gianfar: Fix compile regression caused by bea3348e
[safe/jmp/linux-2.6] / drivers / net / gianfar.c
1 /*
2  * drivers/net/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  *
12  * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13  * Copyright (c) 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through platform_device.  Structures which
29  *  define the configuration needed by the board are defined in a
30  *  board structure in arch/ppc/platforms (though I do not
31  *  discount the possibility that other architectures could one
32  *  day be supported.
33  *
34  *  The Gianfar Ethernet Controller uses a ring of buffer
35  *  descriptors.  The beginning is indicated by a register
36  *  pointing to the physical address of the start of the ring.
37  *  The end is determined by a "wrap" bit being set in the
38  *  last descriptor of the ring.
39  *
40  *  When a packet is received, the RXF bit in the
41  *  IEVENT register is set, triggering an interrupt when the
42  *  corresponding bit in the IMASK register is also set (if
43  *  interrupt coalescing is active, then the interrupt may not
44  *  happen immediately, but will wait until either a set number
45  *  of frames or amount of time have passed).  In NAPI, the
46  *  interrupt handler will signal there is work to be done, and
47  *  exit.  Without NAPI, the packet(s) will be handled
48  *  immediately.  Both methods will start at the last known empty
49  *  descriptor, and process every subsequent descriptor until there
50  *  are none left with data (NAPI will stop after a set number of
51  *  packets to give time to other tasks, but will eventually
52  *  process all the packets).  The data arrives inside a
53  *  pre-allocated skb, and so after the skb is passed up to the
54  *  stack, a new skb must be allocated, and the address field in
55  *  the buffer descriptor must be updated to indicate this new
56  *  skb.
57  *
58  *  When the kernel requests that a packet be transmitted, the
59  *  driver starts where it left off last time, and points the
60  *  descriptor at the buffer which was passed in.  The driver
61  *  then informs the DMA engine that there are packets ready to
62  *  be transmitted.  Once the controller is finished transmitting
63  *  the packet, an interrupt may be triggered (under the same
64  *  conditions as for reception, but depending on the TXF bit).
65  *  The driver then cleans up the buffer.
66  */
67
68 #include <linux/kernel.h>
69 #include <linux/string.h>
70 #include <linux/errno.h>
71 #include <linux/unistd.h>
72 #include <linux/slab.h>
73 #include <linux/interrupt.h>
74 #include <linux/init.h>
75 #include <linux/delay.h>
76 #include <linux/netdevice.h>
77 #include <linux/etherdevice.h>
78 #include <linux/skbuff.h>
79 #include <linux/if_vlan.h>
80 #include <linux/spinlock.h>
81 #include <linux/mm.h>
82 #include <linux/platform_device.h>
83 #include <linux/ip.h>
84 #include <linux/tcp.h>
85 #include <linux/udp.h>
86 #include <linux/in.h>
87
88 #include <asm/io.h>
89 #include <asm/irq.h>
90 #include <asm/uaccess.h>
91 #include <linux/module.h>
92 #include <linux/dma-mapping.h>
93 #include <linux/crc32.h>
94 #include <linux/mii.h>
95 #include <linux/phy.h>
96
97 #include "gianfar.h"
98 #include "gianfar_mii.h"
99
100 #define TX_TIMEOUT      (1*HZ)
101 #define SKB_ALLOC_TIMEOUT 1000000
102 #undef BRIEF_GFAR_ERRORS
103 #undef VERBOSE_GFAR_ERRORS
104
105 #ifdef CONFIG_GFAR_NAPI
106 #define RECEIVE(x) netif_receive_skb(x)
107 #else
108 #define RECEIVE(x) netif_rx(x)
109 #endif
110
111 const char gfar_driver_name[] = "Gianfar Ethernet";
112 const char gfar_driver_version[] = "1.3";
113
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_timeout(struct net_device *dev);
117 static int gfar_close(struct net_device *dev);
118 struct sk_buff *gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp);
119 static int gfar_set_mac_address(struct net_device *dev);
120 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
121 static irqreturn_t gfar_error(int irq, void *dev_id);
122 static irqreturn_t gfar_transmit(int irq, void *dev_id);
123 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
124 static void adjust_link(struct net_device *dev);
125 static void init_registers(struct net_device *dev);
126 static int init_phy(struct net_device *dev);
127 static int gfar_probe(struct platform_device *pdev);
128 static int gfar_remove(struct platform_device *pdev);
129 static void free_skb_resources(struct gfar_private *priv);
130 static void gfar_set_multi(struct net_device *dev);
131 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
132 static void gfar_configure_serdes(struct net_device *dev);
133 extern int gfar_local_mdio_write(struct gfar_mii *regs, int mii_id, int regnum, u16 value);
134 extern int gfar_local_mdio_read(struct gfar_mii *regs, int mii_id, int regnum);
135 #ifdef CONFIG_GFAR_NAPI
136 static int gfar_poll(struct napi_struct *napi, int budget);
137 #endif
138 #ifdef CONFIG_NET_POLL_CONTROLLER
139 static void gfar_netpoll(struct net_device *dev);
140 #endif
141 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
142 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length);
143 static void gfar_vlan_rx_register(struct net_device *netdev,
144                                 struct vlan_group *grp);
145 void gfar_halt(struct net_device *dev);
146 void gfar_start(struct net_device *dev);
147 static void gfar_clear_exact_match(struct net_device *dev);
148 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
149
150 extern const struct ethtool_ops gfar_ethtool_ops;
151
152 MODULE_AUTHOR("Freescale Semiconductor, Inc");
153 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
154 MODULE_LICENSE("GPL");
155
156 /* Returns 1 if incoming frames use an FCB */
157 static inline int gfar_uses_fcb(struct gfar_private *priv)
158 {
159         return (priv->vlan_enable || priv->rx_csum_enable);
160 }
161
162 /* Set up the ethernet device structure, private data,
163  * and anything else we need before we start */
164 static int gfar_probe(struct platform_device *pdev)
165 {
166         u32 tempval;
167         struct net_device *dev = NULL;
168         struct gfar_private *priv = NULL;
169         struct gianfar_platform_data *einfo;
170         struct resource *r;
171         int idx;
172         int err = 0;
173         DECLARE_MAC_BUF(mac);
174
175         einfo = (struct gianfar_platform_data *) pdev->dev.platform_data;
176
177         if (NULL == einfo) {
178                 printk(KERN_ERR "gfar %d: Missing additional data!\n",
179                        pdev->id);
180
181                 return -ENODEV;
182         }
183
184         /* Create an ethernet device instance */
185         dev = alloc_etherdev(sizeof (*priv));
186
187         if (NULL == dev)
188                 return -ENOMEM;
189
190         priv = netdev_priv(dev);
191         priv->dev = dev;
192
193         /* Set the info in the priv to the current info */
194         priv->einfo = einfo;
195
196         /* fill out IRQ fields */
197         if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
198                 priv->interruptTransmit = platform_get_irq_byname(pdev, "tx");
199                 priv->interruptReceive = platform_get_irq_byname(pdev, "rx");
200                 priv->interruptError = platform_get_irq_byname(pdev, "error");
201                 if (priv->interruptTransmit < 0 || priv->interruptReceive < 0 || priv->interruptError < 0)
202                         goto regs_fail;
203         } else {
204                 priv->interruptTransmit = platform_get_irq(pdev, 0);
205                 if (priv->interruptTransmit < 0)
206                         goto regs_fail;
207         }
208
209         /* get a pointer to the register memory */
210         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
211         priv->regs = ioremap(r->start, sizeof (struct gfar));
212
213         if (NULL == priv->regs) {
214                 err = -ENOMEM;
215                 goto regs_fail;
216         }
217
218         spin_lock_init(&priv->txlock);
219         spin_lock_init(&priv->rxlock);
220
221         platform_set_drvdata(pdev, dev);
222
223         /* Stop the DMA engine now, in case it was running before */
224         /* (The firmware could have used it, and left it running). */
225         /* To do this, we write Graceful Receive Stop and Graceful */
