gianfar: Cleanup compile warning caused by 0795af57
[safe/jmp/linux-2.6] / drivers / net / gianfar.c
1 /*
2  * drivers/net/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  *
12  * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13  * Copyright (c) 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through platform_device.  Structures which
29  *  define the configuration needed by the board are defined in a
30  *  board structure in arch/ppc/platforms (though I do not
31  *  discount the possibility that other architectures could one
32  *  day be supported.
33  *
34  *  The Gianfar Ethernet Controller uses a ring of buffer
35  *  descriptors.  The beginning is indicated by a register
36  *  pointing to the physical address of the start of the ring.
37  *  The end is determined by a "wrap" bit being set in the
38  *  last descriptor of the ring.
39  *
40  *  When a packet is received, the RXF bit in the
41  *  IEVENT register is set, triggering an interrupt when the
42  *  corresponding bit in the IMASK register is also set (if
43  *  interrupt coalescing is active, then the interrupt may not
44  *  happen immediately, but will wait until either a set number
45  *  of frames or amount of time have passed).  In NAPI, the
46  *  interrupt handler will signal there is work to be done, and
47  *  exit.  Without NAPI, the packet(s) will be handled
48  *  immediately.  Both methods will start at the last known empty
49  *  descriptor, and process every subsequent descriptor until there
50  *  are none left with data (NAPI will stop after a set number of
51  *  packets to give time to other tasks, but will eventually
52  *  process all the packets).  The data arrives inside a
53  *  pre-allocated skb, and so after the skb is passed up to the
54  *  stack, a new skb must be allocated, and the address field in
55  *  the buffer descriptor must be updated to indicate this new
56  *  skb.
57  *
58  *  When the kernel requests that a packet be transmitted, the
59  *  driver starts where it left off last time, and points the
60  *  descriptor at the buffer which was passed in.  The driver
61  *  then informs the DMA engine that there are packets ready to
62  *  be transmitted.  Once the controller is finished transmitting
63  *  the packet, an interrupt may be triggered (under the same
64  *  conditions as for reception, but depending on the TXF bit).
65  *  The driver then cleans up the buffer.
66  */
67
68 #include <linux/kernel.h>
69 #include <linux/string.h>
70 #include <linux/errno.h>
71 #include <linux/unistd.h>
72 #include <linux/slab.h>
73 #include <linux/interrupt.h>
74 #include <linux/init.h>
75 #include <linux/delay.h>
76 #include <linux/netdevice.h>
77 #include <linux/etherdevice.h>
78 #include <linux/skbuff.h>
79 #include <linux/if_vlan.h>
80 #include <linux/spinlock.h>
81 #include <linux/mm.h>
82 #include <linux/platform_device.h>
83 #include <linux/ip.h>
84 #include <linux/tcp.h>
85 #include <linux/udp.h>
86 #include <linux/in.h>
87
88 #include <asm/io.h>
89 #include <asm/irq.h>
90 #include <asm/uaccess.h>
91 #include <linux/module.h>
92 #include <linux/dma-mapping.h>
93 #include <linux/crc32.h>
94 #include <linux/mii.h>
95 #include <linux/phy.h>
96
97 #include "gianfar.h"
98 #include "gianfar_mii.h"
99
100 #define TX_TIMEOUT      (1*HZ)
101 #define SKB_ALLOC_TIMEOUT 1000000
102 #undef BRIEF_GFAR_ERRORS
103 #undef VERBOSE_GFAR_ERRORS
104
105 #ifdef CONFIG_GFAR_NAPI
106 #define RECEIVE(x) netif_receive_skb(x)
107 #else
108 #define RECEIVE(x) netif_rx(x)
109 #endif
110
111 const char gfar_driver_name[] = "Gianfar Ethernet";
112 const char gfar_driver_version[] = "1.3";
113
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_timeout(struct net_device *dev);
117 static int gfar_close(struct net_device *dev);
118 struct sk_buff *gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp);
119 static int gfar_set_mac_address(struct net_device *dev);
120 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
121 static irqreturn_t gfar_error(int irq, void *dev_id);
122 static irqreturn_t gfar_transmit(int irq, void *dev_id);
123 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
124 static void adjust_link(struct net_device *dev);
125 static void init_registers(struct net_device *dev);
126 static int init_phy(struct net_device *dev);
127 static int gfar_probe(struct platform_device *pdev);
128 static int gfar_remove(struct platform_device *pdev);
129 static void free_skb_resources(struct gfar_private *priv);
130 static void gfar_set_multi(struct net_device *dev);
131 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
132 static void gfar_configure_serdes(struct net_device *dev);
133 extern int gfar_local_mdio_write(struct gfar_mii *regs, int mii_id, int regnum, u16 value);
134 extern int gfar_local_mdio_read(struct gfar_mii *regs, int mii_id, int regnum);
135 #ifdef CONFIG_GFAR_NAPI
136 static int gfar_poll(struct napi_struct *napi, int budget);
137 #endif
138 #ifdef CONFIG_NET_POLL_CONTROLLER
139 static void gfar_netpoll(struct net_device *dev);
140 #endif
141 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
142 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length);
143 static void gfar_vlan_rx_register(struct net_device *netdev,
144                                 struct vlan_group *grp);
145 void gfar_halt(struct net_device *dev);
146 void gfar_start(struct net_device *dev);
147 static void gfar_clear_exact_match(struct net_device *dev);
148 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
149
150 extern const struct ethtool_ops gfar_ethtool_ops;
151
152 MODULE_AUTHOR("Freescale Semiconductor, Inc");
153 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
154 MODULE_LICENSE("GPL");
155
156 /* Returns 1 if incoming frames use an FCB */
157 static inline int gfar_uses_fcb(struct gfar_private *priv)
158 {
159         return (priv->vlan_enable || priv->rx_csum_enable);
160 }
161
162 /* Set up the ethernet device structure, private data,
163  * and anything else we need before we start */
164 static int gfar_probe(struct platform_device *pdev)
165 {
166         u32 tempval;
167         struct net_device *dev = NULL;
168         struct gfar_private *priv = NULL;
169         struct gianfar_platform_data *einfo;
170         struct resource *r;
171         int err = 0;
172         DECLARE_MAC_BUF(mac);
173
174         einfo = (struct gianfar_platform_data *) pdev->dev.platform_data;
175
176         if (NULL == einfo) {
177                 printk(KERN_ERR "gfar %d: Missing additional data!\n",
178                        pdev->id);
179
180                 return -ENODEV;
181         }
182
183         /* Create an ethernet device instance */
184         dev = alloc_etherdev(sizeof (*priv));
185
186         if (NULL == dev)
187                 return -ENOMEM;
188
189         priv = netdev_priv(dev);
190         priv->dev = dev;
191
192         /* Set the info in the priv to the current info */
193         priv->einfo = einfo;
194
195         /* fill out IRQ fields */
196         if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
197                 priv->interruptTransmit = platform_get_irq_byname(pdev, "tx");
198                 priv->interruptReceive = platform_get_irq_byname(pdev, "rx");
199                 priv->interruptError = platform_get_irq_byname(pdev, "error");
200                 if (priv->interruptTransmit < 0 || priv->interruptReceive < 0 || priv->interruptError < 0)
201                         goto regs_fail;
202         } else {
203                 priv->interruptTransmit = platform_get_irq(pdev, 0);
204                 if (priv->interruptTransmit < 0)
205                         goto regs_fail;
206         }
207
208         /* get a pointer to the register memory */
209         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
210         priv->regs = ioremap(r->start, sizeof (struct gfar));
211
212         if (NULL == priv->regs) {
213                 err = -ENOMEM;
214                 goto regs_fail;
215         }
216
217         spin_lock_init(&priv->txlock);
218         spin_lock_init(&priv->rxlock);
219
220         platform_set_drvdata(pdev, dev);
221
222         /* Stop the DMA engine now, in case it was running before */
223         /* (The firmware could have used it, and left it running). */
224         /* To do this, we write Graceful Receive Stop and Graceful */
