gianfar: Add hardware TX timestamping support
[safe/jmp/linux-2.6] / drivers / net / gianfar.c
1 /*
2  * drivers/net/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12  *
13  * Copyright 2002-2009 Freescale Semiconductor, Inc.
14  * Copyright 2007 MontaVista Software, Inc.
15  *
16  * This program is free software; you can redistribute  it and/or modify it
17  * under  the terms of  the GNU General  Public License as published by the
18  * Free Software Foundation;  either version 2 of the  License, or (at your
19  * option) any later version.
20  *
21  *  Gianfar:  AKA Lambda Draconis, "Dragon"
22  *  RA 11 31 24.2
23  *  Dec +69 19 52
24  *  V 3.84
25  *  B-V +1.62
26  *
27  *  Theory of operation
28  *
29  *  The driver is initialized through of_device. Configuration information
30  *  is therefore conveyed through an OF-style device tree.
31  *
32  *  The Gianfar Ethernet Controller uses a ring of buffer
33  *  descriptors.  The beginning is indicated by a register
34  *  pointing to the physical address of the start of the ring.
35  *  The end is determined by a "wrap" bit being set in the
36  *  last descriptor of the ring.
37  *
38  *  When a packet is received, the RXF bit in the
39  *  IEVENT register is set, triggering an interrupt when the
40  *  corresponding bit in the IMASK register is also set (if
41  *  interrupt coalescing is active, then the interrupt may not
42  *  happen immediately, but will wait until either a set number
43  *  of frames or amount of time have passed).  In NAPI, the
44  *  interrupt handler will signal there is work to be done, and
45  *  exit. This method will start at the last known empty
46  *  descriptor, and process every subsequent descriptor until there
47  *  are none left with data (NAPI will stop after a set number of
48  *  packets to give time to other tasks, but will eventually
49  *  process all the packets).  The data arrives inside a
50  *  pre-allocated skb, and so after the skb is passed up to the
51  *  stack, a new skb must be allocated, and the address field in
52  *  the buffer descriptor must be updated to indicate this new
53  *  skb.
54  *
55  *  When the kernel requests that a packet be transmitted, the
56  *  driver starts where it left off last time, and points the
57  *  descriptor at the buffer which was passed in.  The driver
58  *  then informs the DMA engine that there are packets ready to
59  *  be transmitted.  Once the controller is finished transmitting
60  *  the packet, an interrupt may be triggered (under the same
61  *  conditions as for reception, but depending on the TXF bit).
62  *  The driver then cleans up the buffer.
63  */
64
65 #include <linux/kernel.h>
66 #include <linux/string.h>
67 #include <linux/errno.h>
68 #include <linux/unistd.h>
69 #include <linux/slab.h>
70 #include <linux/interrupt.h>
71 #include <linux/init.h>
72 #include <linux/delay.h>
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_vlan.h>
77 #include <linux/spinlock.h>
78 #include <linux/mm.h>
79 #include <linux/of_mdio.h>
80 #include <linux/of_platform.h>
81 #include <linux/ip.h>
82 #include <linux/tcp.h>
83 #include <linux/udp.h>
84 #include <linux/in.h>
85 #include <linux/net_tstamp.h>
86
87 #include <asm/io.h>
88 #include <asm/irq.h>
89 #include <asm/uaccess.h>
90 #include <linux/module.h>
91 #include <linux/dma-mapping.h>
92 #include <linux/crc32.h>
93 #include <linux/mii.h>
94 #include <linux/phy.h>
95 #include <linux/phy_fixed.h>
96 #include <linux/of.h>
97
98 #include "gianfar.h"
99 #include "fsl_pq_mdio.h"
100
101 #define TX_TIMEOUT      (1*HZ)
102 #undef BRIEF_GFAR_ERRORS
103 #undef VERBOSE_GFAR_ERRORS
104
105 const char gfar_driver_name[] = "Gianfar Ethernet";
106 const char gfar_driver_version[] = "1.3";
107
108 static int gfar_enet_open(struct net_device *dev);
109 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
110 static void gfar_reset_task(struct work_struct *work);
111 static void gfar_timeout(struct net_device *dev);
112 static int gfar_close(struct net_device *dev);
113 struct sk_buff *gfar_new_skb(struct net_device *dev);
114 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
115                 struct sk_buff *skb);
116 static int gfar_set_mac_address(struct net_device *dev);
117 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
118 static irqreturn_t gfar_error(int irq, void *dev_id);
119 static irqreturn_t gfar_transmit(int irq, void *dev_id);
120 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
121 static void adjust_link(struct net_device *dev);
122 static void init_registers(struct net_device *dev);
123 static int init_phy(struct net_device *dev);
124 static int gfar_probe(struct of_device *ofdev,
125                 const struct of_device_id *match);
126 static int gfar_remove(struct of_device *ofdev);
127 static void free_skb_resources(struct gfar_private *priv);
128 static void gfar_set_multi(struct net_device *dev);
129 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
130 static void gfar_configure_serdes(struct net_device *dev);
131 static int gfar_poll(struct napi_struct *napi, int budget);
132 #ifdef CONFIG_NET_POLL_CONTROLLER
133 static void gfar_netpoll(struct net_device *dev);
134 #endif
135 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
136 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
137 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
138                               int amount_pull);
139 static void gfar_vlan_rx_register(struct net_device *netdev,
140                                 struct vlan_group *grp);
141 void gfar_halt(struct net_device *dev);
142 static void gfar_halt_nodisable(struct net_device *dev);
143 void gfar_start(struct net_device *dev);
144 static void gfar_clear_exact_match(struct net_device *dev);
145 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
146 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
147
148 MODULE_AUTHOR("Freescale Semiconductor, Inc");
149 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
150 MODULE_LICENSE("GPL");
151
152 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
153                             dma_addr_t buf)
154 {
155         u32 lstatus;
156
157         bdp->bufPtr = buf;
158
159         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
160         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
161                 lstatus |= BD_LFLAG(RXBD_WRAP);
162
163         eieio();
164
165         bdp->lstatus = lstatus;
166 }
167
168 static int gfar_init_bds(struct net_device *ndev)
169 {
170         struct gfar_private *priv = netdev_priv(ndev);
171         struct gfar_priv_tx_q *tx_queue = NULL;
172         struct gfar_priv_rx_q *rx_queue = NULL;
173         struct txbd8 *txbdp;
174         struct rxbd8 *rxbdp;
175         int i, j;
176
177         for (i = 0; i < priv->num_tx_queues; i++) {
178                 tx_queue = priv->tx_queue[i];
179                 /* Initialize some variables in our dev structure */
180                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
181                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
182                 tx_queue->cur_tx = tx_queue->tx_bd_base;
183                 tx_queue->skb_curtx = 0;
184                 tx_queue->skb_dirtytx = 0;
185
186                 /* Initialize Transmit Descriptor Ring */
187                 txbdp = tx_queue->tx_bd_base;
188                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
189                         txbdp->lstatus = 0;
190                         txbdp->bufPtr = 0;
191                         txbdp++;
192                 }
193
194                 /* Set the last descriptor in the ring to indicate wrap */
195                 txbdp--;
196                 txbdp->status |= TXBD_WRAP;
197         }
198
199         for (i = 0; i < priv->num_rx_queues; i++) {
200                 rx_queue = priv->rx_queue[i];
201                 rx_queue->cur_rx = rx_queue->rx_bd_base;
202                 rx_queue->skb_currx = 0;
203                 rxbdp = rx_queue->rx_bd_base;
204
205                 for (j = 0; j < rx_queue->rx_ring_size; j++) {
206                         struct sk_buff *skb = rx_queue->rx_skbuff[j];
207
208                         if (skb) {
209                                 gfar_init_rxbdp(rx_queue, rxbdp,
210                                                 rxbdp->bufPtr);
211                         } else {
212                                 skb = gfar_new_skb(ndev);
213                                 if (!skb) {
214                                         pr_err("%s: Can't allocate RX buffers\n",
215                                                         ndev->name);
216                                         goto err_rxalloc_fail;
217                                 }
218                                 rx_queue->rx_skbuff[j] = skb;
219
220                                 gfar_new_rxbdp(rx_queue, rxbdp, skb);
221                         }
222
223                         rxbdp++;
224                 }
225
226         }
227
228         return 0;
229
230 err_rxalloc_fail:
231         free_skb_resources(priv);
232         return -ENOMEM;
233 }
234
235 static int gfar_alloc_skb_resources(struct net_device *ndev)
236 {
237         void *vaddr;
238         dma_addr_t addr;
239         int i, j, k;
240         struct gfar_private *priv = netdev_priv(ndev);
241         struct device *dev = &priv->ofdev->dev;
242         struct gfar_priv_tx_q *tx_queue = NULL;
243         struct gfar_priv_rx_q *rx_queue = NULL;
244
245         priv->total_tx_ring_size = 0;
246         for (i = 0; i < priv->num_tx_queues; i++)
247                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
248
249         priv->total_rx_ring_size = 0;
250         for (i = 0; i < priv->num_rx_queues; i++)
251                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
252
253         /* Allocate memory for the buffer descriptors */
254         vaddr = dma_alloc_coherent(dev,
255                         sizeof(struct txbd8) * priv->total_tx_ring_size +
256                         sizeof(struct rxbd8) * priv->total_rx_ring_size,
257                         &addr, GFP_KERNEL);
258         if (!vaddr) {
259                 if (netif_msg_ifup(priv))
260                         pr_err("%s: Could not allocate buffer descriptors!\n",
261                                ndev->name);
262                 return -ENOMEM;
263         }
264
265         for (i = 0; i < priv->num_tx_queues; i++) {
266                 tx_queue = priv->tx_queue[i];
267                 tx_queue->tx_bd_base = (struct txbd8 *) vaddr;
268                 tx_queue->tx_bd_dma_base = addr;
269                 tx_queue->dev = ndev;
270                 /* enet DMA only understands physical addresses */
271                 addr    += sizeof(struct txbd8) *tx_queue->tx_ring_size;
272                 vaddr   += sizeof(struct txbd8) *tx_queue->tx_ring_size;
273         }
274
275         /* Start the rx descriptor ring where the tx ring leaves off */
276         for (i = 0; i < priv->num_rx_queues; i++) {
277                 rx_queue = priv->rx_queue[i];
278                 rx_queue->rx_bd_base = (struct rxbd8 *) vaddr;
279                 rx_queue->rx_bd_dma_base = addr;
280                 rx_queue->dev = ndev;
281                 addr    += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
282                 vaddr   += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
283         }
284
285         /* Setup the skbuff rings */
286         for (i = 0; i < priv->num_tx_queues; i++) {
287                 tx_queue = priv->tx_queue[i];
288                 tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
289                                   tx_queue->tx_ring_size, GFP_KERNEL);
290                 if (!tx_queue->tx_skbuff) {
291                         if (netif_msg_ifup(priv))
292                                 pr_err("%s: Could not allocate tx_skbuff\n",
293                                                 ndev->name);
294                         goto cleanup;
295                 }
296
297                 for (k = 0; k < tx_queue->tx_ring_size; k++)
298                         tx_queue->tx_skbuff[k] = NULL;
299         }
300
301         for (i = 0; i < priv->num_rx_queues; i++) {
302                 rx_queue = priv->rx_queue[i];
303                 rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
304                                   rx_queue->rx_ring_size, GFP_KERNEL);
305
306                 if (!rx_queue->rx_skbuff) {
307                         if (netif_msg_ifup(priv))
308                                 pr_err("%s: Could not allocate rx_skbuff\n",
309                                        ndev->name);
310                         goto cleanup;
311                 }
312
313                 for (j = 0; j < rx_queue->rx_ring_size; j++)
314                         rx_queue->rx_skbuff[j] = NULL;
315         }
316
317         if (gfar_init_bds(ndev))
318                 goto cleanup;
319
320         return 0;
321
322 cleanup:
323         free_skb_resources(priv);
324         return -ENOMEM;
325 }
326
327 static void gfar_init_tx_rx_base(struct gfar_private *priv)
328 {
329         struct gfar __iomem *regs = priv->gfargrp[0].regs;
330         u32 __iomem *baddr;
331         int i;
332
333         baddr = &regs->tbase0;
334         for(i = 0; i < priv->num_tx_queues; i++) {
335                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
336                 baddr   += 2;
337         }
338
339         baddr = &regs->rbase0;
340         for(i = 0; i < priv->num_rx_queues; i++) {
341                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
342                 baddr   += 2;
343         }
344 }
345
346 static void gfar_init_mac(struct net_device *ndev)
347 {
348         struct gfar_private *priv = netdev_priv(ndev);
349         struct gfar __iomem *regs = priv->gfargrp[0].regs;
350         u32 rctrl = 0;
351         u32 tctrl = 0;
352         u32 attrs = 0;
353
354         /* write the tx/rx base registers */
355         gfar_init_tx_rx_base(priv);
356
357         /* Configure the coalescing support */
358         gfar_configure_coalescing(priv, 0xFF, 0xFF);
359
360         if (priv->rx_filer_enable) {
361                 rctrl |= RCTRL_FILREN;
362                 /* Program the RIR0 reg with the required distribution */
363                 gfar_write(&regs->rir0, DEFAULT_RIR0);
364         }
365
366         if (priv->rx_csum_enable)
367                 rctrl |= RCTRL_CHECKSUMMING;
368
369         if (priv->extended_hash) {
370                 rctrl |= RCTRL_EXTHASH;
371
372                 gfar_clear_exact_match(ndev);
373                 rctrl |= RCTRL_EMEN;
374         }
375
376         if (priv->padding) {
377                 rctrl &= ~RCTRL_PAL_MASK;
378                 rctrl |= RCTRL_PADDING(priv->padding);
379         }
380
381         /* Insert receive time stamps into padding alignment bytes */
382         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
383                 rctrl &= ~RCTRL_PAL_MASK;
384                 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE | RCTRL_PADDING(8);
385                 priv->padding = 8;
386         }
387
388         /* keep vlan related bits if it's enabled */
389         if (priv->vlgrp) {
390                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
391                 tctrl |= TCTRL_VLINS;
392         }
393
394         /* Init rctrl based on our settings */
395         gfar_write(&regs->rctrl, rctrl);
396
397         if (ndev->features & NETIF_F_IP_CSUM)
398                 tctrl |= TCTRL_INIT_CSUM;
399
400         tctrl |= TCTRL_TXSCHED_PRIO;
401
402         gfar_write(&regs->tctrl, tctrl);
403
404         /* Set the extraction length and index */
405         attrs = ATTRELI_EL(priv->rx_stash_size) |
406                 ATTRELI_EI(priv->rx_stash_index);
407
408         gfar_write(&regs->attreli, attrs);
409
410         /* Start with defaults, and add stashing or locking
411          * depending on the approprate variables */
412         attrs = ATTR_INIT_SETTINGS;
413
414         if (priv->bd_stash_en)
415                 attrs |= ATTR_BDSTASH;
416
417         if (priv->rx_stash_size != 0)
418                 attrs |= ATTR_BUFSTASH;
419
420         gfar_write(&regs->attr, attrs);
421
422         gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
423         gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
424         gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
425 }
426
427 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
428 {
429         struct gfar_private *priv = netdev_priv(dev);
430         struct netdev_queue *txq;
431         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
432         unsigned long tx_packets = 0, tx_bytes = 0;
433         int i = 0;
