bed30ef43797cd56776a868e15091dc523e40c5e
[safe/jmp/linux-2.6] / drivers / net / gianfar.c
1 /*
2  * drivers/net/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  *
12  * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13  * Copyright (c) 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63
64 #include <linux/kernel.h>
65 #include <linux/string.h>
66 #include <linux/errno.h>
67 #include <linux/unistd.h>
68 #include <linux/slab.h>
69 #include <linux/interrupt.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/netdevice.h>
73 #include <linux/etherdevice.h>
74 #include <linux/skbuff.h>
75 #include <linux/if_vlan.h>
76 #include <linux/spinlock.h>
77 #include <linux/mm.h>
78 #include <linux/of_platform.h>
79 #include <linux/ip.h>
80 #include <linux/tcp.h>
81 #include <linux/udp.h>
82 #include <linux/in.h>
83
84 #include <asm/io.h>
85 #include <asm/irq.h>
86 #include <asm/uaccess.h>
87 #include <linux/module.h>
88 #include <linux/dma-mapping.h>
89 #include <linux/crc32.h>
90 #include <linux/mii.h>
91 #include <linux/phy.h>
92 #include <linux/phy_fixed.h>
93 #include <linux/of.h>
94
95 #include "gianfar.h"
96 #include "fsl_pq_mdio.h"
97
98 #define TX_TIMEOUT      (1*HZ)
99 #undef BRIEF_GFAR_ERRORS
100 #undef VERBOSE_GFAR_ERRORS
101
102 const char gfar_driver_name[] = "Gianfar Ethernet";
103 const char gfar_driver_version[] = "1.3";
104
105 static int gfar_enet_open(struct net_device *dev);
106 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
107 static void gfar_reset_task(struct work_struct *work);
108 static void gfar_timeout(struct net_device *dev);
109 static int gfar_close(struct net_device *dev);
110 struct sk_buff *gfar_new_skb(struct net_device *dev);
111 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
112                 struct sk_buff *skb);
113 static int gfar_set_mac_address(struct net_device *dev);
114 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
115 static irqreturn_t gfar_error(int irq, void *dev_id);
116 static irqreturn_t gfar_transmit(int irq, void *dev_id);
117 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
118 static void adjust_link(struct net_device *dev);
119 static void init_registers(struct net_device *dev);
120 static int init_phy(struct net_device *dev);
121 static int gfar_probe(struct of_device *ofdev,
122                 const struct of_device_id *match);
123 static int gfar_remove(struct of_device *ofdev);
124 static void free_skb_resources(struct gfar_private *priv);
125 static void gfar_set_multi(struct net_device *dev);
126 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
127 static void gfar_configure_serdes(struct net_device *dev);
128 static int gfar_poll(struct napi_struct *napi, int budget);
129 #ifdef CONFIG_NET_POLL_CONTROLLER
130 static void gfar_netpoll(struct net_device *dev);
131 #endif
132 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
133 static int gfar_clean_tx_ring(struct net_device *dev);
134 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
135                               int amount_pull);
136 static void gfar_vlan_rx_register(struct net_device *netdev,
137                                 struct vlan_group *grp);
138 void gfar_halt(struct net_device *dev);
139 static void gfar_halt_nodisable(struct net_device *dev);
140 void gfar_start(struct net_device *dev);
141 static void gfar_clear_exact_match(struct net_device *dev);
142 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
143 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
144
145 MODULE_AUTHOR("Freescale Semiconductor, Inc");
146 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
147 MODULE_LICENSE("GPL");
148
149 static const struct net_device_ops gfar_netdev_ops = {
150         .ndo_open = gfar_enet_open,
151         .ndo_start_xmit = gfar_start_xmit,
152         .ndo_stop = gfar_close,
153         .ndo_change_mtu = gfar_change_mtu,
154         .ndo_set_multicast_list = gfar_set_multi,
155         .ndo_tx_timeout = gfar_timeout,
156         .ndo_do_ioctl = gfar_ioctl,
157         .ndo_vlan_rx_register = gfar_vlan_rx_register,
158 #ifdef CONFIG_NET_POLL_CONTROLLER
159         .ndo_poll_controller = gfar_netpoll,
160 #endif
161 };
162
163 /* Returns 1 if incoming frames use an FCB */
164 static inline int gfar_uses_fcb(struct gfar_private *priv)
165 {
166         return priv->vlgrp || priv->rx_csum_enable;
167 }
168
169 static int gfar_of_init(struct net_device *dev)
170 {
171         struct device_node *phy, *mdio;
172         const unsigned int *id;
173         const char *model;
174         const char *ctype;
175         const void *mac_addr;
176         const phandle *ph;
177         u64 addr, size;
178         int err = 0;
179         struct gfar_private *priv = netdev_priv(dev);
180         struct device_node *np = priv->node;
181         char bus_name[MII_BUS_ID_SIZE];
182         const u32 *stash;
183         const u32 *stash_len;
184         const u32 *stash_idx;
185
186         if (!np || !of_device_is_available(np))
187                 return -ENODEV;
188
189         /* get a pointer to the register memory */
190         addr = of_translate_address(np, of_get_address(np, 0, &size, NULL));
191         priv->regs = ioremap(addr, size);
192
193         if (priv->regs == NULL)
194                 return -ENOMEM;
195
196         priv->interruptTransmit = irq_of_parse_and_map(np, 0);
197
198         model = of_get_property(np, "model", NULL);
199
200         /* If we aren't the FEC we have multiple interrupts */
201         if (model && strcasecmp(model, "FEC")) {
202                 priv->interruptReceive = irq_of_parse_and_map(np, 1);
203
204                 priv->interruptError = irq_of_parse_and_map(np, 2);
205
206                 if (priv->interruptTransmit < 0 ||
207                                 priv->interruptReceive < 0 ||
208                                 priv->interruptError < 0) {
209                         err = -EINVAL;
210                         goto err_out;
211                 }
212         }
213
214         stash = of_get_property(np, "bd-stash", NULL);
215
216         if(stash) {
217                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
218                 priv->bd_stash_en = 1;
219         }
220
221         stash_len = of_get_property(np, "rx-stash-len", NULL);
222
223         if (stash_len)
224                 priv->rx_stash_size = *stash_len;
225
226         stash_idx = of_get_property(np, "rx-stash-idx", NULL);
227
228         if (stash_idx)
229                 priv->rx_stash_index = *stash_idx;
230
231         if (stash_len || stash_idx)
232                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
233
234         mac_addr = of_get_mac_address(np);
235         if (mac_addr)
236                 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
237
238         if (model && !strcasecmp(model, "TSEC"))
239                 priv->device_flags =
240                         FSL_GIANFAR_DEV_HAS_GIGABIT |
241                         FSL_GIANFAR_DEV_HAS_COALESCE |
242                         FSL_GIANFAR_DEV_HAS_RMON |
243                         FSL_GIANFAR_DEV_HAS_MULTI_INTR;
244         if (model && !strcasecmp(model, "eTSEC"))
245                 priv->device_flags =
246                         FSL_GIANFAR_DEV_HAS_GIGABIT |
247                         FSL_GIANFAR_DEV_HAS_COALESCE |
248                         FSL_GIANFAR_DEV_HAS_RMON |
249                         FSL_GIANFAR_DEV_HAS_MULTI_INTR |
250                         FSL_GIANFAR_DEV_HAS_PADDING |
251                         FSL_GIANFAR_DEV_HAS_CSUM |
252                         FSL_GIANFAR_DEV_HAS_VLAN |
253                         FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
254                         FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
255
256         ctype = of_get_property(np, "phy-connection-type", NULL);
257
258         /* We only care about rgmii-id.  The rest are autodetected */
259         if (ctype && !strcmp(ctype, "rgmii-id"))
260                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
261         else
262                 priv->interface = PHY_INTERFACE_MODE_MII;
263
264         if (of_get_property(np, "fsl,magic-packet", NULL))
265                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
266
267         ph = of_get_property(np, "phy-handle", NULL);
268         if (ph == NULL) {
269                 u32 *fixed_link;
270
271                 fixed_link = (u32 *)of_get_property(np, "fixed-link", NULL);
272                 if (!fixed_link) {
273                         err = -ENODEV;
274                         goto err_out;
275                 }
276
277                 snprintf(priv->phy_bus_id, sizeof(priv->phy_bus_id),
278                                 PHY_ID_FMT, "0", fixed_link[0]);
279         } else {
280                 phy = of_find_node_by_phandle(*ph);
281
282                 if (phy == NULL) {
283                         err = -ENODEV;
284                         goto err_out;
285                 }
286
287                 mdio = of_get_parent(phy);
288
289                 id = of_get_property(phy, "reg", NULL);
290
291                 of_node_put(phy);
292                 of_node_put(mdio);
293
294                 fsl_pq_mdio_bus_name(bus_name, mdio);
295                 snprintf(priv->phy_bus_id, sizeof(priv->phy_bus_id), "%s:%02x",
296                                 bus_name, *id);
297         }
298
299         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
300         ph = of_get_property(np, "tbi-handle", NULL);
301         if (ph) {
302                 struct device_node *tbi = of_find_node_by_phandle(*ph);
303                 struct of_device *ofdev;
304                 struct mii_bus *bus;
305
306                 if (!tbi)
307                         return 0;
308
309                 mdio = of_get_parent(tbi);
310                 if (!mdio)
311                         return 0;
312
313                 ofdev = of_find_device_by_node(mdio);
314
315                 of_node_put(mdio);
316
317                 id = of_get_property(tbi, "reg", NULL);
318                 if (!id)
319                         return 0;
320
321                 of_node_put(tbi);
322
323                 bus = dev_get_drvdata(&ofdev->dev);
324
325                 priv->tbiphy = bus->phy_map[*id];
326         }
327
328         return 0;
329
330 err_out:
331         iounmap(priv->regs);
332         return err;
333 }
334
335 /* Ioctl MII Interface */
336 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
337 {
338         struct gfar_private *priv = netdev_priv(dev);
339
340         if (!netif_running(dev))
341                 return -EINVAL;
342
343         if (!priv->phydev)
344                 return -ENODEV;
345