225         /* Transmit Stop, and then wait until the corresponding bits */
226         /* in IEVENT indicate the stops have completed. */
227         tempval = gfar_read(&priv->regs->dmactrl);
228         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
229         gfar_write(&priv->regs->dmactrl, tempval);
230
231         tempval = gfar_read(&priv->regs->dmactrl);
232         tempval |= (DMACTRL_GRS | DMACTRL_GTS);
233         gfar_write(&priv->regs->dmactrl, tempval);
234
235         while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC)))
236                 cpu_relax();
237
238         /* Reset MAC layer */
239         gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
240
241         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
242         gfar_write(&priv->regs->maccfg1, tempval);
243
244         /* Initialize MACCFG2. */
245         gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
246
247         /* Initialize ECNTRL */
248         gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
249
250         /* Copy the station address into the dev structure, */
251         memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN);
252
253         /* Set the dev->base_addr to the gfar reg region */
254         dev->base_addr = (unsigned long) (priv->regs);
255
256         SET_NETDEV_DEV(dev, &pdev->dev);
257
258         /* Fill in the dev structure */
259         dev->open = gfar_enet_open;
260         dev->hard_start_xmit = gfar_start_xmit;
261         dev->tx_timeout = gfar_timeout;
262         dev->watchdog_timeo = TX_TIMEOUT;
263 #ifdef CONFIG_GFAR_NAPI
264         netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
265 #endif
266 #ifdef CONFIG_NET_POLL_CONTROLLER
267         dev->poll_controller = gfar_netpoll;
268 #endif
269         dev->stop = gfar_close;
270         dev->change_mtu = gfar_change_mtu;
271         dev->mtu = 1500;
272         dev->set_multicast_list = gfar_set_multi;
273
274         dev->ethtool_ops = &gfar_ethtool_ops;
275
276         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
277                 priv->rx_csum_enable = 1;
278                 dev->features |= NETIF_F_IP_CSUM;
279         } else
280                 priv->rx_csum_enable = 0;
281
282         priv->vlgrp = NULL;
283
284         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
285                 dev->vlan_rx_register = gfar_vlan_rx_register;
286
287                 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
288
289                 priv->vlan_enable = 1;
290         }
291
292         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
293                 priv->extended_hash = 1;
294                 priv->hash_width = 9;
295
296                 priv->hash_regs[0] = &priv->regs->igaddr0;
297                 priv->hash_regs[1] = &priv->regs->igaddr1;
298                 priv->hash_regs[2] = &priv->regs->igaddr2;
299                 priv->hash_regs[3] = &priv->regs->igaddr3;
300                 priv->hash_regs[4] = &priv->regs->igaddr4;
301                 priv->hash_regs[5] = &priv->regs->igaddr5;
302                 priv->hash_regs[6] = &priv->regs->igaddr6;
303                 priv->hash_regs[7] = &priv->regs->igaddr7;
304                 priv->hash_regs[8] = &priv->regs->gaddr0;
305                 priv->hash_regs[9] = &priv->regs->gaddr1;
306                 priv->hash_regs[10] = &priv->regs->gaddr2;
307                 priv->hash_regs[11] = &priv->regs->gaddr3;
308                 priv->hash_regs[12] = &priv->regs->gaddr4;
309                 priv->hash_regs[13] = &priv->regs->gaddr5;
310                 priv->hash_regs[14] = &priv->regs->gaddr6;
311                 priv->hash_regs[15] = &priv->regs->gaddr7;
312
313         } else {
314                 priv->extended_hash = 0;
315                 priv->hash_width = 8;
316
317                 priv->hash_regs[0] = &priv->regs->gaddr0;
318                 priv->hash_regs[1] = &priv->regs->gaddr1;
319                 priv->hash_regs[2] = &priv->regs->gaddr2;
320                 priv->hash_regs[3] = &priv->regs->gaddr3;
321                 priv->hash_regs[4] = &priv->regs->gaddr4;
322                 priv->hash_regs[5] = &priv->regs->gaddr5;
323                 priv->hash_regs[6] = &priv->regs->gaddr6;
324                 priv->hash_regs[7] = &priv->regs->gaddr7;
325         }
326
327         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
328                 priv->padding = DEFAULT_PADDING;
329         else
330                 priv->padding = 0;
331
332         if (dev->features & NETIF_F_IP_CSUM)
333                 dev->hard_header_len += GMAC_FCB_LEN;
334
335         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
336         priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
337         priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
338
339         priv->txcoalescing = DEFAULT_TX_COALESCE;
340         priv->txcount = DEFAULT_TXCOUNT;
341         priv->txtime = DEFAULT_TXTIME;
342         priv->rxcoalescing = DEFAULT_RX_COALESCE;
343         priv->rxcount = DEFAULT_RXCOUNT;
344         priv->rxtime = DEFAULT_RXTIME;
345
346         /* Enable most messages by default */
347         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
348
349         err = register_netdev(dev);
350
351         if (err) {
352                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
353                                 dev->name);
354                 goto register_fail;
355         }
356
357         /* Create all the sysfs files */
358         gfar_init_sysfs(dev);
359
360         /* Print out the device info */
361         printk(KERN_INFO DEVICE_NAME "%s\n",
362                dev->name, print_mac(mac, dev->dev_addr));
363
364         /* Even more device info helps when determining which kernel */
365         /* provided which set of benchmarks. */
366 #ifdef CONFIG_GFAR_NAPI
367         printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
368 #else
369         printk(KERN_INFO "%s: Running with NAPI disabled\n", dev->name);
370 #endif
371         printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
372                dev->name, priv->rx_ring_size, priv->tx_ring_size);
373
374         return 0;
375
376 register_fail:
377         iounmap(priv->regs);
378 regs_fail:
379         free_netdev(dev);
380         return err;
381 }
382
383 static int gfar_remove(struct platform_device *pdev)
384 {
385         struct net_device *dev = platform_get_drvdata(pdev);
386         struct gfar_private *priv = netdev_priv(dev);
387
388         platform_set_drvdata(pdev, NULL);
389
390         iounmap(priv->regs);
391         free_netdev(dev);
392
393         return 0;
394 }
395
396
397 /* Reads the controller's registers to determine what interface
398  * connects it to the PHY.
399  */
400 static phy_interface_t gfar_get_interface(struct net_device *dev)
401 {
402         struct gfar_private *priv = netdev_priv(dev);
403         u32 ecntrl = gfar_read(&priv->regs->ecntrl);
404
405         if (ecntrl & ECNTRL_SGMII_MODE)
406                 return PHY_INTERFACE_MODE_SGMII;
407
408         if (ecntrl & ECNTRL_TBI_MODE) {
409                 if (ecntrl & ECNTRL_REDUCED_MODE)
410                         return PHY_INTERFACE_MODE_RTBI;
411                 else
412                         return PHY_INTERFACE_MODE_TBI;
413         }
414
415         if (ecntrl & ECNTRL_REDUCED_MODE) {
416                 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
417                         return PHY_INTERFACE_MODE_RMII;
418                 else {
419                         phy_interface_t interface = priv->einfo->interface;
420
421                         /*
422                          * This isn't autodetected right now, so it must
423                          * be set by the device tree or platform code.
424                          */
425                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
426                                 return PHY_INTERFACE_MODE_RGMII_ID;
427
428                         return PHY_INTERFACE_MODE_RGMII;
429                 }
430         }
431
432         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
433                 return PHY_INTERFACE_MODE_GMII;
434
435         return PHY_INTERFACE_MODE_MII;
436 }
437
438
439 /* Initializes driver's PHY state, and attaches to the PHY.
440  * Returns 0 on success.