434
435         for (i = 0; i < priv->num_rx_queues; i++) {
436                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
437                 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
438                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
439         }
440
441         dev->stats.rx_packets = rx_packets;
442         dev->stats.rx_bytes = rx_bytes;
443         dev->stats.rx_dropped = rx_dropped;
444
445         for (i = 0; i < priv->num_tx_queues; i++) {
446                 txq = netdev_get_tx_queue(dev, i);
447                 tx_bytes += txq->tx_bytes;
448                 tx_packets += txq->tx_packets;
449         }
450
451         dev->stats.tx_bytes = tx_bytes;
452         dev->stats.tx_packets = tx_packets;
453
454         return &dev->stats;
455 }
456
457 static const struct net_device_ops gfar_netdev_ops = {
458         .ndo_open = gfar_enet_open,
459         .ndo_start_xmit = gfar_start_xmit,
460         .ndo_stop = gfar_close,
461         .ndo_change_mtu = gfar_change_mtu,
462         .ndo_set_multicast_list = gfar_set_multi,
463         .ndo_tx_timeout = gfar_timeout,
464         .ndo_do_ioctl = gfar_ioctl,
465         .ndo_get_stats = gfar_get_stats,
466         .ndo_vlan_rx_register = gfar_vlan_rx_register,
467         .ndo_set_mac_address = eth_mac_addr,
468         .ndo_validate_addr = eth_validate_addr,
469 #ifdef CONFIG_NET_POLL_CONTROLLER
470         .ndo_poll_controller = gfar_netpoll,
471 #endif
472 };
473
474 unsigned int ftp_rqfpr[MAX_FILER_IDX + 1];
475 unsigned int ftp_rqfcr[MAX_FILER_IDX + 1];
476
477 void lock_rx_qs(struct gfar_private *priv)
478 {
479         int i = 0x0;
480
481         for (i = 0; i < priv->num_rx_queues; i++)
482                 spin_lock(&priv->rx_queue[i]->rxlock);
483 }
484
485 void lock_tx_qs(struct gfar_private *priv)
486 {
487         int i = 0x0;
488
489         for (i = 0; i < priv->num_tx_queues; i++)
490                 spin_lock(&priv->tx_queue[i]->txlock);
491 }
492
493 void unlock_rx_qs(struct gfar_private *priv)
494 {
495         int i = 0x0;
496
497         for (i = 0; i < priv->num_rx_queues; i++)
498                 spin_unlock(&priv->rx_queue[i]->rxlock);
499 }
500
501 void unlock_tx_qs(struct gfar_private *priv)
502 {
503         int i = 0x0;
504
505         for (i = 0; i < priv->num_tx_queues; i++)
506                 spin_unlock(&priv->tx_queue[i]->txlock);
507 }
508
509 /* Returns 1 if incoming frames use an FCB */
510 static inline int gfar_uses_fcb(struct gfar_private *priv)
511 {
512         return priv->vlgrp || priv->rx_csum_enable ||
513                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER);
514 }
515
516 static void free_tx_pointers(struct gfar_private *priv)
517 {
518         int i = 0;
519
520         for (i = 0; i < priv->num_tx_queues; i++)
521                 kfree(priv->tx_queue[i]);
522 }
523
524 static void free_rx_pointers(struct gfar_private *priv)
525 {
526         int i = 0;
527
528         for (i = 0; i < priv->num_rx_queues; i++)
529                 kfree(priv->rx_queue[i]);
530 }
531
532 static void unmap_group_regs(struct gfar_private *priv)
533 {
534         int i = 0;
535
536         for (i = 0; i < MAXGROUPS; i++)
537                 if (priv->gfargrp[i].regs)
538                         iounmap(priv->gfargrp[i].regs);
539 }
540
541 static void disable_napi(struct gfar_private *priv)
542 {
543         int i = 0;
544
545         for (i = 0; i < priv->num_grps; i++)
546                 napi_disable(&priv->gfargrp[i].napi);
547 }
548
549 static void enable_napi(struct gfar_private *priv)
550 {
551         int i = 0;
552
553         for (i = 0; i < priv->num_grps; i++)
554                 napi_enable(&priv->gfargrp[i].napi);
555 }
556
557 static int gfar_parse_group(struct device_node *np,
558                 struct gfar_private *priv, const char *model)
559 {
560         u32 *queue_mask;
561         u64 addr, size;
562
563         addr = of_translate_address(np,
564                         of_get_address(np, 0, &size, NULL));
565         priv->gfargrp[priv->num_grps].regs = ioremap(addr, size);
566
567         if (!priv->gfargrp[priv->num_grps].regs)
568                 return -ENOMEM;
569
570         priv->gfargrp[priv->num_grps].interruptTransmit =
571                         irq_of_parse_and_map(np, 0);
572
573         /* If we aren't the FEC we have multiple interrupts */
574         if (model && strcasecmp(model, "FEC")) {
575                 priv->gfargrp[priv->num_grps].interruptReceive =
576                         irq_of_parse_and_map(np, 1);
577                 priv->gfargrp[priv->num_grps].interruptError =
578                         irq_of_parse_and_map(np,2);
579                 if (priv->gfargrp[priv->num_grps].interruptTransmit < 0 ||
580                         priv->gfargrp[priv->num_grps].interruptReceive < 0 ||
581                         priv->gfargrp[priv->num_grps].interruptError < 0) {
582                         return -EINVAL;
583                 }
584         }
585
586         priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
587         priv->gfargrp[priv->num_grps].priv = priv;
588         spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
589         if(priv->mode == MQ_MG_MODE) {
590                 queue_mask = (u32 *)of_get_property(np,
591                                         "fsl,rx-bit-map", NULL);
592                 priv->gfargrp[priv->num_grps].rx_bit_map =
593                         queue_mask ?  *queue_mask :(DEFAULT_MAPPING >> priv->num_grps);
594                 queue_mask = (u32 *)of_get_property(np,
595                                         "fsl,tx-bit-map", NULL);
596                 priv->gfargrp[priv->num_grps].tx_bit_map =
597                         queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
598         } else {
599                 priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
600                 priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
601         }
602         priv->num_grps++;
603
604         return 0;
605 }
606
607 static int gfar_of_init(struct of_device *ofdev, struct net_device **pdev)
608 {
609         const char *model;
610         const char *ctype;
611         const void *mac_addr;
612         int err = 0, i;
613         struct net_device *dev = NULL;
614         struct gfar_private *priv = NULL;
615         struct device_node *np = ofdev->node;
616         struct device_node *child = NULL;
617         const u32 *stash;
618         const u32 *stash_len;
619         const u32 *stash_idx;
620         unsigned int num_tx_qs, num_rx_qs;
621         u32 *tx_queues, *rx_queues;
622
623         if (!np || !of_device_is_available(np))
624                 return -ENODEV;
625
626         /* parse the num of tx and rx queues */
627         tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
628         num_tx_qs = tx_queues ? *tx_queues : 1;
629
630         if (num_tx_qs > MAX_TX_QS) {
631                 printk(KERN_ERR "num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
632                                 num_tx_qs, MAX_TX_QS);
633                 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
634                 return -EINVAL;
635         }
636
637         rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
638         num_rx_qs = rx_queues ? *rx_queues : 1;
639
640         if (num_rx_qs > MAX_RX_QS) {
641                 printk(KERN_ERR "num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
642                                 num_tx_qs, MAX_TX_QS);
643                 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
644                 return -EINVAL;
645         }
646
647         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
648         dev = *pdev;
649         if (NULL == dev)
650                 return -ENOMEM;
651
652         priv = netdev_priv(dev);
653         priv->node = ofdev->node;
654         priv->ndev = dev;
655
656         dev->num_tx_queues = num_tx_qs;
657         dev->real_num_tx_queues = num_tx_qs;
658         priv->num_tx_queues = num_tx_qs;
659         priv->num_rx_queues = num_rx_qs;
660         priv->num_grps = 0x0;
661
662         model = of_get_property(np, "model", NULL);
663
664         for (i = 0; i < MAXGROUPS; i++)
665                 priv->gfargrp[i].regs = NULL;
666
667         /* Parse and initialize group specific information */
668         if (of_device_is_compatible(np, "fsl,etsec2")) {
669                 priv->mode = MQ_MG_MODE;
670                 for_each_child_of_node(np, child) {
671                         err = gfar_parse_group(child, priv, model);
672                         if (err)
673                                 goto err_grp_init;
674                 }
675         } else {
676                 priv->mode = SQ_SG_MODE;
677                 err = gfar_parse_group(np, priv, model);
678                 if(err)
679                         goto err_grp_init;
680         }
681
682         for (i = 0; i < priv->num_tx_queues; i++)
683                priv->tx_queue[i] = NULL;
684         for (i = 0; i < priv->num_rx_queues; i++)
685                 priv->rx_queue[i] = NULL;
686
687         for (i = 0; i < priv->num_tx_queues; i++) {
688                 priv->tx_queue[i] =  (struct gfar_priv_tx_q *)kzalloc(
689                                 sizeof (struct gfar_priv_tx_q), GFP_KERNEL);
690                 if (!priv->tx_queue[i]) {
691                         err = -ENOMEM;
692                         goto tx_alloc_failed;
693                 }
694                 priv->tx_queue[i]->tx_skbuff = NULL;
695                 priv->tx_queue[i]->qindex = i;
696                 priv->tx_queue[i]->dev = dev;
697                 spin_lock_init(&(priv->tx_queue[i]->txlock));
698         }
699
700         for (i = 0; i < priv->num_rx_queues; i++) {
701                 priv->rx_queue[i] = (struct gfar_priv_rx_q *)kzalloc(
702                                         sizeof (struct gfar_priv_rx_q), GFP_KERNEL);
703                 if (!priv->rx_queue[i]) {
704                         err = -ENOMEM;
705                         goto rx_alloc_failed;
706                 }
707                 priv->rx_queue[i]->rx_skbuff = NULL;
708                 priv->rx_queue[i]->qindex = i;
709                 priv->rx_queue[i]->dev = dev;
710                 spin_lock_init(&(priv->rx_queue[i]->rxlock));
711         }
712
713
714         stash = of_get_property(np, "bd-stash", NULL);
715
716         if (stash) {
717                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
718                 priv->bd_stash_en = 1;
719         }
720
721         stash_len = of_get_property(np, "rx-stash-len", NULL);
722
723         if (stash_len)
724                 priv->rx_stash_size = *stash_len;
725
726         stash_idx = of_get_property(np, "rx-stash-idx", NULL);
727
728         if (stash_idx)
729                 priv->rx_stash_index = *stash_idx;
730
731         if (stash_len || stash_idx)
732                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
733
734         mac_addr = of_get_mac_address(np);
735         if (mac_addr)
736                 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
737
738         if (model && !strcasecmp(model, "TSEC"))
739                 priv->device_flags =
740                         FSL_GIANFAR_DEV_HAS_GIGABIT |
741                         FSL_GIANFAR_DEV_HAS_COALESCE |
742                         FSL_GIANFAR_DEV_HAS_RMON |
743                         FSL_GIANFAR_DEV_HAS_MULTI_INTR;
744         if (model && !strcasecmp(model, "eTSEC"))
745                 priv->device_flags =
746                         FSL_GIANFAR_DEV_HAS_GIGABIT |
747                         FSL_GIANFAR_DEV_HAS_COALESCE |
748                         FSL_GIANFAR_DEV_HAS_RMON |
749                         FSL_GIANFAR_DEV_HAS_MULTI_INTR |
750                         FSL_GIANFAR_DEV_HAS_PADDING |
751                         FSL_GIANFAR_DEV_HAS_CSUM |
752                         FSL_GIANFAR_DEV_HAS_VLAN |
753                         FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
754                         FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
755                         FSL_GIANFAR_DEV_HAS_TIMER;
756
757         ctype = of_get_property(np, "phy-connection-type", NULL);
758
759         /* We only care about rgmii-id.  The rest are autodetected */
760         if (ctype && !strcmp(ctype, "rgmii-id"))
761                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
762         else
763                 priv->interface = PHY_INTERFACE_MODE_MII;
764
765         if (of_get_property(np, "fsl,magic-packet", NULL))
766                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
767
768         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
769
770         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
771         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
772
773         return 0;
774
775 rx_alloc_failed:
776         free_rx_pointers(priv);
777 tx_alloc_failed:
778         free_tx_pointers(priv);
779 err_grp_init:
780         unmap_group_regs(priv);
781         free_netdev(dev);
782         return err;
783 }
784
785 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
786                         struct ifreq *ifr, int cmd)
787 {
788         struct hwtstamp_config config;
789         struct gfar_private *priv = netdev_priv(netdev);
790
791         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
792                 return -EFAULT;
793
794         /* reserved for future extensions */
795         if (config.flags)
796                 return -EINVAL;
797
798         switch (config.tx_type) {
799         case HWTSTAMP_TX_OFF:
800                 priv->hwts_tx_en = 0;
801                 break;
802         case HWTSTAMP_TX_ON:
803                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
804                         return -ERANGE;
805                 priv->hwts_tx_en = 1;
806                 break;
807         default:
808                 return -ERANGE;
809         }
810
811         switch (config.rx_filter) {
812         case HWTSTAMP_FILTER_NONE:
813                 priv->hwts_rx_en = 0;
814                 break;
815         default:
816                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
817                         return -ERANGE;
818                 priv->hwts_rx_en = 1;
819                 config.rx_filter = HWTSTAMP_FILTER_ALL;
820                 break;
821         }
822
823         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
824                 -EFAULT : 0;
825 }
826
827 /* Ioctl MII Interface */
828 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
829 {
830         struct gfar_private *priv = netdev_priv(dev);
831
832         if (!netif_running(dev))
833                 return -EINVAL;
834
835         if (cmd == SIOCSHWTSTAMP)
836                 return gfar_hwtstamp_ioctl(dev, rq, cmd);
837
838         if (!priv->phydev)
839                 return -ENODEV;
840
841         return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
842 }
843
844 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
845 {
846         unsigned int new_bit_map = 0x0;
847         int mask = 0x1 << (max_qs - 1), i;
848         for (i = 0; i < max_qs; i++) {
849                 if (bit_map & mask)
850                         new_bit_map = new_bit_map + (1 << i);
851                 mask = mask >> 0x1;
852         }
853         return new_bit_map;
854 }
855
856 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
857                                    u32 class)
858 {
859         u32 rqfpr = FPR_FILER_MASK;
860         u32 rqfcr = 0x0;
861
862         rqfar--;
863         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
864         ftp_rqfpr[rqfar] = rqfpr;
865         ftp_rqfcr[rqfar] = rqfcr;
866         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
867
868         rqfar--;
869         rqfcr = RQFCR_CMP_NOMATCH;
870         ftp_rqfpr[rqfar] = rqfpr;
871         ftp_rqfcr[rqfar] = rqfcr;
872         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
873
874         rqfar--;
875         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
876         rqfpr = class;
877         ftp_rqfcr[rqfar] = rqfcr;
878         ftp_rqfpr[rqfar] = rqfpr;
879         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
880
881         rqfar--;
882         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
883         rqfpr = class;
884         ftp_rqfcr[rqfar] = rqfcr;
885         ftp_rqfpr[rqfar] = rqfpr;
886         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
887
888         return rqfar;
889 }
890
891 static void gfar_init_filer_table(struct gfar_private *priv)
892 {
893         int i = 0x0;
894         u32 rqfar = MAX_FILER_IDX;
