Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[safe/jmp/linux-2.6] / drivers / net / e1000e / ich8lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 82562G 10/100 Network Connection
31  * 82562G-2 10/100 Network Connection
32  * 82562GT 10/100 Network Connection
33  * 82562GT-2 10/100 Network Connection
34  * 82562V 10/100 Network Connection
35  * 82562V-2 10/100 Network Connection
36  * 82566DC-2 Gigabit Network Connection
37  * 82566DC Gigabit Network Connection
38  * 82566DM-2 Gigabit Network Connection
39  * 82566DM Gigabit Network Connection
40  * 82566MC Gigabit Network Connection
41  * 82566MM Gigabit Network Connection
42  * 82567LM Gigabit Network Connection
43  * 82567LF Gigabit Network Connection
44  * 82567V Gigabit Network Connection
45  * 82567LM-2 Gigabit Network Connection
46  * 82567LF-2 Gigabit Network Connection
47  * 82567V-2 Gigabit Network Connection
48  * 82567LF-3 Gigabit Network Connection
49  * 82567LM-3 Gigabit Network Connection
50  * 82567LM-4 Gigabit Network Connection
51  * 82577LM Gigabit Network Connection
52  * 82577LC Gigabit Network Connection
53  * 82578DM Gigabit Network Connection
54  * 82578DC Gigabit Network Connection
55  */
56
57 #include "e1000.h"
58
59 #define ICH_FLASH_GFPREG                0x0000
60 #define ICH_FLASH_HSFSTS                0x0004
61 #define ICH_FLASH_HSFCTL                0x0006
62 #define ICH_FLASH_FADDR                 0x0008
63 #define ICH_FLASH_FDATA0                0x0010
64 #define ICH_FLASH_PR0                   0x0074
65
66 #define ICH_FLASH_READ_COMMAND_TIMEOUT  500
67 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
68 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
69 #define ICH_FLASH_LINEAR_ADDR_MASK      0x00FFFFFF
70 #define ICH_FLASH_CYCLE_REPEAT_COUNT    10
71
72 #define ICH_CYCLE_READ                  0
73 #define ICH_CYCLE_WRITE                 2
74 #define ICH_CYCLE_ERASE                 3
75
76 #define FLASH_GFPREG_BASE_MASK          0x1FFF
77 #define FLASH_SECTOR_ADDR_SHIFT         12
78
79 #define ICH_FLASH_SEG_SIZE_256          256
80 #define ICH_FLASH_SEG_SIZE_4K           4096
81 #define ICH_FLASH_SEG_SIZE_8K           8192
82 #define ICH_FLASH_SEG_SIZE_64K          65536
83
84
85 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
86 /* FW established a valid mode */
87 #define E1000_ICH_FWSM_FW_VALID         0x00008000
88
89 #define E1000_ICH_MNG_IAMT_MODE         0x2
90
91 #define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
92                                  (ID_LED_DEF1_OFF2 <<  8) | \
93                                  (ID_LED_DEF1_ON2  <<  4) | \
94                                  (ID_LED_DEF1_DEF2))
95
96 #define E1000_ICH_NVM_SIG_WORD          0x13
97 #define E1000_ICH_NVM_SIG_MASK          0xC000
98 #define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
99 #define E1000_ICH_NVM_SIG_VALUE         0x80
100
101 #define E1000_ICH8_LAN_INIT_TIMEOUT     1500
102
103 #define E1000_FEXTNVM_SW_CONFIG         1
104 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
105
106 #define PCIE_ICH8_SNOOP_ALL             PCIE_NO_SNOOP_ALL
107
108 #define E1000_ICH_RAR_ENTRIES           7
109
110 #define PHY_PAGE_SHIFT 5
111 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
112                            ((reg) & MAX_PHY_REG_ADDRESS))
113 #define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
114 #define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
115
116 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS    0x0002
117 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
118 #define IGP3_VR_CTRL_MODE_SHUTDOWN      0x0200
119
120 #define HV_LED_CONFIG           PHY_REG(768, 30) /* LED Configuration */
121
122 #define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
123
124 /* SMBus Address Phy Register */
125 #define HV_SMB_ADDR            PHY_REG(768, 26)
126 #define HV_SMB_ADDR_PEC_EN     0x0200
127 #define HV_SMB_ADDR_VALID      0x0080
128
129 /* Strapping Option Register - RO */
130 #define E1000_STRAP                     0x0000C
131 #define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
132 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
133
134 /* OEM Bits Phy Register */
135 #define HV_OEM_BITS            PHY_REG(768, 25)
136 #define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
137 #define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
138 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
139
140 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
141 #define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
142
143 /* KMRN Mode Control */
144 #define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
145 #define HV_KMRN_MDIO_SLOW      0x0400
146
147 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
148 /* Offset 04h HSFSTS */
149 union ich8_hws_flash_status {
150         struct ich8_hsfsts {
151                 u16 flcdone    :1; /* bit 0 Flash Cycle Done */
152                 u16 flcerr     :1; /* bit 1 Flash Cycle Error */
153                 u16 dael       :1; /* bit 2 Direct Access error Log */
154                 u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
155                 u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
156                 u16 reserved1  :2; /* bit 13:6 Reserved */
157                 u16 reserved2  :6; /* bit 13:6 Reserved */
158                 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
159                 u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
160         } hsf_status;
161         u16 regval;
162 };
163
164 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
165 /* Offset 06h FLCTL */
166 union ich8_hws_flash_ctrl {
167         struct ich8_hsflctl {
168                 u16 flcgo      :1;   /* 0 Flash Cycle Go */
169                 u16 flcycle    :2;   /* 2:1 Flash Cycle */
170                 u16 reserved   :5;   /* 7:3 Reserved  */
171                 u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
172                 u16 flockdn    :6;   /* 15:10 Reserved */
173         } hsf_ctrl;
174         u16 regval;
175 };
176
177 /* ICH Flash Region Access Permissions */
178 union ich8_hws_flash_regacc {
179         struct ich8_flracc {
180                 u32 grra      :8; /* 0:7 GbE region Read Access */
181                 u32 grwa      :8; /* 8:15 GbE region Write Access */
182                 u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
183                 u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
184         } hsf_flregacc;
185         u16 regval;
186 };
187
188 /* ICH Flash Protected Region */
189 union ich8_flash_protected_range {
190         struct ich8_pr {
191                 u32 base:13;     /* 0:12 Protected Range Base */
192                 u32 reserved1:2; /* 13:14 Reserved */
193                 u32 rpe:1;       /* 15 Read Protection Enable */
194                 u32 limit:13;    /* 16:28 Protected Range Limit */
195                 u32 reserved2:2; /* 29:30 Reserved */
196                 u32 wpe:1;       /* 31 Write Protection Enable */
197         } range;
198         u32 regval;
199 };
200
201 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
202 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
203 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
204 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
205 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
206                                                 u32 offset, u8 byte);
207 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
208                                          u8 *data);
209 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
210                                          u16 *data);
211 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
212                                          u8 size, u16 *data);
213 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
214 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
215 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
216 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
217 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
218 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
219 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
220 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
221 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
222 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
223 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
224 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
225 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
226 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
227 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
228 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
229
230 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
231 {
232         return readw(hw->flash_address + reg);
233 }
234
235 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
236 {
237         return readl(hw->flash_address + reg);
238 }
239
240 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
241 {
242         writew(val, hw->flash_address + reg);
243 }
244
245 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
246 {
247         writel(val, hw->flash_address + reg);
248 }
249
250 #define er16flash(reg)          __er16flash(hw, (reg))
251 #define er32flash(reg)          __er32flash(hw, (reg))
252 #define ew16flash(reg,val)      __ew16flash(hw, (reg), (val))
253 #define ew32flash(reg,val)      __ew32flash(hw, (reg), (val))
254
255 /**
256  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
257  *  @hw: pointer to the HW structure
258  *
259  *  Initialize family-specific PHY parameters and function pointers.
260  **/
261 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
262 {
263         struct e1000_phy_info *phy = &hw->phy;
264         u32 ctrl;
265         s32 ret_val = 0;
266
267         phy->addr                     = 1;
268         phy->reset_delay_us           = 100;
269
270         phy->ops.read_reg             = e1000_read_phy_reg_hv;
271         phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
272         phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
273         phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
274         phy->ops.write_reg            = e1000_write_phy_reg_hv;
275         phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
276         phy->ops.power_up             = e1000_power_up_phy_copper;
277         phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
278         phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
279
280         if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
281                 /*
282                  * The MAC-PHY interconnect may still be in SMBus mode
283                  * after Sx->S0.  Toggle the LANPHYPC Value bit to force
284                  * the interconnect to PCIe mode, but only if there is no
285                  * firmware present otherwise firmware will have done it.
286                  */
287                 ctrl = er32(CTRL);
288                 ctrl |=  E1000_CTRL_LANPHYPC_OVERRIDE;
289                 ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
290                 ew32(CTRL, ctrl);
291                 udelay(10);
292                 ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
293                 ew32(CTRL, ctrl);
294                 msleep(50);
295         }
296
297         /*
298          * Reset the PHY before any acccess to it.  Doing so, ensures that
299          * the PHY is in a known good state before we read/write PHY registers.
300          * The generic reset is sufficient here, because we haven't determined
301          * the PHY type yet.
302          */
303         ret_val = e1000e_phy_hw_reset_generic(hw);
304         if (ret_val)
305                 goto out;
306
307         phy->id = e1000_phy_unknown;
308         ret_val = e1000e_get_phy_id(hw);
309         if (ret_val)
310                 goto out;
311         if ((phy->id == 0) || (phy->id == PHY_REVISION_MASK)) {
312                 /*
313                  * In case the PHY needs to be in mdio slow mode (eg. 82577),
314                  * set slow mode and try to get the PHY id again.
315                  */
316                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
317                 if (ret_val)
318                         goto out;
319                 ret_val = e1000e_get_phy_id(hw);
320                 if (ret_val)
321                         goto out;
322         }
323         phy->type = e1000e_get_phy_type_from_id(phy->id);
324
325         switch (phy->type) {
326         case e1000_phy_82577:
327                 phy->ops.check_polarity = e1000_check_polarity_82577;
328                 phy->ops.force_speed_duplex =
329                         e1000_phy_force_speed_duplex_82577;
330                 phy->ops.get_cable_length = e1000_get_cable_length_82577;
331                 phy->ops.get_info = e1000_get_phy_info_82577;
332                 phy->ops.commit = e1000e_phy_sw_reset;
333                 break;
334         case e1000_phy_82578:
335                 phy->ops.check_polarity = e1000_check_polarity_m88;
336                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
337                 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
338                 phy->ops.get_info = e1000e_get_phy_info_m88;
339                 break;
340         default:
341                 ret_val = -E1000_ERR_PHY;
342                 break;
343         }
344
345 out:
346         return ret_val;
347 }
348
349 /**
350  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
351  *  @hw: pointer to the HW structure
352  *
353  *  Initialize family-specific PHY parameters and function pointers.
354  **/
355 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
356 {
357         struct e1000_phy_info *phy = &hw->phy;
358         s32 ret_val;
359         u16 i = 0;
360
361         phy->addr                       = 1;
362         phy->reset_delay_us             = 100;
363
364         phy->ops.power_up               = e1000_power_up_phy_copper;
365         phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
366
367         /*
368          * We may need to do this twice - once for IGP and if that fails,
369          * we'll set BM func pointers and try again
370          */
371         ret_val = e1000e_determine_phy_address(hw);
372         if (ret_val) {
373                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
374                 phy->ops.read_reg  = e1000e_read_phy_reg_bm;
375                 ret_val = e1000e_determine_phy_address(hw);
376                 if (ret_val) {
377                         e_dbg("Cannot determine PHY addr. Erroring out\n");
378                         return ret_val;
379                 }
380         }
381
382         phy->id = 0;
383         while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
384                (i++ < 100)) {
385                 msleep(1);
386                 ret_val = e1000e_get_phy_id(hw);
387                 if (ret_val)
388                         return ret_val;
389         }
390
391         /* Verify phy id */
392         switch (phy->id) {
393         case IGP03E1000_E_PHY_ID:
394                 phy->type = e1000_phy_igp_3;
395                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
396                 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
397                 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
398                 phy->ops.get_info = e1000e_get_phy_info_igp;
399                 phy->ops.check_polarity = e1000_check_polarity_igp;
400                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
401                 break;
402         case IFE_E_PHY_ID:
403         case IFE_PLUS_E_PHY_ID:
404         case IFE_C_E_PHY_ID:
405                 phy->type = e1000_phy_ife;
406                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
407                 phy->ops.get_info = e1000_get_phy_info_ife;
408                 phy->ops.check_polarity = e1000_check_polarity_ife;
409                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
410                 break;
411         case BME1000_E_PHY_ID:
412                 phy->type = e1000_phy_bm;
413                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
414                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
415                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
416                 phy->ops.commit = e1000e_phy_sw_reset;
417                 phy->ops.get_info = e1000e_get_phy_info_m88;
418                 phy->ops.check_polarity = e1000_check_polarity_m88;
419                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
420                 break;
421         default:
422                 return -E1000_ERR_PHY;
423                 break;
424         }
425
426         return 0;
427 }
428
429 /**
430  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
431  *  @hw: pointer to the HW structure
432  *
433  *  Initialize family-specific NVM parameters and function
434  *  pointers.
