FS_ENET: Add polling support
[safe/jmp/linux-2.6] / drivers / net / fs_enet / fs_enet-main.c
1 /*
2  * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3  *
4  * Copyright (c) 2003 Intracom S.A.
5  *  by Pantelis Antoniou <panto@intracom.gr>
6  *
7  * 2005 (c) MontaVista Software, Inc.
8  * Vitaly Bordug <vbordug@ru.mvista.com>
9  *
10  * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11  * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12  *
13  * This file is licensed under the terms of the GNU General Public License
14  * version 2. This program is licensed "as is" without any warranty of any
15  * kind, whether express or implied.
16  */
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/skbuff.h>
32 #include <linux/spinlock.h>
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/bitops.h>
36 #include <linux/fs.h>
37 #include <linux/platform_device.h>
38 #include <linux/phy.h>
39
40 #include <linux/vmalloc.h>
41 #include <asm/pgtable.h>
42 #include <asm/irq.h>
43 #include <asm/uaccess.h>
44
45 #include "fs_enet.h"
46
47 /*************************************************/
48
49 static char version[] __devinitdata =
50     DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n";
51
52 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
53 MODULE_DESCRIPTION("Freescale Ethernet Driver");
54 MODULE_LICENSE("GPL");
55 MODULE_VERSION(DRV_MODULE_VERSION);
56
57 int fs_enet_debug = -1;         /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
58 module_param(fs_enet_debug, int, 0);
59 MODULE_PARM_DESC(fs_enet_debug,
60                  "Freescale bitmapped debugging message enable value");
61
62 #ifdef CONFIG_NET_POLL_CONTROLLER
63 static void fs_enet_netpoll(struct net_device *dev);
64 #endif
65
66 static void fs_set_multicast_list(struct net_device *dev)
67 {
68         struct fs_enet_private *fep = netdev_priv(dev);
69
70         (*fep->ops->set_multicast_list)(dev);
71 }
72
73 /* NAPI receive function */
74 static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
75 {
76         struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
77         struct net_device *dev = to_net_dev(fep->dev);
78         const struct fs_platform_info *fpi = fep->fpi;
79         cbd_t *bdp;
80         struct sk_buff *skb, *skbn, *skbt;
81         int received = 0;
82         u16 pkt_len, sc;
83         int curidx;
84
85         if (!netif_running(dev))
86                 return 0;
87
88         /*
89          * First, grab all of the stats for the incoming packet.
90          * These get messed up if we get called due to a busy condition.
91          */
92         bdp = fep->cur_rx;
93
94         /* clear RX status bits for napi*/
95         (*fep->ops->napi_clear_rx_event)(dev);
96
97         while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
98                 curidx = bdp - fep->rx_bd_base;
99
100                 /*
101                  * Since we have allocated space to hold a complete frame,
102                  * the last indicator should be set.
103                  */
104                 if ((sc & BD_ENET_RX_LAST) == 0)
105                         printk(KERN_WARNING DRV_MODULE_NAME
106                                ": %s rcv is not +last\n",
107                                dev->name);
108
109                 /*
110                  * Check for errors.
111                  */
112                 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
113                           BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
114                         fep->stats.rx_errors++;
115                         /* Frame too long or too short. */
116                         if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
117                                 fep->stats.rx_length_errors++;
118                         /* Frame alignment */
119                         if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
120                                 fep->stats.rx_frame_errors++;
121                         /* CRC Error */
122                         if (sc & BD_ENET_RX_CR)
123                                 fep->stats.rx_crc_errors++;
124                         /* FIFO overrun */
125                         if (sc & BD_ENET_RX_OV)
126                                 fep->stats.rx_crc_errors++;
127
128                         skb = fep->rx_skbuff[curidx];
129
130                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
131                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
132                                 DMA_FROM_DEVICE);
133
134                         skbn = skb;
135
136                 } else {
137                         skb = fep->rx_skbuff[curidx];
138
139                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
140                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
141                                 DMA_FROM_DEVICE);
142
143                         /*
144                          * Process the incoming frame.
145                          */
146                         fep->stats.rx_packets++;
147                         pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
148                         fep->stats.rx_bytes += pkt_len + 4;
149
150                         if (pkt_len <= fpi->rx_copybreak) {
151                                 /* +2 to make IP header L1 cache aligned */
152                                 skbn = dev_alloc_skb(pkt_len + 2);
153                                 if (skbn != NULL) {
154                                         skb_reserve(skbn, 2);   /* align IP header */
155                                         skb_copy_from_linear_data(skb,
156                                                       skbn->data, pkt_len);
157                                         /* swap */
158                                         skbt = skb;
159                                         skb = skbn;
160                                         skbn = skbt;
161                                 }
162                         } else
163                                 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
164
165                         if (skbn != NULL) {
166                                 skb_put(skb, pkt_len);  /* Make room */
167                                 skb->protocol = eth_type_trans(skb, dev);
168                                 received++;
169                                 netif_receive_skb(skb);
170                         } else {
171                                 printk(KERN_WARNING DRV_MODULE_NAME
172                                        ": %s Memory squeeze, dropping packet.\n",
173                                        dev->name);
174                                 fep->stats.rx_dropped++;
175                                 skbn = skb;
176                         }
177                 }
178
179                 fep->rx_skbuff[curidx] = skbn;
180                 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
181                              L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
182                              DMA_FROM_DEVICE));
183                 CBDW_DATLEN(bdp, 0);
184                 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
185
186                 /*
187                  * Update BD pointer to next entry.
