[PATCH] forcedeth: deferral fixup
[safe/jmp/linux-2.6] / drivers / net / forcedeth.c
1 /*
2  * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3  *
4  * Note: This driver is a cleanroom reimplementation based on reverse
5  *      engineered documentation written by Carl-Daniel Hailfinger
6  *      and Andrew de Quincey. It's neither supported nor endorsed
7  *      by NVIDIA Corp. Use at your own risk.
8  *
9  * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
10  * trademarks of NVIDIA Corporation in the United States and other
11  * countries.
12  *
13  * Copyright (C) 2003,4,5 Manfred Spraul
14  * Copyright (C) 2004 Andrew de Quincey (wol support)
15  * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
16  *              IRQ rate fixes, bigendian fixes, cleanups, verification)
17  * Copyright (c) 2004 NVIDIA Corporation
18  *
19  * This program is free software; you can redistribute it and/or modify
20  * it under the terms of the GNU General Public License as published by
21  * the Free Software Foundation; either version 2 of the License, or
22  * (at your option) any later version.
23  *
24  * This program is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
27  * GNU General Public License for more details.
28  *
29  * You should have received a copy of the GNU General Public License
30  * along with this program; if not, write to the Free Software
31  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
32  *
33  * Changelog:
34  *      0.01: 05 Oct 2003: First release that compiles without warnings.
35  *      0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
36  *                         Check all PCI BARs for the register window.
37  *                         udelay added to mii_rw.
38  *      0.03: 06 Oct 2003: Initialize dev->irq.
39  *      0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
40  *      0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
41  *      0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
42  *                         irq mask updated
43  *      0.07: 14 Oct 2003: Further irq mask updates.
44  *      0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
45  *                         added into irq handler, NULL check for drain_ring.
46  *      0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
47  *                         requested interrupt sources.
48  *      0.10: 20 Oct 2003: First cleanup for release.
49  *      0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
50  *                         MAC Address init fix, set_multicast cleanup.
51  *      0.12: 23 Oct 2003: Cleanups for release.
52  *      0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
53  *                         Set link speed correctly. start rx before starting
54  *                         tx (nv_start_rx sets the link speed).
55  *      0.14: 25 Oct 2003: Nic dependant irq mask.
56  *      0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
57  *                         open.
58  *      0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
59  *                         increased to 1628 bytes.
60  *      0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
61  *                         the tx length.
62  *      0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
63  *      0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
64  *                         addresses, really stop rx if already running
65  *                         in nv_start_rx, clean up a bit.
66  *      0.20: 07 Dec 2003: alloc fixes
67  *      0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
68  *      0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
69  *                         on close.
70  *      0.23: 26 Jan 2004: various small cleanups
71  *      0.24: 27 Feb 2004: make driver even less anonymous in backtraces
72  *      0.25: 09 Mar 2004: wol support
73  *      0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
74  *      0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
75  *                         added CK804/MCP04 device IDs, code fixes
76  *                         for registers, link status and other minor fixes.
77  *      0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
78  *      0.29: 31 Aug 2004: Add backup timer for link change notification.
79  *      0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
80  *                         into nv_close, otherwise reenabling for wol can
81  *                         cause DMA to kfree'd memory.
82  *      0.31: 14 Nov 2004: ethtool support for getting/setting link
83  *                         capabilities.
84  *      0.32: 16 Apr 2005: RX_ERROR4 handling added.
85  *      0.33: 16 May 2005: Support for MCP51 added.
86  *      0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
87  *      0.35: 26 Jun 2005: Support for MCP55 added.
88  *      0.36: 28 Jun 2005: Add jumbo frame support.
89  *      0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
90  *      0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
91  *                         per-packet flags.
92  *      0.39: 18 Jul 2005: Add 64bit descriptor support.
93  *      0.40: 19 Jul 2005: Add support for mac address change.
94  *      0.41: 30 Jul 2005: Write back original MAC in nv_close instead
95  *                         of nv_remove
96  *      0.42: 06 Aug 2005: Fix lack of link speed initialization
97  *                         in the second (and later) nv_open call
98  *      0.43: 10 Aug 2005: Add support for tx checksum.
99  *      0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
100  *      0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
101  *      0.46: 20 Oct 2005: Add irq optimization modes.
102  *      0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
103  *      0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
104  *      0.49: 10 Dec 2005: Fix tso for large buffers.
105  *      0.50: 20 Jan 2006: Add 8021pq tagging support.
106  *      0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
107  *      0.52: 20 Jan 2006: Add MSI/MSIX support.
108  *      0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
109  *      0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
110  *      0.55: 22 Mar 2006: Add flow control (pause frame).
111  *      0.56: 22 Mar 2006: Additional ethtool config and moduleparam support.
112  *
113  * Known bugs:
114  * We suspect that on some hardware no TX done interrupts are generated.
115  * This means recovery from netif_stop_queue only happens if the hw timer
116  * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
117  * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
118  * If your hardware reliably generates tx done interrupts, then you can remove
119  * DEV_NEED_TIMERIRQ from the driver_data flags.
120  * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
121  * superfluous timer interrupts from the nic.
122  */
123 #define FORCEDETH_VERSION               "0.56"
124 #define DRV_NAME                        "forcedeth"
125
126 #include <linux/module.h>
127 #include <linux/types.h>
128 #include <linux/pci.h>
129 #include <linux/interrupt.h>
130 #include <linux/netdevice.h>
131 #include <linux/etherdevice.h>
132 #include <linux/delay.h>
133 #include <linux/spinlock.h>
134 #include <linux/ethtool.h>
135 #include <linux/timer.h>
136 #include <linux/skbuff.h>
137 #include <linux/mii.h>
138 #include <linux/random.h>
139 #include <linux/init.h>
140 #include <linux/if_vlan.h>
141 #include <linux/dma-mapping.h>
142
143 #include <asm/irq.h>
144 #include <asm/io.h>
145 #include <asm/uaccess.h>
146 #include <asm/system.h>
147
148 #if 0
149 #define dprintk                 printk
150 #else
151 #define dprintk(x...)           do { } while (0)
152 #endif
153
154
155 /*
156  * Hardware access:
157  */
158
159 #define DEV_NEED_TIMERIRQ       0x0001  /* set the timer irq flag in the irq mask */
160 #define DEV_NEED_LINKTIMER      0x0002  /* poll link settings. Relies on the timer irq */
161 #define DEV_HAS_LARGEDESC       0x0004  /* device supports jumbo frames and needs packet format 2 */
162 #define DEV_HAS_HIGH_DMA        0x0008  /* device supports 64bit dma */
163 #define DEV_HAS_CHECKSUM        0x0010  /* device supports tx and rx checksum offloads */
164 #define DEV_HAS_VLAN            0x0020  /* device supports vlan tagging and striping */
165 #define DEV_HAS_MSI             0x0040  /* device supports MSI */
166 #define DEV_HAS_MSI_X           0x0080  /* device supports MSI-X */
167 #define DEV_HAS_POWER_CNTRL     0x0100  /* device supports power savings */
168 #define DEV_HAS_PAUSEFRAME_TX   0x0200  /* device supports tx pause frames */
169 #define DEV_HAS_STATISTICS      0x0400  /* device supports hw statistics */
170 #define DEV_HAS_TEST_EXTENDED   0x0800  /* device supports extended diagnostic test */
171
172 enum {
173         NvRegIrqStatus = 0x000,
174 #define NVREG_IRQSTAT_MIIEVENT  0x040
175 #define NVREG_IRQSTAT_MASK              0x1ff
176         NvRegIrqMask = 0x004,
177 #define NVREG_IRQ_RX_ERROR              0x0001
178 #define NVREG_IRQ_RX                    0x0002
179 #define NVREG_IRQ_RX_NOBUF              0x0004
180 #define NVREG_IRQ_TX_ERR                0x0008
181 #define NVREG_IRQ_TX_OK                 0x0010
182 #define NVREG_IRQ_TIMER                 0x0020
183 #define NVREG_IRQ_LINK                  0x0040
184 #define NVREG_IRQ_RX_FORCED             0x0080
185 #define NVREG_IRQ_TX_FORCED             0x0100
186 #define NVREG_IRQMASK_THROUGHPUT        0x00df
187 #define NVREG_IRQMASK_CPU               0x0040
188 #define NVREG_IRQ_TX_ALL                (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
189 #define NVREG_IRQ_RX_ALL                (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
190 #define NVREG_IRQ_OTHER                 (NVREG_IRQ_TIMER|NVREG_IRQ_LINK)
191
192 #define NVREG_IRQ_UNKNOWN       (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
193                                         NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
194                                         NVREG_IRQ_TX_FORCED))
195
196         NvRegUnknownSetupReg6 = 0x008,
197 #define NVREG_UNKSETUP6_VAL             3
198
199 /*
200  * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
201  * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
202  */
203         NvRegPollingInterval = 0x00c,
204 #define NVREG_POLL_DEFAULT_THROUGHPUT   970
205 #define NVREG_POLL_DEFAULT_CPU  13
206         NvRegMSIMap0 = 0x020,
207         NvRegMSIMap1 = 0x024,
208         NvRegMSIIrqMask = 0x030,
209 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
210         NvRegMisc1 = 0x080,
211 #define NVREG_MISC1_PAUSE_TX    0x01
212 #define NVREG_MISC1_HD          0x02
213 #define NVREG_MISC1_FORCE       0x3b0f3c
214
215         NvRegMacReset = 0x3c,
216 #define NVREG_MAC_RESET_ASSERT  0x0F3
217         NvRegTransmitterControl = 0x084,
218 #define NVREG_XMITCTL_START     0x01
219         NvRegTransmitterStatus = 0x088,
220 #define NVREG_XMITSTAT_BUSY     0x01
221
222         NvRegPacketFilterFlags = 0x8c,
223 #define NVREG_PFF_PAUSE_RX      0x08
224 #define NVREG_PFF_ALWAYS        0x7F0000
225 #define NVREG_PFF_PROMISC       0x80
226 #define NVREG_PFF_MYADDR        0x20
227 #define NVREG_PFF_LOOPBACK      0x10
228
229         NvRegOffloadConfig = 0x90,
230 #define NVREG_OFFLOAD_HOMEPHY   0x601
231 #define NVREG_OFFLOAD_NORMAL    RX_NIC_BUFSIZE
232         NvRegReceiverControl = 0x094,
233 #define NVREG_RCVCTL_START      0x01
234         NvRegReceiverStatus = 0x98,
235 #define NVREG_RCVSTAT_BUSY      0x01
236
237         NvRegRandomSeed = 0x9c,
238 #define NVREG_RNDSEED_MASK      0x00ff
239 #define NVREG_RNDSEED_FORCE     0x7f00
240 #define NVREG_RNDSEED_FORCE2    0x2d00
241 #define NVREG_RNDSEED_FORCE3    0x7400
242
243         NvRegTxDeferral = 0xA0,
244 #define NVREG_TX_DEFERRAL_DEFAULT       0x15050f
245 #define NVREG_TX_DEFERRAL_RGMII_10_100  0x16070f
246 #define NVREG_TX_DEFERRAL_RGMII_1000    0x14050f
247         NvRegRxDeferral = 0xA4,
248 #define NVREG_RX_DEFERRAL_DEFAULT       0x16
249         NvRegMacAddrA = 0xA8,
250         NvRegMacAddrB = 0xAC,
251         NvRegMulticastAddrA = 0xB0,
252 #define NVREG_MCASTADDRA_FORCE  0x01
253         NvRegMulticastAddrB = 0xB4,
254         NvRegMulticastMaskA = 0xB8,
255         NvRegMulticastMaskB = 0xBC,
256
257         NvRegPhyInterface = 0xC0,
258 #define PHY_RGMII               0x10000000
259
260         NvRegTxRingPhysAddr = 0x100,
261         NvRegRxRingPhysAddr = 0x104,
262         NvRegRingSizes = 0x108,
263 #define NVREG_RINGSZ_TXSHIFT 0
264 #define NVREG_RINGSZ_RXSHIFT 16
265         NvRegUnknownTransmitterReg = 0x10c,
266         NvRegLinkSpeed = 0x110,
267 #define NVREG_LINKSPEED_FORCE 0x10000
268 #define NVREG_LINKSPEED_10      1000
269 #define NVREG_LINKSPEED_100     100
270 #define NVREG_LINKSPEED_1000    50
271 #define NVREG_LINKSPEED_MASK    (0xFFF)
272         NvRegUnknownSetupReg5 = 0x130,
273 #define NVREG_UNKSETUP5_BIT31   (1<<31)
274         NvRegUnknownSetupReg3 = 0x13c,
275 #define NVREG_UNKSETUP3_VAL1    0x200010
276         NvRegTxRxControl = 0x144,
277 #define NVREG_TXRXCTL_KICK      0x0001
278 #define NVREG_TXRXCTL_BIT1      0x0002
279 #define NVREG_TXRXCTL_BIT2      0x0004
280 #define NVREG_TXRXCTL_IDLE      0x0008
281 #define NVREG_TXRXCTL_RESET     0x0010
282 #define NVREG_TXRXCTL_RXCHECK   0x0400
283 #define NVREG_TXRXCTL_DESC_1    0
284 #define NVREG_TXRXCTL_DESC_2    0x02100
285 #define NVREG_TXRXCTL_DESC_3    0x02200
286 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
287 #define NVREG_TXRXCTL_VLANINS   0x00080
288         NvRegTxRingPhysAddrHigh = 0x148,
289         NvRegRxRingPhysAddrHigh = 0x14C,
290         NvRegTxPauseFrame = 0x170,
291 #define NVREG_TX_PAUSEFRAME_DISABLE     0x1ff0080
292 #define NVREG_TX_PAUSEFRAME_ENABLE      0x0c00030
293         NvRegMIIStatus = 0x180,
294 #define NVREG_MIISTAT_ERROR             0x0001
295 #define NVREG_MIISTAT_LINKCHANGE        0x0008
296 #define NVREG_MIISTAT_MASK              0x000f
297 #define NVREG_MIISTAT_MASK2             0x000f
298         NvRegUnknownSetupReg4 = 0x184,
299 #define NVREG_UNKSETUP4_VAL     8
300
301         NvRegAdapterControl = 0x188,
302 #define NVREG_ADAPTCTL_START    0x02
303 #define NVREG_ADAPTCTL_LINKUP   0x04
304 #define NVREG_ADAPTCTL_PHYVALID 0x40000
305 #define NVREG_ADAPTCTL_RUNNING  0x100000
306 #define NVREG_ADAPTCTL_PHYSHIFT 24
307         NvRegMIISpeed = 0x18c,
308 #define NVREG_MIISPEED_BIT8     (1<<8)
309 #define NVREG_MIIDELAY  5
310         NvRegMIIControl = 0x190,
311 #define NVREG_MIICTL_INUSE      0x08000
312 #define NVREG_MIICTL_WRITE      0x00400
313 #define NVREG_MIICTL_ADDRSHIFT  5
314         NvRegMIIData = 0x194,
315         NvRegWakeUpFlags = 0x200,
316 #define NVREG_WAKEUPFLAGS_VAL           0x7770
317 #define NVREG_WAKEUPFLAGS_BUSYSHIFT     24
318 #define NVREG_WAKEUPFLAGS_ENABLESHIFT   16
319 #define NVREG_WAKEUPFLAGS_D3SHIFT       12
320 #define NVREG_WAKEUPFLAGS_D2SHIFT       8
321 #define NVREG_WAKEUPFLAGS_D1SHIFT       4
322 #define NVREG_WAKEUPFLAGS_D0SHIFT       0
323 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT         0x01
324 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT      0x02
325 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE     0x04
326 #define NVREG_WAKEUPFLAGS_ENABLE        0x1111
327
328         NvRegPatternCRC = 0x204,
329         NvRegPatternMask = 0x208,
330         NvRegPowerCap = 0x268,
331 #define NVREG_POWERCAP_D3SUPP   (1<<30)
332 #define NVREG_POWERCAP_D2SUPP   (1<<26)
333 #define NVREG_POWERCAP_D1SUPP   (1<<25)
334         NvRegPowerState = 0x26c,
335 #define NVREG_POWERSTATE_POWEREDUP      0x8000
336 #define NVREG_POWERSTATE_VALID          0x0100
337 #define NVREG_POWERSTATE_MASK           0x0003
338 #define NVREG_POWERSTATE_D0             0x0000
339 #define NVREG_POWERSTATE_D1             0x0001
340 #define NVREG_POWERSTATE_D2             0x0002
341 #define NVREG_POWERSTATE_D3             0x0003
342         NvRegTxCnt = 0x280,
343         NvRegTxZeroReXmt = 0x284,
344         NvRegTxOneReXmt = 0x288,
345         NvRegTxManyReXmt = 0x28c,
346         NvRegTxLateCol = 0x290,
347         NvRegTxUnderflow = 0x294,
348         NvRegTxLossCarrier = 0x298,
349         NvRegTxExcessDef = 0x29c,
350         NvRegTxRetryErr = 0x2a0,
351         NvRegRxFrameErr = 0x2a4,
352         NvRegRxExtraByte = 0x2a8,
353         NvRegRxLateCol = 0x2ac,
354         NvRegRxRunt = 0x2b0,
355         NvRegRxFrameTooLong = 0x2b4,
356         NvRegRxOverflow = 0x2b8,
357         NvRegRxFCSErr = 0x2bc,
358         NvRegRxFrameAlignErr = 0x2c0,
359         NvRegRxLenErr = 0x2c4,
360         NvRegRxUnicast = 0x2c8,
361         NvRegRxMulticast = 0x2cc,
362         NvRegRxBroadcast = 0x2d0,
363         NvRegTxDef = 0x2d4,
364         NvRegTxFrame = 0x2d8,
365         NvRegRxCnt = 0x2dc,
366         NvRegTxPause = 0x2e0,
367         NvRegRxPause = 0x2e4,
368         NvRegRxDropFrame = 0x2e8,
369         NvRegVlanControl = 0x300,
370 #define NVREG_VLANCONTROL_ENABLE        0x2000
371         NvRegMSIXMap0 = 0x3e0,
372         NvRegMSIXMap1 = 0x3e4,
373         NvRegMSIXIrqStatus = 0x3f0,
374
375         NvRegPowerState2 = 0x600,
376 #define NVREG_POWERSTATE2_POWERUP_MASK          0x0F11
377 #define NVREG_POWERSTATE2_POWERUP_REV_A3        0x0001
378 };
379
380 /* Big endian: should work, but is untested */
381 struct ring_desc {
382         u32 PacketBuffer;
383         u32 FlagLen;
384 };
385
386 struct ring_desc_ex {
387         u32 PacketBufferHigh;
388         u32 PacketBufferLow;
389         u32 TxVlan;
390         u32 FlagLen;
391 };
392
393 typedef union _ring_type {
394         struct ring_desc* orig;
395         struct ring_desc_ex* ex;
396 } ring_type;
397
398 #define FLAG_MASK_V1 0xffff0000
399 #define FLAG_MASK_V2 0xffffc000
400 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
401 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
402
403 #define NV_TX_LASTPACKET        (1<<16)
404 #define NV_TX_RETRYERROR        (1<<19)
405 #define NV_TX_FORCED_INTERRUPT  (1<<24)
406 #define NV_TX_DEFERRED          (1<<26)
407 #define NV_TX_CARRIERLOST       (1<<27)
408 #define NV_TX_LATECOLLISION     (1<<28)
409 #define NV_TX_UNDERFLOW         (1<<29)
410 #define NV_TX_ERROR             (1<<30)
411 #define NV_TX_VALID             (1<<31)
412
413 #define NV_TX2_LASTPACKET       (1<<29)
414 #define NV_TX2_RETRYERROR       (1<<18)
415 #define NV_TX2_FORCED_INTERRUPT (1<<30)
416 #define NV_TX2_DEFERRED         (1<<25)
417 #define NV_TX2_CARRIERLOST      (1<<26)
418 #define NV_TX2_LATECOLLISION    (1<<27)
419 #define NV_TX2_UNDERFLOW        (1<<28)
420 /* error and valid are the same for both */
421 #define NV_TX2_ERROR            (1<<30)
422 #define NV_TX2_VALID            (1<<31)
423 #define NV_TX2_TSO              (1<<28)
424 #define NV_TX2_TSO_SHIFT        14
425 #define NV_TX2_TSO_MAX_SHIFT    14
426 #define NV_TX2_TSO_MAX_SIZE     (1<<NV_TX2_TSO_MAX_SHIFT)
427 #define NV_TX2_CHECKSUM_L3      (1<<27)
428 #define NV_TX2_CHECKSUM_L4      (1<<26)
429
430 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
431
432 #define NV_RX_DESCRIPTORVALID   (1<<16)
433 #define NV_RX_MISSEDFRAME       (1<<17)
434 #define NV_RX_SUBSTRACT1        (1<<18)
435 #define NV_RX_ERROR1            (1<<23)
436 #define NV_RX_ERROR2            (1<<24)
437 #define NV_RX_ERROR3            (1<<25)
438 #define NV_RX_ERROR4            (1<<26)
439 #define NV_RX_CRCERR            (1<<27)
440 #define NV_RX_OVERFLOW          (1<<28)
441 #define NV_RX_FRAMINGERR        (1<<29)
442 #define NV_RX_ERROR             (1<<30)
443 #define NV_RX_AVAIL             (1<<31)
444
445 #define NV_RX2_CHECKSUMMASK     (0x1C000000)
446 #define NV_RX2_CHECKSUMOK1      (0x10000000)
447 #define NV_RX2_CHECKSUMOK2      (0x14000000)
448 #define NV_RX2_CHECKSUMOK3      (0x18000000)
449 #define NV_RX2_DESCRIPTORVALID  (1<<29)
450 #define NV_RX2_SUBSTRACT1       (1<<25)
451 #define NV_RX2_ERROR1           (1<<18)
452 #define NV_RX2_ERROR2           (1<<19)
453 #define NV_RX2_ERROR3           (1<<20)
454 #define NV_RX2_ERROR4           (1<<21)
455 #define NV_RX2_CRCERR           (1<<22)
456 #define NV_RX2_OVERFLOW         (1<<23)
457 #define NV_RX2_FRAMINGERR       (1<<24)
458 /* error and avail are the same for both */
459 #define NV_RX2_ERROR            (1<<30)
460 #define NV_RX2_AVAIL            (1<<31)
461
462 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
463 #define NV_RX3_VLAN_TAG_MASK    (0x0000FFFF)
464
465 /* Miscelaneous hardware related defines: */
466 #define NV_PCI_REGSZ_VER1       0x270
467 #define NV_PCI_REGSZ_VER2       0x604
468
469 /* various timeout delays: all in usec */
470 #define NV_TXRX_RESET_DELAY     4
471 #define NV_TXSTOP_DELAY1        10
472 #define NV_TXSTOP_DELAY1MAX     500000
473 #define NV_TXSTOP_DELAY2        100
474 #define NV_RXSTOP_DELAY1        10
475 #define NV_RXSTOP_DELAY1MAX     500000
476 #define NV_RXSTOP_DELAY2        100
477 #define NV_SETUP5_DELAY         5
478 #define NV_SETUP5_DELAYMAX      50000
479 #define NV_POWERUP_DELAY        5
480 #define NV_POWERUP_DELAYMAX     5000
481 #define NV_MIIBUSY_DELAY        50
482 #define NV_MIIPHY_DELAY 10
483 #define NV_MIIPHY_DELAYMAX      10000
484 #define NV_MAC_RESET_DELAY      64
485
486 #define NV_WAKEUPPATTERNS       5
487 #define NV_WAKEUPMASKENTRIES    4
488
489 /* General driver defaults */
490 #define NV_WATCHDOG_TIMEO       (5*HZ)
491
492 #define RX_RING_DEFAULT         128
493 #define TX_RING_DEFAULT         256
494 #define RX_RING_MIN             128
495 #define TX_RING_MIN             64
496 #define RING_MAX_DESC_VER_1     1024
497 #define RING_MAX_DESC_VER_2_3   16384
498 /*
499  * Difference between the get and put pointers for the tx ring.