346         return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
347 }
348
349 /* Set up the ethernet device structure, private data,
350  * and anything else we need before we start */
351 static int gfar_probe(struct of_device *ofdev,
352                 const struct of_device_id *match)
353 {
354         u32 tempval;
355         struct net_device *dev = NULL;
356         struct gfar_private *priv = NULL;
357         DECLARE_MAC_BUF(mac);
358         int err = 0;
359         int len_devname;
360
361         /* Create an ethernet device instance */
362         dev = alloc_etherdev(sizeof (*priv));
363
364         if (NULL == dev)
365                 return -ENOMEM;
366
367         priv = netdev_priv(dev);
368         priv->dev = dev;
369         priv->node = ofdev->node;
370
371         err = gfar_of_init(dev);
372
373         if (err)
374                 goto regs_fail;
375
376         spin_lock_init(&priv->txlock);
377         spin_lock_init(&priv->rxlock);
378         spin_lock_init(&priv->bflock);
379         INIT_WORK(&priv->reset_task, gfar_reset_task);
380
381         dev_set_drvdata(&ofdev->dev, priv);
382
383         /* Stop the DMA engine now, in case it was running before */
384         /* (The firmware could have used it, and left it running). */
385         gfar_halt(dev);
386
387         /* Reset MAC layer */
388         gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
389
390         /* We need to delay at least 3 TX clocks */
391         udelay(2);
392
393         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
394         gfar_write(&priv->regs->maccfg1, tempval);
395
396         /* Initialize MACCFG2. */
397         gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
398
399         /* Initialize ECNTRL */
400         gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
401
402         /* Set the dev->base_addr to the gfar reg region */
403         dev->base_addr = (unsigned long) (priv->regs);
404
405         SET_NETDEV_DEV(dev, &ofdev->dev);
406
407         /* Fill in the dev structure */
408         dev->watchdog_timeo = TX_TIMEOUT;
409         netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
410         dev->mtu = 1500;
411
412         dev->netdev_ops = &gfar_netdev_ops;
413         dev->ethtool_ops = &gfar_ethtool_ops;
414
415         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
416                 priv->rx_csum_enable = 1;
417                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
418         } else
419                 priv->rx_csum_enable = 0;
420
421         priv->vlgrp = NULL;
422
423         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
424                 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
425
426         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
427                 priv->extended_hash = 1;
428                 priv->hash_width = 9;
429
430                 priv->hash_regs[0] = &priv->regs->igaddr0;
431                 priv->hash_regs[1] = &priv->regs->igaddr1;
432                 priv->hash_regs[2] = &priv->regs->igaddr2;
433                 priv->hash_regs[3] = &priv->regs->igaddr3;
434                 priv->hash_regs[4] = &priv->regs->igaddr4;
435                 priv->hash_regs[5] = &priv->regs->igaddr5;
436                 priv->hash_regs[6] = &priv->regs->igaddr6;
437                 priv->hash_regs[7] = &priv->regs->igaddr7;
438                 priv->hash_regs[8] = &priv->regs->gaddr0;
439                 priv->hash_regs[9] = &priv->regs->gaddr1;
440                 priv->hash_regs[10] = &priv->regs->gaddr2;
441                 priv->hash_regs[11] = &priv->regs->gaddr3;
442                 priv->hash_regs[12] = &priv->regs->gaddr4;
443                 priv->hash_regs[13] = &priv->regs->gaddr5;
444                 priv->hash_regs[14] = &priv->regs->gaddr6;
445                 priv->hash_regs[15] = &priv->regs->gaddr7;
446
447         } else {
448                 priv->extended_hash = 0;
449                 priv->hash_width = 8;
450
451                 priv->hash_regs[0] = &priv->regs->gaddr0;
452                 priv->hash_regs[1] = &priv->regs->gaddr1;
453                 priv->hash_regs[2] = &priv->regs->gaddr2;
454                 priv->hash_regs[3] = &priv->regs->gaddr3;
455                 priv->hash_regs[4] = &priv->regs->gaddr4;
456                 priv->hash_regs[5] = &priv->regs->gaddr5;
457                 priv->hash_regs[6] = &priv->regs->gaddr6;
458                 priv->hash_regs[7] = &priv->regs->gaddr7;
459         }
460
461         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
462                 priv->padding = DEFAULT_PADDING;
463         else
464                 priv->padding = 0;
465
466         if (dev->features & NETIF_F_IP_CSUM)
467                 dev->hard_header_len += GMAC_FCB_LEN;
468
469         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
470         priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
471         priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
472         priv->num_txbdfree = DEFAULT_TX_RING_SIZE;
473
474         priv->txcoalescing = DEFAULT_TX_COALESCE;
475         priv->txic = DEFAULT_TXIC;
476         priv->rxcoalescing = DEFAULT_RX_COALESCE;
477         priv->rxic = DEFAULT_RXIC;
478
479         /* Enable most messages by default */
480         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
481
482         /* Carrier starts down, phylib will bring it up */
483         netif_carrier_off(dev);
484
485         err = register_netdev(dev);
486
487         if (err) {
488                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
489                                 dev->name);
490                 goto register_fail;
491         }
492
493         device_init_wakeup(&dev->dev,
494                 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
495
496         /* fill out IRQ number and name fields */
497         len_devname = strlen(dev->name);
498         strncpy(&priv->int_name_tx[0], dev->name, len_devname);
499         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
500                 strncpy(&priv->int_name_tx[len_devname],
501                         "_tx", sizeof("_tx") + 1);
502
503                 strncpy(&priv->int_name_rx[0], dev->name, len_devname);
504                 strncpy(&priv->int_name_rx[len_devname],
505                         "_rx", sizeof("_rx") + 1);
506
507                 strncpy(&priv->int_name_er[0], dev->name, len_devname);
508                 strncpy(&priv->int_name_er[len_devname],
509                         "_er", sizeof("_er") + 1);
510         } else
511                 priv->int_name_tx[len_devname] = '\0';
512
513         /* Create all the sysfs files */
514         gfar_init_sysfs(dev);
515
516         /* Print out the device info */
517         printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
518
519         /* Even more device info helps when determining which kernel */
520         /* provided which set of benchmarks. */
521         printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
522         printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
523                dev->name, priv->rx_ring_size, priv->tx_ring_size);
524
525         return 0;
526
527 register_fail:
528         iounmap(priv->regs);
529 regs_fail:
530         free_netdev(dev);
531         return err;
532 }
533
534 static int gfar_remove(struct of_device *ofdev)
535 {
536         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
537
538         dev_set_drvdata(&ofdev->dev, NULL);
539
540         iounmap(priv->regs);
541         free_netdev(priv->dev);
542
543         return 0;
544 }
545
546 #ifdef CONFIG_PM
547 static int gfar_suspend(struct of_device *ofdev, pm_message_t state)
548 {
549         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
550         struct net_device *dev = priv->dev;
551         unsigned long flags;
552         u32 tempval;
553
554         int magic_packet = priv->wol_en &&
555                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
556
557         netif_device_detach(dev);
558
559         if (netif_running(dev)) {
560                 spin_lock_irqsave(&priv->txlock, flags);
561                 spin_lock(&priv->rxlock);
562
563                 gfar_halt_nodisable(dev);
564
565                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
566                 tempval = gfar_read(&priv->regs->maccfg1);
567
568                 tempval &= ~MACCFG1_TX_EN;
569
570                 if (!magic_packet)
571                         tempval &= ~MACCFG1_RX_EN;
572
573                 gfar_write(&priv->regs->maccfg1, tempval);
574
575                 spin_unlock(&priv->rxlock);
576                 spin_unlock_irqrestore(&priv->txlock, flags);
577
578                 napi_disable(&priv->napi);
579
580                 if (magic_packet) {
581                         /* Enable interrupt on Magic Packet */
582                         gfar_write(&priv->regs->imask, IMASK_MAG);
583
584                         /* Enable Magic Packet mode */
585                         tempval = gfar_read(&priv->regs->maccfg2);
586                         tempval |= MACCFG2_MPEN;
587                         gfar_write(&priv->regs->maccfg2, tempval);
588                 } else {
589                         phy_stop(priv->phydev);
590                 }
591         }
592
593         return 0;
594 }
595
596 static int gfar_resume(struct of_device *ofdev)
597 {
598         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
599         struct net_device *dev = priv->dev;
600         unsigned long flags;
601         u32 tempval;
602         int magic_packet = priv->wol_en &&
603                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
604
605         if (!netif_running(dev)) {
606                 netif_device_attach(dev);
607                 return 0;
608         }
609
610         if (!magic_packet && priv->phydev)
611                 phy_start(priv->phydev);
612
613         /* Disable Magic Packet mode, in case something
614          * else woke us up.
615          */
616
617         spin_lock_irqsave(&priv->txlock, flags);
618         spin_lock(&priv->rxlock);
619
620         tempval = gfar_read(&priv->regs->maccfg2);
621         tempval &= ~MACCFG2_MPEN;
622         gfar_write(&priv->regs->maccfg2, tempval);
623
624         gfar_start(dev);
625
626         spin_unlock(&priv->rxlock);
627         spin_unlock_irqrestore(&priv->txlock, flags);
628
629         netif_device_attach(dev);
630
631         napi_enable(&priv->napi);
632
633         return 0;
634 }
635 #else
636 #define gfar_suspend NULL
637 #define gfar_resume NULL
638 #endif
639
640 /* Reads the controller's registers to determine what interface
641  * connects it to the PHY.