188                  */
189                 if ((sc & BD_ENET_RX_WRAP) == 0)
190                         bdp++;
191                 else
192                         bdp = fep->rx_bd_base;
193
194                 (*fep->ops->rx_bd_done)(dev);
195
196                 if (received >= budget)
197                         break;
198         }
199
200         fep->cur_rx = bdp;
201
202         if (received >= budget) {
203                 /* done */
204                 netif_rx_complete(dev, napi);
205                 (*fep->ops->napi_enable_rx)(dev);
206         }
207         return received;
208 }
209
210 /* non NAPI receive function */
211 static int fs_enet_rx_non_napi(struct net_device *dev)
212 {
213         struct fs_enet_private *fep = netdev_priv(dev);
214         const struct fs_platform_info *fpi = fep->fpi;
215         cbd_t *bdp;
216         struct sk_buff *skb, *skbn, *skbt;
217         int received = 0;
218         u16 pkt_len, sc;
219         int curidx;
220         /*
221          * First, grab all of the stats for the incoming packet.
222          * These get messed up if we get called due to a busy condition.
223          */
224         bdp = fep->cur_rx;
225
226         while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
227
228                 curidx = bdp - fep->rx_bd_base;
229
230                 /*
231                  * Since we have allocated space to hold a complete frame,
232                  * the last indicator should be set.
233                  */
234                 if ((sc & BD_ENET_RX_LAST) == 0)
235                         printk(KERN_WARNING DRV_MODULE_NAME
236                                ": %s rcv is not +last\n",
237                                dev->name);
238
239                 /*
240                  * Check for errors.
241                  */
242                 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
243                           BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
244                         fep->stats.rx_errors++;
245                         /* Frame too long or too short. */
246                         if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
247                                 fep->stats.rx_length_errors++;
248                         /* Frame alignment */
249                         if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
250                                 fep->stats.rx_frame_errors++;
251                         /* CRC Error */
252                         if (sc & BD_ENET_RX_CR)
253                                 fep->stats.rx_crc_errors++;
254                         /* FIFO overrun */
255                         if (sc & BD_ENET_RX_OV)
256                                 fep->stats.rx_crc_errors++;
257
258                         skb = fep->rx_skbuff[curidx];
259
260                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
261                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
262                                 DMA_FROM_DEVICE);
263
264                         skbn = skb;
265
266                 } else {
267
268                         skb = fep->rx_skbuff[curidx];
269
270                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
271                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
272                                 DMA_FROM_DEVICE);
273
274                         /*
275                          * Process the incoming frame.
276                          */
277                         fep->stats.rx_packets++;
278                         pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
279                         fep->stats.rx_bytes += pkt_len + 4;
280
281                         if (pkt_len <= fpi->rx_copybreak) {
282                                 /* +2 to make IP header L1 cache aligned */
283                                 skbn = dev_alloc_skb(pkt_len + 2);
284                                 if (skbn != NULL) {
285                                         skb_reserve(skbn, 2);   /* align IP header */
286                                         skb_copy_from_linear_data(skb,
287                                                       skbn->data, pkt_len);
288                                         /* swap */
289                                         skbt = skb;
290                                         skb = skbn;
291                                         skbn = skbt;
292                                 }
293                         } else
294                                 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
295
296                         if (skbn != NULL) {
297                                 skb_put(skb, pkt_len);  /* Make room */
298                                 skb->protocol = eth_type_trans(skb, dev);
299                                 received++;
300                                 netif_rx(skb);
301                         } else {
302                                 printk(KERN_WARNING DRV_MODULE_NAME
303                                        ": %s Memory squeeze, dropping packet.\n",
304                                        dev->name);
305                                 fep->stats.rx_dropped++;
306                                 skbn = skb;
307                         }
308                 }
309
310                 fep->rx_skbuff[curidx] = skbn;
311                 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
312                              L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
313                              DMA_FROM_DEVICE));
314                 CBDW_DATLEN(bdp, 0);
315                 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
316
317                 /*
318                  * Update BD pointer to next entry.