500  * This is used to throttle the amount of data outstanding in the
501  * tx ring.
502  */
503 #define TX_LIMIT_DIFFERENCE     1
504
505 /* rx/tx mac addr + type + vlan + align + slack*/
506 #define NV_RX_HEADERS           (64)
507 /* even more slack. */
508 #define NV_RX_ALLOC_PAD         (64)
509
510 /* maximum mtu size */
511 #define NV_PKTLIMIT_1   ETH_DATA_LEN    /* hard limit not known */
512 #define NV_PKTLIMIT_2   9100    /* Actual limit according to NVidia: 9202 */
513
514 #define OOM_REFILL      (1+HZ/20)
515 #define POLL_WAIT       (1+HZ/100)
516 #define LINK_TIMEOUT    (3*HZ)
517 #define STATS_INTERVAL  (10*HZ)
518
519 /*
520  * desc_ver values:
521  * The nic supports three different descriptor types:
522  * - DESC_VER_1: Original
523  * - DESC_VER_2: support for jumbo frames.
524  * - DESC_VER_3: 64-bit format.
525  */
526 #define DESC_VER_1      1
527 #define DESC_VER_2      2
528 #define DESC_VER_3      3
529
530 /* PHY defines */
531 #define PHY_OUI_MARVELL 0x5043
532 #define PHY_OUI_CICADA  0x03f1
533 #define PHYID1_OUI_MASK 0x03ff
534 #define PHYID1_OUI_SHFT 6
535 #define PHYID2_OUI_MASK 0xfc00
536 #define PHYID2_OUI_SHFT 10
537 #define PHY_INIT1       0x0f000
538 #define PHY_INIT2       0x0e00
539 #define PHY_INIT3       0x01000
540 #define PHY_INIT4       0x0200
541 #define PHY_INIT5       0x0004
542 #define PHY_INIT6       0x02000
543 #define PHY_GIGABIT     0x0100
544
545 #define PHY_TIMEOUT     0x1
546 #define PHY_ERROR       0x2
547
548 #define PHY_100 0x1
549 #define PHY_1000        0x2
550 #define PHY_HALF        0x100
551
552 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
553 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
554 #define NV_PAUSEFRAME_RX_ENABLE  0x0004
555 #define NV_PAUSEFRAME_TX_ENABLE  0x0008
556 #define NV_PAUSEFRAME_RX_REQ     0x0010
557 #define NV_PAUSEFRAME_TX_REQ     0x0020
558 #define NV_PAUSEFRAME_AUTONEG    0x0040
559
560 /* MSI/MSI-X defines */
561 #define NV_MSI_X_MAX_VECTORS  8
562 #define NV_MSI_X_VECTORS_MASK 0x000f
563 #define NV_MSI_CAPABLE        0x0010
564 #define NV_MSI_X_CAPABLE      0x0020
565 #define NV_MSI_ENABLED        0x0040
566 #define NV_MSI_X_ENABLED      0x0080
567
568 #define NV_MSI_X_VECTOR_ALL   0x0
569 #define NV_MSI_X_VECTOR_RX    0x0
570 #define NV_MSI_X_VECTOR_TX    0x1
571 #define NV_MSI_X_VECTOR_OTHER 0x2
572
573 /* statistics */
574 struct nv_ethtool_str {
575         char name[ETH_GSTRING_LEN];
576 };
577
578 static const struct nv_ethtool_str nv_estats_str[] = {
579         { "tx_bytes" },
580         { "tx_zero_rexmt" },
581         { "tx_one_rexmt" },
582         { "tx_many_rexmt" },
583         { "tx_late_collision" },
584         { "tx_fifo_errors" },
585         { "tx_carrier_errors" },
586         { "tx_excess_deferral" },
587         { "tx_retry_error" },
588         { "tx_deferral" },
589         { "tx_packets" },
590         { "tx_pause" },
591         { "rx_frame_error" },
592         { "rx_extra_byte" },
593         { "rx_late_collision" },
594         { "rx_runt" },
595         { "rx_frame_too_long" },
596         { "rx_over_errors" },
597         { "rx_crc_errors" },
598         { "rx_frame_align_error" },
599         { "rx_length_error" },
600         { "rx_unicast" },
601         { "rx_multicast" },
602         { "rx_broadcast" },
603         { "rx_bytes" },
604         { "rx_pause" },
605         { "rx_drop_frame" },
606         { "rx_packets" },
607         { "rx_errors_total" }
608 };
609
610 struct nv_ethtool_stats {
611         u64 tx_bytes;
612         u64 tx_zero_rexmt;
613         u64 tx_one_rexmt;
614         u64 tx_many_rexmt;
615         u64 tx_late_collision;
616         u64 tx_fifo_errors;
617         u64 tx_carrier_errors;
618         u64 tx_excess_deferral;
619         u64 tx_retry_error;
620         u64 tx_deferral;
621         u64 tx_packets;
622         u64 tx_pause;
623         u64 rx_frame_error;
624         u64 rx_extra_byte;
625         u64 rx_late_collision;
626         u64 rx_runt;
627         u64 rx_frame_too_long;
628         u64 rx_over_errors;
629         u64 rx_crc_errors;
630         u64 rx_frame_align_error;
631         u64 rx_length_error;
632         u64 rx_unicast;
633         u64 rx_multicast;
634         u64 rx_broadcast;
635         u64 rx_bytes;
636         u64 rx_pause;
637         u64 rx_drop_frame;
638         u64 rx_packets;
639         u64 rx_errors_total;
640 };
641
642 /* diagnostics */
643 #define NV_TEST_COUNT_BASE 3
644 #define NV_TEST_COUNT_EXTENDED 4
645
646 static const struct nv_ethtool_str nv_etests_str[] = {
647         { "link      (online/offline)" },
648         { "register  (offline)       " },
649         { "interrupt (offline)       " },
650         { "loopback  (offline)       " }
651 };
652
653 struct register_test {
654         u32 reg;
655         u32 mask;
656 };
657
658 static const struct register_test nv_registers_test[] = {
659         { NvRegUnknownSetupReg6, 0x01 },
660         { NvRegMisc1, 0x03c },
661         { NvRegOffloadConfig, 0x03ff },
662         { NvRegMulticastAddrA, 0xffffffff },
663         { NvRegUnknownSetupReg3, 0x0ff },
664         { NvRegWakeUpFlags, 0x07777 },
665         { 0,0 }
666 };
667
668 /*
669  * SMP locking:
670  * All hardware access under dev->priv->lock, except the performance
671  * critical parts:
672  * - rx is (pseudo-) lockless: it relies on the single-threading provided
673  *      by the arch code for interrupts.
674  * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
675  *      needs dev->priv->lock :-(
676  * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
677  */
678
679 /* in dev: base, irq */
680 struct fe_priv {
681         spinlock_t lock;
682
683         /* General data:
684          * Locking: spin_lock(&np->lock); */
685         struct net_device_stats stats;
686         struct nv_ethtool_stats estats;
687         int in_shutdown;
688         u32 linkspeed;
689         int duplex;
690         int autoneg;
691         int fixed_mode;
692         int phyaddr;
693         int wolenabled;
694         unsigned int phy_oui;
695         u16 gigabit;
696         int intr_test;
697
698         /* General data: RO fields */
699         dma_addr_t ring_addr;
700         struct pci_dev *pci_dev;
701         u32 orig_mac[2];
702         u32 irqmask;
703         u32 desc_ver;
704         u32 txrxctl_bits;
705         u32 vlanctl_bits;
706         u32 driver_data;
707         u32 register_size;
708
709         void __iomem *base;
710
711         /* rx specific fields.
712          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
713          */
714         ring_type rx_ring;
715         unsigned int cur_rx, refill_rx;
716         struct sk_buff **rx_skbuff;
717         dma_addr_t *rx_dma;
718         unsigned int rx_buf_sz;
719         unsigned int pkt_limit;
720         struct timer_list oom_kick;
721         struct timer_list nic_poll;
722         struct timer_list stats_poll;
723         u32 nic_poll_irq;
724         int rx_ring_size;
725
726         /* media detection workaround.
727          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
728          */
729         int need_linktimer;
730         unsigned long link_timeout;
731         /*
732          * tx specific fields.
733          */
734         ring_type tx_ring;
735         unsigned int next_tx, nic_tx;
736         struct sk_buff **tx_skbuff;
737         dma_addr_t *tx_dma;
738         unsigned int *tx_dma_len;
739         u32 tx_flags;
740         int tx_ring_size;
741         int tx_limit_start;
742         int tx_limit_stop;
743
744         /* vlan fields */
745         struct vlan_group *vlangrp;
746
747         /* msi/msi-x fields */
748         u32 msi_flags;
749         struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
750
751         /* flow control */
752         u32 pause_flags;
753 };
754
755 /*
756  * Maximum number of loops until we assume that a bit in the irq mask
757  * is stuck. Overridable with module param.
758  */
759 static int max_interrupt_work = 5;
760
761 /*
762  * Optimization can be either throuput mode or cpu mode
763  *
764  * Throughput Mode: Every tx and rx packet will generate an interrupt.
765  * CPU Mode: Interrupts are controlled by a timer.
766  */
767 enum {
768         NV_OPTIMIZATION_MODE_THROUGHPUT,
769         NV_OPTIMIZATION_MODE_CPU
770 };
771 static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
772
773 /*
774  * Poll interval for timer irq
775  *
776  * This interval determines how frequent an interrupt is generated.
777  * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
778  * Min = 0, and Max = 65535
779  */
780 static int poll_interval = -1;
781
782 /*
783  * MSI interrupts
784  */
785 enum {
786         NV_MSI_INT_DISABLED,
787         NV_MSI_INT_ENABLED
788 };
789 static int msi = NV_MSI_INT_ENABLED;
790
791 /*
792  * MSIX interrupts
793  */
794 enum {
795         NV_MSIX_INT_DISABLED,
796         NV_MSIX_INT_ENABLED
797 };
798 static int msix = NV_MSIX_INT_ENABLED;
799
800 /*
801  * DMA 64bit
802  */
803 enum {
804         NV_DMA_64BIT_DISABLED,
805         NV_DMA_64BIT_ENABLED
806 };
807 static int dma_64bit = NV_DMA_64BIT_ENABLED;
808
809 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
810 {
811         return netdev_priv(dev);
812 }
813
814 static inline u8 __iomem *get_hwbase(struct net_device *dev)
815 {
816         return ((struct fe_priv *)netdev_priv(dev))->base;
817 }
818
819 static inline void pci_push(u8 __iomem *base)
820 {
821         /* force out pending posted writes */
822         readl(base);
823 }
824
825 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
826 {
827         return le32_to_cpu(prd->FlagLen)
828                 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
829 }
830
831 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
832 {
833         return le32_to_cpu(prd->FlagLen) & LEN_MASK_V2;
834 }
835
836 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
837                                 int delay, int delaymax, const char *msg)
838 {
839         u8 __iomem *base = get_hwbase(dev);
840
841         pci_push(base);
842         do {
843                 udelay(delay);
844                 delaymax -= delay;
845                 if (delaymax < 0) {
846                         if (msg)
847                                 printk(msg);
848                         return 1;
849                 }
850         } while ((readl(base + offset) & mask) != target);
851         return 0;
852 }
853
854 #define NV_SETUP_RX_RING 0x01
855 #define NV_SETUP_TX_RING 0x02
856
857 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
858 {
859         struct fe_priv *np = get_nvpriv(dev);
860         u8 __iomem *base = get_hwbase(dev);
861
862         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
863                 if (rxtx_flags & NV_SETUP_RX_RING) {
864                         writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
865                 }
866                 if (rxtx_flags & NV_SETUP_TX_RING) {
867                         writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
868                 }
869         } else {
870                 if (rxtx_flags & NV_SETUP_RX_RING) {
871                         writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
872                         writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
873                 }
874                 if (rxtx_flags & NV_SETUP_TX_RING) {
875                         writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
876                         writel((u32) (cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
877                 }
878         }
879 }
880
881 static void free_rings(struct net_device *dev)
882 {
883         struct fe_priv *np = get_nvpriv(dev);
884
885         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
886                 if(np->rx_ring.orig)
887                         pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
888                                             np->rx_ring.orig, np->ring_addr);
889         } else {
890                 if (np->rx_ring.ex)
891                         pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
892                                             np->rx_ring.ex, np->ring_addr);
893         }
894         if (np->rx_skbuff)
895                 kfree(np->rx_skbuff);
896         if (np->rx_dma)
897                 kfree(np->rx_dma);
898         if (np->tx_skbuff)
899                 kfree(np->tx_skbuff);
900         if (np->tx_dma)
901                 kfree(np->tx_dma);
902         if (np->tx_dma_len)
903                 kfree(np->tx_dma_len);
904 }
905
906 static int using_multi_irqs(struct net_device *dev)
907 {
908         struct fe_priv *np = get_nvpriv(dev);
909
910         if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
911             ((np->msi_flags & NV_MSI_X_ENABLED) &&
912              ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
913                 return 0;
914         else
915                 return 1;
916 }
917
918 static void nv_enable_irq(struct net_device *dev)
919 {
920         struct fe_priv *np = get_nvpriv(dev);
921
922         if (!using_multi_irqs(dev)) {
923                 if (np->msi_flags & NV_MSI_X_ENABLED)
924                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
925                 else
926                         enable_irq(dev->irq);
927         } else {
928                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
929                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
930                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
931         }
932 }
933
934 static void nv_disable_irq(struct net_device *dev)
935 {
936         struct fe_priv *np = get_nvpriv(dev);
937
938         if (!using_multi_irqs(dev)) {
939                 if (np->msi_flags & NV_MSI_X_ENABLED)
940                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
941                 else
942                         disable_irq(dev->irq);
943         } else {
944                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
945                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
946                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
947         }
948 }
949
950 /* In MSIX mode, a write to irqmask behaves as XOR */
951 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
952 {
953         u8 __iomem *base = get_hwbase(dev);
954
955         writel(mask, base + NvRegIrqMask);
956 }
957
958 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
959 {
960         struct fe_priv *np = get_nvpriv(dev);
961         u8 __iomem *base = get_hwbase(dev);
962
963         if (np->msi_flags & NV_MSI_X_ENABLED) {
964                 writel(mask, base + NvRegIrqMask);
965         } else {
966                 if (np->msi_flags & NV_MSI_ENABLED)
967                         writel(0, base + NvRegMSIIrqMask);
968                 writel(0, base + NvRegIrqMask);
969         }
970 }
971
972 #define MII_READ        (-1)
973 /* mii_rw: read/write a register on the PHY.
