gianfar: Fix stats support
[safe/jmp/linux-2.6] / drivers / net / gianfar.c
1 /*
2  * drivers/net/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12  *
13  * Copyright 2002-2009 Freescale Semiconductor, Inc.
14  * Copyright 2007 MontaVista Software, Inc.
15  *
16  * This program is free software; you can redistribute  it and/or modify it
17  * under  the terms of  the GNU General  Public License as published by the
18  * Free Software Foundation;  either version 2 of the  License, or (at your
19  * option) any later version.
20  *
21  *  Gianfar:  AKA Lambda Draconis, "Dragon"
22  *  RA 11 31 24.2
23  *  Dec +69 19 52
24  *  V 3.84
25  *  B-V +1.62
26  *
27  *  Theory of operation
28  *
29  *  The driver is initialized through of_device. Configuration information
30  *  is therefore conveyed through an OF-style device tree.
31  *
32  *  The Gianfar Ethernet Controller uses a ring of buffer
33  *  descriptors.  The beginning is indicated by a register
34  *  pointing to the physical address of the start of the ring.
35  *  The end is determined by a "wrap" bit being set in the
36  *  last descriptor of the ring.
37  *
38  *  When a packet is received, the RXF bit in the
39  *  IEVENT register is set, triggering an interrupt when the
40  *  corresponding bit in the IMASK register is also set (if
41  *  interrupt coalescing is active, then the interrupt may not
42  *  happen immediately, but will wait until either a set number
43  *  of frames or amount of time have passed).  In NAPI, the
44  *  interrupt handler will signal there is work to be done, and
45  *  exit. This method will start at the last known empty
46  *  descriptor, and process every subsequent descriptor until there
47  *  are none left with data (NAPI will stop after a set number of
48  *  packets to give time to other tasks, but will eventually
49  *  process all the packets).  The data arrives inside a
50  *  pre-allocated skb, and so after the skb is passed up to the
51  *  stack, a new skb must be allocated, and the address field in
52  *  the buffer descriptor must be updated to indicate this new
53  *  skb.
54  *
55  *  When the kernel requests that a packet be transmitted, the
56  *  driver starts where it left off last time, and points the
57  *  descriptor at the buffer which was passed in.  The driver
58  *  then informs the DMA engine that there are packets ready to
59  *  be transmitted.  Once the controller is finished transmitting
60  *  the packet, an interrupt may be triggered (under the same
61  *  conditions as for reception, but depending on the TXF bit).
62  *  The driver then cleans up the buffer.
63  */
64
65 #include <linux/kernel.h>
66 #include <linux/string.h>
67 #include <linux/errno.h>
68 #include <linux/unistd.h>
69 #include <linux/slab.h>
70 #include <linux/interrupt.h>
71 #include <linux/init.h>
72 #include <linux/delay.h>
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_vlan.h>
77 #include <linux/spinlock.h>
78 #include <linux/mm.h>
79 #include <linux/of_mdio.h>
80 #include <linux/of_platform.h>
81 #include <linux/ip.h>
82 #include <linux/tcp.h>
83 #include <linux/udp.h>
84 #include <linux/in.h>
85
86 #include <asm/io.h>
87 #include <asm/irq.h>
88 #include <asm/uaccess.h>
89 #include <linux/module.h>
90 #include <linux/dma-mapping.h>
91 #include <linux/crc32.h>
92 #include <linux/mii.h>
93 #include <linux/phy.h>
94 #include <linux/phy_fixed.h>
95 #include <linux/of.h>
96
97 #include "gianfar.h"
98 #include "fsl_pq_mdio.h"
99
100 #define TX_TIMEOUT      (1*HZ)
101 #undef BRIEF_GFAR_ERRORS
102 #undef VERBOSE_GFAR_ERRORS
103
104 const char gfar_driver_name[] = "Gianfar Ethernet";
105 const char gfar_driver_version[] = "1.3";
106
107 static int gfar_enet_open(struct net_device *dev);
108 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
109 static void gfar_reset_task(struct work_struct *work);
110 static void gfar_timeout(struct net_device *dev);
111 static int gfar_close(struct net_device *dev);
112 struct sk_buff *gfar_new_skb(struct net_device *dev);
113 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
114                 struct sk_buff *skb);
115 static int gfar_set_mac_address(struct net_device *dev);
116 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
117 static irqreturn_t gfar_error(int irq, void *dev_id);
118 static irqreturn_t gfar_transmit(int irq, void *dev_id);
119 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
120 static void adjust_link(struct net_device *dev);
121 static void init_registers(struct net_device *dev);
122 static int init_phy(struct net_device *dev);
123 static int gfar_probe(struct of_device *ofdev,
124                 const struct of_device_id *match);
125 static int gfar_remove(struct of_device *ofdev);
126 static void free_skb_resources(struct gfar_private *priv);
127 static void gfar_set_multi(struct net_device *dev);
128 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
129 static void gfar_configure_serdes(struct net_device *dev);
130 static int gfar_poll(struct napi_struct *napi, int budget);
131 #ifdef CONFIG_NET_POLL_CONTROLLER
132 static void gfar_netpoll(struct net_device *dev);
133 #endif
134 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
135 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
136 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
137                               int amount_pull);
138 static void gfar_vlan_rx_register(struct net_device *netdev,
139                                 struct vlan_group *grp);
140 void gfar_halt(struct net_device *dev);
141 static void gfar_halt_nodisable(struct net_device *dev);
142 void gfar_start(struct net_device *dev);
143 static void gfar_clear_exact_match(struct net_device *dev);
144 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
145 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
146 u16 gfar_select_queue(struct net_device *dev, struct sk_buff *skb);
147
148 MODULE_AUTHOR("Freescale Semiconductor, Inc");
149 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
150 MODULE_LICENSE("GPL");
151
152 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
153                             dma_addr_t buf)
154 {
155         u32 lstatus;
156
157         bdp->bufPtr = buf;
158
159         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
160         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
161                 lstatus |= BD_LFLAG(RXBD_WRAP);
162
163         eieio();
164
165         bdp->lstatus = lstatus;
166 }
167
168 static int gfar_init_bds(struct net_device *ndev)
169 {
170         struct gfar_private *priv = netdev_priv(ndev);
171         struct gfar_priv_tx_q *tx_queue = NULL;
172         struct gfar_priv_rx_q *rx_queue = NULL;
173         struct txbd8 *txbdp;
174         struct rxbd8 *rxbdp;
175         int i, j;
176
177         for (i = 0; i < priv->num_tx_queues; i++) {
178                 tx_queue = priv->tx_queue[i];
179                 /* Initialize some variables in our dev structure */
180                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
181                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
182                 tx_queue->cur_tx = tx_queue->tx_bd_base;
183                 tx_queue->skb_curtx = 0;
184                 tx_queue->skb_dirtytx = 0;
185
186                 /* Initialize Transmit Descriptor Ring */
187                 txbdp = tx_queue->tx_bd_base;
188                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
189                         txbdp->lstatus = 0;
190                         txbdp->bufPtr = 0;
191                         txbdp++;
192                 }
193
194                 /* Set the last descriptor in the ring to indicate wrap */
195                 txbdp--;
196                 txbdp->status |= TXBD_WRAP;
197         }
198
199         for (i = 0; i < priv->num_rx_queues; i++) {
200                 rx_queue = priv->rx_queue[i];
201                 rx_queue->cur_rx = rx_queue->rx_bd_base;
202                 rx_queue->skb_currx = 0;
203                 rxbdp = rx_queue->rx_bd_base;
204
205                 for (j = 0; j < rx_queue->rx_ring_size; j++) {
206                         struct sk_buff *skb = rx_queue->rx_skbuff[j];
207
208                         if (skb) {
209                                 gfar_init_rxbdp(rx_queue, rxbdp,
210                                                 rxbdp->bufPtr);
211                         } else {
212                                 skb = gfar_new_skb(ndev);
213                                 if (!skb) {
214                                         pr_err("%s: Can't allocate RX buffers\n",
215                                                         ndev->name);
216                                         goto err_rxalloc_fail;
217                                 }
218                                 rx_queue->rx_skbuff[j] = skb;
219
220                                 gfar_new_rxbdp(rx_queue, rxbdp, skb);
221                         }
222
223                         rxbdp++;
224                 }
225
226         }
227
228         return 0;
229
230 err_rxalloc_fail:
231         free_skb_resources(priv);
232         return -ENOMEM;
233 }
234
235 static int gfar_alloc_skb_resources(struct net_device *ndev)
236 {
237         void *vaddr;
238         dma_addr_t addr;
239         int i, j, k;
240         struct gfar_private *priv = netdev_priv(ndev);
241         struct device *dev = &priv->ofdev->dev;
242         struct gfar_priv_tx_q *tx_queue = NULL;
243         struct gfar_priv_rx_q *rx_queue = NULL;
244
245         priv->total_tx_ring_size = 0;
246         for (i = 0; i < priv->num_tx_queues; i++)
247                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
248
249         priv->total_rx_ring_size = 0;
250         for (i = 0; i < priv->num_rx_queues; i++)
251                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
252
253         /* Allocate memory for the buffer descriptors */
254         vaddr = dma_alloc_coherent(dev,
255                         sizeof(struct txbd8) * priv->total_tx_ring_size +
256                         sizeof(struct rxbd8) * priv->total_rx_ring_size,
257                         &addr, GFP_KERNEL);
258         if (!vaddr) {
259                 if (netif_msg_ifup(priv))
260                         pr_err("%s: Could not allocate buffer descriptors!\n",
261                                ndev->name);
262                 return -ENOMEM;
263         }
264
265         for (i = 0; i < priv->num_tx_queues; i++) {
266                 tx_queue = priv->tx_queue[i];
267                 tx_queue->tx_bd_base = (struct txbd8 *) vaddr;
268                 tx_queue->tx_bd_dma_base = addr;
269                 tx_queue->dev = ndev;
270                 /* enet DMA only understands physical addresses */
271                 addr    += sizeof(struct txbd8) *tx_queue->tx_ring_size;
272                 vaddr   += sizeof(struct txbd8) *tx_queue->tx_ring_size;
273         }
274
275         /* Start the rx descriptor ring where the tx ring leaves off */
276         for (i = 0; i < priv->num_rx_queues; i++) {
277                 rx_queue = priv->rx_queue[i];
278                 rx_queue->rx_bd_base = (struct rxbd8 *) vaddr;
279                 rx_queue->rx_bd_dma_base = addr;
280                 rx_queue->dev = ndev;
281                 addr    += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
282                 vaddr   += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
283         }
284
285         /* Setup the skbuff rings */
286         for (i = 0; i < priv->num_tx_queues; i++) {
287                 tx_queue = priv->tx_queue[i];
288                 tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
289                                   tx_queue->tx_ring_size, GFP_KERNEL);
290                 if (!tx_queue->tx_skbuff) {
291                         if (netif_msg_ifup(priv))
292                                 pr_err("%s: Could not allocate tx_skbuff\n",
293                                                 ndev->name);
294                         goto cleanup;
295                 }
296
297                 for (k = 0; k < tx_queue->tx_ring_size; k++)
298                         tx_queue->tx_skbuff[k] = NULL;
299         }
300
301         for (i = 0; i < priv->num_rx_queues; i++) {
302                 rx_queue = priv->rx_queue[i];
303                 rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
304                                   rx_queue->rx_ring_size, GFP_KERNEL);
305
306                 if (!rx_queue->rx_skbuff) {
307                         if (netif_msg_ifup(priv))
308                                 pr_err("%s: Could not allocate rx_skbuff\n",
309                                        ndev->name);
310                         goto cleanup;
311                 }
312
313                 for (j = 0; j < rx_queue->rx_ring_size; j++)
314                         rx_queue->rx_skbuff[j] = NULL;
315         }
316
317         if (gfar_init_bds(ndev))
318                 goto cleanup;
319
320         return 0;
321
322 cleanup:
323         free_skb_resources(priv);
324         return -ENOMEM;
325 }
326
327 static void gfar_init_tx_rx_base(struct gfar_private *priv)
328 {
329         struct gfar __iomem *regs = priv->gfargrp[0].regs;
330         u32 __iomem *baddr;
331         int i;
332
333         baddr = &regs->tbase0;
334         for(i = 0; i < priv->num_tx_queues; i++) {
335                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
336                 baddr   += 2;
337         }
338
339         baddr = &regs->rbase0;
340         for(i = 0; i < priv->num_rx_queues; i++) {
341                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
342                 baddr   += 2;
343         }
344 }
345
346 static void gfar_init_mac(struct net_device *ndev)
347 {
348         struct gfar_private *priv = netdev_priv(ndev);
349         struct gfar __iomem *regs = priv->gfargrp[0].regs;
350         u32 rctrl = 0;
351         u32 tctrl = 0;
352         u32 attrs = 0;
353
354         /* write the tx/rx base registers */
355         gfar_init_tx_rx_base(priv);
356
357         /* Configure the coalescing support */
358         gfar_configure_coalescing(priv, 0xFF, 0xFF);
359
360         if (priv->rx_filer_enable) {
361                 rctrl |= RCTRL_FILREN;
362                 /* Program the RIR0 reg with the required distribution */
363                 gfar_write(&regs->rir0, DEFAULT_RIR0);
364         }
365
366         if (priv->rx_csum_enable)
367                 rctrl |= RCTRL_CHECKSUMMING;
368
369         if (priv->extended_hash) {
370                 rctrl |= RCTRL_EXTHASH;
371
372                 gfar_clear_exact_match(ndev);
373                 rctrl |= RCTRL_EMEN;
374         }
375
376         if (priv->padding) {
377                 rctrl &= ~RCTRL_PAL_MASK;
378                 rctrl |= RCTRL_PADDING(priv->padding);
379         }
380
381         /* keep vlan related bits if it's enabled */
382         if (priv->vlgrp) {
383                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
384                 tctrl |= TCTRL_VLINS;
385         }
386
387         /* Init rctrl based on our settings */
388         gfar_write(&regs->rctrl, rctrl);
389
390         if (ndev->features & NETIF_F_IP_CSUM)
391                 tctrl |= TCTRL_INIT_CSUM;
392
393         tctrl |= TCTRL_TXSCHED_PRIO;
394
395         gfar_write(&regs->tctrl, tctrl);
396
397         /* Set the extraction length and index */
398         attrs = ATTRELI_EL(priv->rx_stash_size) |
399                 ATTRELI_EI(priv->rx_stash_index);
400
401         gfar_write(&regs->attreli, attrs);
402
403         /* Start with defaults, and add stashing or locking
404          * depending on the approprate variables */
405         attrs = ATTR_INIT_SETTINGS;
406
407         if (priv->bd_stash_en)
408                 attrs |= ATTR_BDSTASH;
409
410         if (priv->rx_stash_size != 0)
411                 attrs |= ATTR_BUFSTASH;
412
413         gfar_write(&regs->attr, attrs);
414
415         gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
416         gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
417         gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