226         /* Transmit Stop, and then wait until the corresponding bits */
227         /* in IEVENT indicate the stops have completed. */
228         tempval = gfar_read(&priv->regs->dmactrl);
229         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
230         gfar_write(&priv->regs->dmactrl, tempval);
231
232         tempval = gfar_read(&priv->regs->dmactrl);
233         tempval |= (DMACTRL_GRS | DMACTRL_GTS);
234         gfar_write(&priv->regs->dmactrl, tempval);
235
236         while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC)))
237                 cpu_relax();
238
239         /* Reset MAC layer */
240         gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
241
242         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
243         gfar_write(&priv->regs->maccfg1, tempval);
244
245         /* Initialize MACCFG2. */
246         gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
247
248         /* Initialize ECNTRL */
249         gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
250
251         /* Copy the station address into the dev structure, */
252         memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN);
253
254         /* Set the dev->base_addr to the gfar reg region */
255         dev->base_addr = (unsigned long) (priv->regs);
256
257         SET_NETDEV_DEV(dev, &pdev->dev);
258
259         /* Fill in the dev structure */
260         dev->open = gfar_enet_open;
261         dev->hard_start_xmit = gfar_start_xmit;
262         dev->tx_timeout = gfar_timeout;
263         dev->watchdog_timeo = TX_TIMEOUT;
264 #ifdef CONFIG_GFAR_NAPI
265         netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
266 #endif
267 #ifdef CONFIG_NET_POLL_CONTROLLER
268         dev->poll_controller = gfar_netpoll;
269 #endif
270         dev->stop = gfar_close;
271         dev->change_mtu = gfar_change_mtu;
272         dev->mtu = 1500;
273         dev->set_multicast_list = gfar_set_multi;
274
275         dev->ethtool_ops = &gfar_ethtool_ops;
276
277         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
278                 priv->rx_csum_enable = 1;
279                 dev->features |= NETIF_F_IP_CSUM;
280         } else
281                 priv->rx_csum_enable = 0;
282
283         priv->vlgrp = NULL;
284
285         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
286                 dev->vlan_rx_register = gfar_vlan_rx_register;
287
288                 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
289
290                 priv->vlan_enable = 1;
291         }
292
293         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
294                 priv->extended_hash = 1;
295                 priv->hash_width = 9;
296
297                 priv->hash_regs[0] = &priv->regs->igaddr0;
298                 priv->hash_regs[1] = &priv->regs->igaddr1;
299                 priv->hash_regs[2] = &priv->regs->igaddr2;
300                 priv->hash_regs[3] = &priv->regs->igaddr3;
301                 priv->hash_regs[4] = &priv->regs->igaddr4;
302                 priv->hash_regs[5] = &priv->regs->igaddr5;
303                 priv->hash_regs[6] = &priv->regs->igaddr6;
304                 priv->hash_regs[7] = &priv->regs->igaddr7;
305                 priv->hash_regs[8] = &priv->regs->gaddr0;
306                 priv->hash_regs[9] = &priv->regs->gaddr1;
307                 priv->hash_regs[10] = &priv->regs->gaddr2;
308                 priv->hash_regs[11] = &priv->regs->gaddr3;
309                 priv->hash_regs[12] = &priv->regs->gaddr4;
310                 priv->hash_regs[13] = &priv->regs->gaddr5;
311                 priv->hash_regs[14] = &priv->regs->gaddr6;
312                 priv->hash_regs[15] = &priv->regs->gaddr7;
313
314         } else {
315                 priv->extended_hash = 0;
316                 priv->hash_width = 8;
317
318                 priv->hash_regs[0] = &priv->regs->gaddr0;
319                 priv->hash_regs[1] = &priv->regs->gaddr1;
320                 priv->hash_regs[2] = &priv->regs->gaddr2;
321                 priv->hash_regs[3] = &priv->regs->gaddr3;
322                 priv->hash_regs[4] = &priv->regs->gaddr4;
323                 priv->hash_regs[5] = &priv->regs->gaddr5;
324                 priv->hash_regs[6] = &priv->regs->gaddr6;
325                 priv->hash_regs[7] = &priv->regs->gaddr7;
326         }
327
328         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
329                 priv->padding = DEFAULT_PADDING;
330         else
331                 priv->padding = 0;
332
333         if (dev->features & NETIF_F_IP_CSUM)
334                 dev->hard_header_len += GMAC_FCB_LEN;
335
336         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
337         priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
338         priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
339
340         priv->txcoalescing = DEFAULT_TX_COALESCE;
341         priv->txcount = DEFAULT_TXCOUNT;
342         priv->txtime = DEFAULT_TXTIME;
343         priv->rxcoalescing = DEFAULT_RX_COALESCE;
344         priv->rxcount = DEFAULT_RXCOUNT;
345         priv->rxtime = DEFAULT_RXTIME;
346
347         /* Enable most messages by default */
348         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
349
350         err = register_netdev(dev);
351
352         if (err) {
353                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
354                                 dev->name);
355                 goto register_fail;
356         }
357
358         /* Create all the sysfs files */
359         gfar_init_sysfs(dev);
360
361         /* Print out the device info */
362         printk(KERN_INFO DEVICE_NAME "%s\n",
363                dev->name, print_mac(mac, dev->dev_addr));
364
365         /* Even more device info helps when determining which kernel */
366         /* provided which set of benchmarks. */
367 #ifdef CONFIG_GFAR_NAPI
368         printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
369 #else
370         printk(KERN_INFO "%s: Running with NAPI disabled\n", dev->name);
371 #endif
372         printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
373                dev->name, priv->rx_ring_size, priv->tx_ring_size);
374
375         return 0;
376
377 register_fail:
378         iounmap(priv->regs);
379 regs_fail:
380         free_netdev(dev);
381         return err;
382 }
383
384 static int gfar_remove(struct platform_device *pdev)
385 {
386         struct net_device *dev = platform_get_drvdata(pdev);
387         struct gfar_private *priv = netdev_priv(dev);
388
389         platform_set_drvdata(pdev, NULL);
390
391         iounmap(priv->regs);
392         free_netdev(dev);
393
394         return 0;
395 }
396
397
398 /* Reads the controller's registers to determine what interface
399  * connects it to the PHY.
400  */
401 static phy_interface_t gfar_get_interface(struct net_device *dev)
402 {
403         struct gfar_private *priv = netdev_priv(dev);
404         u32 ecntrl = gfar_read(&priv->regs->ecntrl);
405
406         if (ecntrl & ECNTRL_SGMII_MODE)
407                 return PHY_INTERFACE_MODE_SGMII;
408
409         if (ecntrl & ECNTRL_TBI_MODE) {
410                 if (ecntrl & ECNTRL_REDUCED_MODE)
411                         return PHY_INTERFACE_MODE_RTBI;
412                 else
413                         return PHY_INTERFACE_MODE_TBI;
414         }
415
416         if (ecntrl & ECNTRL_REDUCED_MODE) {
417                 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
418                         return PHY_INTERFACE_MODE_RMII;
419                 else {
420                         phy_interface_t interface = priv->einfo->interface;
421
422                         /*
423                          * This isn't autodetected right now, so it must
424                          * be set by the device tree or platform code.
425                          */
426                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
427                                 return PHY_INTERFACE_MODE_RGMII_ID;
428
429                         return PHY_INTERFACE_MODE_RGMII;
430                 }
431         }
432
433         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
434                 return PHY_INTERFACE_MODE_GMII;
435
436         return PHY_INTERFACE_MODE_MII;
437 }
438
439
440 /* Initializes driver's PHY state, and attaches to the PHY.
441  * Returns 0 on success.