974  *
975  * Caller must guarantee serialization
976  */
977 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
978 {
979         u8 __iomem *base = get_hwbase(dev);
980         u32 reg;
981         int retval;
982
983         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
984
985         reg = readl(base + NvRegMIIControl);
986         if (reg & NVREG_MIICTL_INUSE) {
987                 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
988                 udelay(NV_MIIBUSY_DELAY);
989         }
990
991         reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
992         if (value != MII_READ) {
993                 writel(value, base + NvRegMIIData);
994                 reg |= NVREG_MIICTL_WRITE;
995         }
996         writel(reg, base + NvRegMIIControl);
997
998         if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
999                         NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
1000                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
1001                                 dev->name, miireg, addr);
1002                 retval = -1;
1003         } else if (value != MII_READ) {
1004                 /* it was a write operation - fewer failures are detectable */
1005                 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
1006                                 dev->name, value, miireg, addr);
1007                 retval = 0;
1008         } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
1009                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
1010                                 dev->name, miireg, addr);
1011                 retval = -1;
1012         } else {
1013                 retval = readl(base + NvRegMIIData);
1014                 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
1015                                 dev->name, miireg, addr, retval);
1016         }
1017
1018         return retval;
1019 }
1020
1021 static int phy_reset(struct net_device *dev)
1022 {
1023         struct fe_priv *np = netdev_priv(dev);
1024         u32 miicontrol;
1025         unsigned int tries = 0;
1026
1027         miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1028         miicontrol |= BMCR_RESET;
1029         if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
1030                 return -1;
1031         }
1032
1033         /* wait for 500ms */
1034         msleep(500);
1035
1036         /* must wait till reset is deasserted */
1037         while (miicontrol & BMCR_RESET) {
1038                 msleep(10);
1039                 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1040                 /* FIXME: 100 tries seem excessive */
1041                 if (tries++ > 100)
1042                         return -1;
1043         }
1044         return 0;
1045 }
1046
1047 static int phy_init(struct net_device *dev)
1048 {
1049         struct fe_priv *np = get_nvpriv(dev);
1050         u8 __iomem *base = get_hwbase(dev);
1051         u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
1052
1053         /* set advertise register */
1054         reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1055         reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
1056         if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
1057                 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
1058                 return PHY_ERROR;
1059         }
1060
1061         /* get phy interface type */
1062         phyinterface = readl(base + NvRegPhyInterface);
1063
1064         /* see if gigabit phy */
1065         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1066         if (mii_status & PHY_GIGABIT) {
1067                 np->gigabit = PHY_GIGABIT;
1068                 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
1069                 mii_control_1000 &= ~ADVERTISE_1000HALF;
1070                 if (phyinterface & PHY_RGMII)
1071                         mii_control_1000 |= ADVERTISE_1000FULL;
1072                 else
1073                         mii_control_1000 &= ~ADVERTISE_1000FULL;
1074
1075                 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
1076                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1077                         return PHY_ERROR;
1078                 }
1079         }
1080         else
1081                 np->gigabit = 0;
1082
1083         /* reset the phy */
1084         if (phy_reset(dev)) {
1085                 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
1086                 return PHY_ERROR;
1087         }
1088
1089         /* phy vendor specific configuration */
1090         if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
1091                 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
1092                 phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
1093                 phy_reserved |= (PHY_INIT3 | PHY_INIT4);
1094                 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
1095                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1096                         return PHY_ERROR;
1097                 }
1098                 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1099                 phy_reserved |= PHY_INIT5;
1100                 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
1101                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1102                         return PHY_ERROR;
1103                 }
1104         }
1105         if (np->phy_oui == PHY_OUI_CICADA) {
1106                 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
1107                 phy_reserved |= PHY_INIT6;
1108                 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
1109                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1110                         return PHY_ERROR;
1111                 }
1112         }
1113         /* some phys clear out pause advertisment on reset, set it back */
1114         mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
1115
1116         /* restart auto negotiation */
1117         mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1118         mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
1119         if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1120                 return PHY_ERROR;
1121         }
1122
1123         return 0;
1124 }
1125
1126 static void nv_start_rx(struct net_device *dev)
1127 {
1128         struct fe_priv *np = netdev_priv(dev);
1129         u8 __iomem *base = get_hwbase(dev);
1130
1131         dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
1132         /* Already running? Stop it. */
1133         if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
1134                 writel(0, base + NvRegReceiverControl);
1135                 pci_push(base);
1136         }
1137         writel(np->linkspeed, base + NvRegLinkSpeed);
1138         pci_push(base);
1139         writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
1140         dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
1141                                 dev->name, np->duplex, np->linkspeed);
1142         pci_push(base);
1143 }
1144
1145 static void nv_stop_rx(struct net_device *dev)
1146 {
1147         u8 __iomem *base = get_hwbase(dev);
1148
1149         dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
1150         writel(0, base + NvRegReceiverControl);
1151         reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
1152                         NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
1153                         KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
1154
1155         udelay(NV_RXSTOP_DELAY2);
1156         writel(0, base + NvRegLinkSpeed);
1157 }
1158
1159 static void nv_start_tx(struct net_device *dev)
1160 {
1161         u8 __iomem *base = get_hwbase(dev);
1162
1163         dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
1164         writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
1165         pci_push(base);
1166 }
1167
1168 static void nv_stop_tx(struct net_device *dev)
1169 {
1170         u8 __iomem *base = get_hwbase(dev);
1171
1172         dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
1173         writel(0, base + NvRegTransmitterControl);
1174         reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
1175                         NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
1176                         KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
1177
1178         udelay(NV_TXSTOP_DELAY2);
1179         writel(0, base + NvRegUnknownTransmitterReg);
1180 }
1181
1182 static void nv_txrx_reset(struct net_device *dev)
1183 {
1184         struct fe_priv *np = netdev_priv(dev);
1185         u8 __iomem *base = get_hwbase(dev);
1186
1187         dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
1188         writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1189         pci_push(base);
1190         udelay(NV_TXRX_RESET_DELAY);
1191         writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1192         pci_push(base);
1193 }
1194
1195 static void nv_mac_reset(struct net_device *dev)
1196 {
1197         struct fe_priv *np = netdev_priv(dev);
1198         u8 __iomem *base = get_hwbase(dev);
1199
1200         dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
1201         writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1202         pci_push(base);
1203         writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
1204         pci_push(base);
1205         udelay(NV_MAC_RESET_DELAY);
1206         writel(0, base + NvRegMacReset);
1207         pci_push(base);
1208         udelay(NV_MAC_RESET_DELAY);
1209         writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1210         pci_push(base);
1211 }
1212
1213 /*
1214  * nv_get_stats: dev->get_stats function
1215  * Get latest stats value from the nic.
1216  * Called with read_lock(&dev_base_lock) held for read -
1217  * only synchronized against unregister_netdevice.
1218  */
1219 static struct net_device_stats *nv_get_stats(struct net_device *dev)
1220 {
1221         struct fe_priv *np = netdev_priv(dev);
1222
1223         /* It seems that the nic always generates interrupts and doesn't
1224          * accumulate errors internally. Thus the current values in np->stats
1225          * are already up to date.
1226          */
1227         return &np->stats;
1228 }
1229
1230 /*
1231  * nv_alloc_rx: fill rx ring entries.
1232  * Return 1 if the allocations for the skbs failed and the
1233  * rx engine is without Available descriptors
1234  */
1235 static int nv_alloc_rx(struct net_device *dev)
1236 {
1237         struct fe_priv *np = netdev_priv(dev);
1238         unsigned int refill_rx = np->refill_rx;
1239         int nr;
1240
1241         while (np->cur_rx != refill_rx) {
1242                 struct sk_buff *skb;
1243
1244                 nr = refill_rx % np->rx_ring_size;
1245                 if (np->rx_skbuff[nr] == NULL) {
1246
1247                         skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1248                         if (!skb)
1249                                 break;
1250
1251                         skb->dev = dev;
1252                         np->rx_skbuff[nr] = skb;
1253                 } else {
1254                         skb = np->rx_skbuff[nr];
1255                 }
1256                 np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data,
1257                                         skb->end-skb->data, PCI_DMA_FROMDEVICE);
1258                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1259                         np->rx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]);
1260                         wmb();
1261                         np->rx_ring.orig[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1262                 } else {
1263                         np->rx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
1264                         np->rx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
1265                         wmb();
1266                         np->rx_ring.ex[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1267                 }
1268                 dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
1269                                         dev->name, refill_rx);
1270                 refill_rx++;
1271         }
1272         np->refill_rx = refill_rx;
1273         if (np->cur_rx - refill_rx == np->rx_ring_size)
1274                 return 1;
1275         return 0;
1276 }
1277
1278 static void nv_do_rx_refill(unsigned long data)
1279 {
1280         struct net_device *dev = (struct net_device *) data;
1281         struct fe_priv *np = netdev_priv(dev);
1282
1283         if (!using_multi_irqs(dev)) {
1284                 if (np->msi_flags & NV_MSI_X_ENABLED)
1285                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1286                 else
1287                         disable_irq(dev->irq);
1288         } else {
1289                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1290         }
1291         if (nv_alloc_rx(dev)) {
1292                 spin_lock_irq(&np->lock);
1293                 if (!np->in_shutdown)
1294                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1295                 spin_unlock_irq(&np->lock);
1296         }
1297         if (!using_multi_irqs(dev)) {
1298                 if (np->msi_flags & NV_MSI_X_ENABLED)
1299                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1300                 else
1301                         enable_irq(dev->irq);
1302         } else {
1303                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1304         }
1305 }
1306
1307 static void nv_init_rx(struct net_device *dev)
1308 {
1309         struct fe_priv *np = netdev_priv(dev);
1310         int i;
1311
1312         np->cur_rx = np->rx_ring_size;
1313         np->refill_rx = 0;
1314         for (i = 0; i < np->rx_ring_size; i++)
1315                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1316                         np->rx_ring.orig[i].FlagLen = 0;
1317                 else
1318                         np->rx_ring.ex[i].FlagLen = 0;
1319 }
1320
1321 static void nv_init_tx(struct net_device *dev)
1322 {
1323         struct fe_priv *np = netdev_priv(dev);
1324         int i;
1325
1326         np->next_tx = np->nic_tx = 0;
1327         for (i = 0; i < np->tx_ring_size; i++) {
1328                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1329                         np->tx_ring.orig[i].FlagLen = 0;
1330                 else
1331                         np->tx_ring.ex[i].FlagLen = 0;
1332                 np->tx_skbuff[i] = NULL;
1333                 np->tx_dma[i] = 0;
1334         }
1335 }
1336
1337 static int nv_init_ring(struct net_device *dev)
1338 {
1339         nv_init_tx(dev);
1340         nv_init_rx(dev);
1341         return nv_alloc_rx(dev);
1342 }
1343
1344 static int nv_release_txskb(struct net_device *dev, unsigned int skbnr)
1345 {
1346         struct fe_priv *np = netdev_priv(dev);
1347
1348         dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d\n",
1349                 dev->name, skbnr);
1350
1351         if (np->tx_dma[skbnr]) {
1352                 pci_unmap_page(np->pci_dev, np->tx_dma[skbnr],
1353                                np->tx_dma_len[skbnr],
1354                                PCI_DMA_TODEVICE);
1355                 np->tx_dma[skbnr] = 0;
1356         }
1357
1358         if (np->tx_skbuff[skbnr]) {
1359                 dev_kfree_skb_any(np->tx_skbuff[skbnr]);
1360                 np->tx_skbuff[skbnr] = NULL;
1361                 return 1;
1362         } else {
1363                 return 0;
1364         }
1365 }
1366
1367 static void nv_drain_tx(struct net_device *dev)
1368 {
1369         struct fe_priv *np = netdev_priv(dev);
1370         unsigned int i;
1371
1372         for (i = 0; i < np->tx_ring_size; i++) {
1373                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1374                         np->tx_ring.orig[i].FlagLen = 0;
1375                 else
1376                         np->tx_ring.ex[i].FlagLen = 0;
1377                 if (nv_release_txskb(dev, i))
1378                         np->stats.tx_dropped++;
1379         }
1380 }
1381
1382 static void nv_drain_rx(struct net_device *dev)
1383 {
1384         struct fe_priv *np = netdev_priv(dev);
1385         int i;
1386         for (i = 0; i < np->rx_ring_size; i++) {
1387                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1388                         np->rx_ring.orig[i].FlagLen = 0;
1389                 else
1390                         np->rx_ring.ex[i].FlagLen = 0;
1391                 wmb();
1392                 if (np->rx_skbuff[i]) {
1393                         pci_unmap_single(np->pci_dev, np->rx_dma[i],
1394                                                 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1395                                                 PCI_DMA_FROMDEVICE);
1396                         dev_kfree_skb(np->rx_skbuff[i]);
1397                         np->rx_skbuff[i] = NULL;
1398                 }
1399         }
1400 }
1401
1402 static void drain_ring(struct net_device *dev)
1403 {
1404         nv_drain_tx(dev);
1405         nv_drain_rx(dev);
1406 }
1407
1408 /*
1409  * nv_start_xmit: dev->hard_start_xmit function
1410  * Called with netif_tx_lock held.
1411  */
1412 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
1413 {
1414         struct fe_priv *np = netdev_priv(dev);
1415         u32 tx_flags = 0;
1416         u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
1417         unsigned int fragments = skb_shinfo(skb)->nr_frags;
1418         unsigned int nr = (np->next_tx - 1) % np->tx_ring_size;
1419         unsigned int start_nr = np->next_tx % np->tx_ring_size;
1420         unsigned int i;
1421         u32 offset = 0;
1422         u32 bcnt;
1423         u32 size = skb->len-skb->data_len;
1424         u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1425         u32 tx_flags_vlan = 0;
1426
1427         /* add fragments to entries count */
1428         for (i = 0; i < fragments; i++) {
1429                 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
1430                            ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1431         }
1432
1433         spin_lock_irq(&np->lock);
1434
1435         if ((np->next_tx - np->nic_tx + entries - 1) > np->tx_limit_stop) {
1436                 spin_unlock_irq(&np->lock);
1437                 netif_stop_queue(dev);
1438                 return NETDEV_TX_BUSY;
1439         }
1440
1441         /* setup the header buffer */
1442         do {
1443                 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1444                 nr = (nr + 1) % np->tx_ring_size;
1445
1446                 np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
1447                                                 PCI_DMA_TODEVICE);
1448                 np->tx_dma_len[nr] = bcnt;
1449
1450                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1451                         np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1452                         np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1453                 } else {
1454                         np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1455                         np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1456                         np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1457                 }
1458                 tx_flags = np->tx_flags;
1459                 offset += bcnt;
1460                 size -= bcnt;
1461         } while(size);
1462
1463         /* setup the fragments */
1464         for (i = 0; i < fragments; i++) {
1465                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1466                 u32 size = frag->size;
1467                 offset = 0;
1468
1469                 do {
1470                         bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1471                         nr = (nr + 1) % np->tx_ring_size;
1472
1473                         np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
1474                                                       PCI_DMA_TODEVICE);
1475                         np->tx_dma_len[nr] = bcnt;
1476
1477                         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1478                                 np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1479                                 np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1480                         } else {
1481                                 np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1482                                 np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1483                                 np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1484                         }
1485                         offset += bcnt;
1486                         size -= bcnt;
1487                 } while (size);
1488         }
1489
1490         /* set last fragment flag  */
1491         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1492                 np->tx_ring.orig[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
1493         } else {
1494                 np->tx_ring.ex[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
1495         }
1496
1497         np->tx_skbuff[nr] = skb;
1498
1499 #ifdef NETIF_F_TSO
1500         if (skb_is_gso(skb))
1501                 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
1502         else
1503 #endif
1504         tx_flags_extra = (skb->ip_summed == CHECKSUM_HW ? (NV_TX2_CHECKSUM_L3|NV_TX2_CHECKSUM_L4) : 0);
1505
1506         /* vlan tag */
1507         if (np->vlangrp && vlan_tx_tag_present(skb)) {
1508                 tx_flags_vlan = NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb);
1509         }
1510
1511         /* set tx flags */
1512         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1513                 np->tx_ring.orig[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
1514         } else {
1515                 np->tx_ring.ex[start_nr].TxVlan = cpu_to_le32(tx_flags_vlan);
1516                 np->tx_ring.ex[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
1517         }
1518
1519         dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n",
1520                 dev->name, np->next_tx, entries, tx_flags_extra);
1521         {
1522                 int j;
1523                 for (j=0; j<64; j++) {
1524                         if ((j%16) == 0)
1525                                 dprintk("\n%03x:", j);
1526                         dprintk(" %02x", ((unsigned char*)skb->data)[j]);
1527                 }
1528                 dprintk("\n");
1529         }
1530
1531         np->next_tx += entries;
1532
1533         dev->trans_start = jiffies;
1534         spin_unlock_irq(&np->lock);
1535         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1536         pci_push(get_hwbase(dev));
1537         return NETDEV_TX_OK;
1538 }
1539
1540 /*
1541  * nv_tx_done: check for completed packets, release the skbs.
1542  *
1543  * Caller must own np->lock.
1544  */
1545 static void nv_tx_done(struct net_device *dev)
1546 {
1547         struct fe_priv *np = netdev_priv(dev);
1548         u32 Flags;
1549         unsigned int i;
1550         struct sk_buff *skb;
1551
1552         while (np->nic_tx != np->next_tx) {
1553                 i = np->nic_tx % np->tx_ring_size;
1554
1555                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1556                         Flags = le32_to_cpu(np->tx_ring.orig[i].FlagLen);
1557                 else
1558                         Flags = le32_to_cpu(np->tx_ring.ex[i].FlagLen);
1559
1560                 dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n",
1561                                         dev->name, np->nic_tx, Flags);
1562                 if (Flags & NV_TX_VALID)
1563                         break;
1564                 if (np->desc_ver == DESC_VER_1) {
1565                         if (Flags & NV_TX_LASTPACKET) {
1566                                 skb = np->tx_skbuff[i];
1567                                 if (Flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
1568                                              NV_TX_UNDERFLOW|NV_TX_ERROR)) {
1569                                         if (Flags & NV_TX_UNDERFLOW)
1570                                                 np->stats.tx_fifo_errors++;
1571                                         if (Flags & NV_TX_CARRIERLOST)
1572                                                 np->stats.tx_carrier_errors++;
1573                                         np->stats.tx_errors++;
1574                                 } else {
1575                                         np->stats.tx_packets++;
1576                                         np->stats.tx_bytes += skb->len;
1577                                 }
1578                         }
1579                 } else {
1580                         if (Flags & NV_TX2_LASTPACKET) {
1581                                 skb = np->tx_skbuff[i];
1582                                 if (Flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
1583                                              NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
1584                                         if (Flags & NV_TX2_UNDERFLOW)
1585                                                 np->stats.tx_fifo_errors++;
1586                                         if (Flags & NV_TX2_CARRIERLOST)
1587                                                 np->stats.tx_carrier_errors++;
1588                                         np->stats.tx_errors++;
1589                                 } else {
1590                                         np->stats.tx_packets++;
1591                                         np->stats.tx_bytes += skb->len;
1592                                 }
1593                         }
1594                 }
1595                 nv_release_txskb(dev, i);
1596                 np->nic_tx++;
1597         }
1598         if (np->next_tx - np->nic_tx < np->tx_limit_start)
1599                 netif_wake_queue(dev);
1600 }
1601
1602 /*
1603  * nv_tx_timeout: dev->tx_timeout function
1604  * Called with netif_tx_lock held.
