forcedeth: tx max work
[safe/jmp/linux-2.6] / drivers / net / forcedeth.c
1 /*
2  * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3  *
4  * Note: This driver is a cleanroom reimplementation based on reverse
5  *      engineered documentation written by Carl-Daniel Hailfinger
6  *      and Andrew de Quincey.
7  *
8  * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
9  * trademarks of NVIDIA Corporation in the United States and other
10  * countries.
11  *
12  * Copyright (C) 2003,4,5 Manfred Spraul
13  * Copyright (C) 2004 Andrew de Quincey (wol support)
14  * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
15  *              IRQ rate fixes, bigendian fixes, cleanups, verification)
16  * Copyright (c) 2004,5,6 NVIDIA Corporation
17  *
18  * This program is free software; you can redistribute it and/or modify
19  * it under the terms of the GNU General Public License as published by
20  * the Free Software Foundation; either version 2 of the License, or
21  * (at your option) any later version.
22  *
23  * This program is distributed in the hope that it will be useful,
24  * but WITHOUT ANY WARRANTY; without even the implied warranty of
25  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
26  * GNU General Public License for more details.
27  *
28  * You should have received a copy of the GNU General Public License
29  * along with this program; if not, write to the Free Software
30  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
31  *
32  * Changelog:
33  *      0.01: 05 Oct 2003: First release that compiles without warnings.
34  *      0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
35  *                         Check all PCI BARs for the register window.
36  *                         udelay added to mii_rw.
37  *      0.03: 06 Oct 2003: Initialize dev->irq.
38  *      0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
39  *      0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
40  *      0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
41  *                         irq mask updated
42  *      0.07: 14 Oct 2003: Further irq mask updates.
43  *      0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
44  *                         added into irq handler, NULL check for drain_ring.
45  *      0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
46  *                         requested interrupt sources.
47  *      0.10: 20 Oct 2003: First cleanup for release.
48  *      0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
49  *                         MAC Address init fix, set_multicast cleanup.
50  *      0.12: 23 Oct 2003: Cleanups for release.
51  *      0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
52  *                         Set link speed correctly. start rx before starting
53  *                         tx (nv_start_rx sets the link speed).
54  *      0.14: 25 Oct 2003: Nic dependant irq mask.
55  *      0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
56  *                         open.
57  *      0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
58  *                         increased to 1628 bytes.
59  *      0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
60  *                         the tx length.
61  *      0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
62  *      0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
63  *                         addresses, really stop rx if already running
64  *                         in nv_start_rx, clean up a bit.
65  *      0.20: 07 Dec 2003: alloc fixes
66  *      0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
67  *      0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
68  *                         on close.
69  *      0.23: 26 Jan 2004: various small cleanups
70  *      0.24: 27 Feb 2004: make driver even less anonymous in backtraces
71  *      0.25: 09 Mar 2004: wol support
72  *      0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
73  *      0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
74  *                         added CK804/MCP04 device IDs, code fixes
75  *                         for registers, link status and other minor fixes.
76  *      0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
77  *      0.29: 31 Aug 2004: Add backup timer for link change notification.
78  *      0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
79  *                         into nv_close, otherwise reenabling for wol can
80  *                         cause DMA to kfree'd memory.
81  *      0.31: 14 Nov 2004: ethtool support for getting/setting link
82  *                         capabilities.
83  *      0.32: 16 Apr 2005: RX_ERROR4 handling added.
84  *      0.33: 16 May 2005: Support for MCP51 added.
85  *      0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
86  *      0.35: 26 Jun 2005: Support for MCP55 added.
87  *      0.36: 28 Jun 2005: Add jumbo frame support.
88  *      0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
89  *      0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
90  *                         per-packet flags.
91  *      0.39: 18 Jul 2005: Add 64bit descriptor support.
92  *      0.40: 19 Jul 2005: Add support for mac address change.
93  *      0.41: 30 Jul 2005: Write back original MAC in nv_close instead
94  *                         of nv_remove
95  *      0.42: 06 Aug 2005: Fix lack of link speed initialization
96  *                         in the second (and later) nv_open call
97  *      0.43: 10 Aug 2005: Add support for tx checksum.
98  *      0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
99  *      0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
100  *      0.46: 20 Oct 2005: Add irq optimization modes.
101  *      0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
102  *      0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
103  *      0.49: 10 Dec 2005: Fix tso for large buffers.
104  *      0.50: 20 Jan 2006: Add 8021pq tagging support.
105  *      0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
106  *      0.52: 20 Jan 2006: Add MSI/MSIX support.
107  *      0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
108  *      0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
109  *      0.55: 22 Mar 2006: Add flow control (pause frame).
110  *      0.56: 22 Mar 2006: Additional ethtool config and moduleparam support.
111  *      0.57: 14 May 2006: Mac address set in probe/remove and order corrections.
112  *      0.58: 30 Oct 2006: Added support for sideband management unit.
113  *      0.59: 30 Oct 2006: Added support for recoverable error.
114  *
115  * Known bugs:
116  * We suspect that on some hardware no TX done interrupts are generated.
117  * This means recovery from netif_stop_queue only happens if the hw timer
118  * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
119  * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
120  * If your hardware reliably generates tx done interrupts, then you can remove
121  * DEV_NEED_TIMERIRQ from the driver_data flags.
122  * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
123  * superfluous timer interrupts from the nic.
124  */
125 #ifdef CONFIG_FORCEDETH_NAPI
126 #define DRIVERNAPI "-NAPI"
127 #else
128 #define DRIVERNAPI
129 #endif
130 #define FORCEDETH_VERSION               "0.59"
131 #define DRV_NAME                        "forcedeth"
132
133 #include <linux/module.h>
134 #include <linux/types.h>
135 #include <linux/pci.h>
136 #include <linux/interrupt.h>
137 #include <linux/netdevice.h>
138 #include <linux/etherdevice.h>
139 #include <linux/delay.h>
140 #include <linux/spinlock.h>
141 #include <linux/ethtool.h>
142 #include <linux/timer.h>
143 #include <linux/skbuff.h>
144 #include <linux/mii.h>
145 #include <linux/random.h>
146 #include <linux/init.h>
147 #include <linux/if_vlan.h>
148 #include <linux/dma-mapping.h>
149
150 #include <asm/irq.h>
151 #include <asm/io.h>
152 #include <asm/uaccess.h>
153 #include <asm/system.h>
154
155 #if 0
156 #define dprintk                 printk
157 #else
158 #define dprintk(x...)           do { } while (0)
159 #endif
160
161
162 /*
163  * Hardware access:
164  */
165
166 #define DEV_NEED_TIMERIRQ       0x0001  /* set the timer irq flag in the irq mask */
167 #define DEV_NEED_LINKTIMER      0x0002  /* poll link settings. Relies on the timer irq */
168 #define DEV_HAS_LARGEDESC       0x0004  /* device supports jumbo frames and needs packet format 2 */
169 #define DEV_HAS_HIGH_DMA        0x0008  /* device supports 64bit dma */
170 #define DEV_HAS_CHECKSUM        0x0010  /* device supports tx and rx checksum offloads */
171 #define DEV_HAS_VLAN            0x0020  /* device supports vlan tagging and striping */
172 #define DEV_HAS_MSI             0x0040  /* device supports MSI */
173 #define DEV_HAS_MSI_X           0x0080  /* device supports MSI-X */
174 #define DEV_HAS_POWER_CNTRL     0x0100  /* device supports power savings */
175 #define DEV_HAS_PAUSEFRAME_TX   0x0200  /* device supports tx pause frames */
176 #define DEV_HAS_STATISTICS      0x0400  /* device supports hw statistics */
177 #define DEV_HAS_TEST_EXTENDED   0x0800  /* device supports extended diagnostic test */
178 #define DEV_HAS_MGMT_UNIT       0x1000  /* device supports management unit */
179
180 enum {
181         NvRegIrqStatus = 0x000,
182 #define NVREG_IRQSTAT_MIIEVENT  0x040
183 #define NVREG_IRQSTAT_MASK              0x81ff
184         NvRegIrqMask = 0x004,
185 #define NVREG_IRQ_RX_ERROR              0x0001
186 #define NVREG_IRQ_RX                    0x0002
187 #define NVREG_IRQ_RX_NOBUF              0x0004
188 #define NVREG_IRQ_TX_ERR                0x0008
189 #define NVREG_IRQ_TX_OK                 0x0010
190 #define NVREG_IRQ_TIMER                 0x0020
191 #define NVREG_IRQ_LINK                  0x0040
192 #define NVREG_IRQ_RX_FORCED             0x0080
193 #define NVREG_IRQ_TX_FORCED             0x0100
194 #define NVREG_IRQ_RECOVER_ERROR         0x8000
195 #define NVREG_IRQMASK_THROUGHPUT        0x00df
196 #define NVREG_IRQMASK_CPU               0x0040
197 #define NVREG_IRQ_TX_ALL                (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
198 #define NVREG_IRQ_RX_ALL                (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
199 #define NVREG_IRQ_OTHER                 (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
200
201 #define NVREG_IRQ_UNKNOWN       (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
202                                         NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
203                                         NVREG_IRQ_TX_FORCED|NVREG_IRQ_RECOVER_ERROR))
204
205         NvRegUnknownSetupReg6 = 0x008,
206 #define NVREG_UNKSETUP6_VAL             3
207
208 /*
209  * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
210  * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
211  */
212         NvRegPollingInterval = 0x00c,
213 #define NVREG_POLL_DEFAULT_THROUGHPUT   970 /* backup tx cleanup if loop max reached */
214 #define NVREG_POLL_DEFAULT_CPU  13
215         NvRegMSIMap0 = 0x020,
216         NvRegMSIMap1 = 0x024,
217         NvRegMSIIrqMask = 0x030,
218 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
219         NvRegMisc1 = 0x080,
220 #define NVREG_MISC1_PAUSE_TX    0x01
221 #define NVREG_MISC1_HD          0x02
222 #define NVREG_MISC1_FORCE       0x3b0f3c
223
224         NvRegMacReset = 0x3c,
225 #define NVREG_MAC_RESET_ASSERT  0x0F3
226         NvRegTransmitterControl = 0x084,
227 #define NVREG_XMITCTL_START     0x01
228 #define NVREG_XMITCTL_MGMT_ST   0x40000000
229 #define NVREG_XMITCTL_SYNC_MASK         0x000f0000
230 #define NVREG_XMITCTL_SYNC_NOT_READY    0x0
231 #define NVREG_XMITCTL_SYNC_PHY_INIT     0x00040000
232 #define NVREG_XMITCTL_MGMT_SEMA_MASK    0x00000f00
233 #define NVREG_XMITCTL_MGMT_SEMA_FREE    0x0
234 #define NVREG_XMITCTL_HOST_SEMA_MASK    0x0000f000
235 #define NVREG_XMITCTL_HOST_SEMA_ACQ     0x0000f000
236 #define NVREG_XMITCTL_HOST_LOADED       0x00004000
237 #define NVREG_XMITCTL_TX_PATH_EN        0x01000000
238         NvRegTransmitterStatus = 0x088,
239 #define NVREG_XMITSTAT_BUSY     0x01
240
241         NvRegPacketFilterFlags = 0x8c,
242 #define NVREG_PFF_PAUSE_RX      0x08
243 #define NVREG_PFF_ALWAYS        0x7F0000
244 #define NVREG_PFF_PROMISC       0x80
245 #define NVREG_PFF_MYADDR        0x20
246 #define NVREG_PFF_LOOPBACK      0x10
247
248         NvRegOffloadConfig = 0x90,
249 #define NVREG_OFFLOAD_HOMEPHY   0x601
250 #define NVREG_OFFLOAD_NORMAL    RX_NIC_BUFSIZE
251         NvRegReceiverControl = 0x094,
252 #define NVREG_RCVCTL_START      0x01
253 #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
254         NvRegReceiverStatus = 0x98,
255 #define NVREG_RCVSTAT_BUSY      0x01
256
257         NvRegRandomSeed = 0x9c,
258 #define NVREG_RNDSEED_MASK      0x00ff
259 #define NVREG_RNDSEED_FORCE     0x7f00
260 #define NVREG_RNDSEED_FORCE2    0x2d00
261 #define NVREG_RNDSEED_FORCE3    0x7400
262
263         NvRegTxDeferral = 0xA0,
264 #define NVREG_TX_DEFERRAL_DEFAULT       0x15050f
265 #define NVREG_TX_DEFERRAL_RGMII_10_100  0x16070f
266 #define NVREG_TX_DEFERRAL_RGMII_1000    0x14050f
267         NvRegRxDeferral = 0xA4,
268 #define NVREG_RX_DEFERRAL_DEFAULT       0x16
269         NvRegMacAddrA = 0xA8,
270         NvRegMacAddrB = 0xAC,
271         NvRegMulticastAddrA = 0xB0,
272 #define NVREG_MCASTADDRA_FORCE  0x01
273         NvRegMulticastAddrB = 0xB4,
274         NvRegMulticastMaskA = 0xB8,
275         NvRegMulticastMaskB = 0xBC,
276
277         NvRegPhyInterface = 0xC0,
278 #define PHY_RGMII               0x10000000
279
280         NvRegTxRingPhysAddr = 0x100,
281         NvRegRxRingPhysAddr = 0x104,
282         NvRegRingSizes = 0x108,
283 #define NVREG_RINGSZ_TXSHIFT 0
284 #define NVREG_RINGSZ_RXSHIFT 16
285         NvRegTransmitPoll = 0x10c,
286 #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
287         NvRegLinkSpeed = 0x110,
288 #define NVREG_LINKSPEED_FORCE 0x10000
289 #define NVREG_LINKSPEED_10      1000
290 #define NVREG_LINKSPEED_100     100
291 #define NVREG_LINKSPEED_1000    50
292 #define NVREG_LINKSPEED_MASK    (0xFFF)
293         NvRegUnknownSetupReg5 = 0x130,
294 #define NVREG_UNKSETUP5_BIT31   (1<<31)
295         NvRegTxWatermark = 0x13c,
296 #define NVREG_TX_WM_DESC1_DEFAULT       0x0200010
297 #define NVREG_TX_WM_DESC2_3_DEFAULT     0x1e08000
298 #define NVREG_TX_WM_DESC2_3_1000        0xfe08000
299         NvRegTxRxControl = 0x144,
300 #define NVREG_TXRXCTL_KICK      0x0001
301 #define NVREG_TXRXCTL_BIT1      0x0002
302 #define NVREG_TXRXCTL_BIT2      0x0004
303 #define NVREG_TXRXCTL_IDLE      0x0008
304 #define NVREG_TXRXCTL_RESET     0x0010
305 #define NVREG_TXRXCTL_RXCHECK   0x0400
306 #define NVREG_TXRXCTL_DESC_1    0
307 #define NVREG_TXRXCTL_DESC_2    0x002100
308 #define NVREG_TXRXCTL_DESC_3    0xc02200
309 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
310 #define NVREG_TXRXCTL_VLANINS   0x00080
311         NvRegTxRingPhysAddrHigh = 0x148,
312         NvRegRxRingPhysAddrHigh = 0x14C,
313         NvRegTxPauseFrame = 0x170,
314 #define NVREG_TX_PAUSEFRAME_DISABLE     0x1ff0080
315 #define NVREG_TX_PAUSEFRAME_ENABLE      0x0c00030
316         NvRegMIIStatus = 0x180,
317 #define NVREG_MIISTAT_ERROR             0x0001
318 #define NVREG_MIISTAT_LINKCHANGE        0x0008
319 #define NVREG_MIISTAT_MASK              0x000f
320 #define NVREG_MIISTAT_MASK2             0x000f
321         NvRegMIIMask = 0x184,
322 #define NVREG_MII_LINKCHANGE            0x0008
323
324         NvRegAdapterControl = 0x188,
325 #define NVREG_ADAPTCTL_START    0x02
326 #define NVREG_ADAPTCTL_LINKUP   0x04
327 #define NVREG_ADAPTCTL_PHYVALID 0x40000
328 #define NVREG_ADAPTCTL_RUNNING  0x100000
329 #define NVREG_ADAPTCTL_PHYSHIFT 24
330         NvRegMIISpeed = 0x18c,
331 #define NVREG_MIISPEED_BIT8     (1<<8)
332 #define NVREG_MIIDELAY  5
333         NvRegMIIControl = 0x190,
334 #define NVREG_MIICTL_INUSE      0x08000
335 #define NVREG_MIICTL_WRITE      0x00400
336 #define NVREG_MIICTL_ADDRSHIFT  5
337         NvRegMIIData = 0x194,
338         NvRegWakeUpFlags = 0x200,
339 #define NVREG_WAKEUPFLAGS_VAL           0x7770
340 #define NVREG_WAKEUPFLAGS_BUSYSHIFT     24
341 #define NVREG_WAKEUPFLAGS_ENABLESHIFT   16
342 #define NVREG_WAKEUPFLAGS_D3SHIFT       12
343 #define NVREG_WAKEUPFLAGS_D2SHIFT       8
344 #define NVREG_WAKEUPFLAGS_D1SHIFT       4
345 #define NVREG_WAKEUPFLAGS_D0SHIFT       0
346 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT         0x01
347 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT      0x02
348 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE     0x04
349 #define NVREG_WAKEUPFLAGS_ENABLE        0x1111
350
351         NvRegPatternCRC = 0x204,
352         NvRegPatternMask = 0x208,
353         NvRegPowerCap = 0x268,
354 #define NVREG_POWERCAP_D3SUPP   (1<<30)
355 #define NVREG_POWERCAP_D2SUPP   (1<<26)
356 #define NVREG_POWERCAP_D1SUPP   (1<<25)
357         NvRegPowerState = 0x26c,
358 #define NVREG_POWERSTATE_POWEREDUP      0x8000
359 #define NVREG_POWERSTATE_VALID          0x0100
360 #define NVREG_POWERSTATE_MASK           0x0003
361 #define NVREG_POWERSTATE_D0             0x0000
362 #define NVREG_POWERSTATE_D1             0x0001
363 #define NVREG_POWERSTATE_D2             0x0002
364 #define NVREG_POWERSTATE_D3             0x0003
365         NvRegTxCnt = 0x280,
366         NvRegTxZeroReXmt = 0x284,
367         NvRegTxOneReXmt = 0x288,
368         NvRegTxManyReXmt = 0x28c,
369         NvRegTxLateCol = 0x290,
370         NvRegTxUnderflow = 0x294,
371         NvRegTxLossCarrier = 0x298,
372         NvRegTxExcessDef = 0x29c,
373         NvRegTxRetryErr = 0x2a0,
374         NvRegRxFrameErr = 0x2a4,
375         NvRegRxExtraByte = 0x2a8,
376         NvRegRxLateCol = 0x2ac,
377         NvRegRxRunt = 0x2b0,
378         NvRegRxFrameTooLong = 0x2b4,
379         NvRegRxOverflow = 0x2b8,
380         NvRegRxFCSErr = 0x2bc,
381         NvRegRxFrameAlignErr = 0x2c0,
382         NvRegRxLenErr = 0x2c4,
383         NvRegRxUnicast = 0x2c8,
384         NvRegRxMulticast = 0x2cc,
385         NvRegRxBroadcast = 0x2d0,
386         NvRegTxDef = 0x2d4,
387         NvRegTxFrame = 0x2d8,
388         NvRegRxCnt = 0x2dc,
389         NvRegTxPause = 0x2e0,
390         NvRegRxPause = 0x2e4,
391         NvRegRxDropFrame = 0x2e8,
392         NvRegVlanControl = 0x300,
393 #define NVREG_VLANCONTROL_ENABLE        0x2000
394         NvRegMSIXMap0 = 0x3e0,
395         NvRegMSIXMap1 = 0x3e4,
396         NvRegMSIXIrqStatus = 0x3f0,
397
398         NvRegPowerState2 = 0x600,
399 #define NVREG_POWERSTATE2_POWERUP_MASK          0x0F11
400 #define NVREG_POWERSTATE2_POWERUP_REV_A3        0x0001
401 };
402
403 /* Big endian: should work, but is untested */
404 struct ring_desc {
405         __le32 buf;
406         __le32 flaglen;
407 };
408
409 struct ring_desc_ex {
410         __le32 bufhigh;
411         __le32 buflow;
412         __le32 txvlan;
413         __le32 flaglen;
414 };
415
416 union ring_type {
417         struct ring_desc* orig;
418         struct ring_desc_ex* ex;
419 };
420
421 #define FLAG_MASK_V1 0xffff0000
422 #define FLAG_MASK_V2 0xffffc000
423 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
424 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
425
426 #define NV_TX_LASTPACKET        (1<<16)
427 #define NV_TX_RETRYERROR        (1<<19)
428 #define NV_TX_FORCED_INTERRUPT  (1<<24)
429 #define NV_TX_DEFERRED          (1<<26)
430 #define NV_TX_CARRIERLOST       (1<<27)
431 #define NV_TX_LATECOLLISION     (1<<28)
432 #define NV_TX_UNDERFLOW         (1<<29)
433 #define NV_TX_ERROR             (1<<30)
434 #define NV_TX_VALID             (1<<31)
435
436 #define NV_TX2_LASTPACKET       (1<<29)
437 #define NV_TX2_RETRYERROR       (1<<18)
438 #define NV_TX2_FORCED_INTERRUPT (1<<30)
439 #define NV_TX2_DEFERRED         (1<<25)
440 #define NV_TX2_CARRIERLOST      (1<<26)
441 #define NV_TX2_LATECOLLISION    (1<<27)
442 #define NV_TX2_UNDERFLOW        (1<<28)
443 /* error and valid are the same for both */
444 #define NV_TX2_ERROR            (1<<30)
445 #define NV_TX2_VALID            (1<<31)
446 #define NV_TX2_TSO              (1<<28)
447 #define NV_TX2_TSO_SHIFT        14
448 #define NV_TX2_TSO_MAX_SHIFT    14
449 #define NV_TX2_TSO_MAX_SIZE     (1<<NV_TX2_TSO_MAX_SHIFT)
450 #define NV_TX2_CHECKSUM_L3      (1<<27)
451 #define NV_TX2_CHECKSUM_L4      (1<<26)
452
453 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
454
455 #define NV_RX_DESCRIPTORVALID   (1<<16)
456 #define NV_RX_MISSEDFRAME       (1<<17)
457 #define NV_RX_SUBSTRACT1        (1<<18)
458 #define NV_RX_ERROR1            (1<<23)
459 #define NV_RX_ERROR2            (1<<24)
460 #define NV_RX_ERROR3            (1<<25)
461 #define NV_RX_ERROR4            (1<<26)
462 #define NV_RX_CRCERR            (1<<27)
463 #define NV_RX_OVERFLOW          (1<<28)
464 #define NV_RX_FRAMINGERR        (1<<29)
465 #define NV_RX_ERROR             (1<<30)
466 #define NV_RX_AVAIL             (1<<31)
467
468 #define NV_RX2_CHECKSUMMASK     (0x1C000000)
469 #define NV_RX2_CHECKSUMOK1      (0x10000000)
470 #define NV_RX2_CHECKSUMOK2      (0x14000000)
471 #define NV_RX2_CHECKSUMOK3      (0x18000000)
472 #define NV_RX2_DESCRIPTORVALID  (1<<29)
473 #define NV_RX2_SUBSTRACT1       (1<<25)
474 #define NV_RX2_ERROR1           (1<<18)
475 #define NV_RX2_ERROR2           (1<<19)
476 #define NV_RX2_ERROR3           (1<<20)
477 #define NV_RX2_ERROR4           (1<<21)
478 #define NV_RX2_CRCERR           (1<<22)
479 #define NV_RX2_OVERFLOW         (1<<23)
480 #define NV_RX2_FRAMINGERR       (1<<24)
481 /* error and avail are the same for both */
482 #define NV_RX2_ERROR            (1<<30)
483 #define NV_RX2_AVAIL            (1<<31)
484
485 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
486 #define NV_RX3_VLAN_TAG_MASK    (0x0000FFFF)
487
488 /* Miscelaneous hardware related defines: */
489 #define NV_PCI_REGSZ_VER1       0x270
490 #define NV_PCI_REGSZ_VER2       0x604
491
492 /* various timeout delays: all in usec */
493 #define NV_TXRX_RESET_DELAY     4
494 #define NV_TXSTOP_DELAY1        10
495 #define NV_TXSTOP_DELAY1MAX     500000
496 #define NV_TXSTOP_DELAY2        100
497 #define NV_RXSTOP_DELAY1        10
498 #define NV_RXSTOP_DELAY1MAX     500000
499 #define NV_RXSTOP_DELAY2        100
500 #define NV_SETUP5_DELAY         5
501 #define NV_SETUP5_DELAYMAX      50000
502 #define NV_POWERUP_DELAY        5
503 #define NV_POWERUP_DELAYMAX     5000
504 #define NV_MIIBUSY_DELAY        50
505 #define NV_MIIPHY_DELAY 10
506 #define NV_MIIPHY_DELAYMAX      10000
507 #define NV_MAC_RESET_DELAY      64
508
509 #define NV_WAKEUPPATTERNS       5
510 #define NV_WAKEUPMASKENTRIES    4
511
512 /* General driver defaults */
513 #define NV_WATCHDOG_TIMEO       (5*HZ)
514
515 #define RX_RING_DEFAULT         128
516 #define TX_RING_DEFAULT         256
517 #define RX_RING_MIN             128
518 #define TX_RING_MIN             64
519 #define RING_MAX_DESC_VER_1     1024
520 #define RING_MAX_DESC_VER_2_3   16384
521
522 /* rx/tx mac addr + type + vlan + align + slack*/
523 #define NV_RX_HEADERS           (64)
524 /* even more slack. */
525 #define NV_RX_ALLOC_PAD         (64)
526
527 /* maximum mtu size */
528 #define NV_PKTLIMIT_1   ETH_DATA_LEN    /* hard limit not known */
529 #define NV_PKTLIMIT_2   9100    /* Actual limit according to NVidia: 9202 */
530
531 #define OOM_REFILL      (1+HZ/20)
532 #define POLL_WAIT       (1+HZ/100)
533 #define LINK_TIMEOUT    (3*HZ)
534 #define STATS_INTERVAL  (10*HZ)
535
536 /*
537  * desc_ver values:
538  * The nic supports three different descriptor types:
539  * - DESC_VER_1: Original
540  * - DESC_VER_2: support for jumbo frames.