441  */
442 static int init_phy(struct net_device *dev)
443 {
444         struct gfar_private *priv = netdev_priv(dev);
445         uint gigabit_support =
446                 priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
447                 SUPPORTED_1000baseT_Full : 0;
448         struct phy_device *phydev;
449         char phy_id[BUS_ID_SIZE];
450         phy_interface_t interface;
451
452         priv->oldlink = 0;
453         priv->oldspeed = 0;
454         priv->oldduplex = -1;
455
456         snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT, priv->einfo->bus_id, priv->einfo->phy_id);
457
458         interface = gfar_get_interface(dev);
459
460         phydev = phy_connect(dev, phy_id, &adjust_link, 0, interface);
461
462         if (interface == PHY_INTERFACE_MODE_SGMII)
463                 gfar_configure_serdes(dev);
464
465         if (IS_ERR(phydev)) {
466                 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
467                 return PTR_ERR(phydev);
468         }
469
470         /* Remove any features not supported by the controller */
471         phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
472         phydev->advertising = phydev->supported;
473
474         priv->phydev = phydev;
475
476         return 0;
477 }
478
479 static void gfar_configure_serdes(struct net_device *dev)
480 {
481         struct gfar_private *priv = netdev_priv(dev);
482         struct gfar_mii __iomem *regs =
483                         (void __iomem *)&priv->regs->gfar_mii_regs;
484
485         /* Initialise TBI i/f to communicate with serdes (lynx phy) */
486
487         /* Single clk mode, mii mode off(for aerdes communication) */
488         gfar_local_mdio_write(regs, TBIPA_VALUE, MII_TBICON, TBICON_CLK_SELECT);
489
490         /* Supported pause and full-duplex, no half-duplex */
491         gfar_local_mdio_write(regs, TBIPA_VALUE, MII_ADVERTISE,
492                         ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
493                         ADVERTISE_1000XPSE_ASYM);
494
495         /* ANEG enable, restart ANEG, full duplex mode, speed[1] set */
496         gfar_local_mdio_write(regs, TBIPA_VALUE, MII_BMCR, BMCR_ANENABLE |
497                         BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
498 }
499
500 static void init_registers(struct net_device *dev)
501 {
502         struct gfar_private *priv = netdev_priv(dev);
503
504         /* Clear IEVENT */
505         gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
506
507         /* Initialize IMASK */
508         gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
509
510         /* Init hash registers to zero */
511         gfar_write(&priv->regs->igaddr0, 0);
512         gfar_write(&priv->regs->igaddr1, 0);
513         gfar_write(&priv->regs->igaddr2, 0);
514         gfar_write(&priv->regs->igaddr3, 0);
515         gfar_write(&priv->regs->igaddr4, 0);
516         gfar_write(&priv->regs->igaddr5, 0);
517         gfar_write(&priv->regs->igaddr6, 0);
518         gfar_write(&priv->regs->igaddr7, 0);
519
520         gfar_write(&priv->regs->gaddr0, 0);
521         gfar_write(&priv->regs->gaddr1, 0);
522         gfar_write(&priv->regs->gaddr2, 0);
523         gfar_write(&priv->regs->gaddr3, 0);
524         gfar_write(&priv->regs->gaddr4, 0);
525         gfar_write(&priv->regs->gaddr5, 0);
526         gfar_write(&priv->regs->gaddr6, 0);
527         gfar_write(&priv->regs->gaddr7, 0);
528
529         /* Zero out the rmon mib registers if it has them */
530         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
531                 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
532
533                 /* Mask off the CAM interrupts */
534                 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
535                 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
536         }
537
538         /* Initialize the max receive buffer length */
539         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
540
541         /* Initialize the Minimum Frame Length Register */
542         gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
543
544         /* Assign the TBI an address which won't conflict with the PHYs */
545         gfar_write(&priv->regs->tbipa, TBIPA_VALUE);
546 }
547
548
549 /* Halt the receive and transmit queues */
550 void gfar_halt(struct net_device *dev)
551 {
552         struct gfar_private *priv = netdev_priv(dev);
553         struct gfar __iomem *regs = priv->regs;
554         u32 tempval;
555
556         /* Mask all interrupts */
557         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
558
559         /* Clear all interrupts */
560         gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
561
562         /* Stop the DMA, and wait for it to stop */
563         tempval = gfar_read(&priv->regs->dmactrl);
564         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
565             != (DMACTRL_GRS | DMACTRL_GTS)) {
566                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
567                 gfar_write(&priv->regs->dmactrl, tempval);
568
569                 while (!(gfar_read(&priv->regs->ievent) &
570                          (IEVENT_GRSC | IEVENT_GTSC)))
571                         cpu_relax();
572         }
573
574         /* Disable Rx and Tx */
575         tempval = gfar_read(&regs->maccfg1);
576         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
577         gfar_write(&regs->maccfg1, tempval);
578 }
579
580 void stop_gfar(struct net_device *dev)
581 {
582         struct gfar_private *priv = netdev_priv(dev);
583         struct gfar __iomem *regs = priv->regs;
584         unsigned long flags;
585
586         phy_stop(priv->phydev);
587
588         /* Lock it down */
589         spin_lock_irqsave(&priv->txlock, flags);
590         spin_lock(&priv->rxlock);
591
592         gfar_halt(dev);
593
594         spin_unlock(&priv->rxlock);
595         spin_unlock_irqrestore(&priv->txlock, flags);
596
597         /* Free the IRQs */
598         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
599                 free_irq(priv->interruptError, dev);
600                 free_irq(priv->interruptTransmit, dev);
601                 free_irq(priv->interruptReceive, dev);
602         } else {
603                 free_irq(priv->interruptTransmit, dev);
604         }
605
606         free_skb_resources(priv);
607
608         dma_free_coherent(NULL,
609                         sizeof(struct txbd8)*priv->tx_ring_size
610                         + sizeof(struct rxbd8)*priv->rx_ring_size,
611                         priv->tx_bd_base,
612                         gfar_read(&regs->tbase0));
613 }
614
615 /* If there are any tx skbs or rx skbs still around, free them.
616  * Then free tx_skbuff and rx_skbuff */
617 static void free_skb_resources(struct gfar_private *priv)
618 {
619         struct rxbd8 *rxbdp;
620         struct txbd8 *txbdp;
621         int i;
622
623         /* Go through all the buffer descriptors and free their data buffers */
624         txbdp = priv->tx_bd_base;
625
626         for (i = 0; i < priv->tx_ring_size; i++) {
627
628                 if (priv->tx_skbuff[i]) {
629                         dma_unmap_single(NULL, txbdp->bufPtr,
630                                         txbdp->length,
631                                         DMA_TO_DEVICE);
632                         dev_kfree_skb_any(priv->tx_skbuff[i]);
633                         priv->tx_skbuff[i] = NULL;
634                 }
635         }
636
637         kfree(priv->tx_skbuff);
638
639         rxbdp = priv->rx_bd_base;
640
641         /* rx_skbuff is not guaranteed to be allocated, so only
642          * free it and its contents if it is allocated */
643         if(priv->rx_skbuff != NULL) {
644                 for (i = 0; i < priv->rx_ring_size; i++) {
645                         if (priv->rx_skbuff[i]) {
646                                 dma_unmap_single(NULL, rxbdp->bufPtr,
647                                                 priv->rx_buffer_size,
648                                                 DMA_FROM_DEVICE);
649
650                                 dev_kfree_skb_any(priv->rx_skbuff[i]);
651                                 priv->rx_skbuff[i] = NULL;
652                         }
653
654                         rxbdp->status = 0;
655                         rxbdp->length = 0;
656                         rxbdp->bufPtr = 0;
657
658                         rxbdp++;
659                 }
660
661                 kfree(priv->rx_skbuff);
662         }
663 }
664
665 void gfar_start(struct net_device *dev)
666 {
667         struct gfar_private *priv = netdev_priv(dev);
668         struct gfar __iomem *regs = priv->regs;
669         u32 tempval;
670
671         /* Enable Rx and Tx in MACCFG1 */
672         tempval = gfar_read(&regs->maccfg1);
673         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
674         gfar_write(&regs->maccfg1, tempval);
675
676         /* Initialize DMACTRL to have WWR and WOP */
677         tempval = gfar_read(&priv->regs->dmactrl);
678         tempval |= DMACTRL_INIT_SETTINGS;
679         gfar_write(&priv->regs->dmactrl, tempval);
680
681         /* Make sure we aren't stopped */
682         tempval = gfar_read(&priv->regs->dmactrl);
683         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
684         gfar_write(&priv->regs->dmactrl, tempval);
685
686         /* Clear THLT/RHLT, so that the DMA starts polling now */
687         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
688         gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
689
690         /* Unmask the interrupts we look for */
691         gfar_write(&regs->imask, IMASK_DEFAULT);
692 }
693
694 /* Bring the controller up and running */
695 int startup_gfar(struct net_device *dev)
696 {
697         struct txbd8 *txbdp;
698         struct rxbd8 *rxbdp;
699         dma_addr_t addr;
700         unsigned long vaddr;
701         int i;
702         struct gfar_private *priv = netdev_priv(dev);
703         struct gfar __iomem *regs = priv->regs;
704         int err = 0;
705         u32 rctrl = 0;
706         u32 attrs = 0;
707
708         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
