Spelling fix in IPW2100 and IPW2200 Kconfig entries
[safe/jmp/linux-2.6] / drivers / net / gianfar.c
1 /*
2  * drivers/net/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  *
12  * Copyright (c) 2002-2004 Freescale Semiconductor, Inc.
13  *
14  * This program is free software; you can redistribute  it and/or modify it
15  * under  the terms of  the GNU General  Public License as published by the
16  * Free Software Foundation;  either version 2 of the  License, or (at your
17  * option) any later version.
18  *
19  *  Gianfar:  AKA Lambda Draconis, "Dragon"
20  *  RA 11 31 24.2
21  *  Dec +69 19 52
22  *  V 3.84
23  *  B-V +1.62
24  *
25  *  Theory of operation
26  *
27  *  The driver is initialized through platform_device.  Structures which
28  *  define the configuration needed by the board are defined in a
29  *  board structure in arch/ppc/platforms (though I do not
30  *  discount the possibility that other architectures could one
31  *  day be supported.
32  *
33  *  The Gianfar Ethernet Controller uses a ring of buffer
34  *  descriptors.  The beginning is indicated by a register
35  *  pointing to the physical address of the start of the ring.
36  *  The end is determined by a "wrap" bit being set in the
37  *  last descriptor of the ring.
38  *
39  *  When a packet is received, the RXF bit in the
40  *  IEVENT register is set, triggering an interrupt when the
41  *  corresponding bit in the IMASK register is also set (if
42  *  interrupt coalescing is active, then the interrupt may not
43  *  happen immediately, but will wait until either a set number
44  *  of frames or amount of time have passed).  In NAPI, the
45  *  interrupt handler will signal there is work to be done, and
46  *  exit.  Without NAPI, the packet(s) will be handled
47  *  immediately.  Both methods will start at the last known empty
48  *  descriptor, and process every subsequent descriptor until there
49  *  are none left with data (NAPI will stop after a set number of
50  *  packets to give time to other tasks, but will eventually
51  *  process all the packets).  The data arrives inside a
52  *  pre-allocated skb, and so after the skb is passed up to the
53  *  stack, a new skb must be allocated, and the address field in
54  *  the buffer descriptor must be updated to indicate this new
55  *  skb.
56  *
57  *  When the kernel requests that a packet be transmitted, the
58  *  driver starts where it left off last time, and points the
59  *  descriptor at the buffer which was passed in.  The driver
60  *  then informs the DMA engine that there are packets ready to
61  *  be transmitted.  Once the controller is finished transmitting
62  *  the packet, an interrupt may be triggered (under the same
63  *  conditions as for reception, but depending on the TXF bit).
64  *  The driver then cleans up the buffer.
65  */
66
67 #include <linux/config.h>
68 #include <linux/kernel.h>
69 #include <linux/sched.h>
70 #include <linux/string.h>
71 #include <linux/errno.h>
72 #include <linux/unistd.h>
73 #include <linux/slab.h>
74 #include <linux/interrupt.h>
75 #include <linux/init.h>
76 #include <linux/delay.h>
77 #include <linux/netdevice.h>
78 #include <linux/etherdevice.h>
79 #include <linux/skbuff.h>
80 #include <linux/if_vlan.h>
81 #include <linux/spinlock.h>
82 #include <linux/mm.h>
83 #include <linux/platform_device.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88
89 #include <asm/io.h>
90 #include <asm/irq.h>
91 #include <asm/uaccess.h>
92 #include <linux/module.h>
93 #include <linux/dma-mapping.h>
94 #include <linux/crc32.h>
95 #include <linux/mii.h>
96 #include <linux/phy.h>
97
98 #include "gianfar.h"
99 #include "gianfar_mii.h"
100
101 #define TX_TIMEOUT      (1*HZ)
102 #define SKB_ALLOC_TIMEOUT 1000000
103 #undef BRIEF_GFAR_ERRORS
104 #undef VERBOSE_GFAR_ERRORS
105
106 #ifdef CONFIG_GFAR_NAPI
107 #define RECEIVE(x) netif_receive_skb(x)
108 #else
109 #define RECEIVE(x) netif_rx(x)
110 #endif
111
112 const char gfar_driver_name[] = "Gianfar Ethernet";
113 const char gfar_driver_version[] = "1.3";
114
115 static int gfar_enet_open(struct net_device *dev);
116 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 struct sk_buff *gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp);
120 static struct net_device_stats *gfar_get_stats(struct net_device *dev);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id, struct pt_regs *regs);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id, struct pt_regs *regs);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id, struct pt_regs *regs);
126 static void adjust_link(struct net_device *dev);
127 static void init_registers(struct net_device *dev);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *pdev);
130 static int gfar_remove(struct platform_device *pdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 #ifdef CONFIG_GFAR_NAPI
135 static int gfar_poll(struct net_device *dev, int *budget);
136 #endif
137 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
138 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length);
139 static void gfar_vlan_rx_register(struct net_device *netdev,
140                                 struct vlan_group *grp);
141 static void gfar_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
142 void gfar_halt(struct net_device *dev);
143 void gfar_start(struct net_device *dev);
144 static void gfar_clear_exact_match(struct net_device *dev);
145 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
146
147 extern struct ethtool_ops gfar_ethtool_ops;
148
149 MODULE_AUTHOR("Freescale Semiconductor, Inc");
150 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
151 MODULE_LICENSE("GPL");
152
153 /* Returns 1 if incoming frames use an FCB */
154 static inline int gfar_uses_fcb(struct gfar_private *priv)
155 {
156         return (priv->vlan_enable || priv->rx_csum_enable);
157 }
158
159 /* Set up the ethernet device structure, private data,
160  * and anything else we need before we start */
161 static int gfar_probe(struct platform_device *pdev)
162 {
163         u32 tempval;
164         struct net_device *dev = NULL;
165         struct gfar_private *priv = NULL;
166         struct gianfar_platform_data *einfo;
167         struct resource *r;
168         int idx;
169         int err = 0;
170
171         einfo = (struct gianfar_platform_data *) pdev->dev.platform_data;
172
173         if (NULL == einfo) {
174                 printk(KERN_ERR "gfar %d: Missing additional data!\n",
175                        pdev->id);
176
177                 return -ENODEV;
178         }
179
180         /* Create an ethernet device instance */
181         dev = alloc_etherdev(sizeof (*priv));
182
183         if (NULL == dev)
184                 return -ENOMEM;
185
186         priv = netdev_priv(dev);
187
188         /* Set the info in the priv to the current info */
189         priv->einfo = einfo;
190
191         /* fill out IRQ fields */
192         if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
193                 priv->interruptTransmit = platform_get_irq_byname(pdev, "tx");
194                 priv->interruptReceive = platform_get_irq_byname(pdev, "rx");
195                 priv->interruptError = platform_get_irq_byname(pdev, "error");
196         } else {
197                 priv->interruptTransmit = platform_get_irq(pdev, 0);
198         }
199
200         /* get a pointer to the register memory */
201         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
202         priv->regs = (struct gfar *)
203                 ioremap(r->start, sizeof (struct gfar));
204
205         if (NULL == priv->regs) {
206                 err = -ENOMEM;
207                 goto regs_fail;
208         }
209
210         spin_lock_init(&priv->lock);
211
212         platform_set_drvdata(pdev, dev);
213
214         /* Stop the DMA engine now, in case it was running before */
215         /* (The firmware could have used it, and left it running). */
216         /* To do this, we write Graceful Receive Stop and Graceful */
217         /* Transmit Stop, and then wait until the corresponding bits */
218         /* in IEVENT indicate the stops have completed. */
219         tempval = gfar_read(&priv->regs->dmactrl);
220         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
221         gfar_write(&priv->regs->dmactrl, tempval);
222
223         tempval = gfar_read(&priv->regs->dmactrl);
224         tempval |= (DMACTRL_GRS | DMACTRL_GTS);
225         gfar_write(&priv->regs->dmactrl, tempval);
226
227         while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC)))
228                 cpu_relax();
229
230         /* Reset MAC layer */
231         gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
232
233         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
234         gfar_write(&priv->regs->maccfg1, tempval);
235
236         /* Initialize MACCFG2. */
237         gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
238
239         /* Initialize ECNTRL */
240         gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
241
242         /* Copy the station address into the dev structure, */
243         memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN);
244
245         /* Set the dev->base_addr to the gfar reg region */
246         dev->base_addr = (unsigned long) (priv->regs);
247
248         SET_MODULE_OWNER(dev);
249         SET_NETDEV_DEV(dev, &pdev->dev);
250
251         /* Fill in the dev structure */
252         dev->open = gfar_enet_open;
253         dev->hard_start_xmit = gfar_start_xmit;
254         dev->tx_timeout = gfar_timeout;
255         dev->watchdog_timeo = TX_TIMEOUT;
256 #ifdef CONFIG_GFAR_NAPI
257         dev->poll = gfar_poll;
258         dev->weight = GFAR_DEV_WEIGHT;
259 #endif
260         dev->stop = gfar_close;
261         dev->get_stats = gfar_get_stats;
262         dev->change_mtu = gfar_change_mtu;
263         dev->mtu = 1500;
264         dev->set_multicast_list = gfar_set_multi;
265
266         dev->ethtool_ops = &gfar_ethtool_ops;
267
268         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
269                 priv->rx_csum_enable = 1;
270                 dev->features |= NETIF_F_IP_CSUM;
271         } else
272                 priv->rx_csum_enable = 0;
