[PATCH] forcedeth config: flow control
[safe/jmp/linux-2.6] / drivers / net / forcedeth.c
1 /*
2  * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3  *
4  * Note: This driver is a cleanroom reimplementation based on reverse
5  *      engineered documentation written by Carl-Daniel Hailfinger
6  *      and Andrew de Quincey. It's neither supported nor endorsed
7  *      by NVIDIA Corp. Use at your own risk.
8  *
9  * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
10  * trademarks of NVIDIA Corporation in the United States and other
11  * countries.
12  *
13  * Copyright (C) 2003,4,5 Manfred Spraul
14  * Copyright (C) 2004 Andrew de Quincey (wol support)
15  * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
16  *              IRQ rate fixes, bigendian fixes, cleanups, verification)
17  * Copyright (c) 2004 NVIDIA Corporation
18  *
19  * This program is free software; you can redistribute it and/or modify
20  * it under the terms of the GNU General Public License as published by
21  * the Free Software Foundation; either version 2 of the License, or
22  * (at your option) any later version.
23  *
24  * This program is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
27  * GNU General Public License for more details.
28  *
29  * You should have received a copy of the GNU General Public License
30  * along with this program; if not, write to the Free Software
31  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
32  *
33  * Changelog:
34  *      0.01: 05 Oct 2003: First release that compiles without warnings.
35  *      0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
36  *                         Check all PCI BARs for the register window.
37  *                         udelay added to mii_rw.
38  *      0.03: 06 Oct 2003: Initialize dev->irq.
39  *      0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
40  *      0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
41  *      0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
42  *                         irq mask updated
43  *      0.07: 14 Oct 2003: Further irq mask updates.
44  *      0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
45  *                         added into irq handler, NULL check for drain_ring.
46  *      0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
47  *                         requested interrupt sources.
48  *      0.10: 20 Oct 2003: First cleanup for release.
49  *      0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
50  *                         MAC Address init fix, set_multicast cleanup.
51  *      0.12: 23 Oct 2003: Cleanups for release.
52  *      0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
53  *                         Set link speed correctly. start rx before starting
54  *                         tx (nv_start_rx sets the link speed).
55  *      0.14: 25 Oct 2003: Nic dependant irq mask.
56  *      0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
57  *                         open.
58  *      0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
59  *                         increased to 1628 bytes.
60  *      0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
61  *                         the tx length.
62  *      0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
63  *      0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
64  *                         addresses, really stop rx if already running
65  *                         in nv_start_rx, clean up a bit.
66  *      0.20: 07 Dec 2003: alloc fixes
67  *      0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
68  *      0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
69  *                         on close.
70  *      0.23: 26 Jan 2004: various small cleanups
71  *      0.24: 27 Feb 2004: make driver even less anonymous in backtraces
72  *      0.25: 09 Mar 2004: wol support
73  *      0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
74  *      0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
75  *                         added CK804/MCP04 device IDs, code fixes
76  *                         for registers, link status and other minor fixes.
77  *      0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
78  *      0.29: 31 Aug 2004: Add backup timer for link change notification.
79  *      0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
80  *                         into nv_close, otherwise reenabling for wol can
81  *                         cause DMA to kfree'd memory.
82  *      0.31: 14 Nov 2004: ethtool support for getting/setting link
83  *                         capabilities.
84  *      0.32: 16 Apr 2005: RX_ERROR4 handling added.
85  *      0.33: 16 May 2005: Support for MCP51 added.
86  *      0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
87  *      0.35: 26 Jun 2005: Support for MCP55 added.
88  *      0.36: 28 Jun 2005: Add jumbo frame support.
89  *      0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
90  *      0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
91  *                         per-packet flags.
92  *      0.39: 18 Jul 2005: Add 64bit descriptor support.
93  *      0.40: 19 Jul 2005: Add support for mac address change.
94  *      0.41: 30 Jul 2005: Write back original MAC in nv_close instead
95  *                         of nv_remove
96  *      0.42: 06 Aug 2005: Fix lack of link speed initialization
97  *                         in the second (and later) nv_open call
98  *      0.43: 10 Aug 2005: Add support for tx checksum.
99  *      0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
100  *      0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
101  *      0.46: 20 Oct 2005: Add irq optimization modes.
102  *      0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
103  *      0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
104  *      0.49: 10 Dec 2005: Fix tso for large buffers.
105  *      0.50: 20 Jan 2006: Add 8021pq tagging support.
106  *      0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
107  *      0.52: 20 Jan 2006: Add MSI/MSIX support.
108  *      0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
109  *      0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
110  *      0.55: 22 Mar 2006: Add flow control (pause frame).
111  *
112  * Known bugs:
113  * We suspect that on some hardware no TX done interrupts are generated.
114  * This means recovery from netif_stop_queue only happens if the hw timer
115  * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
116  * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
117  * If your hardware reliably generates tx done interrupts, then you can remove
118  * DEV_NEED_TIMERIRQ from the driver_data flags.
119  * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
120  * superfluous timer interrupts from the nic.
121  */
122 #define FORCEDETH_VERSION               "0.55"
123 #define DRV_NAME                        "forcedeth"
124
125 #include <linux/module.h>
126 #include <linux/types.h>
127 #include <linux/pci.h>
128 #include <linux/interrupt.h>
129 #include <linux/netdevice.h>
130 #include <linux/etherdevice.h>
131 #include <linux/delay.h>
132 #include <linux/spinlock.h>
133 #include <linux/ethtool.h>
134 #include <linux/timer.h>
135 #include <linux/skbuff.h>
136 #include <linux/mii.h>
137 #include <linux/random.h>
138 #include <linux/init.h>
139 #include <linux/if_vlan.h>
140 #include <linux/dma-mapping.h>
141
142 #include <asm/irq.h>
143 #include <asm/io.h>
144 #include <asm/uaccess.h>
145 #include <asm/system.h>
146
147 #if 0
148 #define dprintk                 printk
149 #else
150 #define dprintk(x...)           do { } while (0)
151 #endif
152
153
154 /*
155  * Hardware access:
156  */
157
158 #define DEV_NEED_TIMERIRQ       0x0001  /* set the timer irq flag in the irq mask */
159 #define DEV_NEED_LINKTIMER      0x0002  /* poll link settings. Relies on the timer irq */
160 #define DEV_HAS_LARGEDESC       0x0004  /* device supports jumbo frames and needs packet format 2 */
161 #define DEV_HAS_HIGH_DMA        0x0008  /* device supports 64bit dma */
162 #define DEV_HAS_CHECKSUM        0x0010  /* device supports tx and rx checksum offloads */
163 #define DEV_HAS_VLAN            0x0020  /* device supports vlan tagging and striping */
164 #define DEV_HAS_MSI             0x0040  /* device supports MSI */
165 #define DEV_HAS_MSI_X           0x0080  /* device supports MSI-X */
166 #define DEV_HAS_POWER_CNTRL     0x0100  /* device supports power savings */
167 #define DEV_HAS_PAUSEFRAME_TX   0x0200  /* device supports tx pause frames */
168
169 enum {
170         NvRegIrqStatus = 0x000,
171 #define NVREG_IRQSTAT_MIIEVENT  0x040
172 #define NVREG_IRQSTAT_MASK              0x1ff
173         NvRegIrqMask = 0x004,
174 #define NVREG_IRQ_RX_ERROR              0x0001
175 #define NVREG_IRQ_RX                    0x0002
176 #define NVREG_IRQ_RX_NOBUF              0x0004
177 #define NVREG_IRQ_TX_ERR                0x0008
178 #define NVREG_IRQ_TX_OK                 0x0010
179 #define NVREG_IRQ_TIMER                 0x0020
180 #define NVREG_IRQ_LINK                  0x0040
181 #define NVREG_IRQ_RX_FORCED             0x0080
182 #define NVREG_IRQ_TX_FORCED             0x0100
183 #define NVREG_IRQMASK_THROUGHPUT        0x00df
184 #define NVREG_IRQMASK_CPU               0x0040
185 #define NVREG_IRQ_TX_ALL                (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
186 #define NVREG_IRQ_RX_ALL                (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
187 #define NVREG_IRQ_OTHER                 (NVREG_IRQ_TIMER|NVREG_IRQ_LINK)
188
189 #define NVREG_IRQ_UNKNOWN       (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
190                                         NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
191                                         NVREG_IRQ_TX_FORCED))
192
193         NvRegUnknownSetupReg6 = 0x008,
194 #define NVREG_UNKSETUP6_VAL             3
195
196 /*
197  * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
198  * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
199  */
200         NvRegPollingInterval = 0x00c,
201 #define NVREG_POLL_DEFAULT_THROUGHPUT   970
202 #define NVREG_POLL_DEFAULT_CPU  13
203         NvRegMSIMap0 = 0x020,
204         NvRegMSIMap1 = 0x024,
205         NvRegMSIIrqMask = 0x030,
206 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
207         NvRegMisc1 = 0x080,
208 #define NVREG_MISC1_PAUSE_TX    0x01
209 #define NVREG_MISC1_HD          0x02
210 #define NVREG_MISC1_FORCE       0x3b0f3c
211
212         NvRegMacReset = 0x3c,
213 #define NVREG_MAC_RESET_ASSERT  0x0F3
214         NvRegTransmitterControl = 0x084,
215 #define NVREG_XMITCTL_START     0x01
216         NvRegTransmitterStatus = 0x088,
217 #define NVREG_XMITSTAT_BUSY     0x01
218
219         NvRegPacketFilterFlags = 0x8c,
220 #define NVREG_PFF_PAUSE_RX      0x08
221 #define NVREG_PFF_ALWAYS        0x7F0000
222 #define NVREG_PFF_PROMISC       0x80
223 #define NVREG_PFF_MYADDR        0x20
224
225         NvRegOffloadConfig = 0x90,
226 #define NVREG_OFFLOAD_HOMEPHY   0x601
227 #define NVREG_OFFLOAD_NORMAL    RX_NIC_BUFSIZE
228         NvRegReceiverControl = 0x094,
229 #define NVREG_RCVCTL_START      0x01
230         NvRegReceiverStatus = 0x98,
231 #define NVREG_RCVSTAT_BUSY      0x01
232
233         NvRegRandomSeed = 0x9c,
234 #define NVREG_RNDSEED_MASK      0x00ff
235 #define NVREG_RNDSEED_FORCE     0x7f00
236 #define NVREG_RNDSEED_FORCE2    0x2d00
237 #define NVREG_RNDSEED_FORCE3    0x7400
238
239         NvRegUnknownSetupReg1 = 0xA0,
240 #define NVREG_UNKSETUP1_VAL     0x16070f
241         NvRegUnknownSetupReg2 = 0xA4,
242 #define NVREG_UNKSETUP2_VAL     0x16
243         NvRegMacAddrA = 0xA8,
244         NvRegMacAddrB = 0xAC,
245         NvRegMulticastAddrA = 0xB0,
246 #define NVREG_MCASTADDRA_FORCE  0x01
247         NvRegMulticastAddrB = 0xB4,
248         NvRegMulticastMaskA = 0xB8,
249         NvRegMulticastMaskB = 0xBC,
250
251         NvRegPhyInterface = 0xC0,
252 #define PHY_RGMII               0x10000000
253
254         NvRegTxRingPhysAddr = 0x100,
255         NvRegRxRingPhysAddr = 0x104,
256         NvRegRingSizes = 0x108,
257 #define NVREG_RINGSZ_TXSHIFT 0
258 #define NVREG_RINGSZ_RXSHIFT 16
259         NvRegUnknownTransmitterReg = 0x10c,
260         NvRegLinkSpeed = 0x110,
261 #define NVREG_LINKSPEED_FORCE 0x10000
262 #define NVREG_LINKSPEED_10      1000
263 #define NVREG_LINKSPEED_100     100
264 #define NVREG_LINKSPEED_1000    50
265 #define NVREG_LINKSPEED_MASK    (0xFFF)
266         NvRegUnknownSetupReg5 = 0x130,
267 #define NVREG_UNKSETUP5_BIT31   (1<<31)
268         NvRegUnknownSetupReg3 = 0x13c,
269 #define NVREG_UNKSETUP3_VAL1    0x200010
270         NvRegTxRxControl = 0x144,
271 #define NVREG_TXRXCTL_KICK      0x0001
272 #define NVREG_TXRXCTL_BIT1      0x0002
273 #define NVREG_TXRXCTL_BIT2      0x0004
274 #define NVREG_TXRXCTL_IDLE      0x0008
275 #define NVREG_TXRXCTL_RESET     0x0010
276 #define NVREG_TXRXCTL_RXCHECK   0x0400
277 #define NVREG_TXRXCTL_DESC_1    0
278 #define NVREG_TXRXCTL_DESC_2    0x02100
279 #define NVREG_TXRXCTL_DESC_3    0x02200
280 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
281 #define NVREG_TXRXCTL_VLANINS   0x00080
282         NvRegTxRingPhysAddrHigh = 0x148,
283         NvRegRxRingPhysAddrHigh = 0x14C,
284         NvRegTxPauseFrame = 0x170,
285 #define NVREG_TX_PAUSEFRAME_DISABLE     0x1ff0080
286 #define NVREG_TX_PAUSEFRAME_ENABLE      0x0c00030
287         NvRegMIIStatus = 0x180,
288 #define NVREG_MIISTAT_ERROR             0x0001
289 #define NVREG_MIISTAT_LINKCHANGE        0x0008
290 #define NVREG_MIISTAT_MASK              0x000f
291 #define NVREG_MIISTAT_MASK2             0x000f
292         NvRegUnknownSetupReg4 = 0x184,
293 #define NVREG_UNKSETUP4_VAL     8
294
295         NvRegAdapterControl = 0x188,
296 #define NVREG_ADAPTCTL_START    0x02
297 #define NVREG_ADAPTCTL_LINKUP   0x04
298 #define NVREG_ADAPTCTL_PHYVALID 0x40000
299 #define NVREG_ADAPTCTL_RUNNING  0x100000
300 #define NVREG_ADAPTCTL_PHYSHIFT 24
301         NvRegMIISpeed = 0x18c,
302 #define NVREG_MIISPEED_BIT8     (1<<8)
303 #define NVREG_MIIDELAY  5
304         NvRegMIIControl = 0x190,
305 #define NVREG_MIICTL_INUSE      0x08000
306 #define NVREG_MIICTL_WRITE      0x00400
307 #define NVREG_MIICTL_ADDRSHIFT  5
308         NvRegMIIData = 0x194,
309         NvRegWakeUpFlags = 0x200,
310 #define NVREG_WAKEUPFLAGS_VAL           0x7770
311 #define NVREG_WAKEUPFLAGS_BUSYSHIFT     24
312 #define NVREG_WAKEUPFLAGS_ENABLESHIFT   16
313 #define NVREG_WAKEUPFLAGS_D3SHIFT       12
314 #define NVREG_WAKEUPFLAGS_D2SHIFT       8
315 #define NVREG_WAKEUPFLAGS_D1SHIFT       4
316 #define NVREG_WAKEUPFLAGS_D0SHIFT       0
317 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT         0x01
318 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT      0x02
319 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE     0x04
320 #define NVREG_WAKEUPFLAGS_ENABLE        0x1111
321
322         NvRegPatternCRC = 0x204,
323         NvRegPatternMask = 0x208,
324         NvRegPowerCap = 0x268,
325 #define NVREG_POWERCAP_D3SUPP   (1<<30)
326 #define NVREG_POWERCAP_D2SUPP   (1<<26)
327 #define NVREG_POWERCAP_D1SUPP   (1<<25)
328         NvRegPowerState = 0x26c,
329 #define NVREG_POWERSTATE_POWEREDUP      0x8000
330 #define NVREG_POWERSTATE_VALID          0x0100
331 #define NVREG_POWERSTATE_MASK           0x0003
332 #define NVREG_POWERSTATE_D0             0x0000
333 #define NVREG_POWERSTATE_D1             0x0001
334 #define NVREG_POWERSTATE_D2             0x0002
335 #define NVREG_POWERSTATE_D3             0x0003
336         NvRegVlanControl = 0x300,
337 #define NVREG_VLANCONTROL_ENABLE        0x2000
338         NvRegMSIXMap0 = 0x3e0,
339         NvRegMSIXMap1 = 0x3e4,
340         NvRegMSIXIrqStatus = 0x3f0,
341
342         NvRegPowerState2 = 0x600,
343 #define NVREG_POWERSTATE2_POWERUP_MASK          0x0F11
344 #define NVREG_POWERSTATE2_POWERUP_REV_A3        0x0001
345 };
346
347 /* Big endian: should work, but is untested */
348 struct ring_desc {
349         u32 PacketBuffer;
350         u32 FlagLen;