642  */
643 static phy_interface_t gfar_get_interface(struct net_device *dev)
644 {
645         struct gfar_private *priv = netdev_priv(dev);
646         u32 ecntrl = gfar_read(&priv->regs->ecntrl);
647
648         if (ecntrl & ECNTRL_SGMII_MODE)
649                 return PHY_INTERFACE_MODE_SGMII;
650
651         if (ecntrl & ECNTRL_TBI_MODE) {
652                 if (ecntrl & ECNTRL_REDUCED_MODE)
653                         return PHY_INTERFACE_MODE_RTBI;
654                 else
655                         return PHY_INTERFACE_MODE_TBI;
656         }
657
658         if (ecntrl & ECNTRL_REDUCED_MODE) {
659                 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
660                         return PHY_INTERFACE_MODE_RMII;
661                 else {
662                         phy_interface_t interface = priv->interface;
663
664                         /*
665                          * This isn't autodetected right now, so it must
666                          * be set by the device tree or platform code.
667                          */
668                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
669                                 return PHY_INTERFACE_MODE_RGMII_ID;
670
671                         return PHY_INTERFACE_MODE_RGMII;
672                 }
673         }
674
675         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
676                 return PHY_INTERFACE_MODE_GMII;
677
678         return PHY_INTERFACE_MODE_MII;
679 }
680
681
682 /* Initializes driver's PHY state, and attaches to the PHY.
683  * Returns 0 on success.
684  */
685 static int init_phy(struct net_device *dev)
686 {
687         struct gfar_private *priv = netdev_priv(dev);
688         uint gigabit_support =
689                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
690                 SUPPORTED_1000baseT_Full : 0;
691         struct phy_device *phydev;
692         phy_interface_t interface;
693
694         priv->oldlink = 0;
695         priv->oldspeed = 0;
696         priv->oldduplex = -1;
697
698         interface = gfar_get_interface(dev);
699
700         phydev = phy_connect(dev, priv->phy_bus_id, &adjust_link, 0, interface);
701
702         if (interface == PHY_INTERFACE_MODE_SGMII)
703                 gfar_configure_serdes(dev);
704
705         if (IS_ERR(phydev)) {
706                 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
707                 return PTR_ERR(phydev);
708         }
709
710         /* Remove any features not supported by the controller */
711         phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
712         phydev->advertising = phydev->supported;
713
714         priv->phydev = phydev;
715
716         return 0;
717 }
718
719 /*
720  * Initialize TBI PHY interface for communicating with the
721  * SERDES lynx PHY on the chip.  We communicate with this PHY
722  * through the MDIO bus on each controller, treating it as a
723  * "normal" PHY at the address found in the TBIPA register.  We assume
724  * that the TBIPA register is valid.  Either the MDIO bus code will set
725  * it to a value that doesn't conflict with other PHYs on the bus, or the
726  * value doesn't matter, as there are no other PHYs on the bus.
727  */
728 static void gfar_configure_serdes(struct net_device *dev)
729 {
730         struct gfar_private *priv = netdev_priv(dev);
731
732         if (!priv->tbiphy) {
733                 printk(KERN_WARNING "SGMII mode requires that the device "
734                                 "tree specify a tbi-handle\n");
735                 return;
736         }
737
738         /*
739          * If the link is already up, we must already be ok, and don't need to
740          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
741          * everything for us?  Resetting it takes the link down and requires
742          * several seconds for it to come back.
743          */
744         if (phy_read(priv->tbiphy, MII_BMSR) & BMSR_LSTATUS)
745                 return;
746
747         /* Single clk mode, mii mode off(for serdes communication) */
748         phy_write(priv->tbiphy, MII_TBICON, TBICON_CLK_SELECT);
749
750         phy_write(priv->tbiphy, MII_ADVERTISE,
751                         ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
752                         ADVERTISE_1000XPSE_ASYM);
753
754         phy_write(priv->tbiphy, MII_BMCR, BMCR_ANENABLE |
755                         BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
756 }
757
758 static void init_registers(struct net_device *dev)
759 {
760         struct gfar_private *priv = netdev_priv(dev);
761
762         /* Clear IEVENT */
763         gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
764
765         /* Initialize IMASK */
766         gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
767
768         /* Init hash registers to zero */
769         gfar_write(&priv->regs->igaddr0, 0);
770         gfar_write(&priv->regs->igaddr1, 0);
771         gfar_write(&priv->regs->igaddr2, 0);
772         gfar_write(&priv->regs->igaddr3, 0);
773         gfar_write(&priv->regs->igaddr4, 0);
774         gfar_write(&priv->regs->igaddr5, 0);
775         gfar_write(&priv->regs->igaddr6, 0);
776         gfar_write(&priv->regs->igaddr7, 0);
777
778         gfar_write(&priv->regs->gaddr0, 0);
779         gfar_write(&priv->regs->gaddr1, 0);
780         gfar_write(&priv->regs->gaddr2, 0);
781         gfar_write(&priv->regs->gaddr3, 0);
782         gfar_write(&priv->regs->gaddr4, 0);
783         gfar_write(&priv->regs->gaddr5, 0);
784         gfar_write(&priv->regs->gaddr6, 0);
785         gfar_write(&priv->regs->gaddr7, 0);
786
787         /* Zero out the rmon mib registers if it has them */
788         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
789                 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
790
791                 /* Mask off the CAM interrupts */
792                 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
793                 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
794         }
795
796         /* Initialize the max receive buffer length */
797         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
798
799         /* Initialize the Minimum Frame Length Register */
800         gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
801 }
802
803
804 /* Halt the receive and transmit queues */
805 static void gfar_halt_nodisable(struct net_device *dev)
806 {
807         struct gfar_private *priv = netdev_priv(dev);
808         struct gfar __iomem *regs = priv->regs;
809         u32 tempval;
810
811         /* Mask all interrupts */
812         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
813
814         /* Clear all interrupts */
815         gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
816
817         /* Stop the DMA, and wait for it to stop */
818         tempval = gfar_read(&priv->regs->dmactrl);
819         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
820             != (DMACTRL_GRS | DMACTRL_GTS)) {
821                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
822                 gfar_write(&priv->regs->dmactrl, tempval);
823
824                 while (!(gfar_read(&priv->regs->ievent) &
825                          (IEVENT_GRSC | IEVENT_GTSC)))
826                         cpu_relax();
827         }
828 }
829
830 /* Halt the receive and transmit queues */
831 void gfar_halt(struct net_device *dev)
832 {
833         struct gfar_private *priv = netdev_priv(dev);
834         struct gfar __iomem *regs = priv->regs;
835         u32 tempval;
836
837         gfar_halt_nodisable(dev);
838
839         /* Disable Rx and Tx */
840         tempval = gfar_read(&regs->maccfg1);
841         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
842         gfar_write(&regs->maccfg1, tempval);
843 }
844
845 void stop_gfar(struct net_device *dev)
846 {
847         struct gfar_private *priv = netdev_priv(dev);
848         struct gfar __iomem *regs = priv->regs;
849         unsigned long flags;
850
851         phy_stop(priv->phydev);
852
853         /* Lock it down */
854         spin_lock_irqsave(&priv->txlock, flags);
855         spin_lock(&priv->rxlock);
856
857         gfar_halt(dev);
858
859         spin_unlock(&priv->rxlock);
860         spin_unlock_irqrestore(&priv->txlock, flags);
861
862         /* Free the IRQs */
863         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
864                 free_irq(priv->interruptError, dev);
865                 free_irq(priv->interruptTransmit, dev);
866                 free_irq(priv->interruptReceive, dev);
867         } else {
868                 free_irq(priv->interruptTransmit, dev);
869         }
870
871         free_skb_resources(priv);
872
873         dma_free_coherent(&dev->dev,
874                         sizeof(struct txbd8)*priv->tx_ring_size
875                         + sizeof(struct rxbd8)*priv->rx_ring_size,
876                         priv->tx_bd_base,
877                         gfar_read(&regs->tbase0));
878 }
879
880 /* If there are any tx skbs or rx skbs still around, free them.