541  * - DESC_VER_3: 64-bit format.
542  */
543 #define DESC_VER_1      1
544 #define DESC_VER_2      2
545 #define DESC_VER_3      3
546
547 /* PHY defines */
548 #define PHY_OUI_MARVELL 0x5043
549 #define PHY_OUI_CICADA  0x03f1
550 #define PHYID1_OUI_MASK 0x03ff
551 #define PHYID1_OUI_SHFT 6
552 #define PHYID2_OUI_MASK 0xfc00
553 #define PHYID2_OUI_SHFT 10
554 #define PHYID2_MODEL_MASK               0x03f0
555 #define PHY_MODEL_MARVELL_E3016         0x220
556 #define PHY_MARVELL_E3016_INITMASK      0x0300
557 #define PHY_INIT1       0x0f000
558 #define PHY_INIT2       0x0e00
559 #define PHY_INIT3       0x01000
560 #define PHY_INIT4       0x0200
561 #define PHY_INIT5       0x0004
562 #define PHY_INIT6       0x02000
563 #define PHY_GIGABIT     0x0100
564
565 #define PHY_TIMEOUT     0x1
566 #define PHY_ERROR       0x2
567
568 #define PHY_100 0x1
569 #define PHY_1000        0x2
570 #define PHY_HALF        0x100
571
572 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
573 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
574 #define NV_PAUSEFRAME_RX_ENABLE  0x0004
575 #define NV_PAUSEFRAME_TX_ENABLE  0x0008
576 #define NV_PAUSEFRAME_RX_REQ     0x0010
577 #define NV_PAUSEFRAME_TX_REQ     0x0020
578 #define NV_PAUSEFRAME_AUTONEG    0x0040
579
580 /* MSI/MSI-X defines */
581 #define NV_MSI_X_MAX_VECTORS  8
582 #define NV_MSI_X_VECTORS_MASK 0x000f
583 #define NV_MSI_CAPABLE        0x0010
584 #define NV_MSI_X_CAPABLE      0x0020
585 #define NV_MSI_ENABLED        0x0040
586 #define NV_MSI_X_ENABLED      0x0080
587
588 #define NV_MSI_X_VECTOR_ALL   0x0
589 #define NV_MSI_X_VECTOR_RX    0x0
590 #define NV_MSI_X_VECTOR_TX    0x1
591 #define NV_MSI_X_VECTOR_OTHER 0x2
592
593 /* statistics */
594 struct nv_ethtool_str {
595         char name[ETH_GSTRING_LEN];
596 };
597
598 static const struct nv_ethtool_str nv_estats_str[] = {
599         { "tx_bytes" },
600         { "tx_zero_rexmt" },
601         { "tx_one_rexmt" },
602         { "tx_many_rexmt" },
603         { "tx_late_collision" },
604         { "tx_fifo_errors" },
605         { "tx_carrier_errors" },
606         { "tx_excess_deferral" },
607         { "tx_retry_error" },
608         { "tx_deferral" },
609         { "tx_packets" },
610         { "tx_pause" },
611         { "rx_frame_error" },
612         { "rx_extra_byte" },
613         { "rx_late_collision" },
614         { "rx_runt" },
615         { "rx_frame_too_long" },
616         { "rx_over_errors" },
617         { "rx_crc_errors" },
618         { "rx_frame_align_error" },
619         { "rx_length_error" },
620         { "rx_unicast" },
621         { "rx_multicast" },
622         { "rx_broadcast" },
623         { "rx_bytes" },
624         { "rx_pause" },
625         { "rx_drop_frame" },
626         { "rx_packets" },
627         { "rx_errors_total" }
628 };
629
630 struct nv_ethtool_stats {
631         u64 tx_bytes;
632         u64 tx_zero_rexmt;
633         u64 tx_one_rexmt;
634         u64 tx_many_rexmt;
635         u64 tx_late_collision;
636         u64 tx_fifo_errors;
637         u64 tx_carrier_errors;
638         u64 tx_excess_deferral;
639         u64 tx_retry_error;
640         u64 tx_deferral;
641         u64 tx_packets;
642         u64 tx_pause;
643         u64 rx_frame_error;
644         u64 rx_extra_byte;
645         u64 rx_late_collision;
646         u64 rx_runt;
647         u64 rx_frame_too_long;
648         u64 rx_over_errors;
649         u64 rx_crc_errors;
650         u64 rx_frame_align_error;
651         u64 rx_length_error;
652         u64 rx_unicast;
653         u64 rx_multicast;
654         u64 rx_broadcast;
655         u64 rx_bytes;
656         u64 rx_pause;
657         u64 rx_drop_frame;
658         u64 rx_packets;
659         u64 rx_errors_total;
660 };
661
662 /* diagnostics */
663 #define NV_TEST_COUNT_BASE 3
664 #define NV_TEST_COUNT_EXTENDED 4
665
666 static const struct nv_ethtool_str nv_etests_str[] = {
667         { "link      (online/offline)" },
668         { "register  (offline)       " },
669         { "interrupt (offline)       " },
670         { "loopback  (offline)       " }
671 };
672
673 struct register_test {
674         __le32 reg;
675         __le32 mask;
676 };
677
678 static const struct register_test nv_registers_test[] = {
679         { NvRegUnknownSetupReg6, 0x01 },
680         { NvRegMisc1, 0x03c },
681         { NvRegOffloadConfig, 0x03ff },
682         { NvRegMulticastAddrA, 0xffffffff },
683         { NvRegTxWatermark, 0x0ff },
684         { NvRegWakeUpFlags, 0x07777 },
685         { 0,0 }
686 };
687
688 struct nv_skb_map {
689         struct sk_buff *skb;
690         dma_addr_t dma;
691         unsigned int dma_len;
692 };
693
694 /*
695  * SMP locking:
696  * All hardware access under dev->priv->lock, except the performance
697  * critical parts:
698  * - rx is (pseudo-) lockless: it relies on the single-threading provided
699  *      by the arch code for interrupts.
700  * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
701  *      needs dev->priv->lock :-(
702  * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
703  */
704
705 /* in dev: base, irq */
706 struct fe_priv {
707         spinlock_t lock;
708
709         /* General data:
710          * Locking: spin_lock(&np->lock); */
711         struct net_device_stats stats;
712         struct nv_ethtool_stats estats;
713         int in_shutdown;
714         u32 linkspeed;
715         int duplex;
716         int autoneg;
717         int fixed_mode;
718         int phyaddr;
719         int wolenabled;
720         unsigned int phy_oui;
721         unsigned int phy_model;
722         u16 gigabit;
723         int intr_test;
724         int recover_error;
725
726         /* General data: RO fields */
727         dma_addr_t ring_addr;
728         struct pci_dev *pci_dev;
729         u32 orig_mac[2];
730         u32 irqmask;
731         u32 desc_ver;
732         u32 txrxctl_bits;
733         u32 vlanctl_bits;
734         u32 driver_data;
735         u32 register_size;
736         int rx_csum;
737         u32 mac_in_use;
738
739         void __iomem *base;
740
741         /* rx specific fields.
742          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
743          */
744         union ring_type get_rx, put_rx, first_rx, last_rx;
745         struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
746         struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
747         struct nv_skb_map *rx_skb;
748
749         union ring_type rx_ring;
750         unsigned int rx_buf_sz;
751         unsigned int pkt_limit;
752         struct timer_list oom_kick;
753         struct timer_list nic_poll;
754         struct timer_list stats_poll;
755         u32 nic_poll_irq;
756         int rx_ring_size;
757
758         /* media detection workaround.
759          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
760          */
761         int need_linktimer;
762         unsigned long link_timeout;
763         /*
764          * tx specific fields.
765          */
766         union ring_type get_tx, put_tx, first_tx, last_tx;
767         struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
768         struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
769         struct nv_skb_map *tx_skb;
770
771         union ring_type tx_ring;
772         u32 tx_flags;
773         int tx_ring_size;
774         int tx_stop;
775
776         /* vlan fields */
777         struct vlan_group *vlangrp;
778
779         /* msi/msi-x fields */
780         u32 msi_flags;
781         struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
782
783         /* flow control */
784         u32 pause_flags;
785 };
786
787 /*
788  * Maximum number of loops until we assume that a bit in the irq mask
789  * is stuck. Overridable with module param.
790  */
791 static int max_interrupt_work = 5;
792
793 /*
794  * Optimization can be either throuput mode or cpu mode
795  *
796  * Throughput Mode: Every tx and rx packet will generate an interrupt.
797  * CPU Mode: Interrupts are controlled by a timer.
798  */
799 enum {
800         NV_OPTIMIZATION_MODE_THROUGHPUT,
801         NV_OPTIMIZATION_MODE_CPU
802 };
803 static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
804
805 /*
806  * Poll interval for timer irq
807  *
808  * This interval determines how frequent an interrupt is generated.
809  * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
810  * Min = 0, and Max = 65535
811  */
812 static int poll_interval = -1;
813
814 /*
815  * MSI interrupts
816  */
817 enum {
818         NV_MSI_INT_DISABLED,
819         NV_MSI_INT_ENABLED
820 };
821 static int msi = NV_MSI_INT_ENABLED;
822
823 /*
824  * MSIX interrupts
825  */
826 enum {
827         NV_MSIX_INT_DISABLED,
828         NV_MSIX_INT_ENABLED
829 };
830 static int msix = NV_MSIX_INT_ENABLED;
831
832 /*
833  * DMA 64bit
834  */
835 enum {
836         NV_DMA_64BIT_DISABLED,
837         NV_DMA_64BIT_ENABLED
838 };
839 static int dma_64bit = NV_DMA_64BIT_ENABLED;
840
841 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
842 {
843         return netdev_priv(dev);
844 }
845
846 static inline u8 __iomem *get_hwbase(struct net_device *dev)
847 {
848         return ((struct fe_priv *)netdev_priv(dev))->base;
849 }
850
851 static inline void pci_push(u8 __iomem *base)
852 {
853         /* force out pending posted writes */
854         readl(base);
855 }
856
857 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
858 {
859         return le32_to_cpu(prd->flaglen)
860                 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
861 }
862
863 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
864 {
865         return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
866 }
867
868 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
869                                 int delay, int delaymax, const char *msg)
870 {
871         u8 __iomem *base = get_hwbase(dev);
872
873         pci_push(base);
874         do {
875                 udelay(delay);
876                 delaymax -= delay;
877                 if (delaymax < 0) {
878                         if (msg)
879                                 printk(msg);
880                         return 1;
881                 }
882         } while ((readl(base + offset) & mask) != target);
883         return 0;
884 }
885
886 #define NV_SETUP_RX_RING 0x01
887 #define NV_SETUP_TX_RING 0x02
888
889 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
890 {
891         struct fe_priv *np = get_nvpriv(dev);
892         u8 __iomem *base = get_hwbase(dev);
893
894         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
895                 if (rxtx_flags & NV_SETUP_RX_RING) {
896                         writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
897                 }
898                 if (rxtx_flags & NV_SETUP_TX_RING) {
899                         writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
900                 }
901         } else {
902                 if (rxtx_flags & NV_SETUP_RX_RING) {
903                         writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
904                         writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
905                 }
906                 if (rxtx_flags & NV_SETUP_TX_RING) {
907                         writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
908                         writel((u32) (cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
909                 }
910         }
911 }
912
913 static void free_rings(struct net_device *dev)
914 {
915         struct fe_priv *np = get_nvpriv(dev);
916
917         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
918                 if (np->rx_ring.orig)
919                         pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
920                                             np->rx_ring.orig, np->ring_addr);
921         } else {
922                 if (np->rx_ring.ex)
923                         pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
924                                             np->rx_ring.ex, np->ring_addr);
925         }
926         if (np->rx_skb)
927                 kfree(np->rx_skb);
928         if (np->tx_skb)
929                 kfree(np->tx_skb);
930 }
931
932 static int using_multi_irqs(struct net_device *dev)
933 {
934         struct fe_priv *np = get_nvpriv(dev);
935
936         if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
937             ((np->msi_flags & NV_MSI_X_ENABLED) &&
938              ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
939                 return 0;
940         else
941                 return 1;
942 }
943
944 static void nv_enable_irq(struct net_device *dev)
945 {
946         struct fe_priv *np = get_nvpriv(dev);
947
948         if (!using_multi_irqs(dev)) {
949                 if (np->msi_flags & NV_MSI_X_ENABLED)
950                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
951                 else
952                         enable_irq(dev->irq);
953         } else {
954                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
955                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
956                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
957         }
958 }
959
960 static void nv_disable_irq(struct net_device *dev)
961 {
962         struct fe_priv *np = get_nvpriv(dev);
963
964         if (!using_multi_irqs(dev)) {
965                 if (np->msi_flags & NV_MSI_X_ENABLED)
966                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
967                 else
968                         disable_irq(dev->irq);
969         } else {
970                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
971                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
972                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
973         }
974 }
975
976 /* In MSIX mode, a write to irqmask behaves as XOR */
977 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
978 {
979         u8 __iomem *base = get_hwbase(dev);
980
981         writel(mask, base + NvRegIrqMask);
982 }
983
984 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
985 {
986         struct fe_priv *np = get_nvpriv(dev);
987         u8 __iomem *base = get_hwbase(dev);
988
989         if (np->msi_flags & NV_MSI_X_ENABLED) {
990                 writel(mask, base + NvRegIrqMask);
991         } else {
992                 if (np->msi_flags & NV_MSI_ENABLED)
993                         writel(0, base + NvRegMSIIrqMask);
994                 writel(0, base + NvRegIrqMask);
995         }
996 }
997
998 #define MII_READ        (-1)
999 /* mii_rw: read/write a register on the PHY.
1000  *
1001  * Caller must guarantee serialization
1002  */
1003 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
1004 {
1005         u8 __iomem *base = get_hwbase(dev);
1006         u32 reg;
1007         int retval;
1008
1009         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
1010
1011         reg = readl(base + NvRegMIIControl);
1012         if (reg & NVREG_MIICTL_INUSE) {
1013                 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
1014                 udelay(NV_MIIBUSY_DELAY);
1015         }
1016
1017         reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
1018         if (value != MII_READ) {
1019                 writel(value, base + NvRegMIIData);
1020                 reg |= NVREG_MIICTL_WRITE;
1021         }
1022         writel(reg, base + NvRegMIIControl);
1023
1024         if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
1025                         NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
1026                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
1027                                 dev->name, miireg, addr);
1028                 retval = -1;
1029         } else if (value != MII_READ) {
1030                 /* it was a write operation - fewer failures are detectable */
1031                 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
1032                                 dev->name, value, miireg, addr);
1033                 retval = 0;
1034         } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
1035                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
1036                                 dev->name, miireg, addr);
1037                 retval = -1;
1038         } else {
1039                 retval = readl(base + NvRegMIIData);
1040                 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
1041                                 dev->name, miireg, addr, retval);
1042         }
1043
1044         return retval;
1045 }
1046
1047 static int phy_reset(struct net_device *dev, u32 bmcr_setup)
1048 {
1049         struct fe_priv *np = netdev_priv(dev);
1050         u32 miicontrol;
1051         unsigned int tries = 0;
1052
1053         miicontrol = BMCR_RESET | bmcr_setup;
1054         if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
1055                 return -1;
1056         }
1057
1058         /* wait for 500ms */
1059         msleep(500);
1060
1061         /* must wait till reset is deasserted */
1062         while (miicontrol & BMCR_RESET) {
1063                 msleep(10);
1064                 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1065                 /* FIXME: 100 tries seem excessive */
1066                 if (tries++ > 100)
1067                         return -1;
1068         }
1069         return 0;
1070 }
1071
1072 static int phy_init(struct net_device *dev)
1073 {
1074         struct fe_priv *np = get_nvpriv(dev);
1075         u8 __iomem *base = get_hwbase(dev);
1076         u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
1077
1078         /* phy errata for E3016 phy */
1079         if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
1080                 reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1081                 reg &= ~PHY_MARVELL_E3016_INITMASK;
1082                 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
1083                         printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
1084                         return PHY_ERROR;
1085                 }
1086         }
1087
1088         /* set advertise register */
1089         reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1090         reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
1091         if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
1092                 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
1093                 return PHY_ERROR;
1094         }
1095
1096         /* get phy interface type */
1097         phyinterface = readl(base + NvRegPhyInterface);
1098
1099         /* see if gigabit phy */
1100         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1101         if (mii_status & PHY_GIGABIT) {
1102                 np->gigabit = PHY_GIGABIT;
1103                 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
1104                 mii_control_1000 &= ~ADVERTISE_1000HALF;
1105                 if (phyinterface & PHY_RGMII)
1106                         mii_control_1000 |= ADVERTISE_1000FULL;
1107                 else
1108                         mii_control_1000 &= ~ADVERTISE_1000FULL;
1109
1110                 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
1111                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1112                         return PHY_ERROR;
1113                 }
1114         }
1115         else
1116                 np->gigabit = 0;
1117
1118         mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1119         mii_control |= BMCR_ANENABLE;
1120
1121         /* reset the phy
1122          * (certain phys need bmcr to be setup with reset)
1123          */
1124         if (phy_reset(dev, mii_control)) {
1125                 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
1126                 return PHY_ERROR;
1127         }
1128
1129         /* phy vendor specific configuration */
1130         if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
1131                 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
1132                 phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
1133                 phy_reserved |= (PHY_INIT3 | PHY_INIT4);
1134                 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
1135                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1136                         return PHY_ERROR;
1137                 }
1138                 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1139                 phy_reserved |= PHY_INIT5;
1140                 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
1141                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1142                         return PHY_ERROR;
1143                 }
1144         }
1145         if (np->phy_oui == PHY_OUI_CICADA) {
1146                 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
1147                 phy_reserved |= PHY_INIT6;
1148                 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
1149                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1150                         return PHY_ERROR;
1151                 }
1152         }
1153         /* some phys clear out pause advertisment on reset, set it back */
1154         mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
1155
1156         /* restart auto negotiation */
1157         mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1158         mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
1159         if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1160                 return PHY_ERROR;
1161         }
1162
1163         return 0;
1164 }
1165
1166 static void nv_start_rx(struct net_device *dev)
1167 {
1168         struct fe_priv *np = netdev_priv(dev);
1169         u8 __iomem *base = get_hwbase(dev);
1170         u32 rx_ctrl = readl(base + NvRegReceiverControl);
1171
1172         dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
1173         /* Already running? Stop it. */
1174         if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
1175                 rx_ctrl &= ~NVREG_RCVCTL_START;
1176                 writel(rx_ctrl, base + NvRegReceiverControl);
1177                 pci_push(base);
1178         }
1179         writel(np->linkspeed, base + NvRegLinkSpeed);
1180         pci_push(base);
1181         rx_ctrl |= NVREG_RCVCTL_START;
1182         if (np->mac_in_use)
1183                 rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
1184         writel(rx_ctrl, base + NvRegReceiverControl);
1185         dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
1186                                 dev->name, np->duplex, np->linkspeed);
1187         pci_push(base);
1188 }
1189
1190 static void nv_stop_rx(struct net_device *dev)
1191 {
1192         struct fe_priv *np = netdev_priv(dev);
1193         u8 __iomem *base = get_hwbase(dev);
1194         u32 rx_ctrl = readl(base + NvRegReceiverControl);
1195
1196         dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
1197         if (!np->mac_in_use)
1198                 rx_ctrl &= ~NVREG_RCVCTL_START;
1199         else
1200                 rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
1201         writel(rx_ctrl, base + NvRegReceiverControl);
1202         reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
1203                         NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
1204                         KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
1205
1206         udelay(NV_RXSTOP_DELAY2);
1207         if (!np->mac_in_use)
1208                 writel(0, base + NvRegLinkSpeed);
1209 }
1210
1211 static void nv_start_tx(struct net_device *dev)
1212 {
1213         struct fe_priv *np = netdev_priv(dev);
1214         u8 __iomem *base = get_hwbase(dev);
1215         u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1216
1217         dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
1218         tx_ctrl |= NVREG_XMITCTL_START;
1219         if (np->mac_in_use)
1220                 tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
1221         writel(tx_ctrl, base + NvRegTransmitterControl);
1222         pci_push(base);
1223 }
1224
1225 static void nv_stop_tx(struct net_device *dev)
1226 {
1227         struct fe_priv *np = netdev_priv(dev);
1228         u8 __iomem *base = get_hwbase(dev);
1229         u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1230
1231         dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
1232         if (!np->mac_in_use)
1233                 tx_ctrl &= ~NVREG_XMITCTL_START;
1234         else
1235                 tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
1236         writel(tx_ctrl, base + NvRegTransmitterControl);
1237         reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
1238                         NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
1239                         KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
1240
1241         udelay(NV_TXSTOP_DELAY2);
1242         if (!np->mac_in_use)
1243                 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
1244                        base + NvRegTransmitPoll);
1245 }
1246
1247 static void nv_txrx_reset(struct net_device *dev)
1248 {
1249         struct fe_priv *np = netdev_priv(dev);
1250         u8 __iomem *base = get_hwbase(dev);
1251
1252         dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
1253         writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1254         pci_push(base);
1255         udelay(NV_TXRX_RESET_DELAY);
1256         writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1257         pci_push(base);
1258 }
1259
1260 static void nv_mac_reset(struct net_device *dev)
1261 {
1262         struct fe_priv *np = netdev_priv(dev);
1263         u8 __iomem *base = get_hwbase(dev);
1264
1265         dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
1266         writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1267         pci_push(base);
1268         writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
1269         pci_push(base);
1270         udelay(NV_MAC_RESET_DELAY);
1271         writel(0, base + NvRegMacReset);
1272         pci_push(base);
1273         udelay(NV_MAC_RESET_DELAY);
1274         writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1275         pci_push(base);
1276 }
1277
1278 /*
1279  * nv_get_stats: dev->get_stats function
1280  * Get latest stats value from the nic.