351 };
352
353 struct ring_desc_ex {
354         u32 PacketBufferHigh;
355         u32 PacketBufferLow;
356         u32 TxVlan;
357         u32 FlagLen;
358 };
359
360 typedef union _ring_type {
361         struct ring_desc* orig;
362         struct ring_desc_ex* ex;
363 } ring_type;
364
365 #define FLAG_MASK_V1 0xffff0000
366 #define FLAG_MASK_V2 0xffffc000
367 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
368 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
369
370 #define NV_TX_LASTPACKET        (1<<16)
371 #define NV_TX_RETRYERROR        (1<<19)
372 #define NV_TX_FORCED_INTERRUPT  (1<<24)
373 #define NV_TX_DEFERRED          (1<<26)
374 #define NV_TX_CARRIERLOST       (1<<27)
375 #define NV_TX_LATECOLLISION     (1<<28)
376 #define NV_TX_UNDERFLOW         (1<<29)
377 #define NV_TX_ERROR             (1<<30)
378 #define NV_TX_VALID             (1<<31)
379
380 #define NV_TX2_LASTPACKET       (1<<29)
381 #define NV_TX2_RETRYERROR       (1<<18)
382 #define NV_TX2_FORCED_INTERRUPT (1<<30)
383 #define NV_TX2_DEFERRED         (1<<25)
384 #define NV_TX2_CARRIERLOST      (1<<26)
385 #define NV_TX2_LATECOLLISION    (1<<27)
386 #define NV_TX2_UNDERFLOW        (1<<28)
387 /* error and valid are the same for both */
388 #define NV_TX2_ERROR            (1<<30)
389 #define NV_TX2_VALID            (1<<31)
390 #define NV_TX2_TSO              (1<<28)
391 #define NV_TX2_TSO_SHIFT        14
392 #define NV_TX2_TSO_MAX_SHIFT    14
393 #define NV_TX2_TSO_MAX_SIZE     (1<<NV_TX2_TSO_MAX_SHIFT)
394 #define NV_TX2_CHECKSUM_L3      (1<<27)
395 #define NV_TX2_CHECKSUM_L4      (1<<26)
396
397 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
398
399 #define NV_RX_DESCRIPTORVALID   (1<<16)
400 #define NV_RX_MISSEDFRAME       (1<<17)
401 #define NV_RX_SUBSTRACT1        (1<<18)
402 #define NV_RX_ERROR1            (1<<23)
403 #define NV_RX_ERROR2            (1<<24)
404 #define NV_RX_ERROR3            (1<<25)
405 #define NV_RX_ERROR4            (1<<26)
406 #define NV_RX_CRCERR            (1<<27)
407 #define NV_RX_OVERFLOW          (1<<28)
408 #define NV_RX_FRAMINGERR        (1<<29)
409 #define NV_RX_ERROR             (1<<30)
410 #define NV_RX_AVAIL             (1<<31)
411
412 #define NV_RX2_CHECKSUMMASK     (0x1C000000)
413 #define NV_RX2_CHECKSUMOK1      (0x10000000)
414 #define NV_RX2_CHECKSUMOK2      (0x14000000)
415 #define NV_RX2_CHECKSUMOK3      (0x18000000)
416 #define NV_RX2_DESCRIPTORVALID  (1<<29)
417 #define NV_RX2_SUBSTRACT1       (1<<25)
418 #define NV_RX2_ERROR1           (1<<18)
419 #define NV_RX2_ERROR2           (1<<19)
420 #define NV_RX2_ERROR3           (1<<20)
421 #define NV_RX2_ERROR4           (1<<21)
422 #define NV_RX2_CRCERR           (1<<22)
423 #define NV_RX2_OVERFLOW         (1<<23)
424 #define NV_RX2_FRAMINGERR       (1<<24)
425 /* error and avail are the same for both */
426 #define NV_RX2_ERROR            (1<<30)
427 #define NV_RX2_AVAIL            (1<<31)
428
429 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
430 #define NV_RX3_VLAN_TAG_MASK    (0x0000FFFF)
431
432 /* Miscelaneous hardware related defines: */
433 #define NV_PCI_REGSZ_VER1       0x270
434 #define NV_PCI_REGSZ_VER2       0x604
435
436 /* various timeout delays: all in usec */
437 #define NV_TXRX_RESET_DELAY     4
438 #define NV_TXSTOP_DELAY1        10
439 #define NV_TXSTOP_DELAY1MAX     500000
440 #define NV_TXSTOP_DELAY2        100
441 #define NV_RXSTOP_DELAY1        10
442 #define NV_RXSTOP_DELAY1MAX     500000
443 #define NV_RXSTOP_DELAY2        100
444 #define NV_SETUP5_DELAY         5
445 #define NV_SETUP5_DELAYMAX      50000
446 #define NV_POWERUP_DELAY        5
447 #define NV_POWERUP_DELAYMAX     5000
448 #define NV_MIIBUSY_DELAY        50
449 #define NV_MIIPHY_DELAY 10
450 #define NV_MIIPHY_DELAYMAX      10000
451 #define NV_MAC_RESET_DELAY      64
452
453 #define NV_WAKEUPPATTERNS       5
454 #define NV_WAKEUPMASKENTRIES    4
455
456 /* General driver defaults */
457 #define NV_WATCHDOG_TIMEO       (5*HZ)
458
459 #define RX_RING_DEFAULT         128
460 #define TX_RING_DEFAULT         256
461 #define RX_RING_MIN             128
462 #define TX_RING_MIN             64
463 #define RING_MAX_DESC_VER_1     1024
464 #define RING_MAX_DESC_VER_2_3   16384
465 /*
466  * Difference between the get and put pointers for the tx ring.
467  * This is used to throttle the amount of data outstanding in the
468  * tx ring.
469  */
470 #define TX_LIMIT_DIFFERENCE     1
471
472 /* rx/tx mac addr + type + vlan + align + slack*/
473 #define NV_RX_HEADERS           (64)
474 /* even more slack. */
475 #define NV_RX_ALLOC_PAD         (64)
476
477 /* maximum mtu size */
478 #define NV_PKTLIMIT_1   ETH_DATA_LEN    /* hard limit not known */
479 #define NV_PKTLIMIT_2   9100    /* Actual limit according to NVidia: 9202 */
480
481 #define OOM_REFILL      (1+HZ/20)
482 #define POLL_WAIT       (1+HZ/100)
483 #define LINK_TIMEOUT    (3*HZ)
484
485 /*
486  * desc_ver values:
487  * The nic supports three different descriptor types:
488  * - DESC_VER_1: Original
489  * - DESC_VER_2: support for jumbo frames.
490  * - DESC_VER_3: 64-bit format.
491  */
492 #define DESC_VER_1      1
493 #define DESC_VER_2      2
494 #define DESC_VER_3      3
495
496 /* PHY defines */
497 #define PHY_OUI_MARVELL 0x5043
498 #define PHY_OUI_CICADA  0x03f1
499 #define PHYID1_OUI_MASK 0x03ff
500 #define PHYID1_OUI_SHFT 6
501 #define PHYID2_OUI_MASK 0xfc00
502 #define PHYID2_OUI_SHFT 10
503 #define PHY_INIT1       0x0f000
504 #define PHY_INIT2       0x0e00
505 #define PHY_INIT3       0x01000
506 #define PHY_INIT4       0x0200
507 #define PHY_INIT5       0x0004
508 #define PHY_INIT6       0x02000
509 #define PHY_GIGABIT     0x0100
510
511 #define PHY_TIMEOUT     0x1
512 #define PHY_ERROR       0x2
513
514 #define PHY_100 0x1
515 #define PHY_1000        0x2
516 #define PHY_HALF        0x100
517
518 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
519 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
520 #define NV_PAUSEFRAME_RX_ENABLE  0x0004
521 #define NV_PAUSEFRAME_TX_ENABLE  0x0008
522 #define NV_PAUSEFRAME_RX_REQ     0x0010
523 #define NV_PAUSEFRAME_TX_REQ     0x0020
524 #define NV_PAUSEFRAME_AUTONEG    0x0040
525
526 /* MSI/MSI-X defines */
527 #define NV_MSI_X_MAX_VECTORS  8
528 #define NV_MSI_X_VECTORS_MASK 0x000f
529 #define NV_MSI_CAPABLE        0x0010
530 #define NV_MSI_X_CAPABLE      0x0020
531 #define NV_MSI_ENABLED        0x0040
532 #define NV_MSI_X_ENABLED      0x0080
533
534 #define NV_MSI_X_VECTOR_ALL   0x0
535 #define NV_MSI_X_VECTOR_RX    0x0
536 #define NV_MSI_X_VECTOR_TX    0x1
537 #define NV_MSI_X_VECTOR_OTHER 0x2
538
539 /*
540  * SMP locking:
541  * All hardware access under dev->priv->lock, except the performance
542  * critical parts:
543  * - rx is (pseudo-) lockless: it relies on the single-threading provided
544  *      by the arch code for interrupts.
545  * - tx setup is lockless: it relies on dev->xmit_lock. Actual submission
546  *      needs dev->priv->lock :-(
547  * - set_multicast_list: preparation lockless, relies on dev->xmit_lock.
548  */
549
550 /* in dev: base, irq */
551 struct fe_priv {
552         spinlock_t lock;
553
554         /* General data:
555          * Locking: spin_lock(&np->lock); */
556         struct net_device_stats stats;
557         int in_shutdown;
558         u32 linkspeed;
559         int duplex;
560         int autoneg;
561         int fixed_mode;
562         int phyaddr;
563         int wolenabled;
564         unsigned int phy_oui;
565         u16 gigabit;
566
567         /* General data: RO fields */
568         dma_addr_t ring_addr;
569         struct pci_dev *pci_dev;
570         u32 orig_mac[2];
571         u32 irqmask;
572         u32 desc_ver;
573         u32 txrxctl_bits;
574         u32 vlanctl_bits;
575         u32 driver_data;
576         u32 register_size;
577
578         void __iomem *base;
579
580         /* rx specific fields.
581          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
582          */
583         ring_type rx_ring;
584         unsigned int cur_rx, refill_rx;
585         struct sk_buff **rx_skbuff;
586         dma_addr_t *rx_dma;
587         unsigned int rx_buf_sz;
588         unsigned int pkt_limit;
589         struct timer_list oom_kick;
590         struct timer_list nic_poll;
591         u32 nic_poll_irq;
592         int rx_ring_size;
593
594         /* media detection workaround.
595          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
596          */
597         int need_linktimer;
598         unsigned long link_timeout;
599         /*
600          * tx specific fields.
601          */
602         ring_type tx_ring;
603         unsigned int next_tx, nic_tx;
604         struct sk_buff **tx_skbuff;
605         dma_addr_t *tx_dma;
606         unsigned int *tx_dma_len;
607         u32 tx_flags;
608         int tx_ring_size;
609         int tx_limit_start;
610         int tx_limit_stop;
611
612         /* vlan fields */
613         struct vlan_group *vlangrp;
614
615         /* msi/msi-x fields */
616         u32 msi_flags;
617         struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
618
619         /* flow control */
620         u32 pause_flags;
621 };
622
623 /*
624  * Maximum number of loops until we assume that a bit in the irq mask
625  * is stuck. Overridable with module param.
626  */
627 static int max_interrupt_work = 5;
628
629 /*
630  * Optimization can be either throuput mode or cpu mode
631  *
632  * Throughput Mode: Every tx and rx packet will generate an interrupt.
633  * CPU Mode: Interrupts are controlled by a timer.
634  */
635 #define NV_OPTIMIZATION_MODE_THROUGHPUT 0
636 #define NV_OPTIMIZATION_MODE_CPU        1
637 static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
638
639 /*
640  * Poll interval for timer irq
641  *
642  * This interval determines how frequent an interrupt is generated.
643  * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
644  * Min = 0, and Max = 65535
645  */
646 static int poll_interval = -1;
647
648 /*
649  * Disable MSI interrupts
650  */
651 static int disable_msi = 0;
652
653 /*
654  * Disable MSIX interrupts
655  */
656 static int disable_msix = 0;
657
658 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
659 {
660         return netdev_priv(dev);
661 }
662
663 static inline u8 __iomem *get_hwbase(struct net_device *dev)
664 {
665         return ((struct fe_priv *)netdev_priv(dev))->base;
666 }
667
668 static inline void pci_push(u8 __iomem *base)
669 {
670         /* force out pending posted writes */
671         readl(base);
672 }
673
674 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
675 {
676         return le32_to_cpu(prd->FlagLen)
677                 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
678 }
679
680 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
681 {
682         return le32_to_cpu(prd->FlagLen) & LEN_MASK_V2;
683 }
684
685 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
686                                 int delay, int delaymax, const char *msg)
687 {
688         u8 __iomem *base = get_hwbase(dev);
689
690         pci_push(base);
691         do {
692                 udelay(delay);
693                 delaymax -= delay;
694                 if (delaymax < 0) {
695                         if (msg)
696                                 printk(msg);
697                         return 1;
698                 }
699         } while ((readl(base + offset) & mask) != target);
700         return 0;
701 }
702
703 #define NV_SETUP_RX_RING 0x01
704 #define NV_SETUP_TX_RING 0x02
705
706 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
707 {
708         struct fe_priv *np = get_nvpriv(dev);
709         u8 __iomem *base = get_hwbase(dev);
710
711         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
712                 if (rxtx_flags & NV_SETUP_RX_RING) {
713                         writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
714                 }
715                 if (rxtx_flags & NV_SETUP_TX_RING) {
716                         writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
717                 }
718         } else {
719                 if (rxtx_flags & NV_SETUP_RX_RING) {
720                         writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
721                         writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
722                 }
723                 if (rxtx_flags & NV_SETUP_TX_RING) {
724                         writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
725                         writel((u32) (cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
726                 }
727         }
728 }
729
730 static void free_rings(struct net_device *dev)
731 {
732         struct fe_priv *np = get_nvpriv(dev);
733
734         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
735                 if(np->rx_ring.orig)
736                         pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
737                                             np->rx_ring.orig, np->ring_addr);
738         } else {
739                 if (np->rx_ring.ex)
740                         pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
741                                             np->rx_ring.ex, np->ring_addr);
742         }
743         if (np->rx_skbuff)
744                 kfree(np->rx_skbuff);
745         if (np->rx_dma)
746                 kfree(np->rx_dma);
747         if (np->tx_skbuff)
748                 kfree(np->tx_skbuff);
749         if (np->tx_dma)
750                 kfree(np->tx_dma);
751         if (np->tx_dma_len)
752                 kfree(np->tx_dma_len);
753 }
754
755 static int using_multi_irqs(struct net_device *dev)
756 {
757         struct fe_priv *np = get_nvpriv(dev);
758
759         if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
760             ((np->msi_flags & NV_MSI_X_ENABLED) &&
761              ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
762                 return 0;
763         else
764                 return 1;
765 }
766
767 static void nv_enable_irq(struct net_device *dev)
768 {
769         struct fe_priv *np = get_nvpriv(dev);
770
771         if (!using_multi_irqs(dev)) {
772                 if (np->msi_flags & NV_MSI_X_ENABLED)
773                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
774                 else
775                         enable_irq(dev->irq);
776         } else {
777                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
778                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
779                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
780         }
781 }
782
783 static void nv_disable_irq(struct net_device *dev)
784 {
785         struct fe_priv *np = get_nvpriv(dev);
786
787         if (!using_multi_irqs(dev)) {
788                 if (np->msi_flags & NV_MSI_X_ENABLED)
789                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
790                 else
791                         disable_irq(dev->irq);
792         } else {
793                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
794                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
795                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
796         }
797 }
798
799 /* In MSIX mode, a write to irqmask behaves as XOR */
800 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
801 {
802         u8 __iomem *base = get_hwbase(dev);
803
804         writel(mask, base + NvRegIrqMask);
805 }
806
807 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
808 {
809         struct fe_priv *np = get_nvpriv(dev);
810         u8 __iomem *base = get_hwbase(dev);
811
812         if (np->msi_flags & NV_MSI_X_ENABLED) {
813                 writel(mask, base + NvRegIrqMask);
814         } else {
815                 if (np->msi_flags & NV_MSI_ENABLED)
816                         writel(0, base + NvRegMSIIrqMask);
817                 writel(0, base + NvRegIrqMask);
818         }
819 }
820
821 #define MII_READ        (-1)
822 /* mii_rw: read/write a register on the PHY.