881  * Then free tx_skbuff and rx_skbuff */
882 static void free_skb_resources(struct gfar_private *priv)
883 {
884         struct rxbd8 *rxbdp;
885         struct txbd8 *txbdp;
886         int i, j;
887
888         /* Go through all the buffer descriptors and free their data buffers */
889         txbdp = priv->tx_bd_base;
890
891         for (i = 0; i < priv->tx_ring_size; i++) {
892                 if (!priv->tx_skbuff[i])
893                         continue;
894
895                 dma_unmap_single(&priv->dev->dev, txbdp->bufPtr,
896                                 txbdp->length, DMA_TO_DEVICE);
897                 txbdp->lstatus = 0;
898                 for (j = 0; j < skb_shinfo(priv->tx_skbuff[i])->nr_frags; j++) {
899                         txbdp++;
900                         dma_unmap_page(&priv->dev->dev, txbdp->bufPtr,
901                                         txbdp->length, DMA_TO_DEVICE);
902                 }
903                 txbdp++;
904                 dev_kfree_skb_any(priv->tx_skbuff[i]);
905                 priv->tx_skbuff[i] = NULL;
906         }
907
908         kfree(priv->tx_skbuff);
909
910         rxbdp = priv->rx_bd_base;
911
912         /* rx_skbuff is not guaranteed to be allocated, so only
913          * free it and its contents if it is allocated */
914         if(priv->rx_skbuff != NULL) {
915                 for (i = 0; i < priv->rx_ring_size; i++) {
916                         if (priv->rx_skbuff[i]) {
917                                 dma_unmap_single(&priv->dev->dev, rxbdp->bufPtr,
918                                                 priv->rx_buffer_size,
919                                                 DMA_FROM_DEVICE);
920
921                                 dev_kfree_skb_any(priv->rx_skbuff[i]);
922                                 priv->rx_skbuff[i] = NULL;
923                         }
924
925                         rxbdp->lstatus = 0;
926                         rxbdp->bufPtr = 0;
927
928                         rxbdp++;
929                 }
930
931                 kfree(priv->rx_skbuff);
932         }
933 }
934
935 void gfar_start(struct net_device *dev)
936 {
937         struct gfar_private *priv = netdev_priv(dev);
938         struct gfar __iomem *regs = priv->regs;
939         u32 tempval;
940
941         /* Enable Rx and Tx in MACCFG1 */
942         tempval = gfar_read(&regs->maccfg1);
943         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
944         gfar_write(&regs->maccfg1, tempval);
945
946         /* Initialize DMACTRL to have WWR and WOP */
947         tempval = gfar_read(&priv->regs->dmactrl);
948         tempval |= DMACTRL_INIT_SETTINGS;
949         gfar_write(&priv->regs->dmactrl, tempval);
950
951         /* Make sure we aren't stopped */
952         tempval = gfar_read(&priv->regs->dmactrl);
953         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
954         gfar_write(&priv->regs->dmactrl, tempval);
955
956         /* Clear THLT/RHLT, so that the DMA starts polling now */
957         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
958         gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
959
960         /* Unmask the interrupts we look for */
961         gfar_write(&regs->imask, IMASK_DEFAULT);
962
963         dev->trans_start = jiffies;
964 }
965
966 /* Bring the controller up and running */
967 int startup_gfar(struct net_device *dev)
968 {
969         struct txbd8 *txbdp;
970         struct rxbd8 *rxbdp;
971         dma_addr_t addr = 0;
972         unsigned long vaddr;
973         int i;
974         struct gfar_private *priv = netdev_priv(dev);
975         struct gfar __iomem *regs = priv->regs;
976         int err = 0;
977         u32 rctrl = 0;
978         u32 attrs = 0;
979
980         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
981
982         /* Allocate memory for the buffer descriptors */
983         vaddr = (unsigned long) dma_alloc_coherent(&dev->dev,
984                         sizeof (struct txbd8) * priv->tx_ring_size +
985                         sizeof (struct rxbd8) * priv->rx_ring_size,
986                         &addr, GFP_KERNEL);
987
988         if (vaddr == 0) {
989                 if (netif_msg_ifup(priv))
990                         printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
991                                         dev->name);
992                 return -ENOMEM;
993         }
994
995         priv->tx_bd_base = (struct txbd8 *) vaddr;
996
997         /* enet DMA only understands physical addresses */
998         gfar_write(&regs->tbase0, addr);
999
1000         /* Start the rx descriptor ring where the tx ring leaves off */
1001         addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
1002         vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
1003         priv->rx_bd_base = (struct rxbd8 *) vaddr;
1004         gfar_write(&regs->rbase0, addr);
1005
1006         /* Setup the skbuff rings */
1007         priv->tx_skbuff =
1008             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
1009                                         priv->tx_ring_size, GFP_KERNEL);
1010
1011         if (NULL == priv->tx_skbuff) {
1012                 if (netif_msg_ifup(priv))
1013                         printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
1014                                         dev->name);
1015                 err = -ENOMEM;
1016                 goto tx_skb_fail;
1017         }
1018
1019         for (i = 0; i < priv->tx_ring_size; i++)
1020                 priv->tx_skbuff[i] = NULL;
1021
1022         priv->rx_skbuff =
1023             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
1024                                         priv->rx_ring_size, GFP_KERNEL);
1025
1026         if (NULL == priv->rx_skbuff) {
1027                 if (netif_msg_ifup(priv))
1028                         printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
1029                                         dev->name);
1030                 err = -ENOMEM;
1031                 goto rx_skb_fail;
1032         }
1033
1034         for (i = 0; i < priv->rx_ring_size; i++)
1035                 priv->rx_skbuff[i] = NULL;
1036
1037         /* Initialize some variables in our dev structure */
1038         priv->num_txbdfree = priv->tx_ring_size;
1039         priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
1040         priv->cur_rx = priv->rx_bd_base;
1041         priv->skb_curtx = priv->skb_dirtytx = 0;
1042         priv->skb_currx = 0;
1043
1044         /* Initialize Transmit Descriptor Ring */
1045         txbdp = priv->tx_bd_base;
1046         for (i = 0; i < priv->tx_ring_size; i++) {
1047                 txbdp->lstatus = 0;
1048                 txbdp->bufPtr = 0;
1049                 txbdp++;
1050         }
1051
1052         /* Set the last descriptor in the ring to indicate wrap */
1053         txbdp--;
1054         txbdp->status |= TXBD_WRAP;
1055
1056         rxbdp = priv->rx_bd_base;
1057         for (i = 0; i < priv->rx_ring_size; i++) {
1058                 struct sk_buff *skb;
1059
1060                 skb = gfar_new_skb(dev);
1061
1062                 if (!skb) {
1063                         printk(KERN_ERR "%s: Can't allocate RX buffers\n",
1064                                         dev->name);
1065
1066                         goto err_rxalloc_fail;
1067                 }
1068
1069                 priv->rx_skbuff[i] = skb;
1070
1071                 gfar_new_rxbdp(dev, rxbdp, skb);
1072
1073                 rxbdp++;
1074         }
1075
1076         /* Set the last descriptor in the ring to wrap */
1077         rxbdp--;
1078         rxbdp->status |= RXBD_WRAP;
1079
1080         /* If the device has multiple interrupts, register for
1081          * them.  Otherwise, only register for the one */
1082         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1083                 /* Install our interrupt handlers for Error,
1084                  * Transmit, and Receive */
1085                 if (request_irq(priv->interruptError, gfar_error,
1086                                 0, priv->int_name_er, dev) < 0) {
1087                         if (netif_msg_intr(priv))
1088                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1089                                         dev->name, priv->interruptError);
1090
1091                         err = -1;
1092                         goto err_irq_fail;
1093                 }
1094
1095                 if (request_irq(priv->interruptTransmit, gfar_transmit,
1096                                 0, priv->int_name_tx, dev) < 0) {
1097                         if (netif_msg_intr(priv))
1098                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1099                                         dev->name, priv->interruptTransmit);
1100
1101                         err = -1;
1102
1103                         goto tx_irq_fail;
1104                 }
1105
1106                 if (request_irq(priv->interruptReceive, gfar_receive,
1107                                 0, priv->int_name_rx, dev) < 0) {
1108                         if (netif_msg_intr(priv))
1109                                 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
1110                                                 dev->name, priv->interruptReceive);
1111
1112                         err = -1;
1113                         goto rx_irq_fail;
1114                 }
1115         } else {
1116                 if (request_irq(priv->interruptTransmit, gfar_interrupt,
1117                                 0, priv->int_name_tx, dev) < 0) {
1118                         if (netif_msg_intr(priv))
1119                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1120                                         dev->name, priv->interruptTransmit);
1121
1122                         err = -1;
1123                         goto err_irq_fail;
1124                 }
1125         }
1126
1127         phy_start(priv->phydev);
1128
1129         /* Configure the coalescing support */
1130         gfar_write(&regs->txic, 0);
1131         if (priv->txcoalescing)
1132                 gfar_write(&regs->txic, priv->txic);
1133
1134         gfar_write(&regs->rxic, 0);
1135         if (priv->rxcoalescing)
1136                 gfar_write(&regs->rxic, priv->rxic);
1137
1138         if (priv->rx_csum_enable)
1139                 rctrl |= RCTRL_CHECKSUMMING;
1140
1141         if (priv->extended_hash) {
1142                 rctrl |= RCTRL_EXTHASH;
1143
1144                 gfar_clear_exact_match(dev);
1145                 rctrl |= RCTRL_EMEN;
1146         }
1147
1148         if (priv->padding) {
1149                 rctrl &= ~RCTRL_PAL_MASK;
1150                 rctrl |= RCTRL_PADDING(priv->padding);
1151         }
1152
1153         /* Init rctrl based on our settings */
1154         gfar_write(&priv->regs->rctrl, rctrl);
1155
1156         if (dev->features & NETIF_F_IP_CSUM)
1157                 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
1158
1159         /* Set the extraction length and index */
1160         attrs = ATTRELI_EL(priv->rx_stash_size) |
1161                 ATTRELI_EI(priv->rx_stash_index);
1162
1163         gfar_write(&priv->regs->attreli, attrs);
1164
1165         /* Start with defaults, and add stashing or locking
1166          * depending on the approprate variables */
1167         attrs = ATTR_INIT_SETTINGS;
1168
1169         if (priv->bd_stash_en)
1170                 attrs |= ATTR_BDSTASH;
1171
1172         if (priv->rx_stash_size != 0)
1173                 attrs |= ATTR_BUFSTASH;
1174
1175         gfar_write(&priv->regs->attr, attrs);
1176
1177         gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
1178         gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
1179         gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
1180
1181         /* Start the controller */
1182         gfar_start(dev);
1183
1184         return 0;
1185
1186 rx_irq_fail:
1187         free_irq(priv->interruptTransmit, dev);
1188 tx_irq_fail:
1189         free_irq(priv->interruptError, dev);
1190 err_irq_fail:
1191 err_rxalloc_fail:
1192 rx_skb_fail:
1193         free_skb_resources(priv);
1194 tx_skb_fail:
1195         dma_free_coherent(&dev->dev,
1196                         sizeof(struct txbd8)*priv->tx_ring_size
1197                         + sizeof(struct rxbd8)*priv->rx_ring_size,
1198                         priv->tx_bd_base,
1199                         gfar_read(&regs->tbase0));
1200
1201         return err;
1202 }
1203
1204 /* Called when something needs to use the ethernet device */
1205 /* Returns 0 for success. */
1206 static int gfar_enet_open(struct net_device *dev)
1207 {
1208         struct gfar_private *priv = netdev_priv(dev);
1209         int err;
1210
1211         napi_enable(&priv->napi);
1212
1213         skb_queue_head_init(&priv->rx_recycle);
1214
1215         /* Initialize a bunch of registers */
1216         init_registers(dev);
1217
1218         gfar_set_mac_address(dev);
1219
1220         err = init_phy(dev);
1221
1222         if(err) {
1223                 napi_disable(&priv->napi);
1224                 return err;
1225         }
1226
1227         err = startup_gfar(dev);
1228         if (err) {
1229                 napi_disable(&priv->napi);
1230                 return err;
1231         }
1232
1233         netif_start_queue(dev);
1234
1235         device_set_wakeup_enable(&dev->dev, priv->wol_en);
1236
1237         return err;
1238 }
1239
1240 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1241 {
1242         struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
1243
1244         cacheable_memzero(fcb, GMAC_FCB_LEN);
1245
1246         return fcb;
1247 }
1248
1249 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1250 {
1251         u8 flags = 0;
1252
1253         /* If we're here, it's a IP packet with a TCP or UDP
1254          * payload.  We set it to checksum, using a pseudo-header
1255          * we provide
1256          */
1257         flags = TXFCB_DEFAULT;
1258
1259         /* Tell the controller what the protocol is */
1260         /* And provide the already calculated phcs */
1261         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1262                 flags |= TXFCB_UDP;
1263                 fcb->phcs = udp_hdr(skb)->check;
1264         } else
1265                 fcb->phcs = tcp_hdr(skb)->check;
1266
1267         /* l3os is the distance between the start of the
1268          * frame (skb->data) and the start of the IP hdr.