418 }
419
420 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
421 {
422         struct gfar_private *priv = netdev_priv(dev);
423         struct netdev_queue *txq;
424         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
425         unsigned long tx_packets = 0, tx_bytes = 0;
426         int i = 0;
427
428         for (i = 0; i < priv->num_rx_queues; i++) {
429                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
430                 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
431                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
432         }
433
434         dev->stats.rx_packets = rx_packets;
435         dev->stats.rx_bytes = rx_bytes;
436         dev->stats.rx_dropped = rx_dropped;
437
438         for (i = 0; i < priv->num_tx_queues; i++) {
439                 txq = netdev_get_tx_queue(dev, i);
440                 tx_bytes += txq->tx_bytes;
441                 tx_packets += txq->tx_packets;
442         }
443
444         dev->stats.tx_bytes = tx_bytes;
445         dev->stats.tx_packets = tx_packets;
446
447         return &dev->stats;
448 }
449
450 static const struct net_device_ops gfar_netdev_ops = {
451         .ndo_open = gfar_enet_open,
452         .ndo_start_xmit = gfar_start_xmit,
453         .ndo_stop = gfar_close,
454         .ndo_change_mtu = gfar_change_mtu,
455         .ndo_set_multicast_list = gfar_set_multi,
456         .ndo_tx_timeout = gfar_timeout,
457         .ndo_do_ioctl = gfar_ioctl,
458         .ndo_select_queue = gfar_select_queue,
459         .ndo_get_stats = gfar_get_stats,
460         .ndo_vlan_rx_register = gfar_vlan_rx_register,
461         .ndo_set_mac_address = eth_mac_addr,
462         .ndo_validate_addr = eth_validate_addr,
463 #ifdef CONFIG_NET_POLL_CONTROLLER
464         .ndo_poll_controller = gfar_netpoll,
465 #endif
466 };
467
468 unsigned int ftp_rqfpr[MAX_FILER_IDX + 1];
469 unsigned int ftp_rqfcr[MAX_FILER_IDX + 1];
470
471 void lock_rx_qs(struct gfar_private *priv)
472 {
473         int i = 0x0;
474
475         for (i = 0; i < priv->num_rx_queues; i++)
476                 spin_lock(&priv->rx_queue[i]->rxlock);
477 }
478
479 void lock_tx_qs(struct gfar_private *priv)
480 {
481         int i = 0x0;
482
483         for (i = 0; i < priv->num_tx_queues; i++)
484                 spin_lock(&priv->tx_queue[i]->txlock);
485 }
486
487 void unlock_rx_qs(struct gfar_private *priv)
488 {
489         int i = 0x0;
490
491         for (i = 0; i < priv->num_rx_queues; i++)
492                 spin_unlock(&priv->rx_queue[i]->rxlock);
493 }
494
495 void unlock_tx_qs(struct gfar_private *priv)
496 {
497         int i = 0x0;
498
499         for (i = 0; i < priv->num_tx_queues; i++)
500                 spin_unlock(&priv->tx_queue[i]->txlock);
501 }
502
503 /* Returns 1 if incoming frames use an FCB */
504 static inline int gfar_uses_fcb(struct gfar_private *priv)
505 {
506         return priv->vlgrp || priv->rx_csum_enable;
507 }
508
509 u16 gfar_select_queue(struct net_device *dev, struct sk_buff *skb)
510 {
511         return skb_get_queue_mapping(skb);
512 }
513 static void free_tx_pointers(struct gfar_private *priv)
514 {
515         int i = 0;
516
517         for (i = 0; i < priv->num_tx_queues; i++)
518                 kfree(priv->tx_queue[i]);
519 }
520
521 static void free_rx_pointers(struct gfar_private *priv)
522 {
523         int i = 0;
524
525         for (i = 0; i < priv->num_rx_queues; i++)
526                 kfree(priv->rx_queue[i]);
527 }
528
529 static void unmap_group_regs(struct gfar_private *priv)
530 {
531         int i = 0;
532
533         for (i = 0; i < MAXGROUPS; i++)
534                 if (priv->gfargrp[i].regs)
535                         iounmap(priv->gfargrp[i].regs);
536 }
537
538 static void disable_napi(struct gfar_private *priv)
539 {
540         int i = 0;
541
542         for (i = 0; i < priv->num_grps; i++)
543                 napi_disable(&priv->gfargrp[i].napi);
544 }
545
546 static void enable_napi(struct gfar_private *priv)
547 {
548         int i = 0;
549
550         for (i = 0; i < priv->num_grps; i++)
551                 napi_enable(&priv->gfargrp[i].napi);
552 }
553
554 static int gfar_parse_group(struct device_node *np,
555                 struct gfar_private *priv, const char *model)
556 {
557         u32 *queue_mask;
558         u64 addr, size;
559
560         addr = of_translate_address(np,
561                         of_get_address(np, 0, &size, NULL));
562         priv->gfargrp[priv->num_grps].regs = ioremap(addr, size);
563
564         if (!priv->gfargrp[priv->num_grps].regs)
565                 return -ENOMEM;
566
567         priv->gfargrp[priv->num_grps].interruptTransmit =
568                         irq_of_parse_and_map(np, 0);
569
570         /* If we aren't the FEC we have multiple interrupts */
571         if (model && strcasecmp(model, "FEC")) {
572                 priv->gfargrp[priv->num_grps].interruptReceive =
573                         irq_of_parse_and_map(np, 1);
574                 priv->gfargrp[priv->num_grps].interruptError =
575                         irq_of_parse_and_map(np,2);
576                 if (priv->gfargrp[priv->num_grps].interruptTransmit < 0 ||
577                         priv->gfargrp[priv->num_grps].interruptReceive < 0 ||
578                         priv->gfargrp[priv->num_grps].interruptError < 0) {
579                         return -EINVAL;
580                 }
581         }
582
583         priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
584         priv->gfargrp[priv->num_grps].priv = priv;
585         spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
586         if(priv->mode == MQ_MG_MODE) {
587                 queue_mask = (u32 *)of_get_property(np,
588                                         "fsl,rx-bit-map", NULL);
589                 priv->gfargrp[priv->num_grps].rx_bit_map =
590                         queue_mask ?  *queue_mask :(DEFAULT_MAPPING >> priv->num_grps);
591                 queue_mask = (u32 *)of_get_property(np,
592                                         "fsl,tx-bit-map", NULL);
593                 priv->gfargrp[priv->num_grps].tx_bit_map =
594                         queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
595         } else {
596                 priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
597                 priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
598         }
599         priv->num_grps++;
600
601         return 0;
602 }
603
604 static int gfar_of_init(struct of_device *ofdev, struct net_device **pdev)
605 {
606         const char *model;
607         const char *ctype;
608         const void *mac_addr;
609         int err = 0, i;
610         struct net_device *dev = NULL;
611         struct gfar_private *priv = NULL;
612         struct device_node *np = ofdev->node;
613         struct device_node *child = NULL;
614         const u32 *stash;
615         const u32 *stash_len;
616         const u32 *stash_idx;
617         unsigned int num_tx_qs, num_rx_qs;
618         u32 *tx_queues, *rx_queues;
619
620         if (!np || !of_device_is_available(np))
621                 return -ENODEV;
622
623         /* parse the num of tx and rx queues */
624         tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
625         num_tx_qs = tx_queues ? *tx_queues : 1;
626
627         if (num_tx_qs > MAX_TX_QS) {
628                 printk(KERN_ERR "num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
629                                 num_tx_qs, MAX_TX_QS);
630                 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
631                 return -EINVAL;
632         }
633
634         rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
635         num_rx_qs = rx_queues ? *rx_queues : 1;
636
637         if (num_rx_qs > MAX_RX_QS) {
638                 printk(KERN_ERR "num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
639                                 num_tx_qs, MAX_TX_QS);
640                 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
641                 return -EINVAL;
642         }
643
644         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
645         dev = *pdev;
646         if (NULL == dev)
647                 return -ENOMEM;
648
649         priv = netdev_priv(dev);
650         priv->node = ofdev->node;
651         priv->ndev = dev;
652
653         dev->num_tx_queues = num_tx_qs;
654         dev->real_num_tx_queues = num_tx_qs;
655         priv->num_tx_queues = num_tx_qs;
656         priv->num_rx_queues = num_rx_qs;
657         priv->num_grps = 0x0;
658
659         model = of_get_property(np, "model", NULL);
660
661         for (i = 0; i < MAXGROUPS; i++)
662                 priv->gfargrp[i].regs = NULL;
663
664         /* Parse and initialize group specific information */
665         if (of_device_is_compatible(np, "fsl,etsec2")) {
666                 priv->mode = MQ_MG_MODE;
667                 for_each_child_of_node(np, child) {
668                         err = gfar_parse_group(child, priv, model);
669                         if (err)
670                                 goto err_grp_init;
671                 }
672         } else {
673                 priv->mode = SQ_SG_MODE;
674                 err = gfar_parse_group(np, priv, model);
675                 if(err)
676                         goto err_grp_init;
677         }
678
679         for (i = 0; i < priv->num_tx_queues; i++)
680                priv->tx_queue[i] = NULL;
681         for (i = 0; i < priv->num_rx_queues; i++)
682                 priv->rx_queue[i] = NULL;
683
684         for (i = 0; i < priv->num_tx_queues; i++) {
685                 priv->tx_queue[i] =  (struct gfar_priv_tx_q *)kmalloc(
686                                 sizeof (struct gfar_priv_tx_q), GFP_KERNEL);
687                 if (!priv->tx_queue[i]) {
688                         err = -ENOMEM;
689                         goto tx_alloc_failed;
690                 }
691                 priv->tx_queue[i]->tx_skbuff = NULL;
692                 priv->tx_queue[i]->qindex = i;
693                 priv->tx_queue[i]->dev = dev;
694                 spin_lock_init(&(priv->tx_queue[i]->txlock));
695         }
696
697         for (i = 0; i < priv->num_rx_queues; i++) {
698                 priv->rx_queue[i] = (struct gfar_priv_rx_q *)kmalloc(
699                                         sizeof (struct gfar_priv_rx_q), GFP_KERNEL);
700                 if (!priv->rx_queue[i]) {
701                         err = -ENOMEM;
702                         goto rx_alloc_failed;
703                 }
704                 priv->rx_queue[i]->rx_skbuff = NULL;
705                 priv->rx_queue[i]->qindex = i;
706                 priv->rx_queue[i]->dev = dev;
707                 spin_lock_init(&(priv->rx_queue[i]->rxlock));
708         }
709
710
711         stash = of_get_property(np, "bd-stash", NULL);
712
713         if (stash) {
714                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
715                 priv->bd_stash_en = 1;
716         }
717
718         stash_len = of_get_property(np, "rx-stash-len", NULL);
719
720         if (stash_len)
721                 priv->rx_stash_size = *stash_len;
722
723         stash_idx = of_get_property(np, "rx-stash-idx", NULL);
724
725         if (stash_idx)
726                 priv->rx_stash_index = *stash_idx;
727
728         if (stash_len || stash_idx)
729                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
730
731         mac_addr = of_get_mac_address(np);
732         if (mac_addr)
733                 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
734
735         if (model && !strcasecmp(model, "TSEC"))
736                 priv->device_flags =
737                         FSL_GIANFAR_DEV_HAS_GIGABIT |
738                         FSL_GIANFAR_DEV_HAS_COALESCE |
739                         FSL_GIANFAR_DEV_HAS_RMON |
740                         FSL_GIANFAR_DEV_HAS_MULTI_INTR;
741         if (model && !strcasecmp(model, "eTSEC"))
742                 priv->device_flags =
743                         FSL_GIANFAR_DEV_HAS_GIGABIT |
744                         FSL_GIANFAR_DEV_HAS_COALESCE |
745                         FSL_GIANFAR_DEV_HAS_RMON |
746                         FSL_GIANFAR_DEV_HAS_MULTI_INTR |
747                         FSL_GIANFAR_DEV_HAS_PADDING |
748                         FSL_GIANFAR_DEV_HAS_CSUM |
749                         FSL_GIANFAR_DEV_HAS_VLAN |
750                         FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
751                         FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
752
753         ctype = of_get_property(np, "phy-connection-type", NULL);
754
755         /* We only care about rgmii-id.  The rest are autodetected */
756         if (ctype && !strcmp(ctype, "rgmii-id"))
757                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
758         else
759                 priv->interface = PHY_INTERFACE_MODE_MII;
760
761         if (of_get_property(np, "fsl,magic-packet", NULL))
762                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
763
764         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
765
766         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
767         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
768
769         return 0;
770
771 rx_alloc_failed:
772         free_rx_pointers(priv);
773 tx_alloc_failed:
774         free_tx_pointers(priv);
775 err_grp_init:
776         unmap_group_regs(priv);
777         free_netdev(dev);
778         return err;
779 }
780
781 /* Ioctl MII Interface */
782 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
783 {
784         struct gfar_private *priv = netdev_priv(dev);
785
786         if (!netif_running(dev))
787                 return -EINVAL;
788
789         if (!priv->phydev)
790                 return -ENODEV;
791
792         return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
793 }
794
795 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
796 {
797         unsigned int new_bit_map = 0x0;
798         int mask = 0x1 << (max_qs - 1), i;
799         for (i = 0; i < max_qs; i++) {
800                 if (bit_map & mask)
801                         new_bit_map = new_bit_map + (1 << i);
802                 mask = mask >> 0x1;
803         }
804         return new_bit_map;
805 }
806
807 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
808                                    u32 class)
809 {
810         u32 rqfpr = FPR_FILER_MASK;
811         u32 rqfcr = 0x0;
812
813         rqfar--;
814         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
815         ftp_rqfpr[rqfar] = rqfpr;
816         ftp_rqfcr[rqfar] = rqfcr;
817         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
818
819         rqfar--;
820         rqfcr = RQFCR_CMP_NOMATCH;
821         ftp_rqfpr[rqfar] = rqfpr;
822         ftp_rqfcr[rqfar] = rqfcr;
823         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
824
825         rqfar--;
826         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
827         rqfpr = class;
828         ftp_rqfcr[rqfar] = rqfcr;
829         ftp_rqfpr[rqfar] = rqfpr;
830         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
831
832         rqfar--;
833         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
834         rqfpr = class;
835         ftp_rqfcr[rqfar] = rqfcr;
836         ftp_rqfpr[rqfar] = rqfpr;
837         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
838
839         return rqfar;
840 }
841
842 static void gfar_init_filer_table(struct gfar_private *priv)
843 {
844         int i = 0x0;
845         u32 rqfar = MAX_FILER_IDX;
846         u32 rqfcr = 0x0;
847         u32 rqfpr = FPR_FILER_MASK;
848
849         /* Default rule */
850         rqfcr = RQFCR_CMP_MATCH;
851         ftp_rqfcr[rqfar] = rqfcr;
852         ftp_rqfpr[rqfar] = rqfpr;
853         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
854
855         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
856         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
857         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
858         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