1281  * Called with read_lock(&dev_base_lock) held for read -
1282  * only synchronized against unregister_netdevice.
1283  */
1284 static struct net_device_stats *nv_get_stats(struct net_device *dev)
1285 {
1286         struct fe_priv *np = netdev_priv(dev);
1287
1288         /* It seems that the nic always generates interrupts and doesn't
1289          * accumulate errors internally. Thus the current values in np->stats
1290          * are already up to date.
1291          */
1292         return &np->stats;
1293 }
1294
1295 /*
1296  * nv_alloc_rx: fill rx ring entries.
1297  * Return 1 if the allocations for the skbs failed and the
1298  * rx engine is without Available descriptors
1299  */
1300 static int nv_alloc_rx(struct net_device *dev)
1301 {
1302         struct fe_priv *np = netdev_priv(dev);
1303         struct ring_desc* less_rx;
1304
1305         less_rx = np->get_rx.orig;
1306         if (less_rx-- == np->first_rx.orig)
1307                 less_rx = np->last_rx.orig;
1308
1309         while (np->put_rx.orig != less_rx) {
1310                 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1311                 if (skb) {
1312                         skb->dev = dev;
1313                         np->put_rx_ctx->skb = skb;
1314                         np->put_rx_ctx->dma = pci_map_single(np->pci_dev, skb->data,
1315                                                              skb->end-skb->data, PCI_DMA_FROMDEVICE);
1316                         np->put_rx_ctx->dma_len = skb->end-skb->data;
1317                         np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
1318                         wmb();
1319                         np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1320                         if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
1321                                 np->put_rx.orig = np->first_rx.orig;
1322                         if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1323                                 np->put_rx_ctx = np->first_rx_ctx;
1324                 } else {
1325                         return 1;
1326                 }
1327         }
1328         return 0;
1329 }
1330
1331 static int nv_alloc_rx_optimized(struct net_device *dev)
1332 {
1333         struct fe_priv *np = netdev_priv(dev);
1334         struct ring_desc_ex* less_rx;
1335
1336         less_rx = np->get_rx.ex;
1337         if (less_rx-- == np->first_rx.ex)
1338                 less_rx = np->last_rx.ex;
1339
1340         while (np->put_rx.ex != less_rx) {
1341                 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1342                 if (skb) {
1343                         skb->dev = dev;
1344                         np->put_rx_ctx->skb = skb;
1345                         np->put_rx_ctx->dma = pci_map_single(np->pci_dev, skb->data,
1346                                                              skb->end-skb->data, PCI_DMA_FROMDEVICE);
1347                         np->put_rx_ctx->dma_len = skb->end-skb->data;
1348                         np->put_rx.ex->bufhigh = cpu_to_le64(np->put_rx_ctx->dma) >> 32;
1349                         np->put_rx.ex->buflow = cpu_to_le64(np->put_rx_ctx->dma) & 0x0FFFFFFFF;
1350                         wmb();
1351                         np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1352                         if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
1353                                 np->put_rx.ex = np->first_rx.ex;
1354                         if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1355                                 np->put_rx_ctx = np->first_rx_ctx;
1356                 } else {
1357                         return 1;
1358                 }
1359         }
1360         return 0;
1361 }
1362
1363 /* If rx bufs are exhausted called after 50ms to attempt to refresh */
1364 #ifdef CONFIG_FORCEDETH_NAPI
1365 static void nv_do_rx_refill(unsigned long data)
1366 {
1367         struct net_device *dev = (struct net_device *) data;
1368
1369         /* Just reschedule NAPI rx processing */
1370         netif_rx_schedule(dev);
1371 }
1372 #else
1373 static void nv_do_rx_refill(unsigned long data)
1374 {
1375         struct net_device *dev = (struct net_device *) data;
1376         struct fe_priv *np = netdev_priv(dev);
1377         int retcode;
1378
1379         if (!using_multi_irqs(dev)) {
1380                 if (np->msi_flags & NV_MSI_X_ENABLED)
1381                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1382                 else
1383                         disable_irq(dev->irq);
1384         } else {
1385                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1386         }
1387         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1388                 retcode = nv_alloc_rx(dev);
1389         else
1390                 retcode = nv_alloc_rx_optimized(dev);
1391         if (retcode) {
1392                 spin_lock_irq(&np->lock);
1393                 if (!np->in_shutdown)
1394                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1395                 spin_unlock_irq(&np->lock);
1396         }
1397         if (!using_multi_irqs(dev)) {
1398                 if (np->msi_flags & NV_MSI_X_ENABLED)
1399                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1400                 else
1401                         enable_irq(dev->irq);
1402         } else {
1403                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1404         }
1405 }
1406 #endif
1407
1408 static void nv_init_rx(struct net_device *dev)
1409 {
1410         struct fe_priv *np = netdev_priv(dev);
1411         int i;
1412         np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
1413         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1414                 np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
1415         else
1416                 np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
1417         np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
1418         np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
1419
1420         for (i = 0; i < np->rx_ring_size; i++) {
1421                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1422                         np->rx_ring.orig[i].flaglen = 0;
1423                         np->rx_ring.orig[i].buf = 0;
1424                 } else {
1425                         np->rx_ring.ex[i].flaglen = 0;
1426                         np->rx_ring.ex[i].txvlan = 0;
1427                         np->rx_ring.ex[i].bufhigh = 0;
1428                         np->rx_ring.ex[i].buflow = 0;
1429                 }
1430                 np->rx_skb[i].skb = NULL;
1431                 np->rx_skb[i].dma = 0;
1432         }
1433 }
1434
1435 static void nv_init_tx(struct net_device *dev)
1436 {
1437         struct fe_priv *np = netdev_priv(dev);
1438         int i;
1439         np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
1440         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1441                 np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
1442         else
1443                 np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
1444         np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
1445         np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
1446
1447         for (i = 0; i < np->tx_ring_size; i++) {
1448                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1449                         np->tx_ring.orig[i].flaglen = 0;
1450                         np->tx_ring.orig[i].buf = 0;
1451                 } else {
1452                         np->tx_ring.ex[i].flaglen = 0;
1453                         np->tx_ring.ex[i].txvlan = 0;
1454                         np->tx_ring.ex[i].bufhigh = 0;
1455                         np->tx_ring.ex[i].buflow = 0;
1456                 }
1457                 np->tx_skb[i].skb = NULL;
1458                 np->tx_skb[i].dma = 0;
1459         }
1460 }
1461
1462 static int nv_init_ring(struct net_device *dev)
1463 {
1464         struct fe_priv *np = netdev_priv(dev);
1465
1466         nv_init_tx(dev);
1467         nv_init_rx(dev);
1468         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1469                 return nv_alloc_rx(dev);
1470         else
1471                 return nv_alloc_rx_optimized(dev);
1472 }
1473
1474 static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb)
1475 {
1476         struct fe_priv *np = netdev_priv(dev);
1477
1478         if (tx_skb->dma) {
1479                 pci_unmap_page(np->pci_dev, tx_skb->dma,
1480                                tx_skb->dma_len,
1481                                PCI_DMA_TODEVICE);
1482                 tx_skb->dma = 0;
1483         }
1484         if (tx_skb->skb) {
1485                 dev_kfree_skb_any(tx_skb->skb);
1486                 tx_skb->skb = NULL;
1487                 return 1;
1488         } else {
1489                 return 0;
1490         }
1491 }
1492
1493 static void nv_drain_tx(struct net_device *dev)
1494 {
1495         struct fe_priv *np = netdev_priv(dev);
1496         unsigned int i;
1497
1498         for (i = 0; i < np->tx_ring_size; i++) {
1499                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1500                         np->tx_ring.orig[i].flaglen = 0;
1501                         np->tx_ring.orig[i].buf = 0;
1502                 } else {
1503                         np->tx_ring.ex[i].flaglen = 0;
1504                         np->tx_ring.ex[i].txvlan = 0;
1505                         np->tx_ring.ex[i].bufhigh = 0;
1506                         np->tx_ring.ex[i].buflow = 0;
1507                 }
1508                 if (nv_release_txskb(dev, &np->tx_skb[i]))
1509                         np->stats.tx_dropped++;
1510         }
1511 }
1512
1513 static void nv_drain_rx(struct net_device *dev)
1514 {
1515         struct fe_priv *np = netdev_priv(dev);
1516         int i;
1517
1518         for (i = 0; i < np->rx_ring_size; i++) {
1519                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1520                         np->rx_ring.orig[i].flaglen = 0;
1521                         np->rx_ring.orig[i].buf = 0;
1522                 } else {
1523                         np->rx_ring.ex[i].flaglen = 0;
1524                         np->rx_ring.ex[i].txvlan = 0;
1525                         np->rx_ring.ex[i].bufhigh = 0;
1526                         np->rx_ring.ex[i].buflow = 0;
1527                 }
1528                 wmb();
1529                 if (np->rx_skb[i].skb) {
1530                         pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
1531                                                 np->rx_skb[i].skb->end-np->rx_skb[i].skb->data,
1532                                                 PCI_DMA_FROMDEVICE);
1533                         dev_kfree_skb(np->rx_skb[i].skb);
1534                         np->rx_skb[i].skb = NULL;
1535                 }
1536         }
1537 }
1538
1539 static void drain_ring(struct net_device *dev)
1540 {
1541         nv_drain_tx(dev);
1542         nv_drain_rx(dev);
1543 }
1544
1545 static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
1546 {
1547         return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
1548 }
1549
1550 /*
1551  * nv_start_xmit: dev->hard_start_xmit function
1552  * Called with netif_tx_lock held.
1553  */
1554 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
1555 {
1556         struct fe_priv *np = netdev_priv(dev);
1557         u32 tx_flags = 0;
1558         u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
1559         unsigned int fragments = skb_shinfo(skb)->nr_frags;
1560         unsigned int i;
1561         u32 offset = 0;
1562         u32 bcnt;
1563         u32 size = skb->len-skb->data_len;
1564         u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1565         u32 empty_slots;
1566         struct ring_desc* put_tx;
1567         struct ring_desc* start_tx;
1568         struct ring_desc* prev_tx;
1569         struct nv_skb_map* prev_tx_ctx;
1570
1571         /* add fragments to entries count */
1572         for (i = 0; i < fragments; i++) {
1573                 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
1574                            ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1575         }
1576
1577         empty_slots = nv_get_empty_tx_slots(np);
1578         if (unlikely(empty_slots <= entries)) {
1579                 spin_lock_irq(&np->lock);
1580                 netif_stop_queue(dev);
1581                 np->tx_stop = 1;
1582                 spin_unlock_irq(&np->lock);
1583                 return NETDEV_TX_BUSY;
1584         }
1585
1586         start_tx = put_tx = np->put_tx.orig;
1587
1588         /* setup the header buffer */
1589         do {
1590                 prev_tx = put_tx;
1591                 prev_tx_ctx = np->put_tx_ctx;
1592                 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1593                 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
1594                                                 PCI_DMA_TODEVICE);
1595                 np->put_tx_ctx->dma_len = bcnt;
1596                 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
1597                 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1598
1599                 tx_flags = np->tx_flags;
1600                 offset += bcnt;
1601                 size -= bcnt;
1602                 if (unlikely(put_tx++ == np->last_tx.orig))
1603                         put_tx = np->first_tx.orig;
1604                 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
1605                         np->put_tx_ctx = np->first_tx_ctx;
1606         } while (size);
1607
1608         /* setup the fragments */
1609         for (i = 0; i < fragments; i++) {
1610                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1611                 u32 size = frag->size;
1612                 offset = 0;
1613
1614                 do {
1615                         prev_tx = put_tx;
1616                         prev_tx_ctx = np->put_tx_ctx;
1617                         bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1618                         np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
1619                                                            PCI_DMA_TODEVICE);
1620                         np->put_tx_ctx->dma_len = bcnt;
1621                         put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
1622                         put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1623
1624                         offset += bcnt;
1625                         size -= bcnt;
1626                         if (unlikely(put_tx++ == np->last_tx.orig))
1627                                 put_tx = np->first_tx.orig;
1628                         if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
1629                                 np->put_tx_ctx = np->first_tx_ctx;
1630                 } while (size);
1631         }
1632
1633         /* set last fragment flag  */
1634         prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
1635
1636         /* save skb in this slot's context area */
1637         prev_tx_ctx->skb = skb;
1638
1639         if (skb_is_gso(skb))
1640                 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
1641         else
1642                 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
1643                          NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
1644
1645         spin_lock_irq(&np->lock);
1646
1647         /* set tx flags */
1648         start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
1649         np->put_tx.orig = put_tx;
1650
1651         spin_unlock_irq(&np->lock);
1652
1653         dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
1654                 dev->name, entries, tx_flags_extra);
1655         {
1656                 int j;
1657                 for (j=0; j<64; j++) {
1658                         if ((j%16) == 0)
1659                                 dprintk("\n%03x:", j);
1660                         dprintk(" %02x", ((unsigned char*)skb->data)[j]);
1661                 }
1662                 dprintk("\n");
1663         }
1664
1665         dev->trans_start = jiffies;
1666         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1667         return NETDEV_TX_OK;
1668 }
1669
1670 static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
1671 {
1672         struct fe_priv *np = netdev_priv(dev);
1673         u32 tx_flags = 0;
1674         u32 tx_flags_extra;
1675         unsigned int fragments = skb_shinfo(skb)->nr_frags;
1676         unsigned int i;
1677         u32 offset = 0;
1678         u32 bcnt;
1679         u32 size = skb->len-skb->data_len;
1680         u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1681         u32 empty_slots;
1682         struct ring_desc_ex* put_tx;
1683         struct ring_desc_ex* start_tx;
1684         struct ring_desc_ex* prev_tx;
1685         struct nv_skb_map* prev_tx_ctx;
1686
1687         /* add fragments to entries count */
1688         for (i = 0; i < fragments; i++) {
1689                 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
1690                            ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1691         }
1692
1693         empty_slots = nv_get_empty_tx_slots(np);
1694         if (unlikely(empty_slots <= entries)) {
1695                 spin_lock_irq(&np->lock);
1696                 netif_stop_queue(dev);
1697                 np->tx_stop = 1;
1698                 spin_unlock_irq(&np->lock);
1699                 return NETDEV_TX_BUSY;
1700         }
1701
1702         start_tx = put_tx = np->put_tx.ex;
1703
1704         /* setup the header buffer */
1705         do {
1706                 prev_tx = put_tx;
1707                 prev_tx_ctx = np->put_tx_ctx;
1708                 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1709                 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
1710                                                 PCI_DMA_TODEVICE);
1711                 np->put_tx_ctx->dma_len = bcnt;
1712                 put_tx->bufhigh = cpu_to_le64(np->put_tx_ctx->dma) >> 32;
1713                 put_tx->buflow = cpu_to_le64(np->put_tx_ctx->dma) & 0x0FFFFFFFF;
1714                 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1715
1716                 tx_flags = NV_TX2_VALID;
1717                 offset += bcnt;
1718                 size -= bcnt;
1719                 if (unlikely(put_tx++ == np->last_tx.ex))
1720                         put_tx = np->first_tx.ex;
1721                 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
1722                         np->put_tx_ctx = np->first_tx_ctx;
1723         } while (size);
1724
1725         /* setup the fragments */
1726         for (i = 0; i < fragments; i++) {
1727                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1728                 u32 size = frag->size;
1729                 offset = 0;
1730
1731                 do {
1732                         prev_tx = put_tx;
1733                         prev_tx_ctx = np->put_tx_ctx;
1734                         bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1735                         np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
1736                                                            PCI_DMA_TODEVICE);
1737                         np->put_tx_ctx->dma_len = bcnt;
1738                         put_tx->bufhigh = cpu_to_le64(np->put_tx_ctx->dma) >> 32;
1739                         put_tx->buflow = cpu_to_le64(np->put_tx_ctx->dma) & 0x0FFFFFFFF;
1740                         put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1741
1742                         offset += bcnt;
1743                         size -= bcnt;
1744                         if (unlikely(put_tx++ == np->last_tx.ex))
1745                                 put_tx = np->first_tx.ex;
1746                         if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
1747                                 np->put_tx_ctx = np->first_tx_ctx;
1748                 } while (size);
1749         }
1750
1751         /* set last fragment flag  */
1752         prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
1753
1754         /* save skb in this slot's context area */
1755         prev_tx_ctx->skb = skb;
1756
1757         if (skb_is_gso(skb))
1758                 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
1759         else
1760                 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
1761                          NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
1762
1763         /* vlan tag */
1764         if (likely(!np->vlangrp)) {
1765                 start_tx->txvlan = 0;
1766         } else {
1767                 if (vlan_tx_tag_present(skb))
1768                         start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
1769                 else
1770                         start_tx->txvlan = 0;
1771         }
1772
1773         spin_lock_irq(&np->lock);
1774
1775         /* set tx flags */
1776         start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
1777         np->put_tx.ex = put_tx;
1778
1779         spin_unlock_irq(&np->lock);
1780
1781         dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
1782                 dev->name, entries, tx_flags_extra);
1783         {
1784                 int j;
1785                 for (j=0; j<64; j++) {
1786                         if ((j%16) == 0)
1787                                 dprintk("\n%03x:", j);
1788                         dprintk(" %02x", ((unsigned char*)skb->data)[j]);
1789                 }
1790                 dprintk("\n");
1791         }
1792
1793         dev->trans_start = jiffies;
1794         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1795         return NETDEV_TX_OK;
1796 }
1797
1798 /*
1799  * nv_tx_done: check for completed packets, release the skbs.
1800  *
1801  * Caller must own np->lock.
1802  */
1803 static void nv_tx_done(struct net_device *dev)
1804 {
1805         struct fe_priv *np = netdev_priv(dev);
1806         u32 flags;
1807         struct ring_desc* orig_get_tx = np->get_tx.orig;
1808
1809         while ((np->get_tx.orig != np->put_tx.orig) &&
1810                !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID)) {
1811
1812                 dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
1813                                         dev->name, flags);
1814
1815                 pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
1816                                np->get_tx_ctx->dma_len,
1817                                PCI_DMA_TODEVICE);
1818                 np->get_tx_ctx->dma = 0;
1819
1820                 if (np->desc_ver == DESC_VER_1) {
1821                         if (flags & NV_TX_LASTPACKET) {
1822                                 if (flags & NV_TX_ERROR) {
1823                                         if (flags & NV_TX_UNDERFLOW)
1824                                                 np->stats.tx_fifo_errors++;
1825                                         if (flags & NV_TX_CARRIERLOST)
1826                                                 np->stats.tx_carrier_errors++;
1827                                         np->stats.tx_errors++;
1828                                 } else {
1829                                         np->stats.tx_packets++;
1830                                         np->stats.tx_bytes += np->get_tx_ctx->skb->len;
1831                                 }
1832                                 dev_kfree_skb_any(np->get_tx_ctx->skb);
1833                                 np->get_tx_ctx->skb = NULL;
1834                         }
1835                 } else {
1836                         if (flags & NV_TX2_LASTPACKET) {
1837                                 if (flags & NV_TX2_ERROR) {
1838                                         if (flags & NV_TX2_UNDERFLOW)
1839                                                 np->stats.tx_fifo_errors++;
1840                                         if (flags & NV_TX2_CARRIERLOST)
1841                                                 np->stats.tx_carrier_errors++;
1842                                         np->stats.tx_errors++;
1843                                 } else {
1844                                         np->stats.tx_packets++;
1845                                         np->stats.tx_bytes += np->get_tx_ctx->skb->len;
1846                                 }
1847                                 dev_kfree_skb_any(np->get_tx_ctx->skb);
1848                                 np->get_tx_ctx->skb = NULL;
1849                         }
1850                 }
1851                 if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
1852                         np->get_tx.orig = np->first_tx.orig;
1853                 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
1854                         np->get_tx_ctx = np->first_tx_ctx;
1855         }
1856         if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
1857                 np->tx_stop = 0;
1858                 netif_wake_queue(dev);
1859         }
1860 }
1861
1862 static void nv_tx_done_optimized(struct net_device *dev, int limit)
1863 {
1864         struct fe_priv *np = netdev_priv(dev);
1865         u32 flags;
1866         struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
1867
1868         while ((np->get_tx.ex != np->put_tx.ex) &&
1869                !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
1870                (limit-- > 0)) {
1871
1872                 dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
1873                                         dev->name, flags);
1874
1875                 pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
1876                                np->get_tx_ctx->dma_len,
1877                                PCI_DMA_TODEVICE);
1878                 np->get_tx_ctx->dma = 0;
1879
1880                 if (flags & NV_TX2_LASTPACKET) {
1881                         if (flags & NV_TX2_ERROR) {
1882                                 if (flags & NV_TX2_UNDERFLOW)
1883                                         np->stats.tx_fifo_errors++;
1884                                 if (flags & NV_TX2_CARRIERLOST)
1885                                         np->stats.tx_carrier_errors++;
1886                                 np->stats.tx_errors++;
1887                         } else {
1888                                 np->stats.tx_packets++;
1889                                 np->stats.tx_bytes += np->get_tx_ctx->skb->len;
1890                         }
1891                         dev_kfree_skb_any(np->get_tx_ctx->skb);
1892                         np->get_tx_ctx->skb = NULL;
1893                 }
1894                 if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
1895                         np->get_tx.ex = np->first_tx.ex;
1896                 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
1897                         np->get_tx_ctx = np->first_tx_ctx;
1898         }
1899         if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
1900                 np->tx_stop = 0;
1901                 netif_wake_queue(dev);
1902         }
1903 }
1904
1905 /*
1906  * nv_tx_timeout: dev->tx_timeout function
1907  * Called with netif_tx_lock held.