435  **/
436 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
437 {
438         struct e1000_nvm_info *nvm = &hw->nvm;
439         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
440         u32 gfpreg, sector_base_addr, sector_end_addr;
441         u16 i;
442
443         /* Can't read flash registers if the register set isn't mapped. */
444         if (!hw->flash_address) {
445                 e_dbg("ERROR: Flash registers not mapped\n");
446                 return -E1000_ERR_CONFIG;
447         }
448
449         nvm->type = e1000_nvm_flash_sw;
450
451         gfpreg = er32flash(ICH_FLASH_GFPREG);
452
453         /*
454          * sector_X_addr is a "sector"-aligned address (4096 bytes)
455          * Add 1 to sector_end_addr since this sector is included in
456          * the overall size.
457          */
458         sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
459         sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
460
461         /* flash_base_addr is byte-aligned */
462         nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
463
464         /*
465          * find total size of the NVM, then cut in half since the total
466          * size represents two separate NVM banks.
467          */
468         nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
469                                 << FLASH_SECTOR_ADDR_SHIFT;
470         nvm->flash_bank_size /= 2;
471         /* Adjust to word count */
472         nvm->flash_bank_size /= sizeof(u16);
473
474         nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
475
476         /* Clear shadow ram */
477         for (i = 0; i < nvm->word_size; i++) {
478                 dev_spec->shadow_ram[i].modified = false;
479                 dev_spec->shadow_ram[i].value    = 0xFFFF;
480         }
481
482         return 0;
483 }
484
485 /**
486  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
487  *  @hw: pointer to the HW structure
488  *
489  *  Initialize family-specific MAC parameters and function
490  *  pointers.
491  **/
492 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
493 {
494         struct e1000_hw *hw = &adapter->hw;
495         struct e1000_mac_info *mac = &hw->mac;
496
497         /* Set media type function pointer */
498         hw->phy.media_type = e1000_media_type_copper;
499
500         /* Set mta register count */
501         mac->mta_reg_count = 32;
502         /* Set rar entry count */
503         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
504         if (mac->type == e1000_ich8lan)
505                 mac->rar_entry_count--;
506         /* FWSM register */
507         mac->has_fwsm = true;
508         /* ARC subsystem not supported */
509         mac->arc_subsystem_valid = false;
510         /* Adaptive IFS supported */
511         mac->adaptive_ifs = true;
512
513         /* LED operations */
514         switch (mac->type) {
515         case e1000_ich8lan:
516         case e1000_ich9lan:
517         case e1000_ich10lan:
518                 /* ID LED init */
519                 mac->ops.id_led_init = e1000e_id_led_init;
520                 /* setup LED */
521                 mac->ops.setup_led = e1000e_setup_led_generic;
522                 /* cleanup LED */
523                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
524                 /* turn on/off LED */
525                 mac->ops.led_on = e1000_led_on_ich8lan;
526                 mac->ops.led_off = e1000_led_off_ich8lan;
527                 break;
528         case e1000_pchlan:
529                 /* ID LED init */
530                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
531                 /* setup LED */
532                 mac->ops.setup_led = e1000_setup_led_pchlan;
533                 /* cleanup LED */
534                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
535                 /* turn on/off LED */
536                 mac->ops.led_on = e1000_led_on_pchlan;
537                 mac->ops.led_off = e1000_led_off_pchlan;
538                 break;
539         default:
540                 break;
541         }
542
543         /* Enable PCS Lock-loss workaround for ICH8 */
544         if (mac->type == e1000_ich8lan)
545                 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
546
547         return 0;
548 }
549
550 /**
551  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
552  *  @hw: pointer to the HW structure
553  *
554  *  Checks to see of the link status of the hardware has changed.  If a
555  *  change in link status has been detected, then we read the PHY registers
556  *  to get the current speed/duplex if link exists.
557  **/
558 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
559 {
560         struct e1000_mac_info *mac = &hw->mac;
561         s32 ret_val;
562         bool link;
563
564         /*
565          * We only want to go out to the PHY registers to see if Auto-Neg
566          * has completed and/or if our link status has changed.  The
567          * get_link_status flag is set upon receiving a Link Status
568          * Change or Rx Sequence Error interrupt.
569          */
570         if (!mac->get_link_status) {
571                 ret_val = 0;
572                 goto out;
573         }
574
575         /*
576          * First we want to see if the MII Status Register reports
577          * link.  If so, then we want to get the current speed/duplex
578          * of the PHY.
579          */
580         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
581         if (ret_val)
582                 goto out;
583
584         if (hw->mac.type == e1000_pchlan) {
585                 ret_val = e1000_k1_gig_workaround_hv(hw, link);
586                 if (ret_val)
587                         goto out;
588         }
589
590         if (!link)
591                 goto out; /* No link detected */
592
593         mac->get_link_status = false;
594
595         if (hw->phy.type == e1000_phy_82578) {
596                 ret_val = e1000_link_stall_workaround_hv(hw);
597                 if (ret_val)
598                         goto out;
599         }
600
601         /*
602          * Check if there was DownShift, must be checked
603          * immediately after link-up
604          */
605         e1000e_check_downshift(hw);
606
607         /*
608          * If we are forcing speed/duplex, then we simply return since
609          * we have already determined whether we have link or not.
610          */
611         if (!mac->autoneg) {
612                 ret_val = -E1000_ERR_CONFIG;
613                 goto out;
614         }
615
616         /*
617          * Auto-Neg is enabled.  Auto Speed Detection takes care
618          * of MAC speed/duplex configuration.  So we only need to
619          * configure Collision Distance in the MAC.
620          */
621         e1000e_config_collision_dist(hw);
622
623         /*
624          * Configure Flow Control now that Auto-Neg has completed.
625          * First, we need to restore the desired flow control
626          * settings because we may have had to re-autoneg with a
627          * different link partner.
628          */
629         ret_val = e1000e_config_fc_after_link_up(hw);
630         if (ret_val)
631                 e_dbg("Error configuring flow control\n");
632
633 out:
634         return ret_val;
635 }
636
637 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
638 {
639         struct e1000_hw *hw = &adapter->hw;
640         s32 rc;
641
642         rc = e1000_init_mac_params_ich8lan(adapter);
643         if (rc)
644                 return rc;
645
646         rc = e1000_init_nvm_params_ich8lan(hw);
647         if (rc)
648                 return rc;
649
650         if (hw->mac.type == e1000_pchlan)
651                 rc = e1000_init_phy_params_pchlan(hw);
652         else
653                 rc = e1000_init_phy_params_ich8lan(hw);
654         if (rc)
655                 return rc;
656
657         if (adapter->hw.phy.type == e1000_phy_ife) {
658                 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
659                 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
660         }
661
662         if ((adapter->hw.mac.type == e1000_ich8lan) &&
663             (adapter->hw.phy.type == e1000_phy_igp_3))
664                 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
665
666         return 0;
667 }
668
669 static DEFINE_MUTEX(nvm_mutex);
670
671 /**
672  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
673  *  @hw: pointer to the HW structure
674  *
675  *  Acquires the mutex for performing NVM operations.
676  **/
677 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
678 {
679         mutex_lock(&nvm_mutex);
680
681         return 0;
682 }
683
684 /**
685  *  e1000_release_nvm_ich8lan - Release NVM mutex
686  *  @hw: pointer to the HW structure
687  *
688  *  Releases the mutex used while performing NVM operations.
689  **/
690 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
691 {
692         mutex_unlock(&nvm_mutex);
693 }
694
695 static DEFINE_MUTEX(swflag_mutex);
696
697 /**
698  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
699  *  @hw: pointer to the HW structure
700  *
701  *  Acquires the software control flag for performing PHY and select
702  *  MAC CSR accesses.
703  **/
704 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
705 {
706         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
707         s32 ret_val = 0;
708
709         mutex_lock(&swflag_mutex);
710
711         while (timeout) {
712                 extcnf_ctrl = er32(EXTCNF_CTRL);
713                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
714                         break;
715
716                 mdelay(1);
717                 timeout--;
718         }
719
720         if (!timeout) {
721                 e_dbg("SW/FW/HW has locked the resource for too long.\n");
722                 ret_val = -E1000_ERR_CONFIG;
723                 goto out;
724         }
725
726         timeout = SW_FLAG_TIMEOUT;
727
728         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
729         ew32(EXTCNF_CTRL, extcnf_ctrl);
730
731         while (timeout) {
732                 extcnf_ctrl = er32(EXTCNF_CTRL);
733                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
734                         break;
735
736                 mdelay(1);
737                 timeout--;
738         }
739
740         if (!timeout) {
741                 e_dbg("Failed to acquire the semaphore.\n");
742                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
743                 ew32(EXTCNF_CTRL, extcnf_ctrl);
744                 ret_val = -E1000_ERR_CONFIG;
745                 goto out;
746         }
747
748 out:
749         if (ret_val)
750                 mutex_unlock(&swflag_mutex);
751
752         return ret_val;
753 }
754
755 /**
756  *  e1000_release_swflag_ich8lan - Release software control flag
757  *  @hw: pointer to the HW structure
758  *
759  *  Releases the software control flag for performing PHY and select
760  *  MAC CSR accesses.
761  **/
762 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
763 {
764         u32 extcnf_ctrl;
765
766         extcnf_ctrl = er32(EXTCNF_CTRL);
767         extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
768         ew32(EXTCNF_CTRL, extcnf_ctrl);
769
770         mutex_unlock(&swflag_mutex);
771 }
772
773 /**
774  *  e1000_check_mng_mode_ich8lan - Checks management mode
775  *  @hw: pointer to the HW structure
776  *
777  *  This checks if the adapter has manageability enabled.
778  *  This is a function pointer entry point only called by read/write
779  *  routines for the PHY and NVM parts.
780  **/
781 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
782 {
783         u32 fwsm;
784
785         fwsm = er32(FWSM);
786
787         return (fwsm & E1000_FWSM_MODE_MASK) ==
788                 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
789 }
790
791 /**
792  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
793  *  @hw: pointer to the HW structure
794  *
795  *  Checks if firmware is blocking the reset of the PHY.
796  *  This is a function pointer entry point only called by
797  *  reset routines.
798  **/
799 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
800 {
801         u32 fwsm;
802
803         fwsm = er32(FWSM);
804
805         return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
806 }
807
808 /**
809  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
810  *  @hw:   pointer to the HW structure
811  *
812  *  SW should configure the LCD from the NVM extended configuration region
813  *  as a workaround for certain parts.
814  **/
815 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
816 {
817         struct e1000_adapter *adapter = hw->adapter;
818         struct e1000_phy_info *phy = &hw->phy;
819         u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
820         s32 ret_val = 0;
821         u16 word_addr, reg_data, reg_addr, phy_page = 0;
822
823         if (!(hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) &&
824                 !(hw->mac.type == e1000_pchlan))
825                 return ret_val;
826
827         ret_val = hw->phy.ops.acquire(hw);
828         if (ret_val)
829                 return ret_val;
830
831         /*
832          * Initialize the PHY from the NVM on ICH platforms.  This
833          * is needed due to an issue where the NVM configuration is
834          * not properly autoloaded after power transitions.
835          * Therefore, after each PHY reset, we will load the
836          * configuration data out of the NVM manually.
837          */
838         if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
839             (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M) ||
840             (hw->mac.type == e1000_pchlan))
841                 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
842         else
843                 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
844
845         data = er32(FEXTNVM);
846         if (!(data & sw_cfg_mask))
847                 goto out;
848
849         /*
850          * Make sure HW does not configure LCD from PHY
851          * extended configuration before SW configuration
852          */
853         data = er32(EXTCNF_CTRL);
854         if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
855                 goto out;
856
857         cnf_size = er32(EXTCNF_SIZE);
858         cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
859         cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
860         if (!cnf_size)
861                 goto out;
862
863         cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
864         cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
865
866         if (!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
867             (hw->mac.type == e1000_pchlan)) {
868                 /*
869                  * HW configures the SMBus address and LEDs when the
870                  * OEM and LCD Write Enable bits are set in the NVM.
871                  * When both NVM bits are cleared, SW will configure
872                  * them instead.