1605  */
1606 static void nv_tx_timeout(struct net_device *dev)
1607 {
1608         struct fe_priv *np = netdev_priv(dev);
1609         u8 __iomem *base = get_hwbase(dev);
1610         u32 status;
1611
1612         if (np->msi_flags & NV_MSI_X_ENABLED)
1613                 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
1614         else
1615                 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
1616
1617         printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
1618
1619         {
1620                 int i;
1621
1622                 printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
1623                                 dev->name, (unsigned long)np->ring_addr,
1624                                 np->next_tx, np->nic_tx);
1625                 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
1626                 for (i=0;i<=np->register_size;i+= 32) {
1627                         printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
1628                                         i,
1629                                         readl(base + i + 0), readl(base + i + 4),
1630                                         readl(base + i + 8), readl(base + i + 12),
1631                                         readl(base + i + 16), readl(base + i + 20),
1632                                         readl(base + i + 24), readl(base + i + 28));
1633                 }
1634                 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
1635                 for (i=0;i<np->tx_ring_size;i+= 4) {
1636                         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1637                                 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
1638                                        i,
1639                                        le32_to_cpu(np->tx_ring.orig[i].PacketBuffer),
1640                                        le32_to_cpu(np->tx_ring.orig[i].FlagLen),
1641                                        le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer),
1642                                        le32_to_cpu(np->tx_ring.orig[i+1].FlagLen),
1643                                        le32_to_cpu(np->tx_ring.orig[i+2].PacketBuffer),
1644                                        le32_to_cpu(np->tx_ring.orig[i+2].FlagLen),
1645                                        le32_to_cpu(np->tx_ring.orig[i+3].PacketBuffer),
1646                                        le32_to_cpu(np->tx_ring.orig[i+3].FlagLen));
1647                         } else {
1648                                 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
1649                                        i,
1650                                        le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh),
1651                                        le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow),
1652                                        le32_to_cpu(np->tx_ring.ex[i].FlagLen),
1653                                        le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferHigh),
1654                                        le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferLow),
1655                                        le32_to_cpu(np->tx_ring.ex[i+1].FlagLen),
1656                                        le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferHigh),
1657                                        le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferLow),
1658                                        le32_to_cpu(np->tx_ring.ex[i+2].FlagLen),
1659                                        le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferHigh),
1660                                        le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferLow),
1661                                        le32_to_cpu(np->tx_ring.ex[i+3].FlagLen));
1662                         }
1663                 }
1664         }
1665
1666         spin_lock_irq(&np->lock);
1667
1668         /* 1) stop tx engine */
1669         nv_stop_tx(dev);
1670
1671         /* 2) check that the packets were not sent already: */
1672         nv_tx_done(dev);
1673
1674         /* 3) if there are dead entries: clear everything */
1675         if (np->next_tx != np->nic_tx) {
1676                 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
1677                 nv_drain_tx(dev);
1678                 np->next_tx = np->nic_tx = 0;
1679                 setup_hw_rings(dev, NV_SETUP_TX_RING);
1680                 netif_wake_queue(dev);
1681         }
1682
1683         /* 4) restart tx engine */
1684         nv_start_tx(dev);
1685         spin_unlock_irq(&np->lock);
1686 }
1687
1688 /*
1689  * Called when the nic notices a mismatch between the actual data len on the
1690  * wire and the len indicated in the 802 header
1691  */
1692 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
1693 {
1694         int hdrlen;     /* length of the 802 header */
1695         int protolen;   /* length as stored in the proto field */
1696
1697         /* 1) calculate len according to header */
1698         if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == __constant_htons(ETH_P_8021Q)) {
1699                 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
1700                 hdrlen = VLAN_HLEN;
1701         } else {
1702                 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
1703                 hdrlen = ETH_HLEN;
1704         }
1705         dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
1706                                 dev->name, datalen, protolen, hdrlen);
1707         if (protolen > ETH_DATA_LEN)
1708                 return datalen; /* Value in proto field not a len, no checks possible */
1709
1710         protolen += hdrlen;
1711         /* consistency checks: */
1712         if (datalen > ETH_ZLEN) {
1713                 if (datalen >= protolen) {
1714                         /* more data on wire than in 802 header, trim of
1715                          * additional data.
1716                          */
1717                         dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1718                                         dev->name, protolen);
1719                         return protolen;
1720                 } else {
1721                         /* less data on wire than mentioned in header.
1722                          * Discard the packet.
1723                          */
1724                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
1725                                         dev->name);
1726                         return -1;
1727                 }
1728         } else {
1729                 /* short packet. Accept only if 802 values are also short */
1730                 if (protolen > ETH_ZLEN) {
1731                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
1732                                         dev->name);
1733                         return -1;
1734                 }
1735                 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1736                                 dev->name, datalen);
1737                 return datalen;
1738         }
1739 }
1740
1741 static void nv_rx_process(struct net_device *dev)
1742 {
1743         struct fe_priv *np = netdev_priv(dev);
1744         u32 Flags;
1745         u32 vlanflags = 0;
1746
1747         for (;;) {
1748                 struct sk_buff *skb;
1749                 int len;
1750                 int i;
1751                 if (np->cur_rx - np->refill_rx >= np->rx_ring_size)
1752                         break;  /* we scanned the whole ring - do not continue */
1753
1754                 i = np->cur_rx % np->rx_ring_size;
1755                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1756                         Flags = le32_to_cpu(np->rx_ring.orig[i].FlagLen);
1757                         len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
1758                 } else {
1759                         Flags = le32_to_cpu(np->rx_ring.ex[i].FlagLen);
1760                         len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
1761                         vlanflags = le32_to_cpu(np->rx_ring.ex[i].PacketBufferLow);
1762                 }
1763
1764                 dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n",
1765                                         dev->name, np->cur_rx, Flags);
1766
1767                 if (Flags & NV_RX_AVAIL)
1768                         break;  /* still owned by hardware, */
1769
1770                 /*
1771                  * the packet is for us - immediately tear down the pci mapping.
1772                  * TODO: check if a prefetch of the first cacheline improves
1773                  * the performance.
1774                  */
1775                 pci_unmap_single(np->pci_dev, np->rx_dma[i],
1776                                 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1777                                 PCI_DMA_FROMDEVICE);
1778
1779                 {
1780                         int j;
1781                         dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",Flags);
1782                         for (j=0; j<64; j++) {
1783                                 if ((j%16) == 0)
1784                                         dprintk("\n%03x:", j);
1785                                 dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
1786                         }
1787                         dprintk("\n");
1788                 }
1789                 /* look at what we actually got: */
1790                 if (np->desc_ver == DESC_VER_1) {
1791                         if (!(Flags & NV_RX_DESCRIPTORVALID))
1792                                 goto next_pkt;
1793
1794                         if (Flags & NV_RX_ERROR) {
1795                                 if (Flags & NV_RX_MISSEDFRAME) {
1796                                         np->stats.rx_missed_errors++;
1797                                         np->stats.rx_errors++;
1798                                         goto next_pkt;
1799                                 }
1800                                 if (Flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
1801                                         np->stats.rx_errors++;
1802                                         goto next_pkt;
1803                                 }
1804                                 if (Flags & NV_RX_CRCERR) {
1805                                         np->stats.rx_crc_errors++;
1806                                         np->stats.rx_errors++;
1807                                         goto next_pkt;
1808                                 }
1809                                 if (Flags & NV_RX_OVERFLOW) {
1810                                         np->stats.rx_over_errors++;
1811                                         np->stats.rx_errors++;
1812                                         goto next_pkt;
1813                                 }
1814                                 if (Flags & NV_RX_ERROR4) {
1815                                         len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1816                                         if (len < 0) {
1817                                                 np->stats.rx_errors++;
1818                                                 goto next_pkt;
1819                                         }
1820                                 }
1821                                 /* framing errors are soft errors. */
1822                                 if (Flags & NV_RX_FRAMINGERR) {
1823                                         if (Flags & NV_RX_SUBSTRACT1) {
1824                                                 len--;
1825                                         }
1826                                 }
1827                         }
1828                 } else {
1829                         if (!(Flags & NV_RX2_DESCRIPTORVALID))
1830                                 goto next_pkt;
1831
1832                         if (Flags & NV_RX2_ERROR) {
1833                                 if (Flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
1834                                         np->stats.rx_errors++;
1835                                         goto next_pkt;
1836                                 }
1837                                 if (Flags & NV_RX2_CRCERR) {
1838                                         np->stats.rx_crc_errors++;
1839                                         np->stats.rx_errors++;
1840                                         goto next_pkt;
1841                                 }
1842                                 if (Flags & NV_RX2_OVERFLOW) {
1843                                         np->stats.rx_over_errors++;
1844                                         np->stats.rx_errors++;
1845                                         goto next_pkt;
1846                                 }
1847                                 if (Flags & NV_RX2_ERROR4) {
1848                                         len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1849                                         if (len < 0) {
1850                                                 np->stats.rx_errors++;
1851                                                 goto next_pkt;
1852                                         }
1853                                 }
1854                                 /* framing errors are soft errors */
1855                                 if (Flags & NV_RX2_FRAMINGERR) {
1856                                         if (Flags & NV_RX2_SUBSTRACT1) {
1857                                                 len--;
1858                                         }
1859                                 }
1860                         }
1861                         if (np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) {
1862                                 Flags &= NV_RX2_CHECKSUMMASK;
1863                                 if (Flags == NV_RX2_CHECKSUMOK1 ||
1864                                     Flags == NV_RX2_CHECKSUMOK2 ||
1865                                     Flags == NV_RX2_CHECKSUMOK3) {
1866                                         dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
1867                                         np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
1868                                 } else {
1869                                         dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
1870                                 }
1871                         }
1872                 }
1873                 /* got a valid packet - forward it to the network core */
1874                 skb = np->rx_skbuff[i];
1875                 np->rx_skbuff[i] = NULL;
1876
1877                 skb_put(skb, len);
1878                 skb->protocol = eth_type_trans(skb, dev);
1879                 dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
1880                                         dev->name, np->cur_rx, len, skb->protocol);
1881                 if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT)) {
1882                         vlan_hwaccel_rx(skb, np->vlangrp, vlanflags & NV_RX3_VLAN_TAG_MASK);
1883                 } else {
1884                         netif_rx(skb);
1885                 }
1886                 dev->last_rx = jiffies;
1887                 np->stats.rx_packets++;
1888                 np->stats.rx_bytes += len;
1889 next_pkt:
1890                 np->cur_rx++;
1891         }
1892 }
1893
1894 static void set_bufsize(struct net_device *dev)
1895 {
1896         struct fe_priv *np = netdev_priv(dev);
1897
1898         if (dev->mtu <= ETH_DATA_LEN)
1899                 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
1900         else
1901                 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
1902 }
1903
1904 /*
1905  * nv_change_mtu: dev->change_mtu function
1906  * Called with dev_base_lock held for read.
1907  */
1908 static int nv_change_mtu(struct net_device *dev, int new_mtu)
1909 {
1910         struct fe_priv *np = netdev_priv(dev);
1911         int old_mtu;
1912
1913         if (new_mtu < 64 || new_mtu > np->pkt_limit)
1914                 return -EINVAL;
1915
1916         old_mtu = dev->mtu;
1917         dev->mtu = new_mtu;
1918
1919         /* return early if the buffer sizes will not change */
1920         if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
1921                 return 0;
1922         if (old_mtu == new_mtu)
1923                 return 0;
1924
1925         /* synchronized against open : rtnl_lock() held by caller */
1926         if (netif_running(dev)) {
1927                 u8 __iomem *base = get_hwbase(dev);
1928                 /*
1929                  * It seems that the nic preloads valid ring entries into an
1930                  * internal buffer. The procedure for flushing everything is
1931                  * guessed, there is probably a simpler approach.
1932                  * Changing the MTU is a rare event, it shouldn't matter.
1933                  */
1934                 nv_disable_irq(dev);
1935                 netif_tx_lock_bh(dev);
1936                 spin_lock(&np->lock);
1937                 /* stop engines */
1938                 nv_stop_rx(dev);
1939                 nv_stop_tx(dev);
1940                 nv_txrx_reset(dev);
1941                 /* drain rx queue */
1942                 nv_drain_rx(dev);
1943                 nv_drain_tx(dev);
1944                 /* reinit driver view of the rx queue */
1945                 set_bufsize(dev);
1946                 if (nv_init_ring(dev)) {
1947                         if (!np->in_shutdown)
1948                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1949                 }
1950                 /* reinit nic view of the rx queue */
1951                 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
1952                 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
1953                 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
1954                         base + NvRegRingSizes);
1955                 pci_push(base);
1956                 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1957                 pci_push(base);
1958
1959                 /* restart rx engine */
1960                 nv_start_rx(dev);
1961                 nv_start_tx(dev);
1962                 spin_unlock(&np->lock);
1963                 netif_tx_unlock_bh(dev);
1964                 nv_enable_irq(dev);
1965         }
1966         return 0;
1967 }
1968
1969 static void nv_copy_mac_to_hw(struct net_device *dev)
1970 {
1971         u8 __iomem *base = get_hwbase(dev);
1972         u32 mac[2];
1973
1974         mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
1975                         (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
1976         mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
1977
1978         writel(mac[0], base + NvRegMacAddrA);
1979         writel(mac[1], base + NvRegMacAddrB);
1980 }
1981
1982 /*
1983  * nv_set_mac_address: dev->set_mac_address function
1984  * Called with rtnl_lock() held.
1985  */
1986 static int nv_set_mac_address(struct net_device *dev, void *addr)
1987 {
1988         struct fe_priv *np = netdev_priv(dev);
1989         struct sockaddr *macaddr = (struct sockaddr*)addr;
1990
1991         if(!is_valid_ether_addr(macaddr->sa_data))
1992                 return -EADDRNOTAVAIL;
1993
1994         /* synchronized against open : rtnl_lock() held by caller */
1995         memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
1996
1997         if (netif_running(dev)) {
1998                 netif_tx_lock_bh(dev);
1999                 spin_lock_irq(&np->lock);
2000
2001                 /* stop rx engine */
2002                 nv_stop_rx(dev);
2003
2004                 /* set mac address */
2005                 nv_copy_mac_to_hw(dev);
2006
2007                 /* restart rx engine */
2008                 nv_start_rx(dev);
2009                 spin_unlock_irq(&np->lock);
2010                 netif_tx_unlock_bh(dev);
2011         } else {
2012                 nv_copy_mac_to_hw(dev);
2013         }
2014         return 0;
2015 }
2016
2017 /*
2018  * nv_set_multicast: dev->set_multicast function
2019  * Called with netif_tx_lock held.
2020  */
2021 static void nv_set_multicast(struct net_device *dev)
2022 {
2023         struct fe_priv *np = netdev_priv(dev);
2024         u8 __iomem *base = get_hwbase(dev);
2025         u32 addr[2];
2026         u32 mask[2];
2027         u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
2028
2029         memset(addr, 0, sizeof(addr));
2030         memset(mask, 0, sizeof(mask));
2031
2032         if (dev->flags & IFF_PROMISC) {
2033                 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
2034                 pff |= NVREG_PFF_PROMISC;
2035         } else {
2036                 pff |= NVREG_PFF_MYADDR;
2037
2038                 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
2039                         u32 alwaysOff[2];
2040                         u32 alwaysOn[2];
2041
2042                         alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
2043                         if (dev->flags & IFF_ALLMULTI) {
2044                                 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
2045                         } else {
2046                                 struct dev_mc_list *walk;
2047
2048                                 walk = dev->mc_list;
2049                                 while (walk != NULL) {
2050                                         u32 a, b;
2051                                         a = le32_to_cpu(*(u32 *) walk->dmi_addr);
2052                                         b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
2053                                         alwaysOn[0] &= a;
2054                                         alwaysOff[0] &= ~a;
2055                                         alwaysOn[1] &= b;
2056                                         alwaysOff[1] &= ~b;
2057                                         walk = walk->next;
2058                                 }
2059                         }
2060                         addr[0] = alwaysOn[0];
2061                         addr[1] = alwaysOn[1];
2062                         mask[0] = alwaysOn[0] | alwaysOff[0];
2063                         mask[1] = alwaysOn[1] | alwaysOff[1];
2064                 }
2065         }
2066         addr[0] |= NVREG_MCASTADDRA_FORCE;
2067         pff |= NVREG_PFF_ALWAYS;
2068         spin_lock_irq(&np->lock);
2069         nv_stop_rx(dev);
2070         writel(addr[0], base + NvRegMulticastAddrA);
2071         writel(addr[1], base + NvRegMulticastAddrB);
2072         writel(mask[0], base + NvRegMulticastMaskA);
2073         writel(mask[1], base + NvRegMulticastMaskB);
2074         writel(pff, base + NvRegPacketFilterFlags);
2075         dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
2076                 dev->name);
2077         nv_start_rx(dev);
2078         spin_unlock_irq(&np->lock);
2079 }
2080
2081 static void nv_update_pause(struct net_device *dev, u32 pause_flags)
2082 {
2083         struct fe_priv *np = netdev_priv(dev);
2084         u8 __iomem *base = get_hwbase(dev);
2085
2086         np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
2087
2088         if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
2089                 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
2090                 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
2091                         writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
2092                         np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2093                 } else {
2094                         writel(pff, base + NvRegPacketFilterFlags);
2095                 }
2096         }
2097         if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
2098                 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
2099                 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
2100                         writel(NVREG_TX_PAUSEFRAME_ENABLE,  base + NvRegTxPauseFrame);
2101                         writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
2102                         np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2103                 } else {
2104                         writel(NVREG_TX_PAUSEFRAME_DISABLE,  base + NvRegTxPauseFrame);
2105                         writel(regmisc, base + NvRegMisc1);
2106                 }
2107         }
2108 }
2109
2110 /**
2111  * nv_update_linkspeed: Setup the MAC according to the link partner
2112  * @dev: Network device to be configured
2113  *
2114  * The function queries the PHY and checks if there is a link partner.
2115  * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
2116  * set to 10 MBit HD.
2117  *
2118  * The function returns 0 if there is no link partner and 1 if there is
2119  * a good link partner.
2120  */
2121 static int nv_update_linkspeed(struct net_device *dev)
2122 {
2123         struct fe_priv *np = netdev_priv(dev);
2124         u8 __iomem *base = get_hwbase(dev);
2125         int adv = 0;
2126         int lpa = 0;
2127         int adv_lpa, adv_pause, lpa_pause;
2128         int newls = np->linkspeed;
2129         int newdup = np->duplex;
2130         int mii_status;
2131         int retval = 0;
2132         u32 control_1000, status_1000, phyreg, pause_flags, txreg;
2133
2134         /* BMSR_LSTATUS is latched, read it twice:
2135          * we want the current value.