1908  */
1909 static void nv_tx_timeout(struct net_device *dev)
1910 {
1911         struct fe_priv *np = netdev_priv(dev);
1912         u8 __iomem *base = get_hwbase(dev);
1913         u32 status;
1914
1915         if (np->msi_flags & NV_MSI_X_ENABLED)
1916                 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
1917         else
1918                 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
1919
1920         printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
1921
1922         {
1923                 int i;
1924
1925                 printk(KERN_INFO "%s: Ring at %lx\n",
1926                        dev->name, (unsigned long)np->ring_addr);
1927                 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
1928                 for (i=0;i<=np->register_size;i+= 32) {
1929                         printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
1930                                         i,
1931                                         readl(base + i + 0), readl(base + i + 4),
1932                                         readl(base + i + 8), readl(base + i + 12),
1933                                         readl(base + i + 16), readl(base + i + 20),
1934                                         readl(base + i + 24), readl(base + i + 28));
1935                 }
1936                 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
1937                 for (i=0;i<np->tx_ring_size;i+= 4) {
1938                         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1939                                 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
1940                                        i,
1941                                        le32_to_cpu(np->tx_ring.orig[i].buf),
1942                                        le32_to_cpu(np->tx_ring.orig[i].flaglen),
1943                                        le32_to_cpu(np->tx_ring.orig[i+1].buf),
1944                                        le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
1945                                        le32_to_cpu(np->tx_ring.orig[i+2].buf),
1946                                        le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
1947                                        le32_to_cpu(np->tx_ring.orig[i+3].buf),
1948                                        le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
1949                         } else {
1950                                 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
1951                                        i,
1952                                        le32_to_cpu(np->tx_ring.ex[i].bufhigh),
1953                                        le32_to_cpu(np->tx_ring.ex[i].buflow),
1954                                        le32_to_cpu(np->tx_ring.ex[i].flaglen),
1955                                        le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
1956                                        le32_to_cpu(np->tx_ring.ex[i+1].buflow),
1957                                        le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
1958                                        le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
1959                                        le32_to_cpu(np->tx_ring.ex[i+2].buflow),
1960                                        le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
1961                                        le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
1962                                        le32_to_cpu(np->tx_ring.ex[i+3].buflow),
1963                                        le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
1964                         }
1965                 }
1966         }
1967
1968         spin_lock_irq(&np->lock);
1969
1970         /* 1) stop tx engine */
1971         nv_stop_tx(dev);
1972
1973         /* 2) check that the packets were not sent already: */
1974         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1975                 nv_tx_done(dev);
1976         else
1977                 nv_tx_done_optimized(dev, np->tx_ring_size);
1978
1979         /* 3) if there are dead entries: clear everything */
1980         if (np->get_tx_ctx != np->put_tx_ctx) {
1981                 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
1982                 nv_drain_tx(dev);
1983                 nv_init_tx(dev);
1984                 setup_hw_rings(dev, NV_SETUP_TX_RING);
1985                 netif_wake_queue(dev);
1986         }
1987
1988         /* 4) restart tx engine */
1989         nv_start_tx(dev);
1990         spin_unlock_irq(&np->lock);
1991 }
1992
1993 /*
1994  * Called when the nic notices a mismatch between the actual data len on the
1995  * wire and the len indicated in the 802 header
1996  */
1997 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
1998 {
1999         int hdrlen;     /* length of the 802 header */
2000         int protolen;   /* length as stored in the proto field */
2001
2002         /* 1) calculate len according to header */
2003         if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
2004                 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
2005                 hdrlen = VLAN_HLEN;
2006         } else {
2007                 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
2008                 hdrlen = ETH_HLEN;
2009         }
2010         dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
2011                                 dev->name, datalen, protolen, hdrlen);
2012         if (protolen > ETH_DATA_LEN)
2013                 return datalen; /* Value in proto field not a len, no checks possible */
2014
2015         protolen += hdrlen;
2016         /* consistency checks: */
2017         if (datalen > ETH_ZLEN) {
2018                 if (datalen >= protolen) {
2019                         /* more data on wire than in 802 header, trim of
2020                          * additional data.
2021                          */
2022                         dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
2023                                         dev->name, protolen);
2024                         return protolen;
2025                 } else {
2026                         /* less data on wire than mentioned in header.
2027                          * Discard the packet.
2028                          */
2029                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
2030                                         dev->name);
2031                         return -1;
2032                 }
2033         } else {
2034                 /* short packet. Accept only if 802 values are also short */
2035                 if (protolen > ETH_ZLEN) {
2036                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
2037                                         dev->name);
2038                         return -1;
2039                 }
2040                 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
2041                                 dev->name, datalen);
2042                 return datalen;
2043         }
2044 }
2045
2046 static int nv_rx_process(struct net_device *dev, int limit)
2047 {
2048         struct fe_priv *np = netdev_priv(dev);
2049         u32 flags;
2050         u32 rx_processed_cnt = 0;
2051         struct sk_buff *skb;
2052         int len;
2053
2054         while((np->get_rx.orig != np->put_rx.orig) &&
2055               !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
2056                 (rx_processed_cnt++ < limit)) {
2057
2058                 dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
2059                                         dev->name, flags);
2060
2061                 /*
2062                  * the packet is for us - immediately tear down the pci mapping.
2063                  * TODO: check if a prefetch of the first cacheline improves
2064                  * the performance.
2065                  */
2066                 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2067                                 np->get_rx_ctx->dma_len,
2068                                 PCI_DMA_FROMDEVICE);
2069                 skb = np->get_rx_ctx->skb;
2070                 np->get_rx_ctx->skb = NULL;
2071
2072                 {
2073                         int j;
2074                         dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
2075                         for (j=0; j<64; j++) {
2076                                 if ((j%16) == 0)
2077                                         dprintk("\n%03x:", j);
2078                                 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2079                         }
2080                         dprintk("\n");
2081                 }
2082                 /* look at what we actually got: */
2083                 if (np->desc_ver == DESC_VER_1) {
2084                         if (likely(flags & NV_RX_DESCRIPTORVALID)) {
2085                                 len = flags & LEN_MASK_V1;
2086                                 if (unlikely(flags & NV_RX_ERROR)) {
2087                                         if (flags & NV_RX_ERROR4) {
2088                                                 len = nv_getlen(dev, skb->data, len);
2089                                                 if (len < 0) {
2090                                                         np->stats.rx_errors++;
2091                                                         dev_kfree_skb(skb);
2092                                                         goto next_pkt;
2093                                                 }
2094                                         }
2095                                         /* framing errors are soft errors */
2096                                         else if (flags & NV_RX_FRAMINGERR) {
2097                                                 if (flags & NV_RX_SUBSTRACT1) {
2098                                                         len--;
2099                                                 }
2100                                         }
2101                                         /* the rest are hard errors */
2102                                         else {
2103                                                 if (flags & NV_RX_MISSEDFRAME)
2104                                                         np->stats.rx_missed_errors++;
2105                                                 if (flags & NV_RX_CRCERR)
2106                                                         np->stats.rx_crc_errors++;
2107                                                 if (flags & NV_RX_OVERFLOW)
2108                                                         np->stats.rx_over_errors++;
2109                                                 np->stats.rx_errors++;
2110                                                 dev_kfree_skb(skb);
2111                                                 goto next_pkt;
2112                                         }
2113                                 }
2114                         } else {
2115                                 dev_kfree_skb(skb);
2116                                 goto next_pkt;
2117                         }
2118                 } else {
2119                         if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2120                                 len = flags & LEN_MASK_V2;
2121                                 if (unlikely(flags & NV_RX2_ERROR)) {
2122                                         if (flags & NV_RX2_ERROR4) {
2123                                                 len = nv_getlen(dev, skb->data, len);
2124                                                 if (len < 0) {
2125                                                         np->stats.rx_errors++;
2126                                                         dev_kfree_skb(skb);
2127                                                         goto next_pkt;
2128                                                 }
2129                                         }
2130                                         /* framing errors are soft errors */
2131                                         else if (flags & NV_RX2_FRAMINGERR) {
2132                                                 if (flags & NV_RX2_SUBSTRACT1) {
2133                                                         len--;
2134                                                 }
2135                                         }
2136                                         /* the rest are hard errors */
2137                                         else {
2138                                                 if (flags & NV_RX2_CRCERR)
2139                                                         np->stats.rx_crc_errors++;
2140                                                 if (flags & NV_RX2_OVERFLOW)
2141                                                         np->stats.rx_over_errors++;
2142                                                 np->stats.rx_errors++;
2143                                                 dev_kfree_skb(skb);
2144                                                 goto next_pkt;
2145                                         }
2146                                 }
2147                                 if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK2)/*ip and tcp */ {
2148                                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2149                                 } else {
2150                                         if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK1 ||
2151                                             (flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK3) {
2152                                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2153                                         }
2154                                 }
2155                         } else {
2156                                 dev_kfree_skb(skb);
2157                                 goto next_pkt;
2158                         }
2159                 }
2160                 /* got a valid packet - forward it to the network core */
2161                 skb_put(skb, len);
2162                 skb->protocol = eth_type_trans(skb, dev);
2163                 dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
2164                                         dev->name, len, skb->protocol);
2165 #ifdef CONFIG_FORCEDETH_NAPI
2166                 netif_receive_skb(skb);
2167 #else
2168                 netif_rx(skb);
2169 #endif
2170                 dev->last_rx = jiffies;
2171                 np->stats.rx_packets++;
2172                 np->stats.rx_bytes += len;
2173 next_pkt:
2174                 if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
2175                         np->get_rx.orig = np->first_rx.orig;
2176                 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2177                         np->get_rx_ctx = np->first_rx_ctx;
2178         }
2179
2180         return rx_processed_cnt;
2181 }
2182
2183 static int nv_rx_process_optimized(struct net_device *dev, int limit)
2184 {
2185         struct fe_priv *np = netdev_priv(dev);
2186         u32 flags;
2187         u32 vlanflags = 0;
2188         u32 rx_processed_cnt = 0;
2189         struct sk_buff *skb;
2190         int len;
2191
2192         while((np->get_rx.ex != np->put_rx.ex) &&
2193               !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
2194               (rx_processed_cnt++ < limit)) {
2195
2196                 dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
2197                                         dev->name, flags);
2198
2199                 /*
2200                  * the packet is for us - immediately tear down the pci mapping.
2201                  * TODO: check if a prefetch of the first cacheline improves
2202                  * the performance.
2203                  */
2204                 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2205                                 np->get_rx_ctx->dma_len,
2206                                 PCI_DMA_FROMDEVICE);
2207                 skb = np->get_rx_ctx->skb;
2208                 np->get_rx_ctx->skb = NULL;
2209
2210                 {
2211                         int j;
2212                         dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
2213                         for (j=0; j<64; j++) {
2214                                 if ((j%16) == 0)
2215                                         dprintk("\n%03x:", j);
2216                                 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2217                         }
2218                         dprintk("\n");
2219                 }
2220                 /* look at what we actually got: */
2221                 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2222                         len = flags & LEN_MASK_V2;
2223                         if (unlikely(flags & NV_RX2_ERROR)) {
2224                                 if (flags & NV_RX2_ERROR4) {
2225                                         len = nv_getlen(dev, skb->data, len);
2226                                         if (len < 0) {
2227                                                 np->stats.rx_errors++;
2228                                                 dev_kfree_skb(skb);
2229                                                 goto next_pkt;
2230                                         }
2231                                 }
2232                                 /* framing errors are soft errors */
2233                                 else if (flags & NV_RX2_FRAMINGERR) {
2234                                         if (flags & NV_RX2_SUBSTRACT1) {
2235                                                 len--;
2236                                         }
2237                                 }
2238                                 /* the rest are hard errors */
2239                                 else {
2240                                         if (flags & NV_RX2_CRCERR)
2241                                                 np->stats.rx_crc_errors++;
2242                                         if (flags & NV_RX2_OVERFLOW)
2243                                                 np->stats.rx_over_errors++;
2244                                         np->stats.rx_errors++;
2245                                         dev_kfree_skb(skb);
2246                                         goto next_pkt;
2247                                 }
2248                         }
2249
2250                         if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK2)/*ip and tcp */ {
2251                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2252                         } else {
2253                                 if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK1 ||
2254                                     (flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK3) {
2255                                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2256                                 }
2257                         }
2258
2259                         /* got a valid packet - forward it to the network core */
2260                         skb_put(skb, len);
2261                         skb->protocol = eth_type_trans(skb, dev);
2262                         prefetch(skb->data);
2263
2264                         dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
2265                                 dev->name, len, skb->protocol);
2266
2267                         if (likely(!np->vlangrp)) {
2268 #ifdef CONFIG_FORCEDETH_NAPI
2269                                 netif_receive_skb(skb);
2270 #else
2271                                 netif_rx(skb);
2272 #endif
2273                         } else {
2274                                 vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
2275                                 if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
2276 #ifdef CONFIG_FORCEDETH_NAPI
2277                                         vlan_hwaccel_receive_skb(skb, np->vlangrp,
2278                                                                  vlanflags & NV_RX3_VLAN_TAG_MASK);
2279 #else
2280                                         vlan_hwaccel_rx(skb, np->vlangrp,
2281                                                         vlanflags & NV_RX3_VLAN_TAG_MASK);
2282 #endif
2283                                 } else {
2284 #ifdef CONFIG_FORCEDETH_NAPI
2285                                         netif_receive_skb(skb);
2286 #else
2287                                         netif_rx(skb);
2288 #endif
2289                                 }
2290                         }
2291
2292                         dev->last_rx = jiffies;
2293                         np->stats.rx_packets++;
2294                         np->stats.rx_bytes += len;
2295                 } else {
2296                         dev_kfree_skb(skb);
2297                 }
2298 next_pkt:
2299                 if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
2300                         np->get_rx.ex = np->first_rx.ex;
2301                 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2302                         np->get_rx_ctx = np->first_rx_ctx;
2303         }
2304
2305         return rx_processed_cnt;
2306 }
2307
2308 static void set_bufsize(struct net_device *dev)
2309 {
2310         struct fe_priv *np = netdev_priv(dev);
2311
2312         if (dev->mtu <= ETH_DATA_LEN)
2313                 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
2314         else
2315                 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
2316 }
2317
2318 /*
2319  * nv_change_mtu: dev->change_mtu function
2320  * Called with dev_base_lock held for read.
2321  */
2322 static int nv_change_mtu(struct net_device *dev, int new_mtu)
2323 {
2324         struct fe_priv *np = netdev_priv(dev);
2325         int old_mtu;
2326
2327         if (new_mtu < 64 || new_mtu > np->pkt_limit)
2328                 return -EINVAL;
2329
2330         old_mtu = dev->mtu;
2331         dev->mtu = new_mtu;
2332
2333         /* return early if the buffer sizes will not change */
2334         if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
2335                 return 0;
2336         if (old_mtu == new_mtu)
2337                 return 0;
2338
2339         /* synchronized against open : rtnl_lock() held by caller */
2340         if (netif_running(dev)) {
2341                 u8 __iomem *base = get_hwbase(dev);
2342                 /*
2343                  * It seems that the nic preloads valid ring entries into an
2344                  * internal buffer. The procedure for flushing everything is
2345                  * guessed, there is probably a simpler approach.
2346                  * Changing the MTU is a rare event, it shouldn't matter.
2347                  */
2348                 nv_disable_irq(dev);
2349                 netif_tx_lock_bh(dev);
2350                 spin_lock(&np->lock);
2351                 /* stop engines */
2352                 nv_stop_rx(dev);
2353                 nv_stop_tx(dev);
2354                 nv_txrx_reset(dev);
2355                 /* drain rx queue */
2356                 nv_drain_rx(dev);
2357                 nv_drain_tx(dev);
2358                 /* reinit driver view of the rx queue */
2359                 set_bufsize(dev);
2360                 if (nv_init_ring(dev)) {
2361                         if (!np->in_shutdown)
2362                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2363                 }
2364                 /* reinit nic view of the rx queue */
2365                 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
2366                 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
2367                 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
2368                         base + NvRegRingSizes);
2369                 pci_push(base);
2370                 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2371                 pci_push(base);
2372
2373                 /* restart rx engine */
2374                 nv_start_rx(dev);
2375                 nv_start_tx(dev);
2376                 spin_unlock(&np->lock);
2377                 netif_tx_unlock_bh(dev);
2378                 nv_enable_irq(dev);
2379         }
2380         return 0;
2381 }
2382
2383 static void nv_copy_mac_to_hw(struct net_device *dev)
2384 {
2385         u8 __iomem *base = get_hwbase(dev);
2386         u32 mac[2];
2387
2388         mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
2389                         (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
2390         mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
2391
2392         writel(mac[0], base + NvRegMacAddrA);
2393         writel(mac[1], base + NvRegMacAddrB);
2394 }
2395
2396 /*
2397  * nv_set_mac_address: dev->set_mac_address function
2398  * Called with rtnl_lock() held.
2399  */
2400 static int nv_set_mac_address(struct net_device *dev, void *addr)
2401 {
2402         struct fe_priv *np = netdev_priv(dev);
2403         struct sockaddr *macaddr = (struct sockaddr*)addr;
2404
2405         if (!is_valid_ether_addr(macaddr->sa_data))
2406                 return -EADDRNOTAVAIL;
2407
2408         /* synchronized against open : rtnl_lock() held by caller */
2409         memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
2410
2411         if (netif_running(dev)) {
2412                 netif_tx_lock_bh(dev);
2413                 spin_lock_irq(&np->lock);
2414
2415                 /* stop rx engine */
2416                 nv_stop_rx(dev);
2417
2418                 /* set mac address */
2419                 nv_copy_mac_to_hw(dev);
2420
2421                 /* restart rx engine */
2422                 nv_start_rx(dev);
2423                 spin_unlock_irq(&np->lock);
2424                 netif_tx_unlock_bh(dev);
2425         } else {
2426                 nv_copy_mac_to_hw(dev);
2427         }
2428         return 0;
2429 }
2430
2431 /*
2432  * nv_set_multicast: dev->set_multicast function
2433  * Called with netif_tx_lock held.
2434  */
2435 static void nv_set_multicast(struct net_device *dev)
2436 {
2437         struct fe_priv *np = netdev_priv(dev);
2438         u8 __iomem *base = get_hwbase(dev);
2439         u32 addr[2];
2440         u32 mask[2];
2441         u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
2442
2443         memset(addr, 0, sizeof(addr));
2444         memset(mask, 0, sizeof(mask));
2445
2446         if (dev->flags & IFF_PROMISC) {
2447                 pff |= NVREG_PFF_PROMISC;
2448         } else {
2449                 pff |= NVREG_PFF_MYADDR;
2450
2451                 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
2452                         u32 alwaysOff[2];
2453                         u32 alwaysOn[2];
2454
2455                         alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
2456                         if (dev->flags & IFF_ALLMULTI) {
2457                                 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
2458                         } else {
2459                                 struct dev_mc_list *walk;
2460
2461                                 walk = dev->mc_list;
2462                                 while (walk != NULL) {
2463                                         u32 a, b;
2464                                         a = le32_to_cpu(*(u32 *) walk->dmi_addr);
2465                                         b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
2466                                         alwaysOn[0] &= a;
2467                                         alwaysOff[0] &= ~a;
2468                                         alwaysOn[1] &= b;
2469                                         alwaysOff[1] &= ~b;
2470                                         walk = walk->next;
2471                                 }
2472                         }
2473                         addr[0] = alwaysOn[0];
2474                         addr[1] = alwaysOn[1];
2475                         mask[0] = alwaysOn[0] | alwaysOff[0];
2476                         mask[1] = alwaysOn[1] | alwaysOff[1];
2477                 }
2478         }
2479         addr[0] |= NVREG_MCASTADDRA_FORCE;
2480         pff |= NVREG_PFF_ALWAYS;
2481         spin_lock_irq(&np->lock);
2482         nv_stop_rx(dev);
2483         writel(addr[0], base + NvRegMulticastAddrA);
2484         writel(addr[1], base + NvRegMulticastAddrB);
2485         writel(mask[0], base + NvRegMulticastMaskA);
2486         writel(mask[1], base + NvRegMulticastMaskB);
2487         writel(pff, base + NvRegPacketFilterFlags);
2488         dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
2489                 dev->name);
2490         nv_start_rx(dev);
2491         spin_unlock_irq(&np->lock);
2492 }
2493
2494 static void nv_update_pause(struct net_device *dev, u32 pause_flags)
2495 {
2496         struct fe_priv *np = netdev_priv(dev);
2497         u8 __iomem *base = get_hwbase(dev);
2498
2499         np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
2500
2501         if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
2502                 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
2503                 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
2504                         writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
2505                         np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2506                 } else {
2507                         writel(pff, base + NvRegPacketFilterFlags);
2508                 }
2509         }
2510         if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
2511                 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
2512                 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
2513                         writel(NVREG_TX_PAUSEFRAME_ENABLE,  base + NvRegTxPauseFrame);
2514                         writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
2515                         np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2516                 } else {
2517                         writel(NVREG_TX_PAUSEFRAME_DISABLE,  base + NvRegTxPauseFrame);
2518                         writel(regmisc, base + NvRegMisc1);
2519                 }
2520         }
2521 }
2522
2523 /**
2524  * nv_update_linkspeed: Setup the MAC according to the link partner
2525  * @dev: Network device to be configured
2526  *
2527  * The function queries the PHY and checks if there is a link partner.
2528  * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
2529  * set to 10 MBit HD.