442  */
443 static int init_phy(struct net_device *dev)
444 {
445         struct gfar_private *priv = netdev_priv(dev);
446         uint gigabit_support =
447                 priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
448                 SUPPORTED_1000baseT_Full : 0;
449         struct phy_device *phydev;
450         char phy_id[BUS_ID_SIZE];
451         phy_interface_t interface;
452
453         priv->oldlink = 0;
454         priv->oldspeed = 0;
455         priv->oldduplex = -1;
456
457         snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT, priv->einfo->bus_id, priv->einfo->phy_id);
458
459         interface = gfar_get_interface(dev);
460
461         phydev = phy_connect(dev, phy_id, &adjust_link, 0, interface);
462
463         if (interface == PHY_INTERFACE_MODE_SGMII)
464                 gfar_configure_serdes(dev);
465
466         if (IS_ERR(phydev)) {
467                 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
468                 return PTR_ERR(phydev);
469         }
470
471         /* Remove any features not supported by the controller */
472         phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
473         phydev->advertising = phydev->supported;
474
475         priv->phydev = phydev;
476
477         return 0;
478 }
479
480 static void gfar_configure_serdes(struct net_device *dev)
481 {
482         struct gfar_private *priv = netdev_priv(dev);
483         struct gfar_mii __iomem *regs =
484                         (void __iomem *)&priv->regs->gfar_mii_regs;
485
486         /* Initialise TBI i/f to communicate with serdes (lynx phy) */
487
488         /* Single clk mode, mii mode off(for aerdes communication) */
489         gfar_local_mdio_write(regs, TBIPA_VALUE, MII_TBICON, TBICON_CLK_SELECT);
490
491         /* Supported pause and full-duplex, no half-duplex */
492         gfar_local_mdio_write(regs, TBIPA_VALUE, MII_ADVERTISE,
493                         ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
494                         ADVERTISE_1000XPSE_ASYM);
495
496         /* ANEG enable, restart ANEG, full duplex mode, speed[1] set */
497         gfar_local_mdio_write(regs, TBIPA_VALUE, MII_BMCR, BMCR_ANENABLE |
498                         BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
499 }
500
501 static void init_registers(struct net_device *dev)
502 {
503         struct gfar_private *priv = netdev_priv(dev);
504
505         /* Clear IEVENT */
506         gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
507
508         /* Initialize IMASK */
509         gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
510
511         /* Init hash registers to zero */
512         gfar_write(&priv->regs->igaddr0, 0);
513         gfar_write(&priv->regs->igaddr1, 0);
514         gfar_write(&priv->regs->igaddr2, 0);
515         gfar_write(&priv->regs->igaddr3, 0);
516         gfar_write(&priv->regs->igaddr4, 0);
517         gfar_write(&priv->regs->igaddr5, 0);
518         gfar_write(&priv->regs->igaddr6, 0);
519         gfar_write(&priv->regs->igaddr7, 0);
520
521         gfar_write(&priv->regs->gaddr0, 0);
522         gfar_write(&priv->regs->gaddr1, 0);
523         gfar_write(&priv->regs->gaddr2, 0);
524         gfar_write(&priv->regs->gaddr3, 0);
525         gfar_write(&priv->regs->gaddr4, 0);
526         gfar_write(&priv->regs->gaddr5, 0);
527         gfar_write(&priv->regs->gaddr6, 0);
528         gfar_write(&priv->regs->gaddr7, 0);
529
530         /* Zero out the rmon mib registers if it has them */
531         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
532                 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
533
534                 /* Mask off the CAM interrupts */
535                 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
536                 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
537         }
538
539         /* Initialize the max receive buffer length */
540         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
541
542         /* Initialize the Minimum Frame Length Register */
543         gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
544
545         /* Assign the TBI an address which won't conflict with the PHYs */
546         gfar_write(&priv->regs->tbipa, TBIPA_VALUE);
547 }
548
549
550 /* Halt the receive and transmit queues */
551 void gfar_halt(struct net_device *dev)
552 {
553         struct gfar_private *priv = netdev_priv(dev);
554         struct gfar __iomem *regs = priv->regs;
555         u32 tempval;
556
557         /* Mask all interrupts */
558         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
559
560         /* Clear all interrupts */
561         gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
562
563         /* Stop the DMA, and wait for it to stop */
564         tempval = gfar_read(&priv->regs->dmactrl);
565         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
566             != (DMACTRL_GRS | DMACTRL_GTS)) {
567                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
568                 gfar_write(&priv->regs->dmactrl, tempval);
569
570                 while (!(gfar_read(&priv->regs->ievent) &
571                          (IEVENT_GRSC | IEVENT_GTSC)))
572                         cpu_relax();
573         }
574
575         /* Disable Rx and Tx */
576         tempval = gfar_read(&regs->maccfg1);
577         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
578         gfar_write(&regs->maccfg1, tempval);
579 }
580
581 void stop_gfar(struct net_device *dev)
582 {
583         struct gfar_private *priv = netdev_priv(dev);
584         struct gfar __iomem *regs = priv->regs;
585         unsigned long flags;
586
587         phy_stop(priv->phydev);
588
589         /* Lock it down */
590         spin_lock_irqsave(&priv->txlock, flags);
591         spin_lock(&priv->rxlock);
592
593         gfar_halt(dev);
594
595         spin_unlock(&priv->rxlock);
596         spin_unlock_irqrestore(&priv->txlock, flags);
597
598         /* Free the IRQs */
599         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
600                 free_irq(priv->interruptError, dev);
601                 free_irq(priv->interruptTransmit, dev);
602                 free_irq(priv->interruptReceive, dev);
603         } else {
604                 free_irq(priv->interruptTransmit, dev);
605         }
606
607         free_skb_resources(priv);
608
609         dma_free_coherent(NULL,
610                         sizeof(struct txbd8)*priv->tx_ring_size
611                         + sizeof(struct rxbd8)*priv->rx_ring_size,
612                         priv->tx_bd_base,
613                         gfar_read(&regs->tbase0));
614 }
615
616 /* If there are any tx skbs or rx skbs still around, free them.
617  * Then free tx_skbuff and rx_skbuff */
618 static void free_skb_resources(struct gfar_private *priv)
619 {
620         struct rxbd8 *rxbdp;
621         struct txbd8 *txbdp;
622         int i;
623
624         /* Go through all the buffer descriptors and free their data buffers */
625         txbdp = priv->tx_bd_base;
626
627         for (i = 0; i < priv->tx_ring_size; i++) {
628
629                 if (priv->tx_skbuff[i]) {
630                         dma_unmap_single(NULL, txbdp->bufPtr,
631                                         txbdp->length,
632                                         DMA_TO_DEVICE);
633                         dev_kfree_skb_any(priv->tx_skbuff[i]);
634                         priv->tx_skbuff[i] = NULL;
635                 }
636         }
637
638         kfree(priv->tx_skbuff);
639
640         rxbdp = priv->rx_bd_base;
641
642         /* rx_skbuff is not guaranteed to be allocated, so only
643          * free it and its contents if it is allocated */
644         if(priv->rx_skbuff != NULL) {
645                 for (i = 0; i < priv->rx_ring_size; i++) {
646                         if (priv->rx_skbuff[i]) {
647                                 dma_unmap_single(NULL, rxbdp->bufPtr,
648                                                 priv->rx_buffer_size,
649                                                 DMA_FROM_DEVICE);
650
651                                 dev_kfree_skb_any(priv->rx_skbuff[i]);
652                                 priv->rx_skbuff[i] = NULL;
653                         }
654
655                         rxbdp->status = 0;
656                         rxbdp->length = 0;
657                         rxbdp->bufPtr = 0;
658
659                         rxbdp++;
660                 }
661
662                 kfree(priv->rx_skbuff);
663         }
664 }
665
666 void gfar_start(struct net_device *dev)
667 {
668         struct gfar_private *priv = netdev_priv(dev);
669         struct gfar __iomem *regs = priv->regs;
670         u32 tempval;
671
672         /* Enable Rx and Tx in MACCFG1 */
673         tempval = gfar_read(&regs->maccfg1);
674         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
675         gfar_write(&regs->maccfg1, tempval);
676
677         /* Initialize DMACTRL to have WWR and WOP */
678         tempval = gfar_read(&priv->regs->dmactrl);
679         tempval |= DMACTRL_INIT_SETTINGS;
680         gfar_write(&priv->regs->dmactrl, tempval);
681
682         /* Make sure we aren't stopped */
683         tempval = gfar_read(&priv->regs->dmactrl);
684         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
685         gfar_write(&priv->regs->dmactrl, tempval);
686
687         /* Clear THLT/RHLT, so that the DMA starts polling now */
688         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
689         gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
690
691         /* Unmask the interrupts we look for */
692         gfar_write(&regs->imask, IMASK_DEFAULT);
693 }
694
695 /* Bring the controller up and running */
696 int startup_gfar(struct net_device *dev)
697 {
698         struct txbd8 *txbdp;
699         struct rxbd8 *rxbdp;
700         dma_addr_t addr;
701         unsigned long vaddr;
702         int i;
703         struct gfar_private *priv = netdev_priv(dev);
704         struct gfar __iomem *regs = priv->regs;
705         int err = 0;
706         u32 rctrl = 0;
707         u32 attrs = 0;
708
709         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