873                  */
874                 data = er32(STRAP);
875                 data &= E1000_STRAP_SMBUS_ADDRESS_MASK;
876                 reg_data = data >> E1000_STRAP_SMBUS_ADDRESS_SHIFT;
877                 reg_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
878                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR,
879                                                         reg_data);
880                 if (ret_val)
881                         goto out;
882
883                 data = er32(LEDCTL);
884                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
885                                                         (u16)data);
886                 if (ret_val)
887                         goto out;
888         }
889
890         /* Configure LCD from extended configuration region. */
891
892         /* cnf_base_addr is in DWORD */
893         word_addr = (u16)(cnf_base_addr << 1);
894
895         for (i = 0; i < cnf_size; i++) {
896                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
897                                          &reg_data);
898                 if (ret_val)
899                         goto out;
900
901                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
902                                          1, &reg_addr);
903                 if (ret_val)
904                         goto out;
905
906                 /* Save off the PHY page for future writes. */
907                 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
908                         phy_page = reg_data;
909                         continue;
910                 }
911
912                 reg_addr &= PHY_REG_MASK;
913                 reg_addr |= phy_page;
914
915                 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
916                                                     reg_data);
917                 if (ret_val)
918                         goto out;
919         }
920
921 out:
922         hw->phy.ops.release(hw);
923         return ret_val;
924 }
925
926 /**
927  *  e1000_k1_gig_workaround_hv - K1 Si workaround
928  *  @hw:   pointer to the HW structure
929  *  @link: link up bool flag
930  *
931  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
932  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
933  *  If link is down, the function will restore the default K1 setting located
934  *  in the NVM.
935  **/
936 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
937 {
938         s32 ret_val = 0;
939         u16 status_reg = 0;
940         bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
941
942         if (hw->mac.type != e1000_pchlan)
943                 goto out;
944
945         /* Wrap the whole flow with the sw flag */
946         ret_val = hw->phy.ops.acquire(hw);
947         if (ret_val)
948                 goto out;
949
950         /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
951         if (link) {
952                 if (hw->phy.type == e1000_phy_82578) {
953                         ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
954                                                                   &status_reg);
955                         if (ret_val)
956                                 goto release;
957
958                         status_reg &= BM_CS_STATUS_LINK_UP |
959                                       BM_CS_STATUS_RESOLVED |
960                                       BM_CS_STATUS_SPEED_MASK;
961
962                         if (status_reg == (BM_CS_STATUS_LINK_UP |
963                                            BM_CS_STATUS_RESOLVED |
964                                            BM_CS_STATUS_SPEED_1000))
965                                 k1_enable = false;
966                 }
967
968                 if (hw->phy.type == e1000_phy_82577) {
969                         ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
970                                                                   &status_reg);
971                         if (ret_val)
972                                 goto release;
973
974                         status_reg &= HV_M_STATUS_LINK_UP |
975                                       HV_M_STATUS_AUTONEG_COMPLETE |
976                                       HV_M_STATUS_SPEED_MASK;
977
978                         if (status_reg == (HV_M_STATUS_LINK_UP |
979                                            HV_M_STATUS_AUTONEG_COMPLETE |
980                                            HV_M_STATUS_SPEED_1000))
981                                 k1_enable = false;
982                 }
983
984                 /* Link stall fix for link up */
985                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
986                                                            0x0100);
987                 if (ret_val)
988                         goto release;
989
990         } else {
991                 /* Link stall fix for link down */
992                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
993                                                            0x4100);
994                 if (ret_val)
995                         goto release;
996         }
997
998         ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
999
1000 release:
1001         hw->phy.ops.release(hw);
1002 out:
1003         return ret_val;
1004 }
1005
1006 /**
1007  *  e1000_configure_k1_ich8lan - Configure K1 power state
1008  *  @hw: pointer to the HW structure
1009  *  @enable: K1 state to configure
1010  *
1011  *  Configure the K1 power state based on the provided parameter.
1012  *  Assumes semaphore already acquired.
1013  *
1014  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1015  **/
1016 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1017 {
1018         s32 ret_val = 0;
1019         u32 ctrl_reg = 0;
1020         u32 ctrl_ext = 0;
1021         u32 reg = 0;
1022         u16 kmrn_reg = 0;
1023
1024         ret_val = e1000e_read_kmrn_reg_locked(hw,
1025                                              E1000_KMRNCTRLSTA_K1_CONFIG,
1026                                              &kmrn_reg);
1027         if (ret_val)
1028                 goto out;
1029
1030         if (k1_enable)
1031                 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1032         else
1033                 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1034
1035         ret_val = e1000e_write_kmrn_reg_locked(hw,
1036                                               E1000_KMRNCTRLSTA_K1_CONFIG,
1037                                               kmrn_reg);
1038         if (ret_val)
1039                 goto out;
1040
1041         udelay(20);
1042         ctrl_ext = er32(CTRL_EXT);
1043         ctrl_reg = er32(CTRL);
1044
1045         reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1046         reg |= E1000_CTRL_FRCSPD;
1047         ew32(CTRL, reg);
1048
1049         ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1050         udelay(20);
1051         ew32(CTRL, ctrl_reg);
1052         ew32(CTRL_EXT, ctrl_ext);
1053         udelay(20);
1054
1055 out:
1056         return ret_val;
1057 }
1058
1059 /**
1060  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1061  *  @hw:       pointer to the HW structure
1062  *  @d0_state: boolean if entering d0 or d3 device state
1063  *
1064  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1065  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1066  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1067  **/
1068 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1069 {
1070         s32 ret_val = 0;
1071         u32 mac_reg;
1072         u16 oem_reg;
1073
1074         if (hw->mac.type != e1000_pchlan)
1075                 return ret_val;
1076
1077         ret_val = hw->phy.ops.acquire(hw);
1078         if (ret_val)
1079                 return ret_val;
1080
1081         mac_reg = er32(EXTCNF_CTRL);
1082         if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1083                 goto out;
1084
1085         mac_reg = er32(FEXTNVM);
1086         if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1087                 goto out;
1088
1089         mac_reg = er32(PHY_CTRL);
1090
1091         ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1092         if (ret_val)
1093                 goto out;
1094
1095         oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1096
1097         if (d0_state) {
1098                 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1099                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1100
1101                 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1102                         oem_reg |= HV_OEM_BITS_LPLU;
1103         } else {
1104                 if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
1105                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1106
1107                 if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
1108                         oem_reg |= HV_OEM_BITS_LPLU;
1109         }
1110         /* Restart auto-neg to activate the bits */
1111         if (!e1000_check_reset_block(hw))
1112                 oem_reg |= HV_OEM_BITS_RESTART_AN;
1113         ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
1114
1115 out:
1116         hw->phy.ops.release(hw);
1117
1118         return ret_val;
1119 }
1120
1121
1122 /**
1123  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1124  *  @hw:   pointer to the HW structure
1125  **/
1126 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1127 {
1128         s32 ret_val;
1129         u16 data;
1130
1131         ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1132         if (ret_val)
1133                 return ret_val;
1134
1135         data |= HV_KMRN_MDIO_SLOW;
1136
1137         ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1138
1139         return ret_val;
1140 }
1141
1142 /**
1143  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1144  *  done after every PHY reset.
1145  **/
1146 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1147 {
1148         s32 ret_val = 0;
1149         u16 phy_data;
1150
1151         if (hw->mac.type != e1000_pchlan)
1152                 return ret_val;
1153
1154         /* Set MDIO slow mode before any other MDIO access */
1155         if (hw->phy.type == e1000_phy_82577) {
1156                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1157                 if (ret_val)
1158                         goto out;
1159         }
1160
1161         if (((hw->phy.type == e1000_phy_82577) &&
1162              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1163             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1164                 /* Disable generation of early preamble */
1165                 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1166                 if (ret_val)
1167                         return ret_val;
1168
1169                 /* Preamble tuning for SSC */
1170                 ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
1171                 if (ret_val)
1172                         return ret_val;
1173         }
1174
1175         if (hw->phy.type == e1000_phy_82578) {
1176                 /*
1177                  * Return registers to default by doing a soft reset then
1178                  * writing 0x3140 to the control register.
1179                  */
1180                 if (hw->phy.revision < 2) {
1181                         e1000e_phy_sw_reset(hw);
1182                         ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1183                 }
1184         }
1185
1186         /* Select page 0 */
1187         ret_val = hw->phy.ops.acquire(hw);
1188         if (ret_val)
1189                 return ret_val;
1190
1191         hw->phy.addr = 1;
1192         ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1193         hw->phy.ops.release(hw);
1194         if (ret_val)
1195                 goto out;
1196
1197         /*
1198          * Configure the K1 Si workaround during phy reset assuming there is
1199          * link so that it disables K1 if link is in 1Gbps.
1200          */
1201         ret_val = e1000_k1_gig_workaround_hv(hw, true);
1202         if (ret_val)
1203                 goto out;
1204
1205         /* Workaround for link disconnects on a busy hub in half duplex */
1206         ret_val = hw->phy.ops.acquire(hw);
1207         if (ret_val)
1208                 goto out;
1209         ret_val = hw->phy.ops.read_reg_locked(hw,
1210                                               PHY_REG(BM_PORT_CTRL_PAGE, 17),
1211                                               &phy_data);
1212         if (ret_val)
1213                 goto release;
1214         ret_val = hw->phy.ops.write_reg_locked(hw,
1215                                                PHY_REG(BM_PORT_CTRL_PAGE, 17),
1216                                                phy_data & 0x00FF);
1217 release:
1218         hw->phy.ops.release(hw);
1219 out:
1220         return ret_val;
1221 }
1222
1223 /**
1224  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
1225  *  @hw: pointer to the HW structure
1226  *
1227  *  Check the appropriate indication the MAC has finished configuring the
1228  *  PHY after a software reset.
1229  **/
1230 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1231 {
1232         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1233
1234         /* Wait for basic configuration completes before proceeding */
1235         do {
1236                 data = er32(STATUS);
1237                 data &= E1000_STATUS_LAN_INIT_DONE;
1238                 udelay(100);
1239         } while ((!data) && --loop);
1240
1241         /*
1242          * If basic configuration is incomplete before the above loop
1243          * count reaches 0, loading the configuration from NVM will
1244          * leave the PHY in a bad state possibly resulting in no link.
1245          */
1246         if (loop == 0)
1247                 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1248
1249         /* Clear the Init Done bit for the next init event */
1250         data = er32(STATUS);
1251         data &= ~E1000_STATUS_LAN_INIT_DONE;
1252         ew32(STATUS, data);
1253 }
1254
1255 /**
1256  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
1257  *  @hw: pointer to the HW structure
1258  **/
1259 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
1260 {
1261         s32 ret_val = 0;
1262         u16 reg;
1263
1264         if (e1000_check_reset_block(hw))
1265                 goto out;
1266
1267         /* Perform any necessary post-reset workarounds */
1268         switch (hw->mac.type) {
1269         case e1000_pchlan:
1270                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1271                 if (ret_val)
1272                         goto out;
1273                 break;
1274         default:
1275                 break;
1276         }
1277
1278         /* Dummy read to clear the phy wakeup bit after lcd reset */
1279         if (hw->mac.type == e1000_pchlan)
1280                 e1e_rphy(hw, BM_WUC, &reg);
1281
1282         /* Configure the LCD with the extended configuration region in NVM */
1283         ret_val = e1000_sw_lcd_config_ich8lan(hw);
1284         if (ret_val)
1285                 goto out;
1286
1287         /* Configure the LCD with the OEM bits in NVM */
1288         ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1289
1290 out:
1291         return ret_val;
1292 }
1293
1294 /**
1295  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1296  *  @hw: pointer to the HW structure
1297  *
1298  *  Resets the PHY
1299  *  This is a function pointer entry point called by drivers
1300  *  or other shared routines.
1301  **/
1302 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1303 {
1304         s32 ret_val = 0;
1305
1306         ret_val = e1000e_phy_hw_reset_generic(hw);
1307         if (ret_val)
1308                 goto out;
1309
1310         ret_val = e1000_post_phy_reset_ich8lan(hw);
1311
1312 out:
1313         return ret_val;
1314 }
1315
1316 /**
1317  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1318  *  @hw: pointer to the HW structure
1319  *  @active: true to enable LPLU, false to disable
1320  *
1321  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
1322  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1323  *  the phy speed. This function will manually set the LPLU bit and restart
1324  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
1325  *  since it configures the same bit.
1326  **/
1327 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1328 {
1329         s32 ret_val = 0;
1330         u16 oem_reg;
1331
1332         ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1333         if (ret_val)
1334                 goto out;
1335
1336         if (active)
1337                 oem_reg |= HV_OEM_BITS_LPLU;
1338         else
1339                 oem_reg &= ~HV_OEM_BITS_LPLU;
1340
1341         oem_reg |= HV_OEM_BITS_RESTART_AN;
1342         ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1343
1344 out:
1345         return ret_val;
1346 }
1347
1348 /**
1349  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1350  *  @hw: pointer to the HW structure
1351  *  @active: true to enable LPLU, false to disable
1352  *
1353  *  Sets the LPLU D0 state according to the active flag.  When
1354  *  activating LPLU this function also disables smart speed
1355  *  and vice versa.  LPLU will not be activated unless the
1356  *  device autonegotiation advertisement meets standards of
1357  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1358  *  This is a function pointer entry point only called by
1359  *  PHY setup routines.