2530  *
2531  * The function returns 0 if there is no link partner and 1 if there is
2532  * a good link partner.
2533  */
2534 static int nv_update_linkspeed(struct net_device *dev)
2535 {
2536         struct fe_priv *np = netdev_priv(dev);
2537         u8 __iomem *base = get_hwbase(dev);
2538         int adv = 0;
2539         int lpa = 0;
2540         int adv_lpa, adv_pause, lpa_pause;
2541         int newls = np->linkspeed;
2542         int newdup = np->duplex;
2543         int mii_status;
2544         int retval = 0;
2545         u32 control_1000, status_1000, phyreg, pause_flags, txreg;
2546
2547         /* BMSR_LSTATUS is latched, read it twice:
2548          * we want the current value.
2549          */
2550         mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2551         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2552
2553         if (!(mii_status & BMSR_LSTATUS)) {
2554                 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
2555                                 dev->name);
2556                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2557                 newdup = 0;
2558                 retval = 0;
2559                 goto set_speed;
2560         }
2561
2562         if (np->autoneg == 0) {
2563                 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
2564                                 dev->name, np->fixed_mode);
2565                 if (np->fixed_mode & LPA_100FULL) {
2566                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2567                         newdup = 1;
2568                 } else if (np->fixed_mode & LPA_100HALF) {
2569                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2570                         newdup = 0;
2571                 } else if (np->fixed_mode & LPA_10FULL) {
2572                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2573                         newdup = 1;
2574                 } else {
2575                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2576                         newdup = 0;
2577                 }
2578                 retval = 1;
2579                 goto set_speed;
2580         }
2581         /* check auto negotiation is complete */
2582         if (!(mii_status & BMSR_ANEGCOMPLETE)) {
2583                 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
2584                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2585                 newdup = 0;
2586                 retval = 0;
2587                 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
2588                 goto set_speed;
2589         }
2590
2591         adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2592         lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
2593         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
2594                                 dev->name, adv, lpa);
2595
2596         retval = 1;
2597         if (np->gigabit == PHY_GIGABIT) {
2598                 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2599                 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
2600
2601                 if ((control_1000 & ADVERTISE_1000FULL) &&
2602                         (status_1000 & LPA_1000FULL)) {
2603                         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
2604                                 dev->name);
2605                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
2606                         newdup = 1;
2607                         goto set_speed;
2608                 }
2609         }
2610
2611         /* FIXME: handle parallel detection properly */
2612         adv_lpa = lpa & adv;
2613         if (adv_lpa & LPA_100FULL) {
2614                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2615                 newdup = 1;
2616         } else if (adv_lpa & LPA_100HALF) {
2617                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2618                 newdup = 0;
2619         } else if (adv_lpa & LPA_10FULL) {
2620                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2621                 newdup = 1;
2622         } else if (adv_lpa & LPA_10HALF) {
2623                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2624                 newdup = 0;
2625         } else {
2626                 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
2627                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2628                 newdup = 0;
2629         }
2630
2631 set_speed:
2632         if (np->duplex == newdup && np->linkspeed == newls)
2633                 return retval;
2634
2635         dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
2636                         dev->name, np->linkspeed, np->duplex, newls, newdup);
2637
2638         np->duplex = newdup;
2639         np->linkspeed = newls;
2640
2641         if (np->gigabit == PHY_GIGABIT) {
2642                 phyreg = readl(base + NvRegRandomSeed);
2643                 phyreg &= ~(0x3FF00);
2644                 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
2645                         phyreg |= NVREG_RNDSEED_FORCE3;
2646                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
2647                         phyreg |= NVREG_RNDSEED_FORCE2;
2648                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
2649                         phyreg |= NVREG_RNDSEED_FORCE;
2650                 writel(phyreg, base + NvRegRandomSeed);
2651         }
2652
2653         phyreg = readl(base + NvRegPhyInterface);
2654         phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
2655         if (np->duplex == 0)
2656                 phyreg |= PHY_HALF;
2657         if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
2658                 phyreg |= PHY_100;
2659         else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2660                 phyreg |= PHY_1000;
2661         writel(phyreg, base + NvRegPhyInterface);
2662
2663         if (phyreg & PHY_RGMII) {
2664                 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2665                         txreg = NVREG_TX_DEFERRAL_RGMII_1000;
2666                 else
2667                         txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
2668         } else {
2669                 txreg = NVREG_TX_DEFERRAL_DEFAULT;
2670         }
2671         writel(txreg, base + NvRegTxDeferral);
2672
2673         if (np->desc_ver == DESC_VER_1) {
2674                 txreg = NVREG_TX_WM_DESC1_DEFAULT;
2675         } else {
2676                 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2677                         txreg = NVREG_TX_WM_DESC2_3_1000;
2678                 else
2679                         txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
2680         }
2681         writel(txreg, base + NvRegTxWatermark);
2682
2683         writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
2684                 base + NvRegMisc1);
2685         pci_push(base);
2686         writel(np->linkspeed, base + NvRegLinkSpeed);
2687         pci_push(base);
2688
2689         pause_flags = 0;
2690         /* setup pause frame */
2691         if (np->duplex != 0) {
2692                 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
2693                         adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
2694                         lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
2695
2696                         switch (adv_pause) {
2697                         case ADVERTISE_PAUSE_CAP:
2698                                 if (lpa_pause & LPA_PAUSE_CAP) {
2699                                         pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2700                                         if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2701                                                 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2702                                 }
2703                                 break;
2704                         case ADVERTISE_PAUSE_ASYM:
2705                                 if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
2706                                 {
2707                                         pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2708                                 }
2709                                 break;
2710                         case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
2711                                 if (lpa_pause & LPA_PAUSE_CAP)
2712                                 {
2713                                         pause_flags |=  NV_PAUSEFRAME_RX_ENABLE;
2714                                         if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2715                                                 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2716                                 }
2717                                 if (lpa_pause == LPA_PAUSE_ASYM)
2718                                 {
2719                                         pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2720                                 }
2721                                 break;
2722                         }
2723                 } else {
2724                         pause_flags = np->pause_flags;
2725                 }
2726         }
2727         nv_update_pause(dev, pause_flags);
2728
2729         return retval;
2730 }
2731
2732 static void nv_linkchange(struct net_device *dev)
2733 {
2734         if (nv_update_linkspeed(dev)) {
2735                 if (!netif_carrier_ok(dev)) {
2736                         netif_carrier_on(dev);
2737                         printk(KERN_INFO "%s: link up.\n", dev->name);
2738                         nv_start_rx(dev);
2739                 }
2740         } else {
2741                 if (netif_carrier_ok(dev)) {
2742                         netif_carrier_off(dev);
2743                         printk(KERN_INFO "%s: link down.\n", dev->name);
2744                         nv_stop_rx(dev);
2745                 }
2746         }
2747 }
2748
2749 static void nv_link_irq(struct net_device *dev)
2750 {
2751         u8 __iomem *base = get_hwbase(dev);
2752         u32 miistat;
2753
2754         miistat = readl(base + NvRegMIIStatus);
2755         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
2756         dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
2757
2758         if (miistat & (NVREG_MIISTAT_LINKCHANGE))
2759                 nv_linkchange(dev);
2760         dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
2761 }
2762
2763 static irqreturn_t nv_nic_irq(int foo, void *data)
2764 {
2765         struct net_device *dev = (struct net_device *) data;
2766         struct fe_priv *np = netdev_priv(dev);
2767         u8 __iomem *base = get_hwbase(dev);
2768         u32 events;
2769         int i;
2770
2771         dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
2772
2773         for (i=0; ; i++) {
2774                 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
2775                         events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2776                         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2777                 } else {
2778                         events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2779                         writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
2780                 }
2781                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2782                 if (!(events & np->irqmask))
2783                         break;
2784
2785                 spin_lock(&np->lock);
2786                 nv_tx_done(dev);
2787                 spin_unlock(&np->lock);
2788
2789 #ifdef CONFIG_FORCEDETH_NAPI
2790                 if (events & NVREG_IRQ_RX_ALL) {
2791                         netif_rx_schedule(dev);
2792
2793                         /* Disable furthur receive irq's */
2794                         spin_lock(&np->lock);
2795                         np->irqmask &= ~NVREG_IRQ_RX_ALL;
2796
2797                         if (np->msi_flags & NV_MSI_X_ENABLED)
2798                                 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
2799                         else
2800                                 writel(np->irqmask, base + NvRegIrqMask);
2801                         spin_unlock(&np->lock);
2802                 }
2803 #else
2804                 if (nv_rx_process(dev, dev->weight)) {
2805                         if (unlikely(nv_alloc_rx(dev))) {
2806                                 spin_lock(&np->lock);
2807                                 if (!np->in_shutdown)
2808                                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2809                                 spin_unlock(&np->lock);
2810                         }
2811                 }
2812 #endif
2813                 if (unlikely(events & NVREG_IRQ_LINK)) {
2814                         spin_lock(&np->lock);
2815                         nv_link_irq(dev);
2816                         spin_unlock(&np->lock);
2817                 }
2818                 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
2819                         spin_lock(&np->lock);
2820                         nv_linkchange(dev);
2821                         spin_unlock(&np->lock);
2822                         np->link_timeout = jiffies + LINK_TIMEOUT;
2823                 }
2824                 if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
2825                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2826                                                 dev->name, events);
2827                 }
2828                 if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
2829                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2830                                                 dev->name, events);
2831                 }
2832                 if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
2833                         spin_lock(&np->lock);
2834                         /* disable interrupts on the nic */
2835                         if (!(np->msi_flags & NV_MSI_X_ENABLED))
2836                                 writel(0, base + NvRegIrqMask);
2837                         else
2838                                 writel(np->irqmask, base + NvRegIrqMask);
2839                         pci_push(base);
2840
2841                         if (!np->in_shutdown) {
2842                                 np->nic_poll_irq = np->irqmask;
2843                                 np->recover_error = 1;
2844                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2845                         }
2846                         spin_unlock(&np->lock);
2847                         break;
2848                 }
2849                 if (unlikely(i > max_interrupt_work)) {
2850                         spin_lock(&np->lock);
2851                         /* disable interrupts on the nic */
2852                         if (!(np->msi_flags & NV_MSI_X_ENABLED))
2853                                 writel(0, base + NvRegIrqMask);
2854                         else
2855                                 writel(np->irqmask, base + NvRegIrqMask);
2856                         pci_push(base);
2857
2858                         if (!np->in_shutdown) {
2859                                 np->nic_poll_irq = np->irqmask;
2860                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2861                         }
2862                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
2863                         spin_unlock(&np->lock);
2864                         break;
2865                 }
2866
2867         }
2868         dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
2869
2870         return IRQ_RETVAL(i);
2871 }
2872
2873 #define TX_WORK_PER_LOOP  64
2874 #define RX_WORK_PER_LOOP  64
2875 /**
2876  * All _optimized functions are used to help increase performance
2877  * (reduce CPU and increase throughput). They use descripter version 3,
2878  * compiler directives, and reduce memory accesses.
2879  */
2880 static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
2881 {
2882         struct net_device *dev = (struct net_device *) data;
2883         struct fe_priv *np = netdev_priv(dev);
2884         u8 __iomem *base = get_hwbase(dev);
2885         u32 events;
2886         int i;
2887
2888         dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
2889
2890         for (i=0; ; i++) {
2891                 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
2892                         events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2893                         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2894                 } else {
2895                         events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2896                         writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
2897                 }
2898                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2899                 if (!(events & np->irqmask))
2900                         break;
2901
2902                 spin_lock(&np->lock);
2903                 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
2904                 spin_unlock(&np->lock);
2905
2906 #ifdef CONFIG_FORCEDETH_NAPI
2907                 if (events & NVREG_IRQ_RX_ALL) {
2908                         netif_rx_schedule(dev);
2909
2910                         /* Disable furthur receive irq's */
2911                         spin_lock(&np->lock);
2912                         np->irqmask &= ~NVREG_IRQ_RX_ALL;
2913
2914                         if (np->msi_flags & NV_MSI_X_ENABLED)
2915                                 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
2916                         else
2917                                 writel(np->irqmask, base + NvRegIrqMask);
2918                         spin_unlock(&np->lock);
2919                 }
2920 #else
2921                 if (nv_rx_process_optimized(dev, dev->weight)) {
2922                         if (unlikely(nv_alloc_rx_optimized(dev))) {
2923                                 spin_lock(&np->lock);
2924                                 if (!np->in_shutdown)
2925                                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2926                                 spin_unlock(&np->lock);
2927                         }
2928                 }
2929 #endif
2930                 if (unlikely(events & NVREG_IRQ_LINK)) {
2931                         spin_lock(&np->lock);
2932                         nv_link_irq(dev);
2933                         spin_unlock(&np->lock);
2934                 }
2935                 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
2936                         spin_lock(&np->lock);
2937                         nv_linkchange(dev);
2938                         spin_unlock(&np->lock);
2939                         np->link_timeout = jiffies + LINK_TIMEOUT;
2940                 }
2941                 if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
2942                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2943                                                 dev->name, events);
2944                 }
2945                 if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
2946                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2947                                                 dev->name, events);
2948                 }
2949                 if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
2950                         spin_lock(&np->lock);
2951                         /* disable interrupts on the nic */
2952                         if (!(np->msi_flags & NV_MSI_X_ENABLED))
2953                                 writel(0, base + NvRegIrqMask);
2954                         else
2955                                 writel(np->irqmask, base + NvRegIrqMask);
2956                         pci_push(base);
2957
2958                         if (!np->in_shutdown) {
2959                                 np->nic_poll_irq = np->irqmask;
2960                                 np->recover_error = 1;
2961                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2962                         }
2963                         spin_unlock(&np->lock);
2964                         break;
2965                 }
2966
2967                 if (unlikely(i > max_interrupt_work)) {
2968                         spin_lock(&np->lock);
2969                         /* disable interrupts on the nic */
2970                         if (!(np->msi_flags & NV_MSI_X_ENABLED))
2971                                 writel(0, base + NvRegIrqMask);
2972                         else
2973                                 writel(np->irqmask, base + NvRegIrqMask);
2974                         pci_push(base);
2975
2976                         if (!np->in_shutdown) {
2977                                 np->nic_poll_irq = np->irqmask;
2978                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2979                         }
2980                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
2981                         spin_unlock(&np->lock);
2982                         break;
2983                 }
2984
2985         }
2986         dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
2987
2988         return IRQ_RETVAL(i);
2989 }
2990
2991 static irqreturn_t nv_nic_irq_tx(int foo, void *data)
2992 {
2993         struct net_device *dev = (struct net_device *) data;
2994         struct fe_priv *np = netdev_priv(dev);
2995         u8 __iomem *base = get_hwbase(dev);
2996         u32 events;
2997         int i;
2998         unsigned long flags;
2999
3000         dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
3001
3002         for (i=0; ; i++) {
3003                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
3004                 writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
3005                 dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
3006                 if (!(events & np->irqmask))
3007                         break;
3008
3009                 spin_lock_irqsave(&np->lock, flags);
3010                 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3011                 spin_unlock_irqrestore(&np->lock, flags);
3012
3013                 if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
3014                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
3015                                                 dev->name, events);
3016                 }
3017                 if (unlikely(i > max_interrupt_work)) {
3018                         spin_lock_irqsave(&np->lock, flags);
3019                         /* disable interrupts on the nic */
3020                         writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
3021                         pci_push(base);
3022
3023                         if (!np->in_shutdown) {
3024                                 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
3025                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3026                         }
3027                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
3028                         spin_unlock_irqrestore(&np->lock, flags);
3029                         break;
3030                 }
3031
3032         }
3033         dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
3034
3035         return IRQ_RETVAL(i);
3036 }
3037
3038 #ifdef CONFIG_FORCEDETH_NAPI
3039 static int nv_napi_poll(struct net_device *dev, int *budget)
3040 {
3041         int pkts, limit = min(*budget, dev->quota);
3042         struct fe_priv *np = netdev_priv(dev);
3043         u8 __iomem *base = get_hwbase(dev);
3044         unsigned long flags;
3045
3046         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
3047                 pkts = nv_rx_process(dev, limit);
3048         else
3049                 pkts = nv_rx_process_optimized(dev, limit);
3050
3051         if (nv_alloc_rx(dev)) {
3052                 spin_lock_irqsave(&np->lock, flags);
3053                 if (!np->in_shutdown)
3054                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3055                 spin_unlock_irqrestore(&np->lock, flags);
3056         }
3057
3058         if (pkts < limit) {
3059                 /* all done, no more packets present */
3060                 netif_rx_complete(dev);
3061
3062                 /* re-enable receive interrupts */
3063                 spin_lock_irqsave(&np->lock, flags);
3064
3065                 np->irqmask |= NVREG_IRQ_RX_ALL;
3066                 if (np->msi_flags & NV_MSI_X_ENABLED)
3067                         writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3068                 else
3069                         writel(np->irqmask, base + NvRegIrqMask);
3070
3071                 spin_unlock_irqrestore(&np->lock, flags);
3072                 return 0;
3073         } else {
3074                 /* used up our quantum, so reschedule */
3075                 dev->quota -= pkts;
3076                 *budget -= pkts;
3077                 return 1;
3078         }
3079 }
3080 #endif
3081
3082 #ifdef CONFIG_FORCEDETH_NAPI
3083 static irqreturn_t nv_nic_irq_rx(int foo, void *data)
3084 {
3085         struct net_device *dev = (struct net_device *) data;
3086         u8 __iomem *base = get_hwbase(dev);
3087         u32 events;
3088
3089         events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
3090         writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
3091
3092         if (events) {
3093                 netif_rx_schedule(dev);
3094                 /* disable receive interrupts on the nic */
3095                 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3096                 pci_push(base);
3097         }
3098         return IRQ_HANDLED;
3099 }
3100 #else
3101 static irqreturn_t nv_nic_irq_rx(int foo, void *data)
3102 {
3103         struct net_device *dev = (struct net_device *) data;
3104         struct fe_priv *np = netdev_priv(dev);
3105         u8 __iomem *base = get_hwbase(dev);
3106         u32 events;
3107         int i;
3108         unsigned long flags;
3109
3110         dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
3111
3112         for (i=0; ; i++) {
3113                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
3114                 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
3115                 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
3116                 if (!(events & np->irqmask))
3117                         break;
3118
3119                 if (nv_rx_process_optimized(dev, dev->weight)) {
3120                         if (unlikely(nv_alloc_rx_optimized(dev))) {
3121                                 spin_lock_irqsave(&np->lock, flags);
3122                                 if (!np->in_shutdown)
3123                                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3124                                 spin_unlock_irqrestore(&np->lock, flags);
3125                         }
3126                 }
3127
3128                 if (unlikely(i > max_interrupt_work)) {
3129                         spin_lock_irqsave(&np->lock, flags);
3130                         /* disable interrupts on the nic */
3131                         writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3132                         pci_push(base);
3133
3134                         if (!np->in_shutdown) {
3135                                 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
3136                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3137                         }
3138                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
3139                         spin_unlock_irqrestore(&np->lock, flags);
3140                         break;
3141                 }
3142         }
3143         dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
3144
3145         return IRQ_RETVAL(i);
3146 }
3147 #endif
3148
3149 static irqreturn_t nv_nic_irq_other(int foo, void *data)
3150 {
3151         struct net_device *dev = (struct net_device *) data;
3152         struct fe_priv *np = netdev_priv(dev);
3153         u8 __iomem *base = get_hwbase(dev);
3154         u32 events;
3155         int i;
3156         unsigned long flags;
3157
3158         dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
3159
3160         for (i=0; ; i++) {
3161                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
3162                 writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
3163                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3164                 if (!(events & np->irqmask))
3165                         break;
3166
3167                 /* check tx in case we reached max loop limit in tx isr */
3168                 spin_lock_irqsave(&np->lock, flags);
3169                 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3170                 spin_unlock_irqrestore(&np->lock, flags);
3171
3172                 if (events & NVREG_IRQ_LINK) {
3173                         spin_lock_irqsave(&np->lock, flags);
3174                         nv_link_irq(dev);
3175                         spin_unlock_irqrestore(&np->lock, flags);
3176                 }
3177                 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
3178                         spin_lock_irqsave(&np->lock, flags);
3179                         nv_linkchange(dev);
3180                         spin_unlock_irqrestore(&np->lock, flags);
3181                         np->link_timeout = jiffies + LINK_TIMEOUT;
3182                 }
3183                 if (events & NVREG_IRQ_RECOVER_ERROR) {
3184                         spin_lock_irq(&np->lock);
3185                         /* disable interrupts on the nic */
3186                         writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3187                         pci_push(base);
3188
3189                         if (!np->in_shutdown) {
3190                                 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3191                                 np->recover_error = 1;
3192                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3193                         }
3194                         spin_unlock_irq(&np->lock);
3195                         break;
3196                 }
3197                 if (events & (NVREG_IRQ_UNKNOWN)) {
3198                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
3199                                                 dev->name, events);
3200                 }
3201                 if (unlikely(i > max_interrupt_work)) {
3202                         spin_lock_irqsave(&np->lock, flags);
3203                         /* disable interrupts on the nic */
3204                         writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3205                         pci_push(base);
3206
3207                         if (!np->in_shutdown) {
3208                                 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3209                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3210                         }
3211                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
3212                         spin_unlock_irqrestore(&np->lock, flags);
3213                         break;
3214                 }
3215
3216         }
3217         dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
3218
3219         return IRQ_RETVAL(i);
3220 }
3221
3222 static irqreturn_t nv_nic_irq_test(int foo, void *data)
3223 {
3224         struct net_device *dev = (struct net_device *) data;
3225         struct fe_priv *np = netdev_priv(dev);
3226         u8 __iomem *base = get_hwbase(dev);
3227         u32 events;
3228
3229         dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
3230
3231         if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3232                 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
3233                 writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
3234         } else {
3235                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
3236                 writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
3237         }
3238         pci_push(base);
3239         dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3240         if (!(events & NVREG_IRQ_TIMER))
3241                 return IRQ_RETVAL(0);
3242
3243         spin_lock(&np->lock);
3244         np->intr_test = 1;
3245         spin_unlock(&np->lock);
3246
3247         dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
3248
3249         return IRQ_RETVAL(1);
3250 }
3251
3252 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
3253 {
3254         u8 __iomem *base = get_hwbase(dev);
3255         int i;
3256         u32 msixmap = 0;
3257
3258         /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
3259          * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
3260          * the remaining 8 interrupts.
