtool_pauseparam *pause)
221 {
222         struct igb_adapter *adapter = netdev_priv(netdev);
223         struct e1000_hw *hw = &adapter->hw;
224
225         pause->autoneg =
226                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
227
228         if (hw->fc.type == e1000_fc_rx_pause)
229                 pause->rx_pause = 1;
230         else if (hw->fc.type == e1000_fc_tx_pause)
231                 pause->tx_pause = 1;
232         else if (hw->fc.type == e1000_fc_full) {
233                 pause->rx_pause = 1;
234                 pause->tx_pause = 1;
235         }
236 }
237
238 static int igb_set_pauseparam(struct net_device *netdev,
239                               struct ethtool_pauseparam *pause)
240 {
241         struct igb_adapter *adapter = netdev_priv(netdev);
242         struct e1000_hw *hw = &adapter->hw;
243         int retval = 0;
244
245         adapter->fc_autoneg = pause->autoneg;
246
247         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
248                 msleep(1);
249
250         if (pause->rx_pause && pause->tx_pause)
251                 hw->fc.type = e1000_fc_full;
252         else if (pause->rx_pause && !pause->tx_pause)
253                 hw->fc.type = e1000_fc_rx_pause;
254         else if (!pause->rx_pause && pause->tx_pause)
255                 hw->fc.type = e1000_fc_tx_pause;
256         else if (!pause->rx_pause && !pause->tx_pause)
257                 hw->fc.type = e1000_fc_none;
258
259         hw->fc.original_type = hw->fc.type;
260
261         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
262                 if (netif_running(adapter->netdev)) {
263                         igb_down(adapter);
264                         igb_up(adapter);
265                 } else
266                         igb_reset(adapter);
267         } else
268                 retval = ((hw->phy.media_type == e1000_media_type_fiber) ?
269                           igb_setup_link(hw) : igb_force_mac_fc(hw));
270
271         clear_bit(__IGB_RESETTING, &adapter->state);
272         return retval;
273 }
274
275 static u32 igb_get_rx_csum(struct net_device *netdev)
276 {
277         struct igb_adapter *adapter = netdev_priv(netdev);
278         return adapter->rx_csum;
279 }
280
281 static int igb_set_rx_csum(struct net_device *netdev, u32 data)
282 {
283         struct igb_adapter *adapter = netdev_priv(netdev);
284         adapter->rx_csum = data;
285
286         return 0;
287 }
288
289 static u32 igb_get_tx_csum(struct net_device *netdev)
290 {
291         return (netdev->features & NETIF_F_HW_CSUM) != 0;
292 }
293
294 static int igb_set_tx_csum(struct net_device *netdev, u32 data)
295 {
296         if (data)
297                 netdev->features |= NETIF_F_HW_CSUM;
298         else
299                 netdev->features &= ~NETIF_F_HW_CSUM;
300
301         return 0;
302 }
303
304 static int igb_set_tso(struct net_device *netdev, u32 data)
305 {
306         struct igb_adapter *adapter = netdev_priv(netdev);
307
308         if (data)
309                 netdev->features |= NETIF_F_TSO;
310         else
311                 netdev->features &= ~NETIF_F_TSO;
312
313         if (data)
314                 netdev->features |= NETIF_F_TSO6;
315         else
316                 netdev->features &= ~NETIF_F_TSO6;
317
318         dev_info(&adapter->pdev->dev, "TSO is %s\n",
319                  data ? "Enabled" : "Disabled");
320         return 0;
321 }
322
323 static u32 igb_get_msglevel(struct net_device *netdev)
324 {
325         struct igb_adapter *adapter = netdev_priv(netdev);
326         return adapter->msg_enable;
327 }
328
329 static void igb_set_msglevel(struct net_device *netdev, u32 data)
330 {
331         struct igb_adapter *adapter = netdev_priv(netdev);
332         adapter->msg_enable = data;
333 }
334
335 static int igb_get_regs_len(struct net_device *netdev)
336 {
337 #define IGB_REGS_LEN 551
338         return IGB_REGS_LEN * sizeof(u32);
339 }
340
341 static void igb_get_regs(struct net_device *netdev,
342                          struct ethtool_regs *regs, void *p)
343 {
344         struct igb_adapter *adapter = netdev_priv(netdev);
345         struct e1000_hw *hw = &adapter->hw;
346         u32 *regs_buff = p;
347         u8 i;
348
349         memset(p, 0, IGB_REGS_LEN * sizeof(u32));
350
351         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
352
353         /* General Registers */
354         regs_buff[0] = rd32(E1000_CTRL);
355         regs_buff[1] = rd32(E1000_STATUS);
356         regs_buff[2] = rd32(E1000_CTRL_EXT);
357         regs_buff[3] = rd32(E1000_MDIC);
358         regs_buff[4] = rd32(E1000_SCTL);
359         regs_buff[5] = rd32(E1000_CONNSW);
360         regs_buff[6] = rd32(E1000_VET);
361         regs_buff[7] = rd32(E1000_LEDCTL);
362         regs_buff[8] = rd32(E1000_PBA);
363         regs_buff[9] = rd32(E1000_PBS);
364         regs_buff[10] = rd32(E1000_FRTIMER);
365         regs_buff[11] = rd32(E1000_TCPTIMER);
366
367         /* NVM Register */
368         regs_buff[12] = rd32(E1000_EECD);
369
370         /* Interrupt */
371         regs_buff[13] = rd32(E1000_EICR);
372         regs_buff[14] = rd32(E1000_EICS);
373         regs_buff[15] = rd32(E1000_EIMS);
374         regs_buff[16] = rd32(E1000_EIMC);
375         regs_buff[17] = rd32(E1000_EIAC);
376         regs_buff[18] = rd32(E1000_EIAM);
377         regs_buff[19] = rd32(E1000_ICR);
378         regs_buff[20] = rd32(E1000_ICS);
379         regs_buff[21] = rd32(E1000_IMS);
380         regs_buff[22] = rd32(E1000_IMC);
381         regs_buff[23] = rd32(E1000_IAC);
382         regs_buff[24] = rd32(E1000_IAM);
383         regs_buff[25] = rd32(E1000_IMIRVP);
384
385         /* Flow Control */
386         regs_buff[26] = rd32(E1000_FCAL);
387         regs_buff[27] = rd32(E1000_FCAH);
388         regs_buff[28] = rd32(E1000_FCTTV);
389         regs_buff[29] = rd32(E1000_FCRTL);
390         regs_buff[30] = rd32(E1000_FCRTH);
391         regs_buff[31] = rd32(E1000_FCRTV);
392
393         /* Receive */
394         regs_buff[32] = rd32(E1000_RCTL);
395         regs_buff[33] = rd32(E1000_RXCSUM);
396         regs_buff[34] = rd32(E1000_RLPML);
397         regs_buff[35] = rd32(E1000_RFCTL);
398         regs_buff[36] = rd32(E1000_MRQC);
399         regs_buff[37] = rd32(E1000_VMD_CTL);
400
401         /* Transmit */
402         regs_buff[38] = rd32(E1000_TCTL);
403         regs_buff[39] = rd32(E1000_TCTL_EXT);
404         regs_buff[40] = rd32(E1000_TIPG);
405         regs_buff[41] = rd32(E1000_DTXCTL);
406
407         /* Wake Up */
408         regs_buff[42] = rd32(E1000_WUC);
409         regs_buff[43] = rd32(E1000_WUFC);
410         regs_buff[44] = rd32(E1000_WUS);
411         regs_buff[45] = rd32(E1000_IPAV);
412         regs_buff[46] = rd32(E1000_WUPL);
413
414         /* MAC */
415         regs_buff[47] = rd32(E1000_PCS_CFG0);
416         regs_buff[48] = rd32(E1000_PCS_LCTL);
417         regs_buff[49] = rd32(E1000_PCS_LSTAT);
418         regs_buff[50] = rd32(E1000_PCS_ANADV);
419         regs_buff[51] = rd32(E1000_PCS_LPAB);
420         regs_buff[52] = rd32(E1000_PCS_NPTX);
421         regs_buff[53] = rd32(E1000_PCS_LPABNP);
422
423         /* Statistics */
424         regs_buff[54] = adapter->stats.crcerrs;
425         regs_buff[55] = adapter->stats.algnerrc;
426         regs_buff[56] = adapter->stats.symerrs;
427         regs_buff[57] = adapter->stats.rxerrc;
428         regs_buff[58] = adapter->stats.mpc;
429         regs_buff[59] = adapter->stats.scc;
430         regs_buff[60] = adapter->stats.ecol;
431         regs_buff[61] = adapter->stats.mcc;
432         regs_buff[62] = adapter->stats.latecol;
433         regs_buff[63] = adapter->stats.colc;
434         regs_buff[64] = adapter->stats.dc;
435         regs_buff[65] = adapter->stats.tncrs;
436         regs_buff[66] = adapter->stats.sec;
437         regs_buff[67] = adapter->stats.htdpmc;
438         regs_buff[68] = adapter->stats.rlec;
439         regs_buff[69] = adapter->stats.xonrxc;
440         regs_buff[70] = adapter->stats.xontxc;
441         regs_buff[71] = adapter->stats.xoffrxc;
442         regs_buff[72] = adapter->stats.xofftxc;
443         regs_buff[73] = adapter->stats.fcruc;
444         regs_buff[74] = adapter->stats.prc64;
445         regs_buff[75] = adapter->stats.prc127;
446         regs_buff[76] = adapter->stats.prc255;
447         regs_buff[77] = adapter->stats.prc511;
448         regs_buff[78] = adapter->stats.prc1023;
449         regs_buff[79] = adapter->stats.prc1522;
450         regs_buff[80] = adapter->stats.gprc;
451         regs_buff[81] = adapter->stats.bprc;
452         regs_buff[82] = adapter->stats.mprc;