1269          * l4os is the distance between the start of the
1270          * l3 hdr and the l4 hdr */
1271         fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1272         fcb->l4os = skb_network_header_len(skb);
1273
1274         fcb->flags = flags;
1275 }
1276
1277 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1278 {
1279         fcb->flags |= TXFCB_VLN;
1280         fcb->vlctl = vlan_tx_tag_get(skb);
1281 }
1282
1283 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1284                                struct txbd8 *base, int ring_size)
1285 {
1286         struct txbd8 *new_bd = bdp + stride;
1287
1288         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1289 }
1290
1291 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1292                 int ring_size)
1293 {
1294         return skip_txbd(bdp, 1, base, ring_size);
1295 }
1296
1297 /* This is called by the kernel when a frame is ready for transmission. */
1298 /* It is pointed to by the dev->hard_start_xmit function pointer */
1299 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1300 {
1301         struct gfar_private *priv = netdev_priv(dev);
1302         struct txfcb *fcb = NULL;
1303         struct txbd8 *txbdp, *txbdp_start, *base;
1304         u32 lstatus;
1305         int i;
1306         u32 bufaddr;
1307         unsigned long flags;
1308         unsigned int nr_frags, length;
1309
1310         base = priv->tx_bd_base;
1311
1312         /* total number of fragments in the SKB */
1313         nr_frags = skb_shinfo(skb)->nr_frags;
1314
1315         spin_lock_irqsave(&priv->txlock, flags);
1316
1317         /* check if there is space to queue this packet */
1318         if ((nr_frags+1) > priv->num_txbdfree) {
1319                 /* no space, stop the queue */
1320                 netif_stop_queue(dev);
1321                 dev->stats.tx_fifo_errors++;
1322                 spin_unlock_irqrestore(&priv->txlock, flags);
1323                 return NETDEV_TX_BUSY;
1324         }
1325
1326         /* Update transmit stats */
1327         dev->stats.tx_bytes += skb->len;
1328
1329         txbdp = txbdp_start = priv->cur_tx;
1330
1331         if (nr_frags == 0) {
1332                 lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1333         } else {
1334                 /* Place the fragment addresses and lengths into the TxBDs */
1335                 for (i = 0; i < nr_frags; i++) {
1336                         /* Point at the next BD, wrapping as needed */
1337                         txbdp = next_txbd(txbdp, base, priv->tx_ring_size);
1338
1339                         length = skb_shinfo(skb)->frags[i].size;
1340
1341                         lstatus = txbdp->lstatus | length |
1342                                 BD_LFLAG(TXBD_READY);
1343
1344                         /* Handle the last BD specially */
1345                         if (i == nr_frags - 1)
1346                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1347
1348                         bufaddr = dma_map_page(&dev->dev,
1349                                         skb_shinfo(skb)->frags[i].page,
1350                                         skb_shinfo(skb)->frags[i].page_offset,
1351                                         length,
1352                                         DMA_TO_DEVICE);
1353
1354                         /* set the TxBD length and buffer pointer */
1355                         txbdp->bufPtr = bufaddr;
1356                         txbdp->lstatus = lstatus;
1357                 }
1358
1359                 lstatus = txbdp_start->lstatus;
1360         }
1361
1362         /* Set up checksumming */
1363         if (CHECKSUM_PARTIAL == skb->ip_summed) {
1364                 fcb = gfar_add_fcb(skb);
1365                 lstatus |= BD_LFLAG(TXBD_TOE);
1366                 gfar_tx_checksum(skb, fcb);
1367         }
1368
1369         if (priv->vlgrp && vlan_tx_tag_present(skb)) {
1370                 if (unlikely(NULL == fcb)) {
1371                         fcb = gfar_add_fcb(skb);
1372                         lstatus |= BD_LFLAG(TXBD_TOE);
1373                 }
1374
1375                 gfar_tx_vlan(skb, fcb);
1376         }
1377
1378         /* setup the TxBD length and buffer pointer for the first BD */
1379         priv->tx_skbuff[priv->skb_curtx] = skb;
1380         txbdp_start->bufPtr = dma_map_single(&dev->dev, skb->data,
1381                         skb_headlen(skb), DMA_TO_DEVICE);
1382
1383         lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1384
1385         /*
1386          * The powerpc-specific eieio() is used, as wmb() has too strong
1387          * semantics (it requires synchronization between cacheable and
1388          * uncacheable mappings, which eieio doesn't provide and which we
1389          * don't need), thus requiring a more expensive sync instruction.  At
1390          * some point, the set of architecture-independent barrier functions
1391          * should be expanded to include weaker barriers.
1392          */
1393         eieio();
1394
1395         txbdp_start->lstatus = lstatus;
1396
1397         /* Update the current skb pointer to the next entry we will use
1398          * (wrapping if necessary) */
1399         priv->skb_curtx = (priv->skb_curtx + 1) &
1400                 TX_RING_MOD_MASK(priv->tx_ring_size);
1401
1402         priv->cur_tx = next_txbd(txbdp, base, priv->tx_ring_size);
1403
1404         /* reduce TxBD free count */
1405         priv->num_txbdfree -= (nr_frags + 1);
1406
1407         dev->trans_start = jiffies;
1408
1409         /* If the next BD still needs to be cleaned up, then the bds
1410            are full.  We need to tell the kernel to stop sending us stuff. */
1411         if (!priv->num_txbdfree) {
1412                 netif_stop_queue(dev);
1413
1414                 dev->stats.tx_fifo_errors++;
1415         }
1416
1417         /* Tell the DMA to go go go */
1418         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1419
1420         /* Unlock priv */
1421         spin_unlock_irqrestore(&priv->txlock, flags);
1422
1423         return 0;
1424 }
1425
1426 /* Stops the kernel queue, and halts the controller */
1427 static int gfar_close(struct net_device *dev)
1428 {
1429         struct gfar_private *priv = netdev_priv(dev);
1430
1431         napi_disable(&priv->napi);
1432
1433         skb_queue_purge(&priv->rx_recycle);
1434         cancel_work_sync(&priv->reset_task);
1435         stop_gfar(dev);
1436
1437         /* Disconnect from the PHY */
1438         phy_disconnect(priv->phydev);
1439         priv->phydev = NULL;
1440
1441         netif_stop_queue(dev);
1442
1443         return 0;
1444 }
1445
1446 /* Changes the mac address if the controller is not running. */
1447 static int gfar_set_mac_address(struct net_device *dev)
1448 {
1449         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1450
1451         return 0;
1452 }
1453
1454
1455 /* Enables and disables VLAN insertion/extraction */
1456 static void gfar_vlan_rx_register(struct net_device *dev,
1457                 struct vlan_group *grp)
1458 {
1459         struct gfar_private *priv = netdev_priv(dev);
1460         unsigned long flags;
1461         u32 tempval;
1462
1463         spin_lock_irqsave(&priv->rxlock, flags);
1464
1465         priv->vlgrp = grp;
1466
1467         if (grp) {
1468                 /* Enable VLAN tag insertion */
1469                 tempval = gfar_read(&priv->regs->tctrl);
1470                 tempval |= TCTRL_VLINS;
1471
1472                 gfar_write(&priv->regs->tctrl, tempval);
1473
1474                 /* Enable VLAN tag extraction */
1475                 tempval = gfar_read(&priv->regs->rctrl);
1476                 tempval |= RCTRL_VLEX;
1477                 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
1478                 gfar_write(&priv->regs->rctrl, tempval);
1479         } else {
1480                 /* Disable VLAN tag insertion */
1481                 tempval = gfar_read(&priv->regs->tctrl);
1482                 tempval &= ~TCTRL_VLINS;
1483                 gfar_write(&priv->regs->tctrl, tempval);
1484
1485                 /* Disable VLAN tag extraction */
1486                 tempval = gfar_read(&priv->regs->rctrl);
1487                 tempval &= ~RCTRL_VLEX;
1488                 /* If parse is no longer required, then disable parser */
1489                 if (tempval & RCTRL_REQ_PARSER)
1490                         tempval |= RCTRL_PRSDEP_INIT;
1491                 else
1492                         tempval &= ~RCTRL_PRSDEP_INIT;
1493                 gfar_write(&priv->regs->rctrl, tempval);
1494         }
1495
1496         gfar_change_mtu(dev, dev->mtu);
1497
1498         spin_unlock_irqrestore(&priv->rxlock, flags);
1499 }
1500
1501 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1502 {
1503         int tempsize, tempval;
1504         struct gfar_private *priv = netdev_priv(dev);
1505         int oldsize = priv->rx_buffer_size;
1506         int frame_size = new_mtu + ETH_HLEN;
1507
1508         if (priv->vlgrp)
1509                 frame_size += VLAN_HLEN;
1510
1511         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1512                 if (netif_msg_drv(priv))
1513                         printk(KERN_ERR "%s: Invalid MTU setting\n",
1514                                         dev->name);
1515                 return -EINVAL;
1516         }
1517
1518         if (gfar_uses_fcb(priv))
1519                 frame_size += GMAC_FCB_LEN;
1520
1521         frame_size += priv->padding;
1522
1523         tempsize =
1524             (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1525             INCREMENTAL_BUFFER_SIZE;
1526
1527         /* Only stop and start the controller if it isn't already
1528          * stopped, and we changed something */
1529         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1530                 stop_gfar(dev);
1531
1532         priv->rx_buffer_size = tempsize;
1533
1534         dev->mtu = new_mtu;
1535
1536         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1537         gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1538
1539         /* If the mtu is larger than the max size for standard
1540          * ethernet frames (ie, a jumbo frame), then set maccfg2
1541          * to allow huge frames, and to check the length */
1542         tempval = gfar_read(&priv->regs->maccfg2);
1543
1544         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1545                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1546         else
1547                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1548
1549         gfar_write(&priv->regs->maccfg2, tempval);
1550
1551         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1552                 startup_gfar(dev);
1553
1554         return 0;
1555 }
1556
1557 /* gfar_reset_task gets scheduled when a packet has not been
1558  * transmitted after a set amount of time.