859         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
860         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
861
862         /* cur_filer_idx indicated the fisrt non-masked rule */
863         priv->cur_filer_idx = rqfar;
864
865         /* Rest are masked rules */
866         rqfcr = RQFCR_CMP_NOMATCH;
867         for (i = 0; i < rqfar; i++) {
868                 ftp_rqfcr[i] = rqfcr;
869                 ftp_rqfpr[i] = rqfpr;
870                 gfar_write_filer(priv, i, rqfcr, rqfpr);
871         }
872 }
873
874 /* Set up the ethernet device structure, private data,
875  * and anything else we need before we start */
876 static int gfar_probe(struct of_device *ofdev,
877                 const struct of_device_id *match)
878 {
879         u32 tempval;
880         struct net_device *dev = NULL;
881         struct gfar_private *priv = NULL;
882         struct gfar __iomem *regs = NULL;
883         int err = 0, i, grp_idx = 0;
884         int len_devname;
885         u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
886         u32 isrg = 0;
887         u32 __iomem *baddr;
888
889         err = gfar_of_init(ofdev, &dev);
890
891         if (err)
892                 return err;
893
894         priv = netdev_priv(dev);
895         priv->ndev = dev;
896         priv->ofdev = ofdev;
897         priv->node = ofdev->node;
898         SET_NETDEV_DEV(dev, &ofdev->dev);
899
900         spin_lock_init(&priv->bflock);
901         INIT_WORK(&priv->reset_task, gfar_reset_task);
902
903         dev_set_drvdata(&ofdev->dev, priv);
904         regs = priv->gfargrp[0].regs;
905
906         /* Stop the DMA engine now, in case it was running before */
907         /* (The firmware could have used it, and left it running). */
908         gfar_halt(dev);
909
910         /* Reset MAC layer */
911         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
912
913         /* We need to delay at least 3 TX clocks */
914         udelay(2);
915
916         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
917         gfar_write(&regs->maccfg1, tempval);
918
919         /* Initialize MACCFG2. */
920         gfar_write(&regs->maccfg2, MACCFG2_INIT_SETTINGS);
921
922         /* Initialize ECNTRL */
923         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
924
925         /* Set the dev->base_addr to the gfar reg region */
926         dev->base_addr = (unsigned long) regs;
927
928         SET_NETDEV_DEV(dev, &ofdev->dev);
929
930         /* Fill in the dev structure */
931         dev->watchdog_timeo = TX_TIMEOUT;
932         dev->mtu = 1500;
933         dev->netdev_ops = &gfar_netdev_ops;
934         dev->ethtool_ops = &gfar_ethtool_ops;
935
936         /* Register for napi ...We are registering NAPI for each grp */
937         for (i = 0; i < priv->num_grps; i++)
938                 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT);
939
940         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
941                 priv->rx_csum_enable = 1;
942                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
943         } else
944                 priv->rx_csum_enable = 0;
945
946         priv->vlgrp = NULL;
947
948         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
949                 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
950
951         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
952                 priv->extended_hash = 1;
953                 priv->hash_width = 9;
954
955                 priv->hash_regs[0] = &regs->igaddr0;
956                 priv->hash_regs[1] = &regs->igaddr1;
957                 priv->hash_regs[2] = &regs->igaddr2;
958                 priv->hash_regs[3] = &regs->igaddr3;
959                 priv->hash_regs[4] = &regs->igaddr4;
960                 priv->hash_regs[5] = &regs->igaddr5;
961                 priv->hash_regs[6] = &regs->igaddr6;
962                 priv->hash_regs[7] = &regs->igaddr7;
963                 priv->hash_regs[8] = &regs->gaddr0;
964                 priv->hash_regs[9] = &regs->gaddr1;
965                 priv->hash_regs[10] = &regs->gaddr2;
966                 priv->hash_regs[11] = &regs->gaddr3;
967                 priv->hash_regs[12] = &regs->gaddr4;
968                 priv->hash_regs[13] = &regs->gaddr5;
969                 priv->hash_regs[14] = &regs->gaddr6;
970                 priv->hash_regs[15] = &regs->gaddr7;
971
972         } else {
973                 priv->extended_hash = 0;
974                 priv->hash_width = 8;
975
976                 priv->hash_regs[0] = &regs->gaddr0;
977                 priv->hash_regs[1] = &regs->gaddr1;
978                 priv->hash_regs[2] = &regs->gaddr2;
979                 priv->hash_regs[3] = &regs->gaddr3;
980                 priv->hash_regs[4] = &regs->gaddr4;
981                 priv->hash_regs[5] = &regs->gaddr5;
982                 priv->hash_regs[6] = &regs->gaddr6;
983                 priv->hash_regs[7] = &regs->gaddr7;
984         }
985
986         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
987                 priv->padding = DEFAULT_PADDING;
988         else
989                 priv->padding = 0;
990
991         if (dev->features & NETIF_F_IP_CSUM)
992                 dev->hard_header_len += GMAC_FCB_LEN;
993
994         /* Program the isrg regs only if number of grps > 1 */
995         if (priv->num_grps > 1) {
996                 baddr = &regs->isrg0;
997                 for (i = 0; i < priv->num_grps; i++) {
998                         isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
999                         isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1000                         gfar_write(baddr, isrg);
1001                         baddr++;
1002                         isrg = 0x0;
1003                 }
1004         }
1005
1006         /* Need to reverse the bit maps as  bit_map's MSB is q0
1007          * but, for_each_bit parses from right to left, which
1008          * basically reverses the queue numbers */
1009         for (i = 0; i< priv->num_grps; i++) {
1010                 priv->gfargrp[i].tx_bit_map = reverse_bitmap(
1011                                 priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1012                 priv->gfargrp[i].rx_bit_map = reverse_bitmap(
1013                                 priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1014         }
1015
1016         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1017          * also assign queues to groups */
1018         for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1019                 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1020                 for_each_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1021                                 priv->num_rx_queues) {
1022                         priv->gfargrp[grp_idx].num_rx_queues++;
1023                         priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1024                         rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1025                         rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1026                 }
1027                 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1028                 for_each_bit (i, &priv->gfargrp[grp_idx].tx_bit_map,
1029                                 priv->num_tx_queues) {
1030                         priv->gfargrp[grp_idx].num_tx_queues++;
1031                         priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1032                         tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1033                         tqueue = tqueue | (TQUEUE_EN0 >> i);
1034                 }
1035                 priv->gfargrp[grp_idx].rstat = rstat;
1036                 priv->gfargrp[grp_idx].tstat = tstat;
1037                 rstat = tstat =0;
1038         }
1039
1040         gfar_write(&regs->rqueue, rqueue);
1041         gfar_write(&regs->tqueue, tqueue);
1042
1043         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1044
1045         /* Initializing some of the rx/tx queue level parameters */
1046         for (i = 0; i < priv->num_tx_queues; i++) {
1047                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1048                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1049                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1050                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1051         }
1052
1053         for (i = 0; i < priv->num_rx_queues; i++) {
1054                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1055                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1056                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1057         }
1058
1059         /* enable filer if using multiple RX queues*/
1060         if(priv->num_rx_queues > 1)
1061                 priv->rx_filer_enable = 1;
1062         /* Enable most messages by default */
1063         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1064
1065         /* Carrier starts down, phylib will bring it up */
1066         netif_carrier_off(dev);
1067
1068         err = register_netdev(dev);
1069
1070         if (err) {
1071                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1072                                 dev->name);
1073                 goto register_fail;
1074         }
1075
1076         device_init_wakeup(&dev->dev,
1077                 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1078
1079         /* fill out IRQ number and name fields */
1080         len_devname = strlen(dev->name);
1081         for (i = 0; i < priv->num_grps; i++) {
1082                 strncpy(&priv->gfargrp[i].int_name_tx[0], dev->name,
1083                                 len_devname);
1084                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1085                         strncpy(&priv->gfargrp[i].int_name_tx[len_devname],
1086                                 "_g", sizeof("_g"));
1087                         priv->gfargrp[i].int_name_tx[
1088                                 strlen(priv->gfargrp[i].int_name_tx)] = i+48;
1089                         strncpy(&priv->gfargrp[i].int_name_tx[strlen(
1090                                 priv->gfargrp[i].int_name_tx)],
1091                                 "_tx", sizeof("_tx") + 1);
1092
1093                         strncpy(&priv->gfargrp[i].int_name_rx[0], dev->name,
1094                                         len_devname);
1095                         strncpy(&priv->gfargrp[i].int_name_rx[len_devname],
1096                                         "_g", sizeof("_g"));
1097                         priv->gfargrp[i].int_name_rx[
1098                                 strlen(priv->gfargrp[i].int_name_rx)] = i+48;
1099                         strncpy(&priv->gfargrp[i].int_name_rx[strlen(
1100                                 priv->gfargrp[i].int_name_rx)],
1101                                 "_rx", sizeof("_rx") + 1);
1102
1103                         strncpy(&priv->gfargrp[i].int_name_er[0], dev->name,
1104                                         len_devname);
1105                         strncpy(&priv->gfargrp[i].int_name_er[len_devname],
1106                                 "_g", sizeof("_g"));
1107                         priv->gfargrp[i].int_name_er[strlen(
1108                                         priv->gfargrp[i].int_name_er)] = i+48;
1109                         strncpy(&priv->gfargrp[i].int_name_er[strlen(\
1110                                 priv->gfargrp[i].int_name_er)],
1111                                 "_er", sizeof("_er") + 1);
1112                 } else
1113                         priv->gfargrp[i].int_name_tx[len_devname] = '\0';
1114         }
1115
1116         /* Initialize the filer table */
1117         gfar_init_filer_table(priv);
1118
1119         /* Create all the sysfs files */
1120         gfar_init_sysfs(dev);
1121
1122         /* Print out the device info */
1123         printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
1124
1125         /* Even more device info helps when determining which kernel */
1126         /* provided which set of benchmarks. */
1127         printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
1128         for (i = 0; i < priv->num_rx_queues; i++)
1129                 printk(KERN_INFO "%s: :RX BD ring size for Q[%d]: %d\n",
1130                         dev->name, i, priv->rx_queue[i]->rx_ring_size);
1131         for(i = 0; i < priv->num_tx_queues; i++)
1132                  printk(KERN_INFO "%s:TX BD ring size for Q[%d]: %d\n",
1133                         dev->name, i, priv->tx_queue[i]->tx_ring_size);
1134
1135         return 0;
1136
1137 register_fail:
1138         unmap_group_regs(priv);
1139         free_tx_pointers(priv);
1140         free_rx_pointers(priv);
1141         if (priv->phy_node)
1142                 of_node_put(priv->phy_node);
1143         if (priv->tbi_node)
1144                 of_node_put(priv->tbi_node);
1145         free_netdev(dev);
1146         return err;
1147 }
1148
1149 static int gfar_remove(struct of_device *ofdev)
1150 {
1151         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1152
1153         if (priv->phy_node)
1154                 of_node_put(priv->phy_node);
1155         if (priv->tbi_node)
1156                 of_node_put(priv->tbi_node);
1157
1158         dev_set_drvdata(&ofdev->dev, NULL);
1159
1160         unregister_netdev(priv->ndev);
1161         unmap_group_regs(priv);
1162         free_netdev(priv->ndev);
1163
1164         return 0;
1165 }
1166
1167 #ifdef CONFIG_PM
1168
1169 static int gfar_suspend(struct device *dev)
1170 {
1171         struct gfar_private *priv = dev_get_drvdata(dev);
1172         struct net_device *ndev = priv->ndev;
1173         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1174         unsigned long flags;
1175         u32 tempval;
1176
1177         int magic_packet = priv->wol_en &&
1178                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1179
1180         netif_device_detach(ndev);
1181
1182         if (netif_running(ndev)) {
1183
1184                 local_irq_save(flags);
1185                 lock_tx_qs(priv);
1186                 lock_rx_qs(priv);
1187
1188                 gfar_halt_nodisable(ndev);
1189
1190                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1191                 tempval = gfar_read(&regs->maccfg1);
1192
1193                 tempval &= ~MACCFG1_TX_EN;
1194
1195                 if (!magic_packet)
1196                         tempval &= ~MACCFG1_RX_EN;
1197
1198                 gfar_write(&regs->maccfg1, tempval);
1199
1200                 unlock_rx_qs(priv);
1201                 unlock_tx_qs(priv);
1202                 local_irq_restore(flags);
1203
1204                 disable_napi(priv);
1205
1206                 if (magic_packet) {
1207                         /* Enable interrupt on Magic Packet */
1208                         gfar_write(&regs->imask, IMASK_MAG);
1209
1210                         /* Enable Magic Packet mode */
1211                         tempval = gfar_read(&regs->maccfg2);
1212                         tempval |= MACCFG2_MPEN;
1213                         gfar_write(&regs->maccfg2, tempval);
1214                 } else {
1215                         phy_stop(priv->phydev);
1216                 }
1217         }
1218
1219         return 0;
1220 }
1221
1222 static int gfar_resume(struct device *dev)
1223 {
1224         struct gfar_private *priv = dev_get_drvdata(dev);
1225         struct net_device *ndev = priv->ndev;
1226         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1227         unsigned long flags;
1228         u32 tempval;
1229         int magic_packet = priv->wol_en &&
1230                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1231
1232         if (!netif_running(ndev)) {
1233                 netif_device_attach(ndev);
1234                 return 0;
1235         }
1236
1237         if (!magic_packet && priv->phydev)
1238                 phy_start(priv->phydev);
1239
1240         /* Disable Magic Packet mode, in case something
1241          * else woke us up.