453         regs_buff[83] = adapter->stats.gptc;
454         regs_buff[84] = adapter->stats.gorc;
455         regs_buff[86] = adapter->stats.gotc;
456         regs_buff[88] = adapter->stats.rnbc;
457         regs_buff[89] = adapter->stats.ruc;
458         regs_buff[90] = adapter->stats.rfc;
459         regs_buff[91] = adapter->stats.roc;
460         regs_buff[92] = adapter->stats.rjc;
461         regs_buff[93] = adapter->stats.mgprc;
462         regs_buff[94] = adapter->stats.mgpdc;
463         regs_buff[95] = adapter->stats.mgptc;
464         regs_buff[96] = adapter->stats.tor;
465         regs_buff[98] = adapter->stats.tot;
466         regs_buff[100] = adapter->stats.tpr;
467         regs_buff[101] = adapter->stats.tpt;
468         regs_buff[102] = adapter->stats.ptc64;
469         regs_buff[103] = adapter->stats.ptc127;
470         regs_buff[104] = adapter->stats.ptc255;
471         regs_buff[105] = adapter->stats.ptc511;
472         regs_buff[106] = adapter->stats.ptc1023;
473         regs_buff[107] = adapter->stats.ptc1522;
474         regs_buff[108] = adapter->stats.mptc;
475         regs_buff[109] = adapter->stats.bptc;
476         regs_buff[110] = adapter->stats.tsctc;
477         regs_buff[111] = adapter->stats.iac;
478         regs_buff[112] = adapter->stats.rpthc;
479         regs_buff[113] = adapter->stats.hgptc;
480         regs_buff[114] = adapter->stats.hgorc;
481         regs_buff[116] = adapter->stats.hgotc;
482         regs_buff[118] = adapter->stats.lenerrs;
483         regs_buff[119] = adapter->stats.scvpc;
484         regs_buff[120] = adapter->stats.hrmpc;
485
486         /* These should probably be added to e1000_regs.h instead */
487         #define E1000_PSRTYPE_REG(_i) (0x05480 + ((_i) * 4))
488         #define E1000_RAL(_i)         (0x05400 + ((_i) * 8))
489         #define E1000_RAH(_i)         (0x05404 + ((_i) * 8))
490         #define E1000_IP4AT_REG(_i)   (0x05840 + ((_i) * 8))
491         #define E1000_IP6AT_REG(_i)   (0x05880 + ((_i) * 4))
492         #define E1000_WUPM_REG(_i)    (0x05A00 + ((_i) * 4))
493         #define E1000_FFMT_REG(_i)    (0x09000 + ((_i) * 8))
494         #define E1000_FFVT_REG(_i)    (0x09800 + ((_i) * 8))
495         #define E1000_FFLT_REG(_i)    (0x05F00 + ((_i) * 8))
496
497         for (i = 0; i < 4; i++)
498                 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
499         for (i = 0; i < 4; i++)
500                 regs_buff[125 + i] = rd32(E1000_PSRTYPE_REG(i));
501         for (i = 0; i < 4; i++)
502                 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
503         for (i = 0; i < 4; i++)
504                 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
505         for (i = 0; i < 4; i++)
506                 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
507         for (i = 0; i < 4; i++)
508                 regs_buff[141 + i] = rd32(E1000_RDH(i));
509         for (i = 0; i < 4; i++)
510                 regs_buff[145 + i] = rd32(E1000_RDT(i));
511         for (i = 0; i < 4; i++)
512                 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
513
514         for (i = 0; i < 10; i++)
515                 regs_buff[153 + i] = rd32(E1000_EITR(i));
516         for (i = 0; i < 8; i++)
517                 regs_buff[163 + i] = rd32(E1000_IMIR(i));
518         for (i = 0; i < 8; i++)
519                 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
520         for (i = 0; i < 16; i++)
521                 regs_buff[179 + i] = rd32(E1000_RAL(i));
522         for (i = 0; i < 16; i++)
523                 regs_buff[195 + i] = rd32(E1000_RAH(i));
524
525         for (i = 0; i < 4; i++)
526                 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
527         for (i = 0; i < 4; i++)
528                 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
529         for (i = 0; i < 4; i++)
530                 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
531         for (i = 0; i < 4; i++)
532                 regs_buff[223 + i] = rd32(E1000_TDH(i));
533         for (i = 0; i < 4; i++)
534                 regs_buff[227 + i] = rd32(E1000_TDT(i));
535         for (i = 0; i < 4; i++)
536                 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
537         for (i = 0; i < 4; i++)
538                 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
539         for (i = 0; i < 4; i++)
540                 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
541         for (i = 0; i < 4; i++)
542                 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
543
544         for (i = 0; i < 4; i++)
545                 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
546         for (i = 0; i < 4; i++)
547                 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
548         for (i = 0; i < 32; i++)
549                 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
550         for (i = 0; i < 128; i++)
551                 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
552         for (i = 0; i < 128; i++)
553                 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
554         for (i = 0; i < 4; i++)
555                 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
556
557         regs_buff[547] = rd32(E1000_TDFH);
558         regs_buff[548] = rd32(E1000_TDFT);
559         regs_buff[549] = rd32(E1000_TDFHS);
560         regs_buff[550] = rd32(E1000_TDFPC);
561
562 }
563
564 static int igb_get_eeprom_len(struct net_device *netdev)
565 {
566         struct igb_adapter *adapter = netdev_priv(netdev);
567         return adapter->hw.nvm.word_size * 2;
568 }
569
570 static int igb_get_eeprom(struct net_device *netdev,
571                           struct ethtool_eeprom *eeprom, u8 *bytes)
572 {
573         struct igb_adapter *adapter = netdev_priv(netdev);
574         struct e1000_hw *hw = &adapter->hw;
575         u16 *eeprom_buff;
576         int first_word, last_word;
577         int ret_val = 0;
578         u16 i;
579
580         if (eeprom->len == 0)
581                 return -EINVAL;
582
583         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
584
585         first_word = eeprom->offset >> 1;
586         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
587
588         eeprom_buff = kmalloc(sizeof(u16) *
589                         (last_word - first_word + 1), GFP_KERNEL);
590         if (!eeprom_buff)
591                 return -ENOMEM;
592
593         if (hw->nvm.type == e1000_nvm_eeprom_spi)
594                 ret_val = hw->nvm.ops.read_nvm(hw, first_word,
595                                             last_word - first_word + 1,
596                                             eeprom_buff);
597         else {
598                 for (i = 0; i < last_word - first_word + 1; i++) {
599                         ret_val = hw->nvm.ops.read_nvm(hw, first_word + i, 1,
600                                                     &eeprom_buff[i]);
601                         if (ret_val)
602                                 break;
603                 }
604         }
605
606         /* Device's eeprom is always little-endian, word addressable */
607         for (i = 0; i < last_word - first_word + 1; i++)
608                 le16_to_cpus(&eeprom_buff[i]);
609
610         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
611                         eeprom->len);
612         kfree(eeprom_buff);
613
614         return ret_val;
615 }
616
617 static int igb_set_eeprom(struct net_device *netdev,
618                           struct ethtool_eeprom *eeprom, u8 *bytes)
619 {
620         struct igb_adapter *adapter = netdev_priv(netdev);
621         struct e1000_hw *hw = &adapter->hw;
622         u16 *eeprom_buff;
623         void *ptr;
624         int max_len, first_word, last_word, ret_val = 0;
625         u16 i;
626
627         if (eeprom->len == 0)
628                 return -EOPNOTSUPP;
629
630         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
631                 return -EFAULT;
632
633         max_len = hw->nvm.word_size * 2;
634
635         first_word = eeprom->offset >> 1;
636         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
637         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
638         if (!eeprom_buff)
639                 return -ENOMEM;
640
641         ptr = (void *)eeprom_buff;
642
643         if (eeprom->offset & 1) {
644                 /* need read/modify/write of first changed EEPROM word */
645                 /* only the second byte of the word is being modified */
646                 ret_val = hw->nvm.ops.read_nvm(hw, first_word, 1,