273
274         priv->vlgrp = NULL;
275
276         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
277                 dev->vlan_rx_register = gfar_vlan_rx_register;
278                 dev->vlan_rx_kill_vid = gfar_vlan_rx_kill_vid;
279
280                 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
281
282                 priv->vlan_enable = 1;
283         }
284
285         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
286                 priv->extended_hash = 1;
287                 priv->hash_width = 9;
288
289                 priv->hash_regs[0] = &priv->regs->igaddr0;
290                 priv->hash_regs[1] = &priv->regs->igaddr1;
291                 priv->hash_regs[2] = &priv->regs->igaddr2;
292                 priv->hash_regs[3] = &priv->regs->igaddr3;
293                 priv->hash_regs[4] = &priv->regs->igaddr4;
294                 priv->hash_regs[5] = &priv->regs->igaddr5;
295                 priv->hash_regs[6] = &priv->regs->igaddr6;
296                 priv->hash_regs[7] = &priv->regs->igaddr7;
297                 priv->hash_regs[8] = &priv->regs->gaddr0;
298                 priv->hash_regs[9] = &priv->regs->gaddr1;
299                 priv->hash_regs[10] = &priv->regs->gaddr2;
300                 priv->hash_regs[11] = &priv->regs->gaddr3;
301                 priv->hash_regs[12] = &priv->regs->gaddr4;
302                 priv->hash_regs[13] = &priv->regs->gaddr5;
303                 priv->hash_regs[14] = &priv->regs->gaddr6;
304                 priv->hash_regs[15] = &priv->regs->gaddr7;
305
306         } else {
307                 priv->extended_hash = 0;
308                 priv->hash_width = 8;
309
310                 priv->hash_regs[0] = &priv->regs->gaddr0;
311                 priv->hash_regs[1] = &priv->regs->gaddr1;
312                 priv->hash_regs[2] = &priv->regs->gaddr2;
313                 priv->hash_regs[3] = &priv->regs->gaddr3;
314                 priv->hash_regs[4] = &priv->regs->gaddr4;
315                 priv->hash_regs[5] = &priv->regs->gaddr5;
316                 priv->hash_regs[6] = &priv->regs->gaddr6;
317                 priv->hash_regs[7] = &priv->regs->gaddr7;
318         }
319
320         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
321                 priv->padding = DEFAULT_PADDING;
322         else
323                 priv->padding = 0;
324
325         if (dev->features & NETIF_F_IP_CSUM)
326                 dev->hard_header_len += GMAC_FCB_LEN;
327
328         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
329         priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
330         priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
331
332         priv->txcoalescing = DEFAULT_TX_COALESCE;
333         priv->txcount = DEFAULT_TXCOUNT;
334         priv->txtime = DEFAULT_TXTIME;
335         priv->rxcoalescing = DEFAULT_RX_COALESCE;
336         priv->rxcount = DEFAULT_RXCOUNT;
337         priv->rxtime = DEFAULT_RXTIME;
338
339         /* Enable most messages by default */
340         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
341
342         err = register_netdev(dev);
343
344         if (err) {
345                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
346                                 dev->name);
347                 goto register_fail;
348         }
349
350         /* Create all the sysfs files */
351         gfar_init_sysfs(dev);
352
353         /* Print out the device info */
354         printk(KERN_INFO DEVICE_NAME, dev->name);
355         for (idx = 0; idx < 6; idx++)
356                 printk("%2.2x%c", dev->dev_addr[idx], idx == 5 ? ' ' : ':');
357         printk("\n");
358
359         /* Even more device info helps when determining which kernel */
360         /* provided which set of benchmarks. */
361 #ifdef CONFIG_GFAR_NAPI
362         printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
363 #else
364         printk(KERN_INFO "%s: Running with NAPI disabled\n", dev->name);
365 #endif
366         printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
367                dev->name, priv->rx_ring_size, priv->tx_ring_size);
368
369         return 0;
370
371 register_fail:
372         iounmap((void *) priv->regs);
373 regs_fail:
374         free_netdev(dev);
375         return err;
376 }
377
378 static int gfar_remove(struct platform_device *pdev)
379 {
380         struct net_device *dev = platform_get_drvdata(pdev);
381         struct gfar_private *priv = netdev_priv(dev);
382
383         platform_set_drvdata(pdev, NULL);
384
385         iounmap((void *) priv->regs);
386         free_netdev(dev);
387
388         return 0;
389 }
390
391
392 /* Initializes driver's PHY state, and attaches to the PHY.
393  * Returns 0 on success.
394  */
395 static int init_phy(struct net_device *dev)
396 {
397         struct gfar_private *priv = netdev_priv(dev);
398         uint gigabit_support =
399                 priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
400                 SUPPORTED_1000baseT_Full : 0;
401         struct phy_device *phydev;
402         char phy_id[BUS_ID_SIZE];
403
404         priv->oldlink = 0;
405         priv->oldspeed = 0;
406         priv->oldduplex = -1;
407
408         snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT, priv->einfo->bus_id, priv->einfo->phy_id);
409
410         phydev = phy_connect(dev, phy_id, &adjust_link, 0);
411
412         if (IS_ERR(phydev)) {
413                 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
414                 return PTR_ERR(phydev);
415         }
416
417         /* Remove any features not supported by the controller */
418         phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
419         phydev->advertising = phydev->supported;
420
421         priv->phydev = phydev;
422
423         return 0;
424 }
425
426 static void init_registers(struct net_device *dev)
427 {
428         struct gfar_private *priv = netdev_priv(dev);
429
430         /* Clear IEVENT */
431         gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
432
433         /* Initialize IMASK */
434         gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
435
436         /* Init hash registers to zero */
437         gfar_write(&priv->regs->igaddr0, 0);
438         gfar_write(&priv->regs->igaddr1, 0);
439         gfar_write(&priv->regs->igaddr2, 0);
440         gfar_write(&priv->regs->igaddr3, 0);
441         gfar_write(&priv->regs->igaddr4, 0);
442         gfar_write(&priv->regs->igaddr5, 0);
443         gfar_write(&priv->regs->igaddr6, 0);
444         gfar_write(&priv->regs->igaddr7, 0);
445
446         gfar_write(&priv->regs->gaddr0, 0);
447         gfar_write(&priv->regs->gaddr1, 0);
448         gfar_write(&priv->regs->gaddr2, 0);
449         gfar_write(&priv->regs->gaddr3, 0);
450         gfar_write(&priv->regs->gaddr4, 0);
451         gfar_write(&priv->regs->gaddr5, 0);
452         gfar_write(&priv->regs->gaddr6, 0);
453         gfar_write(&priv->regs->gaddr7, 0);
454
455         /* Zero out the rmon mib registers if it has them */
456         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
457                 memset((void *) &(priv->regs->rmon), 0,
458                        sizeof (struct rmon_mib));
459
460                 /* Mask off the CAM interrupts */
461                 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
462                 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
463         }
464
465         /* Initialize the max receive buffer length */
466         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
467
468         /* Initialize the Minimum Frame Length Register */
469         gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
470
471         /* Assign the TBI an address which won't conflict with the PHYs */
472         gfar_write(&priv->regs->tbipa, TBIPA_VALUE);
473 }
474
475
476 /* Halt the receive and transmit queues */
477 void gfar_halt(struct net_device *dev)
478 {
479         struct gfar_private *priv = netdev_priv(dev);
480         struct gfar *regs = priv->regs;
481         u32 tempval;
482
483         /* Mask all interrupts */
484         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
485
486         /* Clear all interrupts */
487         gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
488
489         /* Stop the DMA, and wait for it to stop */
490         tempval = gfar_read(&priv->regs->dmactrl);
491         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
492             != (DMACTRL_GRS | DMACTRL_GTS)) {
493                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
494                 gfar_write(&priv->regs->dmactrl, tempval);
495
496                 while (!(gfar_read(&priv->regs->ievent) &
497                          (IEVENT_GRSC | IEVENT_GTSC)))
498                         cpu_relax();
499         }
500
501         /* Disable Rx and Tx */
502         tempval = gfar_read(&regs->maccfg1);
503         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
504         gfar_write(&regs->maccfg1, tempval);
505 }
506
507 void stop_gfar(struct net_device *dev)
508 {
509         struct gfar_private *priv = netdev_priv(dev);
510         struct gfar *regs = priv->regs;
511         unsigned long flags;
512
513         phy_stop(priv->phydev);
514
515         /* Lock it down */
516         spin_lock_irqsave(&priv->lock, flags);
517
518         gfar_halt(dev);
519
520         spin_unlock_irqrestore(&priv->lock, flags);
521
522         /* Free the IRQs */
523         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
524                 free_irq(priv->interruptError, dev);
525                 free_irq(priv->interruptTransmit, dev);
526                 free_irq(priv->interruptReceive, dev);
527         } else {
528                 free_irq(priv->interruptTransmit, dev);
529         }
530
531         free_skb_resources(priv);
532
533         dma_free_coherent(NULL,
534                         sizeof(struct txbd8)*priv->tx_ring_size
535                         + sizeof(struct rxbd8)*priv->rx_ring_size,
536                         priv->tx_bd_base,
537                         gfar_read(&regs->tbase0));
538 }
539
540 /* If there are any tx skbs or rx skbs still around, free them.