2136          */
2137         mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2138         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2139
2140         if (!(mii_status & BMSR_LSTATUS)) {
2141                 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
2142                                 dev->name);
2143                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2144                 newdup = 0;
2145                 retval = 0;
2146                 goto set_speed;
2147         }
2148
2149         if (np->autoneg == 0) {
2150                 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
2151                                 dev->name, np->fixed_mode);
2152                 if (np->fixed_mode & LPA_100FULL) {
2153                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2154                         newdup = 1;
2155                 } else if (np->fixed_mode & LPA_100HALF) {
2156                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2157                         newdup = 0;
2158                 } else if (np->fixed_mode & LPA_10FULL) {
2159                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2160                         newdup = 1;
2161                 } else {
2162                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2163                         newdup = 0;
2164                 }
2165                 retval = 1;
2166                 goto set_speed;
2167         }
2168         /* check auto negotiation is complete */
2169         if (!(mii_status & BMSR_ANEGCOMPLETE)) {
2170                 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
2171                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2172                 newdup = 0;
2173                 retval = 0;
2174                 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
2175                 goto set_speed;
2176         }
2177
2178         adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2179         lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
2180         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
2181                                 dev->name, adv, lpa);
2182
2183         retval = 1;
2184         if (np->gigabit == PHY_GIGABIT) {
2185                 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2186                 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
2187
2188                 if ((control_1000 & ADVERTISE_1000FULL) &&
2189                         (status_1000 & LPA_1000FULL)) {
2190                         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
2191                                 dev->name);
2192                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
2193                         newdup = 1;
2194                         goto set_speed;
2195                 }
2196         }
2197
2198         /* FIXME: handle parallel detection properly */
2199         adv_lpa = lpa & adv;
2200         if (adv_lpa & LPA_100FULL) {
2201                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2202                 newdup = 1;
2203         } else if (adv_lpa & LPA_100HALF) {
2204                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2205                 newdup = 0;
2206         } else if (adv_lpa & LPA_10FULL) {
2207                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2208                 newdup = 1;
2209         } else if (adv_lpa & LPA_10HALF) {
2210                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2211                 newdup = 0;
2212         } else {
2213                 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
2214                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2215                 newdup = 0;
2216         }
2217
2218 set_speed:
2219         if (np->duplex == newdup && np->linkspeed == newls)
2220                 return retval;
2221
2222         dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
2223                         dev->name, np->linkspeed, np->duplex, newls, newdup);
2224
2225         np->duplex = newdup;
2226         np->linkspeed = newls;
2227
2228         if (np->gigabit == PHY_GIGABIT) {
2229                 phyreg = readl(base + NvRegRandomSeed);
2230                 phyreg &= ~(0x3FF00);
2231                 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
2232                         phyreg |= NVREG_RNDSEED_FORCE3;
2233                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
2234                         phyreg |= NVREG_RNDSEED_FORCE2;
2235                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
2236                         phyreg |= NVREG_RNDSEED_FORCE;
2237                 writel(phyreg, base + NvRegRandomSeed);
2238         }
2239
2240         phyreg = readl(base + NvRegPhyInterface);
2241         phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
2242         if (np->duplex == 0)
2243                 phyreg |= PHY_HALF;
2244         if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
2245                 phyreg |= PHY_100;
2246         else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2247                 phyreg |= PHY_1000;
2248         writel(phyreg, base + NvRegPhyInterface);
2249
2250         if (phyreg & PHY_RGMII) {
2251                 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2252                         txreg = NVREG_TX_DEFERRAL_RGMII_1000;
2253                 else
2254                         txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
2255         } else {
2256                 txreg = NVREG_TX_DEFERRAL_DEFAULT;
2257         }
2258         writel(txreg, base + NvRegTxDeferral);
2259
2260         writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
2261                 base + NvRegMisc1);
2262         pci_push(base);
2263         writel(np->linkspeed, base + NvRegLinkSpeed);
2264         pci_push(base);
2265
2266         pause_flags = 0;
2267         /* setup pause frame */
2268         if (np->duplex != 0) {
2269                 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
2270                         adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
2271                         lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
2272
2273                         switch (adv_pause) {
2274                         case (ADVERTISE_PAUSE_CAP):
2275                                 if (lpa_pause & LPA_PAUSE_CAP) {
2276                                         pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2277                                         if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2278                                                 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2279                                 }
2280                                 break;
2281                         case (ADVERTISE_PAUSE_ASYM):
2282                                 if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
2283                                 {
2284                                         pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2285                                 }
2286                                 break;
2287                         case (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM):
2288                                 if (lpa_pause & LPA_PAUSE_CAP)
2289                                 {
2290                                         pause_flags |=  NV_PAUSEFRAME_RX_ENABLE;
2291                                         if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2292                                                 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2293                                 }
2294                                 if (lpa_pause == LPA_PAUSE_ASYM)
2295                                 {
2296                                         pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2297                                 }
2298                                 break;
2299                         }
2300                 } else {
2301                         pause_flags = np->pause_flags;
2302                 }
2303         }
2304         nv_update_pause(dev, pause_flags);
2305
2306         return retval;
2307 }
2308
2309 static void nv_linkchange(struct net_device *dev)
2310 {
2311         if (nv_update_linkspeed(dev)) {
2312                 if (!netif_carrier_ok(dev)) {
2313                         netif_carrier_on(dev);
2314                         printk(KERN_INFO "%s: link up.\n", dev->name);
2315                         nv_start_rx(dev);
2316                 }
2317         } else {
2318                 if (netif_carrier_ok(dev)) {
2319                         netif_carrier_off(dev);
2320                         printk(KERN_INFO "%s: link down.\n", dev->name);
2321                         nv_stop_rx(dev);
2322                 }
2323         }
2324 }
2325
2326 static void nv_link_irq(struct net_device *dev)
2327 {
2328         u8 __iomem *base = get_hwbase(dev);
2329         u32 miistat;
2330
2331         miistat = readl(base + NvRegMIIStatus);
2332         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
2333         dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
2334
2335         if (miistat & (NVREG_MIISTAT_LINKCHANGE))
2336                 nv_linkchange(dev);
2337         dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
2338 }
2339
2340 static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
2341 {
2342         struct net_device *dev = (struct net_device *) data;
2343         struct fe_priv *np = netdev_priv(dev);
2344         u8 __iomem *base = get_hwbase(dev);
2345         u32 events;
2346         int i;
2347
2348         dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
2349
2350         for (i=0; ; i++) {
2351                 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
2352                         events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2353                         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2354                 } else {
2355                         events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2356                         writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
2357                 }
2358                 pci_push(base);
2359                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2360                 if (!(events & np->irqmask))
2361                         break;
2362
2363                 spin_lock(&np->lock);
2364                 nv_tx_done(dev);
2365                 spin_unlock(&np->lock);
2366
2367                 nv_rx_process(dev);
2368                 if (nv_alloc_rx(dev)) {
2369                         spin_lock(&np->lock);
2370                         if (!np->in_shutdown)
2371                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2372                         spin_unlock(&np->lock);
2373                 }
2374
2375                 if (events & NVREG_IRQ_LINK) {
2376                         spin_lock(&np->lock);
2377                         nv_link_irq(dev);
2378                         spin_unlock(&np->lock);
2379                 }
2380                 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2381                         spin_lock(&np->lock);
2382                         nv_linkchange(dev);
2383                         spin_unlock(&np->lock);
2384                         np->link_timeout = jiffies + LINK_TIMEOUT;
2385                 }
2386                 if (events & (NVREG_IRQ_TX_ERR)) {
2387                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2388                                                 dev->name, events);
2389                 }
2390                 if (events & (NVREG_IRQ_UNKNOWN)) {
2391                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2392                                                 dev->name, events);
2393                 }
2394                 if (i > max_interrupt_work) {
2395                         spin_lock(&np->lock);
2396                         /* disable interrupts on the nic */
2397                         if (!(np->msi_flags & NV_MSI_X_ENABLED))
2398                                 writel(0, base + NvRegIrqMask);
2399                         else
2400                                 writel(np->irqmask, base + NvRegIrqMask);
2401                         pci_push(base);
2402
2403                         if (!np->in_shutdown) {
2404                                 np->nic_poll_irq = np->irqmask;
2405                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2406                         }
2407                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
2408                         spin_unlock(&np->lock);
2409                         break;
2410                 }
2411
2412         }
2413         dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
2414
2415         return IRQ_RETVAL(i);
2416 }
2417
2418 static irqreturn_t nv_nic_irq_tx(int foo, void *data, struct pt_regs *regs)
2419 {
2420         struct net_device *dev = (struct net_device *) data;
2421         struct fe_priv *np = netdev_priv(dev);
2422         u8 __iomem *base = get_hwbase(dev);
2423         u32 events;
2424         int i;
2425
2426         dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
2427
2428         for (i=0; ; i++) {
2429                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
2430                 writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
2431                 pci_push(base);
2432                 dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
2433                 if (!(events & np->irqmask))
2434                         break;
2435
2436                 spin_lock_irq(&np->lock);
2437                 nv_tx_done(dev);
2438                 spin_unlock_irq(&np->lock);
2439
2440                 if (events & (NVREG_IRQ_TX_ERR)) {
2441                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2442                                                 dev->name, events);
2443                 }
2444                 if (i > max_interrupt_work) {
2445                         spin_lock_irq(&np->lock);
2446                         /* disable interrupts on the nic */
2447                         writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
2448                         pci_push(base);
2449
2450                         if (!np->in_shutdown) {
2451                                 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
2452                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2453                         }
2454                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
2455                         spin_unlock_irq(&np->lock);
2456                         break;
2457                 }
2458
2459         }
2460         dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
2461
2462         return IRQ_RETVAL(i);
2463 }
2464
2465 static irqreturn_t nv_nic_irq_rx(int foo, void *data, struct pt_regs *regs)
2466 {
2467         struct net_device *dev = (struct net_device *) data;
2468         struct fe_priv *np = netdev_priv(dev);
2469         u8 __iomem *base = get_hwbase(dev);
2470         u32 events;
2471         int i;
2472
2473         dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
2474
2475         for (i=0; ; i++) {
2476                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
2477                 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
2478                 pci_push(base);
2479                 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
2480                 if (!(events & np->irqmask))
2481                         break;
2482
2483                 nv_rx_process(dev);
2484                 if (nv_alloc_rx(dev)) {
2485                         spin_lock_irq(&np->lock);
2486                         if (!np->in_shutdown)
2487                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2488                         spin_unlock_irq(&np->lock);
2489                 }
2490
2491                 if (i > max_interrupt_work) {
2492                         spin_lock_irq(&np->lock);
2493                         /* disable interrupts on the nic */
2494                         writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
2495                         pci_push(base);
2496
2497                         if (!np->in_shutdown) {
2498                                 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
2499                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2500                         }
2501                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
2502                         spin_unlock_irq(&np->lock);
2503                         break;
2504                 }
2505
2506         }
2507         dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
2508
2509         return IRQ_RETVAL(i);
2510 }
2511
2512 static irqreturn_t nv_nic_irq_other(int foo, void *data, struct pt_regs *regs)
2513 {
2514         struct net_device *dev = (struct net_device *) data;
2515         struct fe_priv *np = netdev_priv(dev);
2516         u8 __iomem *base = get_hwbase(dev);
2517         u32 events;
2518         int i;
2519
2520         dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
2521
2522         for (i=0; ; i++) {
2523                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
2524                 writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
2525                 pci_push(base);
2526                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2527                 if (!(events & np->irqmask))
2528                         break;
2529
2530                 if (events & NVREG_IRQ_LINK) {
2531                         spin_lock_irq(&np->lock);
2532                         nv_link_irq(dev);
2533                         spin_unlock_irq(&np->lock);
2534                 }
2535                 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2536                         spin_lock_irq(&np->lock);
2537                         nv_linkchange(dev);
2538                         spin_unlock_irq(&np->lock);
2539                         np->link_timeout = jiffies + LINK_TIMEOUT;
2540                 }
2541                 if (events & (NVREG_IRQ_UNKNOWN)) {
2542                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2543                                                 dev->name, events);
2544                 }
2545                 if (i > max_interrupt_work) {
2546                         spin_lock_irq(&np->lock);
2547                         /* disable interrupts on the nic */
2548                         writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
2549                         pci_push(base);
2550
2551                         if (!np->in_shutdown) {
2552                                 np->nic_poll_irq |= NVREG_IRQ_OTHER;
2553                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2554                         }
2555                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
2556                         spin_unlock_irq(&np->lock);
2557                         break;
2558                 }
2559
2560         }
2561         dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
2562
2563         return IRQ_RETVAL(i);
2564 }
2565
2566 static irqreturn_t nv_nic_irq_test(int foo, void *data, struct pt_regs *regs)
2567 {
2568         struct net_device *dev = (struct net_device *) data;
2569         struct fe_priv *np = netdev_priv(dev);
2570         u8 __iomem *base = get_hwbase(dev);
2571         u32 events;
2572
2573         dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
2574
2575         if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
2576                 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2577                 writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
2578         } else {
2579                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2580                 writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
2581         }
2582         pci_push(base);
2583         dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2584         if (!(events & NVREG_IRQ_TIMER))
2585                 return IRQ_RETVAL(0);
2586
2587         spin_lock(&np->lock);
2588         np->intr_test = 1;
2589         spin_unlock(&np->lock);
2590
2591         dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
2592
2593         return IRQ_RETVAL(1);
2594 }
2595
2596 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
2597 {
2598         u8 __iomem *base = get_hwbase(dev);
2599         int i;
2600         u32 msixmap = 0;
2601
2602         /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
2603          * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
2604          * the remaining 8 interrupts.
2605          */
2606         for (i = 0; i < 8; i++) {
2607                 if ((irqmask >> i) & 0x1) {
2608                         msixmap |= vector << (i << 2);
2609                 }
2610         }
2611         writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
2612
2613         msixmap = 0;
2614         for (i = 0; i < 8; i++) {
2615                 if ((irqmask >> (i + 8)) & 0x1) {
2616                         msixmap |= vector << (i << 2);
2617                 }
2618         }
2619         writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
2620 }
2621
2622 static int nv_request_irq(struct net_device *dev, int intr_test)
2623 {
2624         struct fe_priv *np = get_nvpriv(dev);
2625         u8 __iomem *base = get_hwbase(dev);
2626         int ret = 1;
2627         int i;
2628
2629         if (np->msi_flags & NV_MSI_X_CAPABLE) {
2630                 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
2631                         np->msi_x_entry[i].entry = i;
2632                 }
2633                 if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
2634                         np->msi_flags |= NV_MSI_X_ENABLED;
2635                         if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
2636                                 /* Request irq for rx handling */
2637                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
2638                                         printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
2639                                         pci_disable_msix(np->pci_dev);
2640                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2641                                         goto out_err;
2642                                 }
2643                                 /* Request irq for tx handling */
2644                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
2645                                         printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
2646                                         pci_disable_msix(np->pci_dev);
2647                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2648                                         goto out_free_rx;
2649                                 }
2650                                 /* Request irq for link and timer handling */
2651                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
2652                                         printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
2653                                         pci_disable_msix(np->pci_dev);
2654                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2655                                         goto out_free_tx;
2656                                 }
2657                                 /* map interrupts to their respective vector */
2658                                 writel(0, base + NvRegMSIXMap0);
2659                                 writel(0, base + NvRegMSIXMap1);
2660                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
2661                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
2662                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
2663                         } else {
2664                                 /* Request irq for all interrupts */
2665                                 if ((!intr_test &&
2666                                      request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
2667                                     (intr_test &&
2668                                      request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0)) {
2669                                         printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
2670                                         pci_disable_msix(np->pci_dev);
2671                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2672                                         goto out_err;
2673                                 }
2674
2675                                 /* map interrupts to vector 0 */
2676                                 writel(0, base + NvRegMSIXMap0);
2677                                 writel(0, base + NvRegMSIXMap1);
2678                         }
2679                 }
2680         }
2681         if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
2682                 if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
2683                         np->msi_flags |= NV_MSI_ENABLED;
2684                         if ((!intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
2685                             (intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0)) {
2686                                 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
2687                                 pci_disable_msi(np->pci_dev);
2688                                 np->msi_flags &= ~NV_MSI_ENABLED;
2689                                 goto out_err;
2690                         }
2691
2692                         /* map interrupts to vector 0 */
2693                         writel(0, base + NvRegMSIMap0);
2694                         writel(0, base + NvRegMSIMap1);
2695                         /* enable msi vector 0 */
2696                         writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
2697                 }
2698         }
2699         if (ret != 0) {
2700                 if ((!intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
2701                     (intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0))
2702                         goto out_err;
2703
2704         }
2705
2706         return 0;
2707 out_free_tx:
2708         free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
2709 out_free_rx:
2710         free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
2711 out_err:
2712         return 1;
2713 }
2714
2715 static void nv_free_irq(struct net_device *dev)
2716 {
2717         struct fe_priv *np = get_nvpriv(dev);
2718         int i;
2719
2720         if (np->msi_flags & NV_MSI_X_ENABLED) {