823  *
824  * Caller must guarantee serialization
825  */
826 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
827 {
828         u8 __iomem *base = get_hwbase(dev);
829         u32 reg;
830         int retval;
831
832         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
833
834         reg = readl(base + NvRegMIIControl);
835         if (reg & NVREG_MIICTL_INUSE) {
836                 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
837                 udelay(NV_MIIBUSY_DELAY);
838         }
839
840         reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
841         if (value != MII_READ) {
842                 writel(value, base + NvRegMIIData);
843                 reg |= NVREG_MIICTL_WRITE;
844         }
845         writel(reg, base + NvRegMIIControl);
846
847         if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
848                         NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
849                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
850                                 dev->name, miireg, addr);
851                 retval = -1;
852         } else if (value != MII_READ) {
853                 /* it was a write operation - fewer failures are detectable */
854                 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
855                                 dev->name, value, miireg, addr);
856                 retval = 0;
857         } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
858                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
859                                 dev->name, miireg, addr);
860                 retval = -1;
861         } else {
862                 retval = readl(base + NvRegMIIData);
863                 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
864                                 dev->name, miireg, addr, retval);
865         }
866
867         return retval;
868 }
869
870 static int phy_reset(struct net_device *dev)
871 {
872         struct fe_priv *np = netdev_priv(dev);
873         u32 miicontrol;
874         unsigned int tries = 0;
875
876         miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
877         miicontrol |= BMCR_RESET;
878         if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
879                 return -1;
880         }
881
882         /* wait for 500ms */
883         msleep(500);
884
885         /* must wait till reset is deasserted */
886         while (miicontrol & BMCR_RESET) {
887                 msleep(10);
888                 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
889                 /* FIXME: 100 tries seem excessive */
890                 if (tries++ > 100)
891                         return -1;
892         }
893         return 0;
894 }
895
896 static int phy_init(struct net_device *dev)
897 {
898         struct fe_priv *np = get_nvpriv(dev);
899         u8 __iomem *base = get_hwbase(dev);
900         u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
901
902         /* set advertise register */
903         reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
904         reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
905         if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
906                 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
907                 return PHY_ERROR;
908         }
909
910         /* get phy interface type */
911         phyinterface = readl(base + NvRegPhyInterface);
912
913         /* see if gigabit phy */
914         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
915         if (mii_status & PHY_GIGABIT) {
916                 np->gigabit = PHY_GIGABIT;
917                 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
918                 mii_control_1000 &= ~ADVERTISE_1000HALF;
919                 if (phyinterface & PHY_RGMII)
920                         mii_control_1000 |= ADVERTISE_1000FULL;
921                 else
922                         mii_control_1000 &= ~ADVERTISE_1000FULL;
923
924                 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
925                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
926                         return PHY_ERROR;
927                 }
928         }
929         else
930                 np->gigabit = 0;
931
932         /* reset the phy */
933         if (phy_reset(dev)) {
934                 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
935                 return PHY_ERROR;
936         }
937
938         /* phy vendor specific configuration */
939         if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
940                 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
941                 phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
942                 phy_reserved |= (PHY_INIT3 | PHY_INIT4);
943                 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
944                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
945                         return PHY_ERROR;
946                 }
947                 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
948                 phy_reserved |= PHY_INIT5;
949                 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
950                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
951                         return PHY_ERROR;
952                 }
953         }
954         if (np->phy_oui == PHY_OUI_CICADA) {
955                 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
956                 phy_reserved |= PHY_INIT6;
957                 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
958                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
959                         return PHY_ERROR;
960                 }
961         }
962         /* some phys clear out pause advertisment on reset, set it back */
963         mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
964
965         /* restart auto negotiation */
966         mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
967         mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
968         if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
969                 return PHY_ERROR;
970         }
971
972         return 0;
973 }
974
975 static void nv_start_rx(struct net_device *dev)
976 {
977         struct fe_priv *np = netdev_priv(dev);
978         u8 __iomem *base = get_hwbase(dev);
979
980         dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
981         /* Already running? Stop it. */
982         if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
983                 writel(0, base + NvRegReceiverControl);
984                 pci_push(base);
985         }
986         writel(np->linkspeed, base + NvRegLinkSpeed);
987         pci_push(base);
988         writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
989         dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
990                                 dev->name, np->duplex, np->linkspeed);
991         pci_push(base);
992 }
993
994 static void nv_stop_rx(struct net_device *dev)
995 {
996         u8 __iomem *base = get_hwbase(dev);
997
998         dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
999         writel(0, base + NvRegReceiverControl);
1000         reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
1001                         NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
1002                         KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
1003
1004         udelay(NV_RXSTOP_DELAY2);
1005         writel(0, base + NvRegLinkSpeed);
1006 }
1007
1008 static void nv_start_tx(struct net_device *dev)
1009 {
1010         u8 __iomem *base = get_hwbase(dev);
1011
1012         dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
1013         writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
1014         pci_push(base);
1015 }
1016
1017 static void nv_stop_tx(struct net_device *dev)
1018 {
1019         u8 __iomem *base = get_hwbase(dev);
1020
1021         dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
1022         writel(0, base + NvRegTransmitterControl);
1023         reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
1024                         NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
1025                         KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
1026
1027         udelay(NV_TXSTOP_DELAY2);
1028         writel(0, base + NvRegUnknownTransmitterReg);
1029 }
1030
1031 static void nv_txrx_reset(struct net_device *dev)
1032 {
1033         struct fe_priv *np = netdev_priv(dev);
1034         u8 __iomem *base = get_hwbase(dev);
1035
1036         dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
1037         writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1038         pci_push(base);
1039         udelay(NV_TXRX_RESET_DELAY);
1040         writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1041         pci_push(base);
1042 }
1043
1044 static void nv_mac_reset(struct net_device *dev)
1045 {
1046         struct fe_priv *np = netdev_priv(dev);
1047         u8 __iomem *base = get_hwbase(dev);
1048
1049         dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
1050         writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1051         pci_push(base);
1052         writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
1053         pci_push(base);
1054         udelay(NV_MAC_RESET_DELAY);
1055         writel(0, base + NvRegMacReset);
1056         pci_push(base);
1057         udelay(NV_MAC_RESET_DELAY);
1058         writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1059         pci_push(base);
1060 }
1061
1062 /*
1063  * nv_get_stats: dev->get_stats function
1064  * Get latest stats value from the nic.
1065  * Called with read_lock(&dev_base_lock) held for read -
1066  * only synchronized against unregister_netdevice.
1067  */
1068 static struct net_device_stats *nv_get_stats(struct net_device *dev)
1069 {
1070         struct fe_priv *np = netdev_priv(dev);
1071
1072         /* It seems that the nic always generates interrupts and doesn't
1073          * accumulate errors internally. Thus the current values in np->stats
1074          * are already up to date.
1075          */
1076         return &np->stats;
1077 }
1078
1079 /*
1080  * nv_alloc_rx: fill rx ring entries.
1081  * Return 1 if the allocations for the skbs failed and the
1082  * rx engine is without Available descriptors
1083  */
1084 static int nv_alloc_rx(struct net_device *dev)
1085 {
1086         struct fe_priv *np = netdev_priv(dev);
1087         unsigned int refill_rx = np->refill_rx;
1088         int nr;
1089
1090         while (np->cur_rx != refill_rx) {
1091                 struct sk_buff *skb;
1092
1093                 nr = refill_rx % np->rx_ring_size;
1094                 if (np->rx_skbuff[nr] == NULL) {
1095
1096                         skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1097                         if (!skb)
1098                                 break;
1099
1100                         skb->dev = dev;
1101                         np->rx_skbuff[nr] = skb;
1102                 } else {
1103                         skb = np->rx_skbuff[nr];
1104                 }
1105                 np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data,
1106                                         skb->end-skb->data, PCI_DMA_FROMDEVICE);
1107                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1108                         np->rx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]);
1109                         wmb();
1110                         np->rx_ring.orig[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1111                 } else {
1112                         np->rx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
1113                         np->rx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
1114                         wmb();
1115                         np->rx_ring.ex[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1116                 }
1117                 dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
1118                                         dev->name, refill_rx);
1119                 refill_rx++;
1120         }
1121         np->refill_rx = refill_rx;
1122         if (np->cur_rx - refill_rx == np->rx_ring_size)
1123                 return 1;
1124         return 0;
1125 }
1126
1127 static void nv_do_rx_refill(unsigned long data)
1128 {
1129         struct net_device *dev = (struct net_device *) data;
1130         struct fe_priv *np = netdev_priv(dev);
1131
1132         if (!using_multi_irqs(dev)) {
1133                 if (np->msi_flags & NV_MSI_X_ENABLED)
1134                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1135                 else
1136                         disable_irq(dev->irq);
1137         } else {
1138                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1139         }
1140         if (nv_alloc_rx(dev)) {
1141                 spin_lock_irq(&np->lock);
1142                 if (!np->in_shutdown)
1143                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1144                 spin_unlock_irq(&np->lock);
1145         }
1146         if (!using_multi_irqs(dev)) {
1147                 if (np->msi_flags & NV_MSI_X_ENABLED)
1148                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1149                 else
1150                         enable_irq(dev->irq);
1151         } else {
1152                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1153         }
1154 }
1155
1156 static void nv_init_rx(struct net_device *dev)
1157 {
1158         struct fe_priv *np = netdev_priv(dev);
1159         int i;
1160
1161         np->cur_rx = np->rx_ring_size;
1162         np->refill_rx = 0;
1163         for (i = 0; i < np->rx_ring_size; i++)
1164                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1165                         np->rx_ring.orig[i].FlagLen = 0;
1166                 else
1167                         np->rx_ring.ex[i].FlagLen = 0;
1168 }
1169
1170 static void nv_init_tx(struct net_device *dev)
1171 {
1172         struct fe_priv *np = netdev_priv(dev);
1173         int i;
1174
1175         np->next_tx = np->nic_tx = 0;
1176         for (i = 0; i < np->tx_ring_size; i++) {
1177                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1178                         np->tx_ring.orig[i].FlagLen = 0;
1179                 else
1180                         np->tx_ring.ex[i].FlagLen = 0;
1181                 np->tx_skbuff[i] = NULL;
1182                 np->tx_dma[i] = 0;
1183         }
1184 }
1185
1186 static int nv_init_ring(struct net_device *dev)
1187 {
1188         nv_init_tx(dev);
1189         nv_init_rx(dev);
1190         return nv_alloc_rx(dev);
1191 }
1192
1193 static int nv_release_txskb(struct net_device *dev, unsigned int skbnr)
1194 {
1195         struct fe_priv *np = netdev_priv(dev);
1196
1197         dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d\n",
1198                 dev->name, skbnr);
1199
1200         if (np->tx_dma[skbnr]) {
1201                 pci_unmap_page(np->pci_dev, np->tx_dma[skbnr],
1202                                np->tx_dma_len[skbnr],
1203                                PCI_DMA_TODEVICE);
1204                 np->tx_dma[skbnr] = 0;
1205         }
1206
1207         if (np->tx_skbuff[skbnr]) {
1208                 dev_kfree_skb_any(np->tx_skbuff[skbnr]);
1209                 np->tx_skbuff[skbnr] = NULL;
1210                 return 1;
1211         } else {
1212                 return 0;
1213         }
1214 }
1215
1216 static void nv_drain_tx(struct net_device *dev)
1217 {
1218         struct fe_priv *np = netdev_priv(dev);
1219         unsigned int i;
1220
1221         for (i = 0; i < np->tx_ring_size; i++) {
1222                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1223                         np->tx_ring.orig[i].FlagLen = 0;
1224                 else
1225                         np->tx_ring.ex[i].FlagLen = 0;
1226                 if (nv_release_txskb(dev, i))
1227                         np->stats.tx_dropped++;
1228         }
1229 }
1230
1231 static void nv_drain_rx(struct net_device *dev)
1232 {
1233         struct fe_priv *np = netdev_priv(dev);
1234         int i;
1235         for (i = 0; i < np->rx_ring_size; i++) {
1236                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1237                         np->rx_ring.orig[i].FlagLen = 0;
1238                 else
1239                         np->rx_ring.ex[i].FlagLen = 0;
1240                 wmb();
1241                 if (np->rx_skbuff[i]) {
1242                         pci_unmap_single(np->pci_dev, np->rx_dma[i],
1243                                                 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1244                                                 PCI_DMA_FROMDEVICE);
1245                         dev_kfree_skb(np->rx_skbuff[i]);
1246                         np->rx_skbuff[i] = NULL;
1247                 }
1248         }
1249 }
1250
1251 static void drain_ring(struct net_device *dev)
1252 {
1253         nv_drain_tx(dev);
1254         nv_drain_rx(dev);
1255 }
1256
1257 /*
1258  * nv_start_xmit: dev->hard_start_xmit function
1259  * Called with dev->xmit_lock held.
1260  */
1261 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
1262 {
1263         struct fe_priv *np = netdev_priv(dev);
1264         u32 tx_flags = 0;
1265         u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
1266         unsigned int fragments = skb_shinfo(skb)->nr_frags;
1267         unsigned int nr = (np->next_tx - 1) % np->tx_ring_size;
1268         unsigned int start_nr = np->next_tx % np->tx_ring_size;
1269         unsigned int i;
1270         u32 offset = 0;
1271         u32 bcnt;
1272         u32 size = skb->len-skb->data_len;
1273         u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1274         u32 tx_flags_vlan = 0;
1275
1276         /* add fragments to entries count */
1277         for (i = 0; i < fragments; i++) {
1278                 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
1279                            ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1280         }
1281
1282         spin_lock_irq(&np->lock);
1283
1284         if ((np->next_tx - np->nic_tx + entries - 1) > np->tx_limit_stop) {
1285                 spin_unlock_irq(&np->lock);
1286                 netif_stop_queue(dev);
1287                 return NETDEV_TX_BUSY;
1288         }
1289
1290         /* setup the header buffer */
1291         do {
1292                 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1293                 nr = (nr + 1) % np->tx_ring_size;
1294
1295                 np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
1296                                                 PCI_DMA_TODEVICE);
1297                 np->tx_dma_len[nr] = bcnt;
1298
1299                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1300                         np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1301                         np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1302                 } else {
1303                         np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1304                         np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1305                         np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1306                 }
1307                 tx_flags = np->tx_flags;
1308                 offset += bcnt;
1309                 size -= bcnt;
1310         } while(size);
1311
1312         /* setup the fragments */
1313         for (i = 0; i < fragments; i++) {
1314                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1315                 u32 size = frag->size;
1316                 offset = 0;
1317
1318                 do {
1319                         bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1320                         nr = (nr + 1) % np->tx_ring_size;
1321
1322                         np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
1323                                                       PCI_DMA_TODEVICE);
1324                         np->tx_dma_len[nr] = bcnt;
1325
1326                         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1327                                 np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1328                                 np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1329                         } else {
1330                                 np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1331                                 np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1332                                 np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1333                         }
1334                         offset += bcnt;
1335                         size -= bcnt;
1336                 } while (size);
1337         }
1338
1339         /* set last fragment flag  */
1340         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1341                 np->tx_ring.orig[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
1342         } else {
1343                 np->tx_ring.ex[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
1344         }
1345
1346         np->tx_skbuff[nr] = skb;
1347
1348 #ifdef NETIF_F_TSO
1349         if (skb_shinfo(skb)->tso_size)
1350                 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->tso_size << NV_TX2_TSO_SHIFT);
1351         else
1352 #endif
1353         tx_flags_extra = (skb->ip_summed == CHECKSUM_HW ? (NV_TX2_CHECKSUM_L3|NV_TX2_CHECKSUM_L4) : 0);
1354
1355         /* vlan tag */
1356         if (np->vlangrp && vlan_tx_tag_present(skb)) {
1357                 tx_flags_vlan = NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb);
1358         }
1359
1360         /* set tx flags */
1361         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1362                 np->tx_ring.orig[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
1363         } else {
1364                 np->tx_ring.ex[start_nr].TxVlan = cpu_to_le32(tx_flags_vlan);
1365                 np->tx_ring.ex[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
1366         }
1367
1368         dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n",
1369                 dev->name, np->next_tx, entries, tx_flags_extra);
1370         {
1371                 int j;
1372                 for (j=0; j<64; j++) {
1373                         if ((j%16) == 0)
1374                                 dprintk("\n%03x:", j);
1375                         dprintk(" %02x", ((unsigned char*)skb->data)[j]);
1376                 }
1377                 dprintk("\n");
1378         }
1379
1380         np->next_tx += entries;
1381
1382         dev->trans_start = jiffies;
1383         spin_unlock_irq(&np->lock);
1384         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1385         pci_push(get_hwbase(dev));
1386         return NETDEV_TX_OK;
1387 }
1388
1389 /*
1390  * nv_tx_done: check for completed packets, release the skbs.