541  * Then free tx_skbuff and rx_skbuff */
542 static void free_skb_resources(struct gfar_private *priv)
543 {
544         struct rxbd8 *rxbdp;
545         struct txbd8 *txbdp;
546         int i;
547
548         /* Go through all the buffer descriptors and free their data buffers */
549         txbdp = priv->tx_bd_base;
550
551         for (i = 0; i < priv->tx_ring_size; i++) {
552
553                 if (priv->tx_skbuff[i]) {
554                         dma_unmap_single(NULL, txbdp->bufPtr,
555                                         txbdp->length,
556                                         DMA_TO_DEVICE);
557                         dev_kfree_skb_any(priv->tx_skbuff[i]);
558                         priv->tx_skbuff[i] = NULL;
559                 }
560         }
561
562         kfree(priv->tx_skbuff);
563
564         rxbdp = priv->rx_bd_base;
565
566         /* rx_skbuff is not guaranteed to be allocated, so only
567          * free it and its contents if it is allocated */
568         if(priv->rx_skbuff != NULL) {
569                 for (i = 0; i < priv->rx_ring_size; i++) {
570                         if (priv->rx_skbuff[i]) {
571                                 dma_unmap_single(NULL, rxbdp->bufPtr,
572                                                 priv->rx_buffer_size,
573                                                 DMA_FROM_DEVICE);
574
575                                 dev_kfree_skb_any(priv->rx_skbuff[i]);
576                                 priv->rx_skbuff[i] = NULL;
577                         }
578
579                         rxbdp->status = 0;
580                         rxbdp->length = 0;
581                         rxbdp->bufPtr = 0;
582
583                         rxbdp++;
584                 }
585
586                 kfree(priv->rx_skbuff);
587         }
588 }
589
590 void gfar_start(struct net_device *dev)
591 {
592         struct gfar_private *priv = netdev_priv(dev);
593         struct gfar *regs = priv->regs;
594         u32 tempval;
595
596         /* Enable Rx and Tx in MACCFG1 */
597         tempval = gfar_read(&regs->maccfg1);
598         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
599         gfar_write(&regs->maccfg1, tempval);
600
601         /* Initialize DMACTRL to have WWR and WOP */
602         tempval = gfar_read(&priv->regs->dmactrl);
603         tempval |= DMACTRL_INIT_SETTINGS;
604         gfar_write(&priv->regs->dmactrl, tempval);
605
606         /* Clear THLT, so that the DMA starts polling now */
607         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
608
609         /* Make sure we aren't stopped */
610         tempval = gfar_read(&priv->regs->dmactrl);
611         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
612         gfar_write(&priv->regs->dmactrl, tempval);
613
614         /* Unmask the interrupts we look for */
615         gfar_write(&regs->imask, IMASK_DEFAULT);
616 }
617
618 /* Bring the controller up and running */
619 int startup_gfar(struct net_device *dev)
620 {
621         struct txbd8 *txbdp;
622         struct rxbd8 *rxbdp;
623         dma_addr_t addr;
624         unsigned long vaddr;
625         int i;
626         struct gfar_private *priv = netdev_priv(dev);
627         struct gfar *regs = priv->regs;
628         int err = 0;
629         u32 rctrl = 0;
630         u32 attrs = 0;
631
632         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
633
634         /* Allocate memory for the buffer descriptors */
635         vaddr = (unsigned long) dma_alloc_coherent(NULL,
636                         sizeof (struct txbd8) * priv->tx_ring_size +
637                         sizeof (struct rxbd8) * priv->rx_ring_size,
638                         &addr, GFP_KERNEL);
639
640         if (vaddr == 0) {
641                 if (netif_msg_ifup(priv))
642                         printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
643                                         dev->name);
644                 return -ENOMEM;
645         }
646
647         priv->tx_bd_base = (struct txbd8 *) vaddr;
648
649         /* enet DMA only understands physical addresses */
650         gfar_write(&regs->tbase0, addr);
651
652         /* Start the rx descriptor ring where the tx ring leaves off */
653         addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
654         vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
655         priv->rx_bd_base = (struct rxbd8 *) vaddr;
656         gfar_write(&regs->rbase0, addr);
657
658         /* Setup the skbuff rings */
659         priv->tx_skbuff =
660             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
661                                         priv->tx_ring_size, GFP_KERNEL);
662
663         if (NULL == priv->tx_skbuff) {
664                 if (netif_msg_ifup(priv))
665                         printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
666                                         dev->name);
667                 err = -ENOMEM;
668                 goto tx_skb_fail;
669         }
670
671         for (i = 0; i < priv->tx_ring_size; i++)
672                 priv->tx_skbuff[i] = NULL;
673
674         priv->rx_skbuff =
675             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
676                                         priv->rx_ring_size, GFP_KERNEL);
677
678         if (NULL == priv->rx_skbuff) {
679                 if (netif_msg_ifup(priv))
680                         printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
681                                         dev->name);
682                 err = -ENOMEM;
683                 goto rx_skb_fail;
684         }
685
686         for (i = 0; i < priv->rx_ring_size; i++)
687                 priv->rx_skbuff[i] = NULL;
688
689         /* Initialize some variables in our dev structure */
690         priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
691         priv->cur_rx = priv->rx_bd_base;
692         priv->skb_curtx = priv->skb_dirtytx = 0;
693         priv->skb_currx = 0;
694
695         /* Initialize Transmit Descriptor Ring */
696         txbdp = priv->tx_bd_base;
697         for (i = 0; i < priv->tx_ring_size; i++) {
698                 txbdp->status = 0;
699                 txbdp->length = 0;
700                 txbdp->bufPtr = 0;
701                 txbdp++;
702         }
703
704         /* Set the last descriptor in the ring to indicate wrap */
705         txbdp--;
706         txbdp->status |= TXBD_WRAP;
707
708         rxbdp = priv->rx_bd_base;
709         for (i = 0; i < priv->rx_ring_size; i++) {
710                 struct sk_buff *skb = NULL;
711
712                 rxbdp->status = 0;
713
714                 skb = gfar_new_skb(dev, rxbdp);
715
716                 priv->rx_skbuff[i] = skb;
717
718                 rxbdp++;
719         }
720
721         /* Set the last descriptor in the ring to wrap */
722         rxbdp--;
723         rxbdp->status |= RXBD_WRAP;
724
725         /* If the device has multiple interrupts, register for
726          * them.  Otherwise, only register for the one */
727         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
728                 /* Install our interrupt handlers for Error,
729                  * Transmit, and Receive */
730                 if (request_irq(priv->interruptError, gfar_error,
731                                 0, "enet_error", dev) < 0) {
732                         if (netif_msg_intr(priv))
733                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
734                                         dev->name, priv->interruptError);
735
736                         err = -1;
737                         goto err_irq_fail;
738                 }
739
740                 if (request_irq(priv->interruptTransmit, gfar_transmit,
741                                 0, "enet_tx", dev) < 0) {
742                         if (netif_msg_intr(priv))
743                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
744                                         dev->name, priv->interruptTransmit);
745
746                         err = -1;
747
748                         goto tx_irq_fail;
749                 }
750
751                 if (request_irq(priv->interruptReceive, gfar_receive,
752                                 0, "enet_rx", dev) < 0) {
753                         if (netif_msg_intr(priv))
754                                 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
755                                                 dev->name, priv->interruptReceive);
756
757                         err = -1;
758                         goto rx_irq_fail;
759                 }
760         } else {
761                 if (request_irq(priv->interruptTransmit, gfar_interrupt,
762                                 0, "gfar_interrupt", dev) < 0) {
763                         if (netif_msg_intr(priv))
764                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
765                                         dev->name, priv->interruptError);
766
767                         err = -1;
768                         goto err_irq_fail;