647                                             &eeprom_buff[0]);
648                 ptr++;
649         }
650         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
651                 /* need read/modify/write of last changed EEPROM word */
652                 /* only the first byte of the word is being modified */
653                 ret_val = hw->nvm.ops.read_nvm(hw, last_word, 1,
654                                    &eeprom_buff[last_word - first_word]);
655         }
656
657         /* Device's eeprom is always little-endian, word addressable */
658         for (i = 0; i < last_word - first_word + 1; i++)
659                 le16_to_cpus(&eeprom_buff[i]);
660
661         memcpy(ptr, bytes, eeprom->len);
662
663         for (i = 0; i < last_word - first_word + 1; i++)
664                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
665
666         ret_val = hw->nvm.ops.write_nvm(hw, first_word,
667                                      last_word - first_word + 1, eeprom_buff);
668
669         /* Update the checksum over the first part of the EEPROM if needed
670          * and flush shadow RAM for 82573 controllers */
671         if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
672                 igb_update_nvm_checksum(hw);
673
674         kfree(eeprom_buff);
675         return ret_val;
676 }
677
678 static void igb_get_drvinfo(struct net_device *netdev,
679                             struct ethtool_drvinfo *drvinfo)
680 {
681         struct igb_adapter *adapter = netdev_priv(netdev);
682         char firmware_version[32];
683         u16 eeprom_data;
684
685         strncpy(drvinfo->driver,  igb_driver_name, 32);
686         strncpy(drvinfo->version, igb_driver_version, 32);
687
688         /* EEPROM image version # is reported as firmware version # for
689          * 82575 controllers */
690         adapter->hw.nvm.ops.read_nvm(&adapter->hw, 5, 1, &eeprom_data);
691         sprintf(firmware_version, "%d.%d-%d",
692                 (eeprom_data & 0xF000) >> 12,
693                 (eeprom_data & 0x0FF0) >> 4,
694                 eeprom_data & 0x000F);
695
696         strncpy(drvinfo->fw_version, firmware_version, 32);
697         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
698         drvinfo->n_stats = IGB_STATS_LEN;
699         drvinfo->testinfo_len = IGB_TEST_LEN;
700         drvinfo->regdump_len = igb_get_regs_len(netdev);
701         drvinfo->eedump_len = igb_get_eeprom_len(netdev);
702 }
703
704 static void igb_get_ringparam(struct net_device *netdev,
705                               struct ethtool_ringparam *ring)
706 {
707         struct igb_adapter *adapter = netdev_priv(netdev);
708         struct igb_ring *tx_ring = adapter->tx_ring;
709         struct igb_ring *rx_ring = adapter->rx_ring;
710
711         ring->rx_max_pending = IGB_MAX_RXD;
712         ring->tx_max_pending = IGB_MAX_TXD;
713         ring->rx_mini_max_pending = 0;
714         ring->rx_jumbo_max_pending = 0;
715         ring->rx_pending = rx_ring->count;
716         ring->tx_pending = tx_ring->count;
717         ring->rx_mini_pending = 0;
718         ring->rx_jumbo_pending = 0;
719 }
720
721 static int igb_set_ringparam(struct net_device *netdev,
722                              struct ethtool_ringparam *ring)
723 {
724         struct igb_adapter *adapter = netdev_priv(netdev);
725         struct igb_buffer *old_buf;
726         struct igb_buffer *old_rx_buf;
727         void *old_desc;
728         int i, err;
729         u32 new_rx_count, new_tx_count, old_size;
730         dma_addr_t old_dma;
731
732         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
733                 return -EINVAL;
734
735         new_rx_count = max(ring->rx_pending, (u32)IGB_MIN_RXD);
736         new_rx_count = min(new_rx_count, (u32)IGB_MAX_RXD);
737         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
738
739         new_tx_count = max(ring->tx_pending, (u32)IGB_MIN_TXD);
740         new_tx_count = min(new_tx_count, (u32)IGB_MAX_TXD);
741         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
742
743         if ((new_tx_count == adapter->tx_ring->count) &&
744             (new_rx_count == adapter->rx_ring->count)) {
745                 /* nothing to do */
746                 return 0;
747         }
748
749         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
750                 msleep(1);
751
752         if (netif_running(adapter->netdev))
753                 igb_down(adapter);
754
755         /*
756          * We can't just free everything and then setup again,
757          * because the ISRs in MSI-X mode get passed pointers
758          * to the tx and rx ring structs.
759          */
760         if (new_tx_count != adapter->tx_ring->count) {
761                 for (i = 0; i < adapter->num_tx_queues; i++) {
762                         /* Save existing descriptor ring */
763                         old_buf = adapter->tx_ring[i].buffer_info;
764                         old_desc = adapter->tx_ring[i].desc;
765                         old_size = adapter->tx_ring[i].size;
766                         old_dma = adapter->tx_ring[i].dma;
767                         /* Try to allocate a new one */
768                         adapter->tx_ring[i].buffer_info = NULL;
769                         adapter->tx_ring[i].desc = NULL;
770                         adapter->tx_ring[i].count = new_tx_count;
771                         err = igb_setup_tx_resources(adapter,
772                                                 &adapter->tx_ring[i]);
773                         if (err) {
774                                 /* Restore the old one so at least
775                                    the adapter still works, even if
776                                    we failed the request */
777                                 adapter->tx_ring[i].buffer_info = old_buf;
778                                 adapter->tx_ring[i].desc = old_desc;
779                                 adapter->tx_ring[i].size = old_size;
780                                 adapter->tx_ring[i].dma = old_dma;
781                                 goto err_setup;
782                         }
783                         /* Free the old buffer manually */
784                         vfree(old_buf);
785                         pci_free_consistent(adapter->pdev, old_size,
786                                             old_desc, old_dma);
787                 }
788         }
789
790         if (new_rx_count != adapter->rx_ring->count) {
791                 for (i = 0; i < adapter->num_rx_queues; i++) {
792
793                         old_rx_buf = adapter->rx_ring[i].buffer_info;
794                         old_desc = adapter->rx_ring[i].desc;
795                         old_size = adapter->rx_ring[i].size;
796                         old_dma = adapter->rx_ring[i].dma;
797
798                         adapter->rx_ring[i].buffer_info = NULL;
799                         adapter->rx_ring[i].desc = NULL;
800                         adapter->rx_ring[i].dma = 0;
801                         adapter->rx_ring[i].count = new_rx_count;
802                         err = igb_setup_rx_resources(adapter,
803                                                      &adapter->rx_ring[i]);
804                         if (err) {
805                                 adapter->rx_ring[i].buffer_info = old_rx_buf;
806                                 adapter->rx_ring[i].desc = old_desc;
807                                 adapter->rx_ring[i].size = old_size;
808                                 adapter->rx_ring[i].dma = old_dma;
809                                 goto err_setup;
810                         }
811
812                         vfree(old_rx_buf);
813                         pci_free_consistent(adapter->pdev, old_size, old_desc,
814                                             old_dma);
815                 }
816         }
817
818         err = 0;
819 err_setup:
820         if (netif_running(adapter->netdev))
821                 igb_up(adapter);
822
823         clear_bit(__IGB_RESETTING, &adapter->state);
824         return err;
825 }
826
827 /* ethtool register test data */
828 struct igb_reg_test {
829         u16 reg;
830         u16 reg_offset;
831         u16 array_len;
832         u16 test_type;
833         u32 mask;
834         u32 write;
835 };
836
837 /* In the hardware, registers are laid out either singly, in arrays
838  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
839  * most tests take place on arrays or single registers (handled
840  * as a single-element array) and special-case the tables.