895         u32 rqfcr = 0x0;
896         u32 rqfpr = FPR_FILER_MASK;
897
898         /* Default rule */
899         rqfcr = RQFCR_CMP_MATCH;
900         ftp_rqfcr[rqfar] = rqfcr;
901         ftp_rqfpr[rqfar] = rqfpr;
902         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
903
904         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
905         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
906         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
907         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
908         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
909         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
910
911         /* cur_filer_idx indicated the fisrt non-masked rule */
912         priv->cur_filer_idx = rqfar;
913
914         /* Rest are masked rules */
915         rqfcr = RQFCR_CMP_NOMATCH;
916         for (i = 0; i < rqfar; i++) {
917                 ftp_rqfcr[i] = rqfcr;
918                 ftp_rqfpr[i] = rqfpr;
919                 gfar_write_filer(priv, i, rqfcr, rqfpr);
920         }
921 }
922
923 /* Set up the ethernet device structure, private data,
924  * and anything else we need before we start */
925 static int gfar_probe(struct of_device *ofdev,
926                 const struct of_device_id *match)
927 {
928         u32 tempval;
929         struct net_device *dev = NULL;
930         struct gfar_private *priv = NULL;
931         struct gfar __iomem *regs = NULL;
932         int err = 0, i, grp_idx = 0;
933         int len_devname;
934         u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
935         u32 isrg = 0;
936         u32 __iomem *baddr;
937
938         err = gfar_of_init(ofdev, &dev);
939
940         if (err)
941                 return err;
942
943         priv = netdev_priv(dev);
944         priv->ndev = dev;
945         priv->ofdev = ofdev;
946         priv->node = ofdev->node;
947         SET_NETDEV_DEV(dev, &ofdev->dev);
948
949         spin_lock_init(&priv->bflock);
950         INIT_WORK(&priv->reset_task, gfar_reset_task);
951
952         dev_set_drvdata(&ofdev->dev, priv);
953         regs = priv->gfargrp[0].regs;
954
955         /* Stop the DMA engine now, in case it was running before */
956         /* (The firmware could have used it, and left it running). */
957         gfar_halt(dev);
958
959         /* Reset MAC layer */
960         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
961
962         /* We need to delay at least 3 TX clocks */
963         udelay(2);
964
965         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
966         gfar_write(&regs->maccfg1, tempval);
967
968         /* Initialize MACCFG2. */
969         gfar_write(&regs->maccfg2, MACCFG2_INIT_SETTINGS);
970
971         /* Initialize ECNTRL */
972         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
973
974         /* Set the dev->base_addr to the gfar reg region */
975         dev->base_addr = (unsigned long) regs;
976
977         SET_NETDEV_DEV(dev, &ofdev->dev);
978
979         /* Fill in the dev structure */
980         dev->watchdog_timeo = TX_TIMEOUT;
981         dev->mtu = 1500;
982         dev->netdev_ops = &gfar_netdev_ops;
983         dev->ethtool_ops = &gfar_ethtool_ops;
984
985         /* Register for napi ...We are registering NAPI for each grp */
986         for (i = 0; i < priv->num_grps; i++)
987                 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT);
988
989         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
990                 priv->rx_csum_enable = 1;
991                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
992         } else
993                 priv->rx_csum_enable = 0;
994
995         priv->vlgrp = NULL;
996
997         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
998                 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
999
1000         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1001                 priv->extended_hash = 1;
1002                 priv->hash_width = 9;
1003
1004                 priv->hash_regs[0] = &regs->igaddr0;
1005                 priv->hash_regs[1] = &regs->igaddr1;
1006                 priv->hash_regs[2] = &regs->igaddr2;
1007                 priv->hash_regs[3] = &regs->igaddr3;
1008                 priv->hash_regs[4] = &regs->igaddr4;
1009                 priv->hash_regs[5] = &regs->igaddr5;
1010                 priv->hash_regs[6] = &regs->igaddr6;
1011                 priv->hash_regs[7] = &regs->igaddr7;
1012                 priv->hash_regs[8] = &regs->gaddr0;
1013                 priv->hash_regs[9] = &regs->gaddr1;
1014                 priv->hash_regs[10] = &regs->gaddr2;
1015                 priv->hash_regs[11] = &regs->gaddr3;
1016                 priv->hash_regs[12] = &regs->gaddr4;
1017                 priv->hash_regs[13] = &regs->gaddr5;
1018                 priv->hash_regs[14] = &regs->gaddr6;
1019                 priv->hash_regs[15] = &regs->gaddr7;
1020
1021         } else {
1022                 priv->extended_hash = 0;
1023                 priv->hash_width = 8;
1024
1025                 priv->hash_regs[0] = &regs->gaddr0;
1026                 priv->hash_regs[1] = &regs->gaddr1;
1027                 priv->hash_regs[2] = &regs->gaddr2;
1028                 priv->hash_regs[3] = &regs->gaddr3;
1029                 priv->hash_regs[4] = &regs->gaddr4;
1030                 priv->hash_regs[5] = &regs->gaddr5;
1031                 priv->hash_regs[6] = &regs->gaddr6;
1032                 priv->hash_regs[7] = &regs->gaddr7;
1033         }
1034
1035         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1036                 priv->padding = DEFAULT_PADDING;
1037         else
1038                 priv->padding = 0;
1039
1040         if (dev->features & NETIF_F_IP_CSUM ||
1041                         priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1042                 dev->hard_header_len += GMAC_FCB_LEN;
1043
1044         /* Program the isrg regs only if number of grps > 1 */
1045         if (priv->num_grps > 1) {
1046                 baddr = &regs->isrg0;
1047                 for (i = 0; i < priv->num_grps; i++) {
1048                         isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1049                         isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1050                         gfar_write(baddr, isrg);
1051                         baddr++;
1052                         isrg = 0x0;
1053                 }
1054         }
1055
1056         /* Need to reverse the bit maps as  bit_map's MSB is q0
1057          * but, for_each_set_bit parses from right to left, which
1058          * basically reverses the queue numbers */
1059         for (i = 0; i< priv->num_grps; i++) {
1060                 priv->gfargrp[i].tx_bit_map = reverse_bitmap(
1061                                 priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1062                 priv->gfargrp[i].rx_bit_map = reverse_bitmap(
1063                                 priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1064         }
1065
1066         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1067          * also assign queues to groups */
1068         for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1069                 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1070                 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1071                                 priv->num_rx_queues) {
1072                         priv->gfargrp[grp_idx].num_rx_queues++;
1073                         priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1074                         rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1075                         rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1076                 }
1077                 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1078                 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1079                                 priv->num_tx_queues) {
1080                         priv->gfargrp[grp_idx].num_tx_queues++;
1081                         priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1082                         tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1083                         tqueue = tqueue | (TQUEUE_EN0 >> i);
1084                 }
1085                 priv->gfargrp[grp_idx].rstat = rstat;
1086                 priv->gfargrp[grp_idx].tstat = tstat;
1087                 rstat = tstat =0;
1088         }
1089
1090         gfar_write(&regs->rqueue, rqueue);
1091         gfar_write(&regs->tqueue, tqueue);
1092
1093         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1094
1095         /* Initializing some of the rx/tx queue level parameters */
1096         for (i = 0; i < priv->num_tx_queues; i++) {
1097                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1098                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1099                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1100                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1101         }
1102
1103         for (i = 0; i < priv->num_rx_queues; i++) {
1104                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1105                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1106                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1107         }
1108
1109         /* enable filer if using multiple RX queues*/
1110         if(priv->num_rx_queues > 1)
1111                 priv->rx_filer_enable = 1;
1112         /* Enable most messages by default */
1113         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1114
1115         /* Carrier starts down, phylib will bring it up */
1116         netif_carrier_off(dev);
1117
1118         err = register_netdev(dev);
1119
1120         if (err) {
1121                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1122                                 dev->name);
1123                 goto register_fail;
1124         }
1125
1126         device_init_wakeup(&dev->dev,
1127                 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1128
1129         /* fill out IRQ number and name fields */
1130         len_devname = strlen(dev->name);
1131         for (i = 0; i < priv->num_grps; i++) {
1132                 strncpy(&priv->gfargrp[i].int_name_tx[0], dev->name,
1133                                 len_devname);
1134                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1135                         strncpy(&priv->gfargrp[i].int_name_tx[len_devname],
1136                                 "_g", sizeof("_g"));
1137                         priv->gfargrp[i].int_name_tx[
1138                                 strlen(priv->gfargrp[i].int_name_tx)] = i+48;
1139                         strncpy(&priv->gfargrp[i].int_name_tx[strlen(
1140                                 priv->gfargrp[i].int_name_tx)],
1141                                 "_tx", sizeof("_tx") + 1);
1142
1143                         strncpy(&priv->gfargrp[i].int_name_rx[0], dev->name,
1144                                         len_devname);
1145                         strncpy(&priv->gfargrp[i].int_name_rx[len_devname],
1146                                         "_g", sizeof("_g"));
1147                         priv->gfargrp[i].int_name_rx[
1148                                 strlen(priv->gfargrp[i].int_name_rx)] = i+48;
1149                         strncpy(&priv->gfargrp[i].int_name_rx[strlen(
1150                                 priv->gfargrp[i].int_name_rx)],
1151                                 "_rx", sizeof("_rx") + 1);
1152
1153                         strncpy(&priv->gfargrp[i].int_name_er[0], dev->name,
1154                                         len_devname);
1155                         strncpy(&priv->gfargrp[i].int_name_er[len_devname],
1156                                 "_g", sizeof("_g"));
1157                         priv->gfargrp[i].int_name_er[strlen(
1158                                         priv->gfargrp[i].int_name_er)] = i+48;
1159                         strncpy(&priv->gfargrp[i].int_name_er[strlen(\
1160                                 priv->gfargrp[i].int_name_er)],
1161                                 "_er", sizeof("_er") + 1);
1162                 } else
1163                         priv->gfargrp[i].int_name_tx[len_devname] = '\0';
1164         }
1165
1166         /* Initialize the filer table */
1167         gfar_init_filer_table(priv);
1168
1169         /* Create all the sysfs files */
1170         gfar_init_sysfs(dev);
1171
1172         /* Print out the device info */
1173         printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
1174
1175         /* Even more device info helps when determining which kernel */
1176         /* provided which set of benchmarks. */
1177         printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
1178         for (i = 0; i < priv->num_rx_queues; i++)
1179                 printk(KERN_INFO "%s: RX BD ring size for Q[%d]: %d\n",
1180                         dev->name, i, priv->rx_queue[i]->rx_ring_size);
1181         for(i = 0; i < priv->num_tx_queues; i++)
1182                  printk(KERN_INFO "%s: TX BD ring size for Q[%d]: %d\n",
1183                         dev->name, i, priv->tx_queue[i]->tx_ring_size);
1184
1185         return 0;
1186
1187 register_fail:
1188         unmap_group_regs(priv);
1189         free_tx_pointers(priv);
1190         free_rx_pointers(priv);
1191         if (priv->phy_node)
1192                 of_node_put(priv->phy_node);
1193         if (priv->tbi_node)
1194                 of_node_put(priv->tbi_node);
1195         free_netdev(dev);
1196         return err;
1197 }
1198
1199 static int gfar_remove(struct of_device *ofdev)
1200 {
1201         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1202
1203         if (priv->phy_node)
1204                 of_node_put(priv->phy_node);
1205         if (priv->tbi_node)
1206                 of_node_put(priv->tbi_node);
1207
1208         dev_set_drvdata(&ofdev->dev, NULL);
1209
1210         unregister_netdev(priv->ndev);
1211         unmap_group_regs(priv);
1212         free_netdev(priv->ndev);
1213
1214         return 0;
1215 }
1216
1217 #ifdef CONFIG_PM
1218
1219 static int gfar_suspend(struct device *dev)
1220 {
1221         struct gfar_private *priv = dev_get_drvdata(dev);
1222         struct net_device *ndev = priv->ndev;
1223         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1224         unsigned long flags;
1225         u32 tempval;
1226
1227         int magic_packet = priv->wol_en &&
1228                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1229
1230         netif_device_detach(ndev);
1231
1232         if (netif_running(ndev)) {
1233
1234                 local_irq_save(flags);
1235                 lock_tx_qs(priv);
1236                 lock_rx_qs(priv);
1237
1238                 gfar_halt_nodisable(ndev);
1239
1240                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1241                 tempval = gfar_read(&regs->maccfg1);
1242
1243                 tempval &= ~MACCFG1_TX_EN;
1244
1245                 if (!magic_packet)
1246                         tempval &= ~MACCFG1_RX_EN;
1247
1248                 gfar_write(&regs->maccfg1, tempval);
1249
1250                 unlock_rx_qs(priv);
1251                 unlock_tx_qs(priv);
1252                 local_irq_restore(flags);
1253
1254                 disable_napi(priv);
1255
1256                 if (magic_packet) {
1257                         /* Enable interrupt on Magic Packet */
1258                         gfar_write(&regs->imask, IMASK_MAG);
1259
1260                         /* Enable Magic Packet mode */
1261                         tempval = gfar_read(&regs->maccfg2);
1262                         tempval |= MACCFG2_MPEN;
1263                         gfar_write(&regs->maccfg2, tempval);
1264                 } else {
1265                         phy_stop(priv->phydev);
1266                 }
1267         }
1268
1269         return 0;
1270 }
1271
1272 static int gfar_resume(struct device *dev)
1273 {
1274         struct gfar_private *priv = dev_get_drvdata(dev);
1275         struct net_device *ndev = priv->ndev;
1276         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1277         unsigned long flags;
1278         u32 tempval;
1279         int magic_packet = priv->wol_en &&
1280                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1281
1282         if (!netif_running(ndev)) {
1283                 netif_device_attach(ndev);
1284                 return 0;
1285         }
1286
1287         if (!magic_packet && priv->phydev)
1288                 phy_start(priv->phydev);
1289
1290         /* Disable Magic Packet mode, in case something
1291          * else woke us up.