1242          */
1243         local_irq_save(flags);
1244         lock_tx_qs(priv);
1245         lock_rx_qs(priv);
1246
1247         tempval = gfar_read(&regs->maccfg2);
1248         tempval &= ~MACCFG2_MPEN;
1249         gfar_write(&regs->maccfg2, tempval);
1250
1251         gfar_start(ndev);
1252
1253         unlock_rx_qs(priv);
1254         unlock_tx_qs(priv);
1255         local_irq_restore(flags);
1256
1257         netif_device_attach(ndev);
1258
1259         enable_napi(priv);
1260
1261         return 0;
1262 }
1263
1264 static int gfar_restore(struct device *dev)
1265 {
1266         struct gfar_private *priv = dev_get_drvdata(dev);
1267         struct net_device *ndev = priv->ndev;
1268
1269         if (!netif_running(ndev))
1270                 return 0;
1271
1272         gfar_init_bds(ndev);
1273         init_registers(ndev);
1274         gfar_set_mac_address(ndev);
1275         gfar_init_mac(ndev);
1276         gfar_start(ndev);
1277
1278         priv->oldlink = 0;
1279         priv->oldspeed = 0;
1280         priv->oldduplex = -1;
1281
1282         if (priv->phydev)
1283                 phy_start(priv->phydev);
1284
1285         netif_device_attach(ndev);
1286         enable_napi(priv);
1287
1288         return 0;
1289 }
1290
1291 static struct dev_pm_ops gfar_pm_ops = {
1292         .suspend = gfar_suspend,
1293         .resume = gfar_resume,
1294         .freeze = gfar_suspend,
1295         .thaw = gfar_resume,
1296         .restore = gfar_restore,
1297 };
1298
1299 #define GFAR_PM_OPS (&gfar_pm_ops)
1300
1301 static int gfar_legacy_suspend(struct of_device *ofdev, pm_message_t state)
1302 {
1303         return gfar_suspend(&ofdev->dev);
1304 }
1305
1306 static int gfar_legacy_resume(struct of_device *ofdev)
1307 {
1308         return gfar_resume(&ofdev->dev);
1309 }
1310
1311 #else
1312
1313 #define GFAR_PM_OPS NULL
1314 #define gfar_legacy_suspend NULL
1315 #define gfar_legacy_resume NULL
1316
1317 #endif
1318
1319 /* Reads the controller's registers to determine what interface
1320  * connects it to the PHY.
1321  */
1322 static phy_interface_t gfar_get_interface(struct net_device *dev)
1323 {
1324         struct gfar_private *priv = netdev_priv(dev);
1325         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1326         u32 ecntrl;
1327
1328         ecntrl = gfar_read(&regs->ecntrl);
1329
1330         if (ecntrl & ECNTRL_SGMII_MODE)
1331                 return PHY_INTERFACE_MODE_SGMII;
1332
1333         if (ecntrl & ECNTRL_TBI_MODE) {
1334                 if (ecntrl & ECNTRL_REDUCED_MODE)
1335                         return PHY_INTERFACE_MODE_RTBI;
1336                 else
1337                         return PHY_INTERFACE_MODE_TBI;
1338         }
1339
1340         if (ecntrl & ECNTRL_REDUCED_MODE) {
1341                 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
1342                         return PHY_INTERFACE_MODE_RMII;
1343                 else {
1344                         phy_interface_t interface = priv->interface;
1345
1346                         /*
1347                          * This isn't autodetected right now, so it must
1348                          * be set by the device tree or platform code.
1349                          */
1350                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1351                                 return PHY_INTERFACE_MODE_RGMII_ID;
1352
1353                         return PHY_INTERFACE_MODE_RGMII;
1354                 }
1355         }
1356
1357         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1358                 return PHY_INTERFACE_MODE_GMII;
1359
1360         return PHY_INTERFACE_MODE_MII;
1361 }
1362
1363
1364 /* Initializes driver's PHY state, and attaches to the PHY.
1365  * Returns 0 on success.
1366  */
1367 static int init_phy(struct net_device *dev)
1368 {
1369         struct gfar_private *priv = netdev_priv(dev);
1370         uint gigabit_support =
1371                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1372                 SUPPORTED_1000baseT_Full : 0;
1373         phy_interface_t interface;
1374
1375         priv->oldlink = 0;
1376         priv->oldspeed = 0;
1377         priv->oldduplex = -1;
1378
1379         interface = gfar_get_interface(dev);
1380
1381         priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1382                                       interface);
1383         if (!priv->phydev)
1384                 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1385                                                          interface);
1386         if (!priv->phydev) {
1387                 dev_err(&dev->dev, "could not attach to PHY\n");
1388                 return -ENODEV;
1389         }
1390
1391         if (interface == PHY_INTERFACE_MODE_SGMII)
1392                 gfar_configure_serdes(dev);
1393
1394         /* Remove any features not supported by the controller */
1395         priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1396         priv->phydev->advertising = priv->phydev->supported;
1397
1398         return 0;
1399 }
1400
1401 /*
1402  * Initialize TBI PHY interface for communicating with the
1403  * SERDES lynx PHY on the chip.  We communicate with this PHY
1404  * through the MDIO bus on each controller, treating it as a
1405  * "normal" PHY at the address found in the TBIPA register.  We assume
1406  * that the TBIPA register is valid.  Either the MDIO bus code will set
1407  * it to a value that doesn't conflict with other PHYs on the bus, or the
1408  * value doesn't matter, as there are no other PHYs on the bus.
1409  */
1410 static void gfar_configure_serdes(struct net_device *dev)
1411 {
1412         struct gfar_private *priv = netdev_priv(dev);
1413         struct phy_device *tbiphy;
1414
1415         if (!priv->tbi_node) {
1416                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1417                                     "device tree specify a tbi-handle\n");
1418                 return;
1419         }
1420
1421         tbiphy = of_phy_find_device(priv->tbi_node);
1422         if (!tbiphy) {
1423                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1424                 return;
1425         }
1426
1427         /*
1428          * If the link is already up, we must already be ok, and don't need to
1429          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1430          * everything for us?  Resetting it takes the link down and requires
1431          * several seconds for it to come back.
1432          */
1433         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1434                 return;
1435
1436         /* Single clk mode, mii mode off(for serdes communication) */
1437         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1438
1439         phy_write(tbiphy, MII_ADVERTISE,
1440                         ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1441                         ADVERTISE_1000XPSE_ASYM);
1442
1443         phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
1444                         BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
1445 }
1446
1447 static void init_registers(struct net_device *dev)
1448 {
1449         struct gfar_private *priv = netdev_priv(dev);
1450         struct gfar __iomem *regs = NULL;
1451         int i = 0;
1452
1453         for (i = 0; i < priv->num_grps; i++) {
1454                 regs = priv->gfargrp[i].regs;
1455                 /* Clear IEVENT */
1456                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1457
1458                 /* Initialize IMASK */
1459                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1460         }
1461
1462         regs = priv->gfargrp[0].regs;
1463         /* Init hash registers to zero */
1464         gfar_write(&regs->igaddr0, 0);
1465         gfar_write(&regs->igaddr1, 0);
1466         gfar_write(&regs->igaddr2, 0);
1467         gfar_write(&regs->igaddr3, 0);
1468         gfar_write(&regs->igaddr4, 0);
1469         gfar_write(&regs->igaddr5, 0);
1470         gfar_write(&regs->igaddr6, 0);
1471         gfar_write(&regs->igaddr7, 0);
1472
1473         gfar_write(&regs->gaddr0, 0);
1474         gfar_write(&regs->gaddr1, 0);
1475         gfar_write(&regs->gaddr2, 0);
1476         gfar_write(&regs->gaddr3, 0);
1477         gfar_write(&regs->gaddr4, 0);
1478         gfar_write(&regs->gaddr5, 0);
1479         gfar_write(&regs->gaddr6, 0);
1480         gfar_write(&regs->gaddr7, 0);
1481
1482         /* Zero out the rmon mib registers if it has them */
1483         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1484                 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1485
1486                 /* Mask off the CAM interrupts */
1487                 gfar_write(&regs->rmon.cam1, 0xffffffff);
1488                 gfar_write(&regs->rmon.cam2, 0xffffffff);
1489         }
1490
1491         /* Initialize the max receive buffer length */
1492         gfar_write(&regs->mrblr, priv->rx_buffer_size);
1493
1494         /* Initialize the Minimum Frame Length Register */
1495         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1496 }
1497
1498
1499 /* Halt the receive and transmit queues */
1500 static void gfar_halt_nodisable(struct net_device *dev)
1501 {
1502         struct gfar_private *priv = netdev_priv(dev);
1503         struct gfar __iomem *regs = NULL;
1504         u32 tempval;
1505         int i = 0;
1506
1507         for (i = 0; i < priv->num_grps; i++) {
1508                 regs = priv->gfargrp[i].regs;
1509                 /* Mask all interrupts */
1510                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1511
1512                 /* Clear all interrupts */
1513                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1514         }
1515
1516         regs = priv->gfargrp[0].regs;
1517         /* Stop the DMA, and wait for it to stop */
1518         tempval = gfar_read(&regs->dmactrl);
1519         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
1520             != (DMACTRL_GRS | DMACTRL_GTS)) {
1521                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1522                 gfar_write(&regs->dmactrl, tempval);
1523
1524                 while (!(gfar_read(&regs->ievent) &
1525                          (IEVENT_GRSC | IEVENT_GTSC)))
1526                         cpu_relax();
1527         }
1528 }
1529
1530 /* Halt the receive and transmit queues */
1531 void gfar_halt(struct net_device *dev)
1532 {
1533         struct gfar_private *priv = netdev_priv(dev);
1534         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1535         u32 tempval;
1536
1537         gfar_halt_nodisable(dev);
1538
1539         /* Disable Rx and Tx */
1540         tempval = gfar_read(&regs->maccfg1);
1541         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1542         gfar_write(&regs->maccfg1, tempval);
1543 }
1544
1545 static void free_grp_irqs(struct gfar_priv_grp *grp)
1546 {
1547         free_irq(grp->interruptError, grp);
1548         free_irq(grp->interruptTransmit, grp);
1549         free_irq(grp->interruptReceive, grp);
1550 }
1551
1552 void stop_gfar(struct net_device *dev)
1553 {
1554         struct gfar_private *priv = netdev_priv(dev);
1555         unsigned long flags;
1556         int i;
1557
1558         phy_stop(priv->phydev);
1559
1560
1561         /* Lock it down */
1562         local_irq_save(flags);
1563         lock_tx_qs(priv);
1564         lock_rx_qs(priv);
1565
1566         gfar_halt(dev);
1567
1568         unlock_rx_qs(priv);
1569         unlock_tx_qs(priv);
1570         local_irq_restore(flags);
1571
1572         /* Free the IRQs */
1573         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1574                 for (i = 0; i < priv->num_grps; i++)
1575                         free_grp_irqs(&priv->gfargrp[i]);
1576         } else {
1577                 for (i = 0; i < priv->num_grps; i++)
1578                         free_irq(priv->gfargrp[i].interruptTransmit,
1579                                         &priv->gfargrp[i]);
1580         }
1581
1582         free_skb_resources(priv);
1583 }
1584
1585 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1586 {
1587         struct txbd8 *txbdp;
1588         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1589         int i, j;
1590
1591         txbdp = tx_queue->tx_bd_base;
1592
1593         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1594                 if (!tx_queue->tx_skbuff[i])
1595                         continue;
1596
1597                 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1598                                 txbdp->length, DMA_TO_DEVICE);
1599                 txbdp->lstatus = 0;
1600                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1601                                 j++) {
1602                         txbdp++;
1603                         dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1604                                         txbdp->length, DMA_TO_DEVICE);
1605                 }
1606                 txbdp++;
1607                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1608                 tx_queue->tx_skbuff[i] = NULL;
1609         }
1610         kfree(tx_queue->tx_skbuff);
1611 }
1612
1613 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1614 {
1615         struct rxbd8 *rxbdp;
1616         struct gfar_private *priv = netdev_priv(rx_queue->dev);
1617         int i;
1618
1619         rxbdp = rx_queue->rx_bd_base;
1620
1621         for (i = 0; i < rx_queue->rx_ring_size; i++) {
1622                 if (rx_queue->rx_skbuff[i]) {
1623                         dma_unmap_single(&priv->ofdev->dev,
1624                                         rxbdp->bufPtr, priv->rx_buffer_size,
1625                                         DMA_FROM_DEVICE);
1626                         dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1627                         rx_queue->rx_skbuff[i] = NULL;
1628                 }
1629                 rxbdp->lstatus = 0;
1630                 rxbdp->bufPtr = 0;
1631                 rxbdp++;
1632         }
1633         kfree(rx_queue->rx_skbuff);
1634 }
1635
1636 /* If there are any tx skbs or rx skbs still around, free them.