841  * Table tests are always pattern tests.
842  *
843  * We also make provision for some required setup steps by specifying
844  * registers to be written without any read-back testing.
845  */
846
847 #define PATTERN_TEST    1
848 #define SET_READ_TEST   2
849 #define WRITE_NO_TEST   3
850 #define TABLE32_TEST    4
851 #define TABLE64_TEST_LO 5
852 #define TABLE64_TEST_HI 6
853
854 /* 82576 reg test */
855 static struct igb_reg_test reg_test_82576[] = {
856         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
857         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
858         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
859         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
860         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
861         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
862         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
863         { E1000_RDBAL(4),  0x40,  8, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
864         { E1000_RDBAH(4),  0x40,  8, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
865         { E1000_RDLEN(4),  0x40,  8, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
866         /* Enable all four RX queues before testing. */
867         { E1000_RXDCTL(0), 0x100, 1,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
868         /* RDH is read-only for 82576, only test RDT. */
869         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
870         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
871         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
872         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
873         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
874         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
875         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
876         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
877         { E1000_TDBAL(4),  0x40, 8,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
878         { E1000_TDBAH(4),  0x40, 8,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
879         { E1000_TDLEN(4),  0x40, 8,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
880         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
881         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
882         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
883         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
884         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
885         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
886         { E1000_RA2,       0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
887         { E1000_RA2,       0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
888         { E1000_MTA,       0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
889         { 0, 0, 0, 0 }
890 };
891
892 /* 82575 register test */
893 static struct igb_reg_test reg_test_82575[] = {
894         { E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
895         { E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
896         { E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
897         { E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
898         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
899         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
900         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
901         /* Enable all four RX queues before testing. */
902         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
903         /* RDH is read-only for 82575, only test RDT. */
904         { E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
905         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
906         { E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
907         { E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
908         { E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
909         { E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
910         { E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
911         { E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
912         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
913         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
914         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
915         { E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
916         { E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
917         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
918         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
919         { E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
920         { 0, 0, 0, 0 }
921 };
922
923 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
924                              int reg, u32 mask, u32 write)
925 {
926         u32 pat, val;
927         u32 _test[] =
928                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
929         for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
930                 writel((_test[pat] & write), (adapter->hw.hw_addr + reg));
931                 val = readl(adapter->hw.hw_addr + reg);
932                 if (val != (_test[pat] & write & mask)) {
933                         dev_err(&adapter->pdev->dev, "pattern test reg %04X "
934                                 "failed: got 0x%08X expected 0x%08X\n",
935                                 reg, val, (_test[pat] & write & mask));
936                         *data = reg;
937                         return 1;
938                 }
939         }
940         return 0;
941 }
942
943 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
944                               int reg, u32 mask, u32 write)
945 {
946         u32 val;
947         writel((write & mask), (adapter->hw.hw_addr + reg));
948         val = readl(adapter->hw.hw_addr + reg);
949         if ((write & mask) != (val & mask)) {
950                 dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
951                         " got 0x%08X expected 0x%08X\n", reg,
952                         (val & mask), (write & mask));
953                 *data = reg;
954                 return 1;
955         }
956         return 0;
957 }
958
959 #define REG_PATTERN_TEST(reg, mask, write) \
960         do { \
961                 if (reg_pattern_test(adapter, data, reg, mask, write)) \
962                         return 1; \
963         } while (0)
964
965 #define REG_SET_AND_CHECK(reg, mask, write) \
966         do { \
967                 if (reg_set_and_check(adapter, data, reg, mask, write)) \
968                         return 1; \
969         } while (0)
970
971 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
972 {
973         struct e1000_hw *hw = &adapter->hw;
974         struct igb_reg_test *test;
975         u32 value, before, after;
976         u32 i, toggle;
977
978         toggle = 0x7FFFF3FF;
979
980         switch (adapter->hw.mac.type) {
981         case e1000_82576:
982                 test = reg_test_82576;
983                 break;
984         default:
985                 test = reg_test_82575;
986                 break;
987         }
988
989         /* Because the status register is such a special case,
990          * we handle it separately from the rest of the register
991          * tests.  Some bits are read-only, some toggle, and some
992          * are writable on newer MACs.
993          */
994         before = rd32(E1000_STATUS);
995         value = (rd32(E1000_STATUS) & toggle);
996         wr32(E1000_STATUS, toggle);
997         after = rd32(E1000_STATUS) & toggle;
998         if (value != after) {
999                 dev_err(&adapter->pdev->dev, "failed STATUS register test "
1000                         "got: 0x%08X expected: 0x%08X\n", after, value);
1001                 *data = 1;
1002                 return 1;
1003         }
1004         /* restore previous status */
1005         wr32(E1000_STATUS, before);
1006
1007         /* Perform the remainder of the register test, looping through
1008          * the test table until we either fail or reach the null entry.
1009          */
1010         while (test->reg) {
1011                 for (i = 0; i < test->array_len; i++) {
1012                         switch (test->test_type) {
1013                         case PATTERN_TEST:
1014                                 REG_PATTERN_TEST(test->reg + (i * test->reg_offset),
1015                                                 test->mask,
1016                                                 test->write);
1017                                 break;
1018                         case SET_READ_TEST:
1019                                 REG_SET_AND_CHECK(test->reg + (i * test->reg_offset),
1020                                                 test->mask,
1021                                                 test->write);
1022                                 break;
1023                         case WRITE_NO_TEST:
1024                                 writel(test->write,
1025                                     (adapter->hw.hw_addr + test->reg)
1026                                         + (i * test->reg_offset));
1027                                 break;
1028                         case TABLE32_TEST:
1029                                 REG_PATTERN_TEST(test->reg + (i * 4),
1030                                                 test->mask,
1031                                                 test->write);
1032                                 break;
1033                         case TABLE64_TEST_LO:
1034                                 REG_PATTERN_TEST(test->reg + (i * 8),
1035                                                 test->mask,
1036                                                 test->write);
1037                                 break;
1038                         case TABLE64_TEST_HI:
1039                                 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1040                                                 test->mask,
1041                                                 test->write);
1042                                 break;
1043                         }
1044                 }
1045                 test++;
1046         }
1047
1048         *data = 0;
1049         return 0;
1050 }
1051
1052 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1053 {
1054         u16 temp;
1055         u16 checksum = 0;
1056         u16 i;
1057
1058         *data = 0;
1059         /* Read and add up the contents of the EEPROM */
1060         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
1061                 if ((adapter->hw.nvm.ops.read_nvm(&adapter->hw, i, 1, &temp))
1062                     < 0) {
1063                         *data = 1;
1064                         break;
1065                 }
1066                 checksum += temp;
1067         }
1068
1069         /* If Checksum is not Correct return error else test passed */
1070         if ((checksum != (u16) NVM_SUM) && !(*data))
1071                 *data = 2;
1072
1073         return *data;
1074 }
1075
1076 static irqreturn_t igb_test_intr(int irq, void *data)
1077 {
1078         struct net_device *netdev = (struct net_device *) data;
1079         struct igb_adapter *adapter = netdev_priv(netdev);
1080         struct e1000_hw *hw = &adapter->hw;
1081
1082         adapter->test_icr |= rd32(E1000_ICR);
1083
1084         return IRQ_HANDLED;
1085 }
1086
1087 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1088 {
1089         struct e1000_hw *hw = &adapter->hw;
1090         struct net_device *netdev = adapter->netdev;
1091         u32 mask, i = 0, shared_int = true;
1092         u32 irq = adapter->pdev->irq;
1093
1094         *data = 0;
1095
1096         /* Hook up test interrupt handler just for this test */
1097         if (adapter->msix_entries) {
1098                 /* NOTE: we don't test MSI-X interrupts here, yet */
1099                 return 0;
1100         } else if (adapter->msi_enabled) {
1101                 shared_int = false;
1102                 if (request_irq(irq, &igb_test_intr, 0, netdev->name, netdev)) {
1103                         *data = 1;
1104                         return -1;
1105                 }
1106         } else if (!request_irq(irq, &igb_test_intr, IRQF_PROBE_SHARED,
1107                                 netdev->name, netdev)) {
1108                 shared_int = false;
1109         } else if (request_irq(irq, &igb_test_intr, IRQF_SHARED,
1110                  netdev->name, netdev)) {
1111                 *data = 1;
1112                 return -1;
1113         }
1114         dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1115                 (shared_int ? "shared" : "unshared"));
1116
1117         /* Disable all the interrupts */
1118         wr32(E1000_IMC, 0xFFFFFFFF);
1119         msleep(10);
1120
1121         /* Test each interrupt */
1122         for (; i < 10; i++) {
1123                 /* Interrupt to test */
1124                 mask = 1 << i;
1125
1126                 if (!shared_int) {
1127                         /* Disable the interrupt to be reported in
1128                          * the cause register and then force the same
1129                          * interrupt and see if one gets posted.  If
1130                          * an interrupt was posted to the bus, the
1131                          * test failed.