1360  **/
1361 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1362 {
1363         struct e1000_phy_info *phy = &hw->phy;
1364         u32 phy_ctrl;
1365         s32 ret_val = 0;
1366         u16 data;
1367
1368         if (phy->type == e1000_phy_ife)
1369                 return ret_val;
1370
1371         phy_ctrl = er32(PHY_CTRL);
1372
1373         if (active) {
1374                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1375                 ew32(PHY_CTRL, phy_ctrl);
1376
1377                 if (phy->type != e1000_phy_igp_3)
1378                         return 0;
1379
1380                 /*
1381                  * Call gig speed drop workaround on LPLU before accessing
1382                  * any PHY registers
1383                  */
1384                 if (hw->mac.type == e1000_ich8lan)
1385                         e1000e_gig_downshift_workaround_ich8lan(hw);
1386
1387                 /* When LPLU is enabled, we should disable SmartSpeed */
1388                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1389                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1390                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1391                 if (ret_val)
1392                         return ret_val;
1393         } else {
1394                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1395                 ew32(PHY_CTRL, phy_ctrl);
1396
1397                 if (phy->type != e1000_phy_igp_3)
1398                         return 0;
1399
1400                 /*
1401                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1402                  * during Dx states where the power conservation is most
1403                  * important.  During driver activity we should enable
1404                  * SmartSpeed, so performance is maintained.
1405                  */
1406                 if (phy->smart_speed == e1000_smart_speed_on) {
1407                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1408                                            &data);
1409                         if (ret_val)
1410                                 return ret_val;
1411
1412                         data |= IGP01E1000_PSCFR_SMART_SPEED;
1413                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1414                                            data);
1415                         if (ret_val)
1416                                 return ret_val;
1417                 } else if (phy->smart_speed == e1000_smart_speed_off) {
1418                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1419                                            &data);
1420                         if (ret_val)
1421                                 return ret_val;
1422
1423                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1424                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1425                                            data);
1426                         if (ret_val)
1427                                 return ret_val;
1428                 }
1429         }
1430
1431         return 0;
1432 }
1433
1434 /**
1435  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1436  *  @hw: pointer to the HW structure
1437  *  @active: true to enable LPLU, false to disable
1438  *
1439  *  Sets the LPLU D3 state according to the active flag.  When
1440  *  activating LPLU this function also disables smart speed
1441  *  and vice versa.  LPLU will not be activated unless the
1442  *  device autonegotiation advertisement meets standards of
1443  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1444  *  This is a function pointer entry point only called by
1445  *  PHY setup routines.
1446  **/
1447 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1448 {
1449         struct e1000_phy_info *phy = &hw->phy;
1450         u32 phy_ctrl;
1451         s32 ret_val;
1452         u16 data;
1453
1454         phy_ctrl = er32(PHY_CTRL);
1455
1456         if (!active) {
1457                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
1458                 ew32(PHY_CTRL, phy_ctrl);
1459
1460                 if (phy->type != e1000_phy_igp_3)
1461                         return 0;
1462
1463                 /*
1464                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1465                  * during Dx states where the power conservation is most
1466                  * important.  During driver activity we should enable
1467                  * SmartSpeed, so performance is maintained.
1468                  */
1469                 if (phy->smart_speed == e1000_smart_speed_on) {
1470                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1471                                            &data);
1472                         if (ret_val)
1473                                 return ret_val;
1474
1475                         data |= IGP01E1000_PSCFR_SMART_SPEED;
1476                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1477                                            data);
1478                         if (ret_val)
1479                                 return ret_val;
1480                 } else if (phy->smart_speed == e1000_smart_speed_off) {
1481                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1482                                            &data);
1483                         if (ret_val)
1484                                 return ret_val;
1485
1486                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1487                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1488                                            data);
1489                         if (ret_val)
1490                                 return ret_val;
1491                 }
1492         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1493                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1494                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1495                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
1496                 ew32(PHY_CTRL, phy_ctrl);
1497
1498                 if (phy->type != e1000_phy_igp_3)
1499                         return 0;
1500
1501                 /*
1502                  * Call gig speed drop workaround on LPLU before accessing
1503                  * any PHY registers
1504                  */
1505                 if (hw->mac.type == e1000_ich8lan)
1506                         e1000e_gig_downshift_workaround_ich8lan(hw);
1507
1508                 /* When LPLU is enabled, we should disable SmartSpeed */
1509                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1510                 if (ret_val)
1511                         return ret_val;
1512
1513                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1514                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1515         }
1516
1517         return 0;
1518 }
1519
1520 /**
1521  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1522  *  @hw: pointer to the HW structure
1523  *  @bank:  pointer to the variable that returns the active bank
1524  *
1525  *  Reads signature byte from the NVM using the flash access registers.
1526  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
1527  **/
1528 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
1529 {
1530         u32 eecd;
1531         struct e1000_nvm_info *nvm = &hw->nvm;
1532         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
1533         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
1534         u8 sig_byte = 0;
1535         s32 ret_val = 0;
1536
1537         switch (hw->mac.type) {
1538         case e1000_ich8lan:
1539         case e1000_ich9lan:
1540                 eecd = er32(EECD);
1541                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
1542                     E1000_EECD_SEC1VAL_VALID_MASK) {
1543                         if (eecd & E1000_EECD_SEC1VAL)
1544                                 *bank = 1;
1545                         else
1546                                 *bank = 0;
1547
1548                         return 0;
1549                 }
1550                 e_dbg("Unable to determine valid NVM bank via EEC - "
1551                        "reading flash signature\n");
1552                 /* fall-thru */
1553         default:
1554                 /* set bank to 0 in case flash read fails */
1555                 *bank = 0;
1556
1557                 /* Check bank 0 */
1558                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
1559                                                         &sig_byte);
1560                 if (ret_val)
1561                         return ret_val;
1562                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1563                     E1000_ICH_NVM_SIG_VALUE) {
1564                         *bank = 0;
1565                         return 0;
1566                 }
1567
1568                 /* Check bank 1 */
1569                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
1570                                                         bank1_offset,
1571                                                         &sig_byte);
1572                 if (ret_val)
1573                         return ret_val;
1574                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1575                     E1000_ICH_NVM_SIG_VALUE) {
1576                         *bank = 1;
1577                         return 0;
1578                 }
1579
1580                 e_dbg("ERROR: No valid NVM bank present\n");
1581                 return -E1000_ERR_NVM;
1582         }
1583
1584         return 0;
1585 }
1586
1587 /**
1588  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
1589  *  @hw: pointer to the HW structure
1590  *  @offset: The offset (in bytes) of the word(s) to read.
1591  *  @words: Size of data to read in words
1592  *  @data: Pointer to the word(s) to read at offset.
1593  *
1594  *  Reads a word(s) from the NVM using the flash access registers.
1595  **/
1596 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1597                                   u16 *data)
1598 {
1599         struct e1000_nvm_info *nvm = &hw->nvm;
1600         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1601         u32 act_offset;
1602         s32 ret_val = 0;
1603         u32 bank = 0;
1604         u16 i, word;
1605
1606         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1607             (words == 0)) {
1608                 e_dbg("nvm parameter(s) out of bounds\n");
1609                 ret_val = -E1000_ERR_NVM;
1610                 goto out;
1611         }
1612
1613         nvm->ops.acquire(hw);
1614
1615         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1616         if (ret_val) {
1617                 e_dbg("Could not detect valid bank, assuming bank 0\n");
1618                 bank = 0;
1619         }
1620
1621         act_offset = (bank) ? nvm->flash_bank_size : 0;
1622         act_offset += offset;
1623
1624         ret_val = 0;
1625         for (i = 0; i < words; i++) {
1626                 if ((dev_spec->shadow_ram) &&
1627                     (dev_spec->shadow_ram[offset+i].modified)) {
1628                         data[i] = dev_spec->shadow_ram[offset+i].value;
1629                 } else {
1630                         ret_val = e1000_read_flash_word_ich8lan(hw,
1631                                                                 act_offset + i,
1632                                                                 &word);
1633                         if (ret_val)
1634                                 break;
1635                         data[i] = word;
1636                 }
1637         }
1638
1639         nvm->ops.release(hw);
1640
1641 out:
1642         if (ret_val)
1643                 e_dbg("NVM read error: %d\n", ret_val);
1644
1645         return ret_val;
1646 }
1647
1648 /**
1649  *  e1000_flash_cycle_init_ich8lan - Initialize flash
1650  *  @hw: pointer to the HW structure
1651  *
1652  *  This function does initial flash setup so that a new read/write/erase cycle
1653  *  can be started.
1654  **/
1655 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
1656 {
1657         union ich8_hws_flash_status hsfsts;
1658         s32 ret_val = -E1000_ERR_NVM;
1659         s32 i = 0;
1660
1661         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1662
1663         /* Check if the flash descriptor is valid */
1664         if (hsfsts.hsf_status.fldesvalid == 0) {
1665                 e_dbg("Flash descriptor invalid.  "
1666                          "SW Sequencing must be used.\n");
1667                 return -E1000_ERR_NVM;
1668         }
1669
1670         /* Clear FCERR and DAEL in hw status by writing 1 */
1671         hsfsts.hsf_status.flcerr = 1;
1672         hsfsts.hsf_status.dael = 1;
1673
1674         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1675
1676         /*
1677          * Either we should have a hardware SPI cycle in progress
1678          * bit to check against, in order to start a new cycle or
1679          * FDONE bit should be changed in the hardware so that it
1680          * is 1 after hardware reset, which can then be used as an
1681          * indication whether a cycle is in progress or has been
1682          * completed.
1683          */
1684
1685         if (hsfsts.hsf_status.flcinprog == 0) {
1686                 /*
1687                  * There is no cycle running at present,
1688                  * so we can start a cycle.
1689                  * Begin by setting Flash Cycle Done.
1690                  */
1691                 hsfsts.hsf_status.flcdone = 1;
1692                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1693                 ret_val = 0;
1694         } else {
1695                 /*
1696                  * Otherwise poll for sometime so the current
1697                  * cycle has a chance to end before giving up.
1698                  */
1699                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
1700                         hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
1701                         if (hsfsts.hsf_status.flcinprog == 0) {
1702                                 ret_val = 0;
1703                                 break;
1704                         }
1705                         udelay(1);
1706                 }
1707                 if (ret_val == 0) {
1708                         /*
1709                          * Successful in waiting for previous cycle to timeout,
1710                          * now set the Flash Cycle Done.
1711                          */
1712                         hsfsts.hsf_status.flcdone = 1;
1713                         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1714                 } else {
1715                         e_dbg("Flash controller busy, cannot get access\n");
1716                 }
1717         }
1718
1719         return ret_val;
1720 }
1721
1722 /**
1723  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1724  *  @hw: pointer to the HW structure
1725  *  @timeout: maximum time to wait for completion
1726  *
1727  *  This function starts a flash cycle and waits for its completion.
1728  **/
1729 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1730 {
1731         union ich8_hws_flash_ctrl hsflctl;
1732         union ich8_hws_flash_status hsfsts;
1733         s32 ret_val = -E1000_ERR_NVM;
1734         u32 i = 0;
1735
1736         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1737         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1738         hsflctl.hsf_ctrl.flcgo = 1;
1739         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1740
1741         /* wait till FDONE bit is set to 1 */
1742         do {
1743                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1744                 if (hsfsts.hsf_status.flcdone == 1)
1745                         break;
1746                 udelay(1);
1747         } while (i++ < timeout);
1748
1749         if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1750                 return 0;
1751
1752         return ret_val;
1753 }
1754
1755 /**
1756  *  e1000_read_flash_word_ich8lan - Read word from flash
1757  *  @hw: pointer to the HW structure
1758  *  @offset: offset to data location
1759  *  @data: pointer to the location for storing the data
1760  *
1761  *  Reads the flash word at offset into data.  Offset is converted
1762  *  to bytes before read.
1763  **/
1764 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1765                                          u16 *data)
1766 {
1767         /* Must convert offset into bytes. */
1768         offset <<= 1;
1769
1770         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1771 }
1772
1773 /**
1774  *  e1000_read_flash_byte_ich8lan - Read byte from flash
1775  *  @hw: pointer to the HW structure
1776  *  @offset: The offset of the byte to read.
1777  *  @data: Pointer to a byte to store the value read.
1778  *
1779  *  Reads a single byte from the NVM using the flash access registers.
1780  **/
1781 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1782                                          u8 *data)
1783 {
1784         s32 ret_val;
1785         u16 word = 0;
1786
1787         ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
1788         if (ret_val)
1789                 return ret_val;
1790
1791         *data = (u8)word;
1792
1793         return 0;
1794 }
1795
1796 /**
1797  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
1798  *  @hw: pointer to the HW structure
1799  *  @offset: The offset (in bytes) of the byte or word to read.
1800  *  @size: Size of data to read, 1=byte 2=word
1801  *  @data: Pointer to the word to store the value read.
1802  *
1803  *  Reads a byte or word from the NVM using the flash access registers.