709
710         /* Allocate memory for the buffer descriptors */
711         vaddr = (unsigned long) dma_alloc_coherent(NULL,
712                         sizeof (struct txbd8) * priv->tx_ring_size +
713                         sizeof (struct rxbd8) * priv->rx_ring_size,
714                         &addr, GFP_KERNEL);
715
716         if (vaddr == 0) {
717                 if (netif_msg_ifup(priv))
718                         printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
719                                         dev->name);
720                 return -ENOMEM;
721         }
722
723         priv->tx_bd_base = (struct txbd8 *) vaddr;
724
725         /* enet DMA only understands physical addresses */
726         gfar_write(&regs->tbase0, addr);
727
728         /* Start the rx descriptor ring where the tx ring leaves off */
729         addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
730         vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
731         priv->rx_bd_base = (struct rxbd8 *) vaddr;
732         gfar_write(&regs->rbase0, addr);
733
734         /* Setup the skbuff rings */
735         priv->tx_skbuff =
736             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
737                                         priv->tx_ring_size, GFP_KERNEL);
738
739         if (NULL == priv->tx_skbuff) {
740                 if (netif_msg_ifup(priv))
741                         printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
742                                         dev->name);
743                 err = -ENOMEM;
744                 goto tx_skb_fail;
745         }
746
747         for (i = 0; i < priv->tx_ring_size; i++)
748                 priv->tx_skbuff[i] = NULL;
749
750         priv->rx_skbuff =
751             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
752                                         priv->rx_ring_size, GFP_KERNEL);
753
754         if (NULL == priv->rx_skbuff) {
755                 if (netif_msg_ifup(priv))
756                         printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
757                                         dev->name);
758                 err = -ENOMEM;
759                 goto rx_skb_fail;
760         }
761
762         for (i = 0; i < priv->rx_ring_size; i++)
763                 priv->rx_skbuff[i] = NULL;
764
765         /* Initialize some variables in our dev structure */
766         priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
767         priv->cur_rx = priv->rx_bd_base;
768         priv->skb_curtx = priv->skb_dirtytx = 0;
769         priv->skb_currx = 0;
770
771         /* Initialize Transmit Descriptor Ring */
772         txbdp = priv->tx_bd_base;
773         for (i = 0; i < priv->tx_ring_size; i++) {
774                 txbdp->status = 0;
775                 txbdp->length = 0;
776                 txbdp->bufPtr = 0;
777                 txbdp++;
778         }
779
780         /* Set the last descriptor in the ring to indicate wrap */
781         txbdp--;
782         txbdp->status |= TXBD_WRAP;
783
784         rxbdp = priv->rx_bd_base;
785         for (i = 0; i < priv->rx_ring_size; i++) {
786                 struct sk_buff *skb = NULL;
787
788                 rxbdp->status = 0;
789
790                 skb = gfar_new_skb(dev, rxbdp);
791
792                 priv->rx_skbuff[i] = skb;
793
794                 rxbdp++;
795         }
796
797         /* Set the last descriptor in the ring to wrap */
798         rxbdp--;
799         rxbdp->status |= RXBD_WRAP;
800
801         /* If the device has multiple interrupts, register for
802          * them.  Otherwise, only register for the one */
803         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
804                 /* Install our interrupt handlers for Error,
805                  * Transmit, and Receive */
806                 if (request_irq(priv->interruptError, gfar_error,
807                                 0, "enet_error", dev) < 0) {
808                         if (netif_msg_intr(priv))
809                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
810                                         dev->name, priv->interruptError);
811
812                         err = -1;
813                         goto err_irq_fail;
814                 }
815
816                 if (request_irq(priv->interruptTransmit, gfar_transmit,
817                                 0, "enet_tx", dev) < 0) {
818                         if (netif_msg_intr(priv))
819                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
820                                         dev->name, priv->interruptTransmit);
821
822                         err = -1;
823
824                         goto tx_irq_fail;
825                 }
826
827                 if (request_irq(priv->interruptReceive, gfar_receive,
828                                 0, "enet_rx", dev) < 0) {
829                         if (netif_msg_intr(priv))
830                                 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
831                                                 dev->name, priv->interruptReceive);
832
833                         err = -1;
834                         goto rx_irq_fail;
835                 }
836         } else {
837                 if (request_irq(priv->interruptTransmit, gfar_interrupt,
838                                 0, "gfar_interrupt", dev) < 0) {
839                         if (netif_msg_intr(priv))
840                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
841                                         dev->name, priv->interruptError);
842
843                         err = -1;
844                         goto err_irq_fail;
845                 }
846         }
847
848         phy_start(priv->phydev);
849
850         /* Configure the coalescing support */
851         if (priv->txcoalescing)
852                 gfar_write(&regs->txic,
853                            mk_ic_value(priv->txcount, priv->txtime));
854         else
855                 gfar_write(&regs->txic, 0);
856
857         if (priv->rxcoalescing)
858                 gfar_write(&regs->rxic,
859                            mk_ic_value(priv->rxcount, priv->rxtime));
860         else
861                 gfar_write(&regs->rxic, 0);
862
863         if (priv->rx_csum_enable)
864                 rctrl |= RCTRL_CHECKSUMMING;
865
866         if (priv->extended_hash) {
867                 rctrl |= RCTRL_EXTHASH;
868
869                 gfar_clear_exact_match(dev);
870                 rctrl |= RCTRL_EMEN;
871         }
872
873         if (priv->vlan_enable)
874                 rctrl |= RCTRL_VLAN;
875
876         if (priv->padding) {
877                 rctrl &= ~RCTRL_PAL_MASK;
878                 rctrl |= RCTRL_PADDING(priv->padding);
879         }
880
881         /* Init rctrl based on our settings */
882         gfar_write(&priv->regs->rctrl, rctrl);
883
884         if (dev->features & NETIF_F_IP_CSUM)
885                 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
886
887         /* Set the extraction length and index */
888         attrs = ATTRELI_EL(priv->rx_stash_size) |
889                 ATTRELI_EI(priv->rx_stash_index);
890
891         gfar_write(&priv->regs->attreli, attrs);
892
893         /* Start with defaults, and add stashing or locking
894          * depending on the approprate variables */
895         attrs = ATTR_INIT_SETTINGS;
896
897         if (priv->bd_stash_en)
898                 attrs |= ATTR_BDSTASH;
899
900         if (priv->rx_stash_size != 0)
901                 attrs |= ATTR_BUFSTASH;
902
903         gfar_write(&priv->regs->attr, attrs);
904
905         gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
906         gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
907         gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
908
909         /* Start the controller */
910         gfar_start(dev);
911
912         return 0;
913
914 rx_irq_fail:
915         free_irq(priv->interruptTransmit, dev);
916 tx_irq_fail:
917         free_irq(priv->interruptError, dev);
918 err_irq_fail:
919 rx_skb_fail:
920         free_skb_resources(priv);
921 tx_skb_fail:
922         dma_free_coherent(NULL,
923                         sizeof(struct txbd8)*priv->tx_ring_size
924                         + sizeof(struct rxbd8)*priv->rx_ring_size,
925                         priv->tx_bd_base,
926                         gfar_read(&regs->tbase0));
927
928         return err;
929 }
930
931 /* Called when something needs to use the ethernet device */
932 /* Returns 0 for success. */
933 static int gfar_enet_open(struct net_device *dev)
934 {
935         struct gfar_private *priv = netdev_priv(dev);
936         int err;
937
938         napi_enable(&priv->napi);
939
940         /* Initialize a bunch of registers */
941         init_registers(dev);
942
943         gfar_set_mac_address(dev);
944
945         err = init_phy(dev);
946
947         if(err) {
948                 napi_disable(&priv->napi);
949                 return err;
950         }
951
952         err = startup_gfar(dev);
953         if (err)
954                 napi_disable(&priv->napi);
955
956         netif_start_queue(dev);
957
958         return err;
959 }
960
961 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb, struct txbd8 *bdp)
962 {
963         struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
964
965         memset(fcb, 0, GMAC_FCB_LEN);
966
967         return fcb;
968 }
969
970 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
971 {
972         u8 flags = 0;
973
974         /* If we're here, it's a IP packet with a TCP or UDP
975          * payload.  We set it to checksum, using a pseudo-header
976          * we provide
977          */
978         flags = TXFCB_DEFAULT;
979
980         /* Tell the controller what the protocol is */
981         /* And provide the already calculated phcs */
982         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
983                 flags |= TXFCB_UDP;
984                 fcb->phcs = udp_hdr(skb)->check;
985         } else
986                 fcb->phcs = tcp_hdr(skb)->check;
987
988         /* l3os is the distance between the start of the
989          * frame (skb->data) and the start of the IP hdr.