1292          */
1293         local_irq_save(flags);
1294         lock_tx_qs(priv);
1295         lock_rx_qs(priv);
1296
1297         tempval = gfar_read(&regs->maccfg2);
1298         tempval &= ~MACCFG2_MPEN;
1299         gfar_write(&regs->maccfg2, tempval);
1300
1301         gfar_start(ndev);
1302
1303         unlock_rx_qs(priv);
1304         unlock_tx_qs(priv);
1305         local_irq_restore(flags);
1306
1307         netif_device_attach(ndev);
1308
1309         enable_napi(priv);
1310
1311         return 0;
1312 }
1313
1314 static int gfar_restore(struct device *dev)
1315 {
1316         struct gfar_private *priv = dev_get_drvdata(dev);
1317         struct net_device *ndev = priv->ndev;
1318
1319         if (!netif_running(ndev))
1320                 return 0;
1321
1322         gfar_init_bds(ndev);
1323         init_registers(ndev);
1324         gfar_set_mac_address(ndev);
1325         gfar_init_mac(ndev);
1326         gfar_start(ndev);
1327
1328         priv->oldlink = 0;
1329         priv->oldspeed = 0;
1330         priv->oldduplex = -1;
1331
1332         if (priv->phydev)
1333                 phy_start(priv->phydev);
1334
1335         netif_device_attach(ndev);
1336         enable_napi(priv);
1337
1338         return 0;
1339 }
1340
1341 static struct dev_pm_ops gfar_pm_ops = {
1342         .suspend = gfar_suspend,
1343         .resume = gfar_resume,
1344         .freeze = gfar_suspend,
1345         .thaw = gfar_resume,
1346         .restore = gfar_restore,
1347 };
1348
1349 #define GFAR_PM_OPS (&gfar_pm_ops)
1350
1351 static int gfar_legacy_suspend(struct of_device *ofdev, pm_message_t state)
1352 {
1353         return gfar_suspend(&ofdev->dev);
1354 }
1355
1356 static int gfar_legacy_resume(struct of_device *ofdev)
1357 {
1358         return gfar_resume(&ofdev->dev);
1359 }
1360
1361 #else
1362
1363 #define GFAR_PM_OPS NULL
1364 #define gfar_legacy_suspend NULL
1365 #define gfar_legacy_resume NULL
1366
1367 #endif
1368
1369 /* Reads the controller's registers to determine what interface
1370  * connects it to the PHY.
1371  */
1372 static phy_interface_t gfar_get_interface(struct net_device *dev)
1373 {
1374         struct gfar_private *priv = netdev_priv(dev);
1375         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1376         u32 ecntrl;
1377
1378         ecntrl = gfar_read(&regs->ecntrl);
1379
1380         if (ecntrl & ECNTRL_SGMII_MODE)
1381                 return PHY_INTERFACE_MODE_SGMII;
1382
1383         if (ecntrl & ECNTRL_TBI_MODE) {
1384                 if (ecntrl & ECNTRL_REDUCED_MODE)
1385                         return PHY_INTERFACE_MODE_RTBI;
1386                 else
1387                         return PHY_INTERFACE_MODE_TBI;
1388         }
1389
1390         if (ecntrl & ECNTRL_REDUCED_MODE) {
1391                 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
1392                         return PHY_INTERFACE_MODE_RMII;
1393                 else {
1394                         phy_interface_t interface = priv->interface;
1395
1396                         /*
1397                          * This isn't autodetected right now, so it must
1398                          * be set by the device tree or platform code.
1399                          */
1400                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1401                                 return PHY_INTERFACE_MODE_RGMII_ID;
1402
1403                         return PHY_INTERFACE_MODE_RGMII;
1404                 }
1405         }
1406
1407         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1408                 return PHY_INTERFACE_MODE_GMII;
1409
1410         return PHY_INTERFACE_MODE_MII;
1411 }
1412
1413
1414 /* Initializes driver's PHY state, and attaches to the PHY.
1415  * Returns 0 on success.
1416  */
1417 static int init_phy(struct net_device *dev)
1418 {
1419         struct gfar_private *priv = netdev_priv(dev);
1420         uint gigabit_support =
1421                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1422                 SUPPORTED_1000baseT_Full : 0;
1423         phy_interface_t interface;
1424
1425         priv->oldlink = 0;
1426         priv->oldspeed = 0;
1427         priv->oldduplex = -1;
1428
1429         interface = gfar_get_interface(dev);
1430
1431         priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1432                                       interface);
1433         if (!priv->phydev)
1434                 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1435                                                          interface);
1436         if (!priv->phydev) {
1437                 dev_err(&dev->dev, "could not attach to PHY\n");
1438                 return -ENODEV;
1439         }
1440
1441         if (interface == PHY_INTERFACE_MODE_SGMII)
1442                 gfar_configure_serdes(dev);
1443
1444         /* Remove any features not supported by the controller */
1445         priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1446         priv->phydev->advertising = priv->phydev->supported;
1447
1448         return 0;
1449 }
1450
1451 /*
1452  * Initialize TBI PHY interface for communicating with the
1453  * SERDES lynx PHY on the chip.  We communicate with this PHY
1454  * through the MDIO bus on each controller, treating it as a
1455  * "normal" PHY at the address found in the TBIPA register.  We assume
1456  * that the TBIPA register is valid.  Either the MDIO bus code will set
1457  * it to a value that doesn't conflict with other PHYs on the bus, or the
1458  * value doesn't matter, as there are no other PHYs on the bus.
1459  */
1460 static void gfar_configure_serdes(struct net_device *dev)
1461 {
1462         struct gfar_private *priv = netdev_priv(dev);
1463         struct phy_device *tbiphy;
1464
1465         if (!priv->tbi_node) {
1466                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1467                                     "device tree specify a tbi-handle\n");
1468                 return;
1469         }
1470
1471         tbiphy = of_phy_find_device(priv->tbi_node);
1472         if (!tbiphy) {
1473                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1474                 return;
1475         }
1476
1477         /*
1478          * If the link is already up, we must already be ok, and don't need to
1479          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1480          * everything for us?  Resetting it takes the link down and requires
1481          * several seconds for it to come back.
1482          */
1483         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1484                 return;
1485
1486         /* Single clk mode, mii mode off(for serdes communication) */
1487         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1488
1489         phy_write(tbiphy, MII_ADVERTISE,
1490                         ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1491                         ADVERTISE_1000XPSE_ASYM);
1492
1493         phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
1494                         BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
1495 }
1496
1497 static void init_registers(struct net_device *dev)
1498 {
1499         struct gfar_private *priv = netdev_priv(dev);
1500         struct gfar __iomem *regs = NULL;
1501         int i = 0;
1502
1503         for (i = 0; i < priv->num_grps; i++) {
1504                 regs = priv->gfargrp[i].regs;
1505                 /* Clear IEVENT */
1506                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1507
1508                 /* Initialize IMASK */
1509                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1510         }
1511
1512         regs = priv->gfargrp[0].regs;
1513         /* Init hash registers to zero */
1514         gfar_write(&regs->igaddr0, 0);
1515         gfar_write(&regs->igaddr1, 0);
1516         gfar_write(&regs->igaddr2, 0);
1517         gfar_write(&regs->igaddr3, 0);
1518         gfar_write(&regs->igaddr4, 0);
1519         gfar_write(&regs->igaddr5, 0);
1520         gfar_write(&regs->igaddr6, 0);
1521         gfar_write(&regs->igaddr7, 0);
1522
1523         gfar_write(&regs->gaddr0, 0);
1524         gfar_write(&regs->gaddr1, 0);
1525         gfar_write(&regs->gaddr2, 0);
1526         gfar_write(&regs->gaddr3, 0);
1527         gfar_write(&regs->gaddr4, 0);
1528         gfar_write(&regs->gaddr5, 0);
1529         gfar_write(&regs->gaddr6, 0);
1530         gfar_write(&regs->gaddr7, 0);
1531
1532         /* Zero out the rmon mib registers if it has them */
1533         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1534                 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1535
1536                 /* Mask off the CAM interrupts */
1537                 gfar_write(&regs->rmon.cam1, 0xffffffff);
1538                 gfar_write(&regs->rmon.cam2, 0xffffffff);
1539         }
1540
1541         /* Initialize the max receive buffer length */
1542         gfar_write(&regs->mrblr, priv->rx_buffer_size);
1543
1544         /* Initialize the Minimum Frame Length Register */
1545         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1546 }
1547
1548
1549 /* Halt the receive and transmit queues */
1550 static void gfar_halt_nodisable(struct net_device *dev)
1551 {
1552         struct gfar_private *priv = netdev_priv(dev);
1553         struct gfar __iomem *regs = NULL;
1554         u32 tempval;
1555         int i = 0;
1556
1557         for (i = 0; i < priv->num_grps; i++) {
1558                 regs = priv->gfargrp[i].regs;
1559                 /* Mask all interrupts */
1560                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1561
1562                 /* Clear all interrupts */
1563                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1564         }
1565
1566         regs = priv->gfargrp[0].regs;
1567         /* Stop the DMA, and wait for it to stop */
1568         tempval = gfar_read(&regs->dmactrl);
1569         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
1570             != (DMACTRL_GRS | DMACTRL_GTS)) {
1571                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1572                 gfar_write(&regs->dmactrl, tempval);
1573
1574                 while (!(gfar_read(&regs->ievent) &
1575                          (IEVENT_GRSC | IEVENT_GTSC)))
1576                         cpu_relax();
1577         }
1578 }
1579
1580 /* Halt the receive and transmit queues */
1581 void gfar_halt(struct net_device *dev)
1582 {
1583         struct gfar_private *priv = netdev_priv(dev);
1584         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1585         u32 tempval;
1586
1587         gfar_halt_nodisable(dev);
1588
1589         /* Disable Rx and Tx */
1590         tempval = gfar_read(&regs->maccfg1);
1591         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1592         gfar_write(&regs->maccfg1, tempval);
1593 }
1594
1595 static void free_grp_irqs(struct gfar_priv_grp *grp)
1596 {
1597         free_irq(grp->interruptError, grp);
1598         free_irq(grp->interruptTransmit, grp);
1599         free_irq(grp->interruptReceive, grp);
1600 }
1601
1602 void stop_gfar(struct net_device *dev)
1603 {
1604         struct gfar_private *priv = netdev_priv(dev);
1605         unsigned long flags;
1606         int i;
1607
1608         phy_stop(priv->phydev);
1609
1610
1611         /* Lock it down */
1612         local_irq_save(flags);
1613         lock_tx_qs(priv);
1614         lock_rx_qs(priv);
1615
1616         gfar_halt(dev);
1617
1618         unlock_rx_qs(priv);
1619         unlock_tx_qs(priv);
1620         local_irq_restore(flags);
1621
1622         /* Free the IRQs */
1623         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1624                 for (i = 0; i < priv->num_grps; i++)
1625                         free_grp_irqs(&priv->gfargrp[i]);
1626         } else {
1627                 for (i = 0; i < priv->num_grps; i++)
1628                         free_irq(priv->gfargrp[i].interruptTransmit,
1629                                         &priv->gfargrp[i]);
1630         }
1631
1632         free_skb_resources(priv);
1633 }
1634
1635 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1636 {
1637         struct txbd8 *txbdp;
1638         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1639         int i, j;
1640
1641         txbdp = tx_queue->tx_bd_base;
1642
1643         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1644                 if (!tx_queue->tx_skbuff[i])
1645                         continue;
1646
1647                 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1648                                 txbdp->length, DMA_TO_DEVICE);
1649                 txbdp->lstatus = 0;
1650                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1651                                 j++) {
1652                         txbdp++;
1653                         dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1654                                         txbdp->length, DMA_TO_DEVICE);
1655                 }
1656                 txbdp++;
1657                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1658                 tx_queue->tx_skbuff[i] = NULL;
1659         }
1660         kfree(tx_queue->tx_skbuff);
1661 }
1662
1663 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1664 {
1665         struct rxbd8 *rxbdp;
1666         struct gfar_private *priv = netdev_priv(rx_queue->dev);
1667         int i;
1668
1669         rxbdp = rx_queue->rx_bd_base;
1670
1671         for (i = 0; i < rx_queue->rx_ring_size; i++) {
1672                 if (rx_queue->rx_skbuff[i]) {
1673                         dma_unmap_single(&priv->ofdev->dev,
1674                                         rxbdp->bufPtr, priv->rx_buffer_size,
1675                                         DMA_FROM_DEVICE);
1676                         dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1677                         rx_queue->rx_skbuff[i] = NULL;
1678                 }
1679                 rxbdp->lstatus = 0;
1680                 rxbdp->bufPtr = 0;
1681                 rxbdp++;
1682         }
1683         kfree(rx_queue->rx_skbuff);
1684 }
1685
1686 /* If there are any tx skbs or rx skbs still around, free them.