2721                 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
2722                         free_irq(np->msi_x_entry[i].vector, dev);
2723                 }
2724                 pci_disable_msix(np->pci_dev);
2725                 np->msi_flags &= ~NV_MSI_X_ENABLED;
2726         } else {
2727                 free_irq(np->pci_dev->irq, dev);
2728                 if (np->msi_flags & NV_MSI_ENABLED) {
2729                         pci_disable_msi(np->pci_dev);
2730                         np->msi_flags &= ~NV_MSI_ENABLED;
2731                 }
2732         }
2733 }
2734
2735 static void nv_do_nic_poll(unsigned long data)
2736 {
2737         struct net_device *dev = (struct net_device *) data;
2738         struct fe_priv *np = netdev_priv(dev);
2739         u8 __iomem *base = get_hwbase(dev);
2740         u32 mask = 0;
2741
2742         /*
2743          * First disable irq(s) and then
2744          * reenable interrupts on the nic, we have to do this before calling
2745          * nv_nic_irq because that may decide to do otherwise
2746          */
2747
2748         if (!using_multi_irqs(dev)) {
2749                 if (np->msi_flags & NV_MSI_X_ENABLED)
2750                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
2751                 else
2752                         disable_irq_lockdep(dev->irq);
2753                 mask = np->irqmask;
2754         } else {
2755                 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
2756                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
2757                         mask |= NVREG_IRQ_RX_ALL;
2758                 }
2759                 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
2760                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
2761                         mask |= NVREG_IRQ_TX_ALL;
2762                 }
2763                 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
2764                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
2765                         mask |= NVREG_IRQ_OTHER;
2766                 }
2767         }
2768         np->nic_poll_irq = 0;
2769
2770         /* FIXME: Do we need synchronize_irq(dev->irq) here? */
2771
2772         writel(mask, base + NvRegIrqMask);
2773         pci_push(base);
2774
2775         if (!using_multi_irqs(dev)) {
2776                 nv_nic_irq(0, dev, NULL);
2777                 if (np->msi_flags & NV_MSI_X_ENABLED)
2778                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
2779                 else
2780                         enable_irq_lockdep(dev->irq);
2781         } else {
2782                 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
2783                         nv_nic_irq_rx(0, dev, NULL);
2784                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
2785                 }
2786                 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
2787                         nv_nic_irq_tx(0, dev, NULL);
2788                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
2789                 }
2790                 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
2791                         nv_nic_irq_other(0, dev, NULL);
2792                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
2793                 }
2794         }
2795 }
2796
2797 #ifdef CONFIG_NET_POLL_CONTROLLER
2798 static void nv_poll_controller(struct net_device *dev)
2799 {
2800         nv_do_nic_poll((unsigned long) dev);
2801 }
2802 #endif
2803
2804 static void nv_do_stats_poll(unsigned long data)
2805 {
2806         struct net_device *dev = (struct net_device *) data;
2807         struct fe_priv *np = netdev_priv(dev);
2808         u8 __iomem *base = get_hwbase(dev);
2809
2810         np->estats.tx_bytes += readl(base + NvRegTxCnt);
2811         np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
2812         np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
2813         np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
2814         np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
2815         np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
2816         np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
2817         np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
2818         np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
2819         np->estats.tx_deferral += readl(base + NvRegTxDef);
2820         np->estats.tx_packets += readl(base + NvRegTxFrame);
2821         np->estats.tx_pause += readl(base + NvRegTxPause);
2822         np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
2823         np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
2824         np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
2825         np->estats.rx_runt += readl(base + NvRegRxRunt);
2826         np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
2827         np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
2828         np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
2829         np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
2830         np->estats.rx_length_error += readl(base + NvRegRxLenErr);
2831         np->estats.rx_unicast += readl(base + NvRegRxUnicast);
2832         np->estats.rx_multicast += readl(base + NvRegRxMulticast);
2833         np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
2834         np->estats.rx_bytes += readl(base + NvRegRxCnt);
2835         np->estats.rx_pause += readl(base + NvRegRxPause);
2836         np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
2837         np->estats.rx_packets =
2838                 np->estats.rx_unicast +
2839                 np->estats.rx_multicast +
2840                 np->estats.rx_broadcast;
2841         np->estats.rx_errors_total =
2842                 np->estats.rx_crc_errors +
2843                 np->estats.rx_over_errors +
2844                 np->estats.rx_frame_error +
2845                 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
2846                 np->estats.rx_late_collision +
2847                 np->estats.rx_runt +
2848                 np->estats.rx_frame_too_long;
2849
2850         if (!np->in_shutdown)
2851                 mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
2852 }
2853
2854 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2855 {
2856         struct fe_priv *np = netdev_priv(dev);
2857         strcpy(info->driver, "forcedeth");
2858         strcpy(info->version, FORCEDETH_VERSION);
2859         strcpy(info->bus_info, pci_name(np->pci_dev));
2860 }
2861
2862 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
2863 {
2864         struct fe_priv *np = netdev_priv(dev);
2865         wolinfo->supported = WAKE_MAGIC;
2866
2867         spin_lock_irq(&np->lock);
2868         if (np->wolenabled)
2869                 wolinfo->wolopts = WAKE_MAGIC;
2870         spin_unlock_irq(&np->lock);
2871 }
2872
2873 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
2874 {
2875         struct fe_priv *np = netdev_priv(dev);
2876         u8 __iomem *base = get_hwbase(dev);
2877         u32 flags = 0;
2878
2879         if (wolinfo->wolopts == 0) {
2880                 np->wolenabled = 0;
2881         } else if (wolinfo->wolopts & WAKE_MAGIC) {
2882                 np->wolenabled = 1;
2883                 flags = NVREG_WAKEUPFLAGS_ENABLE;
2884         }
2885         if (netif_running(dev)) {
2886                 spin_lock_irq(&np->lock);
2887                 writel(flags, base + NvRegWakeUpFlags);
2888                 spin_unlock_irq(&np->lock);
2889         }
2890         return 0;
2891 }
2892
2893 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2894 {
2895         struct fe_priv *np = netdev_priv(dev);
2896         int adv;
2897
2898         spin_lock_irq(&np->lock);
2899         ecmd->port = PORT_MII;
2900         if (!netif_running(dev)) {
2901                 /* We do not track link speed / duplex setting if the
2902                  * interface is disabled. Force a link check */
2903                 if (nv_update_linkspeed(dev)) {
2904                         if (!netif_carrier_ok(dev))
2905                                 netif_carrier_on(dev);
2906                 } else {
2907                         if (netif_carrier_ok(dev))
2908                                 netif_carrier_off(dev);
2909                 }
2910         }
2911
2912         if (netif_carrier_ok(dev)) {
2913                 switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
2914                 case NVREG_LINKSPEED_10:
2915                         ecmd->speed = SPEED_10;
2916                         break;
2917                 case NVREG_LINKSPEED_100:
2918                         ecmd->speed = SPEED_100;
2919                         break;
2920                 case NVREG_LINKSPEED_1000:
2921                         ecmd->speed = SPEED_1000;
2922                         break;
2923                 }
2924                 ecmd->duplex = DUPLEX_HALF;
2925                 if (np->duplex)
2926                         ecmd->duplex = DUPLEX_FULL;
2927         } else {
2928                 ecmd->speed = -1;
2929                 ecmd->duplex = -1;
2930         }
2931
2932         ecmd->autoneg = np->autoneg;
2933
2934         ecmd->advertising = ADVERTISED_MII;
2935         if (np->autoneg) {
2936                 ecmd->advertising |= ADVERTISED_Autoneg;
2937                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2938                 if (adv & ADVERTISE_10HALF)
2939                         ecmd->advertising |= ADVERTISED_10baseT_Half;
2940                 if (adv & ADVERTISE_10FULL)
2941                         ecmd->advertising |= ADVERTISED_10baseT_Full;
2942                 if (adv & ADVERTISE_100HALF)
2943                         ecmd->advertising |= ADVERTISED_100baseT_Half;
2944                 if (adv & ADVERTISE_100FULL)
2945                         ecmd->advertising |= ADVERTISED_100baseT_Full;
2946                 if (np->gigabit == PHY_GIGABIT) {
2947                         adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2948                         if (adv & ADVERTISE_1000FULL)
2949                                 ecmd->advertising |= ADVERTISED_1000baseT_Full;
2950                 }
2951         }
2952         ecmd->supported = (SUPPORTED_Autoneg |
2953                 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2954                 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2955                 SUPPORTED_MII);
2956         if (np->gigabit == PHY_GIGABIT)
2957                 ecmd->supported |= SUPPORTED_1000baseT_Full;
2958
2959         ecmd->phy_address = np->phyaddr;
2960         ecmd->transceiver = XCVR_EXTERNAL;
2961
2962         /* ignore maxtxpkt, maxrxpkt for now */
2963         spin_unlock_irq(&np->lock);
2964         return 0;
2965 }
2966
2967 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2968 {
2969         struct fe_priv *np = netdev_priv(dev);
2970
2971         if (ecmd->port != PORT_MII)
2972                 return -EINVAL;
2973         if (ecmd->transceiver != XCVR_EXTERNAL)
2974                 return -EINVAL;
2975         if (ecmd->phy_address != np->phyaddr) {
2976                 /* TODO: support switching between multiple phys. Should be
2977                  * trivial, but not enabled due to lack of test hardware. */
2978                 return -EINVAL;
2979         }
2980         if (ecmd->autoneg == AUTONEG_ENABLE) {
2981                 u32 mask;
2982
2983                 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
2984                           ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
2985                 if (np->gigabit == PHY_GIGABIT)
2986                         mask |= ADVERTISED_1000baseT_Full;
2987
2988                 if ((ecmd->advertising & mask) == 0)
2989                         return -EINVAL;
2990
2991         } else if (ecmd->autoneg == AUTONEG_DISABLE) {
2992                 /* Note: autonegotiation disable, speed 1000 intentionally
2993                  * forbidden - noone should need that. */
2994
2995                 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
2996                         return -EINVAL;
2997                 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2998                         return -EINVAL;
2999         } else {
3000                 return -EINVAL;
3001         }
3002
3003         netif_carrier_off(dev);
3004         if (netif_running(dev)) {
3005                 nv_disable_irq(dev);
3006                 netif_tx_lock_bh(dev);
3007                 spin_lock(&np->lock);
3008                 /* stop engines */
3009                 nv_stop_rx(dev);
3010                 nv_stop_tx(dev);
3011                 spin_unlock(&np->lock);
3012                 netif_tx_unlock_bh(dev);
3013         }
3014
3015         if (ecmd->autoneg == AUTONEG_ENABLE) {
3016                 int adv, bmcr;
3017
3018                 np->autoneg = 1;
3019
3020                 /* advertise only what has been requested */
3021                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3022                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3023                 if (ecmd->advertising & ADVERTISED_10baseT_Half)
3024                         adv |= ADVERTISE_10HALF;
3025                 if (ecmd->advertising & ADVERTISED_10baseT_Full)
3026                         adv |= ADVERTISE_10FULL;
3027                 if (ecmd->advertising & ADVERTISED_100baseT_Half)
3028                         adv |= ADVERTISE_100HALF;
3029                 if (ecmd->advertising & ADVERTISED_100baseT_Full)
3030                         adv |= ADVERTISE_100FULL;
3031                 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ)  /* for rx we set both advertisments but disable tx pause */
3032                         adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3033                 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3034                         adv |=  ADVERTISE_PAUSE_ASYM;
3035                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3036
3037                 if (np->gigabit == PHY_GIGABIT) {
3038                         adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3039                         adv &= ~ADVERTISE_1000FULL;
3040                         if (ecmd->advertising & ADVERTISED_1000baseT_Full)
3041                                 adv |= ADVERTISE_1000FULL;
3042                         mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
3043                 }
3044
3045                 if (netif_running(dev))
3046                         printk(KERN_INFO "%s: link down.\n", dev->name);
3047                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3048                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3049                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3050
3051         } else {
3052                 int adv, bmcr;
3053
3054                 np->autoneg = 0;
3055
3056                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3057                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3058                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
3059                         adv |= ADVERTISE_10HALF;
3060                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
3061                         adv |= ADVERTISE_10FULL;
3062                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
3063                         adv |= ADVERTISE_100HALF;
3064                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
3065                         adv |= ADVERTISE_100FULL;
3066                 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
3067                 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
3068                         adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3069                         np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3070                 }
3071                 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
3072                         adv |=  ADVERTISE_PAUSE_ASYM;
3073                         np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3074                 }
3075                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3076                 np->fixed_mode = adv;
3077
3078                 if (np->gigabit == PHY_GIGABIT) {
3079                         adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3080                         adv &= ~ADVERTISE_1000FULL;
3081                         mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
3082                 }
3083
3084                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3085                 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
3086                 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
3087                         bmcr |= BMCR_FULLDPLX;
3088                 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
3089                         bmcr |= BMCR_SPEED100;
3090                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3091                 if (np->phy_oui == PHY_OUI_MARVELL) {
3092                         /* reset the phy */
3093                         if (phy_reset(dev)) {
3094                                 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
3095                                 return -EINVAL;
3096                         }
3097                 } else if (netif_running(dev)) {
3098                         /* Wait a bit and then reconfigure the nic. */
3099                         udelay(10);
3100                         nv_linkchange(dev);
3101                 }
3102         }
3103
3104         if (netif_running(dev)) {
3105                 nv_start_rx(dev);
3106                 nv_start_tx(dev);
3107                 nv_enable_irq(dev);
3108         }
3109
3110         return 0;
3111 }
3112
3113 #define FORCEDETH_REGS_VER      1
3114
3115 static int nv_get_regs_len(struct net_device *dev)
3116 {
3117         struct fe_priv *np = netdev_priv(dev);
3118         return np->register_size;
3119 }
3120
3121 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
3122 {
3123         struct fe_priv *np = netdev_priv(dev);
3124         u8 __iomem *base = get_hwbase(dev);
3125         u32 *rbuf = buf;
3126         int i;
3127
3128         regs->version = FORCEDETH_REGS_VER;
3129         spin_lock_irq(&np->lock);
3130         for (i = 0;i <= np->register_size/sizeof(u32); i++)
3131                 rbuf[i] = readl(base + i*sizeof(u32));
3132         spin_unlock_irq(&np->lock);
3133 }
3134
3135 static int nv_nway_reset(struct net_device *dev)
3136 {
3137         struct fe_priv *np = netdev_priv(dev);
3138         int ret;
3139
3140         if (np->autoneg) {
3141                 int bmcr;
3142
3143                 netif_carrier_off(dev);
3144                 if (netif_running(dev)) {
3145                         nv_disable_irq(dev);
3146                         netif_tx_lock_bh(dev);
3147                         spin_lock(&np->lock);
3148                         /* stop engines */
3149                         nv_stop_rx(dev);
3150                         nv_stop_tx(dev);
3151                         spin_unlock(&np->lock);
3152                         netif_tx_unlock_bh(dev);
3153                         printk(KERN_INFO "%s: link down.\n", dev->name);
3154                 }
3155
3156                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3157                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3158                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3159
3160                 if (netif_running(dev)) {
3161                         nv_start_rx(dev);
3162                         nv_start_tx(dev);
3163                         nv_enable_irq(dev);
3164                 }
3165                 ret = 0;
3166         } else {
3167                 ret = -EINVAL;
3168         }
3169
3170         return ret;
3171 }
3172
3173 static int nv_set_tso(struct net_device *dev, u32 value)
3174 {
3175         struct fe_priv *np = netdev_priv(dev);
3176
3177         if ((np->driver_data & DEV_HAS_CHECKSUM))
3178                 return ethtool_op_set_tso(dev, value);
3179         else
3180                 return -EOPNOTSUPP;
3181 }
3182
3183 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
3184 {
3185         struct fe_priv *np = netdev_priv(dev);
3186
3187         ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
3188         ring->rx_mini_max_pending = 0;
3189         ring->rx_jumbo_max_pending = 0;
3190         ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
3191
3192         ring->rx_pending = np->rx_ring_size;
3193         ring->rx_mini_pending = 0;
3194         ring->rx_jumbo_pending = 0;
3195         ring->tx_pending = np->tx_ring_size;
3196 }
3197
3198 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
3199 {
3200         struct fe_priv *np = netdev_priv(dev);
3201         u8 __iomem *base = get_hwbase(dev);
3202         u8 *rxtx_ring, *rx_skbuff, *tx_skbuff, *rx_dma, *tx_dma, *tx_dma_len;
3203         dma_addr_t ring_addr;
3204
3205         if (ring->rx_pending < RX_RING_MIN ||
3206             ring->tx_pending < TX_RING_MIN ||
3207             ring->rx_mini_pending != 0 ||
3208             ring->rx_jumbo_pending != 0 ||
3209             (np->desc_ver == DESC_VER_1 &&
3210              (ring->rx_pending > RING_MAX_DESC_VER_1 ||
3211               ring->tx_pending > RING_MAX_DESC_VER_1)) ||
3212             (np->desc_ver != DESC_VER_1 &&
3213              (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
3214               ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
3215                 return -EINVAL;
3216         }
3217
3218         /* allocate new rings */
3219         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3220                 rxtx_ring = pci_alloc_consistent(np->pci_dev,
3221                                             sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
3222                                             &ring_addr);
3223         } else {
3224                 rxtx_ring = pci_alloc_consistent(np->pci_dev,
3225                                             sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
3226                                             &ring_addr);
3227         }
3228         rx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->rx_pending, GFP_KERNEL);
3229         rx_dma = kmalloc(sizeof(dma_addr_t) * ring->rx_pending, GFP_KERNEL);
3230         tx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->tx_pending, GFP_KERNEL);
3231         tx_dma = kmalloc(sizeof(dma_addr_t) * ring->tx_pending, GFP_KERNEL);
3232         tx_dma_len = kmalloc(sizeof(unsigned int) * ring->tx_pending, GFP_KERNEL);
3233         if (!rxtx_ring || !rx_skbuff || !rx_dma || !tx_skbuff || !tx_dma || !tx_dma_len) {
3234                 /* fall back to old rings */
3235                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3236                         if(rxtx_ring)
3237                                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
3238                                                     rxtx_ring, ring_addr);
3239                 } else {
3240                         if (rxtx_ring)
3241                                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
3242                                                     rxtx_ring, ring_addr);
3243                 }
3244                 if (rx_skbuff)
3245                         kfree(rx_skbuff);
3246                 if (rx_dma)
3247                         kfree(rx_dma);
3248                 if (tx_skbuff)
3249                         kfree(tx_skbuff);
3250                 if (tx_dma)
3251                         kfree(tx_dma);
3252                 if (tx_dma_len)
3253                         kfree(tx_dma_len);
3254                 goto exit;
3255         }
3256
3257         if (netif_running(dev)) {
3258                 nv_disable_irq(dev);
3259                 netif_tx_lock_bh(dev);
3260                 spin_lock(&np->lock);
3261                 /* stop engines */
3262                 nv_stop_rx(dev);
3263                 nv_stop_tx(dev);
3264                 nv_txrx_reset(dev);
3265                 /* drain queues */
3266                 nv_drain_rx(dev);
3267                 nv_drain_tx(dev);
3268                 /* delete queues */
3269                 free_rings(dev);
3270         }
3271
3272         /* set new values */
3273         np->rx_ring_size = ring->rx_pending;
3274         np->tx_ring_size = ring->tx_pending;
3275         np->tx_limit_stop = ring->tx_pending - TX_LIMIT_DIFFERENCE;
3276         np->tx_limit_start = ring->tx_pending - TX_LIMIT_DIFFERENCE - 1;
3277         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3278                 np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
3279                 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
3280         } else {
3281                 np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
3282                 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
3283         }
3284         np->rx_skbuff = (struct sk_buff**)rx_skbuff;
3285         np->rx_dma = (dma_addr_t*)rx_dma;
3286         np->tx_skbuff = (struct sk_buff**)tx_skbuff;
3287         np->tx_dma = (dma_addr_t*)tx_dma;
3288         np->tx_dma_len = (unsigned int*)tx_dma_len;
3289         np->ring_addr = ring_addr;
3290
3291         memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
3292         memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
3293         memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
3294         memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
3295         memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
3296
3297         if (netif_running(dev)) {
3298                 /* reinit driver view of the queues */
3299                 set_bufsize(dev);
3300                 if (nv_init_ring(dev)) {
3301                         if (!np->in_shutdown)
3302                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3303                 }
3304
3305                 /* reinit nic view of the queues */
3306                 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3307                 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3308                 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3309                         base + NvRegRingSizes);
3310                 pci_push(base);
3311                 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3312                 pci_push(base);
3313
3314                 /* restart engines */
3315                 nv_start_rx(dev);
3316                 nv_start_tx(dev);
3317                 spin_unlock(&np->lock);
3318                 netif_tx_unlock_bh(dev);
3319                 nv_enable_irq(dev);
3320         }
3321         return 0;
3322 exit:
3323         return -ENOMEM;
3324 }
3325