990          * l4os is the distance between the start of the
991          * l3 hdr and the l4 hdr */
992         fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
993         fcb->l4os = skb_network_header_len(skb);
994
995         fcb->flags = flags;
996 }
997
998 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
999 {
1000         fcb->flags |= TXFCB_VLN;
1001         fcb->vlctl = vlan_tx_tag_get(skb);
1002 }
1003
1004 /* This is called by the kernel when a frame is ready for transmission. */
1005 /* It is pointed to by the dev->hard_start_xmit function pointer */
1006 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1007 {
1008         struct gfar_private *priv = netdev_priv(dev);
1009         struct txfcb *fcb = NULL;
1010         struct txbd8 *txbdp;
1011         u16 status;
1012         unsigned long flags;
1013
1014         /* Update transmit stats */
1015         dev->stats.tx_bytes += skb->len;
1016
1017         /* Lock priv now */
1018         spin_lock_irqsave(&priv->txlock, flags);
1019
1020         /* Point at the first free tx descriptor */
1021         txbdp = priv->cur_tx;
1022
1023         /* Clear all but the WRAP status flags */
1024         status = txbdp->status & TXBD_WRAP;
1025
1026         /* Set up checksumming */
1027         if (likely((dev->features & NETIF_F_IP_CSUM)
1028                         && (CHECKSUM_PARTIAL == skb->ip_summed))) {
1029                 fcb = gfar_add_fcb(skb, txbdp);
1030                 status |= TXBD_TOE;
1031                 gfar_tx_checksum(skb, fcb);
1032         }
1033
1034         if (priv->vlan_enable &&
1035                         unlikely(priv->vlgrp && vlan_tx_tag_present(skb))) {
1036                 if (unlikely(NULL == fcb)) {
1037                         fcb = gfar_add_fcb(skb, txbdp);
1038                         status |= TXBD_TOE;
1039                 }
1040
1041                 gfar_tx_vlan(skb, fcb);
1042         }
1043
1044         /* Set buffer length and pointer */
1045         txbdp->length = skb->len;
1046         txbdp->bufPtr = dma_map_single(NULL, skb->data,
1047                         skb->len, DMA_TO_DEVICE);
1048
1049         /* Save the skb pointer so we can free it later */
1050         priv->tx_skbuff[priv->skb_curtx] = skb;
1051
1052         /* Update the current skb pointer (wrapping if this was the last) */
1053         priv->skb_curtx =
1054             (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1055
1056         /* Flag the BD as interrupt-causing */
1057         status |= TXBD_INTERRUPT;
1058
1059         /* Flag the BD as ready to go, last in frame, and  */
1060         /* in need of CRC */
1061         status |= (TXBD_READY | TXBD_LAST | TXBD_CRC);
1062
1063         dev->trans_start = jiffies;
1064
1065         /* The powerpc-specific eieio() is used, as wmb() has too strong
1066          * semantics (it requires synchronization between cacheable and
1067          * uncacheable mappings, which eieio doesn't provide and which we
1068          * don't need), thus requiring a more expensive sync instruction.  At
1069          * some point, the set of architecture-independent barrier functions
1070          * should be expanded to include weaker barriers.
1071          */
1072
1073         eieio();
1074         txbdp->status = status;
1075
1076         /* If this was the last BD in the ring, the next one */
1077         /* is at the beginning of the ring */
1078         if (txbdp->status & TXBD_WRAP)
1079                 txbdp = priv->tx_bd_base;
1080         else
1081                 txbdp++;
1082
1083         /* If the next BD still needs to be cleaned up, then the bds
1084            are full.  We need to tell the kernel to stop sending us stuff. */
1085         if (txbdp == priv->dirty_tx) {
1086                 netif_stop_queue(dev);
1087
1088                 dev->stats.tx_fifo_errors++;
1089         }
1090
1091         /* Update the current txbd to the next one */
1092         priv->cur_tx = txbdp;
1093
1094         /* Tell the DMA to go go go */
1095         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1096
1097         /* Unlock priv */
1098         spin_unlock_irqrestore(&priv->txlock, flags);
1099
1100         return 0;
1101 }
1102
1103 /* Stops the kernel queue, and halts the controller */
1104 static int gfar_close(struct net_device *dev)
1105 {
1106         struct gfar_private *priv = netdev_priv(dev);
1107
1108         napi_disable(&priv->napi);
1109
1110         stop_gfar(dev);
1111
1112         /* Disconnect from the PHY */
1113         phy_disconnect(priv->phydev);
1114         priv->phydev = NULL;
1115
1116         netif_stop_queue(dev);
1117
1118         return 0;
1119 }
1120
1121 /* Changes the mac address if the controller is not running. */
1122 int gfar_set_mac_address(struct net_device *dev)
1123 {
1124         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1125
1126         return 0;
1127 }
1128
1129
1130 /* Enables and disables VLAN insertion/extraction */
1131 static void gfar_vlan_rx_register(struct net_device *dev,
1132                 struct vlan_group *grp)
1133 {
1134         struct gfar_private *priv = netdev_priv(dev);
1135         unsigned long flags;
1136         u32 tempval;
1137
1138         spin_lock_irqsave(&priv->rxlock, flags);
1139
1140         priv->vlgrp = grp;
1141
1142         if (grp) {
1143                 /* Enable VLAN tag insertion */
1144                 tempval = gfar_read(&priv->regs->tctrl);
1145                 tempval |= TCTRL_VLINS;
1146
1147                 gfar_write(&priv->regs->tctrl, tempval);
1148
1149                 /* Enable VLAN tag extraction */
1150                 tempval = gfar_read(&priv->regs->rctrl);
1151                 tempval |= RCTRL_VLEX;
1152                 gfar_write(&priv->regs->rctrl, tempval);
1153         } else {
1154                 /* Disable VLAN tag insertion */
1155                 tempval = gfar_read(&priv->regs->tctrl);
1156                 tempval &= ~TCTRL_VLINS;
1157                 gfar_write(&priv->regs->tctrl, tempval);
1158
1159                 /* Disable VLAN tag extraction */
1160                 tempval = gfar_read(&priv->regs->rctrl);
1161                 tempval &= ~RCTRL_VLEX;
1162                 gfar_write(&priv->regs->rctrl, tempval);
1163         }
1164
1165         spin_unlock_irqrestore(&priv->rxlock, flags);
1166 }
1167
1168 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1169 {
1170         int tempsize, tempval;
1171         struct gfar_private *priv = netdev_priv(dev);
1172         int oldsize = priv->rx_buffer_size;
1173         int frame_size = new_mtu + ETH_HLEN;
1174
1175         if (priv->vlan_enable)
1176                 frame_size += VLAN_ETH_HLEN;
1177
1178         if (gfar_uses_fcb(priv))
1179                 frame_size += GMAC_FCB_LEN;
1180
1181         frame_size += priv->padding;
1182
1183         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1184                 if (netif_msg_drv(priv))
1185                         printk(KERN_ERR "%s: Invalid MTU setting\n",
1186                                         dev->name);
1187                 return -EINVAL;
1188         }
1189
1190         tempsize =
1191             (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1192             INCREMENTAL_BUFFER_SIZE;
1193
1194         /* Only stop and start the controller if it isn't already
1195          * stopped, and we changed something */
1196         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1197                 stop_gfar(dev);
1198
1199         priv->rx_buffer_size = tempsize;
1200
1201         dev->mtu = new_mtu;
1202
1203         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1204         gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1205
1206         /* If the mtu is larger than the max size for standard
1207          * ethernet frames (ie, a jumbo frame), then set maccfg2
1208          * to allow huge frames, and to check the length */
1209         tempval = gfar_read(&priv->regs->maccfg2);
1210
1211         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1212                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1213         else
1214                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1215
1216         gfar_write(&priv->regs->maccfg2, tempval);
1217
1218         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1219                 startup_gfar(dev);
1220
1221         return 0;
1222 }
1223
1224 /* gfar_timeout gets called when a packet has not been
1225  * transmitted after a set amount of time.