1687  * Then free tx_skbuff and rx_skbuff */
1688 static void free_skb_resources(struct gfar_private *priv)
1689 {
1690         struct gfar_priv_tx_q *tx_queue = NULL;
1691         struct gfar_priv_rx_q *rx_queue = NULL;
1692         int i;
1693
1694         /* Go through all the buffer descriptors and free their data buffers */
1695         for (i = 0; i < priv->num_tx_queues; i++) {
1696                 tx_queue = priv->tx_queue[i];
1697                 if(tx_queue->tx_skbuff)
1698                         free_skb_tx_queue(tx_queue);
1699         }
1700
1701         for (i = 0; i < priv->num_rx_queues; i++) {
1702                 rx_queue = priv->rx_queue[i];
1703                 if(rx_queue->rx_skbuff)
1704                         free_skb_rx_queue(rx_queue);
1705         }
1706
1707         dma_free_coherent(&priv->ofdev->dev,
1708                         sizeof(struct txbd8) * priv->total_tx_ring_size +
1709                         sizeof(struct rxbd8) * priv->total_rx_ring_size,
1710                         priv->tx_queue[0]->tx_bd_base,
1711                         priv->tx_queue[0]->tx_bd_dma_base);
1712 }
1713
1714 void gfar_start(struct net_device *dev)
1715 {
1716         struct gfar_private *priv = netdev_priv(dev);
1717         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1718         u32 tempval;
1719         int i = 0;
1720
1721         /* Enable Rx and Tx in MACCFG1 */
1722         tempval = gfar_read(&regs->maccfg1);
1723         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1724         gfar_write(&regs->maccfg1, tempval);
1725
1726         /* Initialize DMACTRL to have WWR and WOP */
1727         tempval = gfar_read(&regs->dmactrl);
1728         tempval |= DMACTRL_INIT_SETTINGS;
1729         gfar_write(&regs->dmactrl, tempval);
1730
1731         /* Make sure we aren't stopped */
1732         tempval = gfar_read(&regs->dmactrl);
1733         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1734         gfar_write(&regs->dmactrl, tempval);
1735
1736         for (i = 0; i < priv->num_grps; i++) {
1737                 regs = priv->gfargrp[i].regs;
1738                 /* Clear THLT/RHLT, so that the DMA starts polling now */
1739                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1740                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1741                 /* Unmask the interrupts we look for */
1742                 gfar_write(&regs->imask, IMASK_DEFAULT);
1743         }
1744
1745         dev->trans_start = jiffies;
1746 }
1747
1748 void gfar_configure_coalescing(struct gfar_private *priv,
1749         unsigned long tx_mask, unsigned long rx_mask)
1750 {
1751         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1752         u32 __iomem *baddr;
1753         int i = 0;
1754
1755         /* Backward compatible case ---- even if we enable
1756          * multiple queues, there's only single reg to program
1757          */
1758         gfar_write(&regs->txic, 0);
1759         if(likely(priv->tx_queue[0]->txcoalescing))
1760                 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1761
1762         gfar_write(&regs->rxic, 0);
1763         if(unlikely(priv->rx_queue[0]->rxcoalescing))
1764                 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1765
1766         if (priv->mode == MQ_MG_MODE) {
1767                 baddr = &regs->txic0;
1768                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1769                         if (likely(priv->tx_queue[i]->txcoalescing)) {
1770                                 gfar_write(baddr + i, 0);
1771                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1772                         }
1773                 }
1774
1775                 baddr = &regs->rxic0;
1776                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1777                         if (likely(priv->rx_queue[i]->rxcoalescing)) {
1778                                 gfar_write(baddr + i, 0);
1779                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1780                         }
1781                 }
1782         }
1783 }
1784
1785 static int register_grp_irqs(struct gfar_priv_grp *grp)
1786 {
1787         struct gfar_private *priv = grp->priv;
1788         struct net_device *dev = priv->ndev;
1789         int err;
1790
1791         /* If the device has multiple interrupts, register for
1792          * them.  Otherwise, only register for the one */
1793         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1794                 /* Install our interrupt handlers for Error,
1795                  * Transmit, and Receive */
1796                 if ((err = request_irq(grp->interruptError, gfar_error, 0,
1797                                 grp->int_name_er,grp)) < 0) {
1798                         if (netif_msg_intr(priv))
1799                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1800                                         dev->name, grp->interruptError);
1801
1802                                 goto err_irq_fail;
1803                 }
1804
1805                 if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1806                                 0, grp->int_name_tx, grp)) < 0) {
1807                         if (netif_msg_intr(priv))
1808                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1809                                         dev->name, grp->interruptTransmit);
1810                         goto tx_irq_fail;
1811                 }
1812
1813                 if ((err = request_irq(grp->interruptReceive, gfar_receive, 0,
1814                                 grp->int_name_rx, grp)) < 0) {
1815                         if (netif_msg_intr(priv))
1816                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1817                                         dev->name, grp->interruptReceive);
1818                         goto rx_irq_fail;
1819                 }
1820         } else {
1821                 if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0,
1822                                 grp->int_name_tx, grp)) < 0) {
1823                         if (netif_msg_intr(priv))
1824                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1825                                         dev->name, grp->interruptTransmit);
1826                         goto err_irq_fail;
1827                 }
1828         }
1829
1830         return 0;
1831
1832 rx_irq_fail:
1833         free_irq(grp->interruptTransmit, grp);
1834 tx_irq_fail:
1835         free_irq(grp->interruptError, grp);
1836 err_irq_fail:
1837         return err;
1838
1839 }
1840
1841 /* Bring the controller up and running */
1842 int startup_gfar(struct net_device *ndev)
1843 {
1844         struct gfar_private *priv = netdev_priv(ndev);
1845         struct gfar __iomem *regs = NULL;
1846         int err, i, j;
1847
1848         for (i = 0; i < priv->num_grps; i++) {
1849                 regs= priv->gfargrp[i].regs;
1850                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1851         }
1852
1853         regs= priv->gfargrp[0].regs;
1854         err = gfar_alloc_skb_resources(ndev);
1855         if (err)
1856                 return err;
1857
1858         gfar_init_mac(ndev);
1859
1860         for (i = 0; i < priv->num_grps; i++) {
1861                 err = register_grp_irqs(&priv->gfargrp[i]);
1862                 if (err) {
1863                         for (j = 0; j < i; j++)
1864                                 free_grp_irqs(&priv->gfargrp[j]);
1865                                 goto irq_fail;
1866                 }
1867         }
1868
1869         /* Start the controller */
1870         gfar_start(ndev);
1871
1872         phy_start(priv->phydev);
1873
1874         gfar_configure_coalescing(priv, 0xFF, 0xFF);
1875
1876         return 0;
1877
1878 irq_fail:
1879         free_skb_resources(priv);
1880         return err;
1881 }
1882
1883 /* Called when something needs to use the ethernet device */
1884 /* Returns 0 for success. */
1885 static int gfar_enet_open(struct net_device *dev)
1886 {
1887         struct gfar_private *priv = netdev_priv(dev);
1888         int err;
1889
1890         enable_napi(priv);
1891
1892         skb_queue_head_init(&priv->rx_recycle);
1893
1894         /* Initialize a bunch of registers */
1895         init_registers(dev);
1896
1897         gfar_set_mac_address(dev);
1898
1899         err = init_phy(dev);
1900
1901         if (err) {
1902                 disable_napi(priv);
1903                 return err;
1904         }
1905
1906         err = startup_gfar(dev);
1907         if (err) {
1908                 disable_napi(priv);
1909                 return err;
1910         }
1911
1912         netif_tx_start_all_queues(dev);
1913
1914         device_set_wakeup_enable(&dev->dev, priv->wol_en);
1915
1916         return err;
1917 }
1918
1919 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1920 {
1921         struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1922
1923         memset(fcb, 0, GMAC_FCB_LEN);
1924
1925         return fcb;
1926 }
1927
1928 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1929 {
1930         u8 flags = 0;
1931
1932         /* If we're here, it's a IP packet with a TCP or UDP
1933          * payload.  We set it to checksum, using a pseudo-header
1934          * we provide
1935          */
1936         flags = TXFCB_DEFAULT;
1937
1938         /* Tell the controller what the protocol is */
1939         /* And provide the already calculated phcs */
1940         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1941                 flags |= TXFCB_UDP;
1942                 fcb->phcs = udp_hdr(skb)->check;
1943         } else
1944                 fcb->phcs = tcp_hdr(skb)->check;
1945
1946         /* l3os is the distance between the start of the
1947          * frame (skb->data) and the start of the IP hdr.