319                  */
320                 if ((sc & BD_ENET_RX_WRAP) == 0)
321                         bdp++;
322                 else
323                         bdp = fep->rx_bd_base;
324
325                 (*fep->ops->rx_bd_done)(dev);
326         }
327
328         fep->cur_rx = bdp;
329
330         return 0;
331 }
332
333 static void fs_enet_tx(struct net_device *dev)
334 {
335         struct fs_enet_private *fep = netdev_priv(dev);
336         cbd_t *bdp;
337         struct sk_buff *skb;
338         int dirtyidx, do_wake, do_restart;
339         u16 sc;
340
341         spin_lock(&fep->tx_lock);
342         bdp = fep->dirty_tx;
343
344         do_wake = do_restart = 0;
345         while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
346
347                 dirtyidx = bdp - fep->tx_bd_base;
348
349                 if (fep->tx_free == fep->tx_ring)
350                         break;
351
352                 skb = fep->tx_skbuff[dirtyidx];
353
354                 /*
355                  * Check for errors.
356                  */
357                 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
358                           BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
359
360                         if (sc & BD_ENET_TX_HB) /* No heartbeat */
361                                 fep->stats.tx_heartbeat_errors++;
362                         if (sc & BD_ENET_TX_LC) /* Late collision */
363                                 fep->stats.tx_window_errors++;
364                         if (sc & BD_ENET_TX_RL) /* Retrans limit */
365                                 fep->stats.tx_aborted_errors++;
366                         if (sc & BD_ENET_TX_UN) /* Underrun */
367                                 fep->stats.tx_fifo_errors++;
368                         if (sc & BD_ENET_TX_CSL)        /* Carrier lost */
369                                 fep->stats.tx_carrier_errors++;
370
371                         if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
372                                 fep->stats.tx_errors++;
373                                 do_restart = 1;
374                         }
375                 } else
376                         fep->stats.tx_packets++;
377
378                 if (sc & BD_ENET_TX_READY)
379                         printk(KERN_WARNING DRV_MODULE_NAME
380                                ": %s HEY! Enet xmit interrupt and TX_READY.\n",
381                                dev->name);
382
383                 /*
384                  * Deferred means some collisions occurred during transmit,
385                  * but we eventually sent the packet OK.
386                  */
387                 if (sc & BD_ENET_TX_DEF)
388                         fep->stats.collisions++;
389
390                 /* unmap */
391                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
392                                 skb->len, DMA_TO_DEVICE);
393
394                 /*
395                  * Free the sk buffer associated with this last transmit.
396                  */
397                 dev_kfree_skb_irq(skb);
398                 fep->tx_skbuff[dirtyidx] = NULL;
399
400                 /*
401                  * Update pointer to next buffer descriptor to be transmitted.
402                  */
403                 if ((sc & BD_ENET_TX_WRAP) == 0)
404                         bdp++;
405                 else
406                         bdp = fep->tx_bd_base;
407
408                 /*
409                  * Since we have freed up a buffer, the ring is no longer
410                  * full.
411                  */
412                 if (!fep->tx_free++)
413                         do_wake = 1;
414         }
415
416         fep->dirty_tx = bdp;
417
418         if (do_restart)
419                 (*fep->ops->tx_restart)(dev);
420
421         spin_unlock(&fep->tx_lock);
422
423         if (do_wake)
424                 netif_wake_queue(dev);
425 }
426
427 /*
428  * The interrupt handler.
429  * This is called from the MPC core interrupt.
430  */
431 static irqreturn_t
432 fs_enet_interrupt(int irq, void *dev_id)
433 {
434         struct net_device *dev = dev_id;
435         struct fs_enet_private *fep;
436         const struct fs_platform_info *fpi;
437         u32 int_events;
438         u32 int_clr_events;
439         int nr, napi_ok;
440         int handled;
441
442         fep = netdev_priv(dev);
443         fpi = fep->fpi;
444
445         nr = 0;
446         while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
447
448                 nr++;
449
450                 int_clr_events = int_events;
451                 if (fpi->use_napi)
452                         int_clr_events &= ~fep->ev_napi_rx;
453
454                 (*fep->ops->clear_int_events)(dev, int_clr_events);
455
456                 if (int_events & fep->ev_err)
457                         (*fep->ops->ev_error)(dev, int_events);
458
459                 if (int_events & fep->ev_rx) {
460                         if (!fpi->use_napi)
461                                 fs_enet_rx_non_napi(dev);
462                         else {
463                                 napi_ok = napi_schedule_prep(&fep->napi);
464
465                                 (*fep->ops->napi_disable_rx)(dev);
466                                 (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
467
468                                 /* NOTE: it is possible for FCCs in NAPI mode    */
469                                 /* to submit a spurious interrupt while in poll  */
470                                 if (napi_ok)
471                                         __netif_rx_schedule(dev, &fep->napi);
472                         }
473                 }
474
475                 if (int_events & fep->ev_tx)
476                         fs_enet_tx(dev);
477         }
478
479         handled = nr > 0;
480         return IRQ_RETVAL(handled);
481 }
482
483 void fs_init_bds(struct net_device *dev)
484 {
485         struct fs_enet_private *fep = netdev_priv(dev);
486         cbd_t *bdp;
487         struct sk_buff *skb;
488         int i;
489
490         fs_cleanup_bds(dev);
491
492         fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
493         fep->tx_free = fep->tx_ring;
494         fep->cur_rx = fep->rx_bd_base;
495
496         /*
497          * Initialize the receive buffer descriptors.