1226  * For now, assume that clearing out all the structures, and
1227  * starting over will fix the problem. */
1228 static void gfar_timeout(struct net_device *dev)
1229 {
1230         struct gfar_private *priv = netdev_priv(dev);
1231
1232         dev->stats.tx_errors++;
1233
1234         if (dev->flags & IFF_UP) {
1235                 stop_gfar(dev);
1236                 startup_gfar(dev);
1237         }
1238
1239         netif_schedule(dev);
1240 }
1241
1242 /* Interrupt Handler for Transmit complete */
1243 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1244 {
1245         struct net_device *dev = (struct net_device *) dev_id;
1246         struct gfar_private *priv = netdev_priv(dev);
1247         struct txbd8 *bdp;
1248
1249         /* Clear IEVENT */
1250         gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
1251
1252         /* Lock priv */
1253         spin_lock(&priv->txlock);
1254         bdp = priv->dirty_tx;
1255         while ((bdp->status & TXBD_READY) == 0) {
1256                 /* If dirty_tx and cur_tx are the same, then either the */
1257                 /* ring is empty or full now (it could only be full in the beginning, */
1258                 /* obviously).  If it is empty, we are done. */
1259                 if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0))
1260                         break;
1261
1262                 dev->stats.tx_packets++;
1263
1264                 /* Deferred means some collisions occurred during transmit, */
1265                 /* but we eventually sent the packet. */
1266                 if (bdp->status & TXBD_DEF)
1267                         dev->stats.collisions++;
1268
1269                 /* Free the sk buffer associated with this TxBD */
1270                 dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]);
1271                 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
1272                 priv->skb_dirtytx =
1273                     (priv->skb_dirtytx +
1274                      1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1275
1276                 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1277                 if (bdp->status & TXBD_WRAP)
1278                         bdp = priv->tx_bd_base;
1279                 else
1280                         bdp++;
1281
1282                 /* Move dirty_tx to be the next bd */
1283                 priv->dirty_tx = bdp;
1284
1285                 /* We freed a buffer, so now we can restart transmission */
1286                 if (netif_queue_stopped(dev))
1287                         netif_wake_queue(dev);
1288         } /* while ((bdp->status & TXBD_READY) == 0) */
1289
1290         /* If we are coalescing the interrupts, reset the timer */
1291         /* Otherwise, clear it */
1292         if (priv->txcoalescing)
1293                 gfar_write(&priv->regs->txic,
1294                            mk_ic_value(priv->txcount, priv->txtime));
1295         else
1296                 gfar_write(&priv->regs->txic, 0);
1297
1298         spin_unlock(&priv->txlock);
1299
1300         return IRQ_HANDLED;
1301 }
1302
1303 struct sk_buff * gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp)
1304 {
1305         unsigned int alignamount;
1306         struct gfar_private *priv = netdev_priv(dev);
1307         struct sk_buff *skb = NULL;
1308         unsigned int timeout = SKB_ALLOC_TIMEOUT;
1309
1310         /* We have to allocate the skb, so keep trying till we succeed */
1311         while ((!skb) && timeout--)
1312                 skb = dev_alloc_skb(priv->rx_buffer_size + RXBUF_ALIGNMENT);
1313
1314         if (NULL == skb)
1315                 return NULL;
1316
1317         alignamount = RXBUF_ALIGNMENT -
1318                 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
1319
1320         /* We need the data buffer to be aligned properly.  We will reserve
1321          * as many bytes as needed to align the data properly
1322          */
1323         skb_reserve(skb, alignamount);
1324
1325         bdp->bufPtr = dma_map_single(NULL, skb->data,
1326                         priv->rx_buffer_size, DMA_FROM_DEVICE);
1327
1328         bdp->length = 0;
1329
1330         /* Mark the buffer empty */
1331         eieio();
1332         bdp->status |= (RXBD_EMPTY | RXBD_INTERRUPT);
1333
1334         return skb;
1335 }
1336
1337 static inline void count_errors(unsigned short status, struct gfar_private *priv)
1338 {
1339         struct net_device_stats *stats = &dev->stats;
1340         struct gfar_extra_stats *estats = &priv->extra_stats;
1341
1342         /* If the packet was truncated, none of the other errors
1343          * matter */
1344         if (status & RXBD_TRUNCATED) {
1345                 stats->rx_length_errors++;
1346
1347                 estats->rx_trunc++;
1348
1349                 return;
1350         }
1351         /* Count the errors, if there were any */
1352         if (status & (RXBD_LARGE | RXBD_SHORT)) {
1353                 stats->rx_length_errors++;
1354
1355                 if (status & RXBD_LARGE)
1356                         estats->rx_large++;
1357                 else
1358                         estats->rx_short++;
1359         }
1360         if (status & RXBD_NONOCTET) {
1361                 stats->rx_frame_errors++;
1362                 estats->rx_nonoctet++;
1363         }
1364         if (status & RXBD_CRCERR) {
1365                 estats->rx_crcerr++;
1366                 stats->rx_crc_errors++;
1367         }
1368         if (status & RXBD_OVERRUN) {
1369                 estats->rx_overrun++;
1370                 stats->rx_crc_errors++;
1371         }
1372 }
1373
1374 irqreturn_t gfar_receive(int irq, void *dev_id)
1375 {
1376         struct net_device *dev = (struct net_device *) dev_id;
1377         struct gfar_private *priv = netdev_priv(dev);
1378 #ifdef CONFIG_GFAR_NAPI
1379         u32 tempval;
1380 #else
1381         unsigned long flags;
1382 #endif
1383
1384         /* Clear IEVENT, so rx interrupt isn't called again
1385          * because of this interrupt */
1386         gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
1387
1388         /* support NAPI */
1389 #ifdef CONFIG_GFAR_NAPI
1390         if (netif_rx_schedule_prep(dev, &priv->napi)) {
1391                 tempval = gfar_read(&priv->regs->imask);
1392                 tempval &= IMASK_RX_DISABLED;
1393                 gfar_write(&priv->regs->imask, tempval);
1394
1395                 __netif_rx_schedule(dev, &priv->napi);
1396         } else {
1397                 if (netif_msg_rx_err(priv))
1398                         printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
1399                                 dev->name, gfar_read(&priv->regs->ievent),
1400                                 gfar_read(&priv->regs->imask));
1401         }
1402 #else
1403
1404         spin_lock_irqsave(&priv->rxlock, flags);
1405         gfar_clean_rx_ring(dev, priv->rx_ring_size);
1406
1407         /* If we are coalescing interrupts, update the timer */
1408         /* Otherwise, clear it */
1409         if (priv->rxcoalescing)
1410                 gfar_write(&priv->regs->rxic,
1411                            mk_ic_value(priv->rxcount, priv->rxtime));
1412         else
1413                 gfar_write(&priv->regs->rxic, 0);
1414
1415         spin_unlock_irqrestore(&priv->rxlock, flags);
1416 #endif
1417
1418         return IRQ_HANDLED;
1419 }
1420
1421 static inline int gfar_rx_vlan(struct sk_buff *skb,
1422                 struct vlan_group *vlgrp, unsigned short vlctl)
1423 {
1424 #ifdef CONFIG_GFAR_NAPI
1425         return vlan_hwaccel_receive_skb(skb, vlgrp, vlctl);
1426 #else
1427         return vlan_hwaccel_rx(skb, vlgrp, vlctl);
1428 #endif
1429 }
1430
1431 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1432 {
1433         /* If valid headers were found, and valid sums
1434          * were verified, then we tell the kernel that no
1435          * checksumming is necessary.  Otherwise, it is */
1436         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1437                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1438         else
1439                 skb->ip_summed = CHECKSUM_NONE;
1440 }
1441
1442
1443 static inline struct rxfcb *gfar_get_fcb(struct sk_buff *skb)
1444 {
1445         struct rxfcb *fcb = (struct rxfcb *)skb->data;
1446
1447         /* Remove the FCB from the skb */
1448         skb_pull(skb, GMAC_FCB_LEN);
1449
1450         return fcb;
1451 }
1452
1453 /* gfar_process_frame() -- handle one incoming packet if skb
1454  * isn't NULL.  */
1455 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1456                 int length)
1457 {
1458         struct gfar_private *priv = netdev_priv(dev);
1459         struct rxfcb *fcb = NULL;
1460
1461         if (NULL == skb) {
1462                 if (netif_msg_rx_err(priv))
1463                         printk(KERN_WARNING "%s: Missing skb!!.\n", dev->name);
1464                 dev->stats.rx_dropped++;
1465                 priv->extra_stats.rx_skbmissing++;
1466         } else {
1467                 int ret;
1468
1469                 /* Prep the skb for the packet */
1470                 skb_put(skb, length);
1471
1472                 /* Grab the FCB if there is one */
1473                 if (gfar_uses_fcb(priv))
1474                         fcb = gfar_get_fcb(skb);
1475
1476                 /* Remove the padded bytes, if there are any */
1477                 if (priv->padding)
1478                         skb_pull(skb, priv->padding);
1479
1480                 if (priv->rx_csum_enable)
1481                         gfar_rx_checksum(skb, fcb);
1482
1483                 /* Tell the skb what kind of packet this is */
1484                 skb->protocol = eth_type_trans(skb, dev);
1485
1486                 /* Send the packet up the stack */
1487                 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1488                         ret = gfar_rx_vlan(skb, priv->vlgrp, fcb->vlctl);
1489                 else
1490                         ret = RECEIVE(skb);
1491
1492                 if (NET_RX_DROP == ret)
1493                         priv->extra_stats.kernel_dropped++;
1494         }
1495
1496         return 0;
1497 }
1498
1499 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1500  *   until the budget/quota has been reached. Returns the number
1501  *   of frames handled
1502  */
1503 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1504 {
1505         struct rxbd8 *bdp;
1506         struct sk_buff *skb;
1507         u16 pkt_len;
1508         int howmany = 0;
1509         struct gfar_private *priv = netdev_priv(dev);
1510
1511         /* Get the first full descriptor */
1512         bdp = priv->cur_rx;
1513
1514         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1515                 rmb();
1516                 skb = priv->rx_skbuff[priv->skb_currx];
1517
1518                 if (!(bdp->status &
1519                       (RXBD_LARGE | RXBD_SHORT | RXBD_NONOCTET
1520                        | RXBD_CRCERR | RXBD_OVERRUN | RXBD_TRUNCATED))) {
1521                         /* Increment the number of packets */
1522                         dev->stats.rx_packets++;
1523                         howmany++;
1524
1525                         /* Remove the FCS from the packet length */
1526                         pkt_len = bdp->length - 4;
1527
1528                         gfar_process_frame(dev, skb, pkt_len);
1529
1530                         dev->stats.rx_bytes += pkt_len;
1531                 } else {
1532                         count_errors(bdp->status, priv);
1533
1534                         if (skb)
1535                                 dev_kfree_skb_any(skb);
1536
1537                         priv->rx_skbuff[priv->skb_currx] = NULL;
1538                 }
1539
1540                 dev->last_rx = jiffies;
1541
1542                 /* Clear the status flags for this buffer */
1543                 bdp->status &= ~RXBD_STATS;
1544
1545                 /* Add another skb for the future */
1546                 skb = gfar_new_skb(dev, bdp);
1547                 priv->rx_skbuff[priv->skb_currx] = skb;
1548
1549                 /* Update to the next pointer */
1550                 if (bdp->status & RXBD_WRAP)
1551                         bdp = priv->rx_bd_base;
1552                 else
1553                         bdp++;
1554
1555                 /* update to point at the next skb */
1556                 priv->skb_currx =
1557                     (priv->skb_currx +
1558                      1) & RX_RING_MOD_MASK(priv->rx_ring_size);
1559
1560         }
1561
1562         /* Update the current rxbd pointer to be the next one */
1563         priv->cur_rx = bdp;
1564
1565         return howmany;
1566 }
1567
1568 #ifdef CONFIG_GFAR_NAPI
1569 static int gfar_poll(struct napi_struct *napi, int budget)
1570 {
1571         struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
1572         struct net_device *dev = priv->dev;
1573         int howmany;
1574
1575         howmany = gfar_clean_rx_ring(dev, budget);
1576
1577         if (howmany < budget) {
1578                 netif_rx_complete(dev, napi);
1579
1580                 /* Clear the halt bit in RSTAT */
1581                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1582
1583                 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1584
1585                 /* If we are coalescing interrupts, update the timer */
1586                 /* Otherwise, clear it */
1587                 if (priv->rxcoalescing)
1588                         gfar_write(&priv->regs->rxic,
1589                                    mk_ic_value(priv->rxcount, priv->rxtime));
1590                 else
1591                         gfar_write(&priv->regs->rxic, 0);
1592         }
1593
1594         return howmany;
1595 }
1596 #endif
1597
1598 #ifdef CONFIG_NET_POLL_CONTROLLER
1599 /*
1600  * Polling 'interrupt' - used by things like netconsole to send skbs
1601  * without having to re-enable interrupts. It's not called while
1602  * the interrupt routine is executing.