1132                          */
1133                         adapter->test_icr = 0;
1134                         wr32(E1000_IMC, ~mask & 0x00007FFF);
1135                         wr32(E1000_ICS, ~mask & 0x00007FFF);
1136                         msleep(10);
1137
1138                         if (adapter->test_icr & mask) {
1139                                 *data = 3;
1140                                 break;
1141                         }
1142                 }
1143
1144                 /* Enable the interrupt to be reported in
1145                  * the cause register and then force the same
1146                  * interrupt and see if one gets posted.  If
1147                  * an interrupt was not posted to the bus, the
1148                  * test failed.
1149                  */
1150                 adapter->test_icr = 0;
1151                 wr32(E1000_IMS, mask);
1152                 wr32(E1000_ICS, mask);
1153                 msleep(10);
1154
1155                 if (!(adapter->test_icr & mask)) {
1156                         *data = 4;
1157                         break;
1158                 }
1159
1160                 if (!shared_int) {
1161                         /* Disable the other interrupts to be reported in
1162                          * the cause register and then force the other
1163                          * interrupts and see if any get posted.  If
1164                          * an interrupt was posted to the bus, the
1165                          * test failed.
1166                          */
1167                         adapter->test_icr = 0;
1168                         wr32(E1000_IMC, ~mask & 0x00007FFF);
1169                         wr32(E1000_ICS, ~mask & 0x00007FFF);
1170                         msleep(10);
1171
1172                         if (adapter->test_icr) {
1173                                 *data = 5;
1174                                 break;
1175                         }
1176                 }
1177         }
1178
1179         /* Disable all the interrupts */
1180         wr32(E1000_IMC, 0xFFFFFFFF);
1181         msleep(10);
1182
1183         /* Unhook test interrupt handler */
1184         free_irq(irq, netdev);
1185
1186         return *data;
1187 }
1188
1189 static void igb_free_desc_rings(struct igb_adapter *adapter)
1190 {
1191         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1192         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1193         struct pci_dev *pdev = adapter->pdev;
1194         int i;
1195
1196         if (tx_ring->desc && tx_ring->buffer_info) {
1197                 for (i = 0; i < tx_ring->count; i++) {
1198                         struct igb_buffer *buf = &(tx_ring->buffer_info[i]);
1199                         if (buf->dma)
1200                                 pci_unmap_single(pdev, buf->dma, buf->length,
1201                                                  PCI_DMA_TODEVICE);
1202                         if (buf->skb)
1203                                 dev_kfree_skb(buf->skb);
1204                 }
1205         }
1206
1207         if (rx_ring->desc && rx_ring->buffer_info) {
1208                 for (i = 0; i < rx_ring->count; i++) {
1209                         struct igb_buffer *buf = &(rx_ring->buffer_info[i]);
1210                         if (buf->dma)
1211                                 pci_unmap_single(pdev, buf->dma,
1212                                                  IGB_RXBUFFER_2048,
1213                                                  PCI_DMA_FROMDEVICE);
1214                         if (buf->skb)
1215                                 dev_kfree_skb(buf->skb);
1216                 }
1217         }
1218
1219         if (tx_ring->desc) {
1220                 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc,
1221                                     tx_ring->dma);
1222                 tx_ring->desc = NULL;
1223         }
1224         if (rx_ring->desc) {
1225                 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc,
1226                                     rx_ring->dma);
1227                 rx_ring->desc = NULL;
1228         }
1229
1230         kfree(tx_ring->buffer_info);
1231         tx_ring->buffer_info = NULL;
1232         kfree(rx_ring->buffer_info);
1233         rx_ring->buffer_info = NULL;
1234
1235         return;
1236 }
1237
1238 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1239 {
1240         struct e1000_hw *hw = &adapter->hw;
1241         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1242         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1243         struct pci_dev *pdev = adapter->pdev;
1244         u32 rctl;
1245         int i, ret_val;
1246
1247         /* Setup Tx descriptor ring and Tx buffers */
1248
1249         if (!tx_ring->count)
1250                 tx_ring->count = IGB_DEFAULT_TXD;
1251
1252         tx_ring->buffer_info = kcalloc(tx_ring->count,
1253                                        sizeof(struct igb_buffer),
1254                                        GFP_KERNEL);
1255         if (!tx_ring->buffer_info) {
1256                 ret_val = 1;
1257                 goto err_nomem;
1258         }
1259
1260         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1261         tx_ring->size = ALIGN(tx_ring->size, 4096);
1262         tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1263                                              &tx_ring->dma);
1264         if (!tx_ring->desc) {
1265                 ret_val = 2;
1266                 goto err_nomem;
1267         }
1268         tx_ring->next_to_use = tx_ring->next_to_clean = 0;
1269
1270         wr32(E1000_TDBAL(0),
1271                         ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1272         wr32(E1000_TDBAH(0), ((u64) tx_ring->dma >> 32));
1273         wr32(E1000_TDLEN(0),
1274                         tx_ring->count * sizeof(struct e1000_tx_desc));
1275         wr32(E1000_TDH(0), 0);
1276         wr32(E1000_TDT(0), 0);
1277         wr32(E1000_TCTL,
1278                         E1000_TCTL_PSP | E1000_TCTL_EN |
1279                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1280                         E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1281
1282         for (i = 0; i < tx_ring->count; i++) {
1283                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1284                 struct sk_buff *skb;
1285                 unsigned int size = 1024;
1286
1287                 skb = alloc_skb(size, GFP_KERNEL);
1288                 if (!skb) {
1289                         ret_val = 3;
1290                         goto err_nomem;
1291                 }
1292                 skb_put(skb, size);
1293                 tx_ring->buffer_info[i].skb = skb;
1294                 tx_ring->buffer_info[i].length = skb->len;
1295                 tx_ring->buffer_info[i].dma =
1296                         pci_map_single(pdev, skb->data, skb->len,
1297                                        PCI_DMA_TODEVICE);
1298                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1299                 tx_desc->lower.data = cpu_to_le32(skb->len);
1300                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1301                                                    E1000_TXD_CMD_IFCS |
1302                                                    E1000_TXD_CMD_RS);
1303                 tx_desc->upper.data = 0;
1304         }
1305
1306         /* Setup Rx descriptor ring and Rx buffers */
1307
1308         if (!rx_ring->count)
1309                 rx_ring->count = IGB_DEFAULT_RXD;
1310
1311         rx_ring->buffer_info = kcalloc(rx_ring->count,
1312                                        sizeof(struct igb_buffer),
1313                                        GFP_KERNEL);
1314         if (!rx_ring->buffer_info) {
1315                 ret_val = 4;
1316                 goto err_nomem;
1317         }
1318
1319         rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1320         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1321                                              &rx_ring->dma);
1322         if (!rx_ring->desc) {
1323                 ret_val = 5;
1324                 goto err_nomem;
1325         }
1326         rx_ring->next_to_use = rx_ring->next_to_clean = 0;
1327
1328         rctl = rd32(E1000_RCTL);
1329         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1330         wr32(E1000_RDBAL(0),
1331                         ((u64) rx_ring->dma & 0xFFFFFFFF));
1332         wr32(E1000_RDBAH(0),
1333                         ((u64) rx_ring->dma >> 32));
1334         wr32(E1000_RDLEN(0), rx_ring->size);
1335         wr32(E1000_RDH(0), 0);
1336         wr32(E1000_RDT(0), 0);
1337         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1338                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1339                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1340         wr32(E1000_RCTL, rctl);
1341         wr32(E1000_SRRCTL(0), 0);
1342
1343         for (i = 0; i < rx_ring->count; i++) {