769                 }
770         }
771
772         phy_start(priv->phydev);
773
774         /* Configure the coalescing support */
775         if (priv->txcoalescing)
776                 gfar_write(&regs->txic,
777                            mk_ic_value(priv->txcount, priv->txtime));
778         else
779                 gfar_write(&regs->txic, 0);
780
781         if (priv->rxcoalescing)
782                 gfar_write(&regs->rxic,
783                            mk_ic_value(priv->rxcount, priv->rxtime));
784         else
785                 gfar_write(&regs->rxic, 0);
786
787         if (priv->rx_csum_enable)
788                 rctrl |= RCTRL_CHECKSUMMING;
789
790         if (priv->extended_hash) {
791                 rctrl |= RCTRL_EXTHASH;
792
793                 gfar_clear_exact_match(dev);
794                 rctrl |= RCTRL_EMEN;
795         }
796
797         if (priv->vlan_enable)
798                 rctrl |= RCTRL_VLAN;
799
800         if (priv->padding) {
801                 rctrl &= ~RCTRL_PAL_MASK;
802                 rctrl |= RCTRL_PADDING(priv->padding);
803         }
804
805         /* Init rctrl based on our settings */
806         gfar_write(&priv->regs->rctrl, rctrl);
807
808         if (dev->features & NETIF_F_IP_CSUM)
809                 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
810
811         /* Set the extraction length and index */
812         attrs = ATTRELI_EL(priv->rx_stash_size) |
813                 ATTRELI_EI(priv->rx_stash_index);
814
815         gfar_write(&priv->regs->attreli, attrs);
816
817         /* Start with defaults, and add stashing or locking
818          * depending on the approprate variables */
819         attrs = ATTR_INIT_SETTINGS;
820
821         if (priv->bd_stash_en)
822                 attrs |= ATTR_BDSTASH;
823
824         if (priv->rx_stash_size != 0)
825                 attrs |= ATTR_BUFSTASH;
826
827         gfar_write(&priv->regs->attr, attrs);
828
829         gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
830         gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
831         gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
832
833         /* Start the controller */
834         gfar_start(dev);
835
836         return 0;
837
838 rx_irq_fail:
839         free_irq(priv->interruptTransmit, dev);
840 tx_irq_fail:
841         free_irq(priv->interruptError, dev);
842 err_irq_fail:
843 rx_skb_fail:
844         free_skb_resources(priv);
845 tx_skb_fail:
846         dma_free_coherent(NULL,
847                         sizeof(struct txbd8)*priv->tx_ring_size
848                         + sizeof(struct rxbd8)*priv->rx_ring_size,
849                         priv->tx_bd_base,
850                         gfar_read(&regs->tbase0));
851
852         return err;
853 }
854
855 /* Called when something needs to use the ethernet device */
856 /* Returns 0 for success. */
857 static int gfar_enet_open(struct net_device *dev)
858 {
859         int err;
860
861         /* Initialize a bunch of registers */
862         init_registers(dev);
863
864         gfar_set_mac_address(dev);
865
866         err = init_phy(dev);
867
868         if(err)
869                 return err;
870
871         err = startup_gfar(dev);
872
873         netif_start_queue(dev);
874
875         return err;
876 }
877
878 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb, struct txbd8 *bdp)
879 {
880         struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
881
882         memset(fcb, 0, GMAC_FCB_LEN);
883
884         return fcb;
885 }
886
887 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
888 {
889         u8 flags = 0;
890
891         /* If we're here, it's a IP packet with a TCP or UDP
892          * payload.  We set it to checksum, using a pseudo-header
893          * we provide
894          */
895         flags = TXFCB_DEFAULT;
896
897         /* Tell the controller what the protocol is */
898         /* And provide the already calculated phcs */
899         if (skb->nh.iph->protocol == IPPROTO_UDP) {
900                 flags |= TXFCB_UDP;
901                 fcb->phcs = skb->h.uh->check;
902         } else
903                 fcb->phcs = skb->h.th->check;
904
905         /* l3os is the distance between the start of the
906          * frame (skb->data) and the start of the IP hdr.
907          * l4os is the distance between the start of the
908          * l3 hdr and the l4 hdr */
909         fcb->l3os = (u16)(skb->nh.raw - skb->data - GMAC_FCB_LEN);
910         fcb->l4os = (u16)(skb->h.raw - skb->nh.raw);
911
912         fcb->flags = flags;
913 }
914
915 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
916 {
917         fcb->flags |= TXFCB_VLN;
918         fcb->vlctl = vlan_tx_tag_get(skb);
919 }
920
921 /* This is called by the kernel when a frame is ready for transmission. */
922 /* It is pointed to by the dev->hard_start_xmit function pointer */
923 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
924 {
925         struct gfar_private *priv = netdev_priv(dev);
926         struct txfcb *fcb = NULL;
927         struct txbd8 *txbdp;
928         u16 status;
929
930         /* Update transmit stats */
931         priv->stats.tx_bytes += skb->len;
932
933         /* Lock priv now */
934         spin_lock_irq(&priv->lock);
935
936         /* Point at the first free tx descriptor */
937         txbdp = priv->cur_tx;
938
939         /* Clear all but the WRAP status flags */
940         status = txbdp->status & TXBD_WRAP;
941
942         /* Set up checksumming */
943         if (likely((dev->features & NETIF_F_IP_CSUM)
944                         && (CHECKSUM_HW == skb->ip_summed))) {
945                 fcb = gfar_add_fcb(skb, txbdp);
946                 status |= TXBD_TOE;
947                 gfar_tx_checksum(skb, fcb);
948         }
949
950         if (priv->vlan_enable &&
951                         unlikely(priv->vlgrp && vlan_tx_tag_present(skb))) {
952                 if (unlikely(NULL == fcb)) {
953                         fcb = gfar_add_fcb(skb, txbdp);
954                         status |= TXBD_TOE;
955                 }
956
957                 gfar_tx_vlan(skb, fcb);
958         }
959
960         /* Set buffer length and pointer */
961         txbdp->length = skb->len;
962         txbdp->bufPtr = dma_map_single(NULL, skb->data,
963                         skb->len, DMA_TO_DEVICE);
964
965         /* Save the skb pointer so we can free it later */
966         priv->tx_skbuff[priv->skb_curtx] = skb;
967
968         /* Update the current skb pointer (wrapping if this was the last) */
969         priv->skb_curtx =
970             (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
971
972         /* Flag the BD as interrupt-causing */
973         status |= TXBD_INTERRUPT;
974
975         /* Flag the BD as ready to go, last in frame, and  */
976         /* in need of CRC */
977         status |= (TXBD_READY | TXBD_LAST | TXBD_CRC);
978
979         dev->trans_start = jiffies;
980
981         txbdp->status = status;
982
983         /* If this was the last BD in the ring, the next one */
984         /* is at the beginning of the ring */
985         if (txbdp->status & TXBD_WRAP)
986                 txbdp = priv->tx_bd_base;
987         else
988                 txbdp++;
989
990         /* If the next BD still needs to be cleaned up, then the bds
991            are full.  We need to tell the kernel to stop sending us stuff. */
992         if (txbdp == priv->dirty_tx) {
993                 netif_stop_queue(dev);
994
995                 priv->stats.tx_fifo_errors++;
996         }
997
998         /* Update the current txbd to the next one */
999         priv->cur_tx = txbdp;
1000
1001         /* Tell the DMA to go go go */
1002         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1003
1004         /* Unlock priv */
1005         spin_unlock_irq(&priv->lock);
1006
1007         return 0;
1008 }
1009
1010 /* Stops the kernel queue, and halts the controller */
1011 static int gfar_close(struct net_device *dev)
1012 {
1013         struct gfar_private *priv = netdev_priv(dev);
1014         stop_gfar(dev);
1015
1016         /* Disconnect from the PHY */
1017         phy_disconnect(priv->phydev);
1018         priv->phydev = NULL;
1019
1020         netif_stop_queue(dev);
1021
1022         return 0;
1023 }
1024
1025 /* returns a net_device_stats structure pointer */
1026 static struct net_device_stats * gfar_get_stats(struct net_device *dev)
1027 {
1028         struct gfar_private *priv = netdev_priv(dev);
1029
1030         return &(priv->stats);
1031 }
1032
1033 /* Changes the mac address if the controller is not running. */
1034 int gfar_set_mac_address(struct net_device *dev)
1035 {
1036         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1037
1038         return 0;
1039 }
1040
1041
1042 /* Enables and disables VLAN insertion/extraction */
1043 static void gfar_vlan_rx_register(struct net_device *dev,
1044                 struct vlan_group *grp)
1045 {
1046         struct gfar_private *priv = netdev_priv(dev);
1047         unsigned long flags;