1804  **/
1805 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1806                                          u8 size, u16 *data)
1807 {
1808         union ich8_hws_flash_status hsfsts;
1809         union ich8_hws_flash_ctrl hsflctl;
1810         u32 flash_linear_addr;
1811         u32 flash_data = 0;
1812         s32 ret_val = -E1000_ERR_NVM;
1813         u8 count = 0;
1814
1815         if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1816                 return -E1000_ERR_NVM;
1817
1818         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1819                             hw->nvm.flash_base_addr;
1820
1821         do {
1822                 udelay(1);
1823                 /* Steps */
1824                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1825                 if (ret_val != 0)
1826                         break;
1827
1828                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1829                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1830                 hsflctl.hsf_ctrl.fldbcount = size - 1;
1831                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1832                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1833
1834                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1835
1836                 ret_val = e1000_flash_cycle_ich8lan(hw,
1837                                                 ICH_FLASH_READ_COMMAND_TIMEOUT);
1838
1839                 /*
1840                  * Check if FCERR is set to 1, if set to 1, clear it
1841                  * and try the whole sequence a few more times, else
1842                  * read in (shift in) the Flash Data0, the order is
1843                  * least significant byte first msb to lsb
1844                  */
1845                 if (ret_val == 0) {
1846                         flash_data = er32flash(ICH_FLASH_FDATA0);
1847                         if (size == 1) {
1848                                 *data = (u8)(flash_data & 0x000000FF);
1849                         } else if (size == 2) {
1850                                 *data = (u16)(flash_data & 0x0000FFFF);
1851                         }
1852                         break;
1853                 } else {
1854                         /*
1855                          * If we've gotten here, then things are probably
1856                          * completely hosed, but if the error condition is
1857                          * detected, it won't hurt to give it another try...
1858                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1859                          */
1860                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1861                         if (hsfsts.hsf_status.flcerr == 1) {
1862                                 /* Repeat for some time before giving up. */
1863                                 continue;
1864                         } else if (hsfsts.hsf_status.flcdone == 0) {
1865                                 e_dbg("Timeout error - flash cycle "
1866                                          "did not complete.\n");
1867                                 break;
1868                         }
1869                 }
1870         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1871
1872         return ret_val;
1873 }
1874
1875 /**
1876  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
1877  *  @hw: pointer to the HW structure
1878  *  @offset: The offset (in bytes) of the word(s) to write.
1879  *  @words: Size of data to write in words
1880  *  @data: Pointer to the word(s) to write at offset.
1881  *
1882  *  Writes a byte or word to the NVM using the flash access registers.
1883  **/
1884 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1885                                    u16 *data)
1886 {
1887         struct e1000_nvm_info *nvm = &hw->nvm;
1888         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1889         u16 i;
1890
1891         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1892             (words == 0)) {
1893                 e_dbg("nvm parameter(s) out of bounds\n");
1894                 return -E1000_ERR_NVM;
1895         }
1896
1897         nvm->ops.acquire(hw);
1898
1899         for (i = 0; i < words; i++) {
1900                 dev_spec->shadow_ram[offset+i].modified = true;
1901                 dev_spec->shadow_ram[offset+i].value = data[i];
1902         }
1903
1904         nvm->ops.release(hw);
1905
1906         return 0;
1907 }
1908
1909 /**
1910  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1911  *  @hw: pointer to the HW structure
1912  *
1913  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
1914  *  which writes the checksum to the shadow ram.  The changes in the shadow
1915  *  ram are then committed to the EEPROM by processing each bank at a time
1916  *  checking for the modified bit and writing only the pending changes.
1917  *  After a successful commit, the shadow ram is cleared and is ready for
1918  *  future writes.
1919  **/
1920 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1921 {
1922         struct e1000_nvm_info *nvm = &hw->nvm;
1923         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1924         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
1925         s32 ret_val;
1926         u16 data;
1927
1928         ret_val = e1000e_update_nvm_checksum_generic(hw);
1929         if (ret_val)
1930                 goto out;
1931
1932         if (nvm->type != e1000_nvm_flash_sw)
1933                 goto out;
1934
1935         nvm->ops.acquire(hw);
1936
1937         /*
1938          * We're writing to the opposite bank so if we're on bank 1,
1939          * write to bank 0 etc.  We also need to erase the segment that
1940          * is going to be written
1941          */
1942         ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1943         if (ret_val) {
1944                 e_dbg("Could not detect valid bank, assuming bank 0\n");
1945                 bank = 0;
1946         }
1947
1948         if (bank == 0) {
1949                 new_bank_offset = nvm->flash_bank_size;
1950                 old_bank_offset = 0;
1951                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
1952                 if (ret_val)
1953                         goto release;
1954         } else {
1955                 old_bank_offset = nvm->flash_bank_size;
1956                 new_bank_offset = 0;
1957                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
1958                 if (ret_val)
1959                         goto release;
1960         }
1961
1962         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1963                 /*
1964                  * Determine whether to write the value stored
1965                  * in the other NVM bank or a modified value stored
1966                  * in the shadow RAM
1967                  */
1968                 if (dev_spec->shadow_ram[i].modified) {
1969                         data = dev_spec->shadow_ram[i].value;
1970                 } else {
1971                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
1972                                                                 old_bank_offset,
1973                                                                 &data);
1974                         if (ret_val)
1975                                 break;
1976                 }
1977
1978                 /*
1979                  * If the word is 0x13, then make sure the signature bits
1980                  * (15:14) are 11b until the commit has completed.
1981                  * This will allow us to write 10b which indicates the
1982                  * signature is valid.  We want to do this after the write
1983                  * has completed so that we don't mark the segment valid
1984                  * while the write is still in progress
1985                  */
1986                 if (i == E1000_ICH_NVM_SIG_WORD)
1987                         data |= E1000_ICH_NVM_SIG_MASK;
1988
1989                 /* Convert offset to bytes. */
1990                 act_offset = (i + new_bank_offset) << 1;
1991
1992                 udelay(100);
1993                 /* Write the bytes to the new bank. */
1994                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1995                                                                act_offset,
1996                                                                (u8)data);
1997                 if (ret_val)
1998                         break;
1999
2000                 udelay(100);
2001                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2002                                                           act_offset + 1,
2003                                                           (u8)(data >> 8));
2004                 if (ret_val)
2005                         break;
2006         }
2007
2008         /*
2009          * Don't bother writing the segment valid bits if sector
2010          * programming failed.
2011          */
2012         if (ret_val) {
2013                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2014                 e_dbg("Flash commit failed.\n");
2015                 goto release;
2016         }
2017
2018         /*
2019          * Finally validate the new segment by setting bit 15:14
2020          * to 10b in word 0x13 , this can be done without an
2021          * erase as well since these bits are 11 to start with
2022          * and we need to change bit 14 to 0b
2023          */
2024         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2025         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2026         if (ret_val)
2027                 goto release;
2028
2029         data &= 0xBFFF;
2030         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2031                                                        act_offset * 2 + 1,
2032                                                        (u8)(data >> 8));
2033         if (ret_val)
2034                 goto release;
2035
2036         /*
2037          * And invalidate the previously valid segment by setting
2038          * its signature word (0x13) high_byte to 0b. This can be
2039          * done without an erase because flash erase sets all bits
2040          * to 1's. We can write 1's to 0's without an erase
2041          */
2042         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2043         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2044         if (ret_val)
2045                 goto release;
2046
2047         /* Great!  Everything worked, we can now clear the cached entries. */
2048         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2049                 dev_spec->shadow_ram[i].modified = false;
2050                 dev_spec->shadow_ram[i].value = 0xFFFF;
2051         }
2052
2053 release:
2054         nvm->ops.release(hw);
2055
2056         /*
2057          * Reload the EEPROM, or else modifications will not appear
2058          * until after the next adapter reset.
2059          */
2060         if (!ret_val) {
2061                 e1000e_reload_nvm(hw);
2062                 msleep(10);
2063         }
2064
2065 out:
2066         if (ret_val)
2067                 e_dbg("NVM update error: %d\n", ret_val);
2068
2069         return ret_val;
2070 }
2071
2072 /**
2073  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2074  *  @hw: pointer to the HW structure
2075  *
2076  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2077  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
2078  *  calculated, in which case we need to calculate the checksum and set bit 6.
2079  **/
2080 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2081 {
2082         s32 ret_val;
2083         u16 data;
2084
2085         /*
2086          * Read 0x19 and check bit 6.  If this bit is 0, the checksum
2087          * needs to be fixed.  This bit is an indication that the NVM
2088          * was prepared by OEM software and did not calculate the
2089          * checksum...a likely scenario.
2090          */
2091         ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2092         if (ret_val)
2093                 return ret_val;
2094
2095         if ((data & 0x40) == 0) {
2096                 data |= 0x40;
2097                 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2098                 if (ret_val)
2099                         return ret_val;
2100                 ret_val = e1000e_update_nvm_checksum(hw);
2101                 if (ret_val)
2102                         return ret_val;
2103         }
2104
2105         return e1000e_validate_nvm_checksum_generic(hw);
2106 }
2107
2108 /**
2109  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2110  *  @hw: pointer to the HW structure
2111  *
2112  *  To prevent malicious write/erase of the NVM, set it to be read-only
2113  *  so that the hardware ignores all write/erase cycles of the NVM via
2114  *  the flash control registers.  The shadow-ram copy of the NVM will
2115  *  still be updated, however any updates to this copy will not stick
2116  *  across driver reloads.
2117  **/
2118 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2119 {
2120         struct e1000_nvm_info *nvm = &hw->nvm;
2121         union ich8_flash_protected_range pr0;
2122         union ich8_hws_flash_status hsfsts;
2123         u32 gfpreg;
2124
2125         nvm->ops.acquire(hw);
2126
2127         gfpreg = er32flash(ICH_FLASH_GFPREG);
2128
2129         /* Write-protect GbE Sector of NVM */
2130         pr0.regval = er32flash(ICH_FLASH_PR0);
2131         pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2132         pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2133         pr0.range.wpe = true;
2134         ew32flash(ICH_FLASH_PR0, pr0.regval);
2135
2136         /*
2137          * Lock down a subset of GbE Flash Control Registers, e.g.
2138          * PR0 to prevent the write-protection from being lifted.
2139          * Once FLOCKDN is set, the registers protected by it cannot
2140          * be written until FLOCKDN is cleared by a hardware reset.
2141          */
2142         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2143         hsfsts.hsf_status.flockdn = true;
2144         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2145
2146         nvm->ops.release(hw);
2147 }
2148
2149 /**
2150  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2151  *  @hw: pointer to the HW structure
2152  *  @offset: The offset (in bytes) of the byte/word to read.
2153  *  @size: Size of data to read, 1=byte 2=word
2154  *  @data: The byte(s) to write to the NVM.
2155  *
2156  *  Writes one/two bytes to the NVM using the flash access registers.
2157  **/
2158 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2159                                           u8 size, u16 data)
2160 {
2161         union ich8_hws_flash_status hsfsts;
2162         union ich8_hws_flash_ctrl hsflctl;
2163         u32 flash_linear_addr;
2164         u32 flash_data = 0;
2165         s32 ret_val;
2166         u8 count = 0;
2167
2168         if (size < 1 || size > 2 || data > size * 0xff ||
2169             offset > ICH_FLASH_LINEAR_ADDR_MASK)
2170                 return -E1000_ERR_NVM;
2171
2172         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2173                             hw->nvm.flash_base_addr;
2174
2175         do {
2176                 udelay(1);
2177                 /* Steps */
2178                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2179                 if (ret_val)
2180                         break;
2181
2182                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2183                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2184                 hsflctl.hsf_ctrl.fldbcount = size -1;
2185                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2186                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2187
2188                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2189
2190                 if (size == 1)
2191                         flash_data = (u32)data & 0x00FF;
2192                 else
2193                         flash_data = (u32)data;
2194
2195                 ew32flash(ICH_FLASH_FDATA0, flash_data);
2196
2197                 /*
2198                  * check if FCERR is set to 1 , if set to 1, clear it
2199                  * and try the whole sequence a few more times else done
2200                  */
2201                 ret_val = e1000_flash_cycle_ich8lan(hw,
2202                                                ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2203                 if (!ret_val)
2204                         break;
2205
2206                 /*
2207                  * If we're here, then things are most likely
2208                  * completely hosed, but if the error condition
2209                  * is detected, it won't hurt to give it another
2210                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2211                  */
2212                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2213                 if (hsfsts.hsf_status.flcerr == 1)
2214                         /* Repeat for some time before giving up. */
2215                         continue;
2216                 if (hsfsts.hsf_status.flcdone == 0) {
2217                         e_dbg("Timeout error - flash cycle "
2218                                  "did not complete.");
2219                         break;
2220                 }
2221         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2222
2223         return ret_val;
2224 }
2225
2226 /**
2227  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2228  *  @hw: pointer to the HW structure
2229  *  @offset: The index of the byte to read.
2230  *  @data: The byte to write to the NVM.
2231  *
2232  *  Writes a single byte to the NVM using the flash access registers.
2233  **/
2234 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2235                                           u8 data)
2236 {
2237         u16 word = (u16)data;
2238
2239         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2240 }
2241
2242 /**
2243  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2244  *  @hw: pointer to the HW structure
2245  *  @offset: The offset of the byte to write.
2246  *  @byte: The byte to write to the NVM.
2247  *
2248  *  Writes a single byte to the NVM using the flash access registers.
2249  *  Goes through a retry algorithm before giving up.