1344                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1345                 struct sk_buff *skb;
1346
1347                 skb = alloc_skb(IGB_RXBUFFER_2048 + NET_IP_ALIGN,
1348                                 GFP_KERNEL);
1349                 if (!skb) {
1350                         ret_val = 6;
1351                         goto err_nomem;
1352                 }
1353                 skb_reserve(skb, NET_IP_ALIGN);
1354                 rx_ring->buffer_info[i].skb = skb;
1355                 rx_ring->buffer_info[i].dma =
1356                         pci_map_single(pdev, skb->data, IGB_RXBUFFER_2048,
1357                                        PCI_DMA_FROMDEVICE);
1358                 rx_desc->buffer_addr = cpu_to_le64(rx_ring->buffer_info[i].dma);
1359                 memset(skb->data, 0x00, skb->len);
1360         }
1361
1362         return 0;
1363
1364 err_nomem:
1365         igb_free_desc_rings(adapter);
1366         return ret_val;
1367 }
1368
1369 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1370 {
1371         struct e1000_hw *hw = &adapter->hw;
1372
1373         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1374         hw->phy.ops.write_phy_reg(hw, 29, 0x001F);
1375         hw->phy.ops.write_phy_reg(hw, 30, 0x8FFC);
1376         hw->phy.ops.write_phy_reg(hw, 29, 0x001A);
1377         hw->phy.ops.write_phy_reg(hw, 30, 0x8FF0);
1378 }
1379
1380 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1381 {
1382         struct e1000_hw *hw = &adapter->hw;
1383         u32 ctrl_reg = 0;
1384         u32 stat_reg = 0;
1385
1386         hw->mac.autoneg = false;
1387
1388         if (hw->phy.type == e1000_phy_m88) {
1389                 /* Auto-MDI/MDIX Off */
1390                 hw->phy.ops.write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1391                 /* reset to update Auto-MDI/MDIX */
1392                 hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, 0x9140);
1393                 /* autoneg off */
1394                 hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, 0x8140);
1395         }
1396
1397         ctrl_reg = rd32(E1000_CTRL);
1398
1399         /* force 1000, set loopback */
1400         hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, 0x4140);
1401
1402         /* Now set up the MAC to the same speed/duplex as the PHY. */
1403         ctrl_reg = rd32(E1000_CTRL);
1404         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1405         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1406                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1407                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1408                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1409
1410         if (hw->phy.media_type == e1000_media_type_copper &&
1411             hw->phy.type == e1000_phy_m88)
1412                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1413         else {
1414                 /* Set the ILOS bit on the fiber Nic if half duplex link is
1415                  * detected. */
1416                 stat_reg = rd32(E1000_STATUS);
1417                 if ((stat_reg & E1000_STATUS_FD) == 0)
1418                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1419         }
1420
1421         wr32(E1000_CTRL, ctrl_reg);
1422
1423         /* Disable the receiver on the PHY so when a cable is plugged in, the
1424          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1425          */
1426         if (hw->phy.type == e1000_phy_m88)
1427                 igb_phy_disable_receiver(adapter);
1428
1429         udelay(500);
1430
1431         return 0;
1432 }
1433
1434 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1435 {
1436         return igb_integrated_phy_loopback(adapter);
1437 }
1438
1439 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1440 {
1441         struct e1000_hw *hw = &adapter->hw;
1442         u32 reg;
1443
1444         if (hw->phy.media_type == e1000_media_type_fiber ||
1445             hw->phy.media_type == e1000_media_type_internal_serdes) {
1446                 reg = rd32(E1000_RCTL);
1447                 reg |= E1000_RCTL_LBM_TCVR;
1448                 wr32(E1000_RCTL, reg);
1449
1450                 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1451
1452                 reg = rd32(E1000_CTRL);
1453                 reg &= ~(E1000_CTRL_RFCE |
1454                          E1000_CTRL_TFCE |
1455                          E1000_CTRL_LRST);
1456                 reg |= E1000_CTRL_SLU |
1457                        E1000_CTRL_FD; 
1458                 wr32(E1000_CTRL, reg);
1459
1460                 /* Unset switch control to serdes energy detect */
1461                 reg = rd32(E1000_CONNSW);
1462                 reg &= ~E1000_CONNSW_ENRGSRC;
1463                 wr32(E1000_CONNSW, reg);
1464
1465                 /* Set PCS register for forced speed */
1466                 reg = rd32(E1000_PCS_LCTL);
1467                 reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1468                 reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1469                        E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1470                        E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1471                        E1000_PCS_LCTL_FSD |           /* Force Speed */
1472                        E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1473                 wr32(E1000_PCS_LCTL, reg);
1474
1475                 return 0;
1476         } else if (hw->phy.media_type == e1000_media_type_copper) {
1477                 return igb_set_phy_loopback(adapter);
1478         }
1479
1480         return 7;
1481 }
1482
1483 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1484 {
1485         struct e1000_hw *hw = &adapter->hw;
1486         u32 rctl;
1487         u16 phy_reg;
1488
1489         rctl = rd32(E1000_RCTL);
1490         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1491         wr32(E1000_RCTL, rctl);
1492
1493         hw->mac.autoneg = true;
1494         hw->phy.ops.read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1495         if (phy_reg & MII_CR_LOOPBACK) {
1496                 phy_reg &= ~MII_CR_LOOPBACK;
1497                 hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, phy_reg);
1498                 igb_phy_sw_reset(hw);
1499         }
1500 }
1501
1502 static void igb_create_lbtest_frame(struct sk_buff *skb,
1503                                     unsigned int frame_size)
1504 {
1505         memset(skb->data, 0xFF, frame_size);
1506         frame_size &= ~1;
1507         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1508         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1509         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1510 }
1511
1512 static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1513 {
1514         frame_size &= ~1;
1515         if (*(skb->data + 3) == 0xFF)
1516                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1517                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1518                         return 0;
1519         return 13;
1520 }
1521
1522 static int igb_run_loopback_test(struct igb_adapter *adapter)
1523 {
1524         struct e1000_hw *hw = &adapter->hw;
1525         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1526         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1527         struct pci_dev *pdev = adapter->pdev;
1528         int i, j, k, l, lc, good_cnt;
1529         int ret_val = 0;
1530         unsigned long time;
1531
1532         wr32(E1000_RDT(0), rx_ring->count - 1);
1533
1534         /* Calculate the loop count based on the largest descriptor ring
1535          * The idea is to wrap the largest ring a number of times using 64
1536          * send/receive pairs during each loop
1537          */
1538
1539         if (rx_ring->count <= tx_ring->count)
1540                 lc = ((tx_ring->count / 64) * 2) + 1;
1541         else
1542                 lc = ((rx_ring->count / 64) * 2) + 1;
1543
1544         k = l = 0;
1545         for (j = 0; j <= lc; j++) { /* loop count loop */
1546                 for (i = 0; i < 64; i++) { /* send the packets */
1547                         igb_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1548                                                 1024);
1549                         pci_dma_sync_single_for_device(pdev,
1550                                 tx_ring->buffer_info[k].dma,
1551                                 tx_ring->buffer_info[k].length,
1552                                 PCI_DMA_TODEVICE);
1553                         k++;
1554                         if (k == tx_ring->count)
1555                                 k = 0;
1556                 }
1557                 wr32(E1000_TDT(0), k);
1558                 msleep(200);
1559                 time = jiffies; /* set the start time for the receive */
1560                 good_cnt = 0;
1561                 do { /* receive the sent packets */