1048         u32 tempval;
1049
1050         spin_lock_irqsave(&priv->lock, flags);
1051
1052         priv->vlgrp = grp;
1053
1054         if (grp) {
1055                 /* Enable VLAN tag insertion */
1056                 tempval = gfar_read(&priv->regs->tctrl);
1057                 tempval |= TCTRL_VLINS;
1058
1059                 gfar_write(&priv->regs->tctrl, tempval);
1060                 
1061                 /* Enable VLAN tag extraction */
1062                 tempval = gfar_read(&priv->regs->rctrl);
1063                 tempval |= RCTRL_VLEX;
1064                 gfar_write(&priv->regs->rctrl, tempval);
1065         } else {
1066                 /* Disable VLAN tag insertion */
1067                 tempval = gfar_read(&priv->regs->tctrl);
1068                 tempval &= ~TCTRL_VLINS;
1069                 gfar_write(&priv->regs->tctrl, tempval);
1070
1071                 /* Disable VLAN tag extraction */
1072                 tempval = gfar_read(&priv->regs->rctrl);
1073                 tempval &= ~RCTRL_VLEX;
1074                 gfar_write(&priv->regs->rctrl, tempval);
1075         }
1076
1077         spin_unlock_irqrestore(&priv->lock, flags);
1078 }
1079
1080
1081 static void gfar_vlan_rx_kill_vid(struct net_device *dev, uint16_t vid)
1082 {
1083         struct gfar_private *priv = netdev_priv(dev);
1084         unsigned long flags;
1085
1086         spin_lock_irqsave(&priv->lock, flags);
1087
1088         if (priv->vlgrp)
1089                 priv->vlgrp->vlan_devices[vid] = NULL;
1090
1091         spin_unlock_irqrestore(&priv->lock, flags);
1092 }
1093
1094
1095 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1096 {
1097         int tempsize, tempval;
1098         struct gfar_private *priv = netdev_priv(dev);
1099         int oldsize = priv->rx_buffer_size;
1100         int frame_size = new_mtu + ETH_HLEN;
1101
1102         if (priv->vlan_enable)
1103                 frame_size += VLAN_ETH_HLEN;
1104
1105         if (gfar_uses_fcb(priv))
1106                 frame_size += GMAC_FCB_LEN;
1107
1108         frame_size += priv->padding;
1109
1110         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1111                 if (netif_msg_drv(priv))
1112                         printk(KERN_ERR "%s: Invalid MTU setting\n",
1113                                         dev->name);
1114                 return -EINVAL;
1115         }
1116
1117         tempsize =
1118             (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1119             INCREMENTAL_BUFFER_SIZE;
1120
1121         /* Only stop and start the controller if it isn't already
1122          * stopped, and we changed something */
1123         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1124                 stop_gfar(dev);
1125
1126         priv->rx_buffer_size = tempsize;
1127
1128         dev->mtu = new_mtu;
1129
1130         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1131         gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1132
1133         /* If the mtu is larger than the max size for standard
1134          * ethernet frames (ie, a jumbo frame), then set maccfg2
1135          * to allow huge frames, and to check the length */
1136         tempval = gfar_read(&priv->regs->maccfg2);
1137
1138         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1139                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1140         else
1141                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1142
1143         gfar_write(&priv->regs->maccfg2, tempval);
1144
1145         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1146                 startup_gfar(dev);
1147
1148         return 0;
1149 }
1150
1151 /* gfar_timeout gets called when a packet has not been
1152  * transmitted after a set amount of time.
1153  * For now, assume that clearing out all the structures, and
1154  * starting over will fix the problem. */
1155 static void gfar_timeout(struct net_device *dev)
1156 {
1157         struct gfar_private *priv = netdev_priv(dev);
1158
1159         priv->stats.tx_errors++;
1160
1161         if (dev->flags & IFF_UP) {
1162                 stop_gfar(dev);
1163                 startup_gfar(dev);
1164         }
1165
1166         netif_schedule(dev);
1167 }
1168
1169 /* Interrupt Handler for Transmit complete */
1170 static irqreturn_t gfar_transmit(int irq, void *dev_id, struct pt_regs *regs)
1171 {
1172         struct net_device *dev = (struct net_device *) dev_id;
1173         struct gfar_private *priv = netdev_priv(dev);
1174         struct txbd8 *bdp;
1175
1176         /* Clear IEVENT */
1177         gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
1178
1179         /* Lock priv */
1180         spin_lock(&priv->lock);
1181         bdp = priv->dirty_tx;
1182         while ((bdp->status & TXBD_READY) == 0) {
1183                 /* If dirty_tx and cur_tx are the same, then either the */
1184                 /* ring is empty or full now (it could only be full in the beginning, */
1185                 /* obviously).  If it is empty, we are done. */
1186                 if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0))
1187                         break;
1188
1189                 priv->stats.tx_packets++;
1190
1191                 /* Deferred means some collisions occurred during transmit, */
1192                 /* but we eventually sent the packet. */
1193                 if (bdp->status & TXBD_DEF)
1194                         priv->stats.collisions++;
1195
1196                 /* Free the sk buffer associated with this TxBD */
1197                 dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]);
1198                 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
1199                 priv->skb_dirtytx =
1200                     (priv->skb_dirtytx +
1201                      1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1202
1203                 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1204                 if (bdp->status & TXBD_WRAP)
1205                         bdp = priv->tx_bd_base;
1206                 else
1207                         bdp++;
1208
1209                 /* Move dirty_tx to be the next bd */
1210                 priv->dirty_tx = bdp;
1211
1212                 /* We freed a buffer, so now we can restart transmission */
1213                 if (netif_queue_stopped(dev))
1214                         netif_wake_queue(dev);
1215         } /* while ((bdp->status & TXBD_READY) == 0) */
1216
1217         /* If we are coalescing the interrupts, reset the timer */
1218         /* Otherwise, clear it */
1219         if (priv->txcoalescing)
1220                 gfar_write(&priv->regs->txic,
1221                            mk_ic_value(priv->txcount, priv->txtime));
1222         else
1223                 gfar_write(&priv->regs->txic, 0);
1224
1225         spin_unlock(&priv->lock);
1226
1227         return IRQ_HANDLED;
1228 }
1229
1230 struct sk_buff * gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp)
1231 {
1232         unsigned int alignamount;
1233         struct gfar_private *priv = netdev_priv(dev);
1234         struct sk_buff *skb = NULL;
1235         unsigned int timeout = SKB_ALLOC_TIMEOUT;
1236
1237         /* We have to allocate the skb, so keep trying till we succeed */
1238         while ((!skb) && timeout--)
1239                 skb = dev_alloc_skb(priv->rx_buffer_size + RXBUF_ALIGNMENT);
1240
1241         if (NULL == skb)
1242                 return NULL;
1243
1244         alignamount = RXBUF_ALIGNMENT -
1245                 (((unsigned) skb->data) & (RXBUF_ALIGNMENT - 1));
1246
1247         /* We need the data buffer to be aligned properly.  We will reserve
1248          * as many bytes as needed to align the data properly
1249          */
1250         skb_reserve(skb, alignamount);
1251
1252         skb->dev = dev;
1253
1254         bdp->bufPtr = dma_map_single(NULL, skb->data,
1255                         priv->rx_buffer_size, DMA_FROM_DEVICE);
1256
1257         bdp->length = 0;
1258
1259         /* Mark the buffer empty */
1260         bdp->status |= (RXBD_EMPTY | RXBD_INTERRUPT);
1261
1262         return skb;
1263 }
1264
1265 static inline void count_errors(unsigned short status, struct gfar_private *priv)
1266 {
1267         struct net_device_stats *stats = &priv->stats;
1268         struct gfar_extra_stats *estats = &priv->extra_stats;
1269
1270         /* If the packet was truncated, none of the other errors
1271          * matter */
1272         if (status & RXBD_TRUNCATED) {
1273                 stats->rx_length_errors++;
1274
1275                 estats->rx_trunc++;
1276
1277                 return;
1278         }
1279         /* Count the errors, if there were any */
1280         if (status & (RXBD_LARGE | RXBD_SHORT)) {
1281                 stats->rx_length_errors++;
1282
1283                 if (status & RXBD_LARGE)
1284                         estats->rx_large++;
1285                 else
1286                         estats->rx_short++;
1287         }
1288         if (status & RXBD_NONOCTET) {