1559  * For now, assume that clearing out all the structures, and
1560  * starting over will fix the problem.
1561  */
1562 static void gfar_reset_task(struct work_struct *work)
1563 {
1564         struct gfar_private *priv = container_of(work, struct gfar_private,
1565                         reset_task);
1566         struct net_device *dev = priv->dev;
1567
1568         if (dev->flags & IFF_UP) {
1569                 stop_gfar(dev);
1570                 startup_gfar(dev);
1571         }
1572
1573         netif_tx_schedule_all(dev);
1574 }
1575
1576 static void gfar_timeout(struct net_device *dev)
1577 {
1578         struct gfar_private *priv = netdev_priv(dev);
1579
1580         dev->stats.tx_errors++;
1581         schedule_work(&priv->reset_task);
1582 }
1583
1584 /* Interrupt Handler for Transmit complete */
1585 static int gfar_clean_tx_ring(struct net_device *dev)
1586 {
1587         struct gfar_private *priv = netdev_priv(dev);
1588         struct txbd8 *bdp;
1589         struct txbd8 *lbdp = NULL;
1590         struct txbd8 *base = priv->tx_bd_base;
1591         struct sk_buff *skb;
1592         int skb_dirtytx;
1593         int tx_ring_size = priv->tx_ring_size;
1594         int frags = 0;
1595         int i;
1596         int howmany = 0;
1597         u32 lstatus;
1598
1599         bdp = priv->dirty_tx;
1600         skb_dirtytx = priv->skb_dirtytx;
1601
1602         while ((skb = priv->tx_skbuff[skb_dirtytx])) {
1603                 frags = skb_shinfo(skb)->nr_frags;
1604                 lbdp = skip_txbd(bdp, frags, base, tx_ring_size);
1605
1606                 lstatus = lbdp->lstatus;
1607
1608                 /* Only clean completed frames */
1609                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
1610                                 (lstatus & BD_LENGTH_MASK))
1611                         break;
1612
1613                 dma_unmap_single(&dev->dev,
1614                                 bdp->bufPtr,
1615                                 bdp->length,
1616                                 DMA_TO_DEVICE);
1617
1618                 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1619                 bdp = next_txbd(bdp, base, tx_ring_size);
1620
1621                 for (i = 0; i < frags; i++) {
1622                         dma_unmap_page(&dev->dev,
1623                                         bdp->bufPtr,
1624                                         bdp->length,
1625                                         DMA_TO_DEVICE);
1626                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1627                         bdp = next_txbd(bdp, base, tx_ring_size);
1628                 }
1629
1630                 /*
1631                  * If there's room in the queue (limit it to rx_buffer_size)
1632                  * we add this skb back into the pool, if it's the right size
1633                  */
1634                 if (skb_queue_len(&priv->rx_recycle) < priv->rx_ring_size &&
1635                                 skb_recycle_check(skb, priv->rx_buffer_size +
1636                                         RXBUF_ALIGNMENT))
1637                         __skb_queue_head(&priv->rx_recycle, skb);
1638                 else
1639                         dev_kfree_skb_any(skb);
1640
1641                 priv->tx_skbuff[skb_dirtytx] = NULL;
1642
1643                 skb_dirtytx = (skb_dirtytx + 1) &
1644                         TX_RING_MOD_MASK(tx_ring_size);
1645
1646                 howmany++;
1647                 priv->num_txbdfree += frags + 1;
1648         }
1649
1650         /* If we freed a buffer, we can restart transmission, if necessary */
1651         if (netif_queue_stopped(dev) && priv->num_txbdfree)
1652                 netif_wake_queue(dev);
1653
1654         /* Update dirty indicators */
1655         priv->skb_dirtytx = skb_dirtytx;
1656         priv->dirty_tx = bdp;
1657
1658         dev->stats.tx_packets += howmany;
1659
1660         return howmany;
1661 }
1662
1663 static void gfar_schedule_cleanup(struct net_device *dev)
1664 {
1665         struct gfar_private *priv = netdev_priv(dev);
1666         unsigned long flags;
1667
1668         spin_lock_irqsave(&priv->txlock, flags);
1669         spin_lock(&priv->rxlock);
1670
1671         if (napi_schedule_prep(&priv->napi)) {
1672                 gfar_write(&priv->regs->imask, IMASK_RTX_DISABLED);
1673                 __napi_schedule(&priv->napi);
1674         } else {
1675                 /*
1676                  * Clear IEVENT, so interrupts aren't called again
1677                  * because of the packets that have already arrived.
1678                  */
1679                 gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1680         }
1681
1682         spin_unlock(&priv->rxlock);
1683         spin_unlock_irqrestore(&priv->txlock, flags);
1684 }
1685
1686 /* Interrupt Handler for Transmit complete */
1687 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1688 {
1689         gfar_schedule_cleanup((struct net_device *)dev_id);
1690         return IRQ_HANDLED;
1691 }
1692
1693 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
1694                 struct sk_buff *skb)
1695 {
1696         struct gfar_private *priv = netdev_priv(dev);
1697         u32 lstatus;
1698
1699         bdp->bufPtr = dma_map_single(&dev->dev, skb->data,
1700                         priv->rx_buffer_size, DMA_FROM_DEVICE);
1701
1702         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
1703
1704         if (bdp == priv->rx_bd_base + priv->rx_ring_size - 1)
1705                 lstatus |= BD_LFLAG(RXBD_WRAP);
1706
1707         eieio();
1708
1709         bdp->lstatus = lstatus;
1710 }
1711
1712
1713 struct sk_buff * gfar_new_skb(struct net_device *dev)
1714 {
1715         unsigned int alignamount;
1716         struct gfar_private *priv = netdev_priv(dev);
1717         struct sk_buff *skb = NULL;
1718
1719         skb = __skb_dequeue(&priv->rx_recycle);
1720         if (!skb)
1721                 skb = netdev_alloc_skb(dev,
1722                                 priv->rx_buffer_size + RXBUF_ALIGNMENT);
1723
1724         if (!skb)
1725                 return NULL;
1726
1727         alignamount = RXBUF_ALIGNMENT -
1728                 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
1729
1730         /* We need the data buffer to be aligned properly.  We will reserve
1731          * as many bytes as needed to align the data properly
1732          */
1733         skb_reserve(skb, alignamount);
1734
1735         return skb;
1736 }
1737
1738 static inline void count_errors(unsigned short status, struct net_device *dev)
1739 {
1740         struct gfar_private *priv = netdev_priv(dev);
1741         struct net_device_stats *stats = &dev->stats;
1742         struct gfar_extra_stats *estats = &priv->extra_stats;
1743
1744         /* If the packet was truncated, none of the other errors
1745          * matter */
1746         if (status & RXBD_TRUNCATED) {
1747                 stats->rx_length_errors++;
1748
1749                 estats->rx_trunc++;
1750
1751                 return;
1752         }
1753         /* Count the errors, if there were any */
1754         if (status & (RXBD_LARGE | RXBD_SHORT)) {
1755                 stats->rx_length_errors++;
1756
1757                 if (status & RXBD_LARGE)
1758                         estats->rx_large++;
1759                 else
1760                         estats->rx_short++;
1761         }
1762         if (status & RXBD_NONOCTET) {
1763                 stats->rx_frame_errors++;
1764                 estats->rx_nonoctet++;
1765         }
1766         if (status & RXBD_CRCERR) {
1767                 estats->rx_crcerr++;
1768                 stats->rx_crc_errors++;
1769         }
1770         if (status & RXBD_OVERRUN) {
1771                 estats->rx_overrun++;
1772                 stats->rx_crc_errors++;
1773         }
1774 }
1775
1776 irqreturn_t gfar_receive(int irq, void *dev_id)
1777 {
1778         gfar_schedule_cleanup((struct net_device *)dev_id);
1779         return IRQ_HANDLED;
1780 }
1781
1782 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1783 {
1784         /* If valid headers were found, and valid sums
1785          * were verified, then we tell the kernel that no
1786          * checksumming is necessary.  Otherwise, it is */
1787         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1788                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1789         else
1790                 skb->ip_summed = CHECKSUM_NONE;
1791 }
1792
1793
1794 /* gfar_process_frame() -- handle one incoming packet if skb
1795  * isn't NULL.  */
1796 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1797                               int amount_pull)
1798 {
1799         struct gfar_private *priv = netdev_priv(dev);
1800         struct rxfcb *fcb = NULL;
1801
1802         int ret;
1803
1804         /* fcb is at the beginning if exists */
1805         fcb = (struct rxfcb *)skb->data;
1806
1807         /* Remove the FCB from the skb */