1637  * Then free tx_skbuff and rx_skbuff */
1638 static void free_skb_resources(struct gfar_private *priv)
1639 {
1640         struct gfar_priv_tx_q *tx_queue = NULL;
1641         struct gfar_priv_rx_q *rx_queue = NULL;
1642         int i;
1643
1644         /* Go through all the buffer descriptors and free their data buffers */
1645         for (i = 0; i < priv->num_tx_queues; i++) {
1646                 tx_queue = priv->tx_queue[i];
1647                 if(!tx_queue->tx_skbuff)
1648                         free_skb_tx_queue(tx_queue);
1649         }
1650
1651         for (i = 0; i < priv->num_rx_queues; i++) {
1652                 rx_queue = priv->rx_queue[i];
1653                 if(!rx_queue->rx_skbuff)
1654                         free_skb_rx_queue(rx_queue);
1655         }
1656
1657         dma_free_coherent(&priv->ofdev->dev,
1658                         sizeof(struct txbd8) * priv->total_tx_ring_size +
1659                         sizeof(struct rxbd8) * priv->total_rx_ring_size,
1660                         priv->tx_queue[0]->tx_bd_base,
1661                         priv->tx_queue[0]->tx_bd_dma_base);
1662 }
1663
1664 void gfar_start(struct net_device *dev)
1665 {
1666         struct gfar_private *priv = netdev_priv(dev);
1667         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1668         u32 tempval;
1669         int i = 0;
1670
1671         /* Enable Rx and Tx in MACCFG1 */
1672         tempval = gfar_read(&regs->maccfg1);
1673         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1674         gfar_write(&regs->maccfg1, tempval);
1675
1676         /* Initialize DMACTRL to have WWR and WOP */
1677         tempval = gfar_read(&regs->dmactrl);
1678         tempval |= DMACTRL_INIT_SETTINGS;
1679         gfar_write(&regs->dmactrl, tempval);
1680
1681         /* Make sure we aren't stopped */
1682         tempval = gfar_read(&regs->dmactrl);
1683         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1684         gfar_write(&regs->dmactrl, tempval);
1685
1686         for (i = 0; i < priv->num_grps; i++) {
1687                 regs = priv->gfargrp[i].regs;
1688                 /* Clear THLT/RHLT, so that the DMA starts polling now */
1689                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1690                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1691                 /* Unmask the interrupts we look for */
1692                 gfar_write(&regs->imask, IMASK_DEFAULT);
1693         }
1694
1695         dev->trans_start = jiffies;
1696 }
1697
1698 void gfar_configure_coalescing(struct gfar_private *priv,
1699         unsigned long tx_mask, unsigned long rx_mask)
1700 {
1701         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1702         u32 __iomem *baddr;
1703         int i = 0;
1704
1705         /* Backward compatible case ---- even if we enable
1706          * multiple queues, there's only single reg to program
1707          */
1708         gfar_write(&regs->txic, 0);
1709         if(likely(priv->tx_queue[0]->txcoalescing))
1710                 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1711
1712         gfar_write(&regs->rxic, 0);
1713         if(unlikely(priv->rx_queue[0]->rxcoalescing))
1714                 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1715
1716         if (priv->mode == MQ_MG_MODE) {
1717                 baddr = &regs->txic0;
1718                 for_each_bit (i, &tx_mask, priv->num_tx_queues) {
1719                         if (likely(priv->tx_queue[i]->txcoalescing)) {
1720                                 gfar_write(baddr + i, 0);
1721                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1722                         }
1723                 }
1724
1725                 baddr = &regs->rxic0;
1726                 for_each_bit (i, &rx_mask, priv->num_rx_queues) {
1727                         if (likely(priv->rx_queue[i]->rxcoalescing)) {
1728                                 gfar_write(baddr + i, 0);
1729                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1730                         }
1731                 }
1732         }
1733 }
1734
1735 static int register_grp_irqs(struct gfar_priv_grp *grp)
1736 {
1737         struct gfar_private *priv = grp->priv;
1738         struct net_device *dev = priv->ndev;
1739         int err;
1740
1741         /* If the device has multiple interrupts, register for
1742          * them.  Otherwise, only register for the one */
1743         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1744                 /* Install our interrupt handlers for Error,
1745                  * Transmit, and Receive */
1746                 if ((err = request_irq(grp->interruptError, gfar_error, 0,
1747                                 grp->int_name_er,grp)) < 0) {
1748                         if (netif_msg_intr(priv))
1749                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1750                                         dev->name, grp->interruptError);
1751
1752                                 goto err_irq_fail;
1753                 }
1754
1755                 if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1756                                 0, grp->int_name_tx, grp)) < 0) {
1757                         if (netif_msg_intr(priv))
1758                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1759                                         dev->name, grp->interruptTransmit);
1760                         goto tx_irq_fail;
1761                 }
1762
1763                 if ((err = request_irq(grp->interruptReceive, gfar_receive, 0,
1764                                 grp->int_name_rx, grp)) < 0) {
1765                         if (netif_msg_intr(priv))
1766                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1767                                         dev->name, grp->interruptReceive);
1768                         goto rx_irq_fail;
1769                 }
1770         } else {
1771                 if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0,
1772                                 grp->int_name_tx, grp)) < 0) {
1773                         if (netif_msg_intr(priv))
1774                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1775                                         dev->name, grp->interruptTransmit);
1776                         goto err_irq_fail;
1777                 }
1778         }
1779
1780         return 0;
1781
1782 rx_irq_fail:
1783         free_irq(grp->interruptTransmit, grp);
1784 tx_irq_fail:
1785         free_irq(grp->interruptError, grp);
1786 err_irq_fail:
1787         return err;
1788
1789 }
1790
1791 /* Bring the controller up and running */
1792 int startup_gfar(struct net_device *ndev)
1793 {
1794         struct gfar_private *priv = netdev_priv(ndev);
1795         struct gfar __iomem *regs = NULL;
1796         int err, i, j;
1797
1798         for (i = 0; i < priv->num_grps; i++) {
1799                 regs= priv->gfargrp[i].regs;
1800                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1801         }
1802
1803         regs= priv->gfargrp[0].regs;
1804         err = gfar_alloc_skb_resources(ndev);
1805         if (err)
1806                 return err;
1807
1808         gfar_init_mac(ndev);
1809
1810         for (i = 0; i < priv->num_grps; i++) {
1811                 err = register_grp_irqs(&priv->gfargrp[i]);
1812                 if (err) {
1813                         for (j = 0; j < i; j++)
1814                                 free_grp_irqs(&priv->gfargrp[j]);
1815                                 goto irq_fail;
1816                 }
1817         }
1818
1819         /* Start the controller */
1820         gfar_start(ndev);
1821
1822         phy_start(priv->phydev);
1823
1824         gfar_configure_coalescing(priv, 0xFF, 0xFF);
1825
1826         return 0;
1827
1828 irq_fail:
1829         free_skb_resources(priv);
1830         return err;
1831 }
1832
1833 /* Called when something needs to use the ethernet device */
1834 /* Returns 0 for success. */
1835 static int gfar_enet_open(struct net_device *dev)
1836 {
1837         struct gfar_private *priv = netdev_priv(dev);
1838         int err;
1839
1840         enable_napi(priv);
1841
1842         skb_queue_head_init(&priv->rx_recycle);
1843
1844         /* Initialize a bunch of registers */
1845         init_registers(dev);
1846
1847         gfar_set_mac_address(dev);
1848
1849         err = init_phy(dev);
1850
1851         if (err) {
1852                 disable_napi(priv);
1853                 return err;
1854         }
1855
1856         err = startup_gfar(dev);
1857         if (err) {
1858                 disable_napi(priv);
1859                 return err;
1860         }
1861
1862         netif_tx_start_all_queues(dev);
1863
1864         device_set_wakeup_enable(&dev->dev, priv->wol_en);
1865
1866         return err;
1867 }
1868
1869 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1870 {
1871         struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1872
1873         memset(fcb, 0, GMAC_FCB_LEN);
1874
1875         return fcb;
1876 }
1877
1878 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1879 {
1880         u8 flags = 0;
1881
1882         /* If we're here, it's a IP packet with a TCP or UDP
1883          * payload.  We set it to checksum, using a pseudo-header
1884          * we provide
1885          */
1886         flags = TXFCB_DEFAULT;
1887
1888         /* Tell the controller what the protocol is */
1889         /* And provide the already calculated phcs */
1890         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1891                 flags |= TXFCB_UDP;
1892                 fcb->phcs = udp_hdr(skb)->check;
1893         } else
1894                 fcb->phcs = tcp_hdr(skb)->check;
1895
1896         /* l3os is the distance between the start of the
1897          * frame (skb->data) and the start of the IP hdr.