1289                 stats->rx_frame_errors++;
1290                 estats->rx_nonoctet++;
1291         }
1292         if (status & RXBD_CRCERR) {
1293                 estats->rx_crcerr++;
1294                 stats->rx_crc_errors++;
1295         }
1296         if (status & RXBD_OVERRUN) {
1297                 estats->rx_overrun++;
1298                 stats->rx_crc_errors++;
1299         }
1300 }
1301
1302 irqreturn_t gfar_receive(int irq, void *dev_id, struct pt_regs *regs)
1303 {
1304         struct net_device *dev = (struct net_device *) dev_id;
1305         struct gfar_private *priv = netdev_priv(dev);
1306
1307 #ifdef CONFIG_GFAR_NAPI
1308         u32 tempval;
1309 #endif
1310
1311         /* Clear IEVENT, so rx interrupt isn't called again
1312          * because of this interrupt */
1313         gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
1314
1315         /* support NAPI */
1316 #ifdef CONFIG_GFAR_NAPI
1317         if (netif_rx_schedule_prep(dev)) {
1318                 tempval = gfar_read(&priv->regs->imask);
1319                 tempval &= IMASK_RX_DISABLED;
1320                 gfar_write(&priv->regs->imask, tempval);
1321
1322                 __netif_rx_schedule(dev);
1323         } else {
1324                 if (netif_msg_rx_err(priv))
1325                         printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
1326                                 dev->name, gfar_read(&priv->regs->ievent),
1327                                 gfar_read(&priv->regs->imask));
1328         }
1329 #else
1330
1331         spin_lock(&priv->lock);
1332         gfar_clean_rx_ring(dev, priv->rx_ring_size);
1333
1334         /* If we are coalescing interrupts, update the timer */
1335         /* Otherwise, clear it */
1336         if (priv->rxcoalescing)
1337                 gfar_write(&priv->regs->rxic,
1338                            mk_ic_value(priv->rxcount, priv->rxtime));
1339         else
1340                 gfar_write(&priv->regs->rxic, 0);
1341
1342         spin_unlock(&priv->lock);
1343 #endif
1344
1345         return IRQ_HANDLED;
1346 }
1347
1348 static inline int gfar_rx_vlan(struct sk_buff *skb,
1349                 struct vlan_group *vlgrp, unsigned short vlctl)
1350 {
1351 #ifdef CONFIG_GFAR_NAPI
1352         return vlan_hwaccel_receive_skb(skb, vlgrp, vlctl);
1353 #else
1354         return vlan_hwaccel_rx(skb, vlgrp, vlctl);
1355 #endif
1356 }
1357
1358 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1359 {
1360         /* If valid headers were found, and valid sums
1361          * were verified, then we tell the kernel that no
1362          * checksumming is necessary.  Otherwise, it is */
1363         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1364                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1365         else
1366                 skb->ip_summed = CHECKSUM_NONE;
1367 }
1368
1369
1370 static inline struct rxfcb *gfar_get_fcb(struct sk_buff *skb)
1371 {
1372         struct rxfcb *fcb = (struct rxfcb *)skb->data;
1373
1374         /* Remove the FCB from the skb */
1375         skb_pull(skb, GMAC_FCB_LEN);
1376
1377         return fcb;
1378 }
1379
1380 /* gfar_process_frame() -- handle one incoming packet if skb
1381  * isn't NULL.  */
1382 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1383                 int length)
1384 {
1385         struct gfar_private *priv = netdev_priv(dev);
1386         struct rxfcb *fcb = NULL;
1387
1388         if (NULL == skb) {
1389                 if (netif_msg_rx_err(priv))
1390                         printk(KERN_WARNING "%s: Missing skb!!.\n", dev->name);
1391                 priv->stats.rx_dropped++;
1392                 priv->extra_stats.rx_skbmissing++;
1393         } else {
1394                 int ret;
1395
1396                 /* Prep the skb for the packet */
1397                 skb_put(skb, length);
1398
1399                 /* Grab the FCB if there is one */
1400                 if (gfar_uses_fcb(priv))
1401                         fcb = gfar_get_fcb(skb);
1402
1403                 /* Remove the padded bytes, if there are any */
1404                 if (priv->padding)
1405                         skb_pull(skb, priv->padding);
1406
1407                 if (priv->rx_csum_enable)
1408                         gfar_rx_checksum(skb, fcb);
1409
1410                 /* Tell the skb what kind of packet this is */
1411                 skb->protocol = eth_type_trans(skb, dev);
1412
1413                 /* Send the packet up the stack */
1414                 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1415                         ret = gfar_rx_vlan(skb, priv->vlgrp, fcb->vlctl);
1416                 else
1417                         ret = RECEIVE(skb);
1418
1419                 if (NET_RX_DROP == ret)
1420                         priv->extra_stats.kernel_dropped++;
1421         }
1422
1423         return 0;
1424 }
1425
1426 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1427  *   until the budget/quota has been reached. Returns the number
1428  *   of frames handled
1429  */
1430 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1431 {
1432         struct rxbd8 *bdp;
1433         struct sk_buff *skb;
1434         u16 pkt_len;
1435         int howmany = 0;
1436         struct gfar_private *priv = netdev_priv(dev);
1437
1438         /* Get the first full descriptor */
1439         bdp = priv->cur_rx;
1440
1441         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1442                 skb = priv->rx_skbuff[priv->skb_currx];
1443
1444                 if (!(bdp->status &
1445                       (RXBD_LARGE | RXBD_SHORT | RXBD_NONOCTET
1446                        | RXBD_CRCERR | RXBD_OVERRUN | RXBD_TRUNCATED))) {
1447                         /* Increment the number of packets */
1448                         priv->stats.rx_packets++;
1449                         howmany++;
1450
1451                         /* Remove the FCS from the packet length */
1452                         pkt_len = bdp->length - 4;
1453
1454                         gfar_process_frame(dev, skb, pkt_len);
1455
1456                         priv->stats.rx_bytes += pkt_len;
1457                 } else {
1458                         count_errors(bdp->status, priv);
1459
1460                         if (skb)
1461                                 dev_kfree_skb_any(skb);
1462
1463                         priv->rx_skbuff[priv->skb_currx] = NULL;
1464                 }
1465
1466                 dev->last_rx = jiffies;
1467
1468                 /* Clear the status flags for this buffer */
1469                 bdp->status &= ~RXBD_STATS;
1470
1471                 /* Add another skb for the future */
1472                 skb = gfar_new_skb(dev, bdp);
1473                 priv->rx_skbuff[priv->skb_currx] = skb;
1474
1475                 /* Update to the next pointer */
1476                 if (bdp->status & RXBD_WRAP)
1477                         bdp = priv->rx_bd_base;
1478                 else
1479                         bdp++;
1480
1481                 /* update to point at the next skb */
1482                 priv->skb_currx =
1483                     (priv->skb_currx +
1484                      1) & RX_RING_MOD_MASK(priv->rx_ring_size);
1485
1486         }
1487
1488         /* Update the current rxbd pointer to be the next one */
1489         priv->cur_rx = bdp;
1490
1491         /* If no packets have arrived since the
1492          * last one we processed, clear the IEVENT RX and
1493          * BSY bits so that another interrupt won't be
1494          * generated when we set IMASK */
1495         if (bdp->status & RXBD_EMPTY)
1496                 gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
1497
1498         return howmany;
1499 }
1500
1501 #ifdef CONFIG_GFAR_NAPI
1502 static int gfar_poll(struct net_device *dev, int *budget)
1503 {
1504         int howmany;
1505         struct gfar_private *priv = netdev_priv(dev);
1506         int rx_work_limit = *budget;
1507
1508         if (rx_work_limit > dev->quota)
1509                 rx_work_limit = dev->quota;
1510
1511         howmany = gfar_clean_rx_ring(dev, rx_work_limit);
1512
1513         dev->quota -= howmany;
1514         rx_work_limit -= howmany;
1515         *budget -= howmany;
1516
1517         if (rx_work_limit >= 0) {
1518                 netif_rx_complete(dev);
1519
1520                 /* Clear the halt bit in RSTAT */
1521                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1522
1523                 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1524
1525                 /* If we are coalescing interrupts, update the timer */
1526                 /* Otherwise, clear it */
1527                 if (priv->rxcoalescing)
1528                         gfar_write(&priv->regs->rxic,
1529                                    mk_ic_value(priv->rxcount, priv->rxtime));
1530                 else
1531                         gfar_write(&priv->regs->rxic, 0);
1532         }
1533
1534         return (rx_work_limit < 0) ? 1 : 0;
1535 }
1536 #endif
1537