1603  */
1604 static void gfar_netpoll(struct net_device *dev)
1605 {
1606         struct gfar_private *priv = netdev_priv(dev);
1607
1608         /* If the device has multiple interrupts, run tx/rx */
1609         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1610                 disable_irq(priv->interruptTransmit);
1611                 disable_irq(priv->interruptReceive);
1612                 disable_irq(priv->interruptError);
1613                 gfar_interrupt(priv->interruptTransmit, dev);
1614                 enable_irq(priv->interruptError);
1615                 enable_irq(priv->interruptReceive);
1616                 enable_irq(priv->interruptTransmit);
1617         } else {
1618                 disable_irq(priv->interruptTransmit);
1619                 gfar_interrupt(priv->interruptTransmit, dev);
1620                 enable_irq(priv->interruptTransmit);
1621         }
1622 }
1623 #endif
1624
1625 /* The interrupt handler for devices with one interrupt */
1626 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1627 {
1628         struct net_device *dev = dev_id;
1629         struct gfar_private *priv = netdev_priv(dev);
1630
1631         /* Save ievent for future reference */
1632         u32 events = gfar_read(&priv->regs->ievent);
1633
1634         /* Check for reception */
1635         if (events & IEVENT_RX_MASK)
1636                 gfar_receive(irq, dev_id);
1637
1638         /* Check for transmit completion */
1639         if (events & IEVENT_TX_MASK)
1640                 gfar_transmit(irq, dev_id);
1641
1642         /* Check for errors */
1643         if (events & IEVENT_ERR_MASK)
1644                 gfar_error(irq, dev_id);
1645
1646         return IRQ_HANDLED;
1647 }
1648
1649 /* Called every time the controller might need to be made
1650  * aware of new link state.  The PHY code conveys this
1651  * information through variables in the phydev structure, and this
1652  * function converts those variables into the appropriate
1653  * register values, and can bring down the device if needed.
1654  */
1655 static void adjust_link(struct net_device *dev)
1656 {
1657         struct gfar_private *priv = netdev_priv(dev);
1658         struct gfar __iomem *regs = priv->regs;
1659         unsigned long flags;
1660         struct phy_device *phydev = priv->phydev;
1661         int new_state = 0;
1662
1663         spin_lock_irqsave(&priv->txlock, flags);
1664         if (phydev->link) {
1665                 u32 tempval = gfar_read(&regs->maccfg2);
1666                 u32 ecntrl = gfar_read(&regs->ecntrl);
1667
1668                 /* Now we make sure that we can be in full duplex mode.
1669                  * If not, we operate in half-duplex mode. */
1670                 if (phydev->duplex != priv->oldduplex) {
1671                         new_state = 1;
1672                         if (!(phydev->duplex))
1673                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
1674                         else
1675                                 tempval |= MACCFG2_FULL_DUPLEX;
1676
1677                         priv->oldduplex = phydev->duplex;
1678                 }
1679
1680                 if (phydev->speed != priv->oldspeed) {
1681                         new_state = 1;
1682                         switch (phydev->speed) {
1683                         case 1000:
1684                                 tempval =
1685                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1686                                 break;
1687                         case 100:
1688                         case 10:
1689                                 tempval =
1690                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1691
1692                                 /* Reduced mode distinguishes
1693                                  * between 10 and 100 */
1694                                 if (phydev->speed == SPEED_100)
1695                                         ecntrl |= ECNTRL_R100;
1696                                 else
1697                                         ecntrl &= ~(ECNTRL_R100);
1698                                 break;
1699                         default:
1700                                 if (netif_msg_link(priv))
1701                                         printk(KERN_WARNING
1702                                                 "%s: Ack!  Speed (%d) is not 10/100/1000!\n",
1703                                                 dev->name, phydev->speed);
1704                                 break;
1705                         }
1706
1707                         priv->oldspeed = phydev->speed;
1708                 }
1709
1710                 gfar_write(&regs->maccfg2, tempval);
1711                 gfar_write(&regs->ecntrl, ecntrl);
1712
1713                 if (!priv->oldlink) {
1714                         new_state = 1;
1715                         priv->oldlink = 1;
1716                         netif_schedule(dev);
1717                 }
1718         } else if (priv->oldlink) {
1719                 new_state = 1;
1720                 priv->oldlink = 0;
1721                 priv->oldspeed = 0;
1722                 priv->oldduplex = -1;
1723         }
1724
1725         if (new_state && netif_msg_link(priv))
1726                 phy_print_status(phydev);
1727
1728         spin_unlock_irqrestore(&priv->txlock, flags);
1729 }
1730
1731 /* Update the hash table based on the current list of multicast
1732  * addresses we subscribe to.  Also, change the promiscuity of
1733  * the device based on the flags (this function is called
1734  * whenever dev->flags is changed */
1735 static void gfar_set_multi(struct net_device *dev)
1736 {
1737         struct dev_mc_list *mc_ptr;
1738         struct gfar_private *priv = netdev_priv(dev);
1739         struct gfar __iomem *regs = priv->regs;
1740         u32 tempval;
1741
1742         if(dev->flags & IFF_PROMISC) {
1743                 /* Set RCTRL to PROM */
1744                 tempval = gfar_read(&regs->rctrl);
1745                 tempval |= RCTRL_PROM;
1746                 gfar_write(&regs->rctrl, tempval);
1747         } else {
1748                 /* Set RCTRL to not PROM */
1749                 tempval = gfar_read(&regs->rctrl);
1750                 tempval &= ~(RCTRL_PROM);
1751                 gfar_write(&regs->rctrl, tempval);
1752         }
1753
1754         if(dev->flags & IFF_ALLMULTI) {
1755                 /* Set the hash to rx all multicast frames */
1756                 gfar_write(&regs->igaddr0, 0xffffffff);
1757                 gfar_write(&regs->igaddr1, 0xffffffff);
1758                 gfar_write(&regs->igaddr2, 0xffffffff);
1759                 gfar_write(&regs->igaddr3, 0xffffffff);
1760                 gfar_write(&regs->igaddr4, 0xffffffff);
1761                 gfar_write(&regs->igaddr5, 0xffffffff);
1762                 gfar_write(&regs->igaddr6, 0xffffffff);
1763                 gfar_write(&regs->igaddr7, 0xffffffff);
1764                 gfar_write(&regs->gaddr0, 0xffffffff);
1765                 gfar_write(&regs->gaddr1, 0xffffffff);
1766                 gfar_write(&regs->gaddr2, 0xffffffff);
1767                 gfar_write(&regs->gaddr3, 0xffffffff);
1768                 gfar_write(&regs->gaddr4, 0xffffffff);
1769                 gfar_write(&regs->gaddr5, 0xffffffff);
1770                 gfar_write(&regs->gaddr6, 0xffffffff);
1771                 gfar_write(&regs->gaddr7, 0xffffffff);
1772         } else {
1773                 int em_num;
1774                 int idx;
1775
1776                 /* zero out the hash */
1777                 gfar_write(&regs->igaddr0, 0x0);
1778                 gfar_write(&regs->igaddr1, 0x0);
1779                 gfar_write(&regs->igaddr2, 0x0);
1780                 gfar_write(&regs->igaddr3, 0x0);
1781                 gfar_write(&regs->igaddr4, 0x0);
1782                 gfar_write(&regs->igaddr5, 0x0);
1783                 gfar_write(&regs->igaddr6, 0x0);
1784                 gfar_write(&regs->igaddr7, 0x0);
1785                 gfar_write(&regs->gaddr0, 0x0);
1786                 gfar_write(&regs->gaddr1, 0x0);
1787                 gfar_write(&regs->gaddr2, 0x0);