3261          */
3262         for (i = 0; i < 8; i++) {
3263                 if ((irqmask >> i) & 0x1) {
3264                         msixmap |= vector << (i << 2);
3265                 }
3266         }
3267         writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
3268
3269         msixmap = 0;
3270         for (i = 0; i < 8; i++) {
3271                 if ((irqmask >> (i + 8)) & 0x1) {
3272                         msixmap |= vector << (i << 2);
3273                 }
3274         }
3275         writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
3276 }
3277
3278 static int nv_request_irq(struct net_device *dev, int intr_test)
3279 {
3280         struct fe_priv *np = get_nvpriv(dev);
3281         u8 __iomem *base = get_hwbase(dev);
3282         int ret = 1;
3283         int i;
3284         irqreturn_t (*handler)(int foo, void *data);
3285
3286         if (intr_test) {
3287                 handler = nv_nic_irq_test;
3288         } else {
3289                 if (np->desc_ver == DESC_VER_3)
3290                         handler = nv_nic_irq_optimized;
3291                 else
3292                         handler = nv_nic_irq;
3293         }
3294
3295         if (np->msi_flags & NV_MSI_X_CAPABLE) {
3296                 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
3297                         np->msi_x_entry[i].entry = i;
3298                 }
3299                 if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
3300                         np->msi_flags |= NV_MSI_X_ENABLED;
3301                         if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
3302                                 /* Request irq for rx handling */
3303                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
3304                                         printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
3305                                         pci_disable_msix(np->pci_dev);
3306                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
3307                                         goto out_err;
3308                                 }
3309                                 /* Request irq for tx handling */
3310                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
3311                                         printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
3312                                         pci_disable_msix(np->pci_dev);
3313                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
3314                                         goto out_free_rx;
3315                                 }
3316                                 /* Request irq for link and timer handling */
3317                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
3318                                         printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
3319                                         pci_disable_msix(np->pci_dev);
3320                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
3321                                         goto out_free_tx;
3322                                 }
3323                                 /* map interrupts to their respective vector */
3324                                 writel(0, base + NvRegMSIXMap0);
3325                                 writel(0, base + NvRegMSIXMap1);
3326                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
3327                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
3328                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
3329                         } else {
3330                                 /* Request irq for all interrupts */
3331                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
3332                                         printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
3333                                         pci_disable_msix(np->pci_dev);
3334                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
3335                                         goto out_err;
3336                                 }
3337
3338                                 /* map interrupts to vector 0 */
3339                                 writel(0, base + NvRegMSIXMap0);
3340                                 writel(0, base + NvRegMSIXMap1);
3341                         }
3342                 }
3343         }
3344         if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
3345                 if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
3346                         np->msi_flags |= NV_MSI_ENABLED;
3347                         if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
3348                                 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
3349                                 pci_disable_msi(np->pci_dev);
3350                                 np->msi_flags &= ~NV_MSI_ENABLED;
3351                                 goto out_err;
3352                         }
3353
3354                         /* map interrupts to vector 0 */
3355                         writel(0, base + NvRegMSIMap0);
3356                         writel(0, base + NvRegMSIMap1);
3357                         /* enable msi vector 0 */
3358                         writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
3359                 }
3360         }
3361         if (ret != 0) {
3362                 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
3363                         goto out_err;
3364
3365         }
3366
3367         return 0;
3368 out_free_tx:
3369         free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
3370 out_free_rx:
3371         free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
3372 out_err:
3373         return 1;
3374 }
3375
3376 static void nv_free_irq(struct net_device *dev)
3377 {
3378         struct fe_priv *np = get_nvpriv(dev);
3379         int i;
3380
3381         if (np->msi_flags & NV_MSI_X_ENABLED) {
3382                 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
3383                         free_irq(np->msi_x_entry[i].vector, dev);
3384                 }
3385                 pci_disable_msix(np->pci_dev);
3386                 np->msi_flags &= ~NV_MSI_X_ENABLED;
3387         } else {
3388                 free_irq(np->pci_dev->irq, dev);
3389                 if (np->msi_flags & NV_MSI_ENABLED) {
3390                         pci_disable_msi(np->pci_dev);
3391                         np->msi_flags &= ~NV_MSI_ENABLED;
3392                 }
3393         }
3394 }
3395
3396 static void nv_do_nic_poll(unsigned long data)
3397 {
3398         struct net_device *dev = (struct net_device *) data;
3399         struct fe_priv *np = netdev_priv(dev);
3400         u8 __iomem *base = get_hwbase(dev);
3401         u32 mask = 0;
3402
3403         /*
3404          * First disable irq(s) and then
3405          * reenable interrupts on the nic, we have to do this before calling
3406          * nv_nic_irq because that may decide to do otherwise
3407          */
3408
3409         if (!using_multi_irqs(dev)) {
3410                 if (np->msi_flags & NV_MSI_X_ENABLED)
3411                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
3412                 else
3413                         disable_irq_lockdep(dev->irq);
3414                 mask = np->irqmask;
3415         } else {
3416                 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
3417                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
3418                         mask |= NVREG_IRQ_RX_ALL;
3419                 }
3420                 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
3421                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
3422                         mask |= NVREG_IRQ_TX_ALL;
3423                 }
3424                 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
3425                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
3426                         mask |= NVREG_IRQ_OTHER;
3427                 }
3428         }
3429         np->nic_poll_irq = 0;
3430
3431         if (np->recover_error) {
3432                 np->recover_error = 0;
3433                 printk(KERN_INFO "forcedeth: MAC in recoverable error state\n");
3434                 if (netif_running(dev)) {
3435                         netif_tx_lock_bh(dev);
3436                         spin_lock(&np->lock);
3437                         /* stop engines */
3438                         nv_stop_rx(dev);
3439                         nv_stop_tx(dev);
3440                         nv_txrx_reset(dev);
3441                         /* drain rx queue */
3442                         nv_drain_rx(dev);
3443                         nv_drain_tx(dev);
3444                         /* reinit driver view of the rx queue */
3445                         set_bufsize(dev);
3446                         if (nv_init_ring(dev)) {
3447                                 if (!np->in_shutdown)
3448                                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3449                         }
3450                         /* reinit nic view of the rx queue */
3451                         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3452                         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3453                         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3454                                 base + NvRegRingSizes);
3455                         pci_push(base);
3456                         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3457                         pci_push(base);
3458
3459                         /* restart rx engine */
3460                         nv_start_rx(dev);
3461                         nv_start_tx(dev);
3462                         spin_unlock(&np->lock);
3463                         netif_tx_unlock_bh(dev);
3464                 }
3465         }
3466
3467         /* FIXME: Do we need synchronize_irq(dev->irq) here? */
3468
3469         writel(mask, base + NvRegIrqMask);
3470         pci_push(base);
3471
3472         if (!using_multi_irqs(dev)) {
3473                 nv_nic_irq(0, dev);
3474                 if (np->msi_flags & NV_MSI_X_ENABLED)
3475                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
3476                 else
3477                         enable_irq_lockdep(dev->irq);
3478         } else {
3479                 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
3480                         nv_nic_irq_rx(0, dev);
3481                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
3482                 }
3483                 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
3484                         nv_nic_irq_tx(0, dev);
3485                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
3486                 }
3487                 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
3488                         nv_nic_irq_other(0, dev);
3489                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
3490                 }
3491         }
3492 }
3493
3494 #ifdef CONFIG_NET_POLL_CONTROLLER
3495 static void nv_poll_controller(struct net_device *dev)
3496 {
3497         nv_do_nic_poll((unsigned long) dev);
3498 }
3499 #endif
3500
3501 static void nv_do_stats_poll(unsigned long data)
3502 {
3503         struct net_device *dev = (struct net_device *) data;
3504         struct fe_priv *np = netdev_priv(dev);
3505         u8 __iomem *base = get_hwbase(dev);
3506
3507         np->estats.tx_bytes += readl(base + NvRegTxCnt);
3508         np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
3509         np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
3510         np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
3511         np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
3512         np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
3513         np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
3514         np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
3515         np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
3516         np->estats.tx_deferral += readl(base + NvRegTxDef);
3517         np->estats.tx_packets += readl(base + NvRegTxFrame);
3518         np->estats.tx_pause += readl(base + NvRegTxPause);
3519         np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
3520         np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
3521         np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
3522         np->estats.rx_runt += readl(base + NvRegRxRunt);
3523         np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
3524         np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
3525         np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
3526         np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
3527         np->estats.rx_length_error += readl(base + NvRegRxLenErr);
3528         np->estats.rx_unicast += readl(base + NvRegRxUnicast);
3529         np->estats.rx_multicast += readl(base + NvRegRxMulticast);
3530         np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
3531         np->estats.rx_bytes += readl(base + NvRegRxCnt);
3532         np->estats.rx_pause += readl(base + NvRegRxPause);
3533         np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
3534         np->estats.rx_packets =
3535                 np->estats.rx_unicast +
3536                 np->estats.rx_multicast +
3537                 np->estats.rx_broadcast;
3538         np->estats.rx_errors_total =
3539                 np->estats.rx_crc_errors +
3540                 np->estats.rx_over_errors +
3541                 np->estats.rx_frame_error +
3542                 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
3543                 np->estats.rx_late_collision +
3544                 np->estats.rx_runt +
3545                 np->estats.rx_frame_too_long;
3546
3547         if (!np->in_shutdown)
3548                 mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
3549 }
3550
3551 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3552 {
3553         struct fe_priv *np = netdev_priv(dev);
3554         strcpy(info->driver, "forcedeth");
3555         strcpy(info->version, FORCEDETH_VERSION);
3556         strcpy(info->bus_info, pci_name(np->pci_dev));
3557 }
3558
3559 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
3560 {
3561         struct fe_priv *np = netdev_priv(dev);
3562         wolinfo->supported = WAKE_MAGIC;
3563
3564         spin_lock_irq(&np->lock);
3565         if (np->wolenabled)
3566                 wolinfo->wolopts = WAKE_MAGIC;
3567         spin_unlock_irq(&np->lock);
3568 }
3569
3570 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
3571 {
3572         struct fe_priv *np = netdev_priv(dev);
3573         u8 __iomem *base = get_hwbase(dev);
3574         u32 flags = 0;
3575
3576         if (wolinfo->wolopts == 0) {
3577                 np->wolenabled = 0;
3578         } else if (wolinfo->wolopts & WAKE_MAGIC) {
3579                 np->wolenabled = 1;
3580                 flags = NVREG_WAKEUPFLAGS_ENABLE;
3581         }
3582         if (netif_running(dev)) {
3583                 spin_lock_irq(&np->lock);
3584                 writel(flags, base + NvRegWakeUpFlags);
3585                 spin_unlock_irq(&np->lock);
3586         }
3587         return 0;
3588 }
3589
3590 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
3591 {
3592         struct fe_priv *np = netdev_priv(dev);
3593         int adv;
3594
3595         spin_lock_irq(&np->lock);
3596         ecmd->port = PORT_MII;
3597         if (!netif_running(dev)) {
3598                 /* We do not track link speed / duplex setting if the
3599                  * interface is disabled. Force a link check */
3600                 if (nv_update_linkspeed(dev)) {
3601                         if (!netif_carrier_ok(dev))
3602                                 netif_carrier_on(dev);
3603                 } else {
3604                         if (netif_carrier_ok(dev))
3605                                 netif_carrier_off(dev);
3606                 }
3607         }
3608
3609         if (netif_carrier_ok(dev)) {
3610                 switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
3611                 case NVREG_LINKSPEED_10:
3612                         ecmd->speed = SPEED_10;
3613                         break;
3614                 case NVREG_LINKSPEED_100:
3615                         ecmd->speed = SPEED_100;
3616                         break;
3617                 case NVREG_LINKSPEED_1000:
3618                         ecmd->speed = SPEED_1000;
3619                         break;
3620                 }
3621                 ecmd->duplex = DUPLEX_HALF;
3622                 if (np->duplex)
3623                         ecmd->duplex = DUPLEX_FULL;
3624         } else {
3625                 ecmd->speed = -1;
3626                 ecmd->duplex = -1;
3627         }
3628
3629         ecmd->autoneg = np->autoneg;
3630
3631         ecmd->advertising = ADVERTISED_MII;
3632         if (np->autoneg) {
3633                 ecmd->advertising |= ADVERTISED_Autoneg;
3634                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3635                 if (adv & ADVERTISE_10HALF)
3636                         ecmd->advertising |= ADVERTISED_10baseT_Half;
3637                 if (adv & ADVERTISE_10FULL)
3638                         ecmd->advertising |= ADVERTISED_10baseT_Full;
3639                 if (adv & ADVERTISE_100HALF)
3640                         ecmd->advertising |= ADVERTISED_100baseT_Half;
3641                 if (adv & ADVERTISE_100FULL)
3642                         ecmd->advertising |= ADVERTISED_100baseT_Full;
3643                 if (np->gigabit == PHY_GIGABIT) {
3644                         adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3645                         if (adv & ADVERTISE_1000FULL)
3646                                 ecmd->advertising |= ADVERTISED_1000baseT_Full;
3647                 }
3648         }
3649         ecmd->supported = (SUPPORTED_Autoneg |
3650                 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
3651                 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
3652                 SUPPORTED_MII);
3653         if (np->gigabit == PHY_GIGABIT)
3654                 ecmd->supported |= SUPPORTED_1000baseT_Full;
3655
3656         ecmd->phy_address = np->phyaddr;
3657         ecmd->transceiver = XCVR_EXTERNAL;
3658
3659         /* ignore maxtxpkt, maxrxpkt for now */
3660         spin_unlock_irq(&np->lock);
3661         return 0;
3662 }
3663
3664 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
3665 {
3666         struct fe_priv *np = netdev_priv(dev);
3667
3668         if (ecmd->port != PORT_MII)
3669                 return -EINVAL;
3670         if (ecmd->transceiver != XCVR_EXTERNAL)
3671                 return -EINVAL;
3672         if (ecmd->phy_address != np->phyaddr) {
3673                 /* TODO: support switching between multiple phys. Should be
3674                  * trivial, but not enabled due to lack of test hardware. */
3675                 return -EINVAL;
3676         }
3677         if (ecmd->autoneg == AUTONEG_ENABLE) {
3678                 u32 mask;
3679
3680                 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
3681                           ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
3682                 if (np->gigabit == PHY_GIGABIT)
3683                         mask |= ADVERTISED_1000baseT_Full;
3684
3685                 if ((ecmd->advertising & mask) == 0)
3686                         return -EINVAL;
3687
3688         } else if (ecmd->autoneg == AUTONEG_DISABLE) {
3689                 /* Note: autonegotiation disable, speed 1000 intentionally
3690                  * forbidden - noone should need that. */
3691
3692                 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
3693                         return -EINVAL;
3694                 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
3695                         return -EINVAL;
3696         } else {
3697                 return -EINVAL;
3698         }
3699
3700         netif_carrier_off(dev);
3701         if (netif_running(dev)) {
3702                 nv_disable_irq(dev);
3703                 netif_tx_lock_bh(dev);
3704                 spin_lock(&np->lock);
3705                 /* stop engines */
3706                 nv_stop_rx(dev);
3707                 nv_stop_tx(dev);
3708                 spin_unlock(&np->lock);
3709                 netif_tx_unlock_bh(dev);
3710         }
3711
3712         if (ecmd->autoneg == AUTONEG_ENABLE) {
3713                 int adv, bmcr;
3714
3715                 np->autoneg = 1;
3716
3717                 /* advertise only what has been requested */
3718                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3719                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3720                 if (ecmd->advertising & ADVERTISED_10baseT_Half)
3721                         adv |= ADVERTISE_10HALF;
3722                 if (ecmd->advertising & ADVERTISED_10baseT_Full)
3723                         adv |= ADVERTISE_10FULL;
3724                 if (ecmd->advertising & ADVERTISED_100baseT_Half)
3725                         adv |= ADVERTISE_100HALF;
3726                 if (ecmd->advertising & ADVERTISED_100baseT_Full)
3727                         adv |= ADVERTISE_100FULL;
3728                 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ)  /* for rx we set both advertisments but disable tx pause */
3729                         adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3730                 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3731                         adv |=  ADVERTISE_PAUSE_ASYM;
3732                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3733
3734                 if (np->gigabit == PHY_GIGABIT) {
3735                         adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3736                         adv &= ~ADVERTISE_1000FULL;
3737                         if (ecmd->advertising & ADVERTISED_1000baseT_Full)
3738                                 adv |= ADVERTISE_1000FULL;
3739                         mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
3740                 }
3741
3742                 if (netif_running(dev))
3743                         printk(KERN_INFO "%s: link down.\n", dev->name);
3744                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3745                 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
3746                         bmcr |= BMCR_ANENABLE;
3747                         /* reset the phy in order for settings to stick,
3748                          * and cause autoneg to start */
3749                         if (phy_reset(dev, bmcr)) {
3750                                 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
3751                                 return -EINVAL;
3752                         }
3753                 } else {
3754                         bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3755                         mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3756                 }
3757         } else {
3758                 int adv, bmcr;
3759
3760                 np->autoneg = 0;
3761
3762                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3763                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3764                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
3765                         adv |= ADVERTISE_10HALF;
3766                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
3767                         adv |= ADVERTISE_10FULL;
3768                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
3769                         adv |= ADVERTISE_100HALF;
3770                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
3771                         adv |= ADVERTISE_100FULL;
3772                 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
3773                 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
3774                         adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3775                         np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3776                 }
3777                 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
3778                         adv |=  ADVERTISE_PAUSE_ASYM;
3779                         np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3780                 }
3781                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3782                 np->fixed_mode = adv;
3783
3784                 if (np->gigabit == PHY_GIGABIT) {
3785                         adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3786                         adv &= ~ADVERTISE_1000FULL;
3787                         mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
3788                 }
3789
3790                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3791                 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
3792                 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
3793                         bmcr |= BMCR_FULLDPLX;
3794                 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
3795                         bmcr |= BMCR_SPEED100;
3796                 if (np->phy_oui == PHY_OUI_MARVELL) {
3797                         /* reset the phy in order for forced mode settings to stick */
3798                         if (phy_reset(dev, bmcr)) {
3799                                 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
3800                                 return -EINVAL;
3801                         }
3802                 } else {
3803                         mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3804                         if (netif_running(dev)) {
3805                                 /* Wait a bit and then reconfigure the nic. */
3806                                 udelay(10);
3807                                 nv_linkchange(dev);
3808                         }
3809                 }
3810         }
3811
3812         if (netif_running(dev)) {
3813                 nv_start_rx(dev);
3814                 nv_start_tx(dev);
3815                 nv_enable_irq(dev);
3816         }
3817
3818         return 0;
3819 }
3820
3821 #define FORCEDETH_REGS_VER      1
3822
3823 static int nv_get_regs_len(struct net_device *dev)
3824 {
3825         struct fe_priv *np = netdev_priv(dev);
3826         return np->register_size;
3827 }
3828
3829 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
3830 {
3831         struct fe_priv *np = netdev_priv(dev);
3832         u8 __iomem *base = get_hwbase(dev);
3833         u32 *rbuf = buf;
3834         int i;
3835
3836         regs->version = FORCEDETH_REGS_VER;
3837         spin_lock_irq(&np->lock);
3838         for (i = 0;i <= np->register_size/sizeof(u32); i++)
3839                 rbuf[i] = readl(base + i*sizeof(u32));
3840         spin_unlock_irq(&np->lock);
3841 }
3842
3843 static int nv_nway_reset(struct net_device *dev)
3844 {
3845         struct fe_priv *np = netdev_priv(dev);
3846         int ret;
3847
3848         if (np->autoneg) {
3849                 int bmcr;
3850
3851                 netif_carrier_off(dev);
3852                 if (netif_running(dev)) {
3853                         nv_disable_irq(dev);
3854                         netif_tx_lock_bh(dev);
3855                         spin_lock(&np->lock);
3856                         /* stop engines */
3857                         nv_stop_rx(dev);
3858                         nv_stop_tx(dev);
3859                         spin_unlock(&np->lock);
3860                         netif_tx_unlock_bh(dev);
3861                         printk(KERN_INFO "%s: link down.\n", dev->name);
3862                 }
3863
3864                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3865                 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
3866                         bmcr |= BMCR_ANENABLE;
3867                         /* reset the phy in order for settings to stick*/
3868                         if (phy_reset(dev, bmcr)) {
3869                                 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
3870                                 return -EINVAL;
3871                         }
3872                 } else {
3873                         bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3874                         mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3875                 }
3876
3877                 if (netif_running(dev)) {
3878                         nv_start_rx(dev);
3879                         nv_start_tx(dev);
3880                         nv_enable_irq(dev);
3881                 }
3882                 ret = 0;
3883         } else {
3884                 ret = -EINVAL;
3885         }
3886
3887         return ret;
3888 }
3889
3890 static int nv_set_tso(struct net_device *dev, u32 value)
3891 {
3892         struct fe_priv *np = netdev_priv(dev);
3893
3894         if ((np->driver_data & DEV_HAS_CHECKSUM))
3895                 return ethtool_op_set_tso(dev, value);
3896         else
3897                 return -EOPNOTSUPP;
3898 }
3899
3900 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
3901 {
3902         struct fe_priv *np = netdev_priv(dev);
3903
3904         ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
3905         ring->rx_mini_max_pending = 0;
3906         ring->rx_jumbo_max_pending = 0;
3907         ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
3908
3909         ring->rx_pending = np->rx_ring_size;
3910         ring->rx_mini_pending = 0;
3911         ring->rx_jumbo_pending = 0;
3912         ring->tx_pending = np->tx_ring_size;
3913 }
3914
3915 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
3916 {
3917         struct fe_priv *np = netdev_priv(dev);
3918         u8 __iomem *base = get_hwbase(dev);
3919         u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
3920         dma_addr_t ring_addr;
3921
3922         if (ring->rx_pending < RX_RING_MIN ||
3923             ring->tx_pending < TX_RING_MIN ||
3924             ring->rx_mini_pending != 0 ||
3925             ring->rx_jumbo_pending != 0 ||
3926             (np->desc_ver == DESC_VER_1 &&
3927              (ring->rx_pending > RING_MAX_DESC_VER_1 ||
3928               ring->tx_pending > RING_MAX_DESC_VER_1)) ||
3929             (np->desc_ver != DESC_VER_1 &&
3930              (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
3931               ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
3932                 return -EINVAL;
3933         }
3934
3935         /* allocate new rings */
3936         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3937                 rxtx_ring = pci_alloc_consistent(np->pci_dev,
3938                                             sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
3939                                             &ring_addr);
3940         } else {
3941                 rxtx_ring = pci_alloc_consistent(np->pci_dev,
3942                                             sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
3943                                             &ring_addr);
3944         }
3945         rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
3946         tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
3947         if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