1808         /* Remove the padded bytes, if there are any */
1809         if (amount_pull)
1810                 skb_pull(skb, amount_pull);
1811
1812         if (priv->rx_csum_enable)
1813                 gfar_rx_checksum(skb, fcb);
1814
1815         /* Tell the skb what kind of packet this is */
1816         skb->protocol = eth_type_trans(skb, dev);
1817
1818         /* Send the packet up the stack */
1819         if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1820                 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
1821         else
1822                 ret = netif_receive_skb(skb);
1823
1824         if (NET_RX_DROP == ret)
1825                 priv->extra_stats.kernel_dropped++;
1826
1827         return 0;
1828 }
1829
1830 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1831  *   until the budget/quota has been reached. Returns the number
1832  *   of frames handled
1833  */
1834 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1835 {
1836         struct rxbd8 *bdp, *base;
1837         struct sk_buff *skb;
1838         int pkt_len;
1839         int amount_pull;
1840         int howmany = 0;
1841         struct gfar_private *priv = netdev_priv(dev);
1842
1843         /* Get the first full descriptor */
1844         bdp = priv->cur_rx;
1845         base = priv->rx_bd_base;
1846
1847         amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0) +
1848                 priv->padding;
1849
1850         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1851                 struct sk_buff *newskb;
1852                 rmb();
1853
1854                 /* Add another skb for the future */
1855                 newskb = gfar_new_skb(dev);
1856
1857                 skb = priv->rx_skbuff[priv->skb_currx];
1858
1859                 dma_unmap_single(&priv->dev->dev, bdp->bufPtr,
1860                                 priv->rx_buffer_size, DMA_FROM_DEVICE);
1861
1862                 /* We drop the frame if we failed to allocate a new buffer */
1863                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
1864                                  bdp->status & RXBD_ERR)) {
1865                         count_errors(bdp->status, dev);
1866
1867                         if (unlikely(!newskb))
1868                                 newskb = skb;
1869                         else if (skb)
1870                                 __skb_queue_head(&priv->rx_recycle, skb);
1871                 } else {
1872                         /* Increment the number of packets */
1873                         dev->stats.rx_packets++;
1874                         howmany++;
1875
1876                         if (likely(skb)) {
1877                                 pkt_len = bdp->length - ETH_FCS_LEN;
1878                                 /* Remove the FCS from the packet length */
1879                                 skb_put(skb, pkt_len);
1880                                 dev->stats.rx_bytes += pkt_len;
1881
1882                                 if (in_irq() || irqs_disabled())
1883                                         printk("Interrupt problem!\n");
1884                                 gfar_process_frame(dev, skb, amount_pull);
1885
1886                         } else {
1887                                 if (netif_msg_rx_err(priv))
1888                                         printk(KERN_WARNING
1889                                                "%s: Missing skb!\n", dev->name);
1890                                 dev->stats.rx_dropped++;
1891                                 priv->extra_stats.rx_skbmissing++;
1892                         }
1893
1894                 }
1895
1896                 priv->rx_skbuff[priv->skb_currx] = newskb;
1897
1898                 /* Setup the new bdp */
1899                 gfar_new_rxbdp(dev, bdp, newskb);
1900
1901                 /* Update to the next pointer */
1902                 bdp = next_bd(bdp, base, priv->rx_ring_size);
1903
1904                 /* update to point at the next skb */
1905                 priv->skb_currx =
1906                     (priv->skb_currx + 1) &
1907                     RX_RING_MOD_MASK(priv->rx_ring_size);
1908         }
1909
1910         /* Update the current rxbd pointer to be the next one */
1911         priv->cur_rx = bdp;
1912
1913         return howmany;
1914 }
1915
1916 static int gfar_poll(struct napi_struct *napi, int budget)
1917 {
1918         struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
1919         struct net_device *dev = priv->dev;
1920         int tx_cleaned = 0;
1921         int rx_cleaned = 0;
1922         unsigned long flags;
1923
1924         /* Clear IEVENT, so interrupts aren't called again
1925          * because of the packets that have already arrived */
1926         gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1927
1928         /* If we fail to get the lock, don't bother with the TX BDs */
1929         if (spin_trylock_irqsave(&priv->txlock, flags)) {
1930                 tx_cleaned = gfar_clean_tx_ring(dev);
1931                 spin_unlock_irqrestore(&priv->txlock, flags);
1932         }
1933
1934         rx_cleaned = gfar_clean_rx_ring(dev, budget);
1935
1936         if (tx_cleaned)
1937                 return budget;
1938
1939         if (rx_cleaned < budget) {
1940                 napi_complete(napi);
1941
1942                 /* Clear the halt bit in RSTAT */
1943                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1944
1945                 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1946
1947                 /* If we are coalescing interrupts, update the timer */
1948                 /* Otherwise, clear it */
1949                 if (likely(priv->rxcoalescing)) {
1950                         gfar_write(&priv->regs->rxic, 0);
1951                         gfar_write(&priv->regs->rxic, priv->rxic);
1952                 }
1953                 if (likely(priv->txcoalescing)) {
1954                         gfar_write(&priv->regs->txic, 0);
1955                         gfar_write(&priv->regs->txic, priv->txic);
1956                 }
1957         }
1958
1959         return rx_cleaned;
1960 }
1961
1962 #ifdef CONFIG_NET_POLL_CONTROLLER
1963 /*
1964  * Polling 'interrupt' - used by things like netconsole to send skbs
1965  * without having to re-enable interrupts. It's not called while
1966  * the interrupt routine is executing.
1967  */
1968 static void gfar_netpoll(struct net_device *dev)
1969 {
1970         struct gfar_private *priv = netdev_priv(dev);
1971
1972         /* If the device has multiple interrupts, run tx/rx */
1973         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1974                 disable_irq(priv->interruptTransmit);
1975                 disable_irq(priv->interruptReceive);
1976                 disable_irq(priv->interruptError);
1977                 gfar_interrupt(priv->interruptTransmit, dev);
1978                 enable_irq(priv->interruptError);
1979                 enable_irq(priv->interruptReceive);
1980                 enable_irq(priv->interruptTransmit);
1981         } else {
1982                 disable_irq(priv->interruptTransmit);
1983                 gfar_interrupt(priv->interruptTransmit, dev);
1984                 enable_irq(priv->interruptTransmit);
1985         }
1986 }
1987 #endif
1988
1989 /* The interrupt handler for devices with one interrupt */
1990 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1991 {
1992         struct net_device *dev = dev_id;
1993         struct gfar_private *priv = netdev_priv(dev);
1994
1995         /* Save ievent for future reference */
1996         u32 events = gfar_read(&priv->regs->ievent);
1997
1998         /* Check for reception */
1999         if (events & IEVENT_RX_MASK)
2000                 gfar_receive(irq, dev_id);
2001
2002         /* Check for transmit completion */
2003         if (events & IEVENT_TX_MASK)
2004                 gfar_transmit(irq, dev_id);
2005
2006         /* Check for errors */
2007         if (events & IEVENT_ERR_MASK)
2008                 gfar_error(irq, dev_id);
2009
2010         return IRQ_HANDLED;
2011 }
2012
2013 /* Called every time the controller might need to be made
2014  * aware of new link state.  The PHY code conveys this
2015  * information through variables in the phydev structure, and this
2016  * function converts those variables into the appropriate
2017  * register values, and can bring down the device if needed.
2018  */
2019 static void adjust_link(struct net_device *dev)
2020 {
2021         struct gfar_private *priv = netdev_priv(dev);
2022         struct gfar __iomem *regs = priv->regs;
2023         unsigned long flags;
2024         struct phy_device *phydev = priv->phydev;
2025         int new_state = 0;
2026
2027         spin_lock_irqsave(&priv->txlock, flags);
2028         if (phydev->link) {
2029                 u32 tempval = gfar_read(&regs->maccfg2);
2030                 u32 ecntrl = gfar_read(&regs->ecntrl);
2031
2032                 /* Now we make sure that we can be in full duplex mode.