2250  **/
2251 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2252                                                 u32 offset, u8 byte)
2253 {
2254         s32 ret_val;
2255         u16 program_retries;
2256
2257         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2258         if (!ret_val)
2259                 return ret_val;
2260
2261         for (program_retries = 0; program_retries < 100; program_retries++) {
2262                 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
2263                 udelay(100);
2264                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2265                 if (!ret_val)
2266                         break;
2267         }
2268         if (program_retries == 100)
2269                 return -E1000_ERR_NVM;
2270
2271         return 0;
2272 }
2273
2274 /**
2275  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2276  *  @hw: pointer to the HW structure
2277  *  @bank: 0 for first bank, 1 for second bank, etc.
2278  *
2279  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2280  *  bank N is 4096 * N + flash_reg_addr.
2281  **/
2282 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2283 {
2284         struct e1000_nvm_info *nvm = &hw->nvm;
2285         union ich8_hws_flash_status hsfsts;
2286         union ich8_hws_flash_ctrl hsflctl;
2287         u32 flash_linear_addr;
2288         /* bank size is in 16bit words - adjust to bytes */
2289         u32 flash_bank_size = nvm->flash_bank_size * 2;
2290         s32 ret_val;
2291         s32 count = 0;
2292         s32 j, iteration, sector_size;
2293
2294         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2295
2296         /*
2297          * Determine HW Sector size: Read BERASE bits of hw flash status
2298          * register
2299          * 00: The Hw sector is 256 bytes, hence we need to erase 16
2300          *     consecutive sectors.  The start index for the nth Hw sector
2301          *     can be calculated as = bank * 4096 + n * 256
2302          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2303          *     The start index for the nth Hw sector can be calculated
2304          *     as = bank * 4096
2305          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2306          *     (ich9 only, otherwise error condition)
2307          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2308          */
2309         switch (hsfsts.hsf_status.berasesz) {
2310         case 0:
2311                 /* Hw sector size 256 */
2312                 sector_size = ICH_FLASH_SEG_SIZE_256;
2313                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2314                 break;
2315         case 1:
2316                 sector_size = ICH_FLASH_SEG_SIZE_4K;
2317                 iteration = 1;
2318                 break;
2319         case 2:
2320                 sector_size = ICH_FLASH_SEG_SIZE_8K;
2321                 iteration = 1;
2322                 break;
2323         case 3:
2324                 sector_size = ICH_FLASH_SEG_SIZE_64K;
2325                 iteration = 1;
2326                 break;
2327         default:
2328                 return -E1000_ERR_NVM;
2329         }
2330
2331         /* Start with the base address, then add the sector offset. */
2332         flash_linear_addr = hw->nvm.flash_base_addr;
2333         flash_linear_addr += (bank) ? flash_bank_size : 0;
2334
2335         for (j = 0; j < iteration ; j++) {
2336                 do {
2337                         /* Steps */
2338                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
2339                         if (ret_val)
2340                                 return ret_val;
2341
2342                         /*
2343                          * Write a value 11 (block Erase) in Flash
2344                          * Cycle field in hw flash control
2345                          */
2346                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2347                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2348                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2349
2350                         /*
2351                          * Write the last 24 bits of an index within the
2352                          * block into Flash Linear address field in Flash
2353                          * Address.
2354                          */
2355                         flash_linear_addr += (j * sector_size);
2356                         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2357
2358                         ret_val = e1000_flash_cycle_ich8lan(hw,
2359                                                ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2360                         if (ret_val == 0)
2361                                 break;
2362
2363                         /*
2364                          * Check if FCERR is set to 1.  If 1,
2365                          * clear it and try the whole sequence
2366                          * a few more times else Done
2367                          */
2368                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2369                         if (hsfsts.hsf_status.flcerr == 1)
2370                                 /* repeat for some time before giving up */
2371                                 continue;
2372                         else if (hsfsts.hsf_status.flcdone == 0)
2373                                 return ret_val;
2374                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2375         }
2376
2377         return 0;
2378 }
2379
2380 /**
2381  *  e1000_valid_led_default_ich8lan - Set the default LED settings
2382  *  @hw: pointer to the HW structure
2383  *  @data: Pointer to the LED settings
2384  *
2385  *  Reads the LED default settings from the NVM to data.  If the NVM LED
2386  *  settings is all 0's or F's, set the LED default to a valid LED default
2387  *  setting.
2388  **/
2389 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2390 {
2391         s32 ret_val;
2392
2393         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2394         if (ret_val) {
2395                 e_dbg("NVM Read Error\n");
2396                 return ret_val;
2397         }
2398
2399         if (*data == ID_LED_RESERVED_0000 ||
2400             *data == ID_LED_RESERVED_FFFF)
2401                 *data = ID_LED_DEFAULT_ICH8LAN;
2402
2403         return 0;
2404 }
2405
2406 /**
2407  *  e1000_id_led_init_pchlan - store LED configurations
2408  *  @hw: pointer to the HW structure
2409  *
2410  *  PCH does not control LEDs via the LEDCTL register, rather it uses
2411  *  the PHY LED configuration register.
2412  *
2413  *  PCH also does not have an "always on" or "always off" mode which
2414  *  complicates the ID feature.  Instead of using the "on" mode to indicate
2415  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2416  *  use "link_up" mode.  The LEDs will still ID on request if there is no
2417  *  link based on logic in e1000_led_[on|off]_pchlan().
2418  **/
2419 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2420 {
2421         struct e1000_mac_info *mac = &hw->mac;
2422         s32 ret_val;
2423         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2424         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2425         u16 data, i, temp, shift;
2426
2427         /* Get default ID LED modes */
2428         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2429         if (ret_val)
2430                 goto out;
2431
2432         mac->ledctl_default = er32(LEDCTL);
2433         mac->ledctl_mode1 = mac->ledctl_default;
2434         mac->ledctl_mode2 = mac->ledctl_default;
2435
2436         for (i = 0; i < 4; i++) {
2437                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2438                 shift = (i * 5);
2439                 switch (temp) {
2440                 case ID_LED_ON1_DEF2:
2441                 case ID_LED_ON1_ON2:
2442                 case ID_LED_ON1_OFF2:
2443                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2444                         mac->ledctl_mode1 |= (ledctl_on << shift);
2445                         break;
2446                 case ID_LED_OFF1_DEF2:
2447                 case ID_LED_OFF1_ON2:
2448                 case ID_LED_OFF1_OFF2:
2449                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2450                         mac->ledctl_mode1 |= (ledctl_off << shift);
2451                         break;
2452                 default:
2453                         /* Do nothing */
2454                         break;
2455                 }
2456                 switch (temp) {
2457                 case ID_LED_DEF1_ON2:
2458                 case ID_LED_ON1_ON2:
2459                 case ID_LED_OFF1_ON2:
2460                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2461                         mac->ledctl_mode2 |= (ledctl_on << shift);
2462                         break;
2463                 case ID_LED_DEF1_OFF2:
2464                 case ID_LED_ON1_OFF2:
2465                 case ID_LED_OFF1_OFF2:
2466                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2467                         mac->ledctl_mode2 |= (ledctl_off << shift);
2468                         break;
2469                 default:
2470                         /* Do nothing */
2471                         break;
2472                 }
2473         }
2474
2475 out:
2476         return ret_val;
2477 }
2478
2479 /**
2480  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2481  *  @hw: pointer to the HW structure
2482  *
2483  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2484  *  register, so the the bus width is hard coded.
2485  **/
2486 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
2487 {
2488         struct e1000_bus_info *bus = &hw->bus;
2489         s32 ret_val;
2490
2491         ret_val = e1000e_get_bus_info_pcie(hw);
2492
2493         /*
2494          * ICH devices are "PCI Express"-ish.  They have
2495          * a configuration space, but do not contain
2496          * PCI Express Capability registers, so bus width
2497          * must be hardcoded.
2498          */
2499         if (bus->width == e1000_bus_width_unknown)
2500                 bus->width = e1000_bus_width_pcie_x1;
2501
2502         return ret_val;
2503 }
2504
2505 /**
2506  *  e1000_reset_hw_ich8lan - Reset the hardware
2507  *  @hw: pointer to the HW structure
2508  *
2509  *  Does a full reset of the hardware which includes a reset of the PHY and
2510  *  MAC.
2511  **/
2512 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
2513 {
2514         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2515         u16 reg;
2516         u32 ctrl, icr, kab;
2517         s32 ret_val;
2518
2519         /*
2520          * Prevent the PCI-E bus from sticking if there is no TLP connection
2521          * on the last TLP read/write transaction when MAC is reset.
2522          */
2523         ret_val = e1000e_disable_pcie_master(hw);
2524         if (ret_val)
2525                 e_dbg("PCI-E Master disable polling has failed.\n");
2526
2527         e_dbg("Masking off all interrupts\n");
2528         ew32(IMC, 0xffffffff);
2529
2530         /*
2531          * Disable the Transmit and Receive units.  Then delay to allow
2532          * any pending transactions to complete before we hit the MAC
2533          * with the global reset.
2534          */
2535         ew32(RCTL, 0);
2536         ew32(TCTL, E1000_TCTL_PSP);
2537         e1e_flush();
2538
2539         msleep(10);
2540
2541         /* Workaround for ICH8 bit corruption issue in FIFO memory */
2542         if (hw->mac.type == e1000_ich8lan) {
2543                 /* Set Tx and Rx buffer allocation to 8k apiece. */
2544                 ew32(PBA, E1000_PBA_8K);
2545                 /* Set Packet Buffer Size to 16k. */
2546                 ew32(PBS, E1000_PBS_16K);
2547         }
2548
2549         if (hw->mac.type == e1000_pchlan) {
2550                 /* Save the NVM K1 bit setting*/
2551                 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
2552                 if (ret_val)
2553                         return ret_val;
2554
2555                 if (reg & E1000_NVM_K1_ENABLE)
2556                         dev_spec->nvm_k1_enabled = true;
2557                 else
2558                         dev_spec->nvm_k1_enabled = false;
2559         }
2560
2561         ctrl = er32(CTRL);
2562
2563         if (!e1000_check_reset_block(hw)) {
2564                 /*
2565                  * Full-chip reset requires MAC and PHY reset at the same
2566                  * time to make sure the interface between MAC and the
2567                  * external PHY is reset.
2568                  */
2569                 ctrl |= E1000_CTRL_PHY_RST;
2570         }
2571         ret_val = e1000_acquire_swflag_ich8lan(hw);
2572         e_dbg("Issuing a global reset to ich8lan\n");
2573         ew32(CTRL, (ctrl | E1000_CTRL_RST));
2574         msleep(20);
2575
2576         if (!ret_val)
2577                 e1000_release_swflag_ich8lan(hw);
2578
2579         if (ctrl & E1000_CTRL_PHY_RST) {
2580                 ret_val = hw->phy.ops.get_cfg_done(hw);
2581                 if (ret_val)
2582                         goto out;
2583
2584                 ret_val = e1000_post_phy_reset_ich8lan(hw);
2585                 if (ret_val)
2586                         goto out;
2587         }
2588
2589         /*
2590          * For PCH, this write will make sure that any noise
2591          * will be detected as a CRC error and be dropped rather than show up
2592          * as a bad packet to the DMA engine.
2593          */
2594         if (hw->mac.type == e1000_pchlan)
2595                 ew32(CRC_OFFSET, 0x65656565);
2596
2597         ew32(IMC, 0xffffffff);
2598         icr = er32(ICR);
2599
2600         kab = er32(KABGTXD);
2601         kab |= E1000_KABGTXD_BGSQLBIAS;
2602         ew32(KABGTXD, kab);
2603
2604 out:
2605         return ret_val;
2606 }
2607
2608 /**
2609  *  e1000_init_hw_ich8lan - Initialize the hardware
2610  *  @hw: pointer to the HW structure
2611  *
2612  *  Prepares the hardware for transmit and receive by doing the following:
2613  *   - initialize hardware bits
2614  *   - initialize LED identification
2615  *   - setup receive address registers
2616  *   - setup flow control
2617  *   - setup transmit descriptors
2618  *   - clear statistics
2619  **/
2620 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
2621 {
2622         struct e1000_mac_info *mac = &hw->mac;
2623         u32 ctrl_ext, txdctl, snoop;
2624         s32 ret_val;
2625         u16 i;
2626
2627         e1000_initialize_hw_bits_ich8lan(hw);
2628
2629         /* Initialize identification LED */
2630         ret_val = mac->ops.id_led_init(hw);
2631         if (ret_val)
2632                 e_dbg("Error initializing identification LED\n");
2633                 /* This is not fatal and we should not stop init due to this */
2634
2635         /* Setup the receive address. */
2636         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
2637
2638         /* Zero out the Multicast HASH table */
2639         e_dbg("Zeroing the MTA\n");
2640         for (i = 0; i < mac->mta_reg_count; i++)
2641                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
2642
2643         /*
2644          * The 82578 Rx buffer will stall if wakeup is enabled in host and
2645          * the ME.  Reading the BM_WUC register will clear the host wakeup bit.
2646          * Reset the phy after disabling host wakeup to reset the Rx buffer.