710
711         /* Allocate memory for the buffer descriptors */
712         vaddr = (unsigned long) dma_alloc_coherent(NULL,
713                         sizeof (struct txbd8) * priv->tx_ring_size +
714                         sizeof (struct rxbd8) * priv->rx_ring_size,
715                         &addr, GFP_KERNEL);
716
717         if (vaddr == 0) {
718                 if (netif_msg_ifup(priv))
719                         printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
720                                         dev->name);
721                 return -ENOMEM;
722         }
723
724         priv->tx_bd_base = (struct txbd8 *) vaddr;
725
726         /* enet DMA only understands physical addresses */
727         gfar_write(&regs->tbase0, addr);
728
729         /* Start the rx descriptor ring where the tx ring leaves off */
730         addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
731         vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
732         priv->rx_bd_base = (struct rxbd8 *) vaddr;
733         gfar_write(&regs->rbase0, addr);
734
735         /* Setup the skbuff rings */
736         priv->tx_skbuff =
737             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
738                                         priv->tx_ring_size, GFP_KERNEL);
739
740         if (NULL == priv->tx_skbuff) {
741                 if (netif_msg_ifup(priv))
742                         printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
743                                         dev->name);
744                 err = -ENOMEM;
745                 goto tx_skb_fail;
746         }
747
748         for (i = 0; i < priv->tx_ring_size; i++)
749                 priv->tx_skbuff[i] = NULL;
750
751         priv->rx_skbuff =
752             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
753                                         priv->rx_ring_size, GFP_KERNEL);
754
755         if (NULL == priv->rx_skbuff) {
756                 if (netif_msg_ifup(priv))
757                         printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
758                                         dev->name);
759                 err = -ENOMEM;
760                 goto rx_skb_fail;
761         }
762
763         for (i = 0; i < priv->rx_ring_size; i++)
764                 priv->rx_skbuff[i] = NULL;
765
766         /* Initialize some variables in our dev structure */
767         priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
768         priv->cur_rx = priv->rx_bd_base;
769         priv->skb_curtx = priv->skb_dirtytx = 0;
770         priv->skb_currx = 0;
771
772         /* Initialize Transmit Descriptor Ring */
773         txbdp = priv->tx_bd_base;
774         for (i = 0; i < priv->tx_ring_size; i++) {
775                 txbdp->status = 0;
776                 txbdp->length = 0;
777                 txbdp->bufPtr = 0;
778                 txbdp++;
779         }
780
781         /* Set the last descriptor in the ring to indicate wrap */
782         txbdp--;
783         txbdp->status |= TXBD_WRAP;
784
785         rxbdp = priv->rx_bd_base;
786         for (i = 0; i < priv->rx_ring_size; i++) {
787                 struct sk_buff *skb = NULL;
788
789                 rxbdp->status = 0;
790
791                 skb = gfar_new_skb(dev, rxbdp);
792
793                 priv->rx_skbuff[i] = skb;
794
795                 rxbdp++;
796         }
797
798         /* Set the last descriptor in the ring to wrap */
799         rxbdp--;
800         rxbdp->status |= RXBD_WRAP;
801
802         /* If the device has multiple interrupts, register for
803          * them.  Otherwise, only register for the one */
804         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
805                 /* Install our interrupt handlers for Error,
806                  * Transmit, and Receive */
807                 if (request_irq(priv->interruptError, gfar_error,
808                                 0, "enet_error", dev) < 0) {
809                         if (netif_msg_intr(priv))
810                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
811                                         dev->name, priv->interruptError);
812
813                         err = -1;
814                         goto err_irq_fail;
815                 }
816
817                 if (request_irq(priv->interruptTransmit, gfar_transmit,
818                                 0, "enet_tx", dev) < 0) {
819                         if (netif_msg_intr(priv))
820                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
821                                         dev->name, priv->interruptTransmit);
822
823                         err = -1;
824
825                         goto tx_irq_fail;
826                 }
827
828                 if (request_irq(priv->interruptReceive, gfar_receive,
829                                 0, "enet_rx", dev) < 0) {
830                         if (netif_msg_intr(priv))
831                                 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
832                                                 dev->name, priv->interruptReceive);
833
834                         err = -1;
835                         goto rx_irq_fail;
836                 }
837         } else {
838                 if (request_irq(priv->interruptTransmit, gfar_interrupt,
839                                 0, "gfar_interrupt", dev) < 0) {
840                         if (netif_msg_intr(priv))
841                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
842                                         dev->name, priv->interruptError);
843
844                         err = -1;
845                         goto err_irq_fail;
846                 }
847         }
848
849         phy_start(priv->phydev);
850
851         /* Configure the coalescing support */
852         if (priv->txcoalescing)
853                 gfar_write(&regs->txic,
854                            mk_ic_value(priv->txcount, priv->txtime));
855         else
856                 gfar_write(&regs->txic, 0);
857
858         if (priv->rxcoalescing)
859                 gfar_write(&regs->rxic,
860                            mk_ic_value(priv->rxcount, priv->rxtime));
861         else
862                 gfar_write(&regs->rxic, 0);
863
864         if (priv->rx_csum_enable)
865                 rctrl |= RCTRL_CHECKSUMMING;
866
867         if (priv->extended_hash) {
868                 rctrl |= RCTRL_EXTHASH;
869
870                 gfar_clear_exact_match(dev);
871                 rctrl |= RCTRL_EMEN;
872         }
873
874         if (priv->vlan_enable)
875                 rctrl |= RCTRL_VLAN;
876
877         if (priv->padding) {
878                 rctrl &= ~RCTRL_PAL_MASK;
879                 rctrl |= RCTRL_PADDING(priv->padding);
880         }
881
882         /* Init rctrl based on our settings */
883         gfar_write(&priv->regs->rctrl, rctrl);
884
885         if (dev->features & NETIF_F_IP_CSUM)
886                 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
887
888         /* Set the extraction length and index */
889         attrs = ATTRELI_EL(priv->rx_stash_size) |
890                 ATTRELI_EI(priv->rx_stash_index);
891
892         gfar_write(&priv->regs->attreli, attrs);
893
894         /* Start with defaults, and add stashing or locking
895          * depending on the approprate variables */
896         attrs = ATTR_INIT_SETTINGS;
897
898         if (priv->bd_stash_en)
899                 attrs |= ATTR_BDSTASH;
900
901         if (priv->rx_stash_size != 0)
902                 attrs |= ATTR_BUFSTASH;
903
904         gfar_write(&priv->regs->attr, attrs);
905
906         gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
907         gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
908         gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
909
910         /* Start the controller */
911         gfar_start(dev);
912
913         return 0;
914
915 rx_irq_fail:
916         free_irq(priv->interruptTransmit, dev);
917 tx_irq_fail:
918         free_irq(priv->interruptError, dev);
919 err_irq_fail:
920 rx_skb_fail:
921         free_skb_resources(priv);
922 tx_skb_fail:
923         dma_free_coherent(NULL,
924                         sizeof(struct txbd8)*priv->tx_ring_size
925                         + sizeof(struct rxbd8)*priv->rx_ring_size,
926                         priv->tx_bd_base,
927                         gfar_read(&regs->tbase0));
928
929         return err;
930 }
931
932 /* Called when something needs to use the ethernet device */
933 /* Returns 0 for success. */
934 static int gfar_enet_open(struct net_device *dev)
935 {
936         struct gfar_private *priv = netdev_priv(dev);
937         int err;
938
939         napi_enable(&priv->napi);
940
941         /* Initialize a bunch of registers */
942         init_registers(dev);
943
944         gfar_set_mac_address(dev);
945
946         err = init_phy(dev);
947
948         if(err) {
949                 napi_disable(&priv->napi);
950                 return err;
951         }
952
953         err = startup_gfar(dev);
954         if (err)
955                 napi_disable(&priv->napi);
956
957         netif_start_queue(dev);
958
959         return err;
960 }
961
962 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb, struct txbd8 *bdp)
963 {
964         struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
965
966         memset(fcb, 0, GMAC_FCB_LEN);
967
968         return fcb;
969 }
970
971 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
972 {
973         u8 flags = 0;
974
975         /* If we're here, it's a IP packet with a TCP or UDP
976          * payload.  We set it to checksum, using a pseudo-header
977          * we provide
978          */
979         flags = TXFCB_DEFAULT;
980
981         /* Tell the controller what the protocol is */
982         /* And provide the already calculated phcs */
983         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
984                 flags |= TXFCB_UDP;
985                 fcb->phcs = udp_hdr(skb)->check;
986         } else
987                 fcb->phcs = tcp_hdr(skb)->check;
988
989         /* l3os is the distance between the start of the
990          * frame (skb->data) and the start of the IP hdr.