3948                 /* fall back to old rings */
3949                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3950                         if (rxtx_ring)
3951                                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
3952                                                     rxtx_ring, ring_addr);
3953                 } else {
3954                         if (rxtx_ring)
3955                                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
3956                                                     rxtx_ring, ring_addr);
3957                 }
3958                 if (rx_skbuff)
3959                         kfree(rx_skbuff);
3960                 if (tx_skbuff)
3961                         kfree(tx_skbuff);
3962                 goto exit;
3963         }
3964
3965         if (netif_running(dev)) {
3966                 nv_disable_irq(dev);
3967                 netif_tx_lock_bh(dev);
3968                 spin_lock(&np->lock);
3969                 /* stop engines */
3970                 nv_stop_rx(dev);
3971                 nv_stop_tx(dev);
3972                 nv_txrx_reset(dev);
3973                 /* drain queues */
3974                 nv_drain_rx(dev);
3975                 nv_drain_tx(dev);
3976                 /* delete queues */
3977                 free_rings(dev);
3978         }
3979
3980         /* set new values */
3981         np->rx_ring_size = ring->rx_pending;
3982         np->tx_ring_size = ring->tx_pending;
3983         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3984                 np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
3985                 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
3986         } else {
3987                 np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
3988                 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
3989         }
3990         np->rx_skb = (struct nv_skb_map*)rx_skbuff;
3991         np->tx_skb = (struct nv_skb_map*)tx_skbuff;
3992         np->ring_addr = ring_addr;
3993
3994         memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
3995         memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
3996
3997         if (netif_running(dev)) {
3998                 /* reinit driver view of the queues */
3999                 set_bufsize(dev);
4000                 if (nv_init_ring(dev)) {
4001                         if (!np->in_shutdown)
4002                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4003                 }
4004
4005                 /* reinit nic view of the queues */
4006                 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4007                 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4008                 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4009                         base + NvRegRingSizes);
4010                 pci_push(base);
4011                 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4012                 pci_push(base);
4013
4014                 /* restart engines */
4015                 nv_start_rx(dev);
4016                 nv_start_tx(dev);
4017                 spin_unlock(&np->lock);
4018                 netif_tx_unlock_bh(dev);
4019                 nv_enable_irq(dev);
4020         }
4021         return 0;
4022 exit:
4023         return -ENOMEM;
4024 }
4025
4026 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4027 {
4028         struct fe_priv *np = netdev_priv(dev);
4029
4030         pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
4031         pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
4032         pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
4033 }
4034
4035 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4036 {
4037         struct fe_priv *np = netdev_priv(dev);
4038         int adv, bmcr;
4039
4040         if ((!np->autoneg && np->duplex == 0) ||
4041             (np->autoneg && !pause->autoneg && np->duplex == 0)) {
4042                 printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
4043                        dev->name);
4044                 return -EINVAL;
4045         }
4046         if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
4047                 printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
4048                 return -EINVAL;
4049         }
4050
4051         netif_carrier_off(dev);
4052         if (netif_running(dev)) {
4053                 nv_disable_irq(dev);
4054                 netif_tx_lock_bh(dev);
4055                 spin_lock(&np->lock);
4056                 /* stop engines */
4057                 nv_stop_rx(dev);
4058                 nv_stop_tx(dev);
4059                 spin_unlock(&np->lock);
4060                 netif_tx_unlock_bh(dev);
4061         }
4062
4063         np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
4064         if (pause->rx_pause)
4065                 np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
4066         if (pause->tx_pause)
4067                 np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
4068
4069         if (np->autoneg && pause->autoneg) {
4070                 np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
4071
4072                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4073                 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4074                 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
4075                         adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4076                 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
4077                         adv |=  ADVERTISE_PAUSE_ASYM;
4078                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4079
4080                 if (netif_running(dev))
4081                         printk(KERN_INFO "%s: link down.\n", dev->name);
4082                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4083                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4084                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4085         } else {
4086                 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
4087                 if (pause->rx_pause)
4088                         np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
4089                 if (pause->tx_pause)
4090                         np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
4091
4092                 if (!netif_running(dev))
4093                         nv_update_linkspeed(dev);
4094                 else
4095                         nv_update_pause(dev, np->pause_flags);
4096         }
4097
4098         if (netif_running(dev)) {
4099                 nv_start_rx(dev);
4100                 nv_start_tx(dev);
4101                 nv_enable_irq(dev);
4102         }
4103         return 0;
4104 }
4105
4106 static u32 nv_get_rx_csum(struct net_device *dev)
4107 {
4108         struct fe_priv *np = netdev_priv(dev);
4109         return (np->rx_csum) != 0;
4110 }
4111
4112 static int nv_set_rx_csum(struct net_device *dev, u32 data)
4113 {
4114         struct fe_priv *np = netdev_priv(dev);
4115         u8 __iomem *base = get_hwbase(dev);
4116         int retcode = 0;
4117
4118         if (np->driver_data & DEV_HAS_CHECKSUM) {
4119                 if (data) {
4120                         np->rx_csum = 1;
4121                         np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
4122                 } else {
4123                         np->rx_csum = 0;
4124                         /* vlan is dependent on rx checksum offload */
4125                         if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
4126                                 np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
4127                 }
4128                 if (netif_running(dev)) {
4129                         spin_lock_irq(&np->lock);
4130                         writel(np->txrxctl_bits, base + NvRegTxRxControl);
4131                         spin_unlock_irq(&np->lock);
4132                 }
4133         } else {
4134                 return -EINVAL;
4135         }
4136
4137         return retcode;
4138 }
4139
4140 static int nv_set_tx_csum(struct net_device *dev, u32 data)
4141 {
4142         struct fe_priv *np = netdev_priv(dev);
4143
4144         if (np->driver_data & DEV_HAS_CHECKSUM)
4145                 return ethtool_op_set_tx_hw_csum(dev, data);
4146         else
4147                 return -EOPNOTSUPP;
4148 }
4149
4150 static int nv_set_sg(struct net_device *dev, u32 data)
4151 {
4152         struct fe_priv *np = netdev_priv(dev);
4153
4154         if (np->driver_data & DEV_HAS_CHECKSUM)
4155                 return ethtool_op_set_sg(dev, data);
4156         else
4157                 return -EOPNOTSUPP;
4158 }
4159
4160 static int nv_get_stats_count(struct net_device *dev)
4161 {
4162         struct fe_priv *np = netdev_priv(dev);
4163
4164         if (np->driver_data & DEV_HAS_STATISTICS)
4165                 return sizeof(struct nv_ethtool_stats)/sizeof(u64);
4166         else
4167                 return 0;
4168 }
4169
4170 static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
4171 {
4172         struct fe_priv *np = netdev_priv(dev);
4173
4174         /* update stats */
4175         nv_do_stats_poll((unsigned long)dev);
4176
4177         memcpy(buffer, &np->estats, nv_get_stats_count(dev)*sizeof(u64));
4178 }
4179
4180 static int nv_self_test_count(struct net_device *dev)
4181 {
4182         struct fe_priv *np = netdev_priv(dev);
4183
4184         if (np->driver_data & DEV_HAS_TEST_EXTENDED)
4185                 return NV_TEST_COUNT_EXTENDED;
4186         else
4187                 return NV_TEST_COUNT_BASE;
4188 }
4189
4190 static int nv_link_test(struct net_device *dev)
4191 {
4192         struct fe_priv *np = netdev_priv(dev);
4193         int mii_status;
4194
4195         mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4196         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4197
4198         /* check phy link status */
4199         if (!(mii_status & BMSR_LSTATUS))
4200                 return 0;
4201         else
4202                 return 1;
4203 }
4204
4205 static int nv_register_test(struct net_device *dev)
4206 {
4207         u8 __iomem *base = get_hwbase(dev);
4208         int i = 0;
4209         u32 orig_read, new_read;
4210
4211         do {
4212                 orig_read = readl(base + nv_registers_test[i].reg);
4213
4214                 /* xor with mask to toggle bits */
4215                 orig_read ^= nv_registers_test[i].mask;
4216
4217                 writel(orig_read, base + nv_registers_test[i].reg);
4218
4219                 new_read = readl(base + nv_registers_test[i].reg);
4220
4221                 if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
4222                         return 0;
4223
4224                 /* restore original value */
4225                 orig_read ^= nv_registers_test[i].mask;
4226                 writel(orig_read, base + nv_registers_test[i].reg);
4227
4228         } while (nv_registers_test[++i].reg != 0);
4229
4230         return 1;
4231 }
4232
4233 static int nv_interrupt_test(struct net_device *dev)
4234 {
4235         struct fe_priv *np = netdev_priv(dev);
4236         u8 __iomem *base = get_hwbase(dev);
4237         int ret = 1;
4238         int testcnt;
4239         u32 save_msi_flags, save_poll_interval = 0;
4240
4241         if (netif_running(dev)) {
4242                 /* free current irq */
4243                 nv_free_irq(dev);
4244                 save_poll_interval = readl(base+NvRegPollingInterval);
4245         }
4246
4247         /* flag to test interrupt handler */
4248         np->intr_test = 0;
4249
4250         /* setup test irq */
4251         save_msi_flags = np->msi_flags;
4252         np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
4253         np->msi_flags |= 0x001; /* setup 1 vector */
4254         if (nv_request_irq(dev, 1))
4255                 return 0;
4256
4257         /* setup timer interrupt */
4258         writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
4259         writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4260
4261         nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4262
4263         /* wait for at least one interrupt */
4264         msleep(100);
4265
4266         spin_lock_irq(&np->lock);
4267
4268         /* flag should be set within ISR */
4269         testcnt = np->intr_test;
4270         if (!testcnt)
4271                 ret = 2;
4272
4273         nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4274         if (!(np->msi_flags & NV_MSI_X_ENABLED))
4275                 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4276         else
4277                 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4278
4279         spin_unlock_irq(&np->lock);
4280
4281         nv_free_irq(dev);
4282
4283         np->msi_flags = save_msi_flags;
4284
4285         if (netif_running(dev)) {
4286                 writel(save_poll_interval, base + NvRegPollingInterval);
4287                 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4288                 /* restore original irq */
4289                 if (nv_request_irq(dev, 0))
4290                         return 0;
4291         }
4292
4293         return ret;
4294 }
4295
4296 static int nv_loopback_test(struct net_device *dev)
4297 {
4298         struct fe_priv *np = netdev_priv(dev);
4299         u8 __iomem *base = get_hwbase(dev);
4300         struct sk_buff *tx_skb, *rx_skb;
4301         dma_addr_t test_dma_addr;
4302         u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
4303         u32 flags;
4304         int len, i, pkt_len;
4305         u8 *pkt_data;
4306         u32 filter_flags = 0;
4307         u32 misc1_flags = 0;
4308         int ret = 1;
4309
4310         if (netif_running(dev)) {
4311                 nv_disable_irq(dev);
4312                 filter_flags = readl(base + NvRegPacketFilterFlags);
4313                 misc1_flags = readl(base + NvRegMisc1);
4314         } else {
4315                 nv_txrx_reset(dev);
4316         }
4317
4318         /* reinit driver view of the rx queue */
4319         set_bufsize(dev);
4320         nv_init_ring(dev);
4321
4322         /* setup hardware for loopback */
4323         writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
4324         writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
4325
4326         /* reinit nic view of the rx queue */
4327         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4328         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4329         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4330                 base + NvRegRingSizes);
4331         pci_push(base);
4332
4333         /* restart rx engine */
4334         nv_start_rx(dev);
4335         nv_start_tx(dev);
4336
4337         /* setup packet for tx */
4338         pkt_len = ETH_DATA_LEN;
4339         tx_skb = dev_alloc_skb(pkt_len);
4340         if (!tx_skb) {
4341                 printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
4342                          " of %s\n", dev->name);
4343                 ret = 0;
4344                 goto out;
4345         }
4346         pkt_data = skb_put(tx_skb, pkt_len);
4347         for (i = 0; i < pkt_len; i++)
4348                 pkt_data[i] = (u8)(i & 0xff);
4349         test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
4350                                        tx_skb->end-tx_skb->data, PCI_DMA_FROMDEVICE);
4351
4352         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4353                 np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
4354                 np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
4355         } else {
4356                 np->tx_ring.ex[0].bufhigh = cpu_to_le64(test_dma_addr) >> 32;
4357                 np->tx_ring.ex[0].buflow = cpu_to_le64(test_dma_addr) & 0x0FFFFFFFF;
4358                 np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
4359         }
4360         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4361         pci_push(get_hwbase(dev));
4362
4363         msleep(500);
4364
4365         /* check for rx of the packet */
4366         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4367                 flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
4368                 len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
4369
4370         } else {
4371                 flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
4372                 len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
4373         }
4374
4375         if (flags & NV_RX_AVAIL) {
4376                 ret = 0;
4377         } else if (np->desc_ver == DESC_VER_1) {
4378                 if (flags & NV_RX_ERROR)
4379                         ret = 0;
4380         } else {
4381                 if (flags & NV_RX2_ERROR) {
4382                         ret = 0;
4383                 }
4384         }
4385
4386         if (ret) {
4387                 if (len != pkt_len) {
4388                         ret = 0;
4389                         dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
4390                                 dev->name, len, pkt_len);
4391                 } else {
4392                         rx_skb = np->rx_skb[0].skb;
4393                         for (i = 0; i < pkt_len; i++) {
4394                                 if (rx_skb->data[i] != (u8)(i & 0xff)) {
4395                                         ret = 0;
4396                                         dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
4397                                                 dev->name, i);
4398                                         break;
4399                                 }
4400                         }
4401                 }
4402         } else {
4403                 dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
4404         }
4405
4406         pci_unmap_page(np->pci_dev, test_dma_addr,
4407                        tx_skb->end-tx_skb->data,
4408                        PCI_DMA_TODEVICE);
4409         dev_kfree_skb_any(tx_skb);
4410  out:
4411         /* stop engines */
4412         nv_stop_rx(dev);
4413         nv_stop_tx(dev);
4414         nv_txrx_reset(dev);
4415         /* drain rx queue */
4416         nv_drain_rx(dev);
4417         nv_drain_tx(dev);
4418
4419         if (netif_running(dev)) {
4420                 writel(misc1_flags, base + NvRegMisc1);
4421                 writel(filter_flags, base + NvRegPacketFilterFlags);
4422                 nv_enable_irq(dev);
4423         }
4424
4425         return ret;
4426 }
4427
4428 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
4429 {
4430         struct fe_priv *np = netdev_priv(dev);
4431         u8 __iomem *base = get_hwbase(dev);
4432         int result;
4433         memset(buffer, 0, nv_self_test_count(dev)*sizeof(u64));
4434
4435         if (!nv_link_test(dev)) {
4436                 test->flags |= ETH_TEST_FL_FAILED;
4437                 buffer[0] = 1;
4438         }
4439
4440         if (test->flags & ETH_TEST_FL_OFFLINE) {
4441                 if (netif_running(dev)) {
4442                         netif_stop_queue(dev);
4443                         netif_poll_disable(dev);
4444                         netif_tx_lock_bh(dev);
4445                         spin_lock_irq(&np->lock);
4446                         nv_disable_hw_interrupts(dev, np->irqmask);
4447                         if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
4448                                 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4449                         } else {
4450                                 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4451                         }
4452                         /* stop engines */
4453                         nv_stop_rx(dev);
4454                         nv_stop_tx(dev);
4455                         nv_txrx_reset(dev);
4456                         /* drain rx queue */
4457                         nv_drain_rx(dev);
4458                         nv_drain_tx(dev);
4459                         spin_unlock_irq(&np->lock);
4460                         netif_tx_unlock_bh(dev);
4461                 }
4462
4463                 if (!nv_register_test(dev)) {
4464                         test->flags |= ETH_TEST_FL_FAILED;
4465                         buffer[1] = 1;
4466                 }
4467
4468                 result = nv_interrupt_test(dev);
4469                 if (result != 1) {
4470                         test->flags |= ETH_TEST_FL_FAILED;
4471                         buffer[2] = 1;
4472                 }
4473                 if (result == 0) {
4474                         /* bail out */
4475                         return;
4476                 }
4477
4478                 if (!nv_loopback_test(dev)) {
4479                         test->flags |= ETH_TEST_FL_FAILED;
4480                         buffer[3] = 1;
4481                 }
4482
4483                 if (netif_running(dev)) {
4484                         /* reinit driver view of the rx queue */
4485                         set_bufsize(dev);
4486                         if (nv_init_ring(dev)) {
4487                                 if (!np->in_shutdown)
4488                                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4489                         }
4490                         /* reinit nic view of the rx queue */
4491                         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4492                         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4493                         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4494                                 base + NvRegRingSizes);
4495                         pci_push(base);
4496                         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4497                         pci_push(base);
4498                         /* restart rx engine */
4499                         nv_start_rx(dev);
4500                         nv_start_tx(dev);
4501                         netif_start_queue(dev);
4502                         netif_poll_enable(dev);
4503                         nv_enable_hw_interrupts(dev, np->irqmask);
4504                 }
4505         }
4506 }
4507
4508 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
4509 {
4510         switch (stringset) {
4511         case ETH_SS_STATS:
4512                 memcpy(buffer, &nv_estats_str, nv_get_stats_count(dev)*sizeof(struct nv_ethtool_str));
4513                 break;
4514         case ETH_SS_TEST:
4515                 memcpy(buffer, &nv_etests_str, nv_self_test_count(dev)*sizeof(struct nv_ethtool_str));
4516                 break;
4517         }
4518 }
4519
4520 static const struct ethtool_ops ops = {
4521         .get_drvinfo = nv_get_drvinfo,
4522         .get_link = ethtool_op_get_link,
4523         .get_wol = nv_get_wol,
4524         .set_wol = nv_set_wol,
4525         .get_settings = nv_get_settings,
4526         .set_settings = nv_set_settings,
4527         .get_regs_len = nv_get_regs_len,
4528         .get_regs = nv_get_regs,
4529         .nway_reset = nv_nway_reset,
4530         .get_perm_addr = ethtool_op_get_perm_addr,
4531         .get_tso = ethtool_op_get_tso,
4532         .set_tso = nv_set_tso,
4533         .get_ringparam = nv_get_ringparam,
4534         .set_ringparam = nv_set_ringparam,
4535         .get_pauseparam = nv_get_pauseparam,
4536         .set_pauseparam = nv_set_pauseparam,
4537         .get_rx_csum = nv_get_rx_csum,
4538         .set_rx_csum = nv_set_rx_csum,
4539         .get_tx_csum = ethtool_op_get_tx_csum,
4540         .set_tx_csum = nv_set_tx_csum,
4541         .get_sg = ethtool_op_get_sg,
4542         .set_sg = nv_set_sg,
4543         .get_strings = nv_get_strings,
4544         .get_stats_count = nv_get_stats_count,
4545         .get_ethtool_stats = nv_get_ethtool_stats,
4546         .self_test_count = nv_self_test_count,
4547         .self_test = nv_self_test,
4548 };
4549
4550 static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
4551 {
4552         struct fe_priv *np = get_nvpriv(dev);
4553
4554         spin_lock_irq(&np->lock);
4555
4556         /* save vlan group */
4557         np->vlangrp = grp;
4558
4559         if (grp) {
4560                 /* enable vlan on MAC */
4561                 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
4562         } else {
4563                 /* disable vlan on MAC */
4564                 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
4565                 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
4566         }
4567
4568         writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4569
4570         spin_unlock_irq(&np->lock);
4571 };
4572
4573 static void nv_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
4574 {
4575         /* nothing to do */
4576 };
4577
4578 /* The mgmt unit and driver use a semaphore to access the phy during init */
4579 static int nv_mgmt_acquire_sema(struct net_device *dev)
4580 {
4581         u8 __iomem *base = get_hwbase(dev);
4582         int i;
4583         u32 tx_ctrl, mgmt_sema;
4584
4585         for (i = 0; i < 10; i++) {
4586                 mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
4587                 if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
4588                         break;
4589                 msleep(500);
4590         }
4591
4592         if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
4593                 return 0;
4594
4595         for (i = 0; i < 2; i++) {
4596                 tx_ctrl = readl(base + NvRegTransmitterControl);
4597                 tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
4598                 writel(tx_ctrl, base + NvRegTransmitterControl);
4599
4600                 /* verify that semaphore was acquired */
4601                 tx_ctrl = readl(base + NvRegTransmitterControl);
4602                 if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
4603                     ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE))
4604                         return 1;
4605                 else
4606                         udelay(50);
4607         }
4608
4609         return 0;
4610 }
4611
4612 static int nv_open(struct net_device *dev)
4613 {
4614         struct fe_priv *np = netdev_priv(dev);
4615         u8 __iomem *base = get_hwbase(dev);
4616         int ret = 1;
4617         int oom, i;
4618
4619         dprintk(KERN_DEBUG "nv_open: begin\n");
4620
4621         /* erase previous misconfiguration */
4622         if (np->driver_data & DEV_HAS_POWER_CNTRL)
4623                 nv_mac_reset(dev);
4624         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
4625         writel(0, base + NvRegMulticastAddrB);
4626         writel(0, base + NvRegMulticastMaskA);
4627         writel(0, base + NvRegMulticastMaskB);
4628         writel(0, base + NvRegPacketFilterFlags);
4629
4630         writel(0, base + NvRegTransmitterControl);
4631         writel(0, base + NvRegReceiverControl);
4632
4633         writel(0, base + NvRegAdapterControl);
4634
4635         if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
4636                 writel(NVREG_TX_PAUSEFRAME_DISABLE,  base + NvRegTxPauseFrame);
4637
4638         /* initialize descriptor rings */
4639         set_bufsize(dev);
4640         oom = nv_init_ring(dev);
4641
4642         writel(0, base + NvRegLinkSpeed);
4643         writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
4644         nv_txrx_reset(dev);
4645         writel(0, base + NvRegUnknownSetupReg6);
4646
4647         np->in_shutdown = 0;
4648
4649         /* give hw rings */
4650         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4651         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4652                 base + NvRegRingSizes);
4653
4654         writel(np->linkspeed, base + NvRegLinkSpeed);
4655         if (np->desc_ver == DESC_VER_1)
4656                 writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
4657         else
4658                 writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
4659         writel(np->txrxctl_bits, base + NvRegTxRxControl);
4660         writel(np->vlanctl_bits, base + NvRegVlanControl);
4661         pci_push(base);
4662         writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
4663         reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
4664                         NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
4665                         KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
4666
4667         writel(0, base + NvRegMIIMask);
4668         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4669         writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
4670
4671         writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
4672         writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
4673         writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
4674         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4675
4676         writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
4677         get_random_bytes(&i, sizeof(i));
4678         writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
4679         writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
4680         writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
4681         if (poll_interval == -1) {
4682                 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
4683                         writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
4684                 else
4685                         writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
4686         }
4687         else
4688                 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
4689         writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4690         writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
4691                         base + NvRegAdapterControl);
4692         writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
4693         writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
4694         if (np->wolenabled)
4695                 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
4696
4697         i = readl(base + NvRegPowerState);
4698         if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
4699                 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
4700
4701         pci_push(base);
4702         udelay(10);
4703         writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
4704
4705         nv_disable_hw_interrupts(dev, np->irqmask);
4706         pci_push(base);
4707         writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
4708         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4709         pci_push(base);
4710
4711         if (nv_request_irq(dev, 0)) {
4712                 goto out_drain;
4713         }
4714
4715         /* ask for interrupts */
4716         nv_enable_hw_interrupts(dev, np->irqmask);
4717
4718         spin_lock_irq(&np->lock);
4719         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
4720         writel(0, base + NvRegMulticastAddrB);
4721         writel(0, base + NvRegMulticastMaskA);
4722         writel(0, base + NvRegMulticastMaskB);
4723         writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
4724         /* One manual link speed update: Interrupts are enabled, future link
4725          * speed changes cause interrupts and are handled by nv_link_irq().