1562                         pci_dma_sync_single_for_cpu(pdev,
1563                                         rx_ring->buffer_info[l].dma,
1564                                         IGB_RXBUFFER_2048,
1565                                         PCI_DMA_FROMDEVICE);
1566
1567                         ret_val = igb_check_lbtest_frame(
1568                                              rx_ring->buffer_info[l].skb, 1024);
1569                         if (!ret_val)
1570                                 good_cnt++;
1571                         l++;
1572                         if (l == rx_ring->count)
1573                                 l = 0;
1574                         /* time + 20 msecs (200 msecs on 2.4) is more than
1575                          * enough time to complete the receives, if it's
1576                          * exceeded, break and error off
1577                          */
1578                 } while (good_cnt < 64 && jiffies < (time + 20));
1579                 if (good_cnt != 64) {
1580                         ret_val = 13; /* ret_val is the same as mis-compare */
1581                         break;
1582                 }
1583                 if (jiffies >= (time + 20)) {
1584                         ret_val = 14; /* error code for time out error */
1585                         break;
1586                 }
1587         } /* end loop count loop */
1588         return ret_val;
1589 }
1590
1591 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1592 {
1593         /* PHY loopback cannot be performed if SoL/IDER
1594          * sessions are active */
1595         if (igb_check_reset_block(&adapter->hw)) {
1596                 dev_err(&adapter->pdev->dev,
1597                         "Cannot do PHY loopback test "
1598                         "when SoL/IDER is active.\n");
1599                 *data = 0;
1600                 goto out;
1601         }
1602         *data = igb_setup_desc_rings(adapter);
1603         if (*data)
1604                 goto out;
1605         *data = igb_setup_loopback_test(adapter);
1606         if (*data)
1607                 goto err_loopback;
1608         *data = igb_run_loopback_test(adapter);
1609         igb_loopback_cleanup(adapter);
1610
1611 err_loopback:
1612         igb_free_desc_rings(adapter);
1613 out:
1614         return *data;
1615 }
1616
1617 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1618 {
1619         struct e1000_hw *hw = &adapter->hw;
1620         *data = 0;
1621         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1622                 int i = 0;
1623                 hw->mac.serdes_has_link = false;
1624
1625                 /* On some blade server designs, link establishment
1626                  * could take as long as 2-3 minutes */
1627                 do {
1628                         hw->mac.ops.check_for_link(&adapter->hw);
1629                         if (hw->mac.serdes_has_link)
1630                                 return *data;
1631                         msleep(20);
1632                 } while (i++ < 3750);
1633
1634                 *data = 1;
1635         } else {
1636                 hw->mac.ops.check_for_link(&adapter->hw);
1637                 if (hw->mac.autoneg)
1638                         msleep(4000);
1639
1640                 if (!(rd32(E1000_STATUS) &
1641                       E1000_STATUS_LU))
1642                         *data = 1;
1643         }
1644         return *data;
1645 }
1646
1647 static void igb_diag_test(struct net_device *netdev,
1648                           struct ethtool_test *eth_test, u64 *data)
1649 {
1650         struct igb_adapter *adapter = netdev_priv(netdev);
1651         u16 autoneg_advertised;
1652         u8 forced_speed_duplex, autoneg;
1653         bool if_running = netif_running(netdev);
1654
1655         set_bit(__IGB_TESTING, &adapter->state);
1656         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1657                 /* Offline tests */
1658
1659                 /* save speed, duplex, autoneg settings */
1660                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1661                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1662                 autoneg = adapter->hw.mac.autoneg;
1663
1664                 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1665
1666                 /* Link test performed before hardware reset so autoneg doesn't
1667                  * interfere with test result */
1668                 if (igb_link_test(adapter, &data[4]))
1669                         eth_test->flags |= ETH_TEST_FL_FAILED;
1670
1671                 if (if_running)
1672                         /* indicate we're in test mode */
1673                         dev_close(netdev);
1674                 else
1675                         igb_reset(adapter);
1676
1677                 if (igb_reg_test(adapter, &data[0]))
1678                         eth_test->flags |= ETH_TEST_FL_FAILED;
1679
1680                 igb_reset(adapter);
1681                 if (igb_eeprom_test(adapter, &data[1]))
1682                         eth_test->flags |= ETH_TEST_FL_FAILED;
1683
1684                 igb_reset(adapter);
1685                 if (igb_intr_test(adapter, &data[2]))
1686                         eth_test->flags |= ETH_TEST_FL_FAILED;
1687
1688                 igb_reset(adapter);
1689                 if (igb_loopback_test(adapter, &data[3]))
1690                         eth_test->flags |= ETH_TEST_FL_FAILED;
1691
1692                 /* restore speed, duplex, autoneg settings */
1693                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1694                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1695                 adapter->hw.mac.autoneg = autoneg;
1696
1697                 /* force this routine to wait until autoneg complete/timeout */
1698                 adapter->hw.phy.autoneg_wait_to_complete = true;
1699                 igb_reset(adapter);
1700                 adapter->hw.phy.autoneg_wait_to_complete = false;
1701
1702                 clear_bit(__IGB_TESTING, &adapter->state);
1703                 if (if_running)
1704                         dev_open(netdev);
1705         } else {
1706                 dev_info(&adapter->pdev->dev, "online testing starting\n");
1707                 /* Online tests */
1708                 if (igb_link_test(adapter, &data[4]))
1709                         eth_test->flags |= ETH_TEST_FL_FAILED;
1710
1711                 /* Online tests aren't run; pass by default */
1712                 data[0] = 0;
1713                 data[1] = 0;
1714                 data[2] = 0;
1715                 data[3] = 0;
1716
1717                 clear_bit(__IGB_TESTING, &adapter->state);
1718         }
1719         msleep_interruptible(4 * 1000);
1720 }
1721
1722 static int igb_wol_exclusion(struct igb_adapter *adapter,
1723                              struct ethtool_wolinfo *wol)
1724 {
1725         struct e1000_hw *hw = &adapter->hw;
1726         int retval = 1; /* fail by default */
1727
1728         switch (hw->device_id) {
1729         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1730         case E1000_DEV_ID_82576_QUAD_COPPER:
1731                 /* WoL not supported */
1732                 wol->supported = 0;
1733                 break;
1734         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1735         case E1000_DEV_ID_82576_FIBER:
1736         case E1000_DEV_ID_82576_SERDES:
1737                 /* Wake events not supported on port B */
1738                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1739                         wol->supported = 0;
1740                         break;
1741                 }
1742                 /* return success for non excluded adapter ports */
1743                 retval = 0;
1744                 break;
1745         default:
1746                 /* dual port cards only support WoL on port A from now on
1747                  * unless it was enabled in the eeprom for port B
1748                  * so exclude FUNC_1 ports from having WoL enabled */
1749                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1 &&
1750                     !adapter->eeprom_wol) {
1751                         wol->supported = 0;
1752                         break;
1753                 }
1754
1755                 retval = 0;
1756         }
1757
1758         return retval;
1759 }
1760
1761 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1762 {
1763         struct igb_adapter *adapter = netdev_priv(netdev);
1764
1765         wol->supported = WAKE_UCAST | WAKE_MCAST |
1766                          WAKE_BCAST | WAKE_MAGIC;
1767         wol->wolopts = 0;
1768
1769         /* this function will set ->supported = 0 and return 1 if wol is not
1770          * supported by this hardware */
1771         if (igb_wol_exclusion(adapter, wol))
1772                 return;
1773
1774         /* apply any specific unsupported masks here */
1775         switch (adapter->hw.device_id) {
1776         default:
1777                 break;
1778         }
1779
1780         if (adapter->wol & E1000_WUFC_EX)