991          * l4os is the distance between the start of the
992          * l3 hdr and the l4 hdr */
993         fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
994         fcb->l4os = skb_network_header_len(skb);
995
996         fcb->flags = flags;
997 }
998
999 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1000 {
1001         fcb->flags |= TXFCB_VLN;
1002         fcb->vlctl = vlan_tx_tag_get(skb);
1003 }
1004
1005 /* This is called by the kernel when a frame is ready for transmission. */
1006 /* It is pointed to by the dev->hard_start_xmit function pointer */
1007 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1008 {
1009         struct gfar_private *priv = netdev_priv(dev);
1010         struct txfcb *fcb = NULL;
1011         struct txbd8 *txbdp;
1012         u16 status;
1013         unsigned long flags;
1014
1015         /* Update transmit stats */
1016         dev->stats.tx_bytes += skb->len;
1017
1018         /* Lock priv now */
1019         spin_lock_irqsave(&priv->txlock, flags);
1020
1021         /* Point at the first free tx descriptor */
1022         txbdp = priv->cur_tx;
1023
1024         /* Clear all but the WRAP status flags */
1025         status = txbdp->status & TXBD_WRAP;
1026
1027         /* Set up checksumming */
1028         if (likely((dev->features & NETIF_F_IP_CSUM)
1029                         && (CHECKSUM_PARTIAL == skb->ip_summed))) {
1030                 fcb = gfar_add_fcb(skb, txbdp);
1031                 status |= TXBD_TOE;
1032                 gfar_tx_checksum(skb, fcb);
1033         }
1034
1035         if (priv->vlan_enable &&
1036                         unlikely(priv->vlgrp && vlan_tx_tag_present(skb))) {
1037                 if (unlikely(NULL == fcb)) {
1038                         fcb = gfar_add_fcb(skb, txbdp);
1039                         status |= TXBD_TOE;
1040                 }
1041
1042                 gfar_tx_vlan(skb, fcb);
1043         }
1044
1045         /* Set buffer length and pointer */
1046         txbdp->length = skb->len;
1047         txbdp->bufPtr = dma_map_single(NULL, skb->data,
1048                         skb->len, DMA_TO_DEVICE);
1049
1050         /* Save the skb pointer so we can free it later */
1051         priv->tx_skbuff[priv->skb_curtx] = skb;
1052
1053         /* Update the current skb pointer (wrapping if this was the last) */
1054         priv->skb_curtx =
1055             (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1056
1057         /* Flag the BD as interrupt-causing */
1058         status |= TXBD_INTERRUPT;
1059
1060         /* Flag the BD as ready to go, last in frame, and  */
1061         /* in need of CRC */
1062         status |= (TXBD_READY | TXBD_LAST | TXBD_CRC);
1063
1064         dev->trans_start = jiffies;
1065
1066         /* The powerpc-specific eieio() is used, as wmb() has too strong
1067          * semantics (it requires synchronization between cacheable and
1068          * uncacheable mappings, which eieio doesn't provide and which we
1069          * don't need), thus requiring a more expensive sync instruction.  At
1070          * some point, the set of architecture-independent barrier functions
1071          * should be expanded to include weaker barriers.
1072          */
1073
1074         eieio();
1075         txbdp->status = status;
1076
1077         /* If this was the last BD in the ring, the next one */
1078         /* is at the beginning of the ring */
1079         if (txbdp->status & TXBD_WRAP)
1080                 txbdp = priv->tx_bd_base;
1081         else
1082                 txbdp++;
1083
1084         /* If the next BD still needs to be cleaned up, then the bds
1085            are full.  We need to tell the kernel to stop sending us stuff. */
1086         if (txbdp == priv->dirty_tx) {
1087                 netif_stop_queue(dev);
1088
1089                 dev->stats.tx_fifo_errors++;
1090         }
1091
1092         /* Update the current txbd to the next one */
1093         priv->cur_tx = txbdp;
1094
1095         /* Tell the DMA to go go go */
1096         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1097
1098         /* Unlock priv */
1099         spin_unlock_irqrestore(&priv->txlock, flags);
1100
1101         return 0;
1102 }
1103
1104 /* Stops the kernel queue, and halts the controller */
1105 static int gfar_close(struct net_device *dev)
1106 {
1107         struct gfar_private *priv = netdev_priv(dev);
1108
1109         napi_disable(&priv->napi);
1110
1111         stop_gfar(dev);
1112
1113         /* Disconnect from the PHY */
1114         phy_disconnect(priv->phydev);
1115         priv->phydev = NULL;
1116
1117         netif_stop_queue(dev);
1118
1119         return 0;
1120 }
1121
1122 /* Changes the mac address if the controller is not running. */
1123 int gfar_set_mac_address(struct net_device *dev)
1124 {
1125         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1126
1127         return 0;
1128 }
1129
1130
1131 /* Enables and disables VLAN insertion/extraction */
1132 static void gfar_vlan_rx_register(struct net_device *dev,
1133                 struct vlan_group *grp)
1134 {
1135         struct gfar_private *priv = netdev_priv(dev);
1136         unsigned long flags;
1137         u32 tempval;
1138
1139         spin_lock_irqsave(&priv->rxlock, flags);
1140
1141         priv->vlgrp = grp;
1142
1143         if (grp) {
1144                 /* Enable VLAN tag insertion */
1145                 tempval = gfar_read(&priv->regs->tctrl);
1146                 tempval |= TCTRL_VLINS;
1147
1148                 gfar_write(&priv->regs->tctrl, tempval);
1149
1150                 /* Enable VLAN tag extraction */
1151                 tempval = gfar_read(&priv->regs->rctrl);
1152                 tempval |= RCTRL_VLEX;
1153                 gfar_write(&priv->regs->rctrl, tempval);
1154         } else {
1155                 /* Disable VLAN tag insertion */
1156                 tempval = gfar_read(&priv->regs->tctrl);
1157                 tempval &= ~TCTRL_VLINS;
1158                 gfar_write(&priv->regs->tctrl, tempval);
1159
1160                 /* Disable VLAN tag extraction */
1161                 tempval = gfar_read(&priv->regs->rctrl);
1162                 tempval &= ~RCTRL_VLEX;
1163                 gfar_write(&priv->regs->rctrl, tempval);
1164         }
1165
1166         spin_unlock_irqrestore(&priv->rxlock, flags);
1167 }
1168
1169 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1170 {
1171         int tempsize, tempval;
1172         struct gfar_private *priv = netdev_priv(dev);
1173         int oldsize = priv->rx_buffer_size;
1174         int frame_size = new_mtu + ETH_HLEN;
1175
1176         if (priv->vlan_enable)
1177                 frame_size += VLAN_ETH_HLEN;
1178
1179         if (gfar_uses_fcb(priv))
1180                 frame_size += GMAC_FCB_LEN;
1181
1182         frame_size += priv->padding;
1183
1184         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1185                 if (netif_msg_drv(priv))
1186                         printk(KERN_ERR "%s: Invalid MTU setting\n",
1187                                         dev->name);
1188                 return -EINVAL;
1189         }
1190
1191         tempsize =
1192             (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1193             INCREMENTAL_BUFFER_SIZE;
1194
1195         /* Only stop and start the controller if it isn't already
1196          * stopped, and we changed something */
1197         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1198                 stop_gfar(dev);
1199
1200         priv->rx_buffer_size = tempsize;
1201
1202         dev->mtu = new_mtu;
1203
1204         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1205         gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1206
1207         /* If the mtu is larger than the max size for standard
1208          * ethernet frames (ie, a jumbo frame), then set maccfg2
1209          * to allow huge frames, and to check the length */
1210         tempval = gfar_read(&priv->regs->maccfg2);
1211
1212         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1213                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1214         else
1215                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1216
1217         gfar_write(&priv->regs->maccfg2, tempval);
1218
1219         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1220                 startup_gfar(dev);
1221
1222         return 0;
1223 }
1224
1225 /* gfar_timeout gets called when a packet has not been
1226  * transmitted after a set amount of time.