4726          */
4727         {
4728                 u32 miistat;
4729                 miistat = readl(base + NvRegMIIStatus);
4730                 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
4731                 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
4732         }
4733         /* set linkspeed to invalid value, thus force nv_update_linkspeed
4734          * to init hw */
4735         np->linkspeed = 0;
4736         ret = nv_update_linkspeed(dev);
4737         nv_start_rx(dev);
4738         nv_start_tx(dev);
4739         netif_start_queue(dev);
4740         netif_poll_enable(dev);
4741
4742         if (ret) {
4743                 netif_carrier_on(dev);
4744         } else {
4745                 printk("%s: no link during initialization.\n", dev->name);
4746                 netif_carrier_off(dev);
4747         }
4748         if (oom)
4749                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4750
4751         /* start statistics timer */
4752         if (np->driver_data & DEV_HAS_STATISTICS)
4753                 mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
4754
4755         spin_unlock_irq(&np->lock);
4756
4757         return 0;
4758 out_drain:
4759         drain_ring(dev);
4760         return ret;
4761 }
4762
4763 static int nv_close(struct net_device *dev)
4764 {
4765         struct fe_priv *np = netdev_priv(dev);
4766         u8 __iomem *base;
4767
4768         spin_lock_irq(&np->lock);
4769         np->in_shutdown = 1;
4770         spin_unlock_irq(&np->lock);
4771         netif_poll_disable(dev);
4772         synchronize_irq(dev->irq);
4773
4774         del_timer_sync(&np->oom_kick);
4775         del_timer_sync(&np->nic_poll);
4776         del_timer_sync(&np->stats_poll);
4777
4778         netif_stop_queue(dev);
4779         spin_lock_irq(&np->lock);
4780         nv_stop_tx(dev);
4781         nv_stop_rx(dev);
4782         nv_txrx_reset(dev);
4783
4784         /* disable interrupts on the nic or we will lock up */
4785         base = get_hwbase(dev);
4786         nv_disable_hw_interrupts(dev, np->irqmask);
4787         pci_push(base);
4788         dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
4789
4790         spin_unlock_irq(&np->lock);
4791
4792         nv_free_irq(dev);
4793
4794         drain_ring(dev);
4795
4796         if (np->wolenabled)
4797                 nv_start_rx(dev);
4798
4799         /* FIXME: power down nic */
4800
4801         return 0;
4802 }
4803
4804 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
4805 {
4806         struct net_device *dev;
4807         struct fe_priv *np;
4808         unsigned long addr;
4809         u8 __iomem *base;
4810         int err, i;
4811         u32 powerstate, txreg;
4812         u32 phystate_orig = 0, phystate;
4813         int phyinitialized = 0;
4814
4815         dev = alloc_etherdev(sizeof(struct fe_priv));
4816         err = -ENOMEM;
4817         if (!dev)
4818                 goto out;
4819
4820         np = netdev_priv(dev);
4821         np->pci_dev = pci_dev;
4822         spin_lock_init(&np->lock);
4823         SET_MODULE_OWNER(dev);
4824         SET_NETDEV_DEV(dev, &pci_dev->dev);
4825
4826         init_timer(&np->oom_kick);
4827         np->oom_kick.data = (unsigned long) dev;
4828         np->oom_kick.function = &nv_do_rx_refill;       /* timer handler */
4829         init_timer(&np->nic_poll);
4830         np->nic_poll.data = (unsigned long) dev;
4831         np->nic_poll.function = &nv_do_nic_poll;        /* timer handler */
4832         init_timer(&np->stats_poll);
4833         np->stats_poll.data = (unsigned long) dev;
4834         np->stats_poll.function = &nv_do_stats_poll;    /* timer handler */
4835
4836         err = pci_enable_device(pci_dev);
4837         if (err) {
4838                 printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
4839                                 err, pci_name(pci_dev));
4840                 goto out_free;
4841         }
4842
4843         pci_set_master(pci_dev);
4844
4845         err = pci_request_regions(pci_dev, DRV_NAME);
4846         if (err < 0)
4847                 goto out_disable;
4848
4849         if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS))
4850                 np->register_size = NV_PCI_REGSZ_VER2;
4851         else
4852                 np->register_size = NV_PCI_REGSZ_VER1;
4853
4854         err = -EINVAL;
4855         addr = 0;
4856         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
4857                 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
4858                                 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
4859                                 pci_resource_len(pci_dev, i),
4860                                 pci_resource_flags(pci_dev, i));
4861                 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
4862                                 pci_resource_len(pci_dev, i) >= np->register_size) {
4863                         addr = pci_resource_start(pci_dev, i);
4864                         break;
4865                 }
4866         }
4867         if (i == DEVICE_COUNT_RESOURCE) {
4868                 printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
4869                                         pci_name(pci_dev));
4870                 goto out_relreg;
4871         }
4872
4873         /* copy of driver data */
4874         np->driver_data = id->driver_data;
4875
4876         /* handle different descriptor versions */
4877         if (id->driver_data & DEV_HAS_HIGH_DMA) {
4878                 /* packet format 3: supports 40-bit addressing */
4879                 np->desc_ver = DESC_VER_3;
4880                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
4881                 if (dma_64bit) {
4882                         if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) {
4883                                 printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
4884                                        pci_name(pci_dev));
4885                         } else {
4886                                 dev->features |= NETIF_F_HIGHDMA;
4887                                 printk(KERN_INFO "forcedeth: using HIGHDMA\n");
4888                         }
4889                         if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
4890                                 printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed, using 32-bit ring buffers for device %s.\n",
4891                                        pci_name(pci_dev));
4892                         }
4893                 }
4894         } else if (id->driver_data & DEV_HAS_LARGEDESC) {
4895                 /* packet format 2: supports jumbo frames */
4896                 np->desc_ver = DESC_VER_2;
4897                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
4898         } else {
4899                 /* original packet format */
4900                 np->desc_ver = DESC_VER_1;
4901                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
4902         }
4903
4904         np->pkt_limit = NV_PKTLIMIT_1;
4905         if (id->driver_data & DEV_HAS_LARGEDESC)
4906                 np->pkt_limit = NV_PKTLIMIT_2;
4907
4908         if (id->driver_data & DEV_HAS_CHECKSUM) {
4909                 np->rx_csum = 1;
4910                 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
4911                 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
4912                 dev->features |= NETIF_F_TSO;
4913         }
4914
4915         np->vlanctl_bits = 0;
4916         if (id->driver_data & DEV_HAS_VLAN) {
4917                 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
4918                 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
4919                 dev->vlan_rx_register = nv_vlan_rx_register;
4920                 dev->vlan_rx_kill_vid = nv_vlan_rx_kill_vid;
4921         }
4922
4923         np->msi_flags = 0;
4924         if ((id->driver_data & DEV_HAS_MSI) && msi) {
4925                 np->msi_flags |= NV_MSI_CAPABLE;
4926         }
4927         if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
4928                 np->msi_flags |= NV_MSI_X_CAPABLE;
4929         }
4930
4931         np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
4932         if (id->driver_data & DEV_HAS_PAUSEFRAME_TX) {
4933                 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
4934         }
4935
4936
4937         err = -ENOMEM;
4938         np->base = ioremap(addr, np->register_size);
4939         if (!np->base)
4940                 goto out_relreg;
4941         dev->base_addr = (unsigned long)np->base;
4942
4943         dev->irq = pci_dev->irq;
4944
4945         np->rx_ring_size = RX_RING_DEFAULT;
4946         np->tx_ring_size = TX_RING_DEFAULT;
4947
4948         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4949                 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
4950                                         sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
4951                                         &np->ring_addr);
4952                 if (!np->rx_ring.orig)
4953                         goto out_unmap;
4954                 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
4955         } else {
4956                 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
4957                                         sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
4958                                         &np->ring_addr);
4959                 if (!np->rx_ring.ex)
4960                         goto out_unmap;
4961                 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
4962         }
4963         np->rx_skb = kmalloc(sizeof(struct nv_skb_map) * np->rx_ring_size, GFP_KERNEL);
4964         np->tx_skb = kmalloc(sizeof(struct nv_skb_map) * np->tx_ring_size, GFP_KERNEL);
4965         if (!np->rx_skb || !np->tx_skb)
4966                 goto out_freering;
4967         memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
4968         memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
4969
4970         dev->open = nv_open;
4971         dev->stop = nv_close;
4972         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
4973                 dev->hard_start_xmit = nv_start_xmit;
4974         else
4975                 dev->hard_start_xmit = nv_start_xmit_optimized;
4976         dev->get_stats = nv_get_stats;
4977         dev->change_mtu = nv_change_mtu;
4978         dev->set_mac_address = nv_set_mac_address;
4979         dev->set_multicast_list = nv_set_multicast;
4980 #ifdef CONFIG_NET_POLL_CONTROLLER
4981         dev->poll_controller = nv_poll_controller;
4982 #endif
4983         dev->weight = RX_WORK_PER_LOOP;
4984 #ifdef CONFIG_FORCEDETH_NAPI
4985         dev->poll = nv_napi_poll;
4986 #endif
4987         SET_ETHTOOL_OPS(dev, &ops);
4988         dev->tx_timeout = nv_tx_timeout;
4989         dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
4990
4991         pci_set_drvdata(pci_dev, dev);
4992
4993         /* read the mac address */
4994         base = get_hwbase(dev);
4995         np->orig_mac[0] = readl(base + NvRegMacAddrA);
4996         np->orig_mac[1] = readl(base + NvRegMacAddrB);
4997
4998         /* check the workaround bit for correct mac address order */
4999         txreg = readl(base + NvRegTransmitPoll);
5000         if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
5001                 /* mac address is already in correct order */
5002                 dev->dev_addr[0] = (np->orig_mac[0] >>  0) & 0xff;
5003                 dev->dev_addr[1] = (np->orig_mac[0] >>  8) & 0xff;
5004                 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
5005                 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
5006                 dev->dev_addr[4] = (np->orig_mac[1] >>  0) & 0xff;
5007                 dev->dev_addr[5] = (np->orig_mac[1] >>  8) & 0xff;
5008         } else {
5009                 /* need to reverse mac address to correct order */
5010                 dev->dev_addr[0] = (np->orig_mac[1] >>  8) & 0xff;
5011                 dev->dev_addr[1] = (np->orig_mac[1] >>  0) & 0xff;
5012                 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
5013                 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
5014                 dev->dev_addr[4] = (np->orig_mac[0] >>  8) & 0xff;
5015                 dev->dev_addr[5] = (np->orig_mac[0] >>  0) & 0xff;
5016                 /* set permanent address to be correct aswell */
5017                 np->orig_mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
5018                         (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
5019                 np->orig_mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
5020                 writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
5021         }
5022         memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5023
5024         if (!is_valid_ether_addr(dev->perm_addr)) {
5025                 /*
5026                  * Bad mac address. At least one bios sets the mac address
5027                  * to 01:23:45:67:89:ab
5028                  */
5029                 printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
5030                         pci_name(pci_dev),
5031                         dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
5032                         dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
5033                 printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
5034                 dev->dev_addr[0] = 0x00;
5035                 dev->dev_addr[1] = 0x00;
5036                 dev->dev_addr[2] = 0x6c;
5037                 get_random_bytes(&dev->dev_addr[3], 3);
5038         }
5039
5040         dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
5041                         dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
5042                         dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
5043
5044         /* set mac address */
5045         nv_copy_mac_to_hw(dev);
5046
5047         /* disable WOL */
5048         writel(0, base + NvRegWakeUpFlags);
5049         np->wolenabled = 0;
5050
5051         if (id->driver_data & DEV_HAS_POWER_CNTRL) {
5052                 u8 revision_id;
5053                 pci_read_config_byte(pci_dev, PCI_REVISION_ID, &revision_id);
5054
5055                 /* take phy and nic out of low power mode */
5056                 powerstate = readl(base + NvRegPowerState2);
5057                 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
5058                 if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
5059                      id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
5060                     revision_id >= 0xA3)
5061                         powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
5062                 writel(powerstate, base + NvRegPowerState2);
5063         }
5064
5065         if (np->desc_ver == DESC_VER_1) {
5066                 np->tx_flags = NV_TX_VALID;
5067         } else {
5068                 np->tx_flags = NV_TX2_VALID;
5069         }
5070         if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
5071                 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
5072                 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5073                         np->msi_flags |= 0x0003;
5074         } else {
5075                 np->irqmask = NVREG_IRQMASK_CPU;
5076                 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5077                         np->msi_flags |= 0x0001;
5078         }
5079
5080         if (id->driver_data & DEV_NEED_TIMERIRQ)
5081                 np->irqmask |= NVREG_IRQ_TIMER;
5082         if (id->driver_data & DEV_NEED_LINKTIMER) {
5083                 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
5084                 np->need_linktimer = 1;
5085                 np->link_timeout = jiffies + LINK_TIMEOUT;
5086         } else {
5087                 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
5088                 np->need_linktimer = 0;
5089         }
5090
5091         /* clear phy state and temporarily halt phy interrupts */
5092         writel(0, base + NvRegMIIMask);
5093         phystate = readl(base + NvRegAdapterControl);
5094         if (phystate & NVREG_ADAPTCTL_RUNNING) {
5095                 phystate_orig = 1;
5096                 phystate &= ~NVREG_ADAPTCTL_RUNNING;
5097                 writel(phystate, base + NvRegAdapterControl);
5098         }
5099         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
5100
5101         if (id->driver_data & DEV_HAS_MGMT_UNIT) {
5102                 /* management unit running on the mac? */
5103                 if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) {
5104                         np->mac_in_use = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST;
5105                         dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n", pci_name(pci_dev), np->mac_in_use);
5106                         for (i = 0; i < 5000; i++) {
5107                                 msleep(1);
5108                                 if (nv_mgmt_acquire_sema(dev)) {
5109                                         /* management unit setup the phy already? */
5110                                         if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
5111                                             NVREG_XMITCTL_SYNC_PHY_INIT) {
5112                                                 /* phy is inited by mgmt unit */
5113                                                 phyinitialized = 1;
5114                                                 dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n", pci_name(pci_dev));
5115                                         } else {
5116                                                 /* we need to init the phy */
5117                                         }
5118                                         break;
5119                                 }
5120                         }
5121                 }
5122         }
5123
5124         /* find a suitable phy */
5125         for (i = 1; i <= 32; i++) {
5126                 int id1, id2;
5127                 int phyaddr = i & 0x1F;
5128
5129                 spin_lock_irq(&np->lock);
5130                 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
5131                 spin_unlock_irq(&np->lock);
5132                 if (id1 < 0 || id1 == 0xffff)
5133                         continue;
5134                 spin_lock_irq(&np->lock);
5135                 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
5136                 spin_unlock_irq(&np->lock);
5137                 if (id2 < 0 || id2 == 0xffff)
5138                         continue;
5139
5140                 np->phy_model = id2 & PHYID2_MODEL_MASK;
5141                 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
5142                 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
5143                 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
5144                         pci_name(pci_dev), id1, id2, phyaddr);
5145                 np->phyaddr = phyaddr;
5146                 np->phy_oui = id1 | id2;
5147                 break;
5148         }
5149         if (i == 33) {
5150                 printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
5151                        pci_name(pci_dev));
5152                 goto out_error;
5153         }
5154
5155         if (!phyinitialized) {
5156                 /* reset it */
5157                 phy_init(dev);
5158         } else {
5159                 /* see if it is a gigabit phy */
5160                 u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
5161                 if (mii_status & PHY_GIGABIT) {
5162                         np->gigabit = PHY_GIGABIT;
5163                 }
5164         }
5165
5166         /* set default link speed settings */
5167         np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
5168         np->duplex = 0;
5169         np->autoneg = 1;
5170
5171         err = register_netdev(dev);
5172         if (err) {
5173                 printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
5174                 goto out_error;
5175         }
5176         printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
5177                         dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
5178                         pci_name(pci_dev));
5179
5180         return 0;
5181
5182 out_error:
5183         if (phystate_orig)
5184                 writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
5185         pci_set_drvdata(pci_dev, NULL);
5186 out_freering:
5187         free_rings(dev);
5188 out_unmap:
5189         iounmap(get_hwbase(dev));
5190 out_relreg:
5191         pci_release_regions(pci_dev);
5192 out_disable:
5193         pci_disable_device(pci_dev);
5194 out_free:
5195         free_netdev(dev);
5196 out:
5197         return err;
5198 }
5199
5200 static void __devexit nv_remove(struct pci_dev *pci_dev)
5201 {
5202         struct net_device *dev = pci_get_drvdata(pci_dev);
5203         struct fe_priv *np = netdev_priv(dev);
5204         u8 __iomem *base = get_hwbase(dev);
5205
5206         unregister_netdev(dev);
5207
5208         /* special op: write back the misordered MAC address - otherwise
5209          * the next nv_probe would see a wrong address.
5210          */
5211         writel(np->orig_mac[0], base + NvRegMacAddrA);
5212         writel(np->orig_mac[1], base + NvRegMacAddrB);
5213
5214         /* free all structures */
5215         free_rings(dev);
5216         iounmap(get_hwbase(dev));
5217         pci_release_regions(pci_dev);
5218         pci_disable_device(pci_dev);
5219         free_netdev(dev);
5220         pci_set_drvdata(pci_dev, NULL);
5221 }
5222
5223 #ifdef CONFIG_PM
5224 static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
5225 {
5226         struct net_device *dev = pci_get_drvdata(pdev);
5227         struct fe_priv *np = netdev_priv(dev);
5228
5229         if (!netif_running(dev))
5230                 goto out;
5231
5232         netif_device_detach(dev);
5233
5234         // Gross.
5235         nv_close(dev);
5236
5237         pci_save_state(pdev);
5238         pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
5239         pci_set_power_state(pdev, pci_choose_state(pdev, state));
5240 out:
5241         return 0;
5242 }
5243
5244 static int nv_resume(struct pci_dev *pdev)
5245 {
5246         struct net_device *dev = pci_get_drvdata(pdev);
5247         int rc = 0;
5248
5249         if (!netif_running(dev))
5250                 goto out;
5251
5252         netif_device_attach(dev);
5253
5254         pci_set_power_state(pdev, PCI_D0);
5255         pci_restore_state(pdev);
5256         pci_enable_wake(pdev, PCI_D0, 0);
5257
5258         rc = nv_open(dev);
5259 out:
5260         return rc;
5261 }
5262 #else
5263 #define nv_suspend NULL
5264 #define nv_resume NULL
5265 #endif /* CONFIG_PM */
5266
5267 static struct pci_device_id pci_tbl[] = {
5268         {       /* nForce Ethernet Controller */
5269                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
5270                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
5271         },
5272         {       /* nForce2 Ethernet Controller */
5273                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
5274                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
5275         },
5276         {       /* nForce3 Ethernet Controller */
5277                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
5278                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
5279         },
5280         {       /* nForce3 Ethernet Controller */
5281                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
5282                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
5283         },
5284         {       /* nForce3 Ethernet Controller */
5285                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
5286                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
5287         },
5288         {       /* nForce3 Ethernet Controller */
5289                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
5290                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
5291         },
5292         {       /* nForce3 Ethernet Controller */
5293                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
5294                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
5295         },
5296         {       /* CK804 Ethernet Controller */
5297                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
5298                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
5299         },
5300         {       /* CK804 Ethernet Controller */
5301                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
5302                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
5303         },
5304         {       /* MCP04 Ethernet Controller */
5305                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
5306                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
5307         },
5308         {       /* MCP04 Ethernet Controller */
5309                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
5310                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
5311         },
5312         {       /* MCP51 Ethernet Controller */
5313                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
5314                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
5315         },
5316         {       /* MCP51 Ethernet Controller */
5317                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
5318                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
5319         },
5320         {       /* MCP55 Ethernet Controller */
5321                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
5322                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5323         },
5324         {       /* MCP55 Ethernet Controller */
5325                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
5326                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5327         },
5328         {       /* MCP61 Ethernet Controller */
5329                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
5330                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5331         },
5332         {       /* MCP61 Ethernet Controller */
5333                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
5334                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5335         },
5336         {       /* MCP61 Ethernet Controller */
5337                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
5338                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5339         },
5340         {       /* MCP61 Ethernet Controller */
5341                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
5342                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5343         },
5344         {       /* MCP65 Ethernet Controller */
5345                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
5346                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5347         },
5348         {       /* MCP65 Ethernet Controller */
5349                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
5350                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5351         },
5352         {       /* MCP65 Ethernet Controller */
5353                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
5354                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5355         },
5356         {       /* MCP65 Ethernet Controller */
5357                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
5358                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5359         },
5360         {       /* MCP67 Ethernet Controller */
5361                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_24),
5362                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5363         },
5364         {       /* MCP67 Ethernet Controller */
5365                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_25),
5366                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5367         },
5368         {       /* MCP67 Ethernet Controller */
5369                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_26),
5370                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5371         },
5372         {       /* MCP67 Ethernet Controller */
5373                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_27),
5374                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5375         },
5376         {0,},
5377 };
5378
5379 static struct pci_driver driver = {
5380         .name = "forcedeth",
5381         .id_table = pci_tbl,
5382         .probe = nv_probe,
5383         .remove = __devexit_p(nv_remove),
5384         .suspend = nv_suspend,
5385         .resume = nv_resume,
5386 };
5387
5388 static int __init init_nic(void)
5389 {
5390         printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
5391         return pci_register_driver(&driver);
5392 }
5393
5394 static void __exit exit_nic(void)
5395 {
5396         pci_unregister_driver(&driver);
5397 }
5398
5399 module_param(max_interrupt_work, int, 0);
5400 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
5401 module_param(optimization_mode, int, 0);
5402 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
5403 module_param(poll_interval, int, 0);
5404 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
5405 module_param(msi, int, 0);
5406 MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
5407 module_param(msix, int, 0);
5408 MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
5409 module_param(dma_64bit, int, 0);
5410 MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
5411
5412 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
5413 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
5414 MODULE_LICENSE("GPL");
5415
5416 MODULE_DEVICE_TABLE(pci, pci_tbl);
5417
5418 module_init(init_nic);
5419 module_exit(exit_nic);