1781                 wol->wolopts |= WAKE_UCAST;
1782         if (adapter->wol & E1000_WUFC_MC)
1783                 wol->wolopts |= WAKE_MCAST;
1784         if (adapter->wol & E1000_WUFC_BC)
1785                 wol->wolopts |= WAKE_BCAST;
1786         if (adapter->wol & E1000_WUFC_MAG)
1787                 wol->wolopts |= WAKE_MAGIC;
1788
1789         return;
1790 }
1791
1792 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1793 {
1794         struct igb_adapter *adapter = netdev_priv(netdev);
1795         struct e1000_hw *hw = &adapter->hw;
1796
1797         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1798                 return -EOPNOTSUPP;
1799
1800         if (igb_wol_exclusion(adapter, wol))
1801                 return wol->wolopts ? -EOPNOTSUPP : 0;
1802
1803         switch (hw->device_id) {
1804         default:
1805                 break;
1806         }
1807
1808         /* these settings will always override what we currently have */
1809         adapter->wol = 0;
1810
1811         if (wol->wolopts & WAKE_UCAST)
1812                 adapter->wol |= E1000_WUFC_EX;
1813         if (wol->wolopts & WAKE_MCAST)
1814                 adapter->wol |= E1000_WUFC_MC;
1815         if (wol->wolopts & WAKE_BCAST)
1816                 adapter->wol |= E1000_WUFC_BC;
1817         if (wol->wolopts & WAKE_MAGIC)
1818                 adapter->wol |= E1000_WUFC_MAG;
1819
1820         return 0;
1821 }
1822
1823 /* toggle LED 4 times per second = 2 "blinks" per second */
1824 #define IGB_ID_INTERVAL         (HZ/4)
1825
1826 /* bit defines for adapter->led_status */
1827 #define IGB_LED_ON              0
1828
1829 static int igb_phys_id(struct net_device *netdev, u32 data)
1830 {
1831         struct igb_adapter *adapter = netdev_priv(netdev);
1832         struct e1000_hw *hw = &adapter->hw;
1833
1834         if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
1835                 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
1836
1837         igb_blink_led(hw);
1838         msleep_interruptible(data * 1000);
1839
1840         igb_led_off(hw);
1841         clear_bit(IGB_LED_ON, &adapter->led_status);
1842         igb_cleanup_led(hw);
1843
1844         return 0;
1845 }
1846
1847 static int igb_set_coalesce(struct net_device *netdev,
1848                             struct ethtool_coalesce *ec)
1849 {
1850         struct igb_adapter *adapter = netdev_priv(netdev);
1851
1852         if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1853             ((ec->rx_coalesce_usecs > 3) &&
1854              (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1855             (ec->rx_coalesce_usecs == 2))
1856                 return -EINVAL;
1857
1858         /* convert to rate of irq's per second */
1859         if (ec->rx_coalesce_usecs <= 3)
1860                 adapter->itr_setting = ec->rx_coalesce_usecs;
1861         else
1862                 adapter->itr_setting = (1000000 / ec->rx_coalesce_usecs);
1863
1864         if (netif_running(netdev))
1865                 igb_reinit_locked(adapter);
1866
1867         return 0;
1868 }
1869
1870 static int igb_get_coalesce(struct net_device *netdev,
1871                             struct ethtool_coalesce *ec)
1872 {
1873         struct igb_adapter *adapter = netdev_priv(netdev);
1874
1875         if (adapter->itr_setting <= 3)
1876                 ec->rx_coalesce_usecs = adapter->itr_setting;
1877         else
1878                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1879
1880         return 0;
1881 }
1882
1883
1884 static int igb_nway_reset(struct net_device *netdev)
1885 {
1886         struct igb_adapter *adapter = netdev_priv(netdev);
1887         if (netif_running(netdev))
1888                 igb_reinit_locked(adapter);
1889         return 0;
1890 }
1891
1892 static int igb_get_sset_count(struct net_device *netdev, int sset)
1893 {
1894         switch (sset) {
1895         case ETH_SS_STATS:
1896                 return IGB_STATS_LEN;
1897         case ETH_SS_TEST:
1898                 return IGB_TEST_LEN;
1899         default:
1900                 return -ENOTSUPP;
1901         }
1902 }
1903
1904 static void igb_get_ethtool_stats(struct net_device *netdev,
1905                                   struct ethtool_stats *stats, u64 *data)
1906 {
1907         struct igb_adapter *adapter = netdev_priv(netdev);
1908         u64 *queue_stat;
1909         int stat_count = sizeof(struct igb_queue_stats) / sizeof(u64);
1910         int j;
1911         int i;
1912
1913         igb_update_stats(adapter);
1914         for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1915                 char *p = (char *)adapter+igb_gstrings_stats[i].stat_offset;
1916                 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
1917                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1918         }
1919         for (j = 0; j < adapter->num_tx_queues; j++) {
1920                 int k;
1921                 queue_stat = (u64 *)&adapter->tx_ring[j].tx_stats;
1922                 for (k = 0; k < stat_count; k++)
1923                         data[i + k] = queue_stat[k];
1924                 i += k;
1925         }
1926         for (j = 0; j < adapter->num_rx_queues; j++) {
1927                 int k;
1928                 queue_stat = (u64 *)&adapter->rx_ring[j].rx_stats;
1929                 for (k = 0; k < stat_count; k++)
1930                         data[i + k] = queue_stat[k];
1931                 i += k;
1932         }
1933 }
1934
1935 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
1936 {
1937         struct igb_adapter *adapter = netdev_priv(netdev);
1938         u8 *p = data;
1939         int i;
1940
1941         switch (stringset) {
1942         case ETH_SS_TEST:
1943                 memcpy(data, *igb_gstrings_test,
1944                         IGB_TEST_LEN*ETH_GSTRING_LEN);
1945                 break;
1946         case ETH_SS_STATS:
1947                 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1948                         memcpy(p, igb_gstrings_stats[i].stat_string,
1949                                ETH_GSTRING_LEN);
1950                         p += ETH_GSTRING_LEN;
1951                 }
1952                 for (i = 0; i < adapter->num_tx_queues; i++) {
1953                         sprintf(p, "tx_queue_%u_packets", i);
1954                         p += ETH_GSTRING_LEN;
1955                         sprintf(p, "tx_queue_%u_bytes", i);
1956                         p += ETH_GSTRING_LEN;
1957                 }
1958                 for (i = 0; i < adapter->num_rx_queues; i++) {
1959                         sprintf(p, "rx_queue_%u_packets", i);
1960                         p += ETH_GSTRING_LEN;
1961                         sprintf(p, "rx_queue_%u_bytes", i);
1962                         p += ETH_GSTRING_LEN;
1963                 }
1964 /*              BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
1965                 break;
1966         }
1967 }
1968
1969 static struct ethtool_ops igb_ethtool_ops = {
1970         .get_settings           = igb_get_settings,
1971         .set_settings           = igb_set_settings,
1972         .get_drvinfo            = igb_get_drvinfo,
1973         .get_regs_len           = igb_get_regs_len,
1974         .get_regs               = igb_get_regs,
1975         .get_wol                = igb_get_wol,
1976         .set_wol                = igb_set_wol,
1977         .get_msglevel           = igb_get_msglevel,
1978         .set_msglevel           = igb_set_msglevel,
1979         .nway_reset             = igb_nway_reset,
1980         .get_link               = ethtool_op_get_link,
1981         .get_eeprom_len         = igb_get_eeprom_len,
1982         .get_eeprom             = igb_get_eeprom,
1983         .set_eeprom             = igb_set_eeprom,
1984         .get_ringparam          = igb_get_ringparam,
1985         .set_ringparam          = igb_set_ringparam,
1986         .get_pauseparam         = igb_get_pauseparam,
1987         .set_pauseparam         = igb_set_pauseparam,
1988         .get_rx_csum            = igb_get_rx_csum,
1989         .set_rx_csum            = igb_set_rx_csum,
1990         .get_tx_csum            = igb_get_tx_csum,
1991         .set_tx_csum            = igb_set_tx_csum,
1992         .get_sg                 = ethtool_op_get_sg,
1993         .set_sg                 = ethtool_op_set_sg,
1994         .get_tso                = ethtool_op_get_tso,
1995         .set_tso                = igb_set_tso,
1996         .self_test              = igb_diag_test,
1997         .get_strings            = igb_get_strings,
1998         .phys_id                = igb_phys_id,
1999         .get_sset_count         = igb_get_sset_count,
2000         .get_ethtool_stats      = igb_get_ethtool_stats,
2001         .get_coalesce           = igb_get_coalesce,
2002         .set_coalesce           = igb_set_coalesce,
2003 };
2004
2005 void igb_set_ethtool_ops(struct net_device *netdev)
2006 {
2007         SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2008 }