1538 /* The interrupt handler for devices with one interrupt */
1539 static irqreturn_t gfar_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1540 {
1541         struct net_device *dev = dev_id;
1542         struct gfar_private *priv = netdev_priv(dev);
1543
1544         /* Save ievent for future reference */
1545         u32 events = gfar_read(&priv->regs->ievent);
1546
1547         /* Clear IEVENT */
1548         gfar_write(&priv->regs->ievent, events);
1549
1550         /* Check for reception */
1551         if ((events & IEVENT_RXF0) || (events & IEVENT_RXB0))
1552                 gfar_receive(irq, dev_id, regs);
1553
1554         /* Check for transmit completion */
1555         if ((events & IEVENT_TXF) || (events & IEVENT_TXB))
1556                 gfar_transmit(irq, dev_id, regs);
1557
1558         /* Update error statistics */
1559         if (events & IEVENT_TXE) {
1560                 priv->stats.tx_errors++;
1561
1562                 if (events & IEVENT_LC)
1563                         priv->stats.tx_window_errors++;
1564                 if (events & IEVENT_CRL)
1565                         priv->stats.tx_aborted_errors++;
1566                 if (events & IEVENT_XFUN) {
1567                         if (netif_msg_tx_err(priv))
1568                                 printk(KERN_WARNING "%s: tx underrun. dropped packet\n", dev->name);
1569                         priv->stats.tx_dropped++;
1570                         priv->extra_stats.tx_underrun++;
1571
1572                         /* Reactivate the Tx Queues */
1573                         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1574                 }
1575         }
1576         if (events & IEVENT_BSY) {
1577                 priv->stats.rx_errors++;
1578                 priv->extra_stats.rx_bsy++;
1579
1580                 gfar_receive(irq, dev_id, regs);
1581
1582 #ifndef CONFIG_GFAR_NAPI
1583                 /* Clear the halt bit in RSTAT */
1584                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1585 #endif
1586
1587                 if (netif_msg_rx_err(priv))
1588                         printk(KERN_DEBUG "%s: busy error (rhalt: %x)\n",
1589                                         dev->name,
1590                                         gfar_read(&priv->regs->rstat));
1591         }
1592         if (events & IEVENT_BABR) {
1593                 priv->stats.rx_errors++;
1594                 priv->extra_stats.rx_babr++;
1595
1596                 if (netif_msg_rx_err(priv))
1597                         printk(KERN_DEBUG "%s: babbling error\n", dev->name);
1598         }
1599         if (events & IEVENT_EBERR) {
1600                 priv->extra_stats.eberr++;
1601                 if (netif_msg_rx_err(priv))
1602                         printk(KERN_DEBUG "%s: EBERR\n", dev->name);
1603         }
1604         if ((events & IEVENT_RXC) && (netif_msg_rx_err(priv)))
1605                         printk(KERN_DEBUG "%s: control frame\n", dev->name);
1606
1607         if (events & IEVENT_BABT) {
1608                 priv->extra_stats.tx_babt++;
1609                 if (netif_msg_rx_err(priv))
1610                         printk(KERN_DEBUG "%s: babt error\n", dev->name);
1611         }
1612
1613         return IRQ_HANDLED;
1614 }
1615
1616 /* Called every time the controller might need to be made
1617  * aware of new link state.  The PHY code conveys this
1618  * information through variables in the phydev structure, and this
1619  * function converts those variables into the appropriate
1620  * register values, and can bring down the device if needed.
1621  */
1622 static void adjust_link(struct net_device *dev)
1623 {
1624         struct gfar_private *priv = netdev_priv(dev);
1625         struct gfar *regs = priv->regs;
1626         unsigned long flags;
1627         struct phy_device *phydev = priv->phydev;
1628         int new_state = 0;
1629
1630         spin_lock_irqsave(&priv->lock, flags);
1631         if (phydev->link) {
1632                 u32 tempval = gfar_read(&regs->maccfg2);
1633                 u32 ecntrl = gfar_read(&regs->ecntrl);
1634
1635                 /* Now we make sure that we can be in full duplex mode.
1636                  * If not, we operate in half-duplex mode. */
1637                 if (phydev->duplex != priv->oldduplex) {
1638                         new_state = 1;
1639                         if (!(phydev->duplex))
1640                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
1641                         else
1642                                 tempval |= MACCFG2_FULL_DUPLEX;
1643
1644                         priv->oldduplex = phydev->duplex;
1645                 }
1646
1647                 if (phydev->speed != priv->oldspeed) {
1648                         new_state = 1;
1649                         switch (phydev->speed) {
1650                         case 1000:
1651                                 tempval =
1652                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1653                                 break;
1654                         case 100:
1655                         case 10:
1656                                 tempval =
1657                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1658
1659                                 /* Reduced mode distinguishes
1660                                  * between 10 and 100 */
1661                                 if (phydev->speed == SPEED_100)
1662                                         ecntrl |= ECNTRL_R100;
1663                                 else
1664                                         ecntrl &= ~(ECNTRL_R100);
1665                                 break;
1666                         default:
1667                                 if (netif_msg_link(priv))
1668                                         printk(KERN_WARNING
1669                                                 "%s: Ack!  Speed (%d) is not 10/100/1000!\n",
1670                                                 dev->name, phydev->speed);
1671                                 break;
1672                         }
1673
1674                         priv->oldspeed = phydev->speed;
1675                 }
1676
1677                 gfar_write(&regs->maccfg2, tempval);
1678                 gfar_write(&regs->ecntrl, ecntrl);
1679
1680                 if (!priv->oldlink) {
1681                         new_state = 1;
1682                         priv->oldlink = 1;
1683                         netif_schedule(dev);
1684                 }
1685         } else if (priv->oldlink) {
1686                 new_state = 1;
1687                 priv->oldlink = 0;
1688                 priv->oldspeed = 0;
1689                 priv->oldduplex = -1;
1690         }
1691
1692         if (new_state && netif_msg_link(priv))
1693                 phy_print_status(phydev);
1694
1695         spin_unlock_irqrestore(&priv->lock, flags);
1696 }
1697
1698 /* Update the hash table based on the current list of multicast
1699  * addresses we subscribe to.  Also, change the promiscuity of
1700  * the device based on the flags (this function is called
1701  * whenever dev->flags is changed */
1702 static void gfar_set_multi(struct net_device *dev)
1703 {
1704         struct dev_mc_list *mc_ptr;
1705         struct gfar_private *priv = netdev_priv(dev);
1706         struct gfar *regs = priv->regs;
1707         u32 tempval;
1708
1709         if(dev->flags & IFF_PROMISC) {
1710                 if (netif_msg_drv(priv))
1711                         printk(KERN_INFO "%s: Entering promiscuous mode.\n",
1712                                         dev->name);
1713                 /* Set RCTRL to PROM */
1714                 tempval = gfar_read(&regs->rctrl);
1715                 tempval |= RCTRL_PROM;
1716                 gfar_write(&regs->rctrl, tempval);
1717         } else {
1718                 /* Set RCTRL to not PROM */
1719                 tempval = gfar_read(&regs->rctrl);
1720                 tempval &= ~(RCTRL_PROM);
1721                 gfar_write(&regs->rctrl, tempval);
1722         }
1723         
1724         if(dev->flags & IFF_ALLMULTI) {
1725                 /* Set the hash to rx all multicast frames */
1726                 gfar_write(&regs->igaddr0, 0xffffffff);
1727                 gfar_write(&regs->igaddr1, 0xffffffff);
1728                 gfar_write(&regs->igaddr2, 0xffffffff);
1729                 gfar_write(&regs->igaddr3, 0xffffffff);
1730                 gfar_write(&regs->igaddr4, 0xffffffff);
1731                 gfar_write(&regs->igaddr5, 0xffffffff);
1732                 gfar_write(&regs->igaddr6, 0xffffffff);
1733                 gfar_write(&regs->igaddr7, 0xffffffff);
1734                 gfar_write(&regs->gaddr0, 0xffffffff);
1735                 gfar_write(&regs->gaddr1, 0xffffffff);
1736                 gfar_write(&regs->gaddr2, 0xffffffff);
1737                 gfar_write(&regs->gaddr3, 0xffffffff);
1738                 gfar_write(&regs->gaddr4, 0xffffffff);
1739                 gfar_write(&regs->gaddr5, 0xffffffff);
1740                 gfar_write(&regs->gaddr6, 0xffffffff);