3326 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
3327 {
3328         struct fe_priv *np = netdev_priv(dev);
3329
3330         pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
3331         pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
3332         pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
3333 }
3334
3335 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
3336 {
3337         struct fe_priv *np = netdev_priv(dev);
3338         int adv, bmcr;
3339
3340         if ((!np->autoneg && np->duplex == 0) ||
3341             (np->autoneg && !pause->autoneg && np->duplex == 0)) {
3342                 printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
3343                        dev->name);
3344                 return -EINVAL;
3345         }
3346         if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
3347                 printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
3348                 return -EINVAL;
3349         }
3350
3351         netif_carrier_off(dev);
3352         if (netif_running(dev)) {
3353                 nv_disable_irq(dev);
3354                 netif_tx_lock_bh(dev);
3355                 spin_lock(&np->lock);
3356                 /* stop engines */
3357                 nv_stop_rx(dev);
3358                 nv_stop_tx(dev);
3359                 spin_unlock(&np->lock);
3360                 netif_tx_unlock_bh(dev);
3361         }
3362
3363         np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
3364         if (pause->rx_pause)
3365                 np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
3366         if (pause->tx_pause)
3367                 np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
3368
3369         if (np->autoneg && pause->autoneg) {
3370                 np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
3371
3372                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3373                 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3374                 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
3375                         adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3376                 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3377                         adv |=  ADVERTISE_PAUSE_ASYM;
3378                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3379
3380                 if (netif_running(dev))
3381                         printk(KERN_INFO "%s: link down.\n", dev->name);
3382                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3383                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3384                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3385         } else {
3386                 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
3387                 if (pause->rx_pause)
3388                         np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3389                 if (pause->tx_pause)
3390                         np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3391
3392                 if (!netif_running(dev))
3393                         nv_update_linkspeed(dev);
3394                 else
3395                         nv_update_pause(dev, np->pause_flags);
3396         }
3397
3398         if (netif_running(dev)) {
3399                 nv_start_rx(dev);
3400                 nv_start_tx(dev);
3401                 nv_enable_irq(dev);
3402         }
3403         return 0;
3404 }
3405
3406 static u32 nv_get_rx_csum(struct net_device *dev)
3407 {
3408         struct fe_priv *np = netdev_priv(dev);
3409         return (np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) != 0;
3410 }
3411
3412 static int nv_set_rx_csum(struct net_device *dev, u32 data)
3413 {
3414         struct fe_priv *np = netdev_priv(dev);
3415         u8 __iomem *base = get_hwbase(dev);
3416         int retcode = 0;
3417
3418         if (np->driver_data & DEV_HAS_CHECKSUM) {
3419
3420                 if (((np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) && data) ||
3421                     (!(np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) && !data)) {
3422                         /* already set or unset */
3423                         return 0;
3424                 }
3425
3426                 if (data) {
3427                         np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
3428                 } else if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE)) {
3429                         np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
3430                 } else {
3431                         printk(KERN_INFO "Can not disable rx checksum if vlan is enabled\n");
3432                         return -EINVAL;
3433                 }
3434
3435                 if (netif_running(dev)) {
3436                         spin_lock_irq(&np->lock);
3437                         writel(np->txrxctl_bits, base + NvRegTxRxControl);
3438                         spin_unlock_irq(&np->lock);
3439                 }
3440         } else {
3441                 return -EINVAL;
3442         }
3443
3444         return retcode;
3445 }
3446
3447 static int nv_set_tx_csum(struct net_device *dev, u32 data)
3448 {
3449         struct fe_priv *np = netdev_priv(dev);
3450
3451         if (np->driver_data & DEV_HAS_CHECKSUM)
3452                 return ethtool_op_set_tx_hw_csum(dev, data);
3453         else
3454                 return -EOPNOTSUPP;
3455 }
3456
3457 static int nv_set_sg(struct net_device *dev, u32 data)
3458 {
3459         struct fe_priv *np = netdev_priv(dev);
3460
3461         if (np->driver_data & DEV_HAS_CHECKSUM)
3462                 return ethtool_op_set_sg(dev, data);
3463         else
3464                 return -EOPNOTSUPP;
3465 }
3466
3467 static int nv_get_stats_count(struct net_device *dev)
3468 {
3469         struct fe_priv *np = netdev_priv(dev);
3470
3471         if (np->driver_data & DEV_HAS_STATISTICS)
3472                 return (sizeof(struct nv_ethtool_stats)/sizeof(u64));
3473         else
3474                 return 0;
3475 }
3476
3477 static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
3478 {
3479         struct fe_priv *np = netdev_priv(dev);
3480
3481         /* update stats */
3482         nv_do_stats_poll((unsigned long)dev);
3483
3484         memcpy(buffer, &np->estats, nv_get_stats_count(dev)*sizeof(u64));
3485 }
3486
3487 static int nv_self_test_count(struct net_device *dev)
3488 {
3489         struct fe_priv *np = netdev_priv(dev);
3490
3491         if (np->driver_data & DEV_HAS_TEST_EXTENDED)
3492                 return NV_TEST_COUNT_EXTENDED;
3493         else
3494                 return NV_TEST_COUNT_BASE;
3495 }
3496
3497 static int nv_link_test(struct net_device *dev)
3498 {
3499         struct fe_priv *np = netdev_priv(dev);
3500         int mii_status;
3501
3502         mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3503         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3504
3505         /* check phy link status */
3506         if (!(mii_status & BMSR_LSTATUS))
3507                 return 0;
3508         else
3509                 return 1;
3510 }
3511
3512 static int nv_register_test(struct net_device *dev)
3513 {
3514         u8 __iomem *base = get_hwbase(dev);
3515         int i = 0;
3516         u32 orig_read, new_read;
3517
3518         do {
3519                 orig_read = readl(base + nv_registers_test[i].reg);
3520
3521                 /* xor with mask to toggle bits */
3522                 orig_read ^= nv_registers_test[i].mask;
3523
3524                 writel(orig_read, base + nv_registers_test[i].reg);
3525
3526                 new_read = readl(base + nv_registers_test[i].reg);
3527
3528                 if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
3529                         return 0;
3530
3531                 /* restore original value */
3532                 orig_read ^= nv_registers_test[i].mask;
3533                 writel(orig_read, base + nv_registers_test[i].reg);
3534
3535         } while (nv_registers_test[++i].reg != 0);
3536
3537         return 1;
3538 }
3539
3540 static int nv_interrupt_test(struct net_device *dev)
3541 {
3542         struct fe_priv *np = netdev_priv(dev);
3543         u8 __iomem *base = get_hwbase(dev);
3544         int ret = 1;
3545         int testcnt;
3546         u32 save_msi_flags, save_poll_interval = 0;
3547
3548         if (netif_running(dev)) {
3549                 /* free current irq */
3550                 nv_free_irq(dev);
3551                 save_poll_interval = readl(base+NvRegPollingInterval);
3552         }
3553
3554         /* flag to test interrupt handler */
3555         np->intr_test = 0;
3556
3557         /* setup test irq */
3558         save_msi_flags = np->msi_flags;
3559         np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
3560         np->msi_flags |= 0x001; /* setup 1 vector */
3561         if (nv_request_irq(dev, 1))
3562                 return 0;
3563
3564         /* setup timer interrupt */
3565         writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
3566         writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
3567
3568         nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
3569
3570         /* wait for at least one interrupt */
3571         msleep(100);
3572
3573         spin_lock_irq(&np->lock);
3574
3575         /* flag should be set within ISR */
3576         testcnt = np->intr_test;
3577         if (!testcnt)
3578                 ret = 2;
3579
3580         nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
3581         if (!(np->msi_flags & NV_MSI_X_ENABLED))
3582                 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3583         else
3584                 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
3585
3586         spin_unlock_irq(&np->lock);
3587
3588         nv_free_irq(dev);
3589
3590         np->msi_flags = save_msi_flags;
3591
3592         if (netif_running(dev)) {
3593                 writel(save_poll_interval, base + NvRegPollingInterval);
3594                 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
3595                 /* restore original irq */
3596                 if (nv_request_irq(dev, 0))
3597                         return 0;
3598         }
3599
3600         return ret;
3601 }
3602
3603 static int nv_loopback_test(struct net_device *dev)
3604 {
3605         struct fe_priv *np = netdev_priv(dev);
3606         u8 __iomem *base = get_hwbase(dev);
3607         struct sk_buff *tx_skb, *rx_skb;
3608         dma_addr_t test_dma_addr;
3609         u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
3610         u32 Flags;
3611         int len, i, pkt_len;
3612         u8 *pkt_data;
3613         u32 filter_flags = 0;
3614         u32 misc1_flags = 0;
3615         int ret = 1;
3616
3617         if (netif_running(dev)) {
3618                 nv_disable_irq(dev);
3619                 filter_flags = readl(base + NvRegPacketFilterFlags);
3620                 misc1_flags = readl(base + NvRegMisc1);
3621         } else {
3622                 nv_txrx_reset(dev);
3623         }
3624
3625         /* reinit driver view of the rx queue */
3626         set_bufsize(dev);
3627         nv_init_ring(dev);
3628
3629         /* setup hardware for loopback */
3630         writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
3631         writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
3632
3633         /* reinit nic view of the rx queue */
3634         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3635         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3636         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3637                 base + NvRegRingSizes);
3638         pci_push(base);
3639
3640         /* restart rx engine */
3641         nv_start_rx(dev);
3642         nv_start_tx(dev);
3643
3644         /* setup packet for tx */
3645         pkt_len = ETH_DATA_LEN;
3646         tx_skb = dev_alloc_skb(pkt_len);
3647         pkt_data = skb_put(tx_skb, pkt_len);
3648         for (i = 0; i < pkt_len; i++)
3649                 pkt_data[i] = (u8)(i & 0xff);
3650         test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
3651                                        tx_skb->end-tx_skb->data, PCI_DMA_FROMDEVICE);
3652
3653         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3654                 np->tx_ring.orig[0].PacketBuffer = cpu_to_le32(test_dma_addr);
3655                 np->tx_ring.orig[0].FlagLen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
3656         } else {
3657                 np->tx_ring.ex[0].PacketBufferHigh = cpu_to_le64(test_dma_addr) >> 32;
3658                 np->tx_ring.ex[0].PacketBufferLow = cpu_to_le64(test_dma_addr) & 0x0FFFFFFFF;
3659                 np->tx_ring.ex[0].FlagLen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
3660         }
3661         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3662         pci_push(get_hwbase(dev));
3663
3664         msleep(500);
3665
3666         /* check for rx of the packet */
3667         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3668                 Flags = le32_to_cpu(np->rx_ring.orig[0].FlagLen);
3669                 len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
3670
3671         } else {
3672                 Flags = le32_to_cpu(np->rx_ring.ex[0].FlagLen);
3673                 len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
3674         }
3675
3676         if (Flags & NV_RX_AVAIL) {
3677                 ret = 0;
3678         } else if (np->desc_ver == DESC_VER_1) {
3679                 if (Flags & NV_RX_ERROR)
3680                         ret = 0;
3681         } else {
3682                 if (Flags & NV_RX2_ERROR) {
3683                         ret = 0;
3684                 }
3685         }
3686
3687         if (ret) {
3688                 if (len != pkt_len) {
3689                         ret = 0;
3690                         dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
3691                                 dev->name, len, pkt_len);
3692                 } else {
3693                         rx_skb = np->rx_skbuff[0];
3694                         for (i = 0; i < pkt_len; i++) {
3695                                 if (rx_skb->data[i] != (u8)(i & 0xff)) {
3696                                         ret = 0;
3697                                         dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
3698                                                 dev->name, i);
3699                                         break;
3700                                 }
3701                         }
3702                 }
3703         } else {
3704                 dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
3705         }
3706
3707         pci_unmap_page(np->pci_dev, test_dma_addr,
3708                        tx_skb->end-tx_skb->data,
3709                        PCI_DMA_TODEVICE);
3710         dev_kfree_skb_any(tx_skb);
3711
3712         /* stop engines */
3713         nv_stop_rx(dev);
3714         nv_stop_tx(dev);
3715         nv_txrx_reset(dev);
3716         /* drain rx queue */
3717         nv_drain_rx(dev);
3718         nv_drain_tx(dev);
3719
3720         if (netif_running(dev)) {
3721                 writel(misc1_flags, base + NvRegMisc1);
3722                 writel(filter_flags, base + NvRegPacketFilterFlags);
3723                 nv_enable_irq(dev);
3724         }
3725
3726         return ret;
3727 }
3728
3729 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
3730 {
3731         struct fe_priv *np = netdev_priv(dev);
3732         u8 __iomem *base = get_hwbase(dev);
3733         int result;
3734         memset(buffer, 0, nv_self_test_count(dev)*sizeof(u64));
3735
3736         if (!nv_link_test(dev)) {
3737                 test->flags |= ETH_TEST_FL_FAILED;
3738                 buffer[0] = 1;
3739         }
3740
3741         if (test->flags & ETH_TEST_FL_OFFLINE) {
3742                 if (netif_running(dev)) {
3743                         netif_stop_queue(dev);
3744                         netif_tx_lock_bh(dev);
3745                         spin_lock_irq(&np->lock);
3746                         nv_disable_hw_interrupts(dev, np->irqmask);
3747                         if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3748                                 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3749                         } else {
3750                                 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
3751                         }
3752                         /* stop engines */
3753                         nv_stop_rx(dev);
3754                         nv_stop_tx(dev);
3755                         nv_txrx_reset(dev);
3756                         /* drain rx queue */
3757                         nv_drain_rx(dev);
3758                         nv_drain_tx(dev);
3759                         spin_unlock_irq(&np->lock);
3760                         netif_tx_unlock_bh(dev);
3761                 }
3762
3763                 if (!nv_register_test(dev)) {
3764                         test->flags |= ETH_TEST_FL_FAILED;
3765                         buffer[1] = 1;
3766                 }
3767
3768                 result = nv_interrupt_test(dev);
3769                 if (result != 1) {
3770                         test->flags |= ETH_TEST_FL_FAILED;
3771                         buffer[2] = 1;
3772                 }
3773                 if (result == 0) {
3774                         /* bail out */
3775                         return;
3776                 }
3777
3778                 if (!nv_loopback_test(dev)) {
3779                         test->flags |= ETH_TEST_FL_FAILED;
3780                         buffer[3] = 1;
3781                 }
3782
3783                 if (netif_running(dev)) {
3784                         /* reinit driver view of the rx queue */
3785                         set_bufsize(dev);
3786                         if (nv_init_ring(dev)) {
3787                                 if (!np->in_shutdown)
3788                                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3789                         }
3790                         /* reinit nic view of the rx queue */
3791                         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3792                         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3793                         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3794                                 base + NvRegRingSizes);
3795                         pci_push(base);
3796                         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3797                         pci_push(base);
3798                         /* restart rx engine */
3799                         nv_start_rx(dev);
3800                         nv_start_tx(dev);
3801                         netif_start_queue(dev);
3802                         nv_enable_hw_interrupts(dev, np->irqmask);
3803                 }
3804         }
3805 }
3806
3807 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
3808 {
3809         switch (stringset) {
3810         case ETH_SS_STATS:
3811                 memcpy(buffer, &nv_estats_str, nv_get_stats_count(dev)*sizeof(struct nv_ethtool_str));
3812                 break;
3813         case ETH_SS_TEST:
3814                 memcpy(buffer, &nv_etests_str, nv_self_test_count(dev)*sizeof(struct nv_ethtool_str));
3815                 break;
3816         }
3817 }
3818
3819 static struct ethtool_ops ops = {
3820         .get_drvinfo = nv_get_drvinfo,
3821         .get_link = ethtool_op_get_link,
3822         .get_wol = nv_get_wol,
3823         .set_wol = nv_set_wol,
3824         .get_settings = nv_get_settings,
3825         .set_settings = nv_set_settings,
3826         .get_regs_len = nv_get_regs_len,
3827         .get_regs = nv_get_regs,
3828         .nway_reset = nv_nway_reset,
3829         .get_perm_addr = ethtool_op_get_perm_addr,
3830         .get_tso = ethtool_op_get_tso,
3831         .set_tso = nv_set_tso,
3832         .get_ringparam = nv_get_ringparam,
3833         .set_ringparam = nv_set_ringparam,
3834         .get_pauseparam = nv_get_pauseparam,
3835         .set_pauseparam = nv_set_pauseparam,
3836         .get_rx_csum = nv_get_rx_csum,
3837         .set_rx_csum = nv_set_rx_csum,
3838         .get_tx_csum = ethtool_op_get_tx_csum,
3839         .set_tx_csum = nv_set_tx_csum,
3840         .get_sg = ethtool_op_get_sg,
3841         .set_sg = nv_set_sg,
3842         .get_strings = nv_get_strings,
3843         .get_stats_count = nv_get_stats_count,
3844         .get_ethtool_stats = nv_get_ethtool_stats,
3845         .self_test_count = nv_self_test_count,
3846         .self_test = nv_self_test,
3847 };
3848
3849 static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
3850 {
3851         struct fe_priv *np = get_nvpriv(dev);
3852
3853         spin_lock_irq(&np->lock);
3854
3855         /* save vlan group */
3856         np->vlangrp = grp;
3857
3858         if (grp) {
3859                 /* enable vlan on MAC */
3860                 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
3861         } else {
3862                 /* disable vlan on MAC */
3863                 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
3864                 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
3865         }
3866
3867         writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3868
3869         spin_unlock_irq(&np->lock);
3870 };
3871
3872 static void nv_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
3873 {
3874         /* nothing to do */
3875 };
3876
3877 static int nv_open(struct net_device *dev)
3878 {
3879         struct fe_priv *np = netdev_priv(dev);
3880         u8 __iomem *base = get_hwbase(dev);
3881         int ret = 1;
3882         int oom, i;
3883
3884         dprintk(KERN_DEBUG "nv_open: begin\n");
3885
3886         /* 1) erase previous misconfiguration */
3887         if (np->driver_data & DEV_HAS_POWER_CNTRL)
3888                 nv_mac_reset(dev);
3889         /* 4.1-1: stop adapter: ignored, 4.3 seems to be overkill */
3890         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
3891         writel(0, base + NvRegMulticastAddrB);
3892         writel(0, base + NvRegMulticastMaskA);
3893         writel(0, base + NvRegMulticastMaskB);
3894         writel(0, base + NvRegPacketFilterFlags);
3895
3896         writel(0, base + NvRegTransmitterControl);
3897         writel(0, base + NvRegReceiverControl);
3898
3899         writel(0, base + NvRegAdapterControl);
3900
3901         if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
3902                 writel(NVREG_TX_PAUSEFRAME_DISABLE,  base + NvRegTxPauseFrame);
3903
3904         /* 2) initialize descriptor rings */
3905         set_bufsize(dev);
3906         oom = nv_init_ring(dev);
3907
3908         writel(0, base + NvRegLinkSpeed);
3909         writel(0, base + NvRegUnknownTransmitterReg);
3910         nv_txrx_reset(dev);
3911         writel(0, base + NvRegUnknownSetupReg6);
3912
3913         np->in_shutdown = 0;
3914
3915         /* 3) set mac address */
3916         nv_copy_mac_to_hw(dev);
3917
3918         /* 4) give hw rings */
3919         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3920         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3921                 base + NvRegRingSizes);
3922
3923         /* 5) continue setup */
3924         writel(np->linkspeed, base + NvRegLinkSpeed);
3925         writel(NVREG_UNKSETUP3_VAL1, base + NvRegUnknownSetupReg3);
3926         writel(np->txrxctl_bits, base + NvRegTxRxControl);
3927         writel(np->vlanctl_bits, base + NvRegVlanControl);
3928         pci_push(base);
3929         writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
3930         reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
3931                         NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
3932                         KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
3933
3934         writel(0, base + NvRegUnknownSetupReg4);
3935         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3936         writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
3937
3938         /* 6) continue setup */
3939         writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
3940         writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
3941         writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
3942         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3943
3944         writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
3945         get_random_bytes(&i, sizeof(i));
3946         writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
3947         writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
3948         writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
3949         if (poll_interval == -1) {
3950                 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
3951                         writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
3952                 else
3953                         writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
3954         }
3955         else
3956                 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
3957         writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
3958         writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
3959                         base + NvRegAdapterControl);
3960         writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
3961         writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
3962         if (np->wolenabled)
3963                 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
3964
3965         i = readl(base + NvRegPowerState);
3966         if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
3967                 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
3968
3969         pci_push(base);
3970         udelay(10);
3971         writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
3972
3973         nv_disable_hw_interrupts(dev, np->irqmask);
3974         pci_push(base);
3975         writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
3976         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3977         pci_push(base);
3978
3979         if (nv_request_irq(dev, 0)) {
3980                 goto out_drain;
3981         }
3982
3983         /* ask for interrupts */
3984         nv_enable_hw_interrupts(dev, np->irqmask);
3985
3986         spin_lock_irq(&np->lock);
3987         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
3988         writel(0, base + NvRegMulticastAddrB);
3989         writel(0, base + NvRegMulticastMaskA);
3990         writel(0, base + NvRegMulticastMaskB);
3991         writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
3992         /* One manual link speed update: Interrupts are enabled, future link
3993          * speed changes cause interrupts and are handled by nv_link_irq().