1788                 gfar_write(&regs->gaddr3, 0x0);
1789                 gfar_write(&regs->gaddr4, 0x0);
1790                 gfar_write(&regs->gaddr5, 0x0);
1791                 gfar_write(&regs->gaddr6, 0x0);
1792                 gfar_write(&regs->gaddr7, 0x0);
1793
1794                 /* If we have extended hash tables, we need to
1795                  * clear the exact match registers to prepare for
1796                  * setting them */
1797                 if (priv->extended_hash) {
1798                         em_num = GFAR_EM_NUM + 1;
1799                         gfar_clear_exact_match(dev);
1800                         idx = 1;
1801                 } else {
1802                         idx = 0;
1803                         em_num = 0;
1804                 }
1805
1806                 if(dev->mc_count == 0)
1807                         return;
1808
1809                 /* Parse the list, and set the appropriate bits */
1810                 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
1811                         if (idx < em_num) {
1812                                 gfar_set_mac_for_addr(dev, idx,
1813                                                 mc_ptr->dmi_addr);
1814                                 idx++;
1815                         } else
1816                                 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
1817                 }
1818         }
1819
1820         return;
1821 }
1822
1823
1824 /* Clears each of the exact match registers to zero, so they
1825  * don't interfere with normal reception */
1826 static void gfar_clear_exact_match(struct net_device *dev)
1827 {
1828         int idx;
1829         u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
1830
1831         for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
1832                 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
1833 }
1834
1835 /* Set the appropriate hash bit for the given addr */
1836 /* The algorithm works like so:
1837  * 1) Take the Destination Address (ie the multicast address), and
1838  * do a CRC on it (little endian), and reverse the bits of the
1839  * result.
1840  * 2) Use the 8 most significant bits as a hash into a 256-entry
1841  * table.  The table is controlled through 8 32-bit registers:
1842  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
1843  * gaddr7.  This means that the 3 most significant bits in the
1844  * hash index which gaddr register to use, and the 5 other bits
1845  * indicate which bit (assuming an IBM numbering scheme, which
1846  * for PowerPC (tm) is usually the case) in the register holds
1847  * the entry. */
1848 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
1849 {
1850         u32 tempval;
1851         struct gfar_private *priv = netdev_priv(dev);
1852         u32 result = ether_crc(MAC_ADDR_LEN, addr);
1853         int width = priv->hash_width;
1854         u8 whichbit = (result >> (32 - width)) & 0x1f;
1855         u8 whichreg = result >> (32 - width + 5);
1856         u32 value = (1 << (31-whichbit));
1857
1858         tempval = gfar_read(priv->hash_regs[whichreg]);
1859         tempval |= value;
1860         gfar_write(priv->hash_regs[whichreg], tempval);
1861
1862         return;
1863 }
1864
1865
1866 /* There are multiple MAC Address register pairs on some controllers
1867  * This function sets the numth pair to a given address
1868  */
1869 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
1870 {
1871         struct gfar_private *priv = netdev_priv(dev);
1872         int idx;
1873         char tmpbuf[MAC_ADDR_LEN];
1874         u32 tempval;
1875         u32 __iomem *macptr = &priv->regs->macstnaddr1;
1876
1877         macptr += num*2;
1878
1879         /* Now copy it into the mac registers backwards, cuz */
1880         /* little endian is silly */
1881         for (idx = 0; idx < MAC_ADDR_LEN; idx++)
1882                 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
1883
1884         gfar_write(macptr, *((u32 *) (tmpbuf)));
1885
1886         tempval = *((u32 *) (tmpbuf + 4));
1887
1888         gfar_write(macptr+1, tempval);
1889 }
1890
1891 /* GFAR error interrupt handler */
1892 static irqreturn_t gfar_error(int irq, void *dev_id)
1893 {
1894         struct net_device *dev = dev_id;
1895         struct gfar_private *priv = netdev_priv(dev);
1896
1897         /* Save ievent for future reference */
1898         u32 events = gfar_read(&priv->regs->ievent);
1899
1900         /* Clear IEVENT */
1901         gfar_write(&priv->regs->ievent, IEVENT_ERR_MASK);
1902
1903         /* Hmm... */
1904         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
1905                 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
1906                        dev->name, events, gfar_read(&priv->regs->imask));
1907
1908         /* Update the error counters */
1909         if (events & IEVENT_TXE) {
1910                 dev->stats.tx_errors++;
1911
1912                 if (events & IEVENT_LC)
1913                         dev->stats.tx_window_errors++;
1914                 if (events & IEVENT_CRL)
1915                         dev->stats.tx_aborted_errors++;
1916                 if (events & IEVENT_XFUN) {
1917                         if (netif_msg_tx_err(priv))
1918                                 printk(KERN_DEBUG "%s: TX FIFO underrun, "
1919                                        "packet dropped.\n", dev->name);
1920                         dev->stats.tx_dropped++;
1921                         priv->extra_stats.tx_underrun++;
1922
1923                         /* Reactivate the Tx Queues */
1924                         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1925                 }
1926                 if (netif_msg_tx_err(priv))
1927                         printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
1928         }
1929         if (events & IEVENT_BSY) {
1930                 dev->stats.rx_errors++;
1931                 priv->extra_stats.rx_bsy++;
1932
1933                 gfar_receive(irq, dev_id);
1934
1935 #ifndef CONFIG_GFAR_NAPI
1936                 /* Clear the halt bit in RSTAT */
1937                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1938 #endif
1939
1940                 if (netif_msg_rx_err(priv))
1941                         printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
1942                                dev->name, gfar_read(&priv->regs->rstat));
1943         }
1944         if (events & IEVENT_BABR) {
1945                 dev->stats.rx_errors++;
1946                 priv->extra_stats.rx_babr++;
1947
1948                 if (netif_msg_rx_err(priv))
1949                         printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
1950         }
1951         if (events & IEVENT_EBERR) {
1952                 priv->extra_stats.eberr++;
1953                 if (netif_msg_rx_err(priv))
1954                         printk(KERN_DEBUG "%s: bus error\n", dev->name);
1955         }
1956         if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
1957                 printk(KERN_DEBUG "%s: control frame\n", dev->name);
1958
1959         if (events & IEVENT_BABT) {
1960                 priv->extra_stats.tx_babt++;
1961                 if (netif_msg_tx_err(priv))
1962                         printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
1963         }
1964         return IRQ_HANDLED;
1965 }
1966
1967 /* Structure for a device driver */
1968 static struct platform_driver gfar_driver = {
1969         .probe = gfar_probe,
1970         .remove = gfar_remove,
1971         .driver = {
1972                 .name = "fsl-gianfar",
1973         },
1974 };
1975
1976 static int __init gfar_init(void)
1977 {
1978         int err = gfar_mdio_init();
1979
1980         if (err)
1981                 return err;
1982
1983         err = platform_driver_register(&gfar_driver);
1984
1985         if (err)
1986                 gfar_mdio_exit();
1987
1988         return err;
1989 }
1990
1991 static void __exit gfar_exit(void)
1992 {
1993         platform_driver_unregister(&gfar_driver);
1994         gfar_mdio_exit();
1995 }
1996
1997 module_init(gfar_init);
1998 module_exit(gfar_exit);
1999