1741                 gfar_write(&regs->gaddr7, 0xffffffff);
1742         } else {
1743                 int em_num;
1744                 int idx;
1745
1746                 /* zero out the hash */
1747                 gfar_write(&regs->igaddr0, 0x0);
1748                 gfar_write(&regs->igaddr1, 0x0);
1749                 gfar_write(&regs->igaddr2, 0x0);
1750                 gfar_write(&regs->igaddr3, 0x0);
1751                 gfar_write(&regs->igaddr4, 0x0);
1752                 gfar_write(&regs->igaddr5, 0x0);
1753                 gfar_write(&regs->igaddr6, 0x0);
1754                 gfar_write(&regs->igaddr7, 0x0);
1755                 gfar_write(&regs->gaddr0, 0x0);
1756                 gfar_write(&regs->gaddr1, 0x0);
1757                 gfar_write(&regs->gaddr2, 0x0);
1758                 gfar_write(&regs->gaddr3, 0x0);
1759                 gfar_write(&regs->gaddr4, 0x0);
1760                 gfar_write(&regs->gaddr5, 0x0);
1761                 gfar_write(&regs->gaddr6, 0x0);
1762                 gfar_write(&regs->gaddr7, 0x0);
1763
1764                 /* If we have extended hash tables, we need to
1765                  * clear the exact match registers to prepare for
1766                  * setting them */
1767                 if (priv->extended_hash) {
1768                         em_num = GFAR_EM_NUM + 1;
1769                         gfar_clear_exact_match(dev);
1770                         idx = 1;
1771                 } else {
1772                         idx = 0;
1773                         em_num = 0;
1774                 }
1775
1776                 if(dev->mc_count == 0)
1777                         return;
1778
1779                 /* Parse the list, and set the appropriate bits */
1780                 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
1781                         if (idx < em_num) {
1782                                 gfar_set_mac_for_addr(dev, idx,
1783                                                 mc_ptr->dmi_addr);
1784                                 idx++;
1785                         } else
1786                                 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
1787                 }
1788         }
1789
1790         return;
1791 }
1792
1793
1794 /* Clears each of the exact match registers to zero, so they
1795  * don't interfere with normal reception */
1796 static void gfar_clear_exact_match(struct net_device *dev)
1797 {
1798         int idx;
1799         u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
1800
1801         for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
1802                 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
1803 }
1804
1805 /* Set the appropriate hash bit for the given addr */
1806 /* The algorithm works like so:
1807  * 1) Take the Destination Address (ie the multicast address), and
1808  * do a CRC on it (little endian), and reverse the bits of the
1809  * result.
1810  * 2) Use the 8 most significant bits as a hash into a 256-entry
1811  * table.  The table is controlled through 8 32-bit registers:
1812  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
1813  * gaddr7.  This means that the 3 most significant bits in the
1814  * hash index which gaddr register to use, and the 5 other bits
1815  * indicate which bit (assuming an IBM numbering scheme, which
1816  * for PowerPC (tm) is usually the case) in the register holds
1817  * the entry. */
1818 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
1819 {
1820         u32 tempval;
1821         struct gfar_private *priv = netdev_priv(dev);
1822         u32 result = ether_crc(MAC_ADDR_LEN, addr);
1823         int width = priv->hash_width;
1824         u8 whichbit = (result >> (32 - width)) & 0x1f;
1825         u8 whichreg = result >> (32 - width + 5);
1826         u32 value = (1 << (31-whichbit));
1827
1828         tempval = gfar_read(priv->hash_regs[whichreg]);
1829         tempval |= value;
1830         gfar_write(priv->hash_regs[whichreg], tempval);
1831
1832         return;
1833 }
1834
1835
1836 /* There are multiple MAC Address register pairs on some controllers
1837  * This function sets the numth pair to a given address
1838  */
1839 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
1840 {
1841         struct gfar_private *priv = netdev_priv(dev);
1842         int idx;
1843         char tmpbuf[MAC_ADDR_LEN];
1844         u32 tempval;
1845         u32 *macptr = &priv->regs->macstnaddr1;
1846
1847         macptr += num*2;
1848
1849         /* Now copy it into the mac registers backwards, cuz */
1850         /* little endian is silly */
1851         for (idx = 0; idx < MAC_ADDR_LEN; idx++)
1852                 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
1853
1854         gfar_write(macptr, *((u32 *) (tmpbuf)));
1855
1856         tempval = *((u32 *) (tmpbuf + 4));
1857
1858         gfar_write(macptr+1, tempval);
1859 }
1860
1861 /* GFAR error interrupt handler */
1862 static irqreturn_t gfar_error(int irq, void *dev_id, struct pt_regs *regs)
1863 {
1864         struct net_device *dev = dev_id;
1865         struct gfar_private *priv = netdev_priv(dev);
1866
1867         /* Save ievent for future reference */
1868         u32 events = gfar_read(&priv->regs->ievent);
1869
1870         /* Clear IEVENT */
1871         gfar_write(&priv->regs->ievent, IEVENT_ERR_MASK);
1872
1873         /* Hmm... */
1874         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
1875                 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
1876                                 dev->name, events, gfar_read(&priv->regs->imask));
1877
1878         /* Update the error counters */
1879         if (events & IEVENT_TXE) {
1880                 priv->stats.tx_errors++;
1881
1882                 if (events & IEVENT_LC)
1883                         priv->stats.tx_window_errors++;
1884                 if (events & IEVENT_CRL)
1885                         priv->stats.tx_aborted_errors++;
1886                 if (events & IEVENT_XFUN) {
1887                         if (netif_msg_tx_err(priv))
1888                                 printk(KERN_DEBUG "%s: underrun.  packet dropped.\n",
1889                                                 dev->name);
1890                         priv->stats.tx_dropped++;
1891                         priv->extra_stats.tx_underrun++;
1892
1893                         /* Reactivate the Tx Queues */
1894                         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1895                 }
1896                 if (netif_msg_tx_err(priv))
1897                         printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
1898         }
1899         if (events & IEVENT_BSY) {
1900                 priv->stats.rx_errors++;
1901                 priv->extra_stats.rx_bsy++;
1902
1903                 gfar_receive(irq, dev_id, regs);
1904
1905 #ifndef CONFIG_GFAR_NAPI
1906                 /* Clear the halt bit in RSTAT */
1907                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1908 #endif
1909
1910                 if (netif_msg_rx_err(priv))
1911                         printk(KERN_DEBUG "%s: busy error (rhalt: %x)\n",
1912                                         dev->name,
1913                                         gfar_read(&priv->regs->rstat));
1914         }
1915         if (events & IEVENT_BABR) {
1916                 priv->stats.rx_errors++;
1917                 priv->extra_stats.rx_babr++;
1918
1919                 if (netif_msg_rx_err(priv))
1920                         printk(KERN_DEBUG "%s: babbling error\n", dev->name);
1921         }
1922         if (events & IEVENT_EBERR) {
1923                 priv->extra_stats.eberr++;
1924                 if (netif_msg_rx_err(priv))
1925                         printk(KERN_DEBUG "%s: EBERR\n", dev->name);
1926         }
1927         if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
1928                 if (netif_msg_rx_status(priv))
1929                         printk(KERN_DEBUG "%s: control frame\n", dev->name);
1930
1931         if (events & IEVENT_BABT) {
1932                 priv->extra_stats.tx_babt++;
1933                 if (netif_msg_tx_err(priv))
1934                         printk(KERN_DEBUG "%s: babt error\n", dev->name);
1935         }
1936         return IRQ_HANDLED;
1937 }
1938
1939 /* Structure for a device driver */
1940 static struct platform_driver gfar_driver = {
1941         .probe = gfar_probe,
1942         .remove = gfar_remove,
1943         .driver = {
1944                 .name = "fsl-gianfar",
1945         },
1946 };
1947
1948 static int __init gfar_init(void)
1949 {
1950         int err = gfar_mdio_init();
1951
1952         if (err)
1953                 return err;
1954
1955         err = platform_driver_register(&gfar_driver);
1956
1957         if (err)
1958                 gfar_mdio_exit();
1959         
1960         return err;
1961 }
1962
1963 static void __exit gfar_exit(void)
1964 {
1965         platform_driver_unregister(&gfar_driver);
1966         gfar_mdio_exit();
1967 }
1968
1969 module_init(gfar_init);
1970 module_exit(gfar_exit);
1971