1898          * l4os is the distance between the start of the
1899          * l3 hdr and the l4 hdr */
1900         fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1901         fcb->l4os = skb_network_header_len(skb);
1902
1903         fcb->flags = flags;
1904 }
1905
1906 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1907 {
1908         fcb->flags |= TXFCB_VLN;
1909         fcb->vlctl = vlan_tx_tag_get(skb);
1910 }
1911
1912 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1913                                struct txbd8 *base, int ring_size)
1914 {
1915         struct txbd8 *new_bd = bdp + stride;
1916
1917         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1918 }
1919
1920 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1921                 int ring_size)
1922 {
1923         return skip_txbd(bdp, 1, base, ring_size);
1924 }
1925
1926 /* This is called by the kernel when a frame is ready for transmission. */
1927 /* It is pointed to by the dev->hard_start_xmit function pointer */
1928 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1929 {
1930         struct gfar_private *priv = netdev_priv(dev);
1931         struct gfar_priv_tx_q *tx_queue = NULL;
1932         struct netdev_queue *txq;
1933         struct gfar __iomem *regs = NULL;
1934         struct txfcb *fcb = NULL;
1935         struct txbd8 *txbdp, *txbdp_start, *base;
1936         u32 lstatus;
1937         int i, rq = 0;
1938         u32 bufaddr;
1939         unsigned long flags;
1940         unsigned int nr_frags, length;
1941
1942
1943         rq = skb->queue_mapping;
1944         tx_queue = priv->tx_queue[rq];
1945         txq = netdev_get_tx_queue(dev, rq);
1946         base = tx_queue->tx_bd_base;
1947         regs = tx_queue->grp->regs;
1948
1949         /* make space for additional header when fcb is needed */
1950         if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
1951                         (priv->vlgrp && vlan_tx_tag_present(skb))) &&
1952                         (skb_headroom(skb) < GMAC_FCB_LEN)) {
1953                 struct sk_buff *skb_new;
1954
1955                 skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
1956                 if (!skb_new) {
1957                         dev->stats.tx_errors++;
1958                         kfree_skb(skb);
1959                         return NETDEV_TX_OK;
1960                 }
1961                 kfree_skb(skb);
1962                 skb = skb_new;
1963         }
1964
1965         /* total number of fragments in the SKB */
1966         nr_frags = skb_shinfo(skb)->nr_frags;
1967
1968         /* check if there is space to queue this packet */
1969         if ((nr_frags+1) > tx_queue->num_txbdfree) {
1970                 /* no space, stop the queue */
1971                 netif_tx_stop_queue(txq);
1972                 dev->stats.tx_fifo_errors++;
1973                 return NETDEV_TX_BUSY;
1974         }
1975
1976         /* Update transmit stats */
1977         txq->tx_bytes += skb->len;
1978         txq->tx_packets ++;
1979
1980         txbdp = txbdp_start = tx_queue->cur_tx;
1981
1982         if (nr_frags == 0) {
1983                 lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1984         } else {
1985                 /* Place the fragment addresses and lengths into the TxBDs */
1986                 for (i = 0; i < nr_frags; i++) {
1987                         /* Point at the next BD, wrapping as needed */
1988                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1989
1990                         length = skb_shinfo(skb)->frags[i].size;
1991
1992                         lstatus = txbdp->lstatus | length |
1993                                 BD_LFLAG(TXBD_READY);
1994
1995                         /* Handle the last BD specially */
1996                         if (i == nr_frags - 1)
1997                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1998
1999                         bufaddr = dma_map_page(&priv->ofdev->dev,
2000                                         skb_shinfo(skb)->frags[i].page,
2001                                         skb_shinfo(skb)->frags[i].page_offset,
2002                                         length,
2003                                         DMA_TO_DEVICE);
2004
2005                         /* set the TxBD length and buffer pointer */
2006                         txbdp->bufPtr = bufaddr;
2007                         txbdp->lstatus = lstatus;
2008                 }
2009
2010                 lstatus = txbdp_start->lstatus;
2011         }
2012
2013         /* Set up checksumming */
2014         if (CHECKSUM_PARTIAL == skb->ip_summed) {
2015                 fcb = gfar_add_fcb(skb);
2016                 lstatus |= BD_LFLAG(TXBD_TOE);
2017                 gfar_tx_checksum(skb, fcb);
2018         }
2019
2020         if (priv->vlgrp && vlan_tx_tag_present(skb)) {
2021                 if (unlikely(NULL == fcb)) {
2022                         fcb = gfar_add_fcb(skb);
2023                         lstatus |= BD_LFLAG(TXBD_TOE);
2024                 }
2025
2026                 gfar_tx_vlan(skb, fcb);
2027         }
2028
2029         /* setup the TxBD length and buffer pointer for the first BD */
2030         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2031         txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2032                         skb_headlen(skb), DMA_TO_DEVICE);
2033
2034         lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2035
2036         /*
2037          * We can work in parallel with gfar_clean_tx_ring(), except
2038          * when modifying num_txbdfree. Note that we didn't grab the lock
2039          * when we were reading the num_txbdfree and checking for available
2040          * space, that's because outside of this function it can only grow,
2041          * and once we've got needed space, it cannot suddenly disappear.
2042          *
2043          * The lock also protects us from gfar_error(), which can modify
2044          * regs->tstat and thus retrigger the transfers, which is why we
2045          * also must grab the lock before setting ready bit for the first
2046          * to be transmitted BD.
2047          */
2048         spin_lock_irqsave(&tx_queue->txlock, flags);
2049
2050         /*
2051          * The powerpc-specific eieio() is used, as wmb() has too strong
2052          * semantics (it requires synchronization between cacheable and
2053          * uncacheable mappings, which eieio doesn't provide and which we
2054          * don't need), thus requiring a more expensive sync instruction.  At
2055          * some point, the set of architecture-independent barrier functions
2056          * should be expanded to include weaker barriers.
2057          */
2058         eieio();
2059
2060         txbdp_start->lstatus = lstatus;
2061
2062         /* Update the current skb pointer to the next entry we will use
2063          * (wrapping if necessary) */
2064         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2065                 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2066
2067         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2068
2069         /* reduce TxBD free count */
2070         tx_queue->num_txbdfree -= (nr_frags + 1);
2071
2072         dev->trans_start = jiffies;
2073
2074         /* If the next BD still needs to be cleaned up, then the bds
2075            are full.  We need to tell the kernel to stop sending us stuff. */
2076         if (!tx_queue->num_txbdfree) {
2077                 netif_tx_stop_queue(txq);
2078
2079                 dev->stats.tx_fifo_errors++;
2080         }
2081
2082         /* Tell the DMA to go go go */
2083         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2084
2085         /* Unlock priv */
2086         spin_unlock_irqrestore(&tx_queue->txlock, flags);
2087
2088         return NETDEV_TX_OK;
2089 }
2090
2091 /* Stops the kernel queue, and halts the controller */
2092 static int gfar_close(struct net_device *dev)
2093 {
2094         struct gfar_private *priv = netdev_priv(dev);
2095
2096         disable_napi(priv);
2097
2098         skb_queue_purge(&priv->rx_recycle);
2099         cancel_work_sync(&priv->reset_task);
2100         stop_gfar(dev);
2101
2102         /* Disconnect from the PHY */
2103         phy_disconnect(priv->phydev);
2104         priv->phydev = NULL;
2105
2106         netif_tx_stop_all_queues(dev);
2107
2108         return 0;
2109 }
2110
2111 /* Changes the mac address if the controller is not running. */
2112 static int gfar_set_mac_address(struct net_device *dev)
2113 {
2114         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2115
2116         return 0;
2117 }
2118
2119
2120 /* Enables and disables VLAN insertion/extraction */
2121 static void gfar_vlan_rx_register(struct net_device *dev,
2122                 struct vlan_group *grp)
2123 {
2124         struct gfar_private *priv = netdev_priv(dev);
2125         struct gfar __iomem *regs = NULL;
2126         unsigned long flags;
2127         u32 tempval;
2128
2129         regs = priv->gfargrp[0].regs;
2130         local_irq_save(flags);
2131         lock_rx_qs(priv);
2132
2133         priv->vlgrp = grp;
2134
2135         if (grp) {
2136                 /* Enable VLAN tag insertion */
2137                 tempval = gfar_read(&regs->tctrl);
2138                 tempval |= TCTRL_VLINS;
2139
2140                 gfar_write(&regs->tctrl, tempval);
2141
2142                 /* Enable VLAN tag extraction */
2143                 tempval = gfar_read(&regs->rctrl);
2144                 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2145                 gfar_write(&regs->rctrl, tempval);
2146         } else {
2147                 /* Disable VLAN tag insertion */
2148                 tempval = gfar_read(&regs->tctrl);
2149                 tempval &= ~TCTRL_VLINS;
2150                 gfar_write(&regs->tctrl, tempval);
2151
2152                 /* Disable VLAN tag extraction */
2153                 tempval = gfar_read(&regs->rctrl);
2154                 tempval &= ~RCTRL_VLEX;
2155                 /* If parse is no longer required, then disable parser */
2156                 if (tempval & RCTRL_REQ_PARSER)
2157                         tempval |= RCTRL_PRSDEP_INIT;
2158                 else
2159                         tempval &= ~RCTRL_PRSDEP_INIT;
2160                 gfar_write(&regs->rctrl, tempval);
2161         }
2162
2163         gfar_change_mtu(dev, dev->mtu);
2164
2165         unlock_rx_qs(priv);
2166         local_irq_restore(flags);
2167 }
2168
2169 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2170 {
2171         int tempsize, tempval;
2172         struct gfar_private *priv = netdev_priv(dev);
2173         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2174         int oldsize = priv->rx_buffer_size;
2175         int frame_size = new_mtu + ETH_HLEN;
2176
2177         if (priv->vlgrp)
2178                 frame_size += VLAN_HLEN;
2179
2180         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2181                 if (netif_msg_drv(priv))
2182                         printk(KERN_ERR "%s: Invalid MTU setting\n",
2183                                         dev->name);
2184                 return -EINVAL;
2185         }
2186
2187         if (gfar_uses_fcb(priv))
2188                 frame_size += GMAC_FCB_LEN;
2189
2190         frame_size += priv->padding;
2191
2192         tempsize =
2193             (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2194             INCREMENTAL_BUFFER_SIZE;
2195
2196         /* Only stop and start the controller if it isn't already
2197          * stopped, and we changed something */
2198         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2199                 stop_gfar(dev);
2200
2201         priv->rx_buffer_size = tempsize;
2202
2203         dev->mtu = new_mtu;
2204
2205         gfar_write(&regs->mrblr, priv->rx_buffer_size);
2206         gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2207
2208         /* If the mtu is larger than the max size for standard
2209          * ethernet frames (ie, a jumbo frame), then set maccfg2
2210          * to allow huge frames, and to check the length */
2211         tempval = gfar_read(&regs->maccfg2);
2212
2213         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
2214                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2215         else
2216                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2217
2218         gfar_write(&regs->maccfg2, tempval);
2219
2220         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2221                 startup_gfar(dev);
2222
2223         return 0;
2224 }
2225
2226 /* gfar_reset_task gets scheduled when a packet has not been
2227  * transmitted after a set amount of time.
2228  * For now, assume that clearing out all the structures, and
2229  * starting over will fix the problem.
2230  */
2231 static void gfar_reset_task(struct work_struct *work)
2232 {
2233         struct gfar_private *priv = container_of(work, struct gfar_private,
2234                         reset_task);
2235         struct net_device *dev = priv->ndev;
2236
2237         if (dev->flags & IFF_UP) {
2238                 netif_tx_stop_all_queues(dev);
2239                 stop_gfar(dev);
2240                 startup_gfar(dev);
2241                 netif_tx_start_all_queues(dev);
2242         }
2243
2244         netif_tx_schedule_all(dev);
2245 }
2246
2247 static void gfar_timeout(struct net_device *dev)
2248 {
2249         struct gfar_private *priv = netdev_priv(dev);
2250
2251         dev->stats.tx_errors++;
2252         schedule_work(&priv->reset_task);
2253 }
2254
2255 /* Interrupt Handler for Transmit complete */
2256 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2257 {
2258         struct net_device *dev = tx_queue->dev;
2259         struct gfar_private *priv = netdev_priv(dev);
2260         struct gfar_priv_rx_q *rx_queue = NULL;
2261         struct txbd8 *bdp;
2262         struct txbd8 *lbdp = NULL;
2263         struct txbd8 *base = tx_queue->tx_bd_base;
2264         struct sk_buff *skb;
2265         int skb_dirtytx;
2266         int tx_ring_size = tx_queue->tx_ring_size;
2267         int frags = 0;
2268         int i;
2269         int howmany = 0;
2270         u32 lstatus;
2271
2272         rx_queue = priv->rx_queue[tx_queue->qindex];
2273         bdp = tx_queue->dirty_tx;
2274         skb_dirtytx = tx_queue->skb_dirtytx;
2275
2276         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2277                 unsigned long flags;
2278
2279                 frags = skb_shinfo(skb)->nr_frags;
2280                 lbdp = skip_txbd(bdp, frags, base, tx_ring_size);
2281
2282                 lstatus = lbdp->lstatus;
2283
2284                 /* Only clean completed frames */
2285                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2286                                 (lstatus & BD_LENGTH_MASK))
2287                         break;
2288
2289                 dma_unmap_single(&priv->ofdev->dev,
2290                                 bdp->bufPtr,
2291                                 bdp->length,
2292                                 DMA_TO_DEVICE);
2293
2294                 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2295                 bdp = next_txbd(bdp, base, tx_ring_size);
2296
2297                 for (i = 0; i < frags; i++) {
2298                         dma_unmap_page(&priv->ofdev->dev,
2299                                         bdp->bufPtr,
2300                                         bdp->length,
2301                                         DMA_TO_DEVICE);
2302                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2303                         bdp = next_txbd(bdp, base, tx_ring_size);
2304                 }
2305
2306                 /*
2307                  * If there's room in the queue (limit it to rx_buffer_size)
2308                  * we add this skb back into the pool, if it's the right size
2309                  */
2310                 if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
2311                                 skb_recycle_check(skb, priv->rx_buffer_size +
2312                                         RXBUF_ALIGNMENT))
2313                         __skb_queue_head(&priv->rx_recycle, skb);
2314                 else
2315                         dev_kfree_skb_any(skb);
2316
2317                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2318
2319                 skb_dirtytx = (skb_dirtytx + 1) &
2320                         TX_RING_MOD_MASK(tx_ring_size);
2321
2322                 howmany++;
2323                 spin_lock_irqsave(&tx_queue->txlock, flags);
2324                 tx_queue->num_txbdfree += frags + 1;
2325                 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2326         }
2327
2328         /* If we freed a buffer, we can restart transmission, if necessary */
2329         if (__netif_subqueue_stopped(dev, tx_queue->qindex) && tx_queue->num_txbdfree)
2330                 netif_wake_subqueue(dev, tx_queue->qindex);
2331
2332         /* Update dirty indicators */
2333         tx_queue->skb_dirtytx = skb_dirtytx;
2334         tx_queue->dirty_tx = bdp;
2335
2336         return howmany;
2337 }
2338
2339 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2340 {
2341         unsigned long flags;
2342
2343         spin_lock_irqsave(&gfargrp->grplock, flags);
2344         if (napi_schedule_prep(&gfargrp->napi)) {
2345                 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2346                 __napi_schedule(&gfargrp->napi);
2347         } else {
2348                 /*
2349                  * Clear IEVENT, so interrupts aren't called again
2350                  * because of the packets that have already arrived.