1948          * l4os is the distance between the start of the
1949          * l3 hdr and the l4 hdr */
1950         fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1951         fcb->l4os = skb_network_header_len(skb);
1952
1953         fcb->flags = flags;
1954 }
1955
1956 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1957 {
1958         fcb->flags |= TXFCB_VLN;
1959         fcb->vlctl = vlan_tx_tag_get(skb);
1960 }
1961
1962 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1963                                struct txbd8 *base, int ring_size)
1964 {
1965         struct txbd8 *new_bd = bdp + stride;
1966
1967         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1968 }
1969
1970 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1971                 int ring_size)
1972 {
1973         return skip_txbd(bdp, 1, base, ring_size);
1974 }
1975
1976 /* This is called by the kernel when a frame is ready for transmission. */
1977 /* It is pointed to by the dev->hard_start_xmit function pointer */
1978 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1979 {
1980         struct gfar_private *priv = netdev_priv(dev);
1981         struct gfar_priv_tx_q *tx_queue = NULL;
1982         struct netdev_queue *txq;
1983         struct gfar __iomem *regs = NULL;
1984         struct txfcb *fcb = NULL;
1985         struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1986         u32 lstatus;
1987         int i, rq = 0, do_tstamp = 0;
1988         u32 bufaddr;
1989         unsigned long flags;
1990         unsigned int nr_frags, nr_txbds, length;
1991         union skb_shared_tx *shtx;
1992
1993         rq = skb->queue_mapping;
1994         tx_queue = priv->tx_queue[rq];
1995         txq = netdev_get_tx_queue(dev, rq);
1996         base = tx_queue->tx_bd_base;
1997         regs = tx_queue->grp->regs;
1998         shtx = skb_tx(skb);
1999
2000         /* check if time stamp should be generated */
2001         if (unlikely(shtx->hardware && priv->hwts_tx_en))
2002                 do_tstamp = 1;
2003
2004         /* make space for additional header when fcb is needed */
2005         if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2006                         (priv->vlgrp && vlan_tx_tag_present(skb)) ||
2007                         unlikely(do_tstamp)) &&
2008                         (skb_headroom(skb) < GMAC_FCB_LEN)) {
2009                 struct sk_buff *skb_new;
2010
2011                 skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
2012                 if (!skb_new) {
2013                         dev->stats.tx_errors++;
2014                         kfree_skb(skb);
2015                         return NETDEV_TX_OK;
2016                 }
2017                 kfree_skb(skb);
2018                 skb = skb_new;
2019         }
2020
2021         /* total number of fragments in the SKB */
2022         nr_frags = skb_shinfo(skb)->nr_frags;
2023
2024         /* calculate the required number of TxBDs for this skb */
2025         if (unlikely(do_tstamp))
2026                 nr_txbds = nr_frags + 2;
2027         else
2028                 nr_txbds = nr_frags + 1;
2029
2030         /* check if there is space to queue this packet */
2031         if (nr_txbds > tx_queue->num_txbdfree) {
2032                 /* no space, stop the queue */
2033                 netif_tx_stop_queue(txq);
2034                 dev->stats.tx_fifo_errors++;
2035                 return NETDEV_TX_BUSY;
2036         }
2037
2038         /* Update transmit stats */
2039         txq->tx_bytes += skb->len;
2040         txq->tx_packets ++;
2041
2042         txbdp = txbdp_start = tx_queue->cur_tx;
2043         lstatus = txbdp->lstatus;
2044
2045         /* Time stamp insertion requires one additional TxBD */
2046         if (unlikely(do_tstamp))
2047                 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2048                                 tx_queue->tx_ring_size);
2049
2050         if (nr_frags == 0) {
2051                 if (unlikely(do_tstamp))
2052                         txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2053                                         TXBD_INTERRUPT);
2054                 else
2055                         lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2056         } else {
2057                 /* Place the fragment addresses and lengths into the TxBDs */
2058                 for (i = 0; i < nr_frags; i++) {
2059                         /* Point at the next BD, wrapping as needed */
2060                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2061
2062                         length = skb_shinfo(skb)->frags[i].size;
2063
2064                         lstatus = txbdp->lstatus | length |
2065                                 BD_LFLAG(TXBD_READY);
2066
2067                         /* Handle the last BD specially */
2068                         if (i == nr_frags - 1)
2069                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2070
2071                         bufaddr = dma_map_page(&priv->ofdev->dev,
2072                                         skb_shinfo(skb)->frags[i].page,
2073                                         skb_shinfo(skb)->frags[i].page_offset,
2074                                         length,
2075                                         DMA_TO_DEVICE);
2076
2077                         /* set the TxBD length and buffer pointer */
2078                         txbdp->bufPtr = bufaddr;
2079                         txbdp->lstatus = lstatus;
2080                 }
2081
2082                 lstatus = txbdp_start->lstatus;
2083         }
2084
2085         /* Set up checksumming */
2086         if (CHECKSUM_PARTIAL == skb->ip_summed) {
2087                 fcb = gfar_add_fcb(skb);
2088                 lstatus |= BD_LFLAG(TXBD_TOE);
2089                 gfar_tx_checksum(skb, fcb);
2090         }
2091
2092         if (priv->vlgrp && vlan_tx_tag_present(skb)) {
2093                 if (unlikely(NULL == fcb)) {
2094                         fcb = gfar_add_fcb(skb);
2095                         lstatus |= BD_LFLAG(TXBD_TOE);
2096                 }
2097
2098                 gfar_tx_vlan(skb, fcb);
2099         }
2100
2101         /* Setup tx hardware time stamping if requested */
2102         if (unlikely(do_tstamp)) {
2103                 shtx->in_progress = 1;
2104                 if (fcb == NULL)
2105                         fcb = gfar_add_fcb(skb);
2106                 fcb->ptp = 1;
2107                 lstatus |= BD_LFLAG(TXBD_TOE);
2108         }
2109
2110         txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2111                         skb_headlen(skb), DMA_TO_DEVICE);
2112
2113         /*
2114          * If time stamping is requested one additional TxBD must be set up. The
2115          * first TxBD points to the FCB and must have a data length of
2116          * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2117          * the full frame length.
2118          */
2119         if (unlikely(do_tstamp)) {
2120                 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + GMAC_FCB_LEN;
2121                 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2122                                 (skb_headlen(skb) - GMAC_FCB_LEN);
2123                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2124         } else {
2125                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2126         }
2127
2128         /*
2129          * We can work in parallel with gfar_clean_tx_ring(), except
2130          * when modifying num_txbdfree. Note that we didn't grab the lock
2131          * when we were reading the num_txbdfree and checking for available
2132          * space, that's because outside of this function it can only grow,
2133          * and once we've got needed space, it cannot suddenly disappear.
2134          *
2135          * The lock also protects us from gfar_error(), which can modify
2136          * regs->tstat and thus retrigger the transfers, which is why we
2137          * also must grab the lock before setting ready bit for the first
2138          * to be transmitted BD.
2139          */
2140         spin_lock_irqsave(&tx_queue->txlock, flags);
2141
2142         /*
2143          * The powerpc-specific eieio() is used, as wmb() has too strong
2144          * semantics (it requires synchronization between cacheable and
2145          * uncacheable mappings, which eieio doesn't provide and which we
2146          * don't need), thus requiring a more expensive sync instruction.  At
2147          * some point, the set of architecture-independent barrier functions
2148          * should be expanded to include weaker barriers.
2149          */
2150         eieio();
2151
2152         txbdp_start->lstatus = lstatus;
2153
2154         eieio(); /* force lstatus write before tx_skbuff */
2155
2156         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2157
2158         /* Update the current skb pointer to the next entry we will use
2159          * (wrapping if necessary) */
2160         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2161                 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2162
2163         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2164
2165         /* reduce TxBD free count */
2166         tx_queue->num_txbdfree -= (nr_txbds);
2167
2168         dev->trans_start = jiffies;
2169
2170         /* If the next BD still needs to be cleaned up, then the bds
2171            are full.  We need to tell the kernel to stop sending us stuff. */
2172         if (!tx_queue->num_txbdfree) {
2173                 netif_tx_stop_queue(txq);
2174
2175                 dev->stats.tx_fifo_errors++;
2176         }
2177
2178         /* Tell the DMA to go go go */
2179         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2180
2181         /* Unlock priv */
2182         spin_unlock_irqrestore(&tx_queue->txlock, flags);
2183
2184         return NETDEV_TX_OK;
2185 }
2186
2187 /* Stops the kernel queue, and halts the controller */
2188 static int gfar_close(struct net_device *dev)
2189 {
2190         struct gfar_private *priv = netdev_priv(dev);
2191
2192         disable_napi(priv);
2193
2194         skb_queue_purge(&priv->rx_recycle);
2195         cancel_work_sync(&priv->reset_task);
2196         stop_gfar(dev);
2197
2198         /* Disconnect from the PHY */
2199         phy_disconnect(priv->phydev);
2200         priv->phydev = NULL;
2201
2202         netif_tx_stop_all_queues(dev);
2203
2204         return 0;
2205 }
2206
2207 /* Changes the mac address if the controller is not running. */
2208 static int gfar_set_mac_address(struct net_device *dev)
2209 {
2210         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2211
2212         return 0;
2213 }
2214
2215
2216 /* Enables and disables VLAN insertion/extraction */
2217 static void gfar_vlan_rx_register(struct net_device *dev,
2218                 struct vlan_group *grp)
2219 {
2220         struct gfar_private *priv = netdev_priv(dev);
2221         struct gfar __iomem *regs = NULL;
2222         unsigned long flags;
2223         u32 tempval;
2224
2225         regs = priv->gfargrp[0].regs;
2226         local_irq_save(flags);
2227         lock_rx_qs(priv);
2228
2229         priv->vlgrp = grp;
2230
2231         if (grp) {
2232                 /* Enable VLAN tag insertion */
2233                 tempval = gfar_read(&regs->tctrl);
2234                 tempval |= TCTRL_VLINS;
2235
2236                 gfar_write(&regs->tctrl, tempval);
2237
2238                 /* Enable VLAN tag extraction */
2239                 tempval = gfar_read(&regs->rctrl);
2240                 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2241                 gfar_write(&regs->rctrl, tempval);
2242         } else {
2243                 /* Disable VLAN tag insertion */
2244                 tempval = gfar_read(&regs->tctrl);
2245                 tempval &= ~TCTRL_VLINS;
2246                 gfar_write(&regs->tctrl, tempval);
2247
2248                 /* Disable VLAN tag extraction */
2249                 tempval = gfar_read(&regs->rctrl);
2250                 tempval &= ~RCTRL_VLEX;
2251                 /* If parse is no longer required, then disable parser */
2252                 if (tempval & RCTRL_REQ_PARSER)
2253                         tempval |= RCTRL_PRSDEP_INIT;
2254                 else
2255                         tempval &= ~RCTRL_PRSDEP_INIT;
2256                 gfar_write(&regs->rctrl, tempval);
2257         }
2258
2259         gfar_change_mtu(dev, dev->mtu);
2260
2261         unlock_rx_qs(priv);
2262         local_irq_restore(flags);
2263 }
2264
2265 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2266 {
2267         int tempsize, tempval;
2268         struct gfar_private *priv = netdev_priv(dev);
2269         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2270         int oldsize = priv->rx_buffer_size;
2271         int frame_size = new_mtu + ETH_HLEN;
2272
2273         if (priv->vlgrp)
2274                 frame_size += VLAN_HLEN;
2275
2276         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2277                 if (netif_msg_drv(priv))
2278                         printk(KERN_ERR "%s: Invalid MTU setting\n",
2279                                         dev->name);
2280                 return -EINVAL;
2281         }
2282
2283         if (gfar_uses_fcb(priv))
2284                 frame_size += GMAC_FCB_LEN;
2285
2286         frame_size += priv->padding;
2287
2288         tempsize =
2289             (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2290             INCREMENTAL_BUFFER_SIZE;
2291
2292         /* Only stop and start the controller if it isn't already
2293          * stopped, and we changed something */
2294         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2295                 stop_gfar(dev);
2296
2297         priv->rx_buffer_size = tempsize;
2298
2299         dev->mtu = new_mtu;
2300
2301         gfar_write(&regs->mrblr, priv->rx_buffer_size);
2302         gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2303
2304         /* If the mtu is larger than the max size for standard
2305          * ethernet frames (ie, a jumbo frame), then set maccfg2
2306          * to allow huge frames, and to check the length */
2307         tempval = gfar_read(&regs->maccfg2);
2308
2309         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
2310                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2311         else
2312                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2313
2314         gfar_write(&regs->maccfg2, tempval);
2315
2316         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2317                 startup_gfar(dev);
2318
2319         return 0;
2320 }
2321
2322 /* gfar_reset_task gets scheduled when a packet has not been
2323  * transmitted after a set amount of time.
2324  * For now, assume that clearing out all the structures, and
2325  * starting over will fix the problem.
2326  */
2327 static void gfar_reset_task(struct work_struct *work)
2328 {
2329         struct gfar_private *priv = container_of(work, struct gfar_private,
2330                         reset_task);
2331         struct net_device *dev = priv->ndev;
2332
2333         if (dev->flags & IFF_UP) {
2334                 netif_tx_stop_all_queues(dev);
2335                 stop_gfar(dev);
2336                 startup_gfar(dev);
2337                 netif_tx_start_all_queues(dev);
2338         }
2339
2340         netif_tx_schedule_all(dev);
2341 }
2342
2343 static void gfar_timeout(struct net_device *dev)
2344 {
2345         struct gfar_private *priv = netdev_priv(dev);
2346
2347         dev->stats.tx_errors++;
2348         schedule_work(&priv->reset_task);
2349 }
2350
2351 /* Interrupt Handler for Transmit complete */
2352 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2353 {
2354         struct net_device *dev = tx_queue->dev;
2355         struct gfar_private *priv = netdev_priv(dev);
2356         struct gfar_priv_rx_q *rx_queue = NULL;
2357         struct txbd8 *bdp, *next = NULL;
2358         struct txbd8 *lbdp = NULL;
2359         struct txbd8 *base = tx_queue->tx_bd_base;
2360         struct sk_buff *skb;
2361         int skb_dirtytx;
2362         int tx_ring_size = tx_queue->tx_ring_size;
2363         int frags = 0, nr_txbds = 0;
2364         int i;
2365         int howmany = 0;
2366         u32 lstatus;
2367         size_t buflen;
2368         union skb_shared_tx *shtx;
2369
2370         rx_queue = priv->rx_queue[tx_queue->qindex];
2371         bdp = tx_queue->dirty_tx;
2372         skb_dirtytx = tx_queue->skb_dirtytx;
2373
2374         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2375                 unsigned long flags;
2376
2377                 frags = skb_shinfo(skb)->nr_frags;
2378
2379                 /*
2380                  * When time stamping, one additional TxBD must be freed.
2381                  * Also, we need to dma_unmap_single() the TxPAL.
2382                  */
2383                 shtx = skb_tx(skb);
2384                 if (unlikely(shtx->in_progress))
2385                         nr_txbds = frags + 2;
2386                 else
2387                         nr_txbds = frags + 1;
2388
2389                 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2390
2391                 lstatus = lbdp->lstatus;
2392
2393                 /* Only clean completed frames */
2394                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2395                                 (lstatus & BD_LENGTH_MASK))
2396                         break;
2397
2398                 if (unlikely(shtx->in_progress)) {
2399                         next = next_txbd(bdp, base, tx_ring_size);
2400                         buflen = next->length + GMAC_FCB_LEN;
2401                 } else
2402                         buflen = bdp->length;
2403
2404                 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2405                                 buflen, DMA_TO_DEVICE);
2406
2407                 if (unlikely(shtx->in_progress)) {
2408                         struct skb_shared_hwtstamps shhwtstamps;
2409                         u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2410                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2411                         shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2412                         skb_tstamp_tx(skb, &shhwtstamps);
2413                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2414                         bdp = next;
2415                 }
2416
2417                 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2418                 bdp = next_txbd(bdp, base, tx_ring_size);
2419
2420                 for (i = 0; i < frags; i++) {
2421                         dma_unmap_page(&priv->ofdev->dev,
2422                                         bdp->bufPtr,
2423                                         bdp->length,
2424                                         DMA_TO_DEVICE);
2425                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2426                         bdp = next_txbd(bdp, base, tx_ring_size);
2427                 }
2428
2429                 /*
2430                  * If there's room in the queue (limit it to rx_buffer_size)
2431                  * we add this skb back into the pool, if it's the right size
2432                  */
2433                 if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
2434                                 skb_recycle_check(skb, priv->rx_buffer_size +
2435                                         RXBUF_ALIGNMENT))
2436                         __skb_queue_head(&priv->rx_recycle, skb);
2437                 else
2438                         dev_kfree_skb_any(skb);
2439
2440                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2441
2442                 skb_dirtytx = (skb_dirtytx + 1) &
2443                         TX_RING_MOD_MASK(tx_ring_size);
2444
2445                 howmany++;
2446                 spin_lock_irqsave(&tx_queue->txlock, flags);
2447                 tx_queue->num_txbdfree += nr_txbds;
2448                 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2449         }
2450
2451         /* If we freed a buffer, we can restart transmission, if necessary */
2452         if (__netif_subqueue_stopped(dev, tx_queue->qindex) && tx_queue->num_txbdfree)
2453                 netif_wake_subqueue(dev, tx_queue->qindex);
2454
2455         /* Update dirty indicators */
2456         tx_queue->skb_dirtytx = skb_dirtytx;
2457         tx_queue->dirty_tx = bdp;
2458
2459         return howmany;
2460 }
2461
2462 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2463 {
2464         unsigned long flags;
2465
2466         spin_lock_irqsave(&gfargrp->grplock, flags);
2467         if (napi_schedule_prep(&gfargrp->napi)) {
2468                 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2469                 __napi_schedule(&gfargrp->napi);
2470         } else {
2471                 /*
2472                  * Clear IEVENT, so interrupts aren't called again
2473                  * because of the packets that have already arrived.