498          */
499         for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
500                 skb = dev_alloc_skb(ENET_RX_FRSIZE);
501                 if (skb == NULL) {
502                         printk(KERN_WARNING DRV_MODULE_NAME
503                                ": %s Memory squeeze, unable to allocate skb\n",
504                                dev->name);
505                         break;
506                 }
507                 fep->rx_skbuff[i] = skb;
508                 CBDW_BUFADDR(bdp,
509                         dma_map_single(fep->dev, skb->data,
510                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
511                                 DMA_FROM_DEVICE));
512                 CBDW_DATLEN(bdp, 0);    /* zero */
513                 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
514                         ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
515         }
516         /*
517          * if we failed, fillup remainder
518          */
519         for (; i < fep->rx_ring; i++, bdp++) {
520                 fep->rx_skbuff[i] = NULL;
521                 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
522         }
523
524         /*
525          * ...and the same for transmit.
526          */
527         for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
528                 fep->tx_skbuff[i] = NULL;
529                 CBDW_BUFADDR(bdp, 0);
530                 CBDW_DATLEN(bdp, 0);
531                 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
532         }
533 }
534
535 void fs_cleanup_bds(struct net_device *dev)
536 {
537         struct fs_enet_private *fep = netdev_priv(dev);
538         struct sk_buff *skb;
539         cbd_t *bdp;
540         int i;
541
542         /*
543          * Reset SKB transmit buffers.
544          */
545         for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
546                 if ((skb = fep->tx_skbuff[i]) == NULL)
547                         continue;
548
549                 /* unmap */
550                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
551                                 skb->len, DMA_TO_DEVICE);
552
553                 fep->tx_skbuff[i] = NULL;
554                 dev_kfree_skb(skb);
555         }
556
557         /*
558          * Reset SKB receive buffers
559          */
560         for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
561                 if ((skb = fep->rx_skbuff[i]) == NULL)
562                         continue;
563
564                 /* unmap */
565                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
566                         L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
567                         DMA_FROM_DEVICE);
568
569                 fep->rx_skbuff[i] = NULL;
570
571                 dev_kfree_skb(skb);
572         }
573 }
574
575 /**********************************************************************************/
576
577 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
578 {
579         struct fs_enet_private *fep = netdev_priv(dev);
580         cbd_t *bdp;
581         int curidx;
582         u16 sc;
583         unsigned long flags;
584
585         spin_lock_irqsave(&fep->tx_lock, flags);
586
587         /*
588          * Fill in a Tx ring entry
589          */
590         bdp = fep->cur_tx;
591
592         if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
593                 netif_stop_queue(dev);
594                 spin_unlock_irqrestore(&fep->tx_lock, flags);
595
596                 /*
597                  * Ooops.  All transmit buffers are full.  Bail out.
598                  * This should not happen, since the tx queue should be stopped.
599                  */
600                 printk(KERN_WARNING DRV_MODULE_NAME
601                        ": %s tx queue full!.\n", dev->name);
602                 return NETDEV_TX_BUSY;
603         }
604
605         curidx = bdp - fep->tx_bd_base;
606         /*
607          * Clear all of the status flags.
608          */
609         CBDC_SC(bdp, BD_ENET_TX_STATS);
610
611         /*
612          * Save skb pointer.
613          */
614         fep->tx_skbuff[curidx] = skb;
615
616         fep->stats.tx_bytes += skb->len;
617
618         /*
619          * Push the data cache so the CPM does not get stale memory data.
620          */
621         CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
622                                 skb->data, skb->len, DMA_TO_DEVICE));
623         CBDW_DATLEN(bdp, skb->len);
624
625         dev->trans_start = jiffies;
626
627         /*
628          * If this was the last BD in the ring, start at the beginning again.