1391  *
1392  * Caller must own np->lock.
1393  */
1394 static void nv_tx_done(struct net_device *dev)
1395 {
1396         struct fe_priv *np = netdev_priv(dev);
1397         u32 Flags;
1398         unsigned int i;
1399         struct sk_buff *skb;
1400
1401         while (np->nic_tx != np->next_tx) {
1402                 i = np->nic_tx % np->tx_ring_size;
1403
1404                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1405                         Flags = le32_to_cpu(np->tx_ring.orig[i].FlagLen);
1406                 else
1407                         Flags = le32_to_cpu(np->tx_ring.ex[i].FlagLen);
1408
1409                 dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n",
1410                                         dev->name, np->nic_tx, Flags);
1411                 if (Flags & NV_TX_VALID)
1412                         break;
1413                 if (np->desc_ver == DESC_VER_1) {
1414                         if (Flags & NV_TX_LASTPACKET) {
1415                                 skb = np->tx_skbuff[i];
1416                                 if (Flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
1417                                              NV_TX_UNDERFLOW|NV_TX_ERROR)) {
1418                                         if (Flags & NV_TX_UNDERFLOW)
1419                                                 np->stats.tx_fifo_errors++;
1420                                         if (Flags & NV_TX_CARRIERLOST)
1421                                                 np->stats.tx_carrier_errors++;
1422                                         np->stats.tx_errors++;
1423                                 } else {
1424                                         np->stats.tx_packets++;
1425                                         np->stats.tx_bytes += skb->len;
1426                                 }
1427                         }
1428                 } else {
1429                         if (Flags & NV_TX2_LASTPACKET) {
1430                                 skb = np->tx_skbuff[i];
1431                                 if (Flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
1432                                              NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
1433                                         if (Flags & NV_TX2_UNDERFLOW)
1434                                                 np->stats.tx_fifo_errors++;
1435                                         if (Flags & NV_TX2_CARRIERLOST)
1436                                                 np->stats.tx_carrier_errors++;
1437                                         np->stats.tx_errors++;
1438                                 } else {
1439                                         np->stats.tx_packets++;
1440                                         np->stats.tx_bytes += skb->len;
1441                                 }
1442                         }
1443                 }
1444                 nv_release_txskb(dev, i);
1445                 np->nic_tx++;
1446         }
1447         if (np->next_tx - np->nic_tx < np->tx_limit_start)
1448                 netif_wake_queue(dev);
1449 }
1450
1451 /*
1452  * nv_tx_timeout: dev->tx_timeout function
1453  * Called with dev->xmit_lock held.
1454  */
1455 static void nv_tx_timeout(struct net_device *dev)
1456 {
1457         struct fe_priv *np = netdev_priv(dev);
1458         u8 __iomem *base = get_hwbase(dev);
1459         u32 status;
1460
1461         if (np->msi_flags & NV_MSI_X_ENABLED)
1462                 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
1463         else
1464                 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
1465
1466         printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
1467
1468         {
1469                 int i;
1470
1471                 printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
1472                                 dev->name, (unsigned long)np->ring_addr,
1473                                 np->next_tx, np->nic_tx);
1474                 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
1475                 for (i=0;i<=np->register_size;i+= 32) {
1476                         printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
1477                                         i,
1478                                         readl(base + i + 0), readl(base + i + 4),
1479                                         readl(base + i + 8), readl(base + i + 12),
1480                                         readl(base + i + 16), readl(base + i + 20),
1481                                         readl(base + i + 24), readl(base + i + 28));
1482                 }
1483                 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
1484                 for (i=0;i<np->tx_ring_size;i+= 4) {
1485                         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1486                                 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
1487                                        i,
1488                                        le32_to_cpu(np->tx_ring.orig[i].PacketBuffer),
1489                                        le32_to_cpu(np->tx_ring.orig[i].FlagLen),
1490                                        le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer),
1491                                        le32_to_cpu(np->tx_ring.orig[i+1].FlagLen),
1492                                        le32_to_cpu(np->tx_ring.orig[i+2].PacketBuffer),
1493                                        le32_to_cpu(np->tx_ring.orig[i+2].FlagLen),
1494                                        le32_to_cpu(np->tx_ring.orig[i+3].PacketBuffer),
1495                                        le32_to_cpu(np->tx_ring.orig[i+3].FlagLen));
1496                         } else {
1497                                 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
1498                                        i,
1499                                        le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh),
1500                                        le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow),
1501                                        le32_to_cpu(np->tx_ring.ex[i].FlagLen),
1502                                        le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferHigh),
1503                                        le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferLow),
1504                                        le32_to_cpu(np->tx_ring.ex[i+1].FlagLen),
1505                                        le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferHigh),
1506                                        le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferLow),
1507                                        le32_to_cpu(np->tx_ring.ex[i+2].FlagLen),
1508                                        le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferHigh),
1509                                        le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferLow),
1510                                        le32_to_cpu(np->tx_ring.ex[i+3].FlagLen));
1511                         }
1512                 }
1513         }
1514
1515         spin_lock_irq(&np->lock);
1516
1517         /* 1) stop tx engine */
1518         nv_stop_tx(dev);
1519
1520         /* 2) check that the packets were not sent already: */
1521         nv_tx_done(dev);
1522
1523         /* 3) if there are dead entries: clear everything */
1524         if (np->next_tx != np->nic_tx) {
1525                 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
1526                 nv_drain_tx(dev);
1527                 np->next_tx = np->nic_tx = 0;
1528                 setup_hw_rings(dev, NV_SETUP_TX_RING);
1529                 netif_wake_queue(dev);
1530         }
1531
1532         /* 4) restart tx engine */
1533         nv_start_tx(dev);
1534         spin_unlock_irq(&np->lock);
1535 }
1536
1537 /*
1538  * Called when the nic notices a mismatch between the actual data len on the
1539  * wire and the len indicated in the 802 header
1540  */
1541 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
1542 {
1543         int hdrlen;     /* length of the 802 header */
1544         int protolen;   /* length as stored in the proto field */
1545
1546         /* 1) calculate len according to header */
1547         if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == __constant_htons(ETH_P_8021Q)) {
1548                 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
1549                 hdrlen = VLAN_HLEN;
1550         } else {
1551                 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
1552                 hdrlen = ETH_HLEN;
1553         }
1554         dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
1555                                 dev->name, datalen, protolen, hdrlen);
1556         if (protolen > ETH_DATA_LEN)
1557                 return datalen; /* Value in proto field not a len, no checks possible */
1558
1559         protolen += hdrlen;
1560         /* consistency checks: */
1561         if (datalen > ETH_ZLEN) {
1562                 if (datalen >= protolen) {
1563                         /* more data on wire than in 802 header, trim of
1564                          * additional data.
1565                          */
1566                         dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1567                                         dev->name, protolen);
1568                         return protolen;
1569                 } else {
1570                         /* less data on wire than mentioned in header.
1571                          * Discard the packet.
1572                          */
1573                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
1574                                         dev->name);
1575                         return -1;
1576                 }
1577         } else {
1578                 /* short packet. Accept only if 802 values are also short */
1579                 if (protolen > ETH_ZLEN) {
1580                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
1581                                         dev->name);
1582                         return -1;
1583                 }
1584                 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1585                                 dev->name, datalen);
1586                 return datalen;
1587         }
1588 }
1589
1590 static void nv_rx_process(struct net_device *dev)
1591 {
1592         struct fe_priv *np = netdev_priv(dev);
1593         u32 Flags;
1594         u32 vlanflags = 0;
1595
1596         for (;;) {
1597                 struct sk_buff *skb;
1598                 int len;
1599                 int i;
1600                 if (np->cur_rx - np->refill_rx >= np->rx_ring_size)
1601                         break;  /* we scanned the whole ring - do not continue */
1602
1603                 i = np->cur_rx % np->rx_ring_size;
1604                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1605                         Flags = le32_to_cpu(np->rx_ring.orig[i].FlagLen);
1606                         len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
1607                 } else {
1608                         Flags = le32_to_cpu(np->rx_ring.ex[i].FlagLen);
1609                         len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
1610                         vlanflags = le32_to_cpu(np->rx_ring.ex[i].PacketBufferLow);
1611                 }
1612
1613                 dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n",
1614                                         dev->name, np->cur_rx, Flags);
1615
1616                 if (Flags & NV_RX_AVAIL)
1617                         break;  /* still owned by hardware, */
1618
1619                 /*
1620                  * the packet is for us - immediately tear down the pci mapping.
1621                  * TODO: check if a prefetch of the first cacheline improves
1622                  * the performance.
1623                  */
1624                 pci_unmap_single(np->pci_dev, np->rx_dma[i],
1625                                 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1626                                 PCI_DMA_FROMDEVICE);
1627
1628                 {
1629                         int j;
1630                         dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",Flags);
1631                         for (j=0; j<64; j++) {
1632                                 if ((j%16) == 0)
1633                                         dprintk("\n%03x:", j);
1634                                 dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
1635                         }
1636                         dprintk("\n");
1637                 }
1638                 /* look at what we actually got: */
1639                 if (np->desc_ver == DESC_VER_1) {
1640                         if (!(Flags & NV_RX_DESCRIPTORVALID))
1641                                 goto next_pkt;
1642
1643                         if (Flags & NV_RX_ERROR) {
1644                                 if (Flags & NV_RX_MISSEDFRAME) {
1645                                         np->stats.rx_missed_errors++;
1646                                         np->stats.rx_errors++;
1647                                         goto next_pkt;
1648                                 }
1649                                 if (Flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
1650                                         np->stats.rx_errors++;
1651                                         goto next_pkt;
1652                                 }
1653                                 if (Flags & NV_RX_CRCERR) {
1654                                         np->stats.rx_crc_errors++;
1655                                         np->stats.rx_errors++;
1656                                         goto next_pkt;
1657                                 }
1658                                 if (Flags & NV_RX_OVERFLOW) {
1659                                         np->stats.rx_over_errors++;
1660                                         np->stats.rx_errors++;
1661                                         goto next_pkt;
1662                                 }
1663                                 if (Flags & NV_RX_ERROR4) {
1664                                         len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1665                                         if (len < 0) {
1666                                                 np->stats.rx_errors++;
1667                                                 goto next_pkt;
1668                                         }
1669                                 }
1670                                 /* framing errors are soft errors. */
1671                                 if (Flags & NV_RX_FRAMINGERR) {
1672                                         if (Flags & NV_RX_SUBSTRACT1) {
1673                                                 len--;
1674                                         }
1675                                 }
1676                         }
1677                 } else {
1678                         if (!(Flags & NV_RX2_DESCRIPTORVALID))
1679                                 goto next_pkt;
1680
1681                         if (Flags & NV_RX2_ERROR) {
1682                                 if (Flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
1683                                         np->stats.rx_errors++;
1684                                         goto next_pkt;
1685                                 }
1686                                 if (Flags & NV_RX2_CRCERR) {
1687                                         np->stats.rx_crc_errors++;
1688                                         np->stats.rx_errors++;
1689                                         goto next_pkt;
1690                                 }
1691                                 if (Flags & NV_RX2_OVERFLOW) {
1692                                         np->stats.rx_over_errors++;
1693                                         np->stats.rx_errors++;
1694                                         goto next_pkt;
1695                                 }
1696                                 if (Flags & NV_RX2_ERROR4) {
1697                                         len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1698                                         if (len < 0) {
1699                                                 np->stats.rx_errors++;
1700                                                 goto next_pkt;
1701                                         }
1702                                 }
1703                                 /* framing errors are soft errors */
1704                                 if (Flags & NV_RX2_FRAMINGERR) {
1705                                         if (Flags & NV_RX2_SUBSTRACT1) {
1706                                                 len--;
1707                                         }
1708                                 }
1709                         }
1710                         Flags &= NV_RX2_CHECKSUMMASK;
1711                         if (Flags == NV_RX2_CHECKSUMOK1 ||
1712                                         Flags == NV_RX2_CHECKSUMOK2 ||
1713                                         Flags == NV_RX2_CHECKSUMOK3) {
1714                                 dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
1715                                 np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
1716                         } else {
1717                                 dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
1718                         }
1719                 }
1720                 /* got a valid packet - forward it to the network core */
1721                 skb = np->rx_skbuff[i];
1722                 np->rx_skbuff[i] = NULL;
1723
1724                 skb_put(skb, len);
1725                 skb->protocol = eth_type_trans(skb, dev);
1726                 dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
1727                                         dev->name, np->cur_rx, len, skb->protocol);
1728                 if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT)) {
1729                         vlan_hwaccel_rx(skb, np->vlangrp, vlanflags & NV_RX3_VLAN_TAG_MASK);
1730                 } else {
1731                         netif_rx(skb);
1732                 }
1733                 dev->last_rx = jiffies;
1734                 np->stats.rx_packets++;
1735                 np->stats.rx_bytes += len;
1736 next_pkt:
1737                 np->cur_rx++;
1738         }
1739 }
1740
1741 static void set_bufsize(struct net_device *dev)
1742 {
1743         struct fe_priv *np = netdev_priv(dev);
1744
1745         if (dev->mtu <= ETH_DATA_LEN)
1746                 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
1747         else
1748                 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
1749 }
1750
1751 /*
1752  * nv_change_mtu: dev->change_mtu function
1753  * Called with dev_base_lock held for read.
1754  */
1755 static int nv_change_mtu(struct net_device *dev, int new_mtu)
1756 {
1757         struct fe_priv *np = netdev_priv(dev);
1758         int old_mtu;
1759
1760         if (new_mtu < 64 || new_mtu > np->pkt_limit)
1761                 return -EINVAL;
1762
1763         old_mtu = dev->mtu;
1764         dev->mtu = new_mtu;
1765
1766         /* return early if the buffer sizes will not change */
1767         if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
1768                 return 0;
1769         if (old_mtu == new_mtu)
1770                 return 0;
1771
1772         /* synchronized against open : rtnl_lock() held by caller */
1773         if (netif_running(dev)) {
1774                 u8 __iomem *base = get_hwbase(dev);
1775                 /*
1776                  * It seems that the nic preloads valid ring entries into an
1777                  * internal buffer. The procedure for flushing everything is
1778                  * guessed, there is probably a simpler approach.
1779                  * Changing the MTU is a rare event, it shouldn't matter.