2647          */
2648         if (hw->phy.type == e1000_phy_82578) {
2649                 hw->phy.ops.read_reg(hw, BM_WUC, &i);
2650                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
2651                 if (ret_val)
2652                         return ret_val;
2653         }
2654
2655         /* Setup link and flow control */
2656         ret_val = e1000_setup_link_ich8lan(hw);
2657
2658         /* Set the transmit descriptor write-back policy for both queues */
2659         txdctl = er32(TXDCTL(0));
2660         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2661                  E1000_TXDCTL_FULL_TX_DESC_WB;
2662         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2663                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2664         ew32(TXDCTL(0), txdctl);
2665         txdctl = er32(TXDCTL(1));
2666         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2667                  E1000_TXDCTL_FULL_TX_DESC_WB;
2668         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2669                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2670         ew32(TXDCTL(1), txdctl);
2671
2672         /*
2673          * ICH8 has opposite polarity of no_snoop bits.
2674          * By default, we should use snoop behavior.
2675          */
2676         if (mac->type == e1000_ich8lan)
2677                 snoop = PCIE_ICH8_SNOOP_ALL;
2678         else
2679                 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
2680         e1000e_set_pcie_no_snoop(hw, snoop);
2681
2682         ctrl_ext = er32(CTRL_EXT);
2683         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2684         ew32(CTRL_EXT, ctrl_ext);
2685
2686         /*
2687          * Clear all of the statistics registers (clear on read).  It is
2688          * important that we do this after we have tried to establish link
2689          * because the symbol error count will increment wildly if there
2690          * is no link.
2691          */
2692         e1000_clear_hw_cntrs_ich8lan(hw);
2693
2694         return 0;
2695 }
2696 /**
2697  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
2698  *  @hw: pointer to the HW structure
2699  *
2700  *  Sets/Clears required hardware bits necessary for correctly setting up the
2701  *  hardware for transmit and receive.
2702  **/
2703 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
2704 {
2705         u32 reg;
2706
2707         /* Extended Device Control */
2708         reg = er32(CTRL_EXT);
2709         reg |= (1 << 22);
2710         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
2711         if (hw->mac.type >= e1000_pchlan)
2712                 reg |= E1000_CTRL_EXT_PHYPDEN;
2713         ew32(CTRL_EXT, reg);
2714
2715         /* Transmit Descriptor Control 0 */
2716         reg = er32(TXDCTL(0));
2717         reg |= (1 << 22);
2718         ew32(TXDCTL(0), reg);
2719
2720         /* Transmit Descriptor Control 1 */
2721         reg = er32(TXDCTL(1));
2722         reg |= (1 << 22);
2723         ew32(TXDCTL(1), reg);
2724
2725         /* Transmit Arbitration Control 0 */
2726         reg = er32(TARC(0));
2727         if (hw->mac.type == e1000_ich8lan)
2728                 reg |= (1 << 28) | (1 << 29);
2729         reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
2730         ew32(TARC(0), reg);
2731
2732         /* Transmit Arbitration Control 1 */
2733         reg = er32(TARC(1));
2734         if (er32(TCTL) & E1000_TCTL_MULR)
2735                 reg &= ~(1 << 28);
2736         else
2737                 reg |= (1 << 28);
2738         reg |= (1 << 24) | (1 << 26) | (1 << 30);
2739         ew32(TARC(1), reg);
2740
2741         /* Device Status */
2742         if (hw->mac.type == e1000_ich8lan) {
2743                 reg = er32(STATUS);
2744                 reg &= ~(1 << 31);
2745                 ew32(STATUS, reg);
2746         }
2747
2748         /*
2749          * work-around descriptor data corruption issue during nfs v2 udp
2750          * traffic, just disable the nfs filtering capability
2751          */
2752         reg = er32(RFCTL);
2753         reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
2754         ew32(RFCTL, reg);
2755 }
2756
2757 /**
2758  *  e1000_setup_link_ich8lan - Setup flow control and link settings
2759  *  @hw: pointer to the HW structure
2760  *
2761  *  Determines which flow control settings to use, then configures flow
2762  *  control.  Calls the appropriate media-specific link configuration
2763  *  function.  Assuming the adapter has a valid link partner, a valid link
2764  *  should be established.  Assumes the hardware has previously been reset
2765  *  and the transmitter and receiver are not enabled.
2766  **/
2767 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
2768 {
2769         s32 ret_val;
2770
2771         if (e1000_check_reset_block(hw))
2772                 return 0;
2773
2774         /*
2775          * ICH parts do not have a word in the NVM to determine
2776          * the default flow control setting, so we explicitly
2777          * set it to full.
2778          */
2779         if (hw->fc.requested_mode == e1000_fc_default) {
2780                 /* Workaround h/w hang when Tx flow control enabled */
2781                 if (hw->mac.type == e1000_pchlan)
2782                         hw->fc.requested_mode = e1000_fc_rx_pause;
2783                 else
2784                         hw->fc.requested_mode = e1000_fc_full;
2785         }
2786
2787         /*
2788          * Save off the requested flow control mode for use later.  Depending
2789          * on the link partner's capabilities, we may or may not use this mode.
2790          */
2791         hw->fc.current_mode = hw->fc.requested_mode;
2792
2793         e_dbg("After fix-ups FlowControl is now = %x\n",
2794                 hw->fc.current_mode);
2795
2796         /* Continue to configure the copper link. */
2797         ret_val = e1000_setup_copper_link_ich8lan(hw);
2798         if (ret_val)
2799                 return ret_val;
2800
2801         ew32(FCTTV, hw->fc.pause_time);
2802         if ((hw->phy.type == e1000_phy_82578) ||
2803             (hw->phy.type == e1000_phy_82577)) {
2804                 ew32(FCRTV_PCH, hw->fc.refresh_time);
2805
2806                 ret_val = hw->phy.ops.write_reg(hw,
2807                                              PHY_REG(BM_PORT_CTRL_PAGE, 27),
2808                                              hw->fc.pause_time);
2809                 if (ret_val)
2810                         return ret_val;
2811         }
2812
2813         return e1000e_set_fc_watermarks(hw);
2814 }
2815
2816 /**
2817  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2818  *  @hw: pointer to the HW structure
2819  *
2820  *  Configures the kumeran interface to the PHY to wait the appropriate time
2821  *  when polling the PHY, then call the generic setup_copper_link to finish
2822  *  configuring the copper link.
2823  **/
2824 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
2825 {
2826         u32 ctrl;
2827         s32 ret_val;
2828         u16 reg_data;
2829
2830         ctrl = er32(CTRL);
2831         ctrl |= E1000_CTRL_SLU;
2832         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2833         ew32(CTRL, ctrl);
2834
2835         /*
2836          * Set the mac to wait the maximum time between each iteration
2837          * and increase the max iterations when polling the phy;
2838          * this fixes erroneous timeouts at 10Mbps.
2839          */
2840         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
2841         if (ret_val)
2842                 return ret_val;
2843         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
2844                                        &reg_data);
2845         if (ret_val)
2846                 return ret_val;
2847         reg_data |= 0x3F;
2848         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
2849                                         reg_data);
2850         if (ret_val)
2851                 return ret_val;
2852
2853         switch (hw->phy.type) {
2854         case e1000_phy_igp_3:
2855                 ret_val = e1000e_copper_link_setup_igp(hw);
2856                 if (ret_val)
2857                         return ret_val;
2858                 break;
2859         case e1000_phy_bm:
2860         case e1000_phy_82578:
2861                 ret_val = e1000e_copper_link_setup_m88(hw);
2862                 if (ret_val)
2863                         return ret_val;
2864                 break;
2865         case e1000_phy_82577:
2866                 ret_val = e1000_copper_link_setup_82577(hw);
2867                 if (ret_val)
2868                         return ret_val;
2869                 break;
2870         case e1000_phy_ife:
2871                 ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
2872                                                &reg_data);
2873                 if (ret_val)
2874                         return ret_val;
2875
2876                 reg_data &= ~IFE_PMC_AUTO_MDIX;
2877
2878                 switch (hw->phy.mdix) {
2879                 case 1:
2880                         reg_data &= ~IFE_PMC_FORCE_MDIX;
2881                         break;
2882                 case 2:
2883                         reg_data |= IFE_PMC_FORCE_MDIX;
2884                         break;
2885                 case 0:
2886                 default:
2887                         reg_data |= IFE_PMC_AUTO_MDIX;
2888                         break;
2889                 }
2890                 ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
2891                                                 reg_data);
2892                 if (ret_val)
2893                         return ret_val;
2894                 break;
2895         default:
2896                 break;
2897         }
2898         return e1000e_setup_copper_link(hw);
2899 }
2900
2901 /**
2902  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2903  *  @hw: pointer to the HW structure
2904  *  @speed: pointer to store current link speed
2905  *  @duplex: pointer to store the current link duplex
2906  *
2907  *  Calls the generic get_speed_and_duplex to retrieve the current link
2908  *  information and then calls the Kumeran lock loss workaround for links at
2909  *  gigabit speeds.
2910  **/
2911 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
2912                                           u16 *duplex)
2913 {
2914         s32 ret_val;
2915
2916         ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
2917         if (ret_val)
2918                 return ret_val;
2919
2920         if ((hw->mac.type == e1000_ich8lan) &&
2921             (hw->phy.type == e1000_phy_igp_3) &&
2922             (*speed == SPEED_1000)) {
2923                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
2924         }
2925
2926         return ret_val;
2927 }
2928
2929 /**
2930  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
2931  *  @hw: pointer to the HW structure
2932  *
2933  *  Work-around for 82566 Kumeran PCS lock loss:
2934  *  On link status change (i.e. PCI reset, speed change) and link is up and
2935  *  speed is gigabit-
2936  *    0) if workaround is optionally disabled do nothing
2937  *    1) wait 1ms for Kumeran link to come up
2938  *    2) check Kumeran Diagnostic register PCS lock loss bit
2939  *    3) if not set the link is locked (all is good), otherwise...
2940  *    4) reset the PHY
2941  *    5) repeat up to 10 times
2942  *  Note: this is only called for IGP3 copper when speed is 1gb.
2943  **/
2944 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
2945 {
2946         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2947         u32 phy_ctrl;
2948         s32 ret_val;
2949         u16 i, data;
2950         bool link;
2951
2952         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
2953                 return 0;
2954
2955         /*
2956          * Make sure link is up before proceeding.  If not just return.
2957          * Attempting this while link is negotiating fouled up link
2958          * stability
2959          */
2960         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2961         if (!link)
2962                 return 0;
2963
2964         for (i = 0; i < 10; i++) {
2965                 /* read once to clear */
2966                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2967                 if (ret_val)
2968                         return ret_val;
2969                 /* and again to get new status */
2970                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2971                 if (ret_val)
2972                         return ret_val;
2973
2974                 /* check for PCS lock */
2975                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
2976                         return 0;
2977
2978                 /* Issue PHY reset */
2979                 e1000_phy_hw_reset(hw);
2980                 mdelay(5);
2981         }
2982         /* Disable GigE link negotiation */
2983         phy_ctrl = er32(PHY_CTRL);
2984         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
2985                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2986         ew32(PHY_CTRL, phy_ctrl);
2987
2988         /*
2989          * Call gig speed drop workaround on Gig disable before accessing
2990          * any PHY registers
2991          */
2992         e1000e_gig_downshift_workaround_ich8lan(hw);
2993
2994         /* unable to acquire PCS lock */
2995         return -E1000_ERR_PHY;
2996 }
2997
2998 /**
2999  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3000  *  @hw: pointer to the HW structure
3001  *  @state: boolean value used to set the current Kumeran workaround state
3002  *
3003  *  If ICH8, set the current Kumeran workaround state (enabled - true
3004  *  /disabled - false).
3005  **/
3006 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3007                                                  bool state)
3008 {
3009         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3010
3011         if (hw->mac.type != e1000_ich8lan) {
3012                 e_dbg("Workaround applies to ICH8 only.\n");
3013                 return;
3014         }
3015
3016         dev_spec->kmrn_lock_loss_workaround_enabled = state;
3017 }
3018
3019 /**
3020  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3021  *  @hw: pointer to the HW structure
3022  *
3023  *  Workaround for 82566 power-down on D3 entry:
3024  *    1) disable gigabit link
3025  *    2) write VR power-down enable
3026  *    3) read it back
3027  *  Continue if successful, else issue LCD reset and repeat
3028  **/
3029 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3030 {
3031         u32 reg;
3032         u16 data;
3033         u8  retry = 0;
3034
3035         if (hw->phy.type != e1000_phy_igp_3)
3036                 return;
3037
3038         /* Try the workaround twice (if needed) */
3039         do {
3040                 /* Disable link */
3041                 reg = er32(PHY_CTRL);
3042                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3043                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3044                 ew32(PHY_CTRL, reg);
3045
3046                 /*
3047                  * Call gig speed drop workaround on Gig disable before
3048                  * accessing any PHY registers
3049                  */
3050                 if (hw->mac.type == e1000_ich8lan)
3051                         e1000e_gig_downshift_workaround_ich8lan(hw);
3052
3053                 /* Write VR power-down enable */
3054                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3055                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3056                 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3057
3058                 /* Read it back and test */
3059                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3060                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3061                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3062                         break;
3063
3064                 /* Issue PHY reset and repeat at most one more time */
3065                 reg = er32(CTRL);
3066                 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3067                 retry++;
3068         } while (retry);
3069 }
3070
3071 /**
3072  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3073  *  @hw: pointer to the HW structure
3074  *
3075  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3076  *  LPLU, Gig disable, MDIC PHY reset):
3077  *    1) Set Kumeran Near-end loopback
3078  *    2) Clear Kumeran Near-end loopback
3079  *  Should only be called for ICH8[m] devices with IGP_3 Phy.