629          */
630         if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
631                 fep->cur_tx++;
632         else
633                 fep->cur_tx = fep->tx_bd_base;
634
635         if (!--fep->tx_free)
636                 netif_stop_queue(dev);
637
638         /* Trigger transmission start */
639         sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
640              BD_ENET_TX_LAST | BD_ENET_TX_TC;
641
642         /* note that while FEC does not have this bit
643          * it marks it as available for software use
644          * yay for hw reuse :) */
645         if (skb->len <= 60)
646                 sc |= BD_ENET_TX_PAD;
647         CBDS_SC(bdp, sc);
648
649         (*fep->ops->tx_kickstart)(dev);
650
651         spin_unlock_irqrestore(&fep->tx_lock, flags);
652
653         return NETDEV_TX_OK;
654 }
655
656 static int fs_request_irq(struct net_device *dev, int irq, const char *name,
657                 irq_handler_t irqf)
658 {
659         struct fs_enet_private *fep = netdev_priv(dev);
660
661         (*fep->ops->pre_request_irq)(dev, irq);
662         return request_irq(irq, irqf, IRQF_SHARED, name, dev);
663 }
664
665 static void fs_free_irq(struct net_device *dev, int irq)
666 {
667         struct fs_enet_private *fep = netdev_priv(dev);
668
669         free_irq(irq, dev);
670         (*fep->ops->post_free_irq)(dev, irq);
671 }
672
673 static void fs_timeout(struct net_device *dev)
674 {
675         struct fs_enet_private *fep = netdev_priv(dev);
676         unsigned long flags;
677         int wake = 0;
678
679         fep->stats.tx_errors++;
680
681         spin_lock_irqsave(&fep->lock, flags);
682
683         if (dev->flags & IFF_UP) {
684                 phy_stop(fep->phydev);
685                 (*fep->ops->stop)(dev);
686                 (*fep->ops->restart)(dev);
687                 phy_start(fep->phydev);
688         }
689
690         phy_start(fep->phydev);
691         wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
692         spin_unlock_irqrestore(&fep->lock, flags);
693
694         if (wake)
695                 netif_wake_queue(dev);
696 }
697
698 /*-----------------------------------------------------------------------------
699  *  generic link-change handler - should be sufficient for most cases
700  *-----------------------------------------------------------------------------*/
701 static void generic_adjust_link(struct  net_device *dev)
702 {
703        struct fs_enet_private *fep = netdev_priv(dev);
704        struct phy_device *phydev = fep->phydev;
705        int new_state = 0;
706
707        if (phydev->link) {
708
709                /* adjust to duplex mode */
710                if (phydev->duplex != fep->oldduplex){
711                        new_state = 1;
712                        fep->oldduplex = phydev->duplex;
713                }
714
715                if (phydev->speed != fep->oldspeed) {
716                        new_state = 1;
717                        fep->oldspeed = phydev->speed;
718                }
719
720                if (!fep->oldlink) {
721                        new_state = 1;
722                        fep->oldlink = 1;
723                        netif_schedule(dev);
724                        netif_carrier_on(dev);
725                        netif_start_queue(dev);
726                }
727
728                if (new_state)
729                        fep->ops->restart(dev);
730
731        } else if (fep->oldlink) {
732                new_state = 1;
733                fep->oldlink = 0;
734                fep->oldspeed = 0;
735                fep->oldduplex = -1;
736                netif_carrier_off(dev);
737                netif_stop_queue(dev);
738        }
739
740        if (new_state && netif_msg_link(fep))
741                phy_print_status(phydev);
742 }
743
744
745 static void fs_adjust_link(struct net_device *dev)
746 {
747         struct fs_enet_private *fep = netdev_priv(dev);
748         unsigned long flags;
749
750         spin_lock_irqsave(&fep->lock, flags);
751
752         if(fep->ops->adjust_link)
753                 fep->ops->adjust_link(dev);
754         else
755                 generic_adjust_link(dev);
756
757         spin_unlock_irqrestore(&fep->lock, flags);
758 }
759
760 static int fs_init_phy(struct net_device *dev)
761 {
762         struct fs_enet_private *fep = netdev_priv(dev);
763         struct phy_device *phydev;
764
765         fep->oldlink = 0;
766         fep->oldspeed = 0;
767         fep->oldduplex = -1;
768         if(fep->fpi->bus_id)
769                 phydev = phy_connect(dev, fep->fpi->bus_id, &fs_adjust_link, 0,
770                                 PHY_INTERFACE_MODE_MII);
771         else {
772                 printk("No phy bus ID specified in BSP code\n");
773                 return -EINVAL;
774         }
775         if (IS_ERR(phydev)) {
776                 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
777                 return PTR_ERR(phydev);
778         }
779
780         fep->phydev = phydev;
781
782         return 0;
783 }
784
785
786 static int fs_enet_open(struct net_device *dev)
787 {
788         struct fs_enet_private *fep = netdev_priv(dev);
789         int r;
790         int err;
791
792         napi_enable(&fep->napi);
793
794         /* Install our interrupt handler. */
795         r = fs_request_irq(dev, fep->interrupt, "fs_enet-mac", fs_enet_interrupt);
796         if (r != 0) {
797                 printk(KERN_ERR DRV_MODULE_NAME
798                        ": %s Could not allocate FS_ENET IRQ!", dev->name);
799                 napi_disable(&fep->napi);
800                 return -EINVAL;
801         }
802
803         err = fs_init_phy(dev);
804         if(err) {
805                 napi_disable(&fep->napi);
806                 return err;
807         }
808         phy_start(fep->phydev);
809
810         return 0;
811 }
812
813 static int fs_enet_close(struct net_device *dev)
814 {
815         struct fs_enet_private *fep = netdev_priv(dev);
816         unsigned long flags;
817
818         netif_stop_queue(dev);