2351                  */
2352                 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2353         }
2354         spin_unlock_irqrestore(&gfargrp->grplock, flags);
2355
2356 }
2357
2358 /* Interrupt Handler for Transmit complete */
2359 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2360 {
2361         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2362         return IRQ_HANDLED;
2363 }
2364
2365 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2366                 struct sk_buff *skb)
2367 {
2368         struct net_device *dev = rx_queue->dev;
2369         struct gfar_private *priv = netdev_priv(dev);
2370         dma_addr_t buf;
2371
2372         buf = dma_map_single(&priv->ofdev->dev, skb->data,
2373                              priv->rx_buffer_size, DMA_FROM_DEVICE);
2374         gfar_init_rxbdp(rx_queue, bdp, buf);
2375 }
2376
2377
2378 struct sk_buff * gfar_new_skb(struct net_device *dev)
2379 {
2380         unsigned int alignamount;
2381         struct gfar_private *priv = netdev_priv(dev);
2382         struct sk_buff *skb = NULL;
2383
2384         skb = __skb_dequeue(&priv->rx_recycle);
2385         if (!skb)
2386                 skb = netdev_alloc_skb(dev,
2387                                 priv->rx_buffer_size + RXBUF_ALIGNMENT);
2388
2389         if (!skb)
2390                 return NULL;
2391
2392         alignamount = RXBUF_ALIGNMENT -
2393                 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
2394
2395         /* We need the data buffer to be aligned properly.  We will reserve
2396          * as many bytes as needed to align the data properly
2397          */
2398         skb_reserve(skb, alignamount);
2399
2400         return skb;
2401 }
2402
2403 static inline void count_errors(unsigned short status, struct net_device *dev)
2404 {
2405         struct gfar_private *priv = netdev_priv(dev);
2406         struct net_device_stats *stats = &dev->stats;
2407         struct gfar_extra_stats *estats = &priv->extra_stats;
2408
2409         /* If the packet was truncated, none of the other errors
2410          * matter */
2411         if (status & RXBD_TRUNCATED) {
2412                 stats->rx_length_errors++;
2413
2414                 estats->rx_trunc++;
2415
2416                 return;
2417         }
2418         /* Count the errors, if there were any */
2419         if (status & (RXBD_LARGE | RXBD_SHORT)) {
2420                 stats->rx_length_errors++;
2421
2422                 if (status & RXBD_LARGE)
2423                         estats->rx_large++;
2424                 else
2425                         estats->rx_short++;
2426         }
2427         if (status & RXBD_NONOCTET) {
2428                 stats->rx_frame_errors++;
2429                 estats->rx_nonoctet++;
2430         }
2431         if (status & RXBD_CRCERR) {
2432                 estats->rx_crcerr++;
2433                 stats->rx_crc_errors++;
2434         }
2435         if (status & RXBD_OVERRUN) {
2436                 estats->rx_overrun++;
2437                 stats->rx_crc_errors++;
2438         }
2439 }
2440
2441 irqreturn_t gfar_receive(int irq, void *grp_id)
2442 {
2443         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2444         return IRQ_HANDLED;
2445 }
2446
2447 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2448 {
2449         /* If valid headers were found, and valid sums
2450          * were verified, then we tell the kernel that no
2451          * checksumming is necessary.  Otherwise, it is */
2452         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2453                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2454         else
2455                 skb->ip_summed = CHECKSUM_NONE;
2456 }
2457
2458
2459 /* gfar_process_frame() -- handle one incoming packet if skb
2460  * isn't NULL.  */
2461 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2462                               int amount_pull)
2463 {
2464         struct gfar_private *priv = netdev_priv(dev);
2465         struct rxfcb *fcb = NULL;
2466
2467         int ret;
2468
2469         /* fcb is at the beginning if exists */
2470         fcb = (struct rxfcb *)skb->data;
2471
2472         /* Remove the FCB from the skb */
2473         skb_set_queue_mapping(skb, fcb->rq);
2474         /* Remove the padded bytes, if there are any */
2475         if (amount_pull)
2476                 skb_pull(skb, amount_pull);
2477
2478         if (priv->rx_csum_enable)
2479                 gfar_rx_checksum(skb, fcb);
2480
2481         /* Tell the skb what kind of packet this is */
2482         skb->protocol = eth_type_trans(skb, dev);
2483
2484         /* Send the packet up the stack */
2485         if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
2486                 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
2487         else
2488                 ret = netif_receive_skb(skb);
2489
2490         if (NET_RX_DROP == ret)
2491                 priv->extra_stats.kernel_dropped++;
2492
2493         return 0;
2494 }
2495
2496 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2497  *   until the budget/quota has been reached. Returns the number
2498  *   of frames handled
2499  */
2500 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2501 {
2502         struct net_device *dev = rx_queue->dev;
2503         struct rxbd8 *bdp, *base;
2504         struct sk_buff *skb;
2505         int pkt_len;
2506         int amount_pull;
2507         int howmany = 0;
2508         struct gfar_private *priv = netdev_priv(dev);
2509
2510         /* Get the first full descriptor */
2511         bdp = rx_queue->cur_rx;
2512         base = rx_queue->rx_bd_base;
2513
2514         amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0) +
2515                 priv->padding;
2516
2517         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2518                 struct sk_buff *newskb;
2519                 rmb();
2520
2521                 /* Add another skb for the future */
2522                 newskb = gfar_new_skb(dev);
2523
2524                 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2525
2526                 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2527                                 priv->rx_buffer_size, DMA_FROM_DEVICE);
2528
2529                 /* We drop the frame if we failed to allocate a new buffer */
2530                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2531                                  bdp->status & RXBD_ERR)) {
2532                         count_errors(bdp->status, dev);
2533
2534                         if (unlikely(!newskb))
2535                                 newskb = skb;
2536                         else if (skb) {
2537                                 /*
2538                                  * We need to reset ->data to what it
2539                                  * was before gfar_new_skb() re-aligned
2540                                  * it to an RXBUF_ALIGNMENT boundary
2541                                  * before we put the skb back on the
2542                                  * recycle list.
2543                                  */
2544                                 skb->data = skb->head + NET_SKB_PAD;
2545                                 __skb_queue_head(&priv->rx_recycle, skb);
2546                         }
2547                 } else {
2548                         /* Increment the number of packets */
2549                         rx_queue->stats.rx_packets++;
2550                         howmany++;
2551
2552                         if (likely(skb)) {
2553                                 pkt_len = bdp->length - ETH_FCS_LEN;
2554                                 /* Remove the FCS from the packet length */
2555                                 skb_put(skb, pkt_len);
2556                                 rx_queue->stats.rx_bytes += pkt_len;
2557
2558                                 gfar_process_frame(dev, skb, amount_pull);
2559
2560                         } else {
2561                                 if (netif_msg_rx_err(priv))
2562                                         printk(KERN_WARNING
2563                                                "%s: Missing skb!\n", dev->name);
2564                                 rx_queue->stats.rx_dropped++;
2565                                 priv->extra_stats.rx_skbmissing++;
2566                         }
2567
2568                 }
2569
2570                 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2571
2572                 /* Setup the new bdp */
2573                 gfar_new_rxbdp(rx_queue, bdp, newskb);
2574
2575                 /* Update to the next pointer */
2576                 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2577
2578                 /* update to point at the next skb */
2579                 rx_queue->skb_currx =
2580                     (rx_queue->skb_currx + 1) &
2581                     RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2582         }
2583
2584         /* Update the current rxbd pointer to be the next one */
2585         rx_queue->cur_rx = bdp;
2586
2587         return howmany;
2588 }
2589
2590 static int gfar_poll(struct napi_struct *napi, int budget)
2591 {
2592         struct gfar_priv_grp *gfargrp = container_of(napi,
2593                         struct gfar_priv_grp, napi);
2594         struct gfar_private *priv = gfargrp->priv;
2595         struct gfar __iomem *regs = gfargrp->regs;
2596         struct gfar_priv_tx_q *tx_queue = NULL;
2597         struct gfar_priv_rx_q *rx_queue = NULL;
2598         int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2599         int tx_cleaned = 0, i, left_over_budget = budget;
2600         unsigned long serviced_queues = 0;
2601         int num_queues = 0;
2602
2603         num_queues = gfargrp->num_rx_queues;
2604         budget_per_queue = budget/num_queues;
2605
2606         /* Clear IEVENT, so interrupts aren't called again
2607          * because of the packets that have already arrived */
2608         gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2609
2610         while (num_queues && left_over_budget) {
2611
2612                 budget_per_queue = left_over_budget/num_queues;
2613                 left_over_budget = 0;
2614
2615                 for_each_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2616                         if (test_bit(i, &serviced_queues))
2617                                 continue;
2618                         rx_queue = priv->rx_queue[i];
2619                         tx_queue = priv->tx_queue[rx_queue->qindex];
2620
2621                         tx_cleaned += gfar_clean_tx_ring(tx_queue);
2622                         rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue,
2623                                                         budget_per_queue);
2624                         rx_cleaned += rx_cleaned_per_queue;
2625                         if(rx_cleaned_per_queue < budget_per_queue) {
2626                                 left_over_budget = left_over_budget +
2627                                         (budget_per_queue - rx_cleaned_per_queue);
2628                                 set_bit(i, &serviced_queues);
2629                                 num_queues--;
2630                         }
2631                 }
2632         }
2633
2634         if (tx_cleaned)
2635                 return budget;
2636
2637         if (rx_cleaned < budget) {
2638                 napi_complete(napi);
2639
2640                 /* Clear the halt bit in RSTAT */
2641                 gfar_write(&regs->rstat, gfargrp->rstat);
2642
2643                 gfar_write(&regs->imask, IMASK_DEFAULT);
2644
2645                 /* If we are coalescing interrupts, update the timer */
2646                 /* Otherwise, clear it */
2647                 gfar_configure_coalescing(priv,
2648                                 gfargrp->rx_bit_map, gfargrp->tx_bit_map);
2649         }
2650
2651         return rx_cleaned;
2652 }
2653
2654 #ifdef CONFIG_NET_POLL_CONTROLLER
2655 /*
2656  * Polling 'interrupt' - used by things like netconsole to send skbs
2657  * without having to re-enable interrupts. It's not called while
2658  * the interrupt routine is executing.
2659  */
2660 static void gfar_netpoll(struct net_device *dev)
2661 {
2662         struct gfar_private *priv = netdev_priv(dev);
2663         int i = 0;
2664
2665         /* If the device has multiple interrupts, run tx/rx */
2666         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2667                 for (i = 0; i < priv->num_grps; i++) {
2668                         disable_irq(priv->gfargrp[i].interruptTransmit);
2669                         disable_irq(priv->gfargrp[i].interruptReceive);
2670                         disable_irq(priv->gfargrp[i].interruptError);
2671                         gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2672                                                 &priv->gfargrp[i]);
2673                         enable_irq(priv->gfargrp[i].interruptError);
2674                         enable_irq(priv->gfargrp[i].interruptReceive);
2675                         enable_irq(priv->gfargrp[i].interruptTransmit);
2676                 }
2677         } else {
2678                 for (i = 0; i < priv->num_grps; i++) {
2679                         disable_irq(priv->gfargrp[i].interruptTransmit);
2680                         gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2681                                                 &priv->gfargrp[i]);
2682                         enable_irq(priv->gfargrp[i].interruptTransmit);
2683                 }
2684         }
2685 }
2686 #endif
2687
2688 /* The interrupt handler for devices with one interrupt */
2689 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2690 {
2691         struct gfar_priv_grp *gfargrp = grp_id;
2692
2693         /* Save ievent for future reference */
2694         u32 events = gfar_read(&gfargrp->regs->ievent);
2695
2696         /* Check for reception */
2697         if (events & IEVENT_RX_MASK)
2698                 gfar_receive(irq, grp_id);
2699
2700         /* Check for transmit completion */
2701         if (events & IEVENT_TX_MASK)
2702                 gfar_transmit(irq, grp_id);
2703
2704         /* Check for errors */
2705         if (events & IEVENT_ERR_MASK)
2706                 gfar_error(irq, grp_id);
2707
2708         return IRQ_HANDLED;
2709 }
2710
2711 /* Called every time the controller might need to be made
2712  * aware of new link state.  The PHY code conveys this
2713  * information through variables in the phydev structure, and this
2714  * function converts those variables into the appropriate
2715  * register values, and can bring down the device if needed.
2716  */
2717 static void adjust_link(struct net_device *dev)
2718 {
2719         struct gfar_private *priv = netdev_priv(dev);
2720         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2721         unsigned long flags;
2722         struct phy_device *phydev = priv->phydev;
2723         int new_state = 0;
2724
2725         local_irq_save(flags);
2726         lock_tx_qs(priv);
2727
2728         if (phydev->link) {
2729                 u32 tempval = gfar_read(&regs->maccfg2);
2730                 u32 ecntrl = gfar_read(&regs->ecntrl);
2731
2732                 /* Now we make sure that we can be in full duplex mode.
2733                  * If not, we operate in half-duplex mode. */
2734                 if (phydev->duplex != priv->oldduplex) {
2735                         new_state = 1;
2736                         if (!(phydev->duplex))
2737                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
2738                         else
2739                                 tempval |= MACCFG2_FULL_DUPLEX;
2740
2741                         priv->oldduplex = phydev->duplex;
2742                 }
2743
2744                 if (phydev->speed != priv->oldspeed) {
2745                         new_state = 1;
2746                         switch (phydev->speed) {
2747                         case 1000:
2748                                 tempval =
2749                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2750
2751                                 ecntrl &= ~(ECNTRL_R100);
2752                                 break;
2753                         case 100:
2754                         case 10:
2755                                 tempval =
2756                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2757
2758                                 /* Reduced mode distinguishes
2759                                  * between 10 and 100 */
2760                                 if (phydev->speed == SPEED_100)
2761                                         ecntrl |= ECNTRL_R100;
2762                                 else
2763                                         ecntrl &= ~(ECNTRL_R100);
2764                                 break;
2765                         default:
2766                                 if (netif_msg_link(priv))
2767                                         printk(KERN_WARNING
2768                                                 "%s: Ack!  Speed (%d) is not 10/100/1000!\n",
2769                                                 dev->name, phydev->speed);
2770                                 break;
2771                         }
2772
2773                         priv->oldspeed = phydev->speed;
2774                 }
2775
2776                 gfar_write(&regs->maccfg2, tempval);
2777                 gfar_write(&regs->ecntrl, ecntrl);
2778
2779                 if (!priv->oldlink) {
2780                         new_state = 1;
2781                         priv->oldlink = 1;
2782                 }
2783         } else if (priv->oldlink) {
2784                 new_state = 1;
2785                 priv->oldlink = 0;
2786                 priv->oldspeed = 0;
2787                 priv->oldduplex = -1;
2788         }
2789
2790         if (new_state && netif_msg_link(priv))
2791                 phy_print_status(phydev);
2792         unlock_tx_qs(priv);
2793         local_irq_restore(flags);
2794 }
2795
2796 /* Update the hash table based on the current list of multicast
2797  * addresses we subscribe to.  Also, change the promiscuity of
2798  * the device based on the flags (this function is called
2799  * whenever dev->flags is changed */
2800 static void gfar_set_multi(struct net_device *dev)
2801 {
2802         struct dev_mc_list *mc_ptr;
2803         struct gfar_private *priv = netdev_priv(dev);
2804         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2805         u32 tempval;
2806
2807         if (dev->flags & IFF_PROMISC) {
2808                 /* Set RCTRL to PROM */
2809                 tempval = gfar_read(&regs->rctrl);
2810                 tempval |= RCTRL_PROM;
2811                 gfar_write(&regs->rctrl, tempval);
2812         } else {
2813                 /* Set RCTRL to not PROM */
2814                 tempval = gfar_read(&regs->rctrl);
2815                 tempval &= ~(RCTRL_PROM);
2816                 gfar_write(&regs->rctrl, tempval);
2817         }
2818
2819         if (dev->flags & IFF_ALLMULTI) {
2820                 /* Set the hash to rx all multicast frames */
2821                 gfar_write(&regs->igaddr0, 0xffffffff);
2822                 gfar_write(&regs->igaddr1, 0xffffffff);
2823                 gfar_write(&regs->igaddr2, 0xffffffff);
2824                 gfar_write(&regs->igaddr3, 0xffffffff);
2825                 gfar_write(&regs->igaddr4, 0xffffffff);
2826                 gfar_write(&regs->igaddr5, 0xffffffff);
2827                 gfar_write(&regs->igaddr6, 0xffffffff);
2828                 gfar_write(&regs->igaddr7, 0xffffffff);
2829                 gfar_write(&regs->gaddr0, 0xffffffff);
2830                 gfar_write(&regs->gaddr1, 0xffffffff);
2831                 gfar_write(&regs->gaddr2, 0xffffffff);
2832                 gfar_write(&regs->gaddr3, 0xffffffff);
2833                 gfar_write(&regs->gaddr4, 0xffffffff);
2834                 gfar_write(&regs->gaddr5, 0xffffffff);
2835                 gfar_write(&regs->gaddr6, 0xffffffff);
2836                 gfar_write(&regs->gaddr7, 0xffffffff);
2837         } else {
2838                 int em_num;
2839                 int idx;
2840
2841                 /* zero out the hash */
2842                 gfar_write(&regs->igaddr0, 0x0);
2843                 gfar_write(&regs->igaddr1, 0x0);
2844                 gfar_write(&regs->igaddr2, 0x0);
2845                 gfar_write(&regs->igaddr3, 0x0);
2846                 gfar_write(&regs->igaddr4, 0x0);
2847                 gfar_write(&regs->igaddr5, 0x0);
2848                 gfar_write(&regs->igaddr6, 0x0);
2849                 gfar_write(&regs->igaddr7, 0x0);
2850                 gfar_write(&regs->gaddr0, 0x0);
2851                 gfar_write(&regs->gaddr1, 0x0);
2852                 gfar_write(&regs->gaddr2, 0x0);
2853                 gfar_write(&regs->gaddr3, 0x0);
2854                 gfar_write(&regs->gaddr4, 0x0);
2855                 gfar_write(&regs->gaddr5, 0x0);
2856                 gfar_write(&regs->gaddr6, 0x0);
2857                 gfar_write(&regs->gaddr7, 0x0);
2858
2859                 /* If we have extended hash tables, we need to
2860                  * clear the exact match registers to prepare for
2861                  * setting them */
2862                 if (priv->extended_hash) {
2863                         em_num = GFAR_EM_NUM + 1;
2864                         gfar_clear_exact_match(dev);
2865                         idx = 1;
2866                 } else {
2867                         idx = 0;
2868                         em_num = 0;
2869                 }
2870
2871                 if (dev->mc_count == 0)
2872                         return;
2873
2874                 /* Parse the list, and set the appropriate bits */
2875                 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
2876                         if (idx < em_num) {
2877                                 gfar_set_mac_for_addr(dev, idx,
2878                                                 mc_ptr->dmi_addr);
2879                                 idx++;
2880                         } else
2881                                 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
2882                 }
2883         }
2884
2885         return;
2886 }
2887
2888
2889 /* Clears each of the exact match registers to zero, so they
2890  * don't interfere with normal reception */
2891 static void gfar_clear_exact_match(struct net_device *dev)
2892 {
2893         int idx;
2894         u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
2895
2896         for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
2897                 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
2898 }
2899
2900 /* Set the appropriate hash bit for the given addr */
2901 /* The algorithm works like so:
2902  * 1) Take the Destination Address (ie the multicast address), and
2903  * do a CRC on it (little endian), and reverse the bits of the
2904  * result.
2905  * 2) Use the 8 most significant bits as a hash into a 256-entry
2906  * table.  The table is controlled through 8 32-bit registers:
2907  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
2908  * gaddr7.  This means that the 3 most significant bits in the
2909  * hash index which gaddr register to use, and the 5 other bits
2910  * indicate which bit (assuming an IBM numbering scheme, which
2911  * for PowerPC (tm) is usually the case) in the register holds
2912  * the entry. */
2913 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
2914 {
2915         u32 tempval;
2916         struct gfar_private *priv = netdev_priv(dev);
2917         u32 result = ether_crc(MAC_ADDR_LEN, addr);
2918         int width = priv->hash_width;
2919         u8 whichbit = (result >> (32 - width)) & 0x1f;
2920         u8 whichreg = result >> (32 - width + 5);
2921         u32 value = (1 << (31-whichbit));
2922
2923         tempval = gfar_read(priv->hash_regs[whichreg]);
2924         tempval |= value;
2925         gfar_write(priv->hash_regs[whichreg], tempval);
2926
2927         return;
2928 }
2929
2930
2931 /* There are multiple MAC Address register pairs on some controllers
2932  * This function sets the numth pair to a given address
2933  */
2934 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
2935 {
2936         struct gfar_private *priv = netdev_priv(dev);
2937         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2938         int idx;
2939         char tmpbuf[MAC_ADDR_LEN];
2940         u32 tempval;
2941         u32 __iomem *macptr = &regs->macstnaddr1;
2942
2943         macptr += num*2;
2944
2945         /* Now copy it into the mac registers backwards, cuz */
2946         /* little endian is silly */
2947         for (idx = 0; idx < MAC_ADDR_LEN; idx++)
2948                 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
2949
2950         gfar_write(macptr, *((u32 *) (tmpbuf)));
2951
2952         tempval = *((u32 *) (tmpbuf + 4));
2953
2954         gfar_write(macptr+1, tempval);
2955 }
2956
2957 /* GFAR error interrupt handler */
2958 static irqreturn_t gfar_error(int irq, void *grp_id)
2959 {
2960         struct gfar_priv_grp *gfargrp = grp_id;
2961         struct gfar __iomem *regs = gfargrp->regs;
2962         struct gfar_private *priv= gfargrp->priv;
2963         struct net_device *dev = priv->ndev;
2964
2965         /* Save ievent for future reference */
2966         u32 events = gfar_read(&regs->ievent);
2967
2968         /* Clear IEVENT */
2969         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
2970
2971         /* Magic Packet is not an error. */
2972         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2973             (events & IEVENT_MAG))
2974                 events &= ~IEVENT_MAG;
2975
2976         /* Hmm... */
2977         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2978                 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2979                        dev->name, events, gfar_read(&regs->imask));
2980
2981         /* Update the error counters */
2982         if (events & IEVENT_TXE) {
2983                 dev->stats.tx_errors++;
2984
2985                 if (events & IEVENT_LC)
2986                         dev->stats.tx_window_errors++;
2987                 if (events & IEVENT_CRL)
2988                         dev->stats.tx_aborted_errors++;
2989                 if (events & IEVENT_XFUN) {
2990                         unsigned long flags;
2991
2992                         if (netif_msg_tx_err(priv))
2993                                 printk(KERN_DEBUG "%s: TX FIFO underrun, "
2994                                        "packet dropped.\n", dev->name);
2995                         dev->stats.tx_dropped++;
2996                         priv->extra_stats.tx_underrun++;
2997
2998                         local_irq_save(flags);
2999                         lock_tx_qs(priv);
3000
3001                         /* Reactivate the Tx Queues */
3002                         gfar_write(&regs->tstat, gfargrp->tstat);
3003
3004                         unlock_tx_qs(priv);
3005                         local_irq_restore(flags);
3006                 }
3007                 if (netif_msg_tx_err(priv))
3008                         printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
3009         }
3010         if (events & IEVENT_BSY) {
3011                 dev->stats.rx_errors++;
3012                 priv->extra_stats.rx_bsy++;
3013
3014                 gfar_receive(irq, grp_id);
3015
3016                 if (netif_msg_rx_err(priv))
3017                         printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
3018                                dev->name, gfar_read(&regs->rstat));
3019         }
3020         if (events & IEVENT_BABR) {
3021                 dev->stats.rx_errors++;
3022                 priv->extra_stats.rx_babr++;
3023
3024                 if (netif_msg_rx_err(priv))
3025                         printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
3026         }
3027         if (events & IEVENT_EBERR) {
3028                 priv->extra_stats.eberr++;
3029                 if (netif_msg_rx_err(priv))
3030                         printk(KERN_DEBUG "%s: bus error\n", dev->name);
3031         }
3032         if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
3033                 printk(KERN_DEBUG "%s: control frame\n", dev->name);
3034
3035         if (events & IEVENT_BABT) {
3036                 priv->extra_stats.tx_babt++;
3037                 if (netif_msg_tx_err(priv))
3038                         printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
3039         }
3040         return IRQ_HANDLED;
3041 }
3042
3043 static struct of_device_id gfar_match[] =
3044 {
3045         {
3046                 .type = "network",
3047                 .compatible = "gianfar",
3048         },
3049         {
3050                 .compatible = "fsl,etsec2",
3051         },
3052         {},
3053 };
3054 MODULE_DEVICE_TABLE(of, gfar_match);
3055
3056 /* Structure for a device driver */
3057 static struct of_platform_driver gfar_driver = {
3058         .name = "fsl-gianfar",
3059         .match_table = gfar_match,
3060
3061         .probe = gfar_probe,
3062         .remove = gfar_remove,
3063         .suspend = gfar_legacy_suspend,
3064         .resume = gfar_legacy_resume,
3065         .driver.pm = GFAR_PM_OPS,
3066 };
3067
3068 static int __init gfar_init(void)
3069 {
3070         return of_register_platform_driver(&gfar_driver);
3071 }
3072
3073 static void __exit gfar_exit(void)
3074 {
3075         of_unregister_platform_driver(&gfar_driver);
3076 }
3077
3078 module_init(gfar_init);
3079 module_exit(gfar_exit);
3080