2474                  */
2475                 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2476         }
2477         spin_unlock_irqrestore(&gfargrp->grplock, flags);
2478
2479 }
2480
2481 /* Interrupt Handler for Transmit complete */
2482 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2483 {
2484         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2485         return IRQ_HANDLED;
2486 }
2487
2488 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2489                 struct sk_buff *skb)
2490 {
2491         struct net_device *dev = rx_queue->dev;
2492         struct gfar_private *priv = netdev_priv(dev);
2493         dma_addr_t buf;
2494
2495         buf = dma_map_single(&priv->ofdev->dev, skb->data,
2496                              priv->rx_buffer_size, DMA_FROM_DEVICE);
2497         gfar_init_rxbdp(rx_queue, bdp, buf);
2498 }
2499
2500
2501 struct sk_buff * gfar_new_skb(struct net_device *dev)
2502 {
2503         unsigned int alignamount;
2504         struct gfar_private *priv = netdev_priv(dev);
2505         struct sk_buff *skb = NULL;
2506
2507         skb = __skb_dequeue(&priv->rx_recycle);
2508         if (!skb)
2509                 skb = netdev_alloc_skb(dev,
2510                                 priv->rx_buffer_size + RXBUF_ALIGNMENT);
2511
2512         if (!skb)
2513                 return NULL;
2514
2515         alignamount = RXBUF_ALIGNMENT -
2516                 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
2517
2518         /* We need the data buffer to be aligned properly.  We will reserve
2519          * as many bytes as needed to align the data properly
2520          */
2521         skb_reserve(skb, alignamount);
2522         GFAR_CB(skb)->alignamount = alignamount;
2523
2524         return skb;
2525 }
2526
2527 static inline void count_errors(unsigned short status, struct net_device *dev)
2528 {
2529         struct gfar_private *priv = netdev_priv(dev);
2530         struct net_device_stats *stats = &dev->stats;
2531         struct gfar_extra_stats *estats = &priv->extra_stats;
2532
2533         /* If the packet was truncated, none of the other errors
2534          * matter */
2535         if (status & RXBD_TRUNCATED) {
2536                 stats->rx_length_errors++;
2537
2538                 estats->rx_trunc++;
2539
2540                 return;
2541         }
2542         /* Count the errors, if there were any */
2543         if (status & (RXBD_LARGE | RXBD_SHORT)) {
2544                 stats->rx_length_errors++;
2545
2546                 if (status & RXBD_LARGE)
2547                         estats->rx_large++;
2548                 else
2549                         estats->rx_short++;
2550         }
2551         if (status & RXBD_NONOCTET) {
2552                 stats->rx_frame_errors++;
2553                 estats->rx_nonoctet++;
2554         }
2555         if (status & RXBD_CRCERR) {
2556                 estats->rx_crcerr++;
2557                 stats->rx_crc_errors++;
2558         }
2559         if (status & RXBD_OVERRUN) {
2560                 estats->rx_overrun++;
2561                 stats->rx_crc_errors++;
2562         }
2563 }
2564
2565 irqreturn_t gfar_receive(int irq, void *grp_id)
2566 {
2567         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2568         return IRQ_HANDLED;
2569 }
2570
2571 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2572 {
2573         /* If valid headers were found, and valid sums
2574          * were verified, then we tell the kernel that no
2575          * checksumming is necessary.  Otherwise, it is */
2576         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2577                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2578         else
2579                 skb->ip_summed = CHECKSUM_NONE;
2580 }
2581
2582
2583 /* gfar_process_frame() -- handle one incoming packet if skb
2584  * isn't NULL.  */
2585 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2586                               int amount_pull)
2587 {
2588         struct gfar_private *priv = netdev_priv(dev);
2589         struct rxfcb *fcb = NULL;
2590
2591         int ret;
2592
2593         /* fcb is at the beginning if exists */
2594         fcb = (struct rxfcb *)skb->data;
2595
2596         /* Remove the FCB from the skb */
2597         /* Remove the padded bytes, if there are any */
2598         if (amount_pull) {
2599                 skb_record_rx_queue(skb, fcb->rq);
2600                 skb_pull(skb, amount_pull);
2601         }
2602
2603         /* Get receive timestamp from the skb */
2604         if (priv->hwts_rx_en) {
2605                 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2606                 u64 *ns = (u64 *) skb->data;
2607                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2608                 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2609         }
2610
2611         if (priv->padding)
2612                 skb_pull(skb, priv->padding);
2613
2614         if (priv->rx_csum_enable)
2615                 gfar_rx_checksum(skb, fcb);
2616
2617         /* Tell the skb what kind of packet this is */
2618         skb->protocol = eth_type_trans(skb, dev);
2619
2620         /* Send the packet up the stack */
2621         if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
2622                 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
2623         else
2624                 ret = netif_receive_skb(skb);
2625
2626         if (NET_RX_DROP == ret)
2627                 priv->extra_stats.kernel_dropped++;
2628
2629         return 0;
2630 }
2631
2632 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2633  *   until the budget/quota has been reached. Returns the number
2634  *   of frames handled
2635  */
2636 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2637 {
2638         struct net_device *dev = rx_queue->dev;
2639         struct rxbd8 *bdp, *base;
2640         struct sk_buff *skb;
2641         int pkt_len;
2642         int amount_pull;
2643         int howmany = 0;
2644         struct gfar_private *priv = netdev_priv(dev);
2645
2646         /* Get the first full descriptor */
2647         bdp = rx_queue->cur_rx;
2648         base = rx_queue->rx_bd_base;
2649
2650         amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0);
2651
2652         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2653                 struct sk_buff *newskb;
2654                 rmb();
2655
2656                 /* Add another skb for the future */
2657                 newskb = gfar_new_skb(dev);
2658
2659                 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2660
2661                 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2662                                 priv->rx_buffer_size, DMA_FROM_DEVICE);
2663
2664                 /* We drop the frame if we failed to allocate a new buffer */
2665                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2666                                  bdp->status & RXBD_ERR)) {
2667                         count_errors(bdp->status, dev);
2668
2669                         if (unlikely(!newskb))
2670                                 newskb = skb;
2671                         else if (skb) {
2672                                 /*
2673                                  * We need to un-reserve() the skb to what it
2674                                  * was before gfar_new_skb() re-aligned
2675                                  * it to an RXBUF_ALIGNMENT boundary
2676                                  * before we put the skb back on the
2677                                  * recycle list.
2678                                  */
2679                                 skb_reserve(skb, -GFAR_CB(skb)->alignamount);
2680                                 __skb_queue_head(&priv->rx_recycle, skb);
2681                         }
2682                 } else {
2683                         /* Increment the number of packets */
2684                         rx_queue->stats.rx_packets++;
2685                         howmany++;
2686
2687                         if (likely(skb)) {
2688                                 pkt_len = bdp->length - ETH_FCS_LEN;
2689                                 /* Remove the FCS from the packet length */
2690                                 skb_put(skb, pkt_len);
2691                                 rx_queue->stats.rx_bytes += pkt_len;
2692                                 skb_record_rx_queue(skb, rx_queue->qindex);
2693                                 gfar_process_frame(dev, skb, amount_pull);
2694
2695                         } else {
2696                                 if (netif_msg_rx_err(priv))
2697                                         printk(KERN_WARNING
2698                                                "%s: Missing skb!\n", dev->name);
2699                                 rx_queue->stats.rx_dropped++;
2700                                 priv->extra_stats.rx_skbmissing++;
2701                         }
2702
2703                 }
2704
2705                 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2706
2707                 /* Setup the new bdp */
2708                 gfar_new_rxbdp(rx_queue, bdp, newskb);
2709
2710                 /* Update to the next pointer */
2711                 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2712
2713                 /* update to point at the next skb */
2714                 rx_queue->skb_currx =
2715                     (rx_queue->skb_currx + 1) &
2716                     RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2717         }
2718
2719         /* Update the current rxbd pointer to be the next one */
2720         rx_queue->cur_rx = bdp;
2721
2722         return howmany;
2723 }
2724
2725 static int gfar_poll(struct napi_struct *napi, int budget)
2726 {
2727         struct gfar_priv_grp *gfargrp = container_of(napi,
2728                         struct gfar_priv_grp, napi);
2729         struct gfar_private *priv = gfargrp->priv;
2730         struct gfar __iomem *regs = gfargrp->regs;
2731         struct gfar_priv_tx_q *tx_queue = NULL;
2732         struct gfar_priv_rx_q *rx_queue = NULL;
2733         int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2734         int tx_cleaned = 0, i, left_over_budget = budget;
2735         unsigned long serviced_queues = 0;
2736         int num_queues = 0;
2737
2738         num_queues = gfargrp->num_rx_queues;
2739         budget_per_queue = budget/num_queues;
2740
2741         /* Clear IEVENT, so interrupts aren't called again
2742          * because of the packets that have already arrived */
2743         gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2744
2745         while (num_queues && left_over_budget) {
2746
2747                 budget_per_queue = left_over_budget/num_queues;
2748                 left_over_budget = 0;
2749
2750                 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2751                         if (test_bit(i, &serviced_queues))
2752                                 continue;
2753                         rx_queue = priv->rx_queue[i];
2754                         tx_queue = priv->tx_queue[rx_queue->qindex];
2755
2756                         tx_cleaned += gfar_clean_tx_ring(tx_queue);
2757                         rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue,
2758                                                         budget_per_queue);
2759                         rx_cleaned += rx_cleaned_per_queue;
2760                         if(rx_cleaned_per_queue < budget_per_queue) {
2761                                 left_over_budget = left_over_budget +
2762                                         (budget_per_queue - rx_cleaned_per_queue);
2763                                 set_bit(i, &serviced_queues);
2764                                 num_queues--;
2765                         }
2766                 }
2767         }
2768
2769         if (tx_cleaned)
2770                 return budget;
2771
2772         if (rx_cleaned < budget) {
2773                 napi_complete(napi);
2774
2775                 /* Clear the halt bit in RSTAT */
2776                 gfar_write(&regs->rstat, gfargrp->rstat);
2777
2778                 gfar_write(&regs->imask, IMASK_DEFAULT);
2779
2780                 /* If we are coalescing interrupts, update the timer */
2781                 /* Otherwise, clear it */
2782                 gfar_configure_coalescing(priv,
2783                                 gfargrp->rx_bit_map, gfargrp->tx_bit_map);
2784         }
2785
2786         return rx_cleaned;
2787 }
2788
2789 #ifdef CONFIG_NET_POLL_CONTROLLER
2790 /*
2791  * Polling 'interrupt' - used by things like netconsole to send skbs
2792  * without having to re-enable interrupts. It's not called while
2793  * the interrupt routine is executing.
2794  */
2795 static void gfar_netpoll(struct net_device *dev)
2796 {
2797         struct gfar_private *priv = netdev_priv(dev);
2798         int i = 0;
2799
2800         /* If the device has multiple interrupts, run tx/rx */
2801         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2802                 for (i = 0; i < priv->num_grps; i++) {
2803                         disable_irq(priv->gfargrp[i].interruptTransmit);
2804                         disable_irq(priv->gfargrp[i].interruptReceive);
2805                         disable_irq(priv->gfargrp[i].interruptError);
2806                         gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2807                                                 &priv->gfargrp[i]);
2808                         enable_irq(priv->gfargrp[i].interruptError);
2809                         enable_irq(priv->gfargrp[i].interruptReceive);
2810                         enable_irq(priv->gfargrp[i].interruptTransmit);
2811                 }
2812         } else {
2813                 for (i = 0; i < priv->num_grps; i++) {
2814                         disable_irq(priv->gfargrp[i].interruptTransmit);
2815                         gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2816                                                 &priv->gfargrp[i]);
2817                         enable_irq(priv->gfargrp[i].interruptTransmit);
2818                 }
2819         }
2820 }
2821 #endif
2822
2823 /* The interrupt handler for devices with one interrupt */
2824 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2825 {
2826         struct gfar_priv_grp *gfargrp = grp_id;
2827
2828         /* Save ievent for future reference */
2829         u32 events = gfar_read(&gfargrp->regs->ievent);
2830
2831         /* Check for reception */
2832         if (events & IEVENT_RX_MASK)
2833                 gfar_receive(irq, grp_id);
2834
2835         /* Check for transmit completion */
2836         if (events & IEVENT_TX_MASK)
2837                 gfar_transmit(irq, grp_id);
2838
2839         /* Check for errors */
2840         if (events & IEVENT_ERR_MASK)
2841                 gfar_error(irq, grp_id);
2842
2843         return IRQ_HANDLED;
2844 }
2845
2846 /* Called every time the controller might need to be made
2847  * aware of new link state.  The PHY code conveys this
2848  * information through variables in the phydev structure, and this
2849  * function converts those variables into the appropriate
2850  * register values, and can bring down the device if needed.