819         netif_carrier_off(dev);
820         napi_disable(&fep->napi);
821         phy_stop(fep->phydev);
822
823         spin_lock_irqsave(&fep->lock, flags);
824         spin_lock(&fep->tx_lock);
825         (*fep->ops->stop)(dev);
826         spin_unlock(&fep->tx_lock);
827         spin_unlock_irqrestore(&fep->lock, flags);
828
829         /* release any irqs */
830         phy_disconnect(fep->phydev);
831         fep->phydev = NULL;
832         fs_free_irq(dev, fep->interrupt);
833
834         return 0;
835 }
836
837 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
838 {
839         struct fs_enet_private *fep = netdev_priv(dev);
840         return &fep->stats;
841 }
842
843 /*************************************************************************/
844
845 static void fs_get_drvinfo(struct net_device *dev,
846                             struct ethtool_drvinfo *info)
847 {
848         strcpy(info->driver, DRV_MODULE_NAME);
849         strcpy(info->version, DRV_MODULE_VERSION);
850 }
851
852 static int fs_get_regs_len(struct net_device *dev)
853 {
854         struct fs_enet_private *fep = netdev_priv(dev);
855
856         return (*fep->ops->get_regs_len)(dev);
857 }
858
859 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
860                          void *p)
861 {
862         struct fs_enet_private *fep = netdev_priv(dev);
863         unsigned long flags;
864         int r, len;
865
866         len = regs->len;
867
868         spin_lock_irqsave(&fep->lock, flags);
869         r = (*fep->ops->get_regs)(dev, p, &len);
870         spin_unlock_irqrestore(&fep->lock, flags);
871
872         if (r == 0)
873                 regs->version = 0;
874 }
875
876 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
877 {
878         struct fs_enet_private *fep = netdev_priv(dev);
879         return phy_ethtool_gset(fep->phydev, cmd);
880 }
881
882 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
883 {
884         struct fs_enet_private *fep = netdev_priv(dev);
885         phy_ethtool_sset(fep->phydev, cmd);
886         return 0;
887 }
888
889 static int fs_nway_reset(struct net_device *dev)
890 {
891         return 0;
892 }
893
894 static u32 fs_get_msglevel(struct net_device *dev)
895 {
896         struct fs_enet_private *fep = netdev_priv(dev);
897         return fep->msg_enable;
898 }
899
900 static void fs_set_msglevel(struct net_device *dev, u32 value)
901 {
902         struct fs_enet_private *fep = netdev_priv(dev);
903         fep->msg_enable = value;
904 }
905
906 static const struct ethtool_ops fs_ethtool_ops = {
907         .get_drvinfo = fs_get_drvinfo,
908         .get_regs_len = fs_get_regs_len,
909         .get_settings = fs_get_settings,
910         .set_settings = fs_set_settings,
911         .nway_reset = fs_nway_reset,
912         .get_link = ethtool_op_get_link,
913         .get_msglevel = fs_get_msglevel,
914         .set_msglevel = fs_set_msglevel,
915         .set_tx_csum = ethtool_op_set_tx_csum,  /* local! */
916         .set_sg = ethtool_op_set_sg,
917         .get_regs = fs_get_regs,
918 };
919
920 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
921 {
922         struct fs_enet_private *fep = netdev_priv(dev);
923         struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
924         unsigned long flags;
925         int rc;
926
927         if (!netif_running(dev))
928                 return -EINVAL;
929
930         spin_lock_irqsave(&fep->lock, flags);
931         rc = phy_mii_ioctl(fep->phydev, mii, cmd);
932         spin_unlock_irqrestore(&fep->lock, flags);
933         return rc;
934 }
935
936 extern int fs_mii_connect(struct net_device *dev);
937 extern void fs_mii_disconnect(struct net_device *dev);
938
939 static struct net_device *fs_init_instance(struct device *dev,
940                 struct fs_platform_info *fpi)
941 {
942         struct net_device *ndev = NULL;
943         struct fs_enet_private *fep = NULL;
944         int privsize, i, r, err = 0, registered = 0;
945
946         fpi->fs_no = fs_get_id(fpi);
947         /* guard */
948         if ((unsigned int)fpi->fs_no >= FS_MAX_INDEX)
949                 return ERR_PTR(-EINVAL);
950
951         privsize = sizeof(*fep) + (sizeof(struct sk_buff **) *
952                             (fpi->rx_ring + fpi->tx_ring));
953
954         ndev = alloc_etherdev(privsize);
955         if (!ndev) {
956                 err = -ENOMEM;
957                 goto err;
958         }
959
960         fep = netdev_priv(ndev);
961
962         fep->dev = dev;
963         dev_set_drvdata(dev, ndev);
964         fep->fpi = fpi;
965         if (fpi->init_ioports)
966                 fpi->init_ioports((struct fs_platform_info *)fpi);
967
968 #ifdef CONFIG_FS_ENET_HAS_FEC
969         if (fs_get_fec_index(fpi->fs_no) >= 0)
970                 fep->ops = &fs_fec_ops;
971 #endif
972
973 #ifdef CONFIG_FS_ENET_HAS_SCC
974         if (fs_get_scc_index(fpi->fs_no) >=0 )
975                 fep->ops = &fs_scc_ops;
976 #endif
977
978 #ifdef CONFIG_FS_ENET_HAS_FCC
979         if (fs_get_fcc_index(fpi->fs_no) >= 0)
980                 fep->ops = &fs_fcc_ops;
981 #endif
982
983         if (fep->ops == NULL) {
984                 printk(KERN_ERR DRV_MODULE_NAME
985                        ": %s No matching ops found (%d).\n",
986                        ndev->name, fpi->fs_no);
987                 err = -EINVAL;
988                 goto err;
989         }
990
991         r = (*fep->ops->setup_data)(ndev);
992         if (r != 0) {
993                 printk(KERN_ERR DRV_MODULE_NAME
994                        ": %s setup_data failed\n",
995                         ndev->name);
996                 err = r;
997                 goto err;
998         }
999
1000         /* point rx_skbuff, tx_skbuff */
1001         fep->rx_skbuff = (struct sk_buff **)&fep[1];
1002         fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1003
1004         /* init locks */
1005         spin_lock_init(&fep->lock);
1006         spin_lock_init(&fep->tx_lock);
1007
1008         /*
1009          * Set the Ethernet address.
1010          */
1011         for (i = 0; i < 6; i++)
1012                 ndev->dev_addr[i] = fpi->macaddr[i];
1013
1014         r = (*fep->ops->allocate_bd)(ndev);
1015
1016         if (fep->ring_base == NULL) {
1017                 printk(KERN_ERR DRV_MODULE_NAME
1018                        ": %s buffer descriptor alloc failed (%d).\n", ndev->name, r);
1019                 err = r;
1020                 goto err;
1021         }
1022
1023         /*
1024          * Set receive and transmit descriptor base.
1025          */
1026         fep->rx_bd_base = fep->ring_base;
1027         fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1028
1029         /* initialize ring size variables */
1030         fep->tx_ring = fpi->tx_ring;
1031         fep->rx_ring = fpi->rx_ring;
1032
1033         /*
1034          * The FEC Ethernet specific entries in the device structure.
1035          */
1036         ndev->open = fs_enet_open;
1037         ndev->hard_start_xmit = fs_enet_start_xmit;
1038         ndev->tx_timeout = fs_timeout;
1039         ndev->watchdog_timeo = 2 * HZ;
1040         ndev->stop = fs_enet_close;
1041         ndev->get_stats = fs_enet_get_stats;
1042         ndev->set_multicast_list = fs_set_multicast_list;
1043
1044 #ifdef CONFIG_NET_POLL_CONTROLLER
1045         ndev->poll_controller = fs_enet_netpoll;
1046 #endif
1047
1048         netif_napi_add(ndev, &fep->napi,
1049                        fs_enet_rx_napi, fpi->napi_weight);
1050
1051         ndev->ethtool_ops = &fs_ethtool_ops;
1052         ndev->do_ioctl = fs_ioctl;
1053
1054         init_timer(&fep->phy_timer_list);
1055
1056         netif_carrier_off(ndev);
1057
1058         err = register_netdev(ndev);
1059         if (err != 0) {
1060                 printk(KERN_ERR DRV_MODULE_NAME
1061                        ": %s register_netdev failed.\n", ndev->name);
1062                 goto err;
1063         }
1064         registered = 1;
1065
1066
1067         return ndev;
1068
1069       err:
1070         if (ndev != NULL) {
1071
1072                 if (registered)
1073                         unregister_netdev(ndev);
1074
1075                 if (fep != NULL) {
1076                         (*fep->ops->free_bd)(ndev);
1077                         (*fep->ops->cleanup_data)(ndev);
1078                 }
1079
1080                 free_netdev(ndev);
1081         }
1082
1083         dev_set_drvdata(dev, NULL);
1084
1085         return ERR_PTR(err);
1086 }
1087
1088 static int fs_cleanup_instance(struct net_device *ndev)
1089 {
1090         struct fs_enet_private *fep;
1091         const struct fs_platform_info *fpi;
1092         struct device *dev;
1093
1094         if (ndev == NULL)
1095                 return -EINVAL;
1096
1097         fep = netdev_priv(ndev);
1098         if (fep == NULL)
1099                 return -EINVAL;
1100
1101         fpi = fep->fpi;
1102
1103         unregister_netdev(ndev);
1104
1105         dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
1106                           fep->ring_base, fep->ring_mem_addr);
1107
1108         /* reset it */
1109         (*fep->ops->cleanup_data)(ndev);
1110
1111         dev = fep->dev;
1112         if (dev != NULL) {
1113                 dev_set_drvdata(dev, NULL);
1114                 fep->dev = NULL;
1115         }
1116
1117         free_netdev(ndev);
1118
1119         return 0;
1120 }
1121
1122 /**************************************************************************************/
1123
1124 /* handy pointer to the immap */
1125 void *fs_enet_immap = NULL;
1126
1127 static int setup_immap(void)
1128 {
1129         phys_addr_t paddr = 0;
1130         unsigned long size = 0;
1131
1132 #ifdef CONFIG_CPM1
1133         paddr = IMAP_ADDR;
1134         size = 0x10000; /* map 64K */
1135 #endif
1136
1137 #ifdef CONFIG_CPM2
1138         paddr = CPM_MAP_ADDR;
1139         size = 0x40000; /* map 256 K */
1140 #endif
1141         fs_enet_immap = ioremap(paddr, size);
1142         if (fs_enet_immap == NULL)
1143                 return -EBADF;  /* XXX ahem; maybe just BUG_ON? */
1144
1145         return 0;
1146 }
1147
1148 static void cleanup_immap(void)
1149 {
1150         if (fs_enet_immap != NULL) {