1780                  */
1781                 nv_disable_irq(dev);
1782                 spin_lock_bh(&dev->xmit_lock);
1783                 spin_lock(&np->lock);
1784                 /* stop engines */
1785                 nv_stop_rx(dev);
1786                 nv_stop_tx(dev);
1787                 nv_txrx_reset(dev);
1788                 /* drain rx queue */
1789                 nv_drain_rx(dev);
1790                 nv_drain_tx(dev);
1791                 /* reinit driver view of the rx queue */
1792                 set_bufsize(dev);
1793                 if (nv_init_ring(dev)) {
1794                         if (!np->in_shutdown)
1795                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1796                 }
1797                 /* reinit nic view of the rx queue */
1798                 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
1799                 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
1800                 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
1801                         base + NvRegRingSizes);
1802                 pci_push(base);
1803                 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1804                 pci_push(base);
1805
1806                 /* restart rx engine */
1807                 nv_start_rx(dev);
1808                 nv_start_tx(dev);
1809                 spin_unlock(&np->lock);
1810                 spin_unlock_bh(&dev->xmit_lock);
1811                 nv_enable_irq(dev);
1812         }
1813         return 0;
1814 }
1815
1816 static void nv_copy_mac_to_hw(struct net_device *dev)
1817 {
1818         u8 __iomem *base = get_hwbase(dev);
1819         u32 mac[2];
1820
1821         mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
1822                         (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
1823         mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
1824
1825         writel(mac[0], base + NvRegMacAddrA);
1826         writel(mac[1], base + NvRegMacAddrB);
1827 }
1828
1829 /*
1830  * nv_set_mac_address: dev->set_mac_address function
1831  * Called with rtnl_lock() held.
1832  */
1833 static int nv_set_mac_address(struct net_device *dev, void *addr)
1834 {
1835         struct fe_priv *np = netdev_priv(dev);
1836         struct sockaddr *macaddr = (struct sockaddr*)addr;
1837
1838         if(!is_valid_ether_addr(macaddr->sa_data))
1839                 return -EADDRNOTAVAIL;
1840
1841         /* synchronized against open : rtnl_lock() held by caller */
1842         memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
1843
1844         if (netif_running(dev)) {
1845                 spin_lock_bh(&dev->xmit_lock);
1846                 spin_lock_irq(&np->lock);
1847
1848                 /* stop rx engine */
1849                 nv_stop_rx(dev);
1850
1851                 /* set mac address */
1852                 nv_copy_mac_to_hw(dev);
1853
1854                 /* restart rx engine */
1855                 nv_start_rx(dev);
1856                 spin_unlock_irq(&np->lock);
1857                 spin_unlock_bh(&dev->xmit_lock);
1858         } else {
1859                 nv_copy_mac_to_hw(dev);
1860         }
1861         return 0;
1862 }
1863
1864 /*
1865  * nv_set_multicast: dev->set_multicast function
1866  * Called with dev->xmit_lock held.
1867  */
1868 static void nv_set_multicast(struct net_device *dev)
1869 {
1870         struct fe_priv *np = netdev_priv(dev);
1871         u8 __iomem *base = get_hwbase(dev);
1872         u32 addr[2];
1873         u32 mask[2];
1874         u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
1875
1876         memset(addr, 0, sizeof(addr));
1877         memset(mask, 0, sizeof(mask));
1878
1879         if (dev->flags & IFF_PROMISC) {
1880                 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
1881                 pff |= NVREG_PFF_PROMISC;
1882         } else {
1883                 pff |= NVREG_PFF_MYADDR;
1884
1885                 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
1886                         u32 alwaysOff[2];
1887                         u32 alwaysOn[2];
1888
1889                         alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
1890                         if (dev->flags & IFF_ALLMULTI) {
1891                                 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
1892                         } else {
1893                                 struct dev_mc_list *walk;
1894
1895                                 walk = dev->mc_list;
1896                                 while (walk != NULL) {
1897                                         u32 a, b;
1898                                         a = le32_to_cpu(*(u32 *) walk->dmi_addr);
1899                                         b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
1900                                         alwaysOn[0] &= a;
1901                                         alwaysOff[0] &= ~a;
1902                                         alwaysOn[1] &= b;
1903                                         alwaysOff[1] &= ~b;
1904                                         walk = walk->next;
1905                                 }
1906                         }
1907                         addr[0] = alwaysOn[0];
1908                         addr[1] = alwaysOn[1];
1909                         mask[0] = alwaysOn[0] | alwaysOff[0];
1910                         mask[1] = alwaysOn[1] | alwaysOff[1];
1911                 }
1912         }
1913         addr[0] |= NVREG_MCASTADDRA_FORCE;
1914         pff |= NVREG_PFF_ALWAYS;
1915         spin_lock_irq(&np->lock);
1916         nv_stop_rx(dev);
1917         writel(addr[0], base + NvRegMulticastAddrA);
1918         writel(addr[1], base + NvRegMulticastAddrB);
1919         writel(mask[0], base + NvRegMulticastMaskA);
1920         writel(mask[1], base + NvRegMulticastMaskB);
1921         writel(pff, base + NvRegPacketFilterFlags);
1922         dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
1923                 dev->name);
1924         nv_start_rx(dev);
1925         spin_unlock_irq(&np->lock);
1926 }
1927
1928 void nv_update_pause(struct net_device *dev, u32 pause_flags)
1929 {
1930         struct fe_priv *np = netdev_priv(dev);
1931         u8 __iomem *base = get_hwbase(dev);
1932
1933         np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
1934
1935         if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
1936                 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
1937                 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
1938                         writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
1939                         np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
1940                 } else {
1941                         writel(pff, base + NvRegPacketFilterFlags);
1942                 }
1943         }
1944         if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
1945                 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
1946                 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
1947                         writel(NVREG_TX_PAUSEFRAME_ENABLE,  base + NvRegTxPauseFrame);
1948                         writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
1949                         np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
1950                 } else {
1951                         writel(NVREG_TX_PAUSEFRAME_DISABLE,  base + NvRegTxPauseFrame);
1952                         writel(regmisc, base + NvRegMisc1);
1953                 }
1954         }
1955 }
1956
1957 /**
1958  * nv_update_linkspeed: Setup the MAC according to the link partner
1959  * @dev: Network device to be configured
1960  *
1961  * The function queries the PHY and checks if there is a link partner.
1962  * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
1963  * set to 10 MBit HD.
1964  *
1965  * The function returns 0 if there is no link partner and 1 if there is
1966  * a good link partner.
1967  */
1968 static int nv_update_linkspeed(struct net_device *dev)
1969 {
1970         struct fe_priv *np = netdev_priv(dev);
1971         u8 __iomem *base = get_hwbase(dev);
1972         int adv = 0;
1973         int lpa = 0;
1974         int adv_lpa, adv_pause, lpa_pause;
1975         int newls = np->linkspeed;
1976         int newdup = np->duplex;
1977         int mii_status;
1978         int retval = 0;
1979         u32 control_1000, status_1000, phyreg, pause_flags;
1980
1981         /* BMSR_LSTATUS is latched, read it twice:
1982          * we want the current value.
1983          */
1984         mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1985         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1986
1987         if (!(mii_status & BMSR_LSTATUS)) {
1988                 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
1989                                 dev->name);
1990                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1991                 newdup = 0;
1992                 retval = 0;
1993                 goto set_speed;
1994         }
1995
1996         if (np->autoneg == 0) {
1997                 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
1998                                 dev->name, np->fixed_mode);
1999                 if (np->fixed_mode & LPA_100FULL) {
2000                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2001                         newdup = 1;
2002                 } else if (np->fixed_mode & LPA_100HALF) {
2003                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2004                         newdup = 0;
2005                 } else if (np->fixed_mode & LPA_10FULL) {
2006                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2007                         newdup = 1;
2008                 } else {
2009                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2010                         newdup = 0;
2011                 }
2012                 retval = 1;
2013                 goto set_speed;
2014         }
2015         /* check auto negotiation is complete */
2016         if (!(mii_status & BMSR_ANEGCOMPLETE)) {
2017                 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
2018                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2019                 newdup = 0;
2020                 retval = 0;
2021                 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
2022                 goto set_speed;
2023         }
2024
2025         adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2026         lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
2027         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
2028                                 dev->name, adv, lpa);
2029
2030         retval = 1;
2031         if (np->gigabit == PHY_GIGABIT) {
2032                 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2033                 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
2034
2035                 if ((control_1000 & ADVERTISE_1000FULL) &&
2036                         (status_1000 & LPA_1000FULL)) {
2037                         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
2038                                 dev->name);
2039                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
2040                         newdup = 1;
2041                         goto set_speed;
2042                 }
2043         }
2044
2045         /* FIXME: handle parallel detection properly */
2046         adv_lpa = lpa & adv;
2047         if (adv_lpa & LPA_100FULL) {
2048                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2049                 newdup = 1;
2050         } else if (adv_lpa & LPA_100HALF) {
2051                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2052                 newdup = 0;
2053         } else if (adv_lpa & LPA_10FULL) {
2054                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2055                 newdup = 1;
2056         } else if (adv_lpa & LPA_10HALF) {
2057                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2058                 newdup = 0;
2059         } else {
2060                 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
2061                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2062                 newdup = 0;
2063         }
2064
2065 set_speed:
2066         if (np->duplex == newdup && np->linkspeed == newls)
2067                 return retval;
2068
2069         dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
2070                         dev->name, np->linkspeed, np->duplex, newls, newdup);
2071
2072         np->duplex = newdup;
2073         np->linkspeed = newls;
2074
2075         if (np->gigabit == PHY_GIGABIT) {
2076                 phyreg = readl(base + NvRegRandomSeed);
2077                 phyreg &= ~(0x3FF00);
2078                 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
2079                         phyreg |= NVREG_RNDSEED_FORCE3;
2080                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
2081                         phyreg |= NVREG_RNDSEED_FORCE2;
2082                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
2083                         phyreg |= NVREG_RNDSEED_FORCE;
2084                 writel(phyreg, base + NvRegRandomSeed);
2085         }
2086
2087         phyreg = readl(base + NvRegPhyInterface);
2088         phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
2089         if (np->duplex == 0)
2090                 phyreg |= PHY_HALF;
2091         if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
2092                 phyreg |= PHY_100;
2093         else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2094                 phyreg |= PHY_1000;
2095         writel(phyreg, base + NvRegPhyInterface);
2096
2097         writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
2098                 base + NvRegMisc1);
2099         pci_push(base);
2100         writel(np->linkspeed, base + NvRegLinkSpeed);
2101         pci_push(base);
2102
2103         pause_flags = 0;
2104         /* setup pause frame */
2105         if (np->duplex != 0) {
2106                 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
2107                         adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
2108                         lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
2109
2110                         switch (adv_pause) {
2111                         case (ADVERTISE_PAUSE_CAP):
2112                                 if (lpa_pause & LPA_PAUSE_CAP) {
2113                                         pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2114                                         if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2115                                                 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2116                                 }
2117                                 break;
2118                         case (ADVERTISE_PAUSE_ASYM):
2119                                 if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
2120                                 {
2121                                         pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2122                                 }
2123                                 break;
2124                         case (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM):
2125                                 if (lpa_pause & LPA_PAUSE_CAP)
2126                                 {
2127                                         pause_flags |=  NV_PAUSEFRAME_RX_ENABLE;
2128                                         if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2129                                                 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2130                                 }
2131                                 if (lpa_pause == LPA_PAUSE_ASYM)
2132                                 {
2133                                         pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2134                                 }
2135                                 break;
2136                         }
2137                 } else {
2138                         pause_flags = np->pause_flags;
2139                 }
2140         }
2141         nv_update_pause(dev, pause_flags);
2142
2143         return retval;
2144 }
2145
2146 static void nv_linkchange(struct net_device *dev)
2147 {
2148         if (nv_update_linkspeed(dev)) {
2149                 if (!netif_carrier_ok(dev)) {
2150                         netif_carrier_on(dev);
2151                         printk(KERN_INFO "%s: link up.\n", dev->name);
2152                         nv_start_rx(dev);
2153                 }
2154         } else {
2155                 if (netif_carrier_ok(dev)) {
2156                         netif_carrier_off(dev);
2157                         printk(KERN_INFO "%s: link down.\n", dev->name);
2158                         nv_stop_rx(dev);
2159                 }
2160         }
2161 }
2162
2163 static void nv_link_irq(struct net_device *dev)
2164 {
2165         u8 __iomem *base = get_hwbase(dev);
2166         u32 miistat;
2167
2168         miistat = readl(base + NvRegMIIStatus);
2169         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
2170         dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
2171
2172         if (miistat & (NVREG_MIISTAT_LINKCHANGE))
2173                 nv_linkchange(dev);
2174         dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
2175 }
2176
2177 static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
2178 {
2179         struct net_device *dev = (struct net_device *) data;
2180         struct fe_priv *np = netdev_priv(dev);
2181         u8 __iomem *base = get_hwbase(dev);
2182         u32 events;
2183         int i;
2184
2185         dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
2186
2187         for (i=0; ; i++) {
2188                 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
2189                         events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2190                         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2191                 } else {
2192                         events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2193                         writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
2194                 }
2195                 pci_push(base);
2196                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2197                 if (!(events & np->irqmask))
2198                         break;
2199
2200                 spin_lock(&np->lock);
2201                 nv_tx_done(dev);
2202                 spin_unlock(&np->lock);
2203
2204                 nv_rx_process(dev);
2205                 if (nv_alloc_rx(dev)) {
2206                         spin_lock(&np->lock);
2207                         if (!np->in_shutdown)
2208                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2209                         spin_unlock(&np->lock);
2210                 }
2211
2212                 if (events & NVREG_IRQ_LINK) {
2213                         spin_lock(&np->lock);
2214                         nv_link_irq(dev);
2215                         spin_unlock(&np->lock);
2216                 }
2217                 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2218                         spin_lock(&np->lock);
2219                         nv_linkchange(dev);
2220                         spin_unlock(&np->lock);
2221                         np->link_timeout = jiffies + LINK_TIMEOUT;
2222                 }
2223                 if (events & (NVREG_IRQ_TX_ERR)) {
2224                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2225                                                 dev->name, events);
2226                 }
2227                 if (events & (NVREG_IRQ_UNKNOWN)) {
2228                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2229                                                 dev->name, events);
2230                 }
2231                 if (i > max_interrupt_work) {
2232                         spin_lock(&np->lock);
2233                         /* disable interrupts on the nic */
2234                         if (!(np->msi_flags & NV_MSI_X_ENABLED))
2235                                 writel(0, base + NvRegIrqMask);
2236                         else
2237                                 writel(np->irqmask, base + NvRegIrqMask);
2238                         pci_push(base);
2239
2240                         if (!np->in_shutdown) {
2241                                 np->nic_poll_irq = np->irqmask;
2242                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2243                         }
2244                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
2245                         spin_unlock(&np->lock);
2246                         break;
2247                 }
2248
2249         }
2250         dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
2251
2252         return IRQ_RETVAL(i);
2253 }
2254
2255 static irqreturn_t nv_nic_irq_tx(int foo, void *data, struct pt_regs *regs)
2256 {
2257         struct net_device *dev = (struct net_device *) data;
2258         struct fe_priv *np = netdev_priv(dev);
2259         u8 __iomem *base = get_hwbase(dev);
2260         u32 events;
2261         int i;
2262
2263         dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
2264
2265         for (i=0; ; i++) {
2266                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
2267                 writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
2268                 pci_push(base);
2269                 dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
2270                 if (!(events & np->irqmask))
2271                         break;
2272
2273                 spin_lock_irq(&np->lock);
2274                 nv_tx_done(dev);
2275                 spin_unlock_irq(&np->lock);
2276