2851  */
2852 static void adjust_link(struct net_device *dev)
2853 {
2854         struct gfar_private *priv = netdev_priv(dev);
2855         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2856         unsigned long flags;
2857         struct phy_device *phydev = priv->phydev;
2858         int new_state = 0;
2859
2860         local_irq_save(flags);
2861         lock_tx_qs(priv);
2862
2863         if (phydev->link) {
2864                 u32 tempval = gfar_read(&regs->maccfg2);
2865                 u32 ecntrl = gfar_read(&regs->ecntrl);
2866
2867                 /* Now we make sure that we can be in full duplex mode.
2868                  * If not, we operate in half-duplex mode. */
2869                 if (phydev->duplex != priv->oldduplex) {
2870                         new_state = 1;
2871                         if (!(phydev->duplex))
2872                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
2873                         else
2874                                 tempval |= MACCFG2_FULL_DUPLEX;
2875
2876                         priv->oldduplex = phydev->duplex;
2877                 }
2878
2879                 if (phydev->speed != priv->oldspeed) {
2880                         new_state = 1;
2881                         switch (phydev->speed) {
2882                         case 1000:
2883                                 tempval =
2884                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2885
2886                                 ecntrl &= ~(ECNTRL_R100);
2887                                 break;
2888                         case 100:
2889                         case 10:
2890                                 tempval =
2891                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2892
2893                                 /* Reduced mode distinguishes
2894                                  * between 10 and 100 */
2895                                 if (phydev->speed == SPEED_100)
2896                                         ecntrl |= ECNTRL_R100;
2897                                 else
2898                                         ecntrl &= ~(ECNTRL_R100);
2899                                 break;
2900                         default:
2901                                 if (netif_msg_link(priv))
2902                                         printk(KERN_WARNING
2903                                                 "%s: Ack!  Speed (%d) is not 10/100/1000!\n",
2904                                                 dev->name, phydev->speed);
2905                                 break;
2906                         }
2907
2908                         priv->oldspeed = phydev->speed;
2909                 }
2910
2911                 gfar_write(&regs->maccfg2, tempval);
2912                 gfar_write(&regs->ecntrl, ecntrl);
2913
2914                 if (!priv->oldlink) {
2915                         new_state = 1;
2916                         priv->oldlink = 1;
2917                 }
2918         } else if (priv->oldlink) {
2919                 new_state = 1;
2920                 priv->oldlink = 0;
2921                 priv->oldspeed = 0;
2922                 priv->oldduplex = -1;
2923         }
2924
2925         if (new_state && netif_msg_link(priv))
2926                 phy_print_status(phydev);
2927         unlock_tx_qs(priv);
2928         local_irq_restore(flags);
2929 }
2930
2931 /* Update the hash table based on the current list of multicast
2932  * addresses we subscribe to.  Also, change the promiscuity of
2933  * the device based on the flags (this function is called
2934  * whenever dev->flags is changed */
2935 static void gfar_set_multi(struct net_device *dev)
2936 {
2937         struct netdev_hw_addr *ha;
2938         struct gfar_private *priv = netdev_priv(dev);
2939         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2940         u32 tempval;
2941
2942         if (dev->flags & IFF_PROMISC) {
2943                 /* Set RCTRL to PROM */
2944                 tempval = gfar_read(&regs->rctrl);
2945                 tempval |= RCTRL_PROM;
2946                 gfar_write(&regs->rctrl, tempval);
2947         } else {
2948                 /* Set RCTRL to not PROM */
2949                 tempval = gfar_read(&regs->rctrl);
2950                 tempval &= ~(RCTRL_PROM);
2951                 gfar_write(&regs->rctrl, tempval);
2952         }
2953
2954         if (dev->flags & IFF_ALLMULTI) {
2955                 /* Set the hash to rx all multicast frames */
2956                 gfar_write(&regs->igaddr0, 0xffffffff);
2957                 gfar_write(&regs->igaddr1, 0xffffffff);
2958                 gfar_write(&regs->igaddr2, 0xffffffff);
2959                 gfar_write(&regs->igaddr3, 0xffffffff);
2960                 gfar_write(&regs->igaddr4, 0xffffffff);
2961                 gfar_write(&regs->igaddr5, 0xffffffff);
2962                 gfar_write(&regs->igaddr6, 0xffffffff);
2963                 gfar_write(&regs->igaddr7, 0xffffffff);
2964                 gfar_write(&regs->gaddr0, 0xffffffff);
2965                 gfar_write(&regs->gaddr1, 0xffffffff);
2966                 gfar_write(&regs->gaddr2, 0xffffffff);
2967                 gfar_write(&regs->gaddr3, 0xffffffff);
2968                 gfar_write(&regs->gaddr4, 0xffffffff);
2969                 gfar_write(&regs->gaddr5, 0xffffffff);
2970                 gfar_write(&regs->gaddr6, 0xffffffff);
2971                 gfar_write(&regs->gaddr7, 0xffffffff);
2972         } else {
2973                 int em_num;
2974                 int idx;
2975
2976                 /* zero out the hash */
2977                 gfar_write(&regs->igaddr0, 0x0);
2978                 gfar_write(&regs->igaddr1, 0x0);
2979                 gfar_write(&regs->igaddr2, 0x0);
2980                 gfar_write(&regs->igaddr3, 0x0);
2981                 gfar_write(&regs->igaddr4, 0x0);
2982                 gfar_write(&regs->igaddr5, 0x0);
2983                 gfar_write(&regs->igaddr6, 0x0);
2984                 gfar_write(&regs->igaddr7, 0x0);
2985                 gfar_write(&regs->gaddr0, 0x0);
2986                 gfar_write(&regs->gaddr1, 0x0);
2987                 gfar_write(&regs->gaddr2, 0x0);
2988                 gfar_write(&regs->gaddr3, 0x0);
2989                 gfar_write(&regs->gaddr4, 0x0);
2990                 gfar_write(&regs->gaddr5, 0x0);
2991                 gfar_write(&regs->gaddr6, 0x0);
2992                 gfar_write(&regs->gaddr7, 0x0);
2993
2994                 /* If we have extended hash tables, we need to
2995                  * clear the exact match registers to prepare for
2996                  * setting them */
2997                 if (priv->extended_hash) {
2998                         em_num = GFAR_EM_NUM + 1;
2999                         gfar_clear_exact_match(dev);
3000                         idx = 1;
3001                 } else {
3002                         idx = 0;
3003                         em_num = 0;
3004                 }
3005
3006                 if (netdev_mc_empty(dev))
3007                         return;
3008
3009                 /* Parse the list, and set the appropriate bits */
3010                 netdev_for_each_mc_addr(ha, dev) {
3011                         if (idx < em_num) {
3012                                 gfar_set_mac_for_addr(dev, idx, ha->addr);
3013                                 idx++;
3014                         } else
3015                                 gfar_set_hash_for_addr(dev, ha->addr);
3016                 }
3017         }
3018
3019         return;
3020 }
3021
3022
3023 /* Clears each of the exact match registers to zero, so they
3024  * don't interfere with normal reception */
3025 static void gfar_clear_exact_match(struct net_device *dev)
3026 {
3027         int idx;
3028         u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
3029
3030         for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
3031                 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
3032 }
3033
3034 /* Set the appropriate hash bit for the given addr */
3035 /* The algorithm works like so:
3036  * 1) Take the Destination Address (ie the multicast address), and
3037  * do a CRC on it (little endian), and reverse the bits of the
3038  * result.
3039  * 2) Use the 8 most significant bits as a hash into a 256-entry
3040  * table.  The table is controlled through 8 32-bit registers:
3041  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3042  * gaddr7.  This means that the 3 most significant bits in the
3043  * hash index which gaddr register to use, and the 5 other bits
3044  * indicate which bit (assuming an IBM numbering scheme, which
3045  * for PowerPC (tm) is usually the case) in the register holds
3046  * the entry. */
3047 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3048 {
3049         u32 tempval;
3050         struct gfar_private *priv = netdev_priv(dev);
3051         u32 result = ether_crc(MAC_ADDR_LEN, addr);
3052         int width = priv->hash_width;
3053         u8 whichbit = (result >> (32 - width)) & 0x1f;
3054         u8 whichreg = result >> (32 - width + 5);
3055         u32 value = (1 << (31-whichbit));
3056
3057         tempval = gfar_read(priv->hash_regs[whichreg]);
3058         tempval |= value;
3059         gfar_write(priv->hash_regs[whichreg], tempval);
3060
3061         return;
3062 }
3063
3064
3065 /* There are multiple MAC Address register pairs on some controllers
3066  * This function sets the numth pair to a given address
3067  */
3068 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
3069 {
3070         struct gfar_private *priv = netdev_priv(dev);
3071         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3072         int idx;
3073         char tmpbuf[MAC_ADDR_LEN];
3074         u32 tempval;
3075         u32 __iomem *macptr = &regs->macstnaddr1;
3076
3077         macptr += num*2;
3078
3079         /* Now copy it into the mac registers backwards, cuz */
3080         /* little endian is silly */
3081         for (idx = 0; idx < MAC_ADDR_LEN; idx++)
3082                 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
3083
3084         gfar_write(macptr, *((u32 *) (tmpbuf)));
3085
3086         tempval = *((u32 *) (tmpbuf + 4));
3087
3088         gfar_write(macptr+1, tempval);
3089 }
3090
3091 /* GFAR error interrupt handler */
3092 static irqreturn_t gfar_error(int irq, void *grp_id)
3093 {
3094         struct gfar_priv_grp *gfargrp = grp_id;
3095         struct gfar __iomem *regs = gfargrp->regs;
3096         struct gfar_private *priv= gfargrp->priv;
3097         struct net_device *dev = priv->ndev;
3098
3099         /* Save ievent for future reference */
3100         u32 events = gfar_read(&regs->ievent);
3101
3102         /* Clear IEVENT */
3103         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3104
3105         /* Magic Packet is not an error. */
3106         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3107             (events & IEVENT_MAG))
3108                 events &= ~IEVENT_MAG;
3109
3110         /* Hmm... */
3111         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3112                 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
3113                        dev->name, events, gfar_read(&regs->imask));
3114
3115         /* Update the error counters */
3116         if (events & IEVENT_TXE) {
3117                 dev->stats.tx_errors++;
3118
3119                 if (events & IEVENT_LC)
3120                         dev->stats.tx_window_errors++;
3121                 if (events & IEVENT_CRL)
3122                         dev->stats.tx_aborted_errors++;
3123                 if (events & IEVENT_XFUN) {
3124                         unsigned long flags;
3125
3126                         if (netif_msg_tx_err(priv))
3127                                 printk(KERN_DEBUG "%s: TX FIFO underrun, "
3128                                        "packet dropped.\n", dev->name);
3129                         dev->stats.tx_dropped++;
3130                         priv->extra_stats.tx_underrun++;
3131
3132                         local_irq_save(flags);
3133                         lock_tx_qs(priv);
3134
3135                         /* Reactivate the Tx Queues */
3136                         gfar_write(&regs->tstat, gfargrp->tstat);
3137
3138                         unlock_tx_qs(priv);
3139                         local_irq_restore(flags);
3140                 }
3141                 if (netif_msg_tx_err(priv))
3142                         printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
3143         }
3144         if (events & IEVENT_BSY) {
3145                 dev->stats.rx_errors++;
3146                 priv->extra_stats.rx_bsy++;
3147
3148                 gfar_receive(irq, grp_id);
3149
3150                 if (netif_msg_rx_err(priv))
3151                         printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
3152                                dev->name, gfar_read(&regs->rstat));
3153         }
3154         if (events & IEVENT_BABR) {
3155                 dev->stats.rx_errors++;
3156                 priv->extra_stats.rx_babr++;
3157
3158                 if (netif_msg_rx_err(priv))
3159                         printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
3160         }
3161         if (events & IEVENT_EBERR) {
3162                 priv->extra_stats.eberr++;
3163                 if (netif_msg_rx_err(priv))
3164                         printk(KERN_DEBUG "%s: bus error\n", dev->name);
3165         }
3166         if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
3167                 printk(KERN_DEBUG "%s: control frame\n", dev->name);
3168
3169         if (events & IEVENT_BABT) {
3170                 priv->extra_stats.tx_babt++;
3171                 if (netif_msg_tx_err(priv))
3172                         printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
3173         }
3174         return IRQ_HANDLED;
3175 }
3176
3177 static struct of_device_id gfar_match[] =
3178 {
3179         {
3180                 .type = "network",
3181                 .compatible = "gianfar",
3182         },
3183         {
3184                 .compatible = "fsl,etsec2",
3185         },
3186         {},
3187 };
3188 MODULE_DEVICE_TABLE(of, gfar_match);
3189
3190 /* Structure for a device driver */
3191 static struct of_platform_driver gfar_driver = {
3192         .name = "fsl-gianfar",
3193         .match_table = gfar_match,
3194
3195         .probe = gfar_probe,
3196         .remove = gfar_remove,
3197         .suspend = gfar_legacy_suspend,
3198         .resume = gfar_legacy_resume,
3199         .driver.pm = GFAR_PM_OPS,
3200 };
3201
3202 static int __init gfar_init(void)
3203 {
3204         return of_register_platform_driver(&gfar_driver);
3205 }
3206
3207 static void __exit gfar_exit(void)
3208 {
3209         of_unregister_platform_driver(&gfar_driver);
3210 }
3211
3212 module_init(gfar_init);
3213 module_exit(gfar_exit);
3214