2033                  * If not, we operate in half-duplex mode. */
2034                 if (phydev->duplex != priv->oldduplex) {
2035                         new_state = 1;
2036                         if (!(phydev->duplex))
2037                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
2038                         else
2039                                 tempval |= MACCFG2_FULL_DUPLEX;
2040
2041                         priv->oldduplex = phydev->duplex;
2042                 }
2043
2044                 if (phydev->speed != priv->oldspeed) {
2045                         new_state = 1;
2046                         switch (phydev->speed) {
2047                         case 1000:
2048                                 tempval =
2049                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2050
2051                                 ecntrl &= ~(ECNTRL_R100);
2052                                 break;
2053                         case 100:
2054                         case 10:
2055                                 tempval =
2056                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2057
2058                                 /* Reduced mode distinguishes
2059                                  * between 10 and 100 */
2060                                 if (phydev->speed == SPEED_100)
2061                                         ecntrl |= ECNTRL_R100;
2062                                 else
2063                                         ecntrl &= ~(ECNTRL_R100);
2064                                 break;
2065                         default:
2066                                 if (netif_msg_link(priv))
2067                                         printk(KERN_WARNING
2068                                                 "%s: Ack!  Speed (%d) is not 10/100/1000!\n",
2069                                                 dev->name, phydev->speed);
2070                                 break;
2071                         }
2072
2073                         priv->oldspeed = phydev->speed;
2074                 }
2075
2076                 gfar_write(&regs->maccfg2, tempval);
2077                 gfar_write(&regs->ecntrl, ecntrl);
2078
2079                 if (!priv->oldlink) {
2080                         new_state = 1;
2081                         priv->oldlink = 1;
2082                 }
2083         } else if (priv->oldlink) {
2084                 new_state = 1;
2085                 priv->oldlink = 0;
2086                 priv->oldspeed = 0;
2087                 priv->oldduplex = -1;
2088         }
2089
2090         if (new_state && netif_msg_link(priv))
2091                 phy_print_status(phydev);
2092
2093         spin_unlock_irqrestore(&priv->txlock, flags);
2094 }
2095
2096 /* Update the hash table based on the current list of multicast
2097  * addresses we subscribe to.  Also, change the promiscuity of
2098  * the device based on the flags (this function is called
2099  * whenever dev->flags is changed */
2100 static void gfar_set_multi(struct net_device *dev)
2101 {
2102         struct dev_mc_list *mc_ptr;
2103         struct gfar_private *priv = netdev_priv(dev);
2104         struct gfar __iomem *regs = priv->regs;
2105         u32 tempval;
2106
2107         if(dev->flags & IFF_PROMISC) {
2108                 /* Set RCTRL to PROM */
2109                 tempval = gfar_read(&regs->rctrl);
2110                 tempval |= RCTRL_PROM;
2111                 gfar_write(&regs->rctrl, tempval);
2112         } else {
2113                 /* Set RCTRL to not PROM */
2114                 tempval = gfar_read(&regs->rctrl);
2115                 tempval &= ~(RCTRL_PROM);
2116                 gfar_write(&regs->rctrl, tempval);
2117         }
2118
2119         if(dev->flags & IFF_ALLMULTI) {
2120                 /* Set the hash to rx all multicast frames */
2121                 gfar_write(&regs->igaddr0, 0xffffffff);
2122                 gfar_write(&regs->igaddr1, 0xffffffff);
2123                 gfar_write(&regs->igaddr2, 0xffffffff);
2124                 gfar_write(&regs->igaddr3, 0xffffffff);
2125                 gfar_write(&regs->igaddr4, 0xffffffff);
2126                 gfar_write(&regs->igaddr5, 0xffffffff);
2127                 gfar_write(&regs->igaddr6, 0xffffffff);
2128                 gfar_write(&regs->igaddr7, 0xffffffff);
2129                 gfar_write(&regs->gaddr0, 0xffffffff);
2130                 gfar_write(&regs->gaddr1, 0xffffffff);
2131                 gfar_write(&regs->gaddr2, 0xffffffff);
2132                 gfar_write(&regs->gaddr3, 0xffffffff);
2133                 gfar_write(&regs->gaddr4, 0xffffffff);
2134                 gfar_write(&regs->gaddr5, 0xffffffff);
2135                 gfar_write(&regs->gaddr6, 0xffffffff);
2136                 gfar_write(&regs->gaddr7, 0xffffffff);
2137         } else {
2138                 int em_num;
2139                 int idx;
2140
2141                 /* zero out the hash */
2142                 gfar_write(&regs->igaddr0, 0x0);
2143                 gfar_write(&regs->igaddr1, 0x0);
2144                 gfar_write(&regs->igaddr2, 0x0);
2145                 gfar_write(&regs->igaddr3, 0x0);
2146                 gfar_write(&regs->igaddr4, 0x0);
2147                 gfar_write(&regs->igaddr5, 0x0);
2148                 gfar_write(&regs->igaddr6, 0x0);
2149                 gfar_write(&regs->igaddr7, 0x0);
2150                 gfar_write(&regs->gaddr0, 0x0);
2151                 gfar_write(&regs->gaddr1, 0x0);
2152                 gfar_write(&regs->gaddr2, 0x0);
2153                 gfar_write(&regs->gaddr3, 0x0);
2154                 gfar_write(&regs->gaddr4, 0x0);
2155                 gfar_write(&regs->gaddr5, 0x0);
2156                 gfar_write(&regs->gaddr6, 0x0);
2157                 gfar_write(&regs->gaddr7, 0x0);
2158
2159                 /* If we have extended hash tables, we need to
2160                  * clear the exact match registers to prepare for
2161                  * setting them */
2162                 if (priv->extended_hash) {
2163                         em_num = GFAR_EM_NUM + 1;
2164                         gfar_clear_exact_match(dev);
2165                         idx = 1;
2166                 } else {
2167                         idx = 0;
2168                         em_num = 0;
2169                 }
2170
2171                 if(dev->mc_count == 0)
2172                         return;
2173
2174                 /* Parse the list, and set the appropriate bits */
2175                 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
2176                         if (idx < em_num) {
2177                                 gfar_set_mac_for_addr(dev, idx,
2178                                                 mc_ptr->dmi_addr);
2179                                 idx++;
2180                         } else
2181                                 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
2182                 }
2183         }
2184
2185         return;
2186 }
2187
2188
2189 /* Clears each of the exact match registers to zero, so they
2190  * don't interfere with normal reception */
2191 static void gfar_clear_exact_match(struct net_device *dev)
2192 {
2193         int idx;
2194         u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
2195
2196         for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
2197                 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
2198 }
2199
2200 /* Set the appropriate hash bit for the given addr */
2201 /* The algorithm works like so:
2202  * 1) Take the Destination Address (ie the multicast address), and
2203  * do a CRC on it (little endian), and reverse the bits of the
2204  * result.
2205  * 2) Use the 8 most significant bits as a hash into a 256-entry
2206  * table.  The table is controlled through 8 32-bit registers:
2207  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
2208  * gaddr7.  This means that the 3 most significant bits in the
2209  * hash index which gaddr register to use, and the 5 other bits
2210  * indicate which bit (assuming an IBM numbering scheme, which
2211  * for PowerPC (tm) is usually the case) in the register holds
2212  * the entry. */
2213 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
2214 {
2215         u32 tempval;
2216         struct gfar_private *priv = netdev_priv(dev);
2217         u32 result = ether_crc(MAC_ADDR_LEN, addr);
2218         int width = priv->hash_width;
2219         u8 whichbit = (result >> (32 - width)) & 0x1f;
2220         u8 whichreg = result >> (32 - width + 5);
2221         u32 value = (1 << (31-whichbit));
2222
2223         tempval = gfar_read(priv->hash_regs[whichreg]);
2224         tempval |= value;
2225         gfar_write(priv->hash_regs[whichreg], tempval);
2226
2227         return;
2228 }
2229
2230
2231 /* There are multiple MAC Address register pairs on some controllers
2232  * This function sets the numth pair to a given address
2233  */
2234 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
2235 {
2236         struct gfar_private *priv = netdev_priv(dev);
2237         int idx;
2238         char tmpbuf[MAC_ADDR_LEN];
2239         u32 tempval;
2240         u32 __iomem *macptr = &priv->regs->macstnaddr1;
2241
2242         macptr += num*2;
2243
2244         /* Now copy it into the mac registers backwards, cuz */
2245         /* little endian is silly */
2246         for (idx = 0; idx < MAC_ADDR_LEN; idx++)
2247                 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
2248
2249         gfar_write(macptr, *((u32 *) (tmpbuf)));
2250
2251         tempval = *((u32 *) (tmpbuf + 4));
2252
2253         gfar_write(macptr+1, tempval);
2254 }
2255
2256 /* GFAR error interrupt handler */
2257 static irqreturn_t gfar_error(int irq, void *dev_id)
2258 {
2259         struct net_device *dev = dev_id;
2260         struct gfar_private *priv = netdev_priv(dev);
2261
2262         /* Save ievent for future reference */
2263         u32 events = gfar_read(&priv->regs->ievent);
2264
2265         /* Clear IEVENT */
2266         gfar_write(&priv->regs->ievent, events & IEVENT_ERR_MASK);
2267
2268         /* Magic Packet is not an error. */
2269         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2270             (events & IEVENT_MAG))
2271                 events &= ~IEVENT_MAG;
2272
2273         /* Hmm... */
2274         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2275                 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2276                        dev->name, events, gfar_read(&priv->regs->imask));
2277
2278         /* Update the error counters */
2279         if (events & IEVENT_TXE) {
2280                 dev->stats.tx_errors++;
2281
2282                 if (events & IEVENT_LC)
2283                         dev->stats.tx_window_errors++;
2284                 if (events & IEVENT_CRL)
2285                         dev->stats.tx_aborted_errors++;
2286                 if (events & IEVENT_XFUN) {
2287                         if (netif_msg_tx_err(priv))
2288                                 printk(KERN_DEBUG "%s: TX FIFO underrun, "
2289                                        "packet dropped.\n", dev->name);
2290                         dev->stats.tx_dropped++;
2291                         priv->extra_stats.tx_underrun++;
2292
2293                         /* Reactivate the Tx Queues */
2294                         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
2295                 }
2296                 if (netif_msg_tx_err(priv))
2297                         printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
2298         }
2299         if (events & IEVENT_BSY) {
2300                 dev->stats.rx_errors++;
2301                 priv->extra_stats.rx_bsy++;
2302
2303                 gfar_receive(irq, dev_id);
2304
2305                 if (netif_msg_rx_err(priv))
2306                         printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
2307                                dev->name, gfar_read(&priv->regs->rstat));
2308         }
2309         if (events & IEVENT_BABR) {
2310                 dev->stats.rx_errors++;
2311                 priv->extra_stats.rx_babr++;
2312
2313                 if (netif_msg_rx_err(priv))
2314                         printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
2315         }
2316         if (events & IEVENT_EBERR) {
2317                 priv->extra_stats.eberr++;
2318                 if (netif_msg_rx_err(priv))
2319                         printk(KERN_DEBUG "%s: bus error\n", dev->name);
2320         }
2321         if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
2322                 printk(KERN_DEBUG "%s: control frame\n", dev->name);
2323
2324         if (events & IEVENT_BABT) {
2325                 priv->extra_stats.tx_babt++;
2326                 if (netif_msg_tx_err(priv))
2327                         printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
2328         }
2329         return IRQ_HANDLED;
2330 }
2331
2332 /* work with hotplug and coldplug */
2333 MODULE_ALIAS("platform:fsl-gianfar");
2334
2335 static struct of_device_id gfar_match[] =
2336 {
2337         {
2338                 .type = "network",
2339                 .compatible = "gianfar",
2340         },
2341         {},
2342 };
2343
2344 /* Structure for a device driver */
2345 static struct of_platform_driver gfar_driver = {
2346         .name = "fsl-gianfar",
2347         .match_table = gfar_match,
2348
2349         .probe = gfar_probe,
2350         .remove = gfar_remove,
2351         .suspend = gfar_suspend,
2352         .resume = gfar_resume,
2353 };
2354
2355 static int __init gfar_init(void)
2356 {
2357         return of_register_platform_driver(&gfar_driver);
2358 }
2359
2360 static void __exit gfar_exit(void)
2361 {
2362         of_unregister_platform_driver(&gfar_driver);
2363 }
2364
2365 module_init(gfar_init);
2366 module_exit(gfar_exit);
2367