2277                 if (events & (NVREG_IRQ_TX_ERR)) {
2278                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2279                                                 dev->name, events);
2280                 }
2281                 if (i > max_interrupt_work) {
2282                         spin_lock_irq(&np->lock);
2283                         /* disable interrupts on the nic */
2284                         writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
2285                         pci_push(base);
2286
2287                         if (!np->in_shutdown) {
2288                                 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
2289                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2290                         }
2291                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
2292                         spin_unlock_irq(&np->lock);
2293                         break;
2294                 }
2295
2296         }
2297         dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
2298
2299         return IRQ_RETVAL(i);
2300 }
2301
2302 static irqreturn_t nv_nic_irq_rx(int foo, void *data, struct pt_regs *regs)
2303 {
2304         struct net_device *dev = (struct net_device *) data;
2305         struct fe_priv *np = netdev_priv(dev);
2306         u8 __iomem *base = get_hwbase(dev);
2307         u32 events;
2308         int i;
2309
2310         dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
2311
2312         for (i=0; ; i++) {
2313                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
2314                 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
2315                 pci_push(base);
2316                 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
2317                 if (!(events & np->irqmask))
2318                         break;
2319
2320                 nv_rx_process(dev);
2321                 if (nv_alloc_rx(dev)) {
2322                         spin_lock_irq(&np->lock);
2323                         if (!np->in_shutdown)
2324                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2325                         spin_unlock_irq(&np->lock);
2326                 }
2327
2328                 if (i > max_interrupt_work) {
2329                         spin_lock_irq(&np->lock);
2330                         /* disable interrupts on the nic */
2331                         writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
2332                         pci_push(base);
2333
2334                         if (!np->in_shutdown) {
2335                                 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
2336                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2337                         }
2338                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
2339                         spin_unlock_irq(&np->lock);
2340                         break;
2341                 }
2342
2343         }
2344         dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
2345
2346         return IRQ_RETVAL(i);
2347 }
2348
2349 static irqreturn_t nv_nic_irq_other(int foo, void *data, struct pt_regs *regs)
2350 {
2351         struct net_device *dev = (struct net_device *) data;
2352         struct fe_priv *np = netdev_priv(dev);
2353         u8 __iomem *base = get_hwbase(dev);
2354         u32 events;
2355         int i;
2356
2357         dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
2358
2359         for (i=0; ; i++) {
2360                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
2361                 writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
2362                 pci_push(base);
2363                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2364                 if (!(events & np->irqmask))
2365                         break;
2366
2367                 if (events & NVREG_IRQ_LINK) {
2368                         spin_lock_irq(&np->lock);
2369                         nv_link_irq(dev);
2370                         spin_unlock_irq(&np->lock);
2371                 }
2372                 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2373                         spin_lock_irq(&np->lock);
2374                         nv_linkchange(dev);
2375                         spin_unlock_irq(&np->lock);
2376                         np->link_timeout = jiffies + LINK_TIMEOUT;
2377                 }
2378                 if (events & (NVREG_IRQ_UNKNOWN)) {
2379                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2380                                                 dev->name, events);
2381                 }
2382                 if (i > max_interrupt_work) {
2383                         spin_lock_irq(&np->lock);
2384                         /* disable interrupts on the nic */
2385                         writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
2386                         pci_push(base);
2387
2388                         if (!np->in_shutdown) {
2389                                 np->nic_poll_irq |= NVREG_IRQ_OTHER;
2390                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2391                         }
2392                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
2393                         spin_unlock_irq(&np->lock);
2394                         break;
2395                 }
2396
2397         }
2398         dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
2399
2400         return IRQ_RETVAL(i);
2401 }
2402
2403 static void nv_do_nic_poll(unsigned long data)
2404 {
2405         struct net_device *dev = (struct net_device *) data;
2406         struct fe_priv *np = netdev_priv(dev);
2407         u8 __iomem *base = get_hwbase(dev);
2408         u32 mask = 0;
2409
2410         /*
2411          * First disable irq(s) and then
2412          * reenable interrupts on the nic, we have to do this before calling
2413          * nv_nic_irq because that may decide to do otherwise
2414          */
2415
2416         if (!using_multi_irqs(dev)) {
2417                 if (np->msi_flags & NV_MSI_X_ENABLED)
2418                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
2419                 else
2420                         disable_irq(dev->irq);
2421                 mask = np->irqmask;
2422         } else {
2423                 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
2424                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
2425                         mask |= NVREG_IRQ_RX_ALL;
2426                 }
2427                 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
2428                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
2429                         mask |= NVREG_IRQ_TX_ALL;
2430                 }
2431                 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
2432                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
2433                         mask |= NVREG_IRQ_OTHER;
2434                 }
2435         }
2436         np->nic_poll_irq = 0;
2437
2438         /* FIXME: Do we need synchronize_irq(dev->irq) here? */
2439
2440         writel(mask, base + NvRegIrqMask);
2441         pci_push(base);
2442
2443         if (!using_multi_irqs(dev)) {
2444                 nv_nic_irq((int) 0, (void *) data, (struct pt_regs *) NULL);
2445                 if (np->msi_flags & NV_MSI_X_ENABLED)
2446                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
2447                 else
2448                         enable_irq(dev->irq);
2449         } else {
2450                 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
2451                         nv_nic_irq_rx((int) 0, (void *) data, (struct pt_regs *) NULL);
2452                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
2453                 }
2454                 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
2455                         nv_nic_irq_tx((int) 0, (void *) data, (struct pt_regs *) NULL);
2456                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
2457                 }
2458                 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
2459                         nv_nic_irq_other((int) 0, (void *) data, (struct pt_regs *) NULL);
2460                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
2461                 }
2462         }
2463 }
2464
2465 #ifdef CONFIG_NET_POLL_CONTROLLER
2466 static void nv_poll_controller(struct net_device *dev)
2467 {
2468         nv_do_nic_poll((unsigned long) dev);
2469 }
2470 #endif
2471
2472 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2473 {
2474         struct fe_priv *np = netdev_priv(dev);
2475         strcpy(info->driver, "forcedeth");
2476         strcpy(info->version, FORCEDETH_VERSION);
2477         strcpy(info->bus_info, pci_name(np->pci_dev));
2478 }
2479
2480 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
2481 {
2482         struct fe_priv *np = netdev_priv(dev);
2483         wolinfo->supported = WAKE_MAGIC;
2484
2485         spin_lock_irq(&np->lock);
2486         if (np->wolenabled)
2487                 wolinfo->wolopts = WAKE_MAGIC;
2488         spin_unlock_irq(&np->lock);
2489 }
2490
2491 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
2492 {
2493         struct fe_priv *np = netdev_priv(dev);
2494         u8 __iomem *base = get_hwbase(dev);
2495
2496         spin_lock_irq(&np->lock);
2497         if (wolinfo->wolopts == 0) {
2498                 writel(0, base + NvRegWakeUpFlags);
2499                 np->wolenabled = 0;
2500         }
2501         if (wolinfo->wolopts & WAKE_MAGIC) {
2502                 writel(NVREG_WAKEUPFLAGS_ENABLE, base + NvRegWakeUpFlags);
2503                 np->wolenabled = 1;
2504         }
2505         spin_unlock_irq(&np->lock);
2506         return 0;
2507 }
2508
2509 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2510 {
2511         struct fe_priv *np = netdev_priv(dev);
2512         int adv;
2513
2514         spin_lock_irq(&np->lock);
2515         ecmd->port = PORT_MII;
2516         if (!netif_running(dev)) {
2517                 /* We do not track link speed / duplex setting if the
2518                  * interface is disabled. Force a link check */
2519                 nv_update_linkspeed(dev);
2520         }
2521         switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
2522                 case NVREG_LINKSPEED_10:
2523                         ecmd->speed = SPEED_10;
2524                         break;
2525                 case NVREG_LINKSPEED_100:
2526                         ecmd->speed = SPEED_100;
2527                         break;
2528                 case NVREG_LINKSPEED_1000:
2529                         ecmd->speed = SPEED_1000;
2530                         break;
2531         }
2532         ecmd->duplex = DUPLEX_HALF;
2533         if (np->duplex)
2534                 ecmd->duplex = DUPLEX_FULL;
2535
2536         ecmd->autoneg = np->autoneg;
2537
2538         ecmd->advertising = ADVERTISED_MII;
2539         if (np->autoneg) {
2540                 ecmd->advertising |= ADVERTISED_Autoneg;
2541                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2542         } else {
2543                 adv = np->fixed_mode;
2544         }
2545         if (adv & ADVERTISE_10HALF)
2546                 ecmd->advertising |= ADVERTISED_10baseT_Half;
2547         if (adv & ADVERTISE_10FULL)
2548                 ecmd->advertising |= ADVERTISED_10baseT_Full;
2549         if (adv & ADVERTISE_100HALF)
2550                 ecmd->advertising |= ADVERTISED_100baseT_Half;
2551         if (adv & ADVERTISE_100FULL)
2552                 ecmd->advertising |= ADVERTISED_100baseT_Full;
2553         if (np->autoneg && np->gigabit == PHY_GIGABIT) {
2554                 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2555                 if (adv & ADVERTISE_1000FULL)
2556                         ecmd->advertising |= ADVERTISED_1000baseT_Full;
2557         }
2558
2559         ecmd->supported = (SUPPORTED_Autoneg |
2560                 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2561                 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2562                 SUPPORTED_MII);
2563         if (np->gigabit == PHY_GIGABIT)
2564                 ecmd->supported |= SUPPORTED_1000baseT_Full;
2565
2566         ecmd->phy_address = np->phyaddr;
2567         ecmd->transceiver = XCVR_EXTERNAL;
2568
2569         /* ignore maxtxpkt, maxrxpkt for now */
2570         spin_unlock_irq(&np->lock);
2571         return 0;
2572 }
2573
2574 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2575 {
2576         struct fe_priv *np = netdev_priv(dev);
2577
2578         if (ecmd->port != PORT_MII)
2579                 return -EINVAL;
2580         if (ecmd->transceiver != XCVR_EXTERNAL)
2581                 return -EINVAL;
2582         if (ecmd->phy_address != np->phyaddr) {
2583                 /* TODO: support switching between multiple phys. Should be
2584                  * trivial, but not enabled due to lack of test hardware. */
2585                 return -EINVAL;
2586         }
2587         if (ecmd->autoneg == AUTONEG_ENABLE) {
2588                 u32 mask;
2589
2590                 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
2591                           ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
2592                 if (np->gigabit == PHY_GIGABIT)
2593                         mask |= ADVERTISED_1000baseT_Full;
2594
2595                 if ((ecmd->advertising & mask) == 0)
2596                         return -EINVAL;
2597
2598         } else if (ecmd->autoneg == AUTONEG_DISABLE) {
2599                 /* Note: autonegotiation disable, speed 1000 intentionally
2600                  * forbidden - noone should need that. */
2601
2602                 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
2603                         return -EINVAL;
2604                 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2605                         return -EINVAL;
2606         } else {
2607                 return -EINVAL;
2608         }
2609
2610         spin_lock_irq(&np->lock);
2611         if (ecmd->autoneg == AUTONEG_ENABLE) {
2612                 int adv, bmcr;
2613
2614                 np->autoneg = 1;
2615
2616                 /* advertise only what has been requested */
2617                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2618                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
2619                 if (ecmd->advertising & ADVERTISED_10baseT_Half)
2620                         adv |= ADVERTISE_10HALF;
2621                 if (ecmd->advertising & ADVERTISED_10baseT_Full)
2622                         adv |= ADVERTISE_10FULL;
2623                 if (ecmd->advertising & ADVERTISED_100baseT_Half)
2624                         adv |= ADVERTISE_100HALF;
2625                 if (ecmd->advertising & ADVERTISED_100baseT_Full)
2626                         adv |= ADVERTISE_100FULL;
2627                 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ)  /* for rx we set both advertisments but disable tx pause */
2628                         adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
2629                 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2630                         adv |=  ADVERTISE_PAUSE_ASYM;
2631                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
2632
2633                 if (np->gigabit == PHY_GIGABIT) {
2634                         adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2635                         adv &= ~ADVERTISE_1000FULL;
2636                         if (ecmd->advertising & ADVERTISED_1000baseT_Full)
2637                                 adv |= ADVERTISE_1000FULL;
2638                         mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
2639                 }
2640
2641                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2642                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
2643                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2644
2645         } else {
2646                 int adv, bmcr;
2647
2648                 np->autoneg = 0;
2649
2650                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2651                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
2652                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
2653                         adv |= ADVERTISE_10HALF;
2654                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
2655                         adv |= ADVERTISE_10FULL;
2656                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
2657                         adv |= ADVERTISE_100HALF;
2658                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
2659                         adv |= ADVERTISE_100FULL;
2660                 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
2661                 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
2662                         adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
2663                         np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2664                 }
2665                 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
2666                         adv |=  ADVERTISE_PAUSE_ASYM;
2667                         np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2668                 }
2669                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
2670                 np->fixed_mode = adv;
2671
2672                 if (np->gigabit == PHY_GIGABIT) {
2673                         adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2674                         adv &= ~ADVERTISE_1000FULL;
2675                         mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
2676                 }
2677
2678                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2679                 bmcr |= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_FULLDPLX);
2680                 if (adv & (ADVERTISE_10FULL|ADVERTISE_100FULL))
2681                         bmcr |= BMCR_FULLDPLX;
2682                 if (adv & (ADVERTISE_100HALF|ADVERTISE_100FULL))
2683                         bmcr |= BMCR_SPEED100;
2684                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2685
2686                 if (netif_running(dev)) {
2687                         /* Wait a bit and then reconfigure the nic. */
2688                         udelay(10);
2689                         nv_linkchange(dev);
2690                 }
2691         }
2692         spin_unlock_irq(&np->lock);
2693
2694         return 0;
2695 }
2696
2697 #define FORCEDETH_REGS_VER      1
2698
2699 static int nv_get_regs_len(struct net_device *dev)
2700 {
2701         struct fe_priv *np = netdev_priv(dev);
2702         return np->register_size;
2703 }
2704
2705 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2706 {
2707         struct fe_priv *np = netdev_priv(dev);
2708         u8 __iomem *base = get_hwbase(dev);
2709         u32 *rbuf = buf;
2710         int i;
2711
2712         regs->version = FORCEDETH_REGS_VER;
2713         spin_lock_irq(&np->lock);
2714         for (i = 0;i <= np->register_size/sizeof(u32); i++)
2715                 rbuf[i] = readl(base + i*sizeof(u32));
2716         spin_unlock_irq(&np->lock);
2717 }
2718
2719 static int nv_nway_reset(struct net_device *dev)
2720 {
2721         struct fe_priv *np = netdev_priv(dev);
2722         int ret;
2723
2724         spin_lock_irq(&np->lock);
2725         if (np->autoneg) {
2726                 int bmcr;
2727
2728                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2729                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
2730                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2731
2732                 ret = 0;
2733         } else {
2734                 ret = -EINVAL;
2735         }
2736         spin_unlock_irq(&np->lock);
2737
2738         return ret;
2739 }
2740
2741 static int nv_set_tso(struct net_device *dev, u32 value)
2742 {
2743         struct fe_priv *np = netdev_priv(dev);
2744
2745         if ((np->driver_data & DEV_HAS_CHECKSUM))
2746                 return ethtool_op_set_tso(dev, value);
2747         else
2748                 return -EOPNOTSUPP;
2749 }
2750
2751 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
2752 {
2753         struct fe_priv *np = netdev_priv(dev);
2754
2755         ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
2756         ring->rx_mini_max_pending = 0;
2757         ring->rx_jumbo_max_pending = 0;
2758         ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
2759
2760         ring->rx_pending = np->rx_ring_size;
2761         ring->rx_mini_pending = 0;
2762         ring->rx_jumbo_pending = 0;
2763         ring->tx_pending = np->tx_ring_size;
2764 }
2765
2766 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
2767 {
2768         struct fe_priv *np = netdev_priv(dev);
2769         u8 __iomem *base = get_hwbase(dev);
2770         u8 *rxtx_ring, *rx_skbuff, *tx_skbuff, *rx_dma, *tx_dma, *tx_dma_len;
2771         dma_addr_t ring_addr;
2772
2773         if (ring->rx_pending < RX_RING_MIN ||
2774             ring->tx_pending < TX_RING_MIN ||
2775             ring->rx_mini_pending != 0 ||
2776             ring->rx_jumbo_pending != 0 ||
2777             (np->desc_ver == DESC_VER_1 &&
2778              (ring->rx_pending > RING_MAX_DESC_VER_1 ||
2779               ring->tx_pending > RING_MAX_DESC_VER_1)) ||
2780             (np->desc_ver != DESC_VER_1 &&
2781              (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
2782               ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
2783                 return -EINVAL;
2784         }
2785
2786         /* allocate new rings */
2787         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
2788                 rxtx_ring = pci_alloc_consistent(np->pci_dev,
2789                                             sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
2790                                             &ring_addr);