3080  **/
3081 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3082 {
3083         s32 ret_val;
3084         u16 reg_data;
3085
3086         if ((hw->mac.type != e1000_ich8lan) ||
3087             (hw->phy.type != e1000_phy_igp_3))
3088                 return;
3089
3090         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3091                                       &reg_data);
3092         if (ret_val)
3093                 return;
3094         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3095         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3096                                        reg_data);
3097         if (ret_val)
3098                 return;
3099         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3100         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3101                                        reg_data);
3102 }
3103
3104 /**
3105  *  e1000e_disable_gig_wol_ich8lan - disable gig during WoL
3106  *  @hw: pointer to the HW structure
3107  *
3108  *  During S0 to Sx transition, it is possible the link remains at gig
3109  *  instead of negotiating to a lower speed.  Before going to Sx, set
3110  *  'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3111  *  to a lower speed.
3112  *
3113  *  Should only be called for applicable parts.
3114  **/
3115 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
3116 {
3117         u32 phy_ctrl;
3118
3119         switch (hw->mac.type) {
3120         case e1000_ich8lan:
3121         case e1000_ich9lan:
3122         case e1000_ich10lan:
3123         case e1000_pchlan:
3124                 phy_ctrl = er32(PHY_CTRL);
3125                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
3126                             E1000_PHY_CTRL_GBE_DISABLE;
3127                 ew32(PHY_CTRL, phy_ctrl);
3128
3129                 if (hw->mac.type == e1000_pchlan)
3130                         e1000_phy_hw_reset_ich8lan(hw);
3131         default:
3132                 break;
3133         }
3134 }
3135
3136 /**
3137  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
3138  *  @hw: pointer to the HW structure
3139  *
3140  *  Return the LED back to the default configuration.
3141  **/
3142 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3143 {
3144         if (hw->phy.type == e1000_phy_ife)
3145                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3146
3147         ew32(LEDCTL, hw->mac.ledctl_default);
3148         return 0;
3149 }
3150
3151 /**
3152  *  e1000_led_on_ich8lan - Turn LEDs on
3153  *  @hw: pointer to the HW structure
3154  *
3155  *  Turn on the LEDs.
3156  **/
3157 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3158 {
3159         if (hw->phy.type == e1000_phy_ife)
3160                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3161                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3162
3163         ew32(LEDCTL, hw->mac.ledctl_mode2);
3164         return 0;
3165 }
3166
3167 /**
3168  *  e1000_led_off_ich8lan - Turn LEDs off
3169  *  @hw: pointer to the HW structure
3170  *
3171  *  Turn off the LEDs.
3172  **/
3173 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3174 {
3175         if (hw->phy.type == e1000_phy_ife)
3176                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3177                                (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
3178
3179         ew32(LEDCTL, hw->mac.ledctl_mode1);
3180         return 0;
3181 }
3182
3183 /**
3184  *  e1000_setup_led_pchlan - Configures SW controllable LED
3185  *  @hw: pointer to the HW structure
3186  *
3187  *  This prepares the SW controllable LED for use.
3188  **/
3189 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3190 {
3191         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
3192                                         (u16)hw->mac.ledctl_mode1);
3193 }
3194
3195 /**
3196  *  e1000_cleanup_led_pchlan - Restore the default LED operation
3197  *  @hw: pointer to the HW structure
3198  *
3199  *  Return the LED back to the default configuration.
3200  **/
3201 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3202 {
3203         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
3204                                         (u16)hw->mac.ledctl_default);
3205 }
3206
3207 /**
3208  *  e1000_led_on_pchlan - Turn LEDs on
3209  *  @hw: pointer to the HW structure
3210  *
3211  *  Turn on the LEDs.
3212  **/
3213 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3214 {
3215         u16 data = (u16)hw->mac.ledctl_mode2;
3216         u32 i, led;
3217
3218         /*
3219          * If no link, then turn LED on by setting the invert bit
3220          * for each LED that's mode is "link_up" in ledctl_mode2.
3221          */
3222         if (!(er32(STATUS) & E1000_STATUS_LU)) {
3223                 for (i = 0; i < 3; i++) {
3224                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3225                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
3226                             E1000_LEDCTL_MODE_LINK_UP)
3227                                 continue;
3228                         if (led & E1000_PHY_LED0_IVRT)
3229                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3230                         else
3231                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3232                 }
3233         }
3234
3235         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
3236 }
3237
3238 /**
3239  *  e1000_led_off_pchlan - Turn LEDs off
3240  *  @hw: pointer to the HW structure
3241  *
3242  *  Turn off the LEDs.
3243  **/
3244 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3245 {
3246         u16 data = (u16)hw->mac.ledctl_mode1;
3247         u32 i, led;
3248
3249         /*
3250          * If no link, then turn LED off by clearing the invert bit
3251          * for each LED that's mode is "link_up" in ledctl_mode1.
3252          */
3253         if (!(er32(STATUS) & E1000_STATUS_LU)) {
3254                 for (i = 0; i < 3; i++) {
3255                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3256                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
3257                             E1000_LEDCTL_MODE_LINK_UP)
3258                                 continue;
3259                         if (led & E1000_PHY_LED0_IVRT)
3260                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3261                         else
3262                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3263                 }
3264         }
3265
3266         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
3267 }
3268
3269 /**
3270  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
3271  *  @hw: pointer to the HW structure
3272  *
3273  *  Read appropriate register for the config done bit for completion status
3274  *  and configure the PHY through s/w for EEPROM-less parts.
3275  *
3276  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
3277  *  config done bit, so only an error is logged and continues.  If we were
3278  *  to return with error, EEPROM-less silicon would not be able to be reset
3279  *  or change link.
3280  **/
3281 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3282 {
3283         s32 ret_val = 0;
3284         u32 bank = 0;
3285         u32 status;
3286
3287         e1000e_get_cfg_done(hw);
3288
3289         /* Wait for indication from h/w that it has completed basic config */
3290         if (hw->mac.type >= e1000_ich10lan) {
3291                 e1000_lan_init_done_ich8lan(hw);
3292         } else {
3293                 ret_val = e1000e_get_auto_rd_done(hw);
3294                 if (ret_val) {
3295                         /*
3296                          * When auto config read does not complete, do not
3297                          * return with an error. This can happen in situations
3298                          * where there is no eeprom and prevents getting link.
3299                          */
3300                         e_dbg("Auto Read Done did not complete\n");
3301                         ret_val = 0;
3302                 }
3303         }
3304
3305         /* Clear PHY Reset Asserted bit */
3306         status = er32(STATUS);
3307         if (status & E1000_STATUS_PHYRA)
3308                 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3309         else
3310                 e_dbg("PHY Reset Asserted not set - needs delay\n");
3311
3312         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3313         if (hw->mac.type <= e1000_ich9lan) {
3314                 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3315                     (hw->phy.type == e1000_phy_igp_3)) {
3316                         e1000e_phy_init_script_igp3(hw);
3317                 }
3318         } else {
3319                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3320                         /* Maybe we should do a basic PHY config */
3321                         e_dbg("EEPROM not present\n");
3322                         ret_val = -E1000_ERR_CONFIG;
3323                 }
3324         }
3325
3326         return ret_val;
3327 }
3328
3329 /**
3330  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3331  * @hw: pointer to the HW structure
3332  *
3333  * In the case of a PHY power down to save power, or to turn off link during a
3334  * driver unload, or wake on lan is not enabled, remove the link.
3335  **/
3336 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
3337 {
3338         /* If the management interface is not enabled, then power down */
3339         if (!(hw->mac.ops.check_mng_mode(hw) ||
3340               hw->phy.ops.check_reset_block(hw)))
3341                 e1000_power_down_phy_copper(hw);
3342 }
3343
3344 /**
3345  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3346  *  @hw: pointer to the HW structure
3347  *
3348  *  Clears hardware counters specific to the silicon family and calls
3349  *  clear_hw_cntrs_generic to clear all general purpose counters.
3350  **/
3351 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3352 {
3353         u16 phy_data;
3354
3355         e1000e_clear_hw_cntrs_base(hw);
3356
3357         er32(ALGNERRC);
3358         er32(RXERRC);
3359         er32(TNCRS);
3360         er32(CEXTERR);
3361         er32(TSCTC);
3362         er32(TSCTFC);
3363
3364         er32(MGTPRC);
3365         er32(MGTPDC);
3366         er32(MGTPTC);
3367
3368         er32(IAC);
3369         er32(ICRXOC);
3370
3371         /* Clear PHY statistics registers */
3372         if ((hw->phy.type == e1000_phy_82578) ||
3373             (hw->phy.type == e1000_phy_82577)) {
3374                 hw->phy.ops.read_reg(hw, HV_SCC_UPPER, &phy_data);
3375                 hw->phy.ops.read_reg(hw, HV_SCC_LOWER, &phy_data);
3376                 hw->phy.ops.read_reg(hw, HV_ECOL_UPPER, &phy_data);
3377                 hw->phy.ops.read_reg(hw, HV_ECOL_LOWER, &phy_data);
3378                 hw->phy.ops.read_reg(hw, HV_MCC_UPPER, &phy_data);
3379                 hw->phy.ops.read_reg(hw, HV_MCC_LOWER, &phy_data);
3380                 hw->phy.ops.read_reg(hw, HV_LATECOL_UPPER, &phy_data);
3381                 hw->phy.ops.read_reg(hw, HV_LATECOL_LOWER, &phy_data);
3382                 hw->phy.ops.read_reg(hw, HV_COLC_UPPER, &phy_data);
3383                 hw->phy.ops.read_reg(hw, HV_COLC_LOWER, &phy_data);
3384                 hw->phy.ops.read_reg(hw, HV_DC_UPPER, &phy_data);
3385                 hw->phy.ops.read_reg(hw, HV_DC_LOWER, &phy_data);
3386                 hw->phy.ops.read_reg(hw, HV_TNCRS_UPPER, &phy_data);
3387                 hw->phy.ops.read_reg(hw, HV_TNCRS_LOWER, &phy_data);
3388         }
3389 }
3390
3391 static struct e1000_mac_operations ich8_mac_ops = {
3392         .id_led_init            = e1000e_id_led_init,
3393         .check_mng_mode         = e1000_check_mng_mode_ich8lan,
3394         .check_for_link         = e1000_check_for_copper_link_ich8lan,
3395         /* cleanup_led dependent on mac type */
3396         .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
3397         .get_bus_info           = e1000_get_bus_info_ich8lan,
3398         .set_lan_id             = e1000_set_lan_id_single_port,
3399         .get_link_up_info       = e1000_get_link_up_info_ich8lan,
3400         /* led_on dependent on mac type */
3401         /* led_off dependent on mac type */
3402         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
3403         .reset_hw               = e1000_reset_hw_ich8lan,
3404         .init_hw                = e1000_init_hw_ich8lan,
3405         .setup_link             = e1000_setup_link_ich8lan,
3406         .setup_physical_interface= e1000_setup_copper_link_ich8lan,
3407         /* id_led_init dependent on mac type */
3408 };
3409
3410 static struct e1000_phy_operations ich8_phy_ops = {
3411         .acquire                = e1000_acquire_swflag_ich8lan,
3412         .check_reset_block      = e1000_check_reset_block_ich8lan,
3413         .commit                 = NULL,
3414         .get_cfg_done           = e1000_get_cfg_done_ich8lan,
3415         .get_cable_length       = e1000e_get_cable_length_igp_2,
3416         .read_reg               = e1000e_read_phy_reg_igp,
3417         .release                = e1000_release_swflag_ich8lan,
3418         .reset                  = e1000_phy_hw_reset_ich8lan,
3419         .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
3420         .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
3421         .write_reg              = e1000e_write_phy_reg_igp,
3422 };
3423
3424 static struct e1000_nvm_operations ich8_nvm_ops = {
3425         .acquire                = e1000_acquire_nvm_ich8lan,
3426         .read                   = e1000_read_nvm_ich8lan,
3427         .release                = e1000_release_nvm_ich8lan,
3428         .update                 = e1000_update_nvm_checksum_ich8lan,
3429         .valid_led_default      = e1000_valid_led_default_ich8lan,
3430         .validate               = e1000_validate_nvm_checksum_ich8lan,
3431         .write                  = e1000_write_nvm_ich8lan,
3432 };
3433
3434 struct e1000_info e1000_ich8_info = {
3435         .mac                    = e1000_ich8lan,
3436         .flags                  = FLAG_HAS_WOL
3437                                   | FLAG_IS_ICH
3438                                   | FLAG_RX_CSUM_ENABLED
3439                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3440                                   | FLAG_HAS_AMT
3441                                   | