e1000e: Cleanup e1000_sw_lcd_config_ich8lan()
[safe/jmp/linux-2.6] / drivers / net / e1000e / ich8lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 82562G 10/100 Network Connection
31  * 82562G-2 10/100 Network Connection
32  * 82562GT 10/100 Network Connection
33  * 82562GT-2 10/100 Network Connection
34  * 82562V 10/100 Network Connection
35  * 82562V-2 10/100 Network Connection
36  * 82566DC-2 Gigabit Network Connection
37  * 82566DC Gigabit Network Connection
38  * 82566DM-2 Gigabit Network Connection
39  * 82566DM Gigabit Network Connection
40  * 82566MC Gigabit Network Connection
41  * 82566MM Gigabit Network Connection
42  * 82567LM Gigabit Network Connection
43  * 82567LF Gigabit Network Connection
44  * 82567V Gigabit Network Connection
45  * 82567LM-2 Gigabit Network Connection
46  * 82567LF-2 Gigabit Network Connection
47  * 82567V-2 Gigabit Network Connection
48  * 82567LF-3 Gigabit Network Connection
49  * 82567LM-3 Gigabit Network Connection
50  * 82567LM-4 Gigabit Network Connection
51  * 82577LM Gigabit Network Connection
52  * 82577LC Gigabit Network Connection
53  * 82578DM Gigabit Network Connection
54  * 82578DC Gigabit Network Connection
55  */
56
57 #include "e1000.h"
58
59 #define ICH_FLASH_GFPREG                0x0000
60 #define ICH_FLASH_HSFSTS                0x0004
61 #define ICH_FLASH_HSFCTL                0x0006
62 #define ICH_FLASH_FADDR                 0x0008
63 #define ICH_FLASH_FDATA0                0x0010
64 #define ICH_FLASH_PR0                   0x0074
65
66 #define ICH_FLASH_READ_COMMAND_TIMEOUT  500
67 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
68 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
69 #define ICH_FLASH_LINEAR_ADDR_MASK      0x00FFFFFF
70 #define ICH_FLASH_CYCLE_REPEAT_COUNT    10
71
72 #define ICH_CYCLE_READ                  0
73 #define ICH_CYCLE_WRITE                 2
74 #define ICH_CYCLE_ERASE                 3
75
76 #define FLASH_GFPREG_BASE_MASK          0x1FFF
77 #define FLASH_SECTOR_ADDR_SHIFT         12
78
79 #define ICH_FLASH_SEG_SIZE_256          256
80 #define ICH_FLASH_SEG_SIZE_4K           4096
81 #define ICH_FLASH_SEG_SIZE_8K           8192
82 #define ICH_FLASH_SEG_SIZE_64K          65536
83
84
85 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
86 /* FW established a valid mode */
87 #define E1000_ICH_FWSM_FW_VALID         0x00008000
88
89 #define E1000_ICH_MNG_IAMT_MODE         0x2
90
91 #define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
92                                  (ID_LED_DEF1_OFF2 <<  8) | \
93                                  (ID_LED_DEF1_ON2  <<  4) | \
94                                  (ID_LED_DEF1_DEF2))
95
96 #define E1000_ICH_NVM_SIG_WORD          0x13
97 #define E1000_ICH_NVM_SIG_MASK          0xC000
98 #define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
99 #define E1000_ICH_NVM_SIG_VALUE         0x80
100
101 #define E1000_ICH8_LAN_INIT_TIMEOUT     1500
102
103 #define E1000_FEXTNVM_SW_CONFIG         1
104 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
105
106 #define PCIE_ICH8_SNOOP_ALL             PCIE_NO_SNOOP_ALL
107
108 #define E1000_ICH_RAR_ENTRIES           7
109
110 #define PHY_PAGE_SHIFT 5
111 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
112                            ((reg) & MAX_PHY_REG_ADDRESS))
113 #define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
114 #define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
115
116 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS    0x0002
117 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
118 #define IGP3_VR_CTRL_MODE_SHUTDOWN      0x0200
119
120 #define HV_LED_CONFIG           PHY_REG(768, 30) /* LED Configuration */
121
122 #define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
123
124 /* SMBus Address Phy Register */
125 #define HV_SMB_ADDR            PHY_REG(768, 26)
126 #define HV_SMB_ADDR_PEC_EN     0x0200
127 #define HV_SMB_ADDR_VALID      0x0080
128
129 /* Strapping Option Register - RO */
130 #define E1000_STRAP                     0x0000C
131 #define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
132 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
133
134 /* OEM Bits Phy Register */
135 #define HV_OEM_BITS            PHY_REG(768, 25)
136 #define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
137 #define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
138 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
139
140 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
141 #define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
142
143 /* KMRN Mode Control */
144 #define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
145 #define HV_KMRN_MDIO_SLOW      0x0400
146
147 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
148 /* Offset 04h HSFSTS */
149 union ich8_hws_flash_status {
150         struct ich8_hsfsts {
151                 u16 flcdone    :1; /* bit 0 Flash Cycle Done */
152                 u16 flcerr     :1; /* bit 1 Flash Cycle Error */
153                 u16 dael       :1; /* bit 2 Direct Access error Log */
154                 u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
155                 u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
156                 u16 reserved1  :2; /* bit 13:6 Reserved */
157                 u16 reserved2  :6; /* bit 13:6 Reserved */
158                 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
159                 u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
160         } hsf_status;
161         u16 regval;
162 };
163
164 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
165 /* Offset 06h FLCTL */
166 union ich8_hws_flash_ctrl {
167         struct ich8_hsflctl {
168                 u16 flcgo      :1;   /* 0 Flash Cycle Go */
169                 u16 flcycle    :2;   /* 2:1 Flash Cycle */
170                 u16 reserved   :5;   /* 7:3 Reserved  */
171                 u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
172                 u16 flockdn    :6;   /* 15:10 Reserved */
173         } hsf_ctrl;
174         u16 regval;
175 };
176
177 /* ICH Flash Region Access Permissions */
178 union ich8_hws_flash_regacc {
179         struct ich8_flracc {
180                 u32 grra      :8; /* 0:7 GbE region Read Access */
181                 u32 grwa      :8; /* 8:15 GbE region Write Access */
182                 u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
183                 u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
184         } hsf_flregacc;
185         u16 regval;
186 };
187
188 /* ICH Flash Protected Region */
189 union ich8_flash_protected_range {
190         struct ich8_pr {
191                 u32 base:13;     /* 0:12 Protected Range Base */
192                 u32 reserved1:2; /* 13:14 Reserved */
193                 u32 rpe:1;       /* 15 Read Protection Enable */
194                 u32 limit:13;    /* 16:28 Protected Range Limit */
195                 u32 reserved2:2; /* 29:30 Reserved */
196                 u32 wpe:1;       /* 31 Write Protection Enable */
197         } range;
198         u32 regval;
199 };
200
201 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
202 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
203 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
204 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
205 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
206                                                 u32 offset, u8 byte);
207 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
208                                          u8 *data);
209 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
210                                          u16 *data);
211 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
212                                          u8 size, u16 *data);
213 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
214 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
215 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
216 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
217 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
218 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
219 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
220 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
221 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
222 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
223 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
224 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
225 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
226 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
227 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
228 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
229
230 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
231 {
232         return readw(hw->flash_address + reg);
233 }
234
235 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
236 {
237         return readl(hw->flash_address + reg);
238 }
239
240 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
241 {
242         writew(val, hw->flash_address + reg);
243 }
244
245 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
246 {
247         writel(val, hw->flash_address + reg);
248 }
249
250 #define er16flash(reg)          __er16flash(hw, (reg))
251 #define er32flash(reg)          __er32flash(hw, (reg))
252 #define ew16flash(reg,val)      __ew16flash(hw, (reg), (val))
253 #define ew32flash(reg,val)      __ew32flash(hw, (reg), (val))
254
255 /**
256  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
257  *  @hw: pointer to the HW structure
258  *
259  *  Initialize family-specific PHY parameters and function pointers.
260  **/
261 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
262 {
263         struct e1000_phy_info *phy = &hw->phy;
264         u32 ctrl;
265         s32 ret_val = 0;
266
267         phy->addr                     = 1;
268         phy->reset_delay_us           = 100;
269
270         phy->ops.read_reg             = e1000_read_phy_reg_hv;
271         phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
272         phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
273         phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
274         phy->ops.write_reg            = e1000_write_phy_reg_hv;
275         phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
276         phy->ops.power_up             = e1000_power_up_phy_copper;
277         phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
278         phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
279
280         if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
281                 /*
282                  * The MAC-PHY interconnect may still be in SMBus mode
283                  * after Sx->S0.  Toggle the LANPHYPC Value bit to force
284                  * the interconnect to PCIe mode, but only if there is no
285                  * firmware present otherwise firmware will have done it.
286                  */
287                 ctrl = er32(CTRL);
288                 ctrl |=  E1000_CTRL_LANPHYPC_OVERRIDE;
289                 ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
290                 ew32(CTRL, ctrl);
291                 udelay(10);
292                 ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
293                 ew32(CTRL, ctrl);
294                 msleep(50);
295         }
296
297         /*
298          * Reset the PHY before any acccess to it.  Doing so, ensures that
299          * the PHY is in a known good state before we read/write PHY registers.
300          * The generic reset is sufficient here, because we haven't determined
301          * the PHY type yet.
302          */
303         ret_val = e1000e_phy_hw_reset_generic(hw);
304         if (ret_val)
305                 goto out;
306
307         phy->id = e1000_phy_unknown;
308         ret_val = e1000e_get_phy_id(hw);
309         if (ret_val)
310                 goto out;
311         if ((phy->id == 0) || (phy->id == PHY_REVISION_MASK)) {
312                 /*
313                  * In case the PHY needs to be in mdio slow mode (eg. 82577),
314                  * set slow mode and try to get the PHY id again.
315                  */
316                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
317                 if (ret_val)
318                         goto out;
319                 ret_val = e1000e_get_phy_id(hw);
320                 if (ret_val)
321                         goto out;
322         }
323         phy->type = e1000e_get_phy_type_from_id(phy->id);
324
325         switch (phy->type) {
326         case e1000_phy_82577:
327                 phy->ops.check_polarity = e1000_check_polarity_82577;
328                 phy->ops.force_speed_duplex =
329                         e1000_phy_force_speed_duplex_82577;
330                 phy->ops.get_cable_length = e1000_get_cable_length_82577;
331                 phy->ops.get_info = e1000_get_phy_info_82577;
332                 phy->ops.commit = e1000e_phy_sw_reset;
333         case e1000_phy_82578:
334                 phy->ops.check_polarity = e1000_check_polarity_m88;
335                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
336                 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
337                 phy->ops.get_info = e1000e_get_phy_info_m88;
338                 break;
339         default:
340                 ret_val = -E1000_ERR_PHY;
341                 break;
342         }
343
344 out:
345         return ret_val;
346 }
347
348 /**
349  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
350  *  @hw: pointer to the HW structure
351  *
352  *  Initialize family-specific PHY parameters and function pointers.
353  **/
354 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
355 {
356         struct e1000_phy_info *phy = &hw->phy;
357         s32 ret_val;
358         u16 i = 0;
359
360         phy->addr                       = 1;
361         phy->reset_delay_us             = 100;
362
363         phy->ops.power_up               = e1000_power_up_phy_copper;
364         phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
365
366         /*
367          * We may need to do this twice - once for IGP and if that fails,
368          * we'll set BM func pointers and try again
369          */
370         ret_val = e1000e_determine_phy_address(hw);
371         if (ret_val) {
372                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
373                 phy->ops.read_reg  = e1000e_read_phy_reg_bm;
374                 ret_val = e1000e_determine_phy_address(hw);
375                 if (ret_val) {
376                         e_dbg("Cannot determine PHY addr. Erroring out\n");
377                         return ret_val;
378                 }
379         }
380
381         phy->id = 0;
382         while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
383                (i++ < 100)) {
384                 msleep(1);
385                 ret_val = e1000e_get_phy_id(hw);
386                 if (ret_val)
387                         return ret_val;
388         }
389
390         /* Verify phy id */
391         switch (phy->id) {
392         case IGP03E1000_E_PHY_ID:
393                 phy->type = e1000_phy_igp_3;
394                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
395                 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
396                 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
397                 phy->ops.get_info = e1000e_get_phy_info_igp;
398                 phy->ops.check_polarity = e1000_check_polarity_igp;
399                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
400                 break;
401         case IFE_E_PHY_ID:
402         case IFE_PLUS_E_PHY_ID:
403         case IFE_C_E_PHY_ID:
404                 phy->type = e1000_phy_ife;
405                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
406                 phy->ops.get_info = e1000_get_phy_info_ife;
407                 phy->ops.check_polarity = e1000_check_polarity_ife;
408                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
409                 break;
410         case BME1000_E_PHY_ID:
411                 phy->type = e1000_phy_bm;
412                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
413                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
414                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
415                 phy->ops.commit = e1000e_phy_sw_reset;
416                 phy->ops.get_info = e1000e_get_phy_info_m88;
417                 phy->ops.check_polarity = e1000_check_polarity_m88;
418                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
419                 break;
420         default:
421                 return -E1000_ERR_PHY;
422                 break;
423         }
424
425         return 0;
426 }
427
428 /**
429  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
430  *  @hw: pointer to the HW structure
431  *
432  *  Initialize family-specific NVM parameters and function
433  *  pointers.
434  **/
435 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
436 {
437         struct e1000_nvm_info *nvm = &hw->nvm;
438         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
439         u32 gfpreg, sector_base_addr, sector_end_addr;
440         u16 i;
441
442         /* Can't read flash registers if the register set isn't mapped. */
443         if (!hw->flash_address) {
444                 e_dbg("ERROR: Flash registers not mapped\n");
445                 return -E1000_ERR_CONFIG;
446         }
447
448         nvm->type = e1000_nvm_flash_sw;
449
450         gfpreg = er32flash(ICH_FLASH_GFPREG);
451
452         /*
453          * sector_X_addr is a "sector"-aligned address (4096 bytes)
454          * Add 1 to sector_end_addr since this sector is included in
455          * the overall size.
456          */
457         sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
458         sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
459
460         /* flash_base_addr is byte-aligned */
461         nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
462
463         /*
464          * find total size of the NVM, then cut in half since the total
465          * size represents two separate NVM banks.
466          */
467         nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
468                                 << FLASH_SECTOR_ADDR_SHIFT;
469         nvm->flash_bank_size /= 2;
470         /* Adjust to word count */
471         nvm->flash_bank_size /= sizeof(u16);
472
473         nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
474
475         /* Clear shadow ram */
476         for (i = 0; i < nvm->word_size; i++) {
477                 dev_spec->shadow_ram[i].modified = false;
478                 dev_spec->shadow_ram[i].value    = 0xFFFF;
479         }
480
481         return 0;
482 }
483
484 /**
485  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
486  *  @hw: pointer to the HW structure
487  *
488  *  Initialize family-specific MAC parameters and function
489  *  pointers.
490  **/
491 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
492 {
493         struct e1000_hw *hw = &adapter->hw;
494         struct e1000_mac_info *mac = &hw->mac;
495
496         /* Set media type function pointer */
497         hw->phy.media_type = e1000_media_type_copper;
498
499         /* Set mta register count */
500         mac->mta_reg_count = 32;
501         /* Set rar entry count */
502         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
503         if (mac->type == e1000_ich8lan)
504                 mac->rar_entry_count--;
505         /* Set if manageability features are enabled. */
506         mac->arc_subsystem_valid = true;
507         /* Adaptive IFS supported */
508         mac->adaptive_ifs = true;
509
510         /* LED operations */
511         switch (mac->type) {
512         case e1000_ich8lan:
513         case e1000_ich9lan:
514         case e1000_ich10lan:
515                 /* ID LED init */
516                 mac->ops.id_led_init = e1000e_id_led_init;
517                 /* setup LED */
518                 mac->ops.setup_led = e1000e_setup_led_generic;
519                 /* cleanup LED */
520                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
521                 /* turn on/off LED */
522                 mac->ops.led_on = e1000_led_on_ich8lan;
523                 mac->ops.led_off = e1000_led_off_ich8lan;
524                 break;
525         case e1000_pchlan:
526                 /* ID LED init */
527                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
528                 /* setup LED */
529                 mac->ops.setup_led = e1000_setup_led_pchlan;
530                 /* cleanup LED */
531                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
532                 /* turn on/off LED */
533                 mac->ops.led_on = e1000_led_on_pchlan;
534                 mac->ops.led_off = e1000_led_off_pchlan;
535                 break;
536         default:
537                 break;
538         }
539
540         /* Enable PCS Lock-loss workaround for ICH8 */
541         if (mac->type == e1000_ich8lan)
542                 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
543
544         return 0;
545 }
546
547 /**
548  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
549  *  @hw: pointer to the HW structure
550  *
551  *  Checks to see of the link status of the hardware has changed.  If a
552  *  change in link status has been detected, then we read the PHY registers
553  *  to get the current speed/duplex if link exists.
554  **/
555 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
556 {
557         struct e1000_mac_info *mac = &hw->mac;
558         s32 ret_val;
559         bool link;
560
561         /*
562          * We only want to go out to the PHY registers to see if Auto-Neg
563          * has completed and/or if our link status has changed.  The
564          * get_link_status flag is set upon receiving a Link Status
565          * Change or Rx Sequence Error interrupt.
566          */
567         if (!mac->get_link_status) {
568                 ret_val = 0;
569                 goto out;
570         }
571
572         /*
573          * First we want to see if the MII Status Register reports
574          * link.  If so, then we want to get the current speed/duplex
575          * of the PHY.
576          */
577         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
578         if (ret_val)
579                 goto out;
580
581         if (hw->mac.type == e1000_pchlan) {
582                 ret_val = e1000_k1_gig_workaround_hv(hw, link);
583                 if (ret_val)
584                         goto out;
585         }
586
587         if (!link)
588                 goto out; /* No link detected */
589
590         mac->get_link_status = false;
591
592         if (hw->phy.type == e1000_phy_82578) {
593                 ret_val = e1000_link_stall_workaround_hv(hw);
594                 if (ret_val)
595                         goto out;
596         }
597
598         /*
599          * Check if there was DownShift, must be checked
600          * immediately after link-up
601          */
602         e1000e_check_downshift(hw);
603
604         /*
605          * If we are forcing speed/duplex, then we simply return since
606          * we have already determined whether we have link or not.
607          */
608         if (!mac->autoneg) {
609                 ret_val = -E1000_ERR_CONFIG;
610                 goto out;
611         }
612
613         /*
614          * Auto-Neg is enabled.  Auto Speed Detection takes care
615          * of MAC speed/duplex configuration.  So we only need to
616          * configure Collision Distance in the MAC.
617          */
618         e1000e_config_collision_dist(hw);
619
620         /*
621          * Configure Flow Control now that Auto-Neg has completed.
622          * First, we need to restore the desired flow control
623          * settings because we may have had to re-autoneg with a
624          * different link partner.
625          */
626         ret_val = e1000e_config_fc_after_link_up(hw);
627         if (ret_val)
628                 e_dbg("Error configuring flow control\n");
629
630 out:
631         return ret_val;
632 }
633
634 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
635 {
636         struct e1000_hw *hw = &adapter->hw;
637         s32 rc;
638
639         rc = e1000_init_mac_params_ich8lan(adapter);
640         if (rc)
641                 return rc;
642
643         rc = e1000_init_nvm_params_ich8lan(hw);
644         if (rc)
645                 return rc;
646
647         if (hw->mac.type == e1000_pchlan)
648                 rc = e1000_init_phy_params_pchlan(hw);
649         else
650                 rc = e1000_init_phy_params_ich8lan(hw);
651         if (rc)
652                 return rc;
653
654         if (adapter->hw.phy.type == e1000_phy_ife) {
655                 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
656                 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
657         }
658
659         if ((adapter->hw.mac.type == e1000_ich8lan) &&
660             (adapter->hw.phy.type == e1000_phy_igp_3))
661                 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
662
663         return 0;
664 }
665
666 static DEFINE_MUTEX(nvm_mutex);
667
668 /**
669  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
670  *  @hw: pointer to the HW structure
671  *
672  *  Acquires the mutex for performing NVM operations.
673  **/
674 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
675 {
676         mutex_lock(&nvm_mutex);
677
678         return 0;
679 }
680
681 /**
682  *  e1000_release_nvm_ich8lan - Release NVM mutex
683  *  @hw: pointer to the HW structure
684  *
685  *  Releases the mutex used while performing NVM operations.
686  **/
687 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
688 {
689         mutex_unlock(&nvm_mutex);
690
691         return;
692 }
693
694 static DEFINE_MUTEX(swflag_mutex);
695
696 /**
697  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
698  *  @hw: pointer to the HW structure
699  *
700  *  Acquires the software control flag for performing PHY and select
701  *  MAC CSR accesses.
702  **/
703 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
704 {
705         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
706         s32 ret_val = 0;
707
708         mutex_lock(&swflag_mutex);
709
710         while (timeout) {
711                 extcnf_ctrl = er32(EXTCNF_CTRL);
712                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
713                         break;
714
715                 mdelay(1);
716                 timeout--;
717         }
718
719         if (!timeout) {
720                 e_dbg("SW/FW/HW has locked the resource for too long.\n");
721                 ret_val = -E1000_ERR_CONFIG;
722                 goto out;
723         }
724
725         timeout = SW_FLAG_TIMEOUT;
726
727         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
728         ew32(EXTCNF_CTRL, extcnf_ctrl);
729
730         while (timeout) {
731                 extcnf_ctrl = er32(EXTCNF_CTRL);
732                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
733                         break;
734
735                 mdelay(1);
736                 timeout--;
737         }
738
739         if (!timeout) {
740                 e_dbg("Failed to acquire the semaphore.\n");
741                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
742                 ew32(EXTCNF_CTRL, extcnf_ctrl);
743                 ret_val = -E1000_ERR_CONFIG;
744                 goto out;
745         }
746
747 out:
748         if (ret_val)
749                 mutex_unlock(&swflag_mutex);
750
751         return ret_val;
752 }
753
754 /**
755  *  e1000_release_swflag_ich8lan - Release software control flag
756  *  @hw: pointer to the HW structure
757  *
758  *  Releases the software control flag for performing PHY and select
759  *  MAC CSR accesses.
760  **/
761 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
762 {
763         u32 extcnf_ctrl;
764
765         extcnf_ctrl = er32(EXTCNF_CTRL);
766         extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
767         ew32(EXTCNF_CTRL, extcnf_ctrl);
768
769         mutex_unlock(&swflag_mutex);
770
771         return;
772 }
773
774 /**
775  *  e1000_check_mng_mode_ich8lan - Checks management mode
776  *  @hw: pointer to the HW structure
777  *
778  *  This checks if the adapter has manageability enabled.
779  *  This is a function pointer entry point only called by read/write
780  *  routines for the PHY and NVM parts.
781  **/
782 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
783 {
784         u32 fwsm;
785
786         fwsm = er32(FWSM);
787
788         return (fwsm & E1000_FWSM_MODE_MASK) ==
789                 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
790 }
791
792 /**
793  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
794  *  @hw: pointer to the HW structure
795  *
796  *  Checks if firmware is blocking the reset of the PHY.
797  *  This is a function pointer entry point only called by
798  *  reset routines.
799  **/
800 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
801 {
802         u32 fwsm;
803
804         fwsm = er32(FWSM);
805
806         return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
807 }
808
809 /**
810  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
811  *  @hw:   pointer to the HW structure
812  *
813  *  SW should configure the LCD from the NVM extended configuration region
814  *  as a workaround for certain parts.
815  **/
816 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
817 {
818         struct e1000_adapter *adapter = hw->adapter;
819         struct e1000_phy_info *phy = &hw->phy;
820         u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
821         s32 ret_val = 0;
822         u16 word_addr, reg_data, reg_addr, phy_page = 0;
823
824         if (!(hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) &&
825                 !(hw->mac.type == e1000_pchlan))
826                 return ret_val;
827
828         ret_val = hw->phy.ops.acquire(hw);
829         if (ret_val)
830                 return ret_val;
831
832         /*
833          * Initialize the PHY from the NVM on ICH platforms.  This
834          * is needed due to an issue where the NVM configuration is
835          * not properly autoloaded after power transitions.
836          * Therefore, after each PHY reset, we will load the
837          * configuration data out of the NVM manually.
838          */
839         if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
840             (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M) ||
841             (hw->mac.type == e1000_pchlan))
842                 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
843         else
844                 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
845
846         data = er32(FEXTNVM);
847         if (!(data & sw_cfg_mask))
848                 goto out;
849
850         /* Wait for basic configuration completes before proceeding */
851         e1000_lan_init_done_ich8lan(hw);
852
853         /*
854          * Make sure HW does not configure LCD from PHY
855          * extended configuration before SW configuration
856          */
857         data = er32(EXTCNF_CTRL);
858         if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
859                 goto out;
860
861         cnf_size = er32(EXTCNF_SIZE);
862         cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
863         cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
864         if (!cnf_size)
865                 goto out;
866
867         cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
868         cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
869
870         if (!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
871             (hw->mac.type == e1000_pchlan)) {
872                 /*
873                  * HW configures the SMBus address and LEDs when the
874                  * OEM and LCD Write Enable bits are set in the NVM.
875                  * When both NVM bits are cleared, SW will configure
876                  * them instead.
877                  */
878                 data = er32(STRAP);
879                 data &= E1000_STRAP_SMBUS_ADDRESS_MASK;
880                 reg_data = data >> E1000_STRAP_SMBUS_ADDRESS_SHIFT;
881                 reg_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
882                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR,
883                                                         reg_data);
884                 if (ret_val)
885                         goto out;
886
887                 data = er32(LEDCTL);
888                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
889                                                         (u16)data);
890                 if (ret_val)
891                         goto out;
892         }
893
894         /* Configure LCD from extended configuration region. */
895
896         /* cnf_base_addr is in DWORD */
897         word_addr = (u16)(cnf_base_addr << 1);
898
899         for (i = 0; i < cnf_size; i++) {
900                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
901                                          &reg_data);
902                 if (ret_val)
903                         goto out;
904
905                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
906                                          1, &reg_addr);
907                 if (ret_val)
908                         goto out;
909
910                 /* Save off the PHY page for future writes. */
911                 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
912                         phy_page = reg_data;
913                         continue;
914                 }
915
916                 reg_addr &= PHY_REG_MASK;
917                 reg_addr |= phy_page;
918
919                 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
920                                                     reg_data);
921                 if (ret_val)
922                         goto out;
923         }
924
925 out:
926         hw->phy.ops.release(hw);
927         return ret_val;
928 }
929
930 /**
931  *  e1000_k1_gig_workaround_hv - K1 Si workaround
932  *  @hw:   pointer to the HW structure
933  *  @link: link up bool flag
934  *
935  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
936  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
937  *  If link is down, the function will restore the default K1 setting located
938  *  in the NVM.
939  **/
940 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
941 {
942         s32 ret_val = 0;
943         u16 status_reg = 0;
944         bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
945
946         if (hw->mac.type != e1000_pchlan)
947                 goto out;
948
949         /* Wrap the whole flow with the sw flag */
950         ret_val = hw->phy.ops.acquire(hw);
951         if (ret_val)
952                 goto out;
953
954         /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
955         if (link) {
956                 if (hw->phy.type == e1000_phy_82578) {
957                         ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
958                                                                   &status_reg);
959                         if (ret_val)
960                                 goto release;
961
962                         status_reg &= BM_CS_STATUS_LINK_UP |
963                                       BM_CS_STATUS_RESOLVED |
964                                       BM_CS_STATUS_SPEED_MASK;
965
966                         if (status_reg == (BM_CS_STATUS_LINK_UP |
967                                            BM_CS_STATUS_RESOLVED |
968                                            BM_CS_STATUS_SPEED_1000))
969                                 k1_enable = false;
970                 }
971
972                 if (hw->phy.type == e1000_phy_82577) {
973                         ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
974                                                                   &status_reg);
975                         if (ret_val)
976                                 goto release;
977
978                         status_reg &= HV_M_STATUS_LINK_UP |
979                                       HV_M_STATUS_AUTONEG_COMPLETE |
980                                       HV_M_STATUS_SPEED_MASK;
981
982                         if (status_reg == (HV_M_STATUS_LINK_UP |
983                                            HV_M_STATUS_AUTONEG_COMPLETE |
984                                            HV_M_STATUS_SPEED_1000))
985                                 k1_enable = false;
986                 }
987
988                 /* Link stall fix for link up */
989                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
990                                                            0x0100);
991                 if (ret_val)
992                         goto release;
993
994         } else {
995                 /* Link stall fix for link down */
996                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
997                                                            0x4100);
998                 if (ret_val)
999                         goto release;
1000         }
1001
1002         ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1003
1004 release:
1005         hw->phy.ops.release(hw);
1006 out:
1007         return ret_val;
1008 }
1009
1010 /**
1011  *  e1000_configure_k1_ich8lan - Configure K1 power state
1012  *  @hw: pointer to the HW structure
1013  *  @enable: K1 state to configure
1014  *
1015  *  Configure the K1 power state based on the provided parameter.
1016  *  Assumes semaphore already acquired.
1017  *
1018  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1019  **/
1020 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1021 {
1022         s32 ret_val = 0;
1023         u32 ctrl_reg = 0;
1024         u32 ctrl_ext = 0;
1025         u32 reg = 0;
1026         u16 kmrn_reg = 0;
1027
1028         ret_val = e1000e_read_kmrn_reg_locked(hw,
1029                                              E1000_KMRNCTRLSTA_K1_CONFIG,
1030                                              &kmrn_reg);
1031         if (ret_val)
1032                 goto out;
1033
1034         if (k1_enable)
1035                 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1036         else
1037                 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1038
1039         ret_val = e1000e_write_kmrn_reg_locked(hw,
1040                                               E1000_KMRNCTRLSTA_K1_CONFIG,
1041                                               kmrn_reg);
1042         if (ret_val)
1043                 goto out;
1044
1045         udelay(20);
1046         ctrl_ext = er32(CTRL_EXT);
1047         ctrl_reg = er32(CTRL);
1048
1049         reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1050         reg |= E1000_CTRL_FRCSPD;
1051         ew32(CTRL, reg);
1052
1053         ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1054         udelay(20);
1055         ew32(CTRL, ctrl_reg);
1056         ew32(CTRL_EXT, ctrl_ext);
1057         udelay(20);
1058
1059 out:
1060         return ret_val;
1061 }
1062
1063 /**
1064  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1065  *  @hw:       pointer to the HW structure
1066  *  @d0_state: boolean if entering d0 or d3 device state
1067  *
1068  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1069  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1070  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1071  **/
1072 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1073 {
1074         s32 ret_val = 0;
1075         u32 mac_reg;
1076         u16 oem_reg;
1077
1078         if (hw->mac.type != e1000_pchlan)
1079                 return ret_val;
1080
1081         ret_val = hw->phy.ops.acquire(hw);
1082         if (ret_val)
1083                 return ret_val;
1084
1085         mac_reg = er32(EXTCNF_CTRL);
1086         if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1087                 goto out;
1088
1089         mac_reg = er32(FEXTNVM);
1090         if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1091                 goto out;
1092
1093         mac_reg = er32(PHY_CTRL);
1094
1095         ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1096         if (ret_val)
1097                 goto out;
1098
1099         oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1100
1101         if (d0_state) {
1102                 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1103                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1104
1105                 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1106                         oem_reg |= HV_OEM_BITS_LPLU;
1107         } else {
1108                 if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
1109                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1110
1111                 if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
1112                         oem_reg |= HV_OEM_BITS_LPLU;
1113         }
1114         /* Restart auto-neg to activate the bits */
1115         if (!e1000_check_reset_block(hw))
1116                 oem_reg |= HV_OEM_BITS_RESTART_AN;
1117         ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
1118
1119 out:
1120         hw->phy.ops.release(hw);
1121
1122         return ret_val;
1123 }
1124
1125
1126 /**
1127  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1128  *  @hw:   pointer to the HW structure
1129  **/
1130 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1131 {
1132         s32 ret_val;
1133         u16 data;
1134
1135         ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1136         if (ret_val)
1137                 return ret_val;
1138
1139         data |= HV_KMRN_MDIO_SLOW;
1140
1141         ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1142
1143         return ret_val;
1144 }
1145
1146 /**
1147  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1148  *  done after every PHY reset.
1149  **/
1150 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1151 {
1152         s32 ret_val = 0;
1153         u16 phy_data;
1154
1155         if (hw->mac.type != e1000_pchlan)
1156                 return ret_val;
1157
1158         /* Set MDIO slow mode before any other MDIO access */
1159         if (hw->phy.type == e1000_phy_82577) {
1160                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1161                 if (ret_val)
1162                         goto out;
1163         }
1164
1165         if (((hw->phy.type == e1000_phy_82577) &&
1166              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1167             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1168                 /* Disable generation of early preamble */
1169                 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1170                 if (ret_val)
1171                         return ret_val;
1172
1173                 /* Preamble tuning for SSC */
1174                 ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
1175                 if (ret_val)
1176                         return ret_val;
1177         }
1178
1179         if (hw->phy.type == e1000_phy_82578) {
1180                 /*
1181                  * Return registers to default by doing a soft reset then
1182                  * writing 0x3140 to the control register.
1183                  */
1184                 if (hw->phy.revision < 2) {
1185                         e1000e_phy_sw_reset(hw);
1186                         ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1187                 }
1188         }
1189
1190         /* Select page 0 */
1191         ret_val = hw->phy.ops.acquire(hw);
1192         if (ret_val)
1193                 return ret_val;
1194
1195         hw->phy.addr = 1;
1196         ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1197         hw->phy.ops.release(hw);
1198         if (ret_val)
1199                 goto out;
1200
1201         /*
1202          * Configure the K1 Si workaround during phy reset assuming there is
1203          * link so that it disables K1 if link is in 1Gbps.
1204          */
1205         ret_val = e1000_k1_gig_workaround_hv(hw, true);
1206         if (ret_val)
1207                 goto out;
1208
1209         /* Workaround for link disconnects on a busy hub in half duplex */
1210         ret_val = hw->phy.ops.acquire(hw);
1211         if (ret_val)
1212                 goto out;
1213         ret_val = hw->phy.ops.read_reg_locked(hw,
1214                                               PHY_REG(BM_PORT_CTRL_PAGE, 17),
1215                                               &phy_data);
1216         if (ret_val)
1217                 goto release;
1218         ret_val = hw->phy.ops.write_reg_locked(hw,
1219                                                PHY_REG(BM_PORT_CTRL_PAGE, 17),
1220                                                phy_data & 0x00FF);
1221 release:
1222         hw->phy.ops.release(hw);
1223 out:
1224         return ret_val;
1225 }
1226
1227 /**
1228  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
1229  *  @hw: pointer to the HW structure
1230  *
1231  *  Check the appropriate indication the MAC has finished configuring the
1232  *  PHY after a software reset.
1233  **/
1234 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1235 {
1236         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1237
1238         /* Wait for basic configuration completes before proceeding */
1239         do {
1240                 data = er32(STATUS);
1241                 data &= E1000_STATUS_LAN_INIT_DONE;
1242                 udelay(100);
1243         } while ((!data) && --loop);
1244
1245         /*
1246          * If basic configuration is incomplete before the above loop
1247          * count reaches 0, loading the configuration from NVM will
1248          * leave the PHY in a bad state possibly resulting in no link.
1249          */
1250         if (loop == 0)
1251                 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1252
1253         /* Clear the Init Done bit for the next init event */
1254         data = er32(STATUS);
1255         data &= ~E1000_STATUS_LAN_INIT_DONE;
1256         ew32(STATUS, data);
1257 }
1258
1259 /**
1260  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1261  *  @hw: pointer to the HW structure
1262  *
1263  *  Resets the PHY
1264  *  This is a function pointer entry point called by drivers
1265  *  or other shared routines.
1266  **/
1267 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1268 {
1269         s32 ret_val = 0;
1270         u16 reg;
1271
1272         ret_val = e1000e_phy_hw_reset_generic(hw);
1273         if (ret_val)
1274                 return ret_val;
1275
1276         /* Allow time for h/w to get to a quiescent state after reset */
1277         mdelay(10);
1278
1279         /* Perform any necessary post-reset workarounds */
1280         if (hw->mac.type == e1000_pchlan) {
1281                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1282                 if (ret_val)
1283                         return ret_val;
1284         }
1285
1286         /* Dummy read to clear the phy wakeup bit after lcd reset */
1287         if (hw->mac.type == e1000_pchlan)
1288                 e1e_rphy(hw, BM_WUC, &reg);
1289
1290         /* Configure the LCD with the extended configuration region in NVM */
1291         ret_val = e1000_sw_lcd_config_ich8lan(hw);
1292         if (ret_val)
1293                 goto out;
1294
1295         /* Configure the LCD with the OEM bits in NVM */
1296         if (hw->mac.type == e1000_pchlan)
1297                 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1298
1299 out:
1300         return 0;
1301 }
1302
1303 /**
1304  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1305  *  @hw: pointer to the HW structure
1306  *  @active: true to enable LPLU, false to disable
1307  *
1308  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
1309  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1310  *  the phy speed. This function will manually set the LPLU bit and restart
1311  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
1312  *  since it configures the same bit.
1313  **/
1314 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1315 {
1316         s32 ret_val = 0;
1317         u16 oem_reg;
1318
1319         ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1320         if (ret_val)
1321                 goto out;
1322
1323         if (active)
1324                 oem_reg |= HV_OEM_BITS_LPLU;
1325         else
1326                 oem_reg &= ~HV_OEM_BITS_LPLU;
1327
1328         oem_reg |= HV_OEM_BITS_RESTART_AN;
1329         ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1330
1331 out:
1332         return ret_val;
1333 }
1334
1335 /**
1336  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1337  *  @hw: pointer to the HW structure
1338  *  @active: true to enable LPLU, false to disable
1339  *
1340  *  Sets the LPLU D0 state according to the active flag.  When
1341  *  activating LPLU this function also disables smart speed
1342  *  and vice versa.  LPLU will not be activated unless the
1343  *  device autonegotiation advertisement meets standards of
1344  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1345  *  This is a function pointer entry point only called by
1346  *  PHY setup routines.
1347  **/
1348 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1349 {
1350         struct e1000_phy_info *phy = &hw->phy;
1351         u32 phy_ctrl;
1352         s32 ret_val = 0;
1353         u16 data;
1354
1355         if (phy->type == e1000_phy_ife)
1356                 return ret_val;
1357
1358         phy_ctrl = er32(PHY_CTRL);
1359
1360         if (active) {
1361                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1362                 ew32(PHY_CTRL, phy_ctrl);
1363
1364                 if (phy->type != e1000_phy_igp_3)
1365                         return 0;
1366
1367                 /*
1368                  * Call gig speed drop workaround on LPLU before accessing
1369                  * any PHY registers
1370                  */
1371                 if (hw->mac.type == e1000_ich8lan)
1372                         e1000e_gig_downshift_workaround_ich8lan(hw);
1373
1374                 /* When LPLU is enabled, we should disable SmartSpeed */
1375                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1376                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1377                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1378                 if (ret_val)
1379                         return ret_val;
1380         } else {
1381                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1382                 ew32(PHY_CTRL, phy_ctrl);
1383
1384                 if (phy->type != e1000_phy_igp_3)
1385                         return 0;
1386
1387                 /*
1388                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1389                  * during Dx states where the power conservation is most
1390                  * important.  During driver activity we should enable
1391                  * SmartSpeed, so performance is maintained.
1392                  */
1393                 if (phy->smart_speed == e1000_smart_speed_on) {
1394                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1395                                            &data);
1396                         if (ret_val)
1397                                 return ret_val;
1398
1399                         data |= IGP01E1000_PSCFR_SMART_SPEED;
1400                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1401                                            data);
1402                         if (ret_val)
1403                                 return ret_val;
1404                 } else if (phy->smart_speed == e1000_smart_speed_off) {
1405                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1406                                            &data);
1407                         if (ret_val)
1408                                 return ret_val;
1409
1410                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1411                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1412                                            data);
1413                         if (ret_val)
1414                                 return ret_val;
1415                 }
1416         }
1417
1418         return 0;
1419 }
1420
1421 /**
1422  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1423  *  @hw: pointer to the HW structure
1424  *  @active: true to enable LPLU, false to disable
1425  *
1426  *  Sets the LPLU D3 state according to the active flag.  When
1427  *  activating LPLU this function also disables smart speed
1428  *  and vice versa.  LPLU will not be activated unless the
1429  *  device autonegotiation advertisement meets standards of
1430  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1431  *  This is a function pointer entry point only called by
1432  *  PHY setup routines.
1433  **/
1434 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1435 {
1436         struct e1000_phy_info *phy = &hw->phy;
1437         u32 phy_ctrl;
1438         s32 ret_val;
1439         u16 data;
1440
1441         phy_ctrl = er32(PHY_CTRL);
1442
1443         if (!active) {
1444                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
1445                 ew32(PHY_CTRL, phy_ctrl);
1446
1447                 if (phy->type != e1000_phy_igp_3)
1448                         return 0;
1449
1450                 /*
1451                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1452                  * during Dx states where the power conservation is most
1453                  * important.  During driver activity we should enable
1454                  * SmartSpeed, so performance is maintained.
1455                  */
1456                 if (phy->smart_speed == e1000_smart_speed_on) {
1457                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1458                                            &data);
1459                         if (ret_val)
1460                                 return ret_val;
1461
1462                         data |= IGP01E1000_PSCFR_SMART_SPEED;
1463                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1464                                            data);
1465                         if (ret_val)
1466                                 return ret_val;
1467                 } else if (phy->smart_speed == e1000_smart_speed_off) {
1468                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1469                                            &data);
1470                         if (ret_val)
1471                                 return ret_val;
1472
1473                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1474                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1475                                            data);
1476                         if (ret_val)
1477                                 return ret_val;
1478                 }
1479         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1480                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1481                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1482                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
1483                 ew32(PHY_CTRL, phy_ctrl);
1484
1485                 if (phy->type != e1000_phy_igp_3)
1486                         return 0;
1487
1488                 /*
1489                  * Call gig speed drop workaround on LPLU before accessing
1490                  * any PHY registers
1491                  */
1492                 if (hw->mac.type == e1000_ich8lan)
1493                         e1000e_gig_downshift_workaround_ich8lan(hw);
1494
1495                 /* When LPLU is enabled, we should disable SmartSpeed */
1496                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1497                 if (ret_val)
1498                         return ret_val;
1499
1500                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1501                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1502         }
1503
1504         return 0;
1505 }
1506
1507 /**
1508  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1509  *  @hw: pointer to the HW structure
1510  *  @bank:  pointer to the variable that returns the active bank
1511  *
1512  *  Reads signature byte from the NVM using the flash access registers.
1513  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
1514  **/
1515 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
1516 {
1517         u32 eecd;
1518         struct e1000_nvm_info *nvm = &hw->nvm;
1519         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
1520         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
1521         u8 sig_byte = 0;
1522         s32 ret_val = 0;
1523
1524         switch (hw->mac.type) {
1525         case e1000_ich8lan:
1526         case e1000_ich9lan:
1527                 eecd = er32(EECD);
1528                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
1529                     E1000_EECD_SEC1VAL_VALID_MASK) {
1530                         if (eecd & E1000_EECD_SEC1VAL)
1531                                 *bank = 1;
1532                         else
1533                                 *bank = 0;
1534
1535                         return 0;
1536                 }
1537                 e_dbg("Unable to determine valid NVM bank via EEC - "
1538                        "reading flash signature\n");
1539                 /* fall-thru */
1540         default:
1541                 /* set bank to 0 in case flash read fails */
1542                 *bank = 0;
1543
1544                 /* Check bank 0 */
1545                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
1546                                                         &sig_byte);
1547                 if (ret_val)
1548                         return ret_val;
1549                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1550                     E1000_ICH_NVM_SIG_VALUE) {
1551                         *bank = 0;
1552                         return 0;
1553                 }
1554
1555                 /* Check bank 1 */
1556                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
1557                                                         bank1_offset,
1558                                                         &sig_byte);
1559                 if (ret_val)
1560                         return ret_val;
1561                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1562                     E1000_ICH_NVM_SIG_VALUE) {
1563                         *bank = 1;
1564                         return 0;
1565                 }
1566
1567                 e_dbg("ERROR: No valid NVM bank present\n");
1568                 return -E1000_ERR_NVM;
1569         }
1570
1571         return 0;
1572 }
1573
1574 /**
1575  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
1576  *  @hw: pointer to the HW structure
1577  *  @offset: The offset (in bytes) of the word(s) to read.
1578  *  @words: Size of data to read in words
1579  *  @data: Pointer to the word(s) to read at offset.
1580  *
1581  *  Reads a word(s) from the NVM using the flash access registers.
1582  **/
1583 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1584                                   u16 *data)
1585 {
1586         struct e1000_nvm_info *nvm = &hw->nvm;
1587         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1588         u32 act_offset;
1589         s32 ret_val = 0;
1590         u32 bank = 0;
1591         u16 i, word;
1592
1593         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1594             (words == 0)) {
1595                 e_dbg("nvm parameter(s) out of bounds\n");
1596                 ret_val = -E1000_ERR_NVM;
1597                 goto out;
1598         }
1599
1600         nvm->ops.acquire(hw);
1601
1602         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1603         if (ret_val) {
1604                 e_dbg("Could not detect valid bank, assuming bank 0\n");
1605                 bank = 0;
1606         }
1607
1608         act_offset = (bank) ? nvm->flash_bank_size : 0;
1609         act_offset += offset;
1610
1611         ret_val = 0;
1612         for (i = 0; i < words; i++) {
1613                 if ((dev_spec->shadow_ram) &&
1614                     (dev_spec->shadow_ram[offset+i].modified)) {
1615                         data[i] = dev_spec->shadow_ram[offset+i].value;
1616                 } else {
1617                         ret_val = e1000_read_flash_word_ich8lan(hw,
1618                                                                 act_offset + i,
1619                                                                 &word);
1620                         if (ret_val)
1621                                 break;
1622                         data[i] = word;
1623                 }
1624         }
1625
1626         nvm->ops.release(hw);
1627
1628 out:
1629         if (ret_val)
1630                 e_dbg("NVM read error: %d\n", ret_val);
1631
1632         return ret_val;
1633 }
1634
1635 /**
1636  *  e1000_flash_cycle_init_ich8lan - Initialize flash
1637  *  @hw: pointer to the HW structure
1638  *
1639  *  This function does initial flash setup so that a new read/write/erase cycle
1640  *  can be started.
1641  **/
1642 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
1643 {
1644         union ich8_hws_flash_status hsfsts;
1645         s32 ret_val = -E1000_ERR_NVM;
1646         s32 i = 0;
1647
1648         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1649
1650         /* Check if the flash descriptor is valid */
1651         if (hsfsts.hsf_status.fldesvalid == 0) {
1652                 e_dbg("Flash descriptor invalid.  "
1653                          "SW Sequencing must be used.\n");
1654                 return -E1000_ERR_NVM;
1655         }
1656
1657         /* Clear FCERR and DAEL in hw status by writing 1 */
1658         hsfsts.hsf_status.flcerr = 1;
1659         hsfsts.hsf_status.dael = 1;
1660
1661         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1662
1663         /*
1664          * Either we should have a hardware SPI cycle in progress
1665          * bit to check against, in order to start a new cycle or
1666          * FDONE bit should be changed in the hardware so that it
1667          * is 1 after hardware reset, which can then be used as an
1668          * indication whether a cycle is in progress or has been
1669          * completed.
1670          */
1671
1672         if (hsfsts.hsf_status.flcinprog == 0) {
1673                 /*
1674                  * There is no cycle running at present,
1675                  * so we can start a cycle.
1676                  * Begin by setting Flash Cycle Done.
1677                  */
1678                 hsfsts.hsf_status.flcdone = 1;
1679                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1680                 ret_val = 0;
1681         } else {
1682                 /*
1683                  * Otherwise poll for sometime so the current
1684                  * cycle has a chance to end before giving up.
1685                  */
1686                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
1687                         hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
1688                         if (hsfsts.hsf_status.flcinprog == 0) {
1689                                 ret_val = 0;
1690                                 break;
1691                         }
1692                         udelay(1);
1693                 }
1694                 if (ret_val == 0) {
1695                         /*
1696                          * Successful in waiting for previous cycle to timeout,
1697                          * now set the Flash Cycle Done.
1698                          */
1699                         hsfsts.hsf_status.flcdone = 1;
1700                         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1701                 } else {
1702                         e_dbg("Flash controller busy, cannot get access\n");
1703                 }
1704         }
1705
1706         return ret_val;
1707 }
1708
1709 /**
1710  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1711  *  @hw: pointer to the HW structure
1712  *  @timeout: maximum time to wait for completion
1713  *
1714  *  This function starts a flash cycle and waits for its completion.
1715  **/
1716 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1717 {
1718         union ich8_hws_flash_ctrl hsflctl;
1719         union ich8_hws_flash_status hsfsts;
1720         s32 ret_val = -E1000_ERR_NVM;
1721         u32 i = 0;
1722
1723         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1724         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1725         hsflctl.hsf_ctrl.flcgo = 1;
1726         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1727
1728         /* wait till FDONE bit is set to 1 */
1729         do {
1730                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1731                 if (hsfsts.hsf_status.flcdone == 1)
1732                         break;
1733                 udelay(1);
1734         } while (i++ < timeout);
1735
1736         if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1737                 return 0;
1738
1739         return ret_val;
1740 }
1741
1742 /**
1743  *  e1000_read_flash_word_ich8lan - Read word from flash
1744  *  @hw: pointer to the HW structure
1745  *  @offset: offset to data location
1746  *  @data: pointer to the location for storing the data
1747  *
1748  *  Reads the flash word at offset into data.  Offset is converted
1749  *  to bytes before read.
1750  **/
1751 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1752                                          u16 *data)
1753 {
1754         /* Must convert offset into bytes. */
1755         offset <<= 1;
1756
1757         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1758 }
1759
1760 /**
1761  *  e1000_read_flash_byte_ich8lan - Read byte from flash
1762  *  @hw: pointer to the HW structure
1763  *  @offset: The offset of the byte to read.
1764  *  @data: Pointer to a byte to store the value read.
1765  *
1766  *  Reads a single byte from the NVM using the flash access registers.
1767  **/
1768 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1769                                          u8 *data)
1770 {
1771         s32 ret_val;
1772         u16 word = 0;
1773
1774         ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
1775         if (ret_val)
1776                 return ret_val;
1777
1778         *data = (u8)word;
1779
1780         return 0;
1781 }
1782
1783 /**
1784  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
1785  *  @hw: pointer to the HW structure
1786  *  @offset: The offset (in bytes) of the byte or word to read.
1787  *  @size: Size of data to read, 1=byte 2=word
1788  *  @data: Pointer to the word to store the value read.
1789  *
1790  *  Reads a byte or word from the NVM using the flash access registers.
1791  **/
1792 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1793                                          u8 size, u16 *data)
1794 {
1795         union ich8_hws_flash_status hsfsts;
1796         union ich8_hws_flash_ctrl hsflctl;
1797         u32 flash_linear_addr;
1798         u32 flash_data = 0;
1799         s32 ret_val = -E1000_ERR_NVM;
1800         u8 count = 0;
1801
1802         if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1803                 return -E1000_ERR_NVM;
1804
1805         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1806                             hw->nvm.flash_base_addr;
1807
1808         do {
1809                 udelay(1);
1810                 /* Steps */
1811                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1812                 if (ret_val != 0)
1813                         break;
1814
1815                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1816                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1817                 hsflctl.hsf_ctrl.fldbcount = size - 1;
1818                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1819                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1820
1821                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1822
1823                 ret_val = e1000_flash_cycle_ich8lan(hw,
1824                                                 ICH_FLASH_READ_COMMAND_TIMEOUT);
1825
1826                 /*
1827                  * Check if FCERR is set to 1, if set to 1, clear it
1828                  * and try the whole sequence a few more times, else
1829                  * read in (shift in) the Flash Data0, the order is
1830                  * least significant byte first msb to lsb
1831                  */
1832                 if (ret_val == 0) {
1833                         flash_data = er32flash(ICH_FLASH_FDATA0);
1834                         if (size == 1) {
1835                                 *data = (u8)(flash_data & 0x000000FF);
1836                         } else if (size == 2) {
1837                                 *data = (u16)(flash_data & 0x0000FFFF);
1838                         }
1839                         break;
1840                 } else {
1841                         /*
1842                          * If we've gotten here, then things are probably
1843                          * completely hosed, but if the error condition is
1844                          * detected, it won't hurt to give it another try...
1845                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1846                          */
1847                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1848                         if (hsfsts.hsf_status.flcerr == 1) {
1849                                 /* Repeat for some time before giving up. */
1850                                 continue;
1851                         } else if (hsfsts.hsf_status.flcdone == 0) {
1852                                 e_dbg("Timeout error - flash cycle "
1853                                          "did not complete.\n");
1854                                 break;
1855                         }
1856                 }
1857         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1858
1859         return ret_val;
1860 }
1861
1862 /**
1863  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
1864  *  @hw: pointer to the HW structure
1865  *  @offset: The offset (in bytes) of the word(s) to write.
1866  *  @words: Size of data to write in words
1867  *  @data: Pointer to the word(s) to write at offset.
1868  *
1869  *  Writes a byte or word to the NVM using the flash access registers.
1870  **/
1871 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1872                                    u16 *data)
1873 {
1874         struct e1000_nvm_info *nvm = &hw->nvm;
1875         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1876         u16 i;
1877
1878         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1879             (words == 0)) {
1880                 e_dbg("nvm parameter(s) out of bounds\n");
1881                 return -E1000_ERR_NVM;
1882         }
1883
1884         nvm->ops.acquire(hw);
1885
1886         for (i = 0; i < words; i++) {
1887                 dev_spec->shadow_ram[offset+i].modified = true;
1888                 dev_spec->shadow_ram[offset+i].value = data[i];
1889         }
1890
1891         nvm->ops.release(hw);
1892
1893         return 0;
1894 }
1895
1896 /**
1897  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1898  *  @hw: pointer to the HW structure
1899  *
1900  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
1901  *  which writes the checksum to the shadow ram.  The changes in the shadow
1902  *  ram are then committed to the EEPROM by processing each bank at a time
1903  *  checking for the modified bit and writing only the pending changes.
1904  *  After a successful commit, the shadow ram is cleared and is ready for
1905  *  future writes.
1906  **/
1907 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1908 {
1909         struct e1000_nvm_info *nvm = &hw->nvm;
1910         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1911         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
1912         s32 ret_val;
1913         u16 data;
1914
1915         ret_val = e1000e_update_nvm_checksum_generic(hw);
1916         if (ret_val)
1917                 goto out;
1918
1919         if (nvm->type != e1000_nvm_flash_sw)
1920                 goto out;
1921
1922         nvm->ops.acquire(hw);
1923
1924         /*
1925          * We're writing to the opposite bank so if we're on bank 1,
1926          * write to bank 0 etc.  We also need to erase the segment that
1927          * is going to be written
1928          */
1929         ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1930         if (ret_val) {
1931                 e_dbg("Could not detect valid bank, assuming bank 0\n");
1932                 bank = 0;
1933         }
1934
1935         if (bank == 0) {
1936                 new_bank_offset = nvm->flash_bank_size;
1937                 old_bank_offset = 0;
1938                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
1939                 if (ret_val)
1940                         goto release;
1941         } else {
1942                 old_bank_offset = nvm->flash_bank_size;
1943                 new_bank_offset = 0;
1944                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
1945                 if (ret_val)
1946                         goto release;
1947         }
1948
1949         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1950                 /*
1951                  * Determine whether to write the value stored
1952                  * in the other NVM bank or a modified value stored
1953                  * in the shadow RAM
1954                  */
1955                 if (dev_spec->shadow_ram[i].modified) {
1956                         data = dev_spec->shadow_ram[i].value;
1957                 } else {
1958                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
1959                                                                 old_bank_offset,
1960                                                                 &data);
1961                         if (ret_val)
1962                                 break;
1963                 }
1964
1965                 /*
1966                  * If the word is 0x13, then make sure the signature bits
1967                  * (15:14) are 11b until the commit has completed.
1968                  * This will allow us to write 10b which indicates the
1969                  * signature is valid.  We want to do this after the write
1970                  * has completed so that we don't mark the segment valid
1971                  * while the write is still in progress
1972                  */
1973                 if (i == E1000_ICH_NVM_SIG_WORD)
1974                         data |= E1000_ICH_NVM_SIG_MASK;
1975
1976                 /* Convert offset to bytes. */
1977                 act_offset = (i + new_bank_offset) << 1;
1978
1979                 udelay(100);
1980                 /* Write the bytes to the new bank. */
1981                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1982                                                                act_offset,
1983                                                                (u8)data);
1984                 if (ret_val)
1985                         break;
1986
1987                 udelay(100);
1988                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1989                                                           act_offset + 1,
1990                                                           (u8)(data >> 8));
1991                 if (ret_val)
1992                         break;
1993         }
1994
1995         /*
1996          * Don't bother writing the segment valid bits if sector
1997          * programming failed.
1998          */
1999         if (ret_val) {
2000                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2001                 e_dbg("Flash commit failed.\n");
2002                 goto release;
2003         }
2004
2005         /*
2006          * Finally validate the new segment by setting bit 15:14
2007          * to 10b in word 0x13 , this can be done without an
2008          * erase as well since these bits are 11 to start with
2009          * and we need to change bit 14 to 0b
2010          */
2011         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2012         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2013         if (ret_val)
2014                 goto release;
2015
2016         data &= 0xBFFF;
2017         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2018                                                        act_offset * 2 + 1,
2019                                                        (u8)(data >> 8));
2020         if (ret_val)
2021                 goto release;
2022
2023         /*
2024          * And invalidate the previously valid segment by setting
2025          * its signature word (0x13) high_byte to 0b. This can be
2026          * done without an erase because flash erase sets all bits
2027          * to 1's. We can write 1's to 0's without an erase
2028          */
2029         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2030         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2031         if (ret_val)
2032                 goto release;
2033
2034         /* Great!  Everything worked, we can now clear the cached entries. */
2035         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2036                 dev_spec->shadow_ram[i].modified = false;
2037                 dev_spec->shadow_ram[i].value = 0xFFFF;
2038         }
2039
2040 release:
2041         nvm->ops.release(hw);
2042
2043         /*
2044          * Reload the EEPROM, or else modifications will not appear
2045          * until after the next adapter reset.
2046          */
2047         if (!ret_val) {
2048                 e1000e_reload_nvm(hw);
2049                 msleep(10);
2050         }
2051
2052 out:
2053         if (ret_val)
2054                 e_dbg("NVM update error: %d\n", ret_val);
2055
2056         return ret_val;
2057 }
2058
2059 /**
2060  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2061  *  @hw: pointer to the HW structure
2062  *
2063  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2064  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
2065  *  calculated, in which case we need to calculate the checksum and set bit 6.
2066  **/
2067 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2068 {
2069         s32 ret_val;
2070         u16 data;
2071
2072         /*
2073          * Read 0x19 and check bit 6.  If this bit is 0, the checksum
2074          * needs to be fixed.  This bit is an indication that the NVM
2075          * was prepared by OEM software and did not calculate the
2076          * checksum...a likely scenario.
2077          */
2078         ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2079         if (ret_val)
2080                 return ret_val;
2081
2082         if ((data & 0x40) == 0) {
2083                 data |= 0x40;
2084                 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2085                 if (ret_val)
2086                         return ret_val;
2087                 ret_val = e1000e_update_nvm_checksum(hw);
2088                 if (ret_val)
2089                         return ret_val;
2090         }
2091
2092         return e1000e_validate_nvm_checksum_generic(hw);
2093 }
2094
2095 /**
2096  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2097  *  @hw: pointer to the HW structure
2098  *
2099  *  To prevent malicious write/erase of the NVM, set it to be read-only
2100  *  so that the hardware ignores all write/erase cycles of the NVM via
2101  *  the flash control registers.  The shadow-ram copy of the NVM will
2102  *  still be updated, however any updates to this copy will not stick
2103  *  across driver reloads.
2104  **/
2105 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2106 {
2107         struct e1000_nvm_info *nvm = &hw->nvm;
2108         union ich8_flash_protected_range pr0;
2109         union ich8_hws_flash_status hsfsts;
2110         u32 gfpreg;
2111
2112         nvm->ops.acquire(hw);
2113
2114         gfpreg = er32flash(ICH_FLASH_GFPREG);
2115
2116         /* Write-protect GbE Sector of NVM */
2117         pr0.regval = er32flash(ICH_FLASH_PR0);
2118         pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2119         pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2120         pr0.range.wpe = true;
2121         ew32flash(ICH_FLASH_PR0, pr0.regval);
2122
2123         /*
2124          * Lock down a subset of GbE Flash Control Registers, e.g.
2125          * PR0 to prevent the write-protection from being lifted.
2126          * Once FLOCKDN is set, the registers protected by it cannot
2127          * be written until FLOCKDN is cleared by a hardware reset.
2128          */
2129         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2130         hsfsts.hsf_status.flockdn = true;
2131         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2132
2133         nvm->ops.release(hw);
2134 }
2135
2136 /**
2137  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2138  *  @hw: pointer to the HW structure
2139  *  @offset: The offset (in bytes) of the byte/word to read.
2140  *  @size: Size of data to read, 1=byte 2=word
2141  *  @data: The byte(s) to write to the NVM.
2142  *
2143  *  Writes one/two bytes to the NVM using the flash access registers.
2144  **/
2145 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2146                                           u8 size, u16 data)
2147 {
2148         union ich8_hws_flash_status hsfsts;
2149         union ich8_hws_flash_ctrl hsflctl;
2150         u32 flash_linear_addr;
2151         u32 flash_data = 0;
2152         s32 ret_val;
2153         u8 count = 0;
2154
2155         if (size < 1 || size > 2 || data > size * 0xff ||
2156             offset > ICH_FLASH_LINEAR_ADDR_MASK)
2157                 return -E1000_ERR_NVM;
2158
2159         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2160                             hw->nvm.flash_base_addr;
2161
2162         do {
2163                 udelay(1);
2164                 /* Steps */
2165                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2166                 if (ret_val)
2167                         break;
2168
2169                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2170                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2171                 hsflctl.hsf_ctrl.fldbcount = size -1;
2172                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2173                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2174
2175                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2176
2177                 if (size == 1)
2178                         flash_data = (u32)data & 0x00FF;
2179                 else
2180                         flash_data = (u32)data;
2181
2182                 ew32flash(ICH_FLASH_FDATA0, flash_data);
2183
2184                 /*
2185                  * check if FCERR is set to 1 , if set to 1, clear it
2186                  * and try the whole sequence a few more times else done
2187                  */
2188                 ret_val = e1000_flash_cycle_ich8lan(hw,
2189                                                ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2190                 if (!ret_val)
2191                         break;
2192
2193                 /*
2194                  * If we're here, then things are most likely
2195                  * completely hosed, but if the error condition
2196                  * is detected, it won't hurt to give it another
2197                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2198                  */
2199                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2200                 if (hsfsts.hsf_status.flcerr == 1)
2201                         /* Repeat for some time before giving up. */
2202                         continue;
2203                 if (hsfsts.hsf_status.flcdone == 0) {
2204                         e_dbg("Timeout error - flash cycle "
2205                                  "did not complete.");
2206                         break;
2207                 }
2208         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2209
2210         return ret_val;
2211 }
2212
2213 /**
2214  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2215  *  @hw: pointer to the HW structure
2216  *  @offset: The index of the byte to read.
2217  *  @data: The byte to write to the NVM.
2218  *
2219  *  Writes a single byte to the NVM using the flash access registers.
2220  **/
2221 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2222                                           u8 data)
2223 {
2224         u16 word = (u16)data;
2225
2226         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2227 }
2228
2229 /**
2230  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2231  *  @hw: pointer to the HW structure
2232  *  @offset: The offset of the byte to write.
2233  *  @byte: The byte to write to the NVM.
2234  *
2235  *  Writes a single byte to the NVM using the flash access registers.
2236  *  Goes through a retry algorithm before giving up.
2237  **/
2238 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2239                                                 u32 offset, u8 byte)
2240 {
2241         s32 ret_val;
2242         u16 program_retries;
2243
2244         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2245         if (!ret_val)
2246                 return ret_val;
2247
2248         for (program_retries = 0; program_retries < 100; program_retries++) {
2249                 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
2250                 udelay(100);
2251                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2252                 if (!ret_val)
2253                         break;
2254         }
2255         if (program_retries == 100)
2256                 return -E1000_ERR_NVM;
2257
2258         return 0;
2259 }
2260
2261 /**
2262  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2263  *  @hw: pointer to the HW structure
2264  *  @bank: 0 for first bank, 1 for second bank, etc.
2265  *
2266  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2267  *  bank N is 4096 * N + flash_reg_addr.
2268  **/
2269 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2270 {
2271         struct e1000_nvm_info *nvm = &hw->nvm;
2272         union ich8_hws_flash_status hsfsts;
2273         union ich8_hws_flash_ctrl hsflctl;
2274         u32 flash_linear_addr;
2275         /* bank size is in 16bit words - adjust to bytes */
2276         u32 flash_bank_size = nvm->flash_bank_size * 2;
2277         s32 ret_val;
2278         s32 count = 0;
2279         s32 j, iteration, sector_size;
2280
2281         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2282
2283         /*
2284          * Determine HW Sector size: Read BERASE bits of hw flash status
2285          * register
2286          * 00: The Hw sector is 256 bytes, hence we need to erase 16
2287          *     consecutive sectors.  The start index for the nth Hw sector
2288          *     can be calculated as = bank * 4096 + n * 256
2289          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2290          *     The start index for the nth Hw sector can be calculated
2291          *     as = bank * 4096
2292          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2293          *     (ich9 only, otherwise error condition)
2294          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2295          */
2296         switch (hsfsts.hsf_status.berasesz) {
2297         case 0:
2298                 /* Hw sector size 256 */
2299                 sector_size = ICH_FLASH_SEG_SIZE_256;
2300                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2301                 break;
2302         case 1:
2303                 sector_size = ICH_FLASH_SEG_SIZE_4K;
2304                 iteration = 1;
2305                 break;
2306         case 2:
2307                 sector_size = ICH_FLASH_SEG_SIZE_8K;
2308                 iteration = 1;
2309                 break;
2310         case 3:
2311                 sector_size = ICH_FLASH_SEG_SIZE_64K;
2312                 iteration = 1;
2313                 break;
2314         default:
2315                 return -E1000_ERR_NVM;
2316         }
2317
2318         /* Start with the base address, then add the sector offset. */
2319         flash_linear_addr = hw->nvm.flash_base_addr;
2320         flash_linear_addr += (bank) ? flash_bank_size : 0;
2321
2322         for (j = 0; j < iteration ; j++) {
2323                 do {
2324                         /* Steps */
2325                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
2326                         if (ret_val)
2327                                 return ret_val;
2328
2329                         /*
2330                          * Write a value 11 (block Erase) in Flash
2331                          * Cycle field in hw flash control
2332                          */
2333                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2334                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2335                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2336
2337                         /*
2338                          * Write the last 24 bits of an index within the
2339                          * block into Flash Linear address field in Flash
2340                          * Address.
2341                          */
2342                         flash_linear_addr += (j * sector_size);
2343                         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2344
2345                         ret_val = e1000_flash_cycle_ich8lan(hw,
2346                                                ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2347                         if (ret_val == 0)
2348                                 break;
2349
2350                         /*
2351                          * Check if FCERR is set to 1.  If 1,
2352                          * clear it and try the whole sequence
2353                          * a few more times else Done
2354                          */
2355                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2356                         if (hsfsts.hsf_status.flcerr == 1)
2357                                 /* repeat for some time before giving up */
2358                                 continue;
2359                         else if (hsfsts.hsf_status.flcdone == 0)
2360                                 return ret_val;
2361                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2362         }
2363
2364         return 0;
2365 }
2366
2367 /**
2368  *  e1000_valid_led_default_ich8lan - Set the default LED settings
2369  *  @hw: pointer to the HW structure
2370  *  @data: Pointer to the LED settings
2371  *
2372  *  Reads the LED default settings from the NVM to data.  If the NVM LED
2373  *  settings is all 0's or F's, set the LED default to a valid LED default
2374  *  setting.
2375  **/
2376 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2377 {
2378         s32 ret_val;
2379
2380         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2381         if (ret_val) {
2382                 e_dbg("NVM Read Error\n");
2383                 return ret_val;
2384         }
2385
2386         if (*data == ID_LED_RESERVED_0000 ||
2387             *data == ID_LED_RESERVED_FFFF)
2388                 *data = ID_LED_DEFAULT_ICH8LAN;
2389
2390         return 0;
2391 }
2392
2393 /**
2394  *  e1000_id_led_init_pchlan - store LED configurations
2395  *  @hw: pointer to the HW structure
2396  *
2397  *  PCH does not control LEDs via the LEDCTL register, rather it uses
2398  *  the PHY LED configuration register.
2399  *
2400  *  PCH also does not have an "always on" or "always off" mode which
2401  *  complicates the ID feature.  Instead of using the "on" mode to indicate
2402  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2403  *  use "link_up" mode.  The LEDs will still ID on request if there is no
2404  *  link based on logic in e1000_led_[on|off]_pchlan().
2405  **/
2406 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2407 {
2408         struct e1000_mac_info *mac = &hw->mac;
2409         s32 ret_val;
2410         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2411         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2412         u16 data, i, temp, shift;
2413
2414         /* Get default ID LED modes */
2415         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2416         if (ret_val)
2417                 goto out;
2418
2419         mac->ledctl_default = er32(LEDCTL);
2420         mac->ledctl_mode1 = mac->ledctl_default;
2421         mac->ledctl_mode2 = mac->ledctl_default;
2422
2423         for (i = 0; i < 4; i++) {
2424                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2425                 shift = (i * 5);
2426                 switch (temp) {
2427                 case ID_LED_ON1_DEF2:
2428                 case ID_LED_ON1_ON2:
2429                 case ID_LED_ON1_OFF2:
2430                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2431                         mac->ledctl_mode1 |= (ledctl_on << shift);
2432                         break;
2433                 case ID_LED_OFF1_DEF2:
2434                 case ID_LED_OFF1_ON2:
2435                 case ID_LED_OFF1_OFF2:
2436                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2437                         mac->ledctl_mode1 |= (ledctl_off << shift);
2438                         break;
2439                 default:
2440                         /* Do nothing */
2441                         break;
2442                 }
2443                 switch (temp) {
2444                 case ID_LED_DEF1_ON2:
2445                 case ID_LED_ON1_ON2:
2446                 case ID_LED_OFF1_ON2:
2447                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2448                         mac->ledctl_mode2 |= (ledctl_on << shift);
2449                         break;
2450                 case ID_LED_DEF1_OFF2:
2451                 case ID_LED_ON1_OFF2:
2452                 case ID_LED_OFF1_OFF2:
2453                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2454                         mac->ledctl_mode2 |= (ledctl_off << shift);
2455                         break;
2456                 default:
2457                         /* Do nothing */
2458                         break;
2459                 }
2460         }
2461
2462 out:
2463         return ret_val;
2464 }
2465
2466 /**
2467  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2468  *  @hw: pointer to the HW structure
2469  *
2470  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2471  *  register, so the the bus width is hard coded.
2472  **/
2473 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
2474 {
2475         struct e1000_bus_info *bus = &hw->bus;
2476         s32 ret_val;
2477
2478         ret_val = e1000e_get_bus_info_pcie(hw);
2479
2480         /*
2481          * ICH devices are "PCI Express"-ish.  They have
2482          * a configuration space, but do not contain
2483          * PCI Express Capability registers, so bus width
2484          * must be hardcoded.
2485          */
2486         if (bus->width == e1000_bus_width_unknown)
2487                 bus->width = e1000_bus_width_pcie_x1;
2488
2489         return ret_val;
2490 }
2491
2492 /**
2493  *  e1000_reset_hw_ich8lan - Reset the hardware
2494  *  @hw: pointer to the HW structure
2495  *
2496  *  Does a full reset of the hardware which includes a reset of the PHY and
2497  *  MAC.
2498  **/
2499 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
2500 {
2501         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2502         u16 reg;
2503         u32 ctrl, icr, kab;
2504         s32 ret_val;
2505
2506         /*
2507          * Prevent the PCI-E bus from sticking if there is no TLP connection
2508          * on the last TLP read/write transaction when MAC is reset.
2509          */
2510         ret_val = e1000e_disable_pcie_master(hw);
2511         if (ret_val) {
2512                 e_dbg("PCI-E Master disable polling has failed.\n");
2513         }
2514
2515         e_dbg("Masking off all interrupts\n");
2516         ew32(IMC, 0xffffffff);
2517
2518         /*
2519          * Disable the Transmit and Receive units.  Then delay to allow
2520          * any pending transactions to complete before we hit the MAC
2521          * with the global reset.
2522          */
2523         ew32(RCTL, 0);
2524         ew32(TCTL, E1000_TCTL_PSP);
2525         e1e_flush();
2526
2527         msleep(10);
2528
2529         /* Workaround for ICH8 bit corruption issue in FIFO memory */
2530         if (hw->mac.type == e1000_ich8lan) {
2531                 /* Set Tx and Rx buffer allocation to 8k apiece. */
2532                 ew32(PBA, E1000_PBA_8K);
2533                 /* Set Packet Buffer Size to 16k. */
2534                 ew32(PBS, E1000_PBS_16K);
2535         }
2536
2537         if (hw->mac.type == e1000_pchlan) {
2538                 /* Save the NVM K1 bit setting*/
2539                 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
2540                 if (ret_val)
2541                         return ret_val;
2542
2543                 if (reg & E1000_NVM_K1_ENABLE)
2544                         dev_spec->nvm_k1_enabled = true;
2545                 else
2546                         dev_spec->nvm_k1_enabled = false;
2547         }
2548
2549         ctrl = er32(CTRL);
2550
2551         if (!e1000_check_reset_block(hw)) {
2552                 /* Clear PHY Reset Asserted bit */
2553                 if (hw->mac.type >= e1000_pchlan) {
2554                         u32 status = er32(STATUS);
2555                         ew32(STATUS, status & ~E1000_STATUS_PHYRA);
2556                 }
2557
2558                 /*
2559                  * PHY HW reset requires MAC CORE reset at the same
2560                  * time to make sure the interface between MAC and the
2561                  * external PHY is reset.
2562                  */
2563                 ctrl |= E1000_CTRL_PHY_RST;
2564         }
2565         ret_val = e1000_acquire_swflag_ich8lan(hw);
2566         e_dbg("Issuing a global reset to ich8lan\n");
2567         ew32(CTRL, (ctrl | E1000_CTRL_RST));
2568         msleep(20);
2569
2570         if (!ret_val)
2571                 e1000_release_swflag_ich8lan(hw);
2572
2573         /* Perform any necessary post-reset workarounds */
2574         if (hw->mac.type == e1000_pchlan)
2575                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2576
2577         if (ctrl & E1000_CTRL_PHY_RST)
2578                 ret_val = hw->phy.ops.get_cfg_done(hw);
2579
2580         if (hw->mac.type >= e1000_ich10lan) {
2581                 e1000_lan_init_done_ich8lan(hw);
2582         } else {
2583                 ret_val = e1000e_get_auto_rd_done(hw);
2584                 if (ret_val) {
2585                         /*
2586                          * When auto config read does not complete, do not
2587                          * return with an error. This can happen in situations
2588                          * where there is no eeprom and prevents getting link.
2589                          */
2590                         e_dbg("Auto Read Done did not complete\n");
2591                 }
2592         }
2593         /* Dummy read to clear the phy wakeup bit after lcd reset */
2594         if (hw->mac.type == e1000_pchlan)
2595                 e1e_rphy(hw, BM_WUC, &reg);
2596
2597         ret_val = e1000_sw_lcd_config_ich8lan(hw);
2598         if (ret_val)
2599                 goto out;
2600
2601         if (hw->mac.type == e1000_pchlan) {
2602                 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2603                 if (ret_val)
2604                         goto out;
2605         }
2606         /*
2607          * For PCH, this write will make sure that any noise
2608          * will be detected as a CRC error and be dropped rather than show up
2609          * as a bad packet to the DMA engine.
2610          */
2611         if (hw->mac.type == e1000_pchlan)
2612                 ew32(CRC_OFFSET, 0x65656565);
2613
2614         ew32(IMC, 0xffffffff);
2615         icr = er32(ICR);
2616
2617         kab = er32(KABGTXD);
2618         kab |= E1000_KABGTXD_BGSQLBIAS;
2619         ew32(KABGTXD, kab);
2620
2621 out:
2622         return ret_val;
2623 }
2624
2625 /**
2626  *  e1000_init_hw_ich8lan - Initialize the hardware
2627  *  @hw: pointer to the HW structure
2628  *
2629  *  Prepares the hardware for transmit and receive by doing the following:
2630  *   - initialize hardware bits
2631  *   - initialize LED identification
2632  *   - setup receive address registers
2633  *   - setup flow control
2634  *   - setup transmit descriptors
2635  *   - clear statistics
2636  **/
2637 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
2638 {
2639         struct e1000_mac_info *mac = &hw->mac;
2640         u32 ctrl_ext, txdctl, snoop;
2641         s32 ret_val;
2642         u16 i;
2643
2644         e1000_initialize_hw_bits_ich8lan(hw);
2645
2646         /* Initialize identification LED */
2647         ret_val = mac->ops.id_led_init(hw);
2648         if (ret_val)
2649                 e_dbg("Error initializing identification LED\n");
2650                 /* This is not fatal and we should not stop init due to this */
2651
2652         /* Setup the receive address. */
2653         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
2654
2655         /* Zero out the Multicast HASH table */
2656         e_dbg("Zeroing the MTA\n");
2657         for (i = 0; i < mac->mta_reg_count; i++)
2658                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
2659
2660         /*
2661          * The 82578 Rx buffer will stall if wakeup is enabled in host and
2662          * the ME.  Reading the BM_WUC register will clear the host wakeup bit.
2663          * Reset the phy after disabling host wakeup to reset the Rx buffer.
2664          */
2665         if (hw->phy.type == e1000_phy_82578) {
2666                 hw->phy.ops.read_reg(hw, BM_WUC, &i);
2667                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
2668                 if (ret_val)
2669                         return ret_val;
2670         }
2671
2672         /* Setup link and flow control */
2673         ret_val = e1000_setup_link_ich8lan(hw);
2674
2675         /* Set the transmit descriptor write-back policy for both queues */
2676         txdctl = er32(TXDCTL(0));
2677         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2678                  E1000_TXDCTL_FULL_TX_DESC_WB;
2679         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2680                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2681         ew32(TXDCTL(0), txdctl);
2682         txdctl = er32(TXDCTL(1));
2683         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2684                  E1000_TXDCTL_FULL_TX_DESC_WB;
2685         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2686                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2687         ew32(TXDCTL(1), txdctl);
2688
2689         /*
2690          * ICH8 has opposite polarity of no_snoop bits.
2691          * By default, we should use snoop behavior.
2692          */
2693         if (mac->type == e1000_ich8lan)
2694                 snoop = PCIE_ICH8_SNOOP_ALL;
2695         else
2696                 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
2697         e1000e_set_pcie_no_snoop(hw, snoop);
2698
2699         ctrl_ext = er32(CTRL_EXT);
2700         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2701         ew32(CTRL_EXT, ctrl_ext);
2702
2703         /*
2704          * Clear all of the statistics registers (clear on read).  It is
2705          * important that we do this after we have tried to establish link
2706          * because the symbol error count will increment wildly if there
2707          * is no link.
2708          */
2709         e1000_clear_hw_cntrs_ich8lan(hw);
2710
2711         return 0;
2712 }
2713 /**
2714  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
2715  *  @hw: pointer to the HW structure
2716  *
2717  *  Sets/Clears required hardware bits necessary for correctly setting up the
2718  *  hardware for transmit and receive.
2719  **/
2720 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
2721 {
2722         u32 reg;
2723
2724         /* Extended Device Control */
2725         reg = er32(CTRL_EXT);
2726         reg |= (1 << 22);
2727         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
2728         if (hw->mac.type >= e1000_pchlan)
2729                 reg |= E1000_CTRL_EXT_PHYPDEN;
2730         ew32(CTRL_EXT, reg);
2731
2732         /* Transmit Descriptor Control 0 */
2733         reg = er32(TXDCTL(0));
2734         reg |= (1 << 22);
2735         ew32(TXDCTL(0), reg);
2736
2737         /* Transmit Descriptor Control 1 */
2738         reg = er32(TXDCTL(1));
2739         reg |= (1 << 22);
2740         ew32(TXDCTL(1), reg);
2741
2742         /* Transmit Arbitration Control 0 */
2743         reg = er32(TARC(0));
2744         if (hw->mac.type == e1000_ich8lan)
2745                 reg |= (1 << 28) | (1 << 29);
2746         reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
2747         ew32(TARC(0), reg);
2748
2749         /* Transmit Arbitration Control 1 */
2750         reg = er32(TARC(1));
2751         if (er32(TCTL) & E1000_TCTL_MULR)
2752                 reg &= ~(1 << 28);
2753         else
2754                 reg |= (1 << 28);
2755         reg |= (1 << 24) | (1 << 26) | (1 << 30);
2756         ew32(TARC(1), reg);
2757
2758         /* Device Status */
2759         if (hw->mac.type == e1000_ich8lan) {
2760                 reg = er32(STATUS);
2761                 reg &= ~(1 << 31);
2762                 ew32(STATUS, reg);
2763         }
2764
2765         /*
2766          * work-around descriptor data corruption issue during nfs v2 udp
2767          * traffic, just disable the nfs filtering capability
2768          */
2769         reg = er32(RFCTL);
2770         reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
2771         ew32(RFCTL, reg);
2772
2773         return;
2774 }
2775
2776 /**
2777  *  e1000_setup_link_ich8lan - Setup flow control and link settings
2778  *  @hw: pointer to the HW structure
2779  *
2780  *  Determines which flow control settings to use, then configures flow
2781  *  control.  Calls the appropriate media-specific link configuration
2782  *  function.  Assuming the adapter has a valid link partner, a valid link
2783  *  should be established.  Assumes the hardware has previously been reset
2784  *  and the transmitter and receiver are not enabled.
2785  **/
2786 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
2787 {
2788         s32 ret_val;
2789
2790         if (e1000_check_reset_block(hw))
2791                 return 0;
2792
2793         /*
2794          * ICH parts do not have a word in the NVM to determine
2795          * the default flow control setting, so we explicitly
2796          * set it to full.
2797          */
2798         if (hw->fc.requested_mode == e1000_fc_default) {
2799                 /* Workaround h/w hang when Tx flow control enabled */
2800                 if (hw->mac.type == e1000_pchlan)
2801                         hw->fc.requested_mode = e1000_fc_rx_pause;
2802                 else
2803                         hw->fc.requested_mode = e1000_fc_full;
2804         }
2805
2806         /*
2807          * Save off the requested flow control mode for use later.  Depending
2808          * on the link partner's capabilities, we may or may not use this mode.
2809          */
2810         hw->fc.current_mode = hw->fc.requested_mode;
2811
2812         e_dbg("After fix-ups FlowControl is now = %x\n",
2813                 hw->fc.current_mode);
2814
2815         /* Continue to configure the copper link. */
2816         ret_val = e1000_setup_copper_link_ich8lan(hw);
2817         if (ret_val)
2818                 return ret_val;
2819
2820         ew32(FCTTV, hw->fc.pause_time);
2821         if ((hw->phy.type == e1000_phy_82578) ||
2822             (hw->phy.type == e1000_phy_82577)) {
2823                 ret_val = hw->phy.ops.write_reg(hw,
2824                                              PHY_REG(BM_PORT_CTRL_PAGE, 27),
2825                                              hw->fc.pause_time);
2826                 if (ret_val)
2827                         return ret_val;
2828         }
2829
2830         return e1000e_set_fc_watermarks(hw);
2831 }
2832
2833 /**
2834  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2835  *  @hw: pointer to the HW structure
2836  *
2837  *  Configures the kumeran interface to the PHY to wait the appropriate time
2838  *  when polling the PHY, then call the generic setup_copper_link to finish
2839  *  configuring the copper link.
2840  **/
2841 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
2842 {
2843         u32 ctrl;
2844         s32 ret_val;
2845         u16 reg_data;
2846
2847         ctrl = er32(CTRL);
2848         ctrl |= E1000_CTRL_SLU;
2849         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2850         ew32(CTRL, ctrl);
2851
2852         /*
2853          * Set the mac to wait the maximum time between each iteration
2854          * and increase the max iterations when polling the phy;
2855          * this fixes erroneous timeouts at 10Mbps.
2856          */
2857         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
2858         if (ret_val)
2859                 return ret_val;
2860         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
2861                                        &reg_data);
2862         if (ret_val)
2863                 return ret_val;
2864         reg_data |= 0x3F;
2865         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
2866                                         reg_data);
2867         if (ret_val)
2868                 return ret_val;
2869
2870         switch (hw->phy.type) {
2871         case e1000_phy_igp_3:
2872                 ret_val = e1000e_copper_link_setup_igp(hw);
2873                 if (ret_val)
2874                         return ret_val;
2875                 break;
2876         case e1000_phy_bm:
2877         case e1000_phy_82578:
2878                 ret_val = e1000e_copper_link_setup_m88(hw);
2879                 if (ret_val)
2880                         return ret_val;
2881                 break;
2882         case e1000_phy_82577:
2883                 ret_val = e1000_copper_link_setup_82577(hw);
2884                 if (ret_val)
2885                         return ret_val;
2886                 break;
2887         case e1000_phy_ife:
2888                 ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
2889                                                &reg_data);
2890                 if (ret_val)
2891                         return ret_val;
2892
2893                 reg_data &= ~IFE_PMC_AUTO_MDIX;
2894
2895                 switch (hw->phy.mdix) {
2896                 case 1:
2897                         reg_data &= ~IFE_PMC_FORCE_MDIX;
2898                         break;
2899                 case 2:
2900                         reg_data |= IFE_PMC_FORCE_MDIX;
2901                         break;
2902                 case 0:
2903                 default:
2904                         reg_data |= IFE_PMC_AUTO_MDIX;
2905                         break;
2906                 }
2907                 ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
2908                                                 reg_data);
2909                 if (ret_val)
2910                         return ret_val;
2911                 break;
2912         default:
2913                 break;
2914         }
2915         return e1000e_setup_copper_link(hw);
2916 }
2917
2918 /**
2919  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2920  *  @hw: pointer to the HW structure
2921  *  @speed: pointer to store current link speed
2922  *  @duplex: pointer to store the current link duplex
2923  *
2924  *  Calls the generic get_speed_and_duplex to retrieve the current link
2925  *  information and then calls the Kumeran lock loss workaround for links at
2926  *  gigabit speeds.
2927  **/
2928 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
2929                                           u16 *duplex)
2930 {
2931         s32 ret_val;
2932
2933         ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
2934         if (ret_val)
2935                 return ret_val;
2936
2937         if ((hw->mac.type == e1000_ich8lan) &&
2938             (hw->phy.type == e1000_phy_igp_3) &&
2939             (*speed == SPEED_1000)) {
2940                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
2941         }
2942
2943         return ret_val;
2944 }
2945
2946 /**
2947  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
2948  *  @hw: pointer to the HW structure
2949  *
2950  *  Work-around for 82566 Kumeran PCS lock loss:
2951  *  On link status change (i.e. PCI reset, speed change) and link is up and
2952  *  speed is gigabit-
2953  *    0) if workaround is optionally disabled do nothing
2954  *    1) wait 1ms for Kumeran link to come up
2955  *    2) check Kumeran Diagnostic register PCS lock loss bit
2956  *    3) if not set the link is locked (all is good), otherwise...
2957  *    4) reset the PHY
2958  *    5) repeat up to 10 times
2959  *  Note: this is only called for IGP3 copper when speed is 1gb.
2960  **/
2961 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
2962 {
2963         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2964         u32 phy_ctrl;
2965         s32 ret_val;
2966         u16 i, data;
2967         bool link;
2968
2969         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
2970                 return 0;
2971
2972         /*
2973          * Make sure link is up before proceeding.  If not just return.
2974          * Attempting this while link is negotiating fouled up link
2975          * stability
2976          */
2977         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2978         if (!link)
2979                 return 0;
2980
2981         for (i = 0; i < 10; i++) {
2982                 /* read once to clear */
2983                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2984                 if (ret_val)
2985                         return ret_val;
2986                 /* and again to get new status */
2987                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2988                 if (ret_val)
2989                         return ret_val;
2990
2991                 /* check for PCS lock */
2992                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
2993                         return 0;
2994
2995                 /* Issue PHY reset */
2996                 e1000_phy_hw_reset(hw);
2997                 mdelay(5);
2998         }
2999         /* Disable GigE link negotiation */
3000         phy_ctrl = er32(PHY_CTRL);
3001         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3002                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3003         ew32(PHY_CTRL, phy_ctrl);
3004
3005         /*
3006          * Call gig speed drop workaround on Gig disable before accessing
3007          * any PHY registers
3008          */
3009         e1000e_gig_downshift_workaround_ich8lan(hw);
3010
3011         /* unable to acquire PCS lock */
3012         return -E1000_ERR_PHY;
3013 }
3014
3015 /**
3016  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3017  *  @hw: pointer to the HW structure
3018  *  @state: boolean value used to set the current Kumeran workaround state
3019  *
3020  *  If ICH8, set the current Kumeran workaround state (enabled - true
3021  *  /disabled - false).
3022  **/
3023 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3024                                                  bool state)
3025 {
3026         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3027
3028         if (hw->mac.type != e1000_ich8lan) {
3029                 e_dbg("Workaround applies to ICH8 only.\n");
3030                 return;
3031         }
3032
3033         dev_spec->kmrn_lock_loss_workaround_enabled = state;
3034 }
3035
3036 /**
3037  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3038  *  @hw: pointer to the HW structure
3039  *
3040  *  Workaround for 82566 power-down on D3 entry:
3041  *    1) disable gigabit link
3042  *    2) write VR power-down enable
3043  *    3) read it back
3044  *  Continue if successful, else issue LCD reset and repeat
3045  **/
3046 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3047 {
3048         u32 reg;
3049         u16 data;
3050         u8  retry = 0;
3051
3052         if (hw->phy.type != e1000_phy_igp_3)
3053                 return;
3054
3055         /* Try the workaround twice (if needed) */
3056         do {
3057                 /* Disable link */
3058                 reg = er32(PHY_CTRL);
3059                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3060                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3061                 ew32(PHY_CTRL, reg);
3062
3063                 /*
3064                  * Call gig speed drop workaround on Gig disable before
3065                  * accessing any PHY registers
3066                  */
3067                 if (hw->mac.type == e1000_ich8lan)
3068                         e1000e_gig_downshift_workaround_ich8lan(hw);
3069
3070                 /* Write VR power-down enable */
3071                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3072                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3073                 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3074
3075                 /* Read it back and test */
3076                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3077                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3078                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3079                         break;
3080
3081                 /* Issue PHY reset and repeat at most one more time */
3082                 reg = er32(CTRL);
3083                 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3084                 retry++;
3085         } while (retry);
3086 }
3087
3088 /**
3089  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3090  *  @hw: pointer to the HW structure
3091  *
3092  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3093  *  LPLU, Gig disable, MDIC PHY reset):
3094  *    1) Set Kumeran Near-end loopback
3095  *    2) Clear Kumeran Near-end loopback
3096  *  Should only be called for ICH8[m] devices with IGP_3 Phy.
3097  **/
3098 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3099 {
3100         s32 ret_val;
3101         u16 reg_data;
3102
3103         if ((hw->mac.type != e1000_ich8lan) ||
3104             (hw->phy.type != e1000_phy_igp_3))
3105                 return;
3106
3107         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3108                                       &reg_data);
3109         if (ret_val)
3110                 return;
3111         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3112         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3113                                        reg_data);
3114         if (ret_val)
3115                 return;
3116         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3117         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3118                                        reg_data);
3119 }
3120
3121 /**
3122  *  e1000e_disable_gig_wol_ich8lan - disable gig during WoL
3123  *  @hw: pointer to the HW structure
3124  *
3125  *  During S0 to Sx transition, it is possible the link remains at gig
3126  *  instead of negotiating to a lower speed.  Before going to Sx, set
3127  *  'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3128  *  to a lower speed.
3129  *
3130  *  Should only be called for applicable parts.
3131  **/
3132 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
3133 {
3134         u32 phy_ctrl;
3135
3136         switch (hw->mac.type) {
3137         case e1000_ich8lan:
3138         case e1000_ich9lan:
3139         case e1000_ich10lan:
3140         case e1000_pchlan:
3141                 phy_ctrl = er32(PHY_CTRL);
3142                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
3143                             E1000_PHY_CTRL_GBE_DISABLE;
3144                 ew32(PHY_CTRL, phy_ctrl);
3145
3146                 if (hw->mac.type == e1000_pchlan)
3147                         e1000_phy_hw_reset_ich8lan(hw);
3148         default:
3149                 break;
3150         }
3151
3152         return;
3153 }
3154
3155 /**
3156  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
3157  *  @hw: pointer to the HW structure
3158  *
3159  *  Return the LED back to the default configuration.
3160  **/
3161 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3162 {
3163         if (hw->phy.type == e1000_phy_ife)
3164                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3165
3166         ew32(LEDCTL, hw->mac.ledctl_default);
3167         return 0;
3168 }
3169
3170 /**
3171  *  e1000_led_on_ich8lan - Turn LEDs on
3172  *  @hw: pointer to the HW structure
3173  *
3174  *  Turn on the LEDs.
3175  **/
3176 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3177 {
3178         if (hw->phy.type == e1000_phy_ife)
3179                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3180                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3181
3182         ew32(LEDCTL, hw->mac.ledctl_mode2);
3183         return 0;
3184 }
3185
3186 /**
3187  *  e1000_led_off_ich8lan - Turn LEDs off
3188  *  @hw: pointer to the HW structure
3189  *
3190  *  Turn off the LEDs.
3191  **/
3192 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3193 {
3194         if (hw->phy.type == e1000_phy_ife)
3195                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3196                                (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
3197
3198         ew32(LEDCTL, hw->mac.ledctl_mode1);
3199         return 0;
3200 }
3201
3202 /**
3203  *  e1000_setup_led_pchlan - Configures SW controllable LED
3204  *  @hw: pointer to the HW structure
3205  *
3206  *  This prepares the SW controllable LED for use.
3207  **/
3208 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3209 {
3210         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
3211                                         (u16)hw->mac.ledctl_mode1);
3212 }
3213
3214 /**
3215  *  e1000_cleanup_led_pchlan - Restore the default LED operation
3216  *  @hw: pointer to the HW structure
3217  *
3218  *  Return the LED back to the default configuration.
3219  **/
3220 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3221 {
3222         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
3223                                         (u16)hw->mac.ledctl_default);
3224 }
3225
3226 /**
3227  *  e1000_led_on_pchlan - Turn LEDs on
3228  *  @hw: pointer to the HW structure
3229  *
3230  *  Turn on the LEDs.
3231  **/
3232 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3233 {
3234         u16 data = (u16)hw->mac.ledctl_mode2;
3235         u32 i, led;
3236
3237         /*
3238          * If no link, then turn LED on by setting the invert bit
3239          * for each LED that's mode is "link_up" in ledctl_mode2.
3240          */
3241         if (!(er32(STATUS) & E1000_STATUS_LU)) {
3242                 for (i = 0; i < 3; i++) {
3243                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3244                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
3245                             E1000_LEDCTL_MODE_LINK_UP)
3246                                 continue;
3247                         if (led & E1000_PHY_LED0_IVRT)
3248                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3249                         else
3250                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3251                 }
3252         }
3253
3254         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
3255 }
3256
3257 /**
3258  *  e1000_led_off_pchlan - Turn LEDs off
3259  *  @hw: pointer to the HW structure
3260  *
3261  *  Turn off the LEDs.
3262  **/
3263 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3264 {
3265         u16 data = (u16)hw->mac.ledctl_mode1;
3266         u32 i, led;
3267
3268         /*
3269          * If no link, then turn LED off by clearing the invert bit
3270          * for each LED that's mode is "link_up" in ledctl_mode1.
3271          */
3272         if (!(er32(STATUS) & E1000_STATUS_LU)) {
3273                 for (i = 0; i < 3; i++) {
3274                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3275                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
3276                             E1000_LEDCTL_MODE_LINK_UP)
3277                                 continue;
3278                         if (led & E1000_PHY_LED0_IVRT)
3279                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3280                         else
3281                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3282                 }
3283         }
3284
3285         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
3286 }
3287
3288 /**
3289  *  e1000_get_cfg_done_ich8lan - Read config done bit
3290  *  @hw: pointer to the HW structure
3291  *
3292  *  Read the management control register for the config done bit for
3293  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
3294  *  to read the config done bit, so an error is *ONLY* logged and returns
3295  *  0.  If we were to return with error, EEPROM-less silicon
3296  *  would not be able to be reset or change link.
3297  **/
3298 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3299 {
3300         u32 bank = 0;
3301
3302         if (hw->mac.type >= e1000_pchlan) {
3303                 u32 status = er32(STATUS);
3304
3305                 if (status & E1000_STATUS_PHYRA)
3306                         ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3307                 else
3308                         e_dbg("PHY Reset Asserted not set - needs delay\n");
3309         }
3310
3311         e1000e_get_cfg_done(hw);
3312
3313         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3314         if ((hw->mac.type != e1000_ich10lan) &&
3315             (hw->mac.type != e1000_pchlan)) {
3316                 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3317                     (hw->phy.type == e1000_phy_igp_3)) {
3318                         e1000e_phy_init_script_igp3(hw);
3319                 }
3320         } else {
3321                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3322                         /* Maybe we should do a basic PHY config */
3323                         e_dbg("EEPROM not present\n");
3324                         return -E1000_ERR_CONFIG;
3325                 }
3326         }
3327
3328         return 0;
3329 }
3330
3331 /**
3332  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3333  * @hw: pointer to the HW structure
3334  *
3335  * In the case of a PHY power down to save power, or to turn off link during a
3336  * driver unload, or wake on lan is not enabled, remove the link.
3337  **/
3338 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
3339 {
3340         /* If the management interface is not enabled, then power down */
3341         if (!(hw->mac.ops.check_mng_mode(hw) ||
3342               hw->phy.ops.check_reset_block(hw)))
3343                 e1000_power_down_phy_copper(hw);
3344
3345         return;
3346 }
3347
3348 /**
3349  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3350  *  @hw: pointer to the HW structure
3351  *
3352  *  Clears hardware counters specific to the silicon family and calls
3353  *  clear_hw_cntrs_generic to clear all general purpose counters.
3354  **/
3355 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3356 {
3357         u16 phy_data;
3358
3359         e1000e_clear_hw_cntrs_base(hw);
3360
3361         er32(ALGNERRC);
3362         er32(RXERRC);
3363         er32(TNCRS);
3364         er32(CEXTERR);
3365         er32(TSCTC);
3366         er32(TSCTFC);
3367
3368         er32(MGTPRC);
3369         er32(MGTPDC);
3370         er32(MGTPTC);
3371
3372         er32(IAC);
3373         er32(ICRXOC);
3374
3375         /* Clear PHY statistics registers */
3376         if ((hw->phy.type == e1000_phy_82578) ||
3377             (hw->phy.type == e1000_phy_82577)) {
3378                 hw->phy.ops.read_reg(hw, HV_SCC_UPPER, &phy_data);
3379                 hw->phy.ops.read_reg(hw, HV_SCC_LOWER, &phy_data);
3380                 hw->phy.ops.read_reg(hw, HV_ECOL_UPPER, &phy_data);
3381                 hw->phy.ops.read_reg(hw, HV_ECOL_LOWER, &phy_data);
3382                 hw->phy.ops.read_reg(hw, HV_MCC_UPPER, &phy_data);
3383                 hw->phy.ops.read_reg(hw, HV_MCC_LOWER, &phy_data);
3384                 hw->phy.ops.read_reg(hw, HV_LATECOL_UPPER, &phy_data);
3385                 hw->phy.ops.read_reg(hw, HV_LATECOL_LOWER, &phy_data);
3386                 hw->phy.ops.read_reg(hw, HV_COLC_UPPER, &phy_data);
3387                 hw->phy.ops.read_reg(hw, HV_COLC_LOWER, &phy_data);
3388                 hw->phy.ops.read_reg(hw, HV_DC_UPPER, &phy_data);
3389                 hw->phy.ops.read_reg(hw, HV_DC_LOWER, &phy_data);
3390                 hw->phy.ops.read_reg(hw, HV_TNCRS_UPPER, &phy_data);
3391                 hw->phy.ops.read_reg(hw, HV_TNCRS_LOWER, &phy_data);
3392         }
3393 }
3394
3395 static struct e1000_mac_operations ich8_mac_ops = {
3396         .id_led_init            = e1000e_id_led_init,
3397         .check_mng_mode         = e1000_check_mng_mode_ich8lan,
3398         .check_for_link         = e1000_check_for_copper_link_ich8lan,
3399         /* cleanup_led dependent on mac type */
3400         .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
3401         .get_bus_info           = e1000_get_bus_info_ich8lan,
3402         .set_lan_id             = e1000_set_lan_id_single_port,
3403         .get_link_up_info       = e1000_get_link_up_info_ich8lan,
3404         /* led_on dependent on mac type */
3405         /* led_off dependent on mac type */
3406         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
3407         .reset_hw               = e1000_reset_hw_ich8lan,
3408         .init_hw                = e1000_init_hw_ich8lan,
3409         .setup_link             = e1000_setup_link_ich8lan,
3410         .setup_physical_interface= e1000_setup_copper_link_ich8lan,
3411         /* id_led_init dependent on mac type */
3412 };
3413
3414 static struct e1000_phy_operations ich8_phy_ops = {
3415         .acquire                = e1000_acquire_swflag_ich8lan,
3416         .check_reset_block      = e1000_check_reset_block_ich8lan,
3417         .commit                 = NULL,
3418         .get_cfg_done           = e1000_get_cfg_done_ich8lan,
3419         .get_cable_length       = e1000e_get_cable_length_igp_2,
3420         .read_reg               = e1000e_read_phy_reg_igp,
3421         .release                = e1000_release_swflag_ich8lan,
3422         .reset                  = e1000_phy_hw_reset_ich8lan,
3423         .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
3424         .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
3425         .write_reg              = e1000e_write_phy_reg_igp,
3426 };
3427
3428 static struct e1000_nvm_operations ich8_nvm_ops = {
3429         .acquire                = e1000_acquire_nvm_ich8lan,
3430         .read                   = e1000_read_nvm_ich8lan,
3431         .release                = e1000_release_nvm_ich8lan,
3432         .update                 = e1000_update_nvm_checksum_ich8lan,
3433         .valid_led_default      = e1000_valid_led_default_ich8lan,
3434         .validate               = e1000_validate_nvm_checksum_ich8lan,
3435         .write                  = e1000_write_nvm_ich8lan,
3436 };
3437
3438 struct e1000_info e1000_ich8_info = {
3439         .mac                    = e1000_ich8lan,
3440         .flags                  = FLAG_HAS_WOL
3441                                   | FLAG_IS_ICH
3442                                   | FLAG_RX_CSUM_ENABLED
3443                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3444                                   | FLAG_HAS_AMT
3445                                   | FLAG_HAS_FLASH
3446                                   | FLAG_APME_IN_WUC,
3447         .pba                    = 8,
3448         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
3449         .get_variants           = e1000_get_variants_ich8lan,
3450         .mac_ops                = &ich8_mac_ops,
3451         .phy_ops                = &ich8_phy_ops,
3452         .nvm_ops                = &ich8_nvm_ops,
3453 };
3454
3455 struct e1000_info e1000_ich9_info = {
3456         .mac                    = e1000_ich9lan,
3457         .flags                  = FLAG_HAS_JUMBO_FRAMES
3458                                   | FLAG_IS_ICH
3459                                   | FLAG_HAS_WOL
3460                                   | FLAG_RX_CSUM_ENABLED
3461                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3462                                   | FLAG_HAS_AMT
3463                                   | FLAG_HAS_ERT
3464                                   | FLAG_HAS_FLASH
3465                                   | FLAG_APME_IN_WUC,
3466         .pba                    = 10,
3467         .max_hw_frame_size      = DEFAULT_JUMBO,
3468         .get_variants           = e1000_get_variants_ich8lan,
3469         .mac_ops                = &ich8_mac_ops,
3470         .phy_ops                = &ich8_phy_ops,
3471         .nvm_ops                = &ich8_nvm_ops,
3472 };
3473
3474 struct e1000_info e1000_ich10_info = {
3475         .mac                    = e1000_ich10lan,
3476         .flags                  = FLAG_HAS_JUMBO_FRAMES
3477                                   | FLAG_IS_ICH
3478                                   | FLAG_HAS_WOL
3479                                   | FLAG_RX_CSUM_ENABLED
3480                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3481                                   | FLAG_HAS_AMT
3482                                   | FLAG_HAS_ERT
3483                                   | FLAG_HAS_FLASH
3484                                   | FLAG_APME_IN_WUC,
3485         .pba                    = 10,
3486         .max_hw_frame_size      = DEFAULT_JUMBO,
3487         .get_variants           = e1000_get_variants_ich8lan,
3488         .mac_ops                = &ich8_mac_ops,
3489         .phy_ops                = &ich8_phy_ops,
3490         .nvm_ops                = &ich8_nvm_ops,
3491 };
3492
3493 struct e1000_info e1000_pch_info = {
3494         .mac                    = e1000_pchlan,
3495         .flags                  = FLAG_IS_ICH
3496                                   | FLAG_HAS_WOL
3497                                   | FLAG_RX_CSUM_ENABLED
3498                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3499                                   | FLAG_HAS_AMT
3500                                   | FLAG_HAS_FLASH
3501                                   | FLAG_HAS_JUMBO_FRAMES
3502                                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
3503                                   | FLAG_APME_IN_WUC,
3504         .pba                    = 26,
3505         .max_hw_frame_size      = 4096,
3506         .get_variants           = e1000_get_variants_ich8lan,
3507         .mac_ops                = &ich8_mac_ops,
3508         .phy_ops                = &ich8_phy_ops,
3509         .nvm_ops                = &ich8_nvm_ops,
3510 };