2791         } else {
2792                 rxtx_ring = pci_alloc_consistent(np->pci_dev,
2793                                             sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
2794                                             &ring_addr);
2795         }
2796         rx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->rx_pending, GFP_KERNEL);
2797         rx_dma = kmalloc(sizeof(dma_addr_t) * ring->rx_pending, GFP_KERNEL);
2798         tx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->tx_pending, GFP_KERNEL);
2799         tx_dma = kmalloc(sizeof(dma_addr_t) * ring->tx_pending, GFP_KERNEL);
2800         tx_dma_len = kmalloc(sizeof(unsigned int) * ring->tx_pending, GFP_KERNEL);
2801         if (!rxtx_ring || !rx_skbuff || !rx_dma || !tx_skbuff || !tx_dma || !tx_dma_len) {
2802                 /* fall back to old rings */
2803                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
2804                         if(rxtx_ring)
2805                                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
2806                                                     rxtx_ring, ring_addr);
2807                 } else {
2808                         if (rxtx_ring)
2809                                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
2810                                                     rxtx_ring, ring_addr);
2811                 }
2812                 if (rx_skbuff)
2813                         kfree(rx_skbuff);
2814                 if (rx_dma)
2815                         kfree(rx_dma);
2816                 if (tx_skbuff)
2817                         kfree(tx_skbuff);
2818                 if (tx_dma)
2819                         kfree(tx_dma);
2820                 if (tx_dma_len)
2821                         kfree(tx_dma_len);
2822                 goto exit;
2823         }
2824
2825         if (netif_running(dev)) {
2826                 nv_disable_irq(dev);
2827                 spin_lock_bh(&dev->xmit_lock);
2828                 spin_lock(&np->lock);
2829                 /* stop engines */
2830                 nv_stop_rx(dev);
2831                 nv_stop_tx(dev);
2832                 nv_txrx_reset(dev);
2833                 /* drain queues */
2834                 nv_drain_rx(dev);
2835                 nv_drain_tx(dev);
2836                 /* delete queues */
2837                 free_rings(dev);
2838         }
2839
2840         /* set new values */
2841         np->rx_ring_size = ring->rx_pending;
2842         np->tx_ring_size = ring->tx_pending;
2843         np->tx_limit_stop = ring->tx_pending - TX_LIMIT_DIFFERENCE;
2844         np->tx_limit_start = ring->tx_pending - TX_LIMIT_DIFFERENCE - 1;
2845         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
2846                 np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
2847                 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
2848         } else {
2849                 np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
2850                 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
2851         }
2852         np->rx_skbuff = (struct sk_buff**)rx_skbuff;
2853         np->rx_dma = (dma_addr_t*)rx_dma;
2854         np->tx_skbuff = (struct sk_buff**)tx_skbuff;
2855         np->tx_dma = (dma_addr_t*)tx_dma;
2856         np->tx_dma_len = (unsigned int*)tx_dma_len;
2857         np->ring_addr = ring_addr;
2858
2859         memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
2860         memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
2861         memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
2862         memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
2863         memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
2864
2865         if (netif_running(dev)) {
2866                 /* reinit driver view of the queues */
2867                 set_bufsize(dev);
2868                 if (nv_init_ring(dev)) {
2869                         if (!np->in_shutdown)
2870                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2871                 }
2872
2873                 /* reinit nic view of the queues */
2874                 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
2875                 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
2876                 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
2877                         base + NvRegRingSizes);
2878                 pci_push(base);
2879                 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2880                 pci_push(base);
2881
2882                 /* restart engines */
2883                 nv_start_rx(dev);
2884                 nv_start_tx(dev);
2885                 spin_unlock(&np->lock);
2886                 spin_unlock_bh(&dev->xmit_lock);
2887                 nv_enable_irq(dev);
2888         }
2889         return 0;
2890 exit:
2891         return -ENOMEM;
2892 }
2893
2894 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
2895 {
2896         struct fe_priv *np = netdev_priv(dev);
2897
2898         pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
2899         pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
2900         pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
2901 }
2902
2903 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
2904 {
2905         struct fe_priv *np = netdev_priv(dev);
2906         int adv, bmcr;
2907
2908         if ((!np->autoneg && np->duplex == 0) ||
2909             (np->autoneg && !pause->autoneg && np->duplex == 0)) {
2910                 printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
2911                        dev->name);
2912                 return -EINVAL;
2913         }
2914         if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
2915                 printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
2916                 return -EINVAL;
2917         }
2918
2919         netif_carrier_off(dev);
2920         if (netif_running(dev)) {
2921                 nv_disable_irq(dev);
2922                 spin_lock_bh(&dev->xmit_lock);
2923                 spin_lock(&np->lock);
2924                 /* stop engines */
2925                 nv_stop_rx(dev);
2926                 nv_stop_tx(dev);
2927                 spin_unlock(&np->lock);
2928                 spin_unlock_bh(&dev->xmit_lock);
2929         }
2930
2931         np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
2932         if (pause->rx_pause)
2933                 np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
2934         if (pause->tx_pause)
2935                 np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
2936
2937         if (np->autoneg && pause->autoneg) {
2938                 np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
2939
2940                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2941                 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
2942                 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
2943                         adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
2944                 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2945                         adv |=  ADVERTISE_PAUSE_ASYM;
2946                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
2947
2948                 if (netif_running(dev))
2949                         printk(KERN_INFO "%s: link down.\n", dev->name);
2950                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2951                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
2952                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2953         } else {
2954                 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
2955                 if (pause->rx_pause)
2956                         np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2957                 if (pause->tx_pause)
2958                         np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2959
2960                 if (!netif_running(dev))
2961                         nv_update_linkspeed(dev);
2962                 else
2963                         nv_update_pause(dev, np->pause_flags);
2964         }
2965
2966         if (netif_running(dev)) {
2967                 nv_start_rx(dev);
2968                 nv_start_tx(dev);
2969                 nv_enable_irq(dev);
2970         }
2971         return 0;
2972 }
2973
2974 static struct ethtool_ops ops = {
2975         .get_drvinfo = nv_get_drvinfo,
2976         .get_link = ethtool_op_get_link,
2977         .get_wol = nv_get_wol,
2978         .set_wol = nv_set_wol,
2979         .get_settings = nv_get_settings,
2980         .set_settings = nv_set_settings,
2981         .get_regs_len = nv_get_regs_len,
2982         .get_regs = nv_get_regs,
2983         .nway_reset = nv_nway_reset,
2984         .get_perm_addr = ethtool_op_get_perm_addr,
2985         .get_tso = ethtool_op_get_tso,
2986         .set_tso = nv_set_tso,
2987         .get_ringparam = nv_get_ringparam,
2988         .set_ringparam = nv_set_ringparam,
2989         .get_pauseparam = nv_get_pauseparam,
2990         .set_pauseparam = nv_set_pauseparam,
2991 };
2992
2993 static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2994 {
2995         struct fe_priv *np = get_nvpriv(dev);
2996
2997         spin_lock_irq(&np->lock);
2998
2999         /* save vlan group */
3000         np->vlangrp = grp;
3001
3002         if (grp) {
3003                 /* enable vlan on MAC */
3004                 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
3005         } else {
3006                 /* disable vlan on MAC */
3007                 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
3008                 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
3009         }
3010
3011         writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3012
3013         spin_unlock_irq(&np->lock);
3014 };
3015
3016 static void nv_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
3017 {
3018         /* nothing to do */
3019 };
3020
3021 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
3022 {
3023         u8 __iomem *base = get_hwbase(dev);
3024         int i;
3025         u32 msixmap = 0;
3026
3027         /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
3028          * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
3029          * the remaining 8 interrupts.
3030          */
3031         for (i = 0; i < 8; i++) {
3032                 if ((irqmask >> i) & 0x1) {
3033                         msixmap |= vector << (i << 2);
3034                 }
3035         }
3036         writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
3037
3038         msixmap = 0;
3039         for (i = 0; i < 8; i++) {
3040                 if ((irqmask >> (i + 8)) & 0x1) {
3041                         msixmap |= vector << (i << 2);
3042                 }
3043         }
3044         writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
3045 }
3046
3047 static int nv_request_irq(struct net_device *dev)
3048 {
3049         struct fe_priv *np = get_nvpriv(dev);
3050         u8 __iomem *base = get_hwbase(dev);
3051         int ret = 1;
3052         int i;
3053
3054         if (np->msi_flags & NV_MSI_X_CAPABLE) {
3055                 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
3056                         np->msi_x_entry[i].entry = i;
3057                 }
3058                 if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
3059                         np->msi_flags |= NV_MSI_X_ENABLED;
3060                         if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
3061                                 /* Request irq for rx handling */
3062                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, SA_SHIRQ, dev->name, dev) != 0) {
3063                                         printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
3064                                         pci_disable_msix(np->pci_dev);
3065                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
3066                                         goto out_err;
3067                                 }
3068                                 /* Request irq for tx handling */
3069                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, SA_SHIRQ, dev->name, dev) != 0) {
3070                                         printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
3071                                         pci_disable_msix(np->pci_dev);
3072                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
3073                                         goto out_free_rx;
3074                                 }
3075                                 /* Request irq for link and timer handling */
3076                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, SA_SHIRQ, dev->name, dev) != 0) {
3077                                         printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
3078                                         pci_disable_msix(np->pci_dev);
3079                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
3080                                         goto out_free_tx;
3081                                 }
3082                                 /* map interrupts to their respective vector */
3083                                 writel(0, base + NvRegMSIXMap0);
3084                                 writel(0, base + NvRegMSIXMap1);
3085                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
3086                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
3087                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
3088                         } else {
3089                                 /* Request irq for all interrupts */
3090                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) {
3091                                         printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
3092                                         pci_disable_msix(np->pci_dev);
3093                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
3094                                         goto out_err;
3095                                 }
3096
3097                                 /* map interrupts to vector 0 */
3098                                 writel(0, base + NvRegMSIXMap0);
3099                                 writel(0, base + NvRegMSIXMap1);
3100                         }
3101                 }
3102         }
3103         if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
3104                 if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
3105                         np->msi_flags |= NV_MSI_ENABLED;
3106                         if (request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) {
3107                                 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
3108                                 pci_disable_msi(np->pci_dev);
3109                                 np->msi_flags &= ~NV_MSI_ENABLED;
3110                                 goto out_err;
3111                         }
3112
3113                         /* map interrupts to vector 0 */
3114                         writel(0, base + NvRegMSIMap0);
3115                         writel(0, base + NvRegMSIMap1);
3116                         /* enable msi vector 0 */
3117                         writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
3118                 }
3119         }
3120         if (ret != 0) {
3121                 if (request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0)
3122                         goto out_err;
3123         }
3124
3125         return 0;
3126 out_free_tx:
3127         free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
3128 out_free_rx:
3129         free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
3130 out_err:
3131         return 1;
3132 }
3133
3134 static void nv_free_irq(struct net_device *dev)
3135 {
3136         struct fe_priv *np = get_nvpriv(dev);
3137         int i;
3138
3139         if (np->msi_flags & NV_MSI_X_ENABLED) {
3140                 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
3141                         free_irq(np->msi_x_entry[i].vector, dev);
3142                 }
3143                 pci_disable_msix(np->pci_dev);
3144                 np->msi_flags &= ~NV_MSI_X_ENABLED;
3145         } else {
3146                 free_irq(np->pci_dev->irq, dev);
3147                 if (np->msi_flags & NV_MSI_ENABLED) {
3148                         pci_disable_msi(np->pci_dev);
3149                         np->msi_flags &= ~NV_MSI_ENABLED;
3150                 }
3151         }
3152 }
3153
3154 static int nv_open(struct net_device *dev)
3155 {
3156         struct fe_priv *np = netdev_priv(dev);
3157         u8 __iomem *base = get_hwbase(dev);
3158         int ret = 1;
3159         int oom, i;
3160
3161         dprintk(KERN_DEBUG "nv_open: begin\n");
3162
3163         /* 1) erase previous misconfiguration */
3164         if (np->driver_data & DEV_HAS_POWER_CNTRL)
3165                 nv_mac_reset(dev);
3166         /* 4.1-1: stop adapter: ignored, 4.3 seems to be overkill */
3167         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
3168         writel(0, base + NvRegMulticastAddrB);
3169         writel(0, base + NvRegMulticastMaskA);
3170         writel(0, base + NvRegMulticastMaskB);
3171         writel(0, base + NvRegPacketFilterFlags);
3172
3173         writel(0, base + NvRegTransmitterControl);
3174         writel(0, base + NvRegReceiverControl);
3175
3176         writel(0, base + NvRegAdapterControl);
3177
3178         if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
3179                 writel(NVREG_TX_PAUSEFRAME_DISABLE,  base + NvRegTxPauseFrame);
3180
3181         /* 2) initialize descriptor rings */
3182         set_bufsize(dev);
3183         oom = nv_init_ring(dev);
3184
3185         writel(0, base + NvRegLinkSpeed);
3186         writel(0, base + NvRegUnknownTransmitterReg);
3187         nv_txrx_reset(dev);
3188         writel(0, base + NvRegUnknownSetupReg6);
3189
3190         np->in_shutdown = 0;
3191
3192         /* 3) set mac address */
3193         nv_copy_mac_to_hw(dev);
3194
3195         /* 4) give hw rings */
3196         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3197         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3198                 base + NvRegRingSizes);
3199
3200         /* 5) continue setup */
3201         writel(np->linkspeed, base + NvRegLinkSpeed);
3202         writel(NVREG_UNKSETUP3_VAL1, base + NvRegUnknownSetupReg3);
3203         writel(np->txrxctl_bits, base + NvRegTxRxControl);
3204         writel(np->vlanctl_bits, base + NvRegVlanControl);
3205         pci_push(base);
3206         writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
3207         reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
3208                         NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
3209                         KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
3210
3211         writel(0, base + NvRegUnknownSetupReg4);
3212         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3213         writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
3214
3215         /* 6) continue setup */
3216         writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
3217         writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
3218         writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
3219         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3220
3221         writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
3222         get_random_bytes(&i, sizeof(i));
3223         writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
3224         writel(NVREG_UNKSETUP1_VAL, base + NvRegUnknownSetupReg1);
3225         writel(NVREG_UNKSETUP2_VAL, base + NvRegUnknownSetupReg2);
3226         if (poll_interval == -1) {
3227                 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
3228                         writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
3229                 else
3230                         writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
3231         }
3232         else
3233                 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
3234         writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
3235         writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
3236                         base + NvRegAdapterControl);
3237         writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
3238         writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
3239         writel(NVREG_WAKEUPFLAGS_VAL, base + NvRegWakeUpFlags);
3240
3241         i = readl(base + NvRegPowerState);
3242         if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
3243                 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
3244
3245         pci_push(base);
3246         udelay(10);
3247         writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
3248
3249         nv_disable_hw_interrupts(dev, np->irqmask);
3250         pci_push(base);
3251         writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
3252         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3253         pci_push(base);
3254
3255         if (nv_request_irq(dev)) {
3256                 goto out_drain;
3257         }
3258
3259         /* ask for interrupts */
3260         nv_enable_hw_interrupts(dev, np->irqmask);
3261
3262         spin_lock_irq(&np->lock);
3263         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
3264         writel(0, base + NvRegMulticastAddrB);
3265         writel(0, base + NvRegMulticastMaskA);
3266         writel(0, base + NvRegMulticastMaskB);
3267         writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
3268         /* One manual link speed update: Interrupts are enabled, future link
3269          * speed changes cause interrupts and are handled by nv_link_irq().