1151                 iounmap(fs_enet_immap);
1152                 fs_enet_immap = NULL;
1153         }
1154 }
1155
1156 /**************************************************************************************/
1157
1158 static int __devinit fs_enet_probe(struct device *dev)
1159 {
1160         struct net_device *ndev;
1161
1162         /* no fixup - no device */
1163         if (dev->platform_data == NULL) {
1164                 printk(KERN_INFO "fs_enet: "
1165                                 "probe called with no platform data; "
1166                                 "remove unused devices\n");
1167                 return -ENODEV;
1168         }
1169
1170         ndev = fs_init_instance(dev, dev->platform_data);
1171         if (IS_ERR(ndev))
1172                 return PTR_ERR(ndev);
1173         return 0;
1174 }
1175
1176 static int fs_enet_remove(struct device *dev)
1177 {
1178         return fs_cleanup_instance(dev_get_drvdata(dev));
1179 }
1180
1181 static struct device_driver fs_enet_fec_driver = {
1182         .name           = "fsl-cpm-fec",
1183         .bus            = &platform_bus_type,
1184         .probe          = fs_enet_probe,
1185         .remove         = fs_enet_remove,
1186 #ifdef CONFIG_PM
1187 /*      .suspend        = fs_enet_suspend,      TODO */
1188 /*      .resume         = fs_enet_resume,       TODO */
1189 #endif
1190 };
1191
1192 static struct device_driver fs_enet_scc_driver = {
1193         .name           = "fsl-cpm-scc",
1194         .bus            = &platform_bus_type,
1195         .probe          = fs_enet_probe,
1196         .remove         = fs_enet_remove,
1197 #ifdef CONFIG_PM
1198 /*      .suspend        = fs_enet_suspend,      TODO */
1199 /*      .resume         = fs_enet_resume,       TODO */
1200 #endif
1201 };
1202
1203 static struct device_driver fs_enet_fcc_driver = {
1204         .name           = "fsl-cpm-fcc",
1205         .bus            = &platform_bus_type,
1206         .probe          = fs_enet_probe,
1207         .remove         = fs_enet_remove,
1208 #ifdef CONFIG_PM
1209 /*      .suspend        = fs_enet_suspend,      TODO */
1210 /*      .resume         = fs_enet_resume,       TODO */
1211 #endif
1212 };
1213
1214 static int __init fs_init(void)
1215 {
1216         int r;
1217
1218         printk(KERN_INFO
1219                         "%s", version);
1220
1221         r = setup_immap();
1222         if (r != 0)
1223                 return r;
1224
1225 #ifdef CONFIG_FS_ENET_HAS_FCC
1226         /* let's insert mii stuff */
1227         r = fs_enet_mdio_bb_init();
1228
1229         if (r != 0) {
1230                 printk(KERN_ERR DRV_MODULE_NAME
1231                         "BB PHY init failed.\n");
1232                 return r;
1233         }
1234         r = driver_register(&fs_enet_fcc_driver);
1235         if (r != 0)
1236                 goto err;
1237 #endif
1238
1239 #ifdef CONFIG_FS_ENET_HAS_FEC
1240         r =  fs_enet_mdio_fec_init();
1241         if (r != 0) {
1242                 printk(KERN_ERR DRV_MODULE_NAME
1243                         "FEC PHY init failed.\n");
1244                 return r;
1245         }
1246
1247         r = driver_register(&fs_enet_fec_driver);
1248         if (r != 0)
1249                 goto err;
1250 #endif
1251
1252 #ifdef CONFIG_FS_ENET_HAS_SCC
1253         r = driver_register(&fs_enet_scc_driver);
1254         if (r != 0)
1255                 goto err;
1256 #endif
1257
1258         return 0;
1259 err:
1260         cleanup_immap();
1261         return r;
1262
1263 }
1264
1265 static void __exit fs_cleanup(void)
1266 {
1267         driver_unregister(&fs_enet_fec_driver);
1268         driver_unregister(&fs_enet_fcc_driver);
1269         driver_unregister(&fs_enet_scc_driver);
1270         cleanup_immap();
1271 }
1272
1273 #ifdef CONFIG_NET_POLL_CONTROLLER
1274 static void fs_enet_netpoll(struct net_device *dev)
1275 {
1276        disable_irq(dev->irq);
1277        fs_enet_interrupt(dev->irq, dev, NULL);
1278        enable_irq(dev->irq);
1279 }
1280 #endif
1281
1282 /**************************************************************************************/
1283
1284 module_init(fs_init);
1285 module_exit(fs_cleanup);