1227  * For now, assume that clearing out all the structures, and
1228  * starting over will fix the problem. */
1229 static void gfar_timeout(struct net_device *dev)
1230 {
1231         struct gfar_private *priv = netdev_priv(dev);
1232
1233         dev->stats.tx_errors++;
1234
1235         if (dev->flags & IFF_UP) {
1236                 stop_gfar(dev);
1237                 startup_gfar(dev);
1238         }
1239
1240         netif_schedule(dev);
1241 }
1242
1243 /* Interrupt Handler for Transmit complete */
1244 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1245 {
1246         struct net_device *dev = (struct net_device *) dev_id;
1247         struct gfar_private *priv = netdev_priv(dev);
1248         struct txbd8 *bdp;
1249
1250         /* Clear IEVENT */
1251         gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
1252
1253         /* Lock priv */
1254         spin_lock(&priv->txlock);
1255         bdp = priv->dirty_tx;
1256         while ((bdp->status & TXBD_READY) == 0) {
1257                 /* If dirty_tx and cur_tx are the same, then either the */
1258                 /* ring is empty or full now (it could only be full in the beginning, */
1259                 /* obviously).  If it is empty, we are done. */
1260                 if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0))
1261                         break;
1262
1263                 dev->stats.tx_packets++;
1264
1265                 /* Deferred means some collisions occurred during transmit, */
1266                 /* but we eventually sent the packet. */
1267                 if (bdp->status & TXBD_DEF)
1268                         dev->stats.collisions++;
1269
1270                 /* Free the sk buffer associated with this TxBD */
1271                 dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]);
1272                 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
1273                 priv->skb_dirtytx =
1274                     (priv->skb_dirtytx +
1275                      1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1276
1277                 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1278                 if (bdp->status & TXBD_WRAP)
1279                         bdp = priv->tx_bd_base;
1280                 else
1281                         bdp++;
1282
1283                 /* Move dirty_tx to be the next bd */
1284                 priv->dirty_tx = bdp;
1285
1286                 /* We freed a buffer, so now we can restart transmission */
1287                 if (netif_queue_stopped(dev))
1288                         netif_wake_queue(dev);
1289         } /* while ((bdp->status & TXBD_READY) == 0) */
1290
1291         /* If we are coalescing the interrupts, reset the timer */
1292         /* Otherwise, clear it */
1293         if (priv->txcoalescing)
1294                 gfar_write(&priv->regs->txic,
1295                            mk_ic_value(priv->txcount, priv->txtime));
1296         else
1297                 gfar_write(&priv->regs->txic, 0);
1298
1299         spin_unlock(&priv->txlock);
1300
1301         return IRQ_HANDLED;
1302 }
1303
1304 struct sk_buff * gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp)
1305 {
1306         unsigned int alignamount;
1307         struct gfar_private *priv = netdev_priv(dev);
1308         struct sk_buff *skb = NULL;
1309         unsigned int timeout = SKB_ALLOC_TIMEOUT;
1310
1311         /* We have to allocate the skb, so keep trying till we succeed */
1312         while ((!skb) && timeout--)
1313                 skb = dev_alloc_skb(priv->rx_buffer_size + RXBUF_ALIGNMENT);
1314
1315         if (NULL == skb)
1316                 return NULL;
1317
1318         alignamount = RXBUF_ALIGNMENT -
1319                 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
1320
1321         /* We need the data buffer to be aligned properly.  We will reserve
1322          * as many bytes as needed to align the data properly
1323          */
1324         skb_reserve(skb, alignamount);
1325
1326         bdp->bufPtr = dma_map_single(NULL, skb->data,
1327                         priv->rx_buffer_size, DMA_FROM_DEVICE);
1328
1329         bdp->length = 0;
1330
1331         /* Mark the buffer empty */
1332         eieio();
1333         bdp->status |= (RXBD_EMPTY | RXBD_INTERRUPT);
1334
1335         return skb;
1336 }
1337
1338 static inline void count_errors(unsigned short status, struct gfar_private *priv)
1339 {
1340         struct net_device_stats *stats = &dev->stats;
1341         struct gfar_extra_stats *estats = &priv->extra_stats;
1342
1343         /* If the packet was truncated, none of the other errors
1344          * matter */
1345         if (status & RXBD_TRUNCATED) {
1346                 stats->rx_length_errors++;
1347
1348                 estats->rx_trunc++;
1349
1350                 return;
1351         }
1352         /* Count the errors, if there were any */
1353         if (status & (RXBD_LARGE | RXBD_SHORT)) {
1354                 stats->rx_length_errors++;
1355
1356                 if (status & RXBD_LARGE)
1357                         estats->rx_large++;
1358                 else
1359                         estats->rx_short++;
1360         }
1361         if (status & RXBD_NONOCTET) {
1362                 stats->rx_frame_errors++;
1363                 estats->rx_nonoctet++;
1364         }
1365         if (status & RXBD_CRCERR) {
1366                 estats->rx_crcerr++;
1367                 stats->rx_crc_errors++;
1368         }
1369         if (status & RXBD_OVERRUN) {
1370                 estats->rx_overrun++;
1371                 stats->rx_crc_errors++;
1372         }
1373 }
1374
1375 irqreturn_t gfar_receive(int irq, void *dev_id)
1376 {
1377         struct net_device *dev = (struct net_device *) dev_id;
1378         struct gfar_private *priv = netdev_priv(dev);
1379 #ifdef CONFIG_GFAR_NAPI
1380         u32 tempval;
1381 #else
1382         unsigned long flags;
1383 #endif
1384
1385         /* Clear IEVENT, so rx interrupt isn't called again
1386          * because of this interrupt */
1387         gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
1388
1389         /* support NAPI */
1390 #ifdef CONFIG_GFAR_NAPI
1391         if (netif_rx_schedule_prep(dev, &priv->napi)) {
1392                 tempval = gfar_read(&priv->regs->imask);
1393                 tempval &= IMASK_RX_DISABLED;
1394                 gfar_write(&priv->regs->imask, tempval);
1395
1396                 __netif_rx_schedule(dev, &priv->napi);
1397         } else {
1398                 if (netif_msg_rx_err(priv))
1399                         printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
1400                                 dev->name, gfar_read(&priv->regs->ievent),
1401                                 gfar_read(&priv->regs->imask));
1402         }
1403 #else
1404
1405         spin_lock_irqsave(&priv->rxlock, flags);
1406         gfar_clean_rx_ring(dev, priv->rx_ring_size);
1407
1408         /* If we are coalescing interrupts, update the timer */
1409         /* Otherwise, clear it */
1410         if (priv->rxcoalescing)
1411                 gfar_write(&priv->regs->rxic,
1412                            mk_ic_value(priv->rxcount, priv->rxtime));
1413         else
1414                 gfar_write(&priv->regs->rxic, 0);
1415
1416         spin_unlock_irqrestore(&priv->rxlock, flags);
1417 #endif
1418
1419         return IRQ_HANDLED;
1420 }
1421
1422 static inline int gfar_rx_vlan(struct sk_buff *skb,
1423                 struct vlan_group *vlgrp, unsigned short vlctl)
1424 {
1425 #ifdef CONFIG_GFAR_NAPI
1426         return vlan_hwaccel_receive_skb(skb, vlgrp, vlctl);
1427 #else
1428         return vlan_hwaccel_rx(skb, vlgrp, vlctl);
1429 #endif
1430 }
1431
1432 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1433 {
1434         /* If valid headers were found, and valid sums
1435          * were verified, then we tell the kernel that no
1436          * checksumming is necessary.  Otherwise, it is */
1437         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1438                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1439         else
1440                 skb->ip_summed = CHECKSUM_NONE;
1441 }
1442
1443
1444 static inline struct rxfcb *gfar_get_fcb(struct sk_buff *skb)
1445 {
1446         struct rxfcb *fcb = (struct rxfcb *)skb->data;
1447
1448         /* Remove the FCB from the skb */
1449         skb_pull(skb, GMAC_FCB_LEN);
1450
1451         return fcb;
1452 }
1453
1454 /* gfar_process_frame() -- handle one incoming packet if skb
1455  * isn't NULL.  */
1456 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1457                 int length)
1458 {
1459         struct gfar_private *priv = netdev_priv(dev);
1460         struct rxfcb *fcb = NULL;
1461
1462         if (NULL == skb) {
1463                 if (netif_msg_rx_err(priv))
1464                         printk(KERN_WARNING "%s: Missing skb!!.\n", dev->name);
1465                 dev->stats.rx_dropped++;
1466                 priv->extra_stats.rx_skbmissing++;
1467         } else {
1468                 int ret;
1469
1470                 /* Prep the skb for the packet */
1471                 skb_put(skb, length);
1472
1473                 /* Grab the FCB if there is one */
1474                 if (gfar_uses_fcb(priv))
1475                         fcb = gfar_get_fcb(skb);
1476
1477                 /* Remove the padded bytes, if there are any */
1478                 if (priv->padding)
1479                         skb_pull(skb, priv->padding);
1480
1481                 if (priv->rx_csum_enable)
1482                         gfar_rx_checksum(skb, fcb);
1483
1484                 /* Tell the skb what kind of packet this is */
1485                 skb->protocol = eth_type_trans(skb, dev);
1486
1487                 /* Send the packet up the stack */
1488                 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1489                         ret = gfar_rx_vlan(skb, priv->vlgrp, fcb->vlctl);
1490                 else
1491                         ret = RECEIVE(skb);
1492
1493                 if (NET_RX_DROP == ret)
1494                         priv->extra_stats.kernel_dropped++;
1495         }
1496
1497         return 0;
1498 }
1499
1500 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1501  *   until the budget/quota has been reached. Returns the number
1502  *   of frames handled
1503  */
1504 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1505 {
1506         struct rxbd8 *bdp;
1507         struct sk_buff *skb;
1508         u16 pkt_len;
1509         int howmany = 0;
1510         struct gfar_private *priv = netdev_priv(dev);
1511
1512         /* Get the first full descriptor */
1513         bdp = priv->cur_rx;
1514
1515         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1516                 rmb();
1517                 skb = priv->rx_skbuff[priv->skb_currx];
1518
1519                 if (!(bdp->status &
1520                       (RXBD_LARGE | RXBD_SHORT | RXBD_NONOCTET
1521                        | RXBD_CRCERR | RXBD_OVERRUN | RXBD_TRUNCATED))) {
1522                         /* Increment the number of packets */
1523                         dev->stats.rx_packets++;
1524                         howmany++;
1525
1526                         /* Remove the FCS from the packet length */
1527                         pkt_len = bdp->length - 4;
1528
1529                         gfar_process_frame(dev, skb, pkt_len);
1530
1531                         dev->stats.rx_bytes += pkt_len;
1532                 } else {
1533                         count_errors(bdp->status, priv);
1534
1535                         if (skb)
1536                                 dev_kfree_skb_any(skb);
1537
1538                         priv->rx_skbuff[priv->skb_currx] = NULL;
1539                 }
1540
1541                 dev->last_rx = jiffies;
1542
1543                 /* Clear the status flags for this buffer */
1544                 bdp->status &= ~RXBD_STATS;
1545
1546                 /* Add another skb for the future */
1547                 skb = gfar_new_skb(dev, bdp);
1548                 priv->rx_skbuff[priv->skb_currx] = skb;
1549
1550                 /* Update to the next pointer */
1551                 if (bdp->status & RXBD_WRAP)
1552                         bdp = priv->rx_bd_base;
1553                 else
1554                         bdp++;
1555
1556                 /* update to point at the next skb */
1557                 priv->skb_currx =
1558                     (priv->skb_currx +
1559                      1) & RX_RING_MOD_MASK(priv->rx_ring_size);
1560
1561         }
1562
1563         /* Update the current rxbd pointer to be the next one */
1564         priv->cur_rx = bdp;
1565
1566         return howmany;
1567 }
1568
1569 #ifdef CONFIG_GFAR_NAPI
1570 static int gfar_poll(struct napi_struct *napi, int budget)
1571 {
1572         struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
1573         struct net_device *dev = priv->dev;
1574         int howmany;
1575
1576         howmany = gfar_clean_rx_ring(dev, budget);
1577
1578         if (howmany < budget) {
1579                 netif_rx_complete(dev, napi);
1580
1581                 /* Clear the halt bit in RSTAT */
1582                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1583
1584                 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1585
1586                 /* If we are coalescing interrupts, update the timer */
1587                 /* Otherwise, clear it */
1588                 if (priv->rxcoalescing)
1589                         gfar_write(&priv->regs->rxic,
1590                                    mk_ic_value(priv->rxcount, priv->rxtime));
1591                 else
1592                         gfar_write(&priv->regs->rxic, 0);
1593         }
1594
1595         return howmany;
1596 }
1597 #endif
1598
1599 #ifdef CONFIG_NET_POLL_CONTROLLER
1600 /*
1601  * Polling 'interrupt' - used by things like netconsole to send skbs
1602  * without having to re-enable interrupts. It's not called while
1603  * the interrupt routine is executing.
1604  */
1605 static void gfar_netpoll(struct net_device *dev)
1606 {
1607         struct gfar_private *priv = netdev_priv(dev);
1608
1609         /* If the device has multiple interrupts, run tx/rx */
1610         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1611                 disable_irq(priv->interruptTransmit);
1612                 disable_irq(priv->interruptReceive);
1613                 disable_irq(priv->interruptError);
1614                 gfar_interrupt(priv->interruptTransmit, dev);
1615                 enable_irq(priv->interruptError);
1616                 enable_irq(priv->interruptReceive);
1617                 enable_irq(priv->interruptTransmit);
1618         } else {
1619                 disable_irq(priv->interruptTransmit);
1620                 gfar_interrupt(priv->interruptTransmit, dev);
1621                 enable_irq(priv->interruptTransmit);
1622         }
1623 }
1624 #endif
1625
1626 /* The interrupt handler for devices with one interrupt */
1627 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1628 {
1629         struct net_device *dev = dev_id;
1630         struct gfar_private *priv = netdev_priv(dev);
1631
1632         /* Save ievent for future reference */
1633         u32 events = gfar_read(&priv->regs->ievent);
1634
1635         /* Check for reception */
1636         if (events & IEVENT_RX_MASK)
1637                 gfar_receive(irq, dev_id);
1638
1639         /* Check for transmit completion */
1640         if (events & IEVENT_TX_MASK)
1641                 gfar_transmit(irq, dev_id);
1642
1643         /* Check for errors */
1644         if (events & IEVENT_ERR_MASK)
1645                 gfar_error(irq, dev_id);
1646
1647         return IRQ_HANDLED;
1648 }
1649
1650 /* Called every time the controller might need to be made
1651  * aware of new link state.  The PHY code conveys this
1652  * information through variables in the phydev structure, and this
1653  * function converts those variables into the appropriate
1654  * register values, and can bring down the device if needed.
1655  */
1656 static void adjust_link(struct net_device *dev)
1657 {
1658         struct gfar_private *priv = netdev_priv(dev);
1659         struct gfar __iomem *regs = priv->regs;
1660         unsigned long flags;
1661         struct phy_device *phydev = priv->phydev;
1662         int new_state = 0;
1663
1664         spin_lock_irqsave(&priv->txlock, flags);
1665         if (phydev->link) {
1666                 u32 tempval = gfar_read(&regs->maccfg2);
1667                 u32 ecntrl = gfar_read(&regs->ecntrl);
1668
1669                 /* Now we make sure that we can be in full duplex mode.
1670                  * If not, we operate in half-duplex mode. */
1671                 if (phydev->duplex != priv->oldduplex) {
1672                         new_state = 1;
1673                         if (!(phydev->duplex))
1674                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
1675                         else
1676                                 tempval |= MACCFG2_FULL_DUPLEX;
1677
1678                         priv->oldduplex = phydev->duplex;
1679                 }
1680
1681                 if (phydev->speed != priv->oldspeed) {
1682                         new_state = 1;
1683                         switch (phydev->speed) {
1684                         case 1000:
1685                                 tempval =
1686                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1687                                 break;
1688                         case 100:
1689                         case 10:
1690                                 tempval =
1691                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1692
1693                                 /* Reduced mode distinguishes
1694                                  * between 10 and 100 */
1695                                 if (phydev->speed == SPEED_100)
1696                                         ecntrl |= ECNTRL_R100;
1697                                 else
1698                                         ecntrl &= ~(ECNTRL_R100);
1699                                 break;
1700                         default:
1701                                 if (netif_msg_link(priv))
1702                                         printk(KERN_WARNING
1703                                                 "%s: Ack!  Speed (%d) is not 10/100/1000!\n",
1704                                                 dev->name, phydev->speed);
1705                                 break;
1706                         }
1707
1708                         priv->oldspeed = phydev->speed;
1709                 }
1710
1711                 gfar_write(&regs->maccfg2, tempval);
1712                 gfar_write(&regs->ecntrl, ecntrl);
1713
1714                 if (!priv->oldlink) {
1715                         new_state = 1;
1716                         priv->oldlink = 1;
1717                         netif_schedule(dev);
1718                 }
1719         } else if (priv->oldlink) {
1720                 new_state = 1;
1721                 priv->oldlink = 0;
1722                 priv->oldspeed = 0;
1723                 priv->oldduplex = -1;
1724         }
1725
1726         if (new_state && netif_msg_link(priv))
1727                 phy_print_status(phydev);
1728
1729         spin_unlock_irqrestore(&priv->txlock, flags);
1730 }
1731
1732 /* Update the hash table based on the current list of multicast
1733  * addresses we subscribe to.  Also, change the promiscuity of
1734  * the device based on the flags (this function is called
1735  * whenever dev->flags is changed */
1736 static void gfar_set_multi(struct net_device *dev)
1737 {
1738         struct dev_mc_list *mc_ptr;
1739         struct gfar_private *priv = netdev_priv(dev);
1740         struct gfar __iomem *regs = priv->regs;
1741         u32 tempval;
1742
1743         if(dev->flags & IFF_PROMISC) {
1744                 /* Set RCTRL to PROM */
1745                 tempval = gfar_read(&regs->rctrl);
1746                 tempval |= RCTRL_PROM;
1747                 gfar_write(&regs->rctrl, tempval);
1748         } else {
1749                 /* Set RCTRL to not PROM */
1750                 tempval = gfar_read(&regs->rctrl);
1751                 tempval &= ~(RCTRL_PROM);
1752                 gfar_write(&regs->rctrl, tempval);
1753         }
1754
1755         if(dev->flags & IFF_ALLMULTI) {
1756                 /* Set the hash to rx all multicast frames */
1757                 gfar_write(&regs->igaddr0, 0xffffffff);
1758                 gfar_write(&regs->igaddr1, 0xffffffff);
1759                 gfar_write(&regs->igaddr2, 0xffffffff);
1760                 gfar_write(&regs->igaddr3, 0xffffffff);
1761                 gfar_write(&regs->igaddr4, 0xffffffff);
1762                 gfar_write(&regs->igaddr5, 0xffffffff);
1763                 gfar_write(&regs->igaddr6, 0xffffffff);
1764                 gfar_write(&regs->igaddr7, 0xffffffff);
1765                 gfar_write(&regs->gaddr0, 0xffffffff);
1766                 gfar_write(&regs->gaddr1, 0xffffffff);
1767                 gfar_write(&regs->gaddr2, 0xffffffff);
1768                 gfar_write(&regs->gaddr3, 0xffffffff);
1769                 gfar_write(&regs->gaddr4, 0xffffffff);
1770                 gfar_write(&regs->gaddr5, 0xffffffff);
1771                 gfar_write(&regs->gaddr6, 0xffffffff);
1772                 gfar_write(&regs->gaddr7, 0xffffffff);
1773         } else {
1774                 int em_num;
1775                 int idx;
1776
1777                 /* zero out the hash */
1778                 gfar_write(&regs->igaddr0, 0x0);
1779                 gfar_write(&regs->igaddr1, 0x0);
1780                 gfar_write(&regs->igaddr2, 0x0);
1781                 gfar_write(&regs->igaddr3, 0x0);
1782                 gfar_write(&regs->igaddr4, 0x0);
1783                 gfar_write(&regs->igaddr5, 0x0);
1784                 gfar_write(&regs->igaddr6, 0x0);
1785                 gfar_write(&regs->igaddr7, 0x0);
1786                 gfar_write(&regs->gaddr0, 0x0);
1787                 gfar_write(&regs->gaddr1, 0x0);
1788                 gfar_write(&regs->gaddr2, 0x0);
1789                 gfar_write(&regs->gaddr3, 0x0);
1790                 gfar_write(&regs->gaddr4, 0x0);
1791                 gfar_write(&regs->gaddr5, 0x0);
1792                 gfar_write(&regs->gaddr6, 0x0);
1793                 gfar_write(&regs->gaddr7, 0x0);
1794
1795                 /* If we have extended hash tables, we need to
1796                  * clear the exact match registers to prepare for
1797                  * setting them */
1798                 if (priv->extended_hash) {
1799                         em_num = GFAR_EM_NUM + 1;
1800                         gfar_clear_exact_match(dev);
1801                         idx = 1;
1802                 } else {
1803                         idx = 0;
1804                         em_num = 0;
1805                 }
1806
1807                 if(dev->mc_count == 0)
1808                         return;
1809
1810                 /* Parse the list, and set the appropriate bits */
1811                 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
1812                         if (idx < em_num) {
1813                                 gfar_set_mac_for_addr(dev, idx,
1814                                                 mc_ptr->dmi_addr);
1815                                 idx++;
1816                         } else
1817                                 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
1818                 }
1819         }
1820
1821         return;
1822 }
1823
1824
1825 /* Clears each of the exact match registers to zero, so they
1826  * don't interfere with normal reception */
1827 static void gfar_clear_exact_match(struct net_device *dev)
1828 {
1829         int idx;
1830         u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
1831
1832         for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
1833                 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
1834 }
1835
1836 /* Set the appropriate hash bit for the given addr */
1837 /* The algorithm works like so:
1838  * 1) Take the Destination Address (ie the multicast address), and
1839  * do a CRC on it (little endian), and reverse the bits of the
1840  * result.
1841  * 2) Use the 8 most significant bits as a hash into a 256-entry
1842  * table.  The table is controlled through 8 32-bit registers:
1843  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
1844  * gaddr7.  This means that the 3 most significant bits in the
1845  * hash index which gaddr register to use, and the 5 other bits
1846  * indicate which bit (assuming an IBM numbering scheme, which
1847  * for PowerPC (tm) is usually the case) in the register holds
1848  * the entry. */
1849 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
1850 {
1851         u32 tempval;
1852         struct gfar_private *priv = netdev_priv(dev);
1853         u32 result = ether_crc(MAC_ADDR_LEN, addr);
1854         int width = priv->hash_width;
1855         u8 whichbit = (result >> (32 - width)) & 0x1f;
1856         u8 whichreg = result >> (32 - width + 5);
1857         u32 value = (1 << (31-whichbit));
1858
1859         tempval = gfar_read(priv->hash_regs[whichreg]);
1860         tempval |= value;
1861         gfar_write(priv->hash_regs[whichreg], tempval);
1862
1863         return;
1864 }
1865
1866
1867 /* There are multiple MAC Address register pairs on some controllers
1868  * This function sets the numth pair to a given address
1869  */
1870 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
1871 {
1872         struct gfar_private *priv = netdev_priv(dev);
1873         int idx;
1874         char tmpbuf[MAC_ADDR_LEN];
1875         u32 tempval;
1876         u32 __iomem *macptr = &priv->regs->macstnaddr1;
1877
1878         macptr += num*2;
1879
1880         /* Now copy it into the mac registers backwards, cuz */
1881         /* little endian is silly */
1882         for (idx = 0; idx < MAC_ADDR_LEN; idx++)
1883                 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
1884
1885         gfar_write(macptr, *((u32 *) (tmpbuf)));
1886
1887         tempval = *((u32 *) (tmpbuf + 4));
1888
1889         gfar_write(macptr+1, tempval);
1890 }
1891
1892 /* GFAR error interrupt handler */
1893 static irqreturn_t gfar_error(int irq, void *dev_id)
1894 {
1895         struct net_device *dev = dev_id;
1896         struct gfar_private *priv = netdev_priv(dev);
1897
1898         /* Save ievent for future reference */
1899         u32 events = gfar_read(&priv->regs->ievent);
1900
1901         /* Clear IEVENT */
1902         gfar_write(&priv->regs->ievent, IEVENT_ERR_MASK);
1903
1904         /* Hmm... */
1905         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
1906                 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
1907                        dev->name, events, gfar_read(&priv->regs->imask));
1908
1909         /* Update the error counters */
1910         if (events & IEVENT_TXE) {
1911                 dev->stats.tx_errors++;
1912
1913                 if (events & IEVENT_LC)
1914                         dev->stats.tx_window_errors++;
1915                 if (events & IEVENT_CRL)
1916                         dev->stats.tx_aborted_errors++;
1917                 if (events & IEVENT_XFUN) {
1918                         if (netif_msg_tx_err(priv))
1919                                 printk(KERN_DEBUG "%s: TX FIFO underrun, "
1920                                        "packet dropped.\n", dev->name);
1921                         dev->stats.tx_dropped++;
1922                         priv->extra_stats.tx_underrun++;
1923
1924                         /* Reactivate the Tx Queues */
1925                         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1926                 }
1927                 if (netif_msg_tx_err(priv))
1928                         printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
1929         }
1930         if (events & IEVENT_BSY) {
1931                 dev->stats.rx_errors++;
1932                 priv->extra_stats.rx_bsy++;
1933
1934                 gfar_receive(irq, dev_id);
1935
1936 #ifndef CONFIG_GFAR_NAPI
1937                 /* Clear the halt bit in RSTAT */
1938                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1939 #endif
1940
1941                 if (netif_msg_rx_err(priv))
1942                         printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
1943                                dev->name, gfar_read(&priv->regs->rstat));
1944         }
1945         if (events & IEVENT_BABR) {
1946                 dev->stats.rx_errors++;
1947                 priv->extra_stats.rx_babr++;
1948
1949                 if (netif_msg_rx_err(priv))
1950                         printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
1951         }
1952         if (events & IEVENT_EBERR) {
1953                 priv->extra_stats.eberr++;
1954                 if (netif_msg_rx_err(priv))
1955                         printk(KERN_DEBUG "%s: bus error\n", dev->name);
1956         }
1957         if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
1958                 printk(KERN_DEBUG "%s: control frame\n", dev->name);
1959
1960         if (events & IEVENT_BABT) {
1961                 priv->extra_stats.tx_babt++;
1962                 if (netif_msg_tx_err(priv))
1963                         printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
1964         }
1965         return IRQ_HANDLED;
1966 }
1967
1968 /* Structure for a device driver */
1969 static struct platform_driver gfar_driver = {
1970         .probe = gfar_probe,
1971         .remove = gfar_remove,
1972         .driver = {
1973                 .name = "fsl-gianfar",
1974         },
1975 };
1976
1977 static int __init gfar_init(void)
1978 {
1979         int err = gfar_mdio_init();
1980
1981         if (err)
1982                 return err;
1983
1984         err = platform_driver_register(&gfar_driver);
1985
1986         if (err)
1987                 gfar_mdio_exit();
1988
1989         return err;
1990 }
1991
1992 static void __exit gfar_exit(void)
1993 {
1994         platform_driver_unregister(&gfar_driver);
1995         gfar_mdio_exit();
1996 }
1997
1998 module_init(gfar_init);
1999 module_exit(gfar_exit);
2000