3270          */
3271         {
3272                 u32 miistat;
3273                 miistat = readl(base + NvRegMIIStatus);
3274                 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
3275                 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
3276         }
3277         /* set linkspeed to invalid value, thus force nv_update_linkspeed
3278          * to init hw */
3279         np->linkspeed = 0;
3280         ret = nv_update_linkspeed(dev);
3281         nv_start_rx(dev);
3282         nv_start_tx(dev);
3283         netif_start_queue(dev);
3284         if (ret) {
3285                 netif_carrier_on(dev);
3286         } else {
3287                 printk("%s: no link during initialization.\n", dev->name);
3288                 netif_carrier_off(dev);
3289         }
3290         if (oom)
3291                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3292         spin_unlock_irq(&np->lock);
3293
3294         return 0;
3295 out_drain:
3296         drain_ring(dev);
3297         return ret;
3298 }
3299
3300 static int nv_close(struct net_device *dev)
3301 {
3302         struct fe_priv *np = netdev_priv(dev);
3303         u8 __iomem *base;
3304
3305         spin_lock_irq(&np->lock);
3306         np->in_shutdown = 1;
3307         spin_unlock_irq(&np->lock);
3308         synchronize_irq(dev->irq);
3309
3310         del_timer_sync(&np->oom_kick);
3311         del_timer_sync(&np->nic_poll);
3312
3313         netif_stop_queue(dev);
3314         spin_lock_irq(&np->lock);
3315         nv_stop_tx(dev);
3316         nv_stop_rx(dev);
3317         nv_txrx_reset(dev);
3318
3319         /* disable interrupts on the nic or we will lock up */
3320         base = get_hwbase(dev);
3321         nv_disable_hw_interrupts(dev, np->irqmask);
3322         pci_push(base);
3323         dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
3324
3325         spin_unlock_irq(&np->lock);
3326
3327         nv_free_irq(dev);
3328
3329         drain_ring(dev);
3330
3331         if (np->wolenabled)
3332                 nv_start_rx(dev);
3333
3334         /* special op: write back the misordered MAC address - otherwise
3335          * the next nv_probe would see a wrong address.
3336          */
3337         writel(np->orig_mac[0], base + NvRegMacAddrA);
3338         writel(np->orig_mac[1], base + NvRegMacAddrB);
3339
3340         /* FIXME: power down nic */
3341
3342         return 0;
3343 }
3344
3345 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
3346 {
3347         struct net_device *dev;
3348         struct fe_priv *np;
3349         unsigned long addr;
3350         u8 __iomem *base;
3351         int err, i;
3352         u32 powerstate;
3353
3354         dev = alloc_etherdev(sizeof(struct fe_priv));
3355         err = -ENOMEM;
3356         if (!dev)
3357                 goto out;
3358
3359         np = netdev_priv(dev);
3360         np->pci_dev = pci_dev;
3361         spin_lock_init(&np->lock);
3362         SET_MODULE_OWNER(dev);
3363         SET_NETDEV_DEV(dev, &pci_dev->dev);
3364
3365         init_timer(&np->oom_kick);
3366         np->oom_kick.data = (unsigned long) dev;
3367         np->oom_kick.function = &nv_do_rx_refill;       /* timer handler */
3368         init_timer(&np->nic_poll);
3369         np->nic_poll.data = (unsigned long) dev;
3370         np->nic_poll.function = &nv_do_nic_poll;        /* timer handler */
3371
3372         err = pci_enable_device(pci_dev);
3373         if (err) {
3374                 printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
3375                                 err, pci_name(pci_dev));
3376                 goto out_free;
3377         }
3378
3379         pci_set_master(pci_dev);
3380
3381         err = pci_request_regions(pci_dev, DRV_NAME);
3382         if (err < 0)
3383                 goto out_disable;
3384
3385         if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL))
3386                 np->register_size = NV_PCI_REGSZ_VER2;
3387         else
3388                 np->register_size = NV_PCI_REGSZ_VER1;
3389
3390         err = -EINVAL;
3391         addr = 0;
3392         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3393                 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
3394                                 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
3395                                 pci_resource_len(pci_dev, i),
3396                                 pci_resource_flags(pci_dev, i));
3397                 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
3398                                 pci_resource_len(pci_dev, i) >= np->register_size) {
3399                         addr = pci_resource_start(pci_dev, i);
3400                         break;
3401                 }
3402         }
3403         if (i == DEVICE_COUNT_RESOURCE) {
3404                 printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
3405                                         pci_name(pci_dev));
3406                 goto out_relreg;
3407         }
3408
3409         /* copy of driver data */
3410         np->driver_data = id->driver_data;
3411
3412         /* handle different descriptor versions */
3413         if (id->driver_data & DEV_HAS_HIGH_DMA) {
3414                 /* packet format 3: supports 40-bit addressing */
3415                 np->desc_ver = DESC_VER_3;
3416                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
3417                 if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) {
3418                         printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
3419                                         pci_name(pci_dev));
3420                 } else {
3421                         dev->features |= NETIF_F_HIGHDMA;
3422                         printk(KERN_INFO "forcedeth: using HIGHDMA\n");
3423                 }
3424                 if (pci_set_consistent_dma_mask(pci_dev, 0x0000007fffffffffULL)) {
3425                         printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed for device %s.\n",
3426                                pci_name(pci_dev));
3427                 }
3428         } else if (id->driver_data & DEV_HAS_LARGEDESC) {
3429                 /* packet format 2: supports jumbo frames */
3430                 np->desc_ver = DESC_VER_2;
3431                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
3432         } else {
3433                 /* original packet format */
3434                 np->desc_ver = DESC_VER_1;
3435                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
3436         }
3437
3438         np->pkt_limit = NV_PKTLIMIT_1;
3439         if (id->driver_data & DEV_HAS_LARGEDESC)
3440                 np->pkt_limit = NV_PKTLIMIT_2;
3441
3442         if (id->driver_data & DEV_HAS_CHECKSUM) {
3443                 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
3444                 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
3445 #ifdef NETIF_F_TSO
3446                 dev->features |= NETIF_F_TSO;
3447 #endif
3448         }
3449
3450         np->vlanctl_bits = 0;
3451         if (id->driver_data & DEV_HAS_VLAN) {
3452                 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
3453                 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
3454                 dev->vlan_rx_register = nv_vlan_rx_register;
3455                 dev->vlan_rx_kill_vid = nv_vlan_rx_kill_vid;
3456         }
3457
3458         np->msi_flags = 0;
3459         if ((id->driver_data & DEV_HAS_MSI) && !disable_msi) {
3460                 np->msi_flags |= NV_MSI_CAPABLE;
3461         }
3462         if ((id->driver_data & DEV_HAS_MSI_X) && !disable_msix) {
3463                 np->msi_flags |= NV_MSI_X_CAPABLE;
3464         }
3465
3466         np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
3467         if (id->driver_data & DEV_HAS_PAUSEFRAME_TX) {
3468                 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
3469         }
3470
3471
3472         err = -ENOMEM;
3473         np->base = ioremap(addr, np->register_size);
3474         if (!np->base)
3475                 goto out_relreg;
3476         dev->base_addr = (unsigned long)np->base;
3477
3478         dev->irq = pci_dev->irq;
3479
3480         np->rx_ring_size = RX_RING_DEFAULT;
3481         np->tx_ring_size = TX_RING_DEFAULT;
3482         np->tx_limit_stop = np->tx_ring_size - TX_LIMIT_DIFFERENCE;
3483         np->tx_limit_start = np->tx_ring_size - TX_LIMIT_DIFFERENCE - 1;
3484
3485         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3486                 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
3487                                         sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
3488                                         &np->ring_addr);
3489                 if (!np->rx_ring.orig)
3490                         goto out_unmap;
3491                 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
3492         } else {
3493                 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
3494                                         sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
3495                                         &np->ring_addr);
3496                 if (!np->rx_ring.ex)
3497                         goto out_unmap;
3498                 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
3499         }
3500         np->rx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->rx_ring_size, GFP_KERNEL);
3501         np->rx_dma = kmalloc(sizeof(dma_addr_t) * np->rx_ring_size, GFP_KERNEL);
3502         np->tx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->tx_ring_size, GFP_KERNEL);
3503         np->tx_dma = kmalloc(sizeof(dma_addr_t) * np->tx_ring_size, GFP_KERNEL);
3504         np->tx_dma_len = kmalloc(sizeof(unsigned int) * np->tx_ring_size, GFP_KERNEL);
3505         if (!np->rx_skbuff || !np->rx_dma || !np->tx_skbuff || !np->tx_dma || !np->tx_dma_len)
3506                 goto out_freering;
3507         memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
3508         memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
3509         memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
3510         memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
3511         memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
3512
3513         dev->open = nv_open;
3514         dev->stop = nv_close;
3515         dev->hard_start_xmit = nv_start_xmit;
3516         dev->get_stats = nv_get_stats;
3517         dev->change_mtu = nv_change_mtu;
3518         dev->set_mac_address = nv_set_mac_address;
3519         dev->set_multicast_list = nv_set_multicast;
3520 #ifdef CONFIG_NET_POLL_CONTROLLER
3521         dev->poll_controller = nv_poll_controller;
3522 #endif
3523         SET_ETHTOOL_OPS(dev, &ops);
3524         dev->tx_timeout = nv_tx_timeout;
3525         dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
3526
3527         pci_set_drvdata(pci_dev, dev);
3528
3529         /* read the mac address */
3530         base = get_hwbase(dev);
3531         np->orig_mac[0] = readl(base + NvRegMacAddrA);
3532         np->orig_mac[1] = readl(base + NvRegMacAddrB);
3533
3534         dev->dev_addr[0] = (np->orig_mac[1] >>  8) & 0xff;
3535         dev->dev_addr[1] = (np->orig_mac[1] >>  0) & 0xff;
3536         dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
3537         dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
3538         dev->dev_addr[4] = (np->orig_mac[0] >>  8) & 0xff;
3539         dev->dev_addr[5] = (np->orig_mac[0] >>  0) & 0xff;
3540         memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3541
3542         if (!is_valid_ether_addr(dev->perm_addr)) {
3543                 /*
3544                  * Bad mac address. At least one bios sets the mac address
3545                  * to 01:23:45:67:89:ab
3546                  */
3547                 printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
3548                         pci_name(pci_dev),
3549                         dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
3550                         dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
3551                 printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
3552                 dev->dev_addr[0] = 0x00;
3553                 dev->dev_addr[1] = 0x00;
3554                 dev->dev_addr[2] = 0x6c;
3555                 get_random_bytes(&dev->dev_addr[3], 3);
3556         }
3557
3558         dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
3559                         dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
3560                         dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
3561
3562         /* disable WOL */
3563         writel(0, base + NvRegWakeUpFlags);
3564         np->wolenabled = 0;
3565
3566         if (id->driver_data & DEV_HAS_POWER_CNTRL) {
3567                 u8 revision_id;
3568                 pci_read_config_byte(pci_dev, PCI_REVISION_ID, &revision_id);
3569
3570                 /* take phy and nic out of low power mode */
3571                 powerstate = readl(base + NvRegPowerState2);
3572                 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
3573                 if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
3574                      id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
3575                     revision_id >= 0xA3)
3576                         powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
3577                 writel(powerstate, base + NvRegPowerState2);
3578         }
3579
3580         if (np->desc_ver == DESC_VER_1) {
3581                 np->tx_flags = NV_TX_VALID;
3582         } else {
3583                 np->tx_flags = NV_TX2_VALID;
3584         }
3585         if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
3586                 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
3587                 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
3588                         np->msi_flags |= 0x0003;
3589         } else {
3590                 np->irqmask = NVREG_IRQMASK_CPU;
3591                 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
3592                         np->msi_flags |= 0x0001;
3593         }
3594
3595         if (id->driver_data & DEV_NEED_TIMERIRQ)
3596                 np->irqmask |= NVREG_IRQ_TIMER;
3597         if (id->driver_data & DEV_NEED_LINKTIMER) {
3598                 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
3599                 np->need_linktimer = 1;
3600                 np->link_timeout = jiffies + LINK_TIMEOUT;
3601         } else {
3602                 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
3603                 np->need_linktimer = 0;
3604         }
3605
3606         /* find a suitable phy */
3607         for (i = 1; i <= 32; i++) {
3608                 int id1, id2;
3609                 int phyaddr = i & 0x1F;
3610
3611                 spin_lock_irq(&np->lock);
3612                 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
3613                 spin_unlock_irq(&np->lock);
3614                 if (id1 < 0 || id1 == 0xffff)
3615                         continue;
3616                 spin_lock_irq(&np->lock);
3617                 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
3618                 spin_unlock_irq(&np->lock);
3619                 if (id2 < 0 || id2 == 0xffff)
3620                         continue;
3621
3622                 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
3623                 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
3624                 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
3625                         pci_name(pci_dev), id1, id2, phyaddr);
3626                 np->phyaddr = phyaddr;
3627                 np->phy_oui = id1 | id2;
3628                 break;
3629         }
3630         if (i == 33) {
3631                 printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
3632                        pci_name(pci_dev));
3633                 goto out_error;
3634         }
3635
3636         /* reset it */
3637         phy_init(dev);
3638
3639         /* set default link speed settings */
3640         np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3641         np->duplex = 0;
3642         np->autoneg = 1;
3643
3644         err = register_netdev(dev);
3645         if (err) {
3646                 printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
3647                 goto out_error;
3648         }
3649         printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
3650                         dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
3651                         pci_name(pci_dev));
3652
3653         return 0;
3654
3655 out_error:
3656         pci_set_drvdata(pci_dev, NULL);
3657 out_freering:
3658         free_rings(dev);
3659 out_unmap:
3660         iounmap(get_hwbase(dev));
3661 out_relreg:
3662         pci_release_regions(pci_dev);
3663 out_disable:
3664         pci_disable_device(pci_dev);
3665 out_free:
3666         free_netdev(dev);
3667 out:
3668         return err;
3669 }
3670
3671 static void __devexit nv_remove(struct pci_dev *pci_dev)
3672 {
3673         struct net_device *dev = pci_get_drvdata(pci_dev);
3674
3675         unregister_netdev(dev);
3676
3677         /* free all structures */
3678         free_rings(dev);
3679         iounmap(get_hwbase(dev));
3680         pci_release_regions(pci_dev);
3681         pci_disable_device(pci_dev);
3682         free_netdev(dev);
3683         pci_set_drvdata(pci_dev, NULL);
3684 }
3685
3686 static struct pci_device_id pci_tbl[] = {
3687         {       /* nForce Ethernet Controller */
3688                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
3689                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
3690         },
3691         {       /* nForce2 Ethernet Controller */
3692                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
3693                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
3694         },
3695         {       /* nForce3 Ethernet Controller */
3696                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
3697                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
3698         },
3699         {       /* nForce3 Ethernet Controller */
3700                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
3701                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
3702         },
3703         {       /* nForce3 Ethernet Controller */
3704                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
3705                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
3706         },
3707         {       /* nForce3 Ethernet Controller */
3708                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
3709                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
3710         },
3711         {       /* nForce3 Ethernet Controller */
3712                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
3713                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
3714         },
3715         {       /* CK804 Ethernet Controller */
3716                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
3717                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
3718         },
3719         {       /* CK804 Ethernet Controller */
3720                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
3721                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
3722         },
3723         {       /* MCP04 Ethernet Controller */
3724                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
3725                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
3726         },
3727         {       /* MCP04 Ethernet Controller */
3728                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
3729                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
3730         },
3731         {       /* MCP51 Ethernet Controller */
3732                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
3733                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
3734         },
3735         {       /* MCP51 Ethernet Controller */
3736                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
3737                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
3738         },
3739         {       /* MCP55 Ethernet Controller */
3740                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
3741                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX,
3742         },
3743         {       /* MCP55 Ethernet Controller */
3744                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
3745                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX,
3746         },
3747         {0,},
3748 };
3749
3750 static struct pci_driver driver = {
3751         .name = "forcedeth",
3752         .id_table = pci_tbl,
3753         .probe = nv_probe,
3754         .remove = __devexit_p(nv_remove),
3755 };
3756
3757
3758 static int __init init_nic(void)
3759 {
3760         printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
3761         return pci_module_init(&driver);
3762 }
3763
3764 static void __exit exit_nic(void)
3765 {
3766         pci_unregister_driver(&driver);
3767 }
3768
3769 module_param(max_interrupt_work, int, 0);
3770 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
3771 module_param(optimization_mode, int, 0);
3772 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
3773 module_param(poll_interval, int, 0);
3774 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
3775 module_param(disable_msi, int, 0);
3776 MODULE_PARM_DESC(disable_msi, "Disable MSI interrupts by setting to 1.");
3777 module_param(disable_msix, int, 0);
3778 MODULE_PARM_DESC(disable_msix, "Disable MSIX interrupts by setting to 1.");
3779
3780 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
3781 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
3782 MODULE_LICENSE("GPL");
3783
3784 MODULE_DEVICE_TABLE(pci, pci_tbl);
3785
3786 module_init(init_nic);
3787 module_exit(exit_nic);