3994          */
3995         {
3996                 u32 miistat;
3997                 miistat = readl(base + NvRegMIIStatus);
3998                 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
3999                 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
4000         }
4001         /* set linkspeed to invalid value, thus force nv_update_linkspeed
4002          * to init hw */
4003         np->linkspeed = 0;
4004         ret = nv_update_linkspeed(dev);
4005         nv_start_rx(dev);
4006         nv_start_tx(dev);
4007         netif_start_queue(dev);
4008         if (ret) {
4009                 netif_carrier_on(dev);
4010         } else {
4011                 printk("%s: no link during initialization.\n", dev->name);
4012                 netif_carrier_off(dev);
4013         }
4014         if (oom)
4015                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4016
4017         /* start statistics timer */
4018         if (np->driver_data & DEV_HAS_STATISTICS)
4019                 mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
4020
4021         spin_unlock_irq(&np->lock);
4022
4023         return 0;
4024 out_drain:
4025         drain_ring(dev);
4026         return ret;
4027 }
4028
4029 static int nv_close(struct net_device *dev)
4030 {
4031         struct fe_priv *np = netdev_priv(dev);
4032         u8 __iomem *base;
4033
4034         spin_lock_irq(&np->lock);
4035         np->in_shutdown = 1;
4036         spin_unlock_irq(&np->lock);
4037         synchronize_irq(dev->irq);
4038
4039         del_timer_sync(&np->oom_kick);
4040         del_timer_sync(&np->nic_poll);
4041         del_timer_sync(&np->stats_poll);
4042
4043         netif_stop_queue(dev);
4044         spin_lock_irq(&np->lock);
4045         nv_stop_tx(dev);
4046         nv_stop_rx(dev);
4047         nv_txrx_reset(dev);
4048
4049         /* disable interrupts on the nic or we will lock up */
4050         base = get_hwbase(dev);
4051         nv_disable_hw_interrupts(dev, np->irqmask);
4052         pci_push(base);
4053         dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
4054
4055         spin_unlock_irq(&np->lock);
4056
4057         nv_free_irq(dev);
4058
4059         drain_ring(dev);
4060
4061         if (np->wolenabled)
4062                 nv_start_rx(dev);
4063
4064         /* special op: write back the misordered MAC address - otherwise
4065          * the next nv_probe would see a wrong address.
4066          */
4067         writel(np->orig_mac[0], base + NvRegMacAddrA);
4068         writel(np->orig_mac[1], base + NvRegMacAddrB);
4069
4070         /* FIXME: power down nic */
4071
4072         return 0;
4073 }
4074
4075 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
4076 {
4077         struct net_device *dev;
4078         struct fe_priv *np;
4079         unsigned long addr;
4080         u8 __iomem *base;
4081         int err, i;
4082         u32 powerstate;
4083
4084         dev = alloc_etherdev(sizeof(struct fe_priv));
4085         err = -ENOMEM;
4086         if (!dev)
4087                 goto out;
4088
4089         np = netdev_priv(dev);
4090         np->pci_dev = pci_dev;
4091         spin_lock_init(&np->lock);
4092         SET_MODULE_OWNER(dev);
4093         SET_NETDEV_DEV(dev, &pci_dev->dev);
4094
4095         init_timer(&np->oom_kick);
4096         np->oom_kick.data = (unsigned long) dev;
4097         np->oom_kick.function = &nv_do_rx_refill;       /* timer handler */
4098         init_timer(&np->nic_poll);
4099         np->nic_poll.data = (unsigned long) dev;
4100         np->nic_poll.function = &nv_do_nic_poll;        /* timer handler */
4101         init_timer(&np->stats_poll);
4102         np->stats_poll.data = (unsigned long) dev;
4103         np->stats_poll.function = &nv_do_stats_poll;    /* timer handler */
4104
4105         err = pci_enable_device(pci_dev);
4106         if (err) {
4107                 printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
4108                                 err, pci_name(pci_dev));
4109                 goto out_free;
4110         }
4111
4112         pci_set_master(pci_dev);
4113
4114         err = pci_request_regions(pci_dev, DRV_NAME);
4115         if (err < 0)
4116                 goto out_disable;
4117
4118         if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS))
4119                 np->register_size = NV_PCI_REGSZ_VER2;
4120         else
4121                 np->register_size = NV_PCI_REGSZ_VER1;
4122
4123         err = -EINVAL;
4124         addr = 0;
4125         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
4126                 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
4127                                 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
4128                                 pci_resource_len(pci_dev, i),
4129                                 pci_resource_flags(pci_dev, i));
4130                 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
4131                                 pci_resource_len(pci_dev, i) >= np->register_size) {
4132                         addr = pci_resource_start(pci_dev, i);
4133                         break;
4134                 }
4135         }
4136         if (i == DEVICE_COUNT_RESOURCE) {
4137                 printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
4138                                         pci_name(pci_dev));
4139                 goto out_relreg;
4140         }
4141
4142         /* copy of driver data */
4143         np->driver_data = id->driver_data;
4144
4145         /* handle different descriptor versions */
4146         if (id->driver_data & DEV_HAS_HIGH_DMA) {
4147                 /* packet format 3: supports 40-bit addressing */
4148                 np->desc_ver = DESC_VER_3;
4149                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
4150                 if (dma_64bit) {
4151                         if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) {
4152                                 printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
4153                                        pci_name(pci_dev));
4154                         } else {
4155                                 dev->features |= NETIF_F_HIGHDMA;
4156                                 printk(KERN_INFO "forcedeth: using HIGHDMA\n");
4157                         }
4158                         if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
4159                                 printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed, using 32-bit ring buffers for device %s.\n",
4160                                        pci_name(pci_dev));
4161                         }
4162                 }
4163         } else if (id->driver_data & DEV_HAS_LARGEDESC) {
4164                 /* packet format 2: supports jumbo frames */
4165                 np->desc_ver = DESC_VER_2;
4166                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
4167         } else {
4168                 /* original packet format */
4169                 np->desc_ver = DESC_VER_1;
4170                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
4171         }
4172
4173         np->pkt_limit = NV_PKTLIMIT_1;
4174         if (id->driver_data & DEV_HAS_LARGEDESC)
4175                 np->pkt_limit = NV_PKTLIMIT_2;
4176
4177         if (id->driver_data & DEV_HAS_CHECKSUM) {
4178                 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
4179                 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
4180 #ifdef NETIF_F_TSO
4181                 dev->features |= NETIF_F_TSO;
4182 #endif
4183         }
4184
4185         np->vlanctl_bits = 0;
4186         if (id->driver_data & DEV_HAS_VLAN) {
4187                 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
4188                 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
4189                 dev->vlan_rx_register = nv_vlan_rx_register;
4190                 dev->vlan_rx_kill_vid = nv_vlan_rx_kill_vid;
4191         }
4192
4193         np->msi_flags = 0;
4194         if ((id->driver_data & DEV_HAS_MSI) && msi) {
4195                 np->msi_flags |= NV_MSI_CAPABLE;
4196         }
4197         if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
4198                 np->msi_flags |= NV_MSI_X_CAPABLE;
4199         }
4200
4201         np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
4202         if (id->driver_data & DEV_HAS_PAUSEFRAME_TX) {
4203                 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
4204         }
4205
4206
4207         err = -ENOMEM;
4208         np->base = ioremap(addr, np->register_size);
4209         if (!np->base)
4210                 goto out_relreg;
4211         dev->base_addr = (unsigned long)np->base;
4212
4213         dev->irq = pci_dev->irq;
4214
4215         np->rx_ring_size = RX_RING_DEFAULT;
4216         np->tx_ring_size = TX_RING_DEFAULT;
4217         np->tx_limit_stop = np->tx_ring_size - TX_LIMIT_DIFFERENCE;
4218         np->tx_limit_start = np->tx_ring_size - TX_LIMIT_DIFFERENCE - 1;
4219
4220         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4221                 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
4222                                         sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
4223                                         &np->ring_addr);
4224                 if (!np->rx_ring.orig)
4225                         goto out_unmap;
4226                 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
4227         } else {
4228                 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
4229                                         sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
4230                                         &np->ring_addr);
4231                 if (!np->rx_ring.ex)
4232                         goto out_unmap;
4233                 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
4234         }
4235         np->rx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->rx_ring_size, GFP_KERNEL);
4236         np->rx_dma = kmalloc(sizeof(dma_addr_t) * np->rx_ring_size, GFP_KERNEL);
4237         np->tx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->tx_ring_size, GFP_KERNEL);
4238         np->tx_dma = kmalloc(sizeof(dma_addr_t) * np->tx_ring_size, GFP_KERNEL);
4239         np->tx_dma_len = kmalloc(sizeof(unsigned int) * np->tx_ring_size, GFP_KERNEL);
4240         if (!np->rx_skbuff || !np->rx_dma || !np->tx_skbuff || !np->tx_dma || !np->tx_dma_len)
4241                 goto out_freering;
4242         memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
4243         memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
4244         memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
4245         memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
4246         memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
4247
4248         dev->open = nv_open;
4249         dev->stop = nv_close;
4250         dev->hard_start_xmit = nv_start_xmit;
4251         dev->get_stats = nv_get_stats;
4252         dev->change_mtu = nv_change_mtu;
4253         dev->set_mac_address = nv_set_mac_address;
4254         dev->set_multicast_list = nv_set_multicast;
4255 #ifdef CONFIG_NET_POLL_CONTROLLER
4256         dev->poll_controller = nv_poll_controller;
4257 #endif
4258         SET_ETHTOOL_OPS(dev, &ops);
4259         dev->tx_timeout = nv_tx_timeout;
4260         dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
4261
4262         pci_set_drvdata(pci_dev, dev);
4263
4264         /* read the mac address */
4265         base = get_hwbase(dev);
4266         np->orig_mac[0] = readl(base + NvRegMacAddrA);
4267         np->orig_mac[1] = readl(base + NvRegMacAddrB);
4268
4269         dev->dev_addr[0] = (np->orig_mac[1] >>  8) & 0xff;
4270         dev->dev_addr[1] = (np->orig_mac[1] >>  0) & 0xff;
4271         dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
4272         dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
4273         dev->dev_addr[4] = (np->orig_mac[0] >>  8) & 0xff;
4274         dev->dev_addr[5] = (np->orig_mac[0] >>  0) & 0xff;
4275         memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
4276
4277         if (!is_valid_ether_addr(dev->perm_addr)) {
4278                 /*
4279                  * Bad mac address. At least one bios sets the mac address
4280                  * to 01:23:45:67:89:ab
4281                  */
4282                 printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
4283                         pci_name(pci_dev),
4284                         dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
4285                         dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
4286                 printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
4287                 dev->dev_addr[0] = 0x00;
4288                 dev->dev_addr[1] = 0x00;
4289                 dev->dev_addr[2] = 0x6c;
4290                 get_random_bytes(&dev->dev_addr[3], 3);
4291         }
4292
4293         dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
4294                         dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
4295                         dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
4296
4297         /* disable WOL */
4298         writel(0, base + NvRegWakeUpFlags);
4299         np->wolenabled = 0;
4300
4301         if (id->driver_data & DEV_HAS_POWER_CNTRL) {
4302                 u8 revision_id;
4303                 pci_read_config_byte(pci_dev, PCI_REVISION_ID, &revision_id);
4304
4305                 /* take phy and nic out of low power mode */
4306                 powerstate = readl(base + NvRegPowerState2);
4307                 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
4308                 if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
4309                      id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
4310                     revision_id >= 0xA3)
4311                         powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
4312                 writel(powerstate, base + NvRegPowerState2);
4313         }
4314
4315         if (np->desc_ver == DESC_VER_1) {
4316                 np->tx_flags = NV_TX_VALID;
4317         } else {
4318                 np->tx_flags = NV_TX2_VALID;
4319         }
4320         if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
4321                 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
4322                 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
4323                         np->msi_flags |= 0x0003;
4324         } else {
4325                 np->irqmask = NVREG_IRQMASK_CPU;
4326                 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
4327                         np->msi_flags |= 0x0001;
4328         }
4329
4330         if (id->driver_data & DEV_NEED_TIMERIRQ)
4331                 np->irqmask |= NVREG_IRQ_TIMER;
4332         if (id->driver_data & DEV_NEED_LINKTIMER) {
4333                 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
4334                 np->need_linktimer = 1;
4335                 np->link_timeout = jiffies + LINK_TIMEOUT;
4336         } else {
4337                 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
4338                 np->need_linktimer = 0;
4339         }
4340
4341         /* find a suitable phy */
4342         for (i = 1; i <= 32; i++) {
4343                 int id1, id2;
4344                 int phyaddr = i & 0x1F;
4345
4346                 spin_lock_irq(&np->lock);
4347                 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
4348                 spin_unlock_irq(&np->lock);
4349                 if (id1 < 0 || id1 == 0xffff)
4350                         continue;
4351                 spin_lock_irq(&np->lock);
4352                 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
4353                 spin_unlock_irq(&np->lock);
4354                 if (id2 < 0 || id2 == 0xffff)
4355                         continue;
4356
4357                 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
4358                 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
4359                 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
4360                         pci_name(pci_dev), id1, id2, phyaddr);
4361                 np->phyaddr = phyaddr;
4362                 np->phy_oui = id1 | id2;
4363                 break;
4364         }
4365         if (i == 33) {
4366                 printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
4367                        pci_name(pci_dev));
4368                 goto out_error;
4369         }
4370
4371         /* reset it */
4372         phy_init(dev);
4373
4374         /* set default link speed settings */
4375         np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
4376         np->duplex = 0;
4377         np->autoneg = 1;
4378
4379         err = register_netdev(dev);
4380         if (err) {
4381                 printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
4382                 goto out_error;
4383         }
4384         printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
4385                         dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
4386                         pci_name(pci_dev));
4387
4388         return 0;
4389
4390 out_error:
4391         pci_set_drvdata(pci_dev, NULL);
4392 out_freering:
4393         free_rings(dev);
4394 out_unmap:
4395         iounmap(get_hwbase(dev));
4396 out_relreg:
4397         pci_release_regions(pci_dev);
4398 out_disable:
4399         pci_disable_device(pci_dev);
4400 out_free:
4401         free_netdev(dev);
4402 out:
4403         return err;
4404 }
4405
4406 static void __devexit nv_remove(struct pci_dev *pci_dev)
4407 {
4408         struct net_device *dev = pci_get_drvdata(pci_dev);
4409
4410         unregister_netdev(dev);
4411
4412         /* free all structures */
4413         free_rings(dev);
4414         iounmap(get_hwbase(dev));
4415         pci_release_regions(pci_dev);
4416         pci_disable_device(pci_dev);
4417         free_netdev(dev);
4418         pci_set_drvdata(pci_dev, NULL);
4419 }
4420
4421 static struct pci_device_id pci_tbl[] = {
4422         {       /* nForce Ethernet Controller */
4423                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
4424                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
4425         },
4426         {       /* nForce2 Ethernet Controller */
4427                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
4428                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
4429         },
4430         {       /* nForce3 Ethernet Controller */
4431                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
4432                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
4433         },
4434         {       /* nForce3 Ethernet Controller */
4435                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
4436                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4437         },
4438         {       /* nForce3 Ethernet Controller */
4439                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
4440                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4441         },
4442         {       /* nForce3 Ethernet Controller */
4443                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
4444                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4445         },
4446         {       /* nForce3 Ethernet Controller */
4447                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
4448                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4449         },
4450         {       /* CK804 Ethernet Controller */
4451                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
4452                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4453         },
4454         {       /* CK804 Ethernet Controller */
4455                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
4456                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4457         },
4458         {       /* MCP04 Ethernet Controller */
4459                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
4460                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4461         },
4462         {       /* MCP04 Ethernet Controller */
4463                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
4464                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4465         },
4466         {       /* MCP51 Ethernet Controller */
4467                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
4468                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
4469         },
4470         {       /* MCP51 Ethernet Controller */
4471                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
4472                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
4473         },
4474         {       /* MCP55 Ethernet Controller */
4475                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
4476                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4477         },
4478         {       /* MCP55 Ethernet Controller */
4479                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
4480                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4481         },
4482         {       /* MCP61 Ethernet Controller */
4483                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
4484                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4485         },
4486         {       /* MCP61 Ethernet Controller */
4487                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
4488                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4489         },
4490         {       /* MCP61 Ethernet Controller */
4491                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
4492                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4493         },
4494         {       /* MCP61 Ethernet Controller */
4495                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
4496                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4497         },
4498         {       /* MCP65 Ethernet Controller */
4499                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
4500                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4501         },
4502         {       /* MCP65 Ethernet Controller */
4503                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
4504                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4505         },
4506         {       /* MCP65 Ethernet Controller */
4507                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
4508                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4509         },
4510         {       /* MCP65 Ethernet Controller */
4511                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
4512                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4513         },
4514         {0,},
4515 };
4516
4517 static struct pci_driver driver = {
4518         .name = "forcedeth",
4519         .id_table = pci_tbl,
4520         .probe = nv_probe,
4521         .remove = __devexit_p(nv_remove),
4522 };
4523
4524
4525 static int __init init_nic(void)
4526 {
4527         printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
4528         return pci_module_init(&driver);
4529 }
4530
4531 static void __exit exit_nic(void)
4532 {
4533         pci_unregister_driver(&driver);
4534 }
4535
4536 module_param(max_interrupt_work, int, 0);
4537 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
4538 module_param(optimization_mode, int, 0);
4539 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
4540 module_param(poll_interval, int, 0);
4541 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
4542 module_param(msi, int, 0);
4543 MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
4544 module_param(msix, int, 0);
4545 MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
4546 module_param(dma_64bit, int, 0);
4547 MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
4548
4549 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
4550 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
4551 MODULE_LICENSE("GPL");
4552
4553 MODULE_DEVICE_TABLE(pci, pci_tbl);
4554
4555 module_init(init_nic);
4556 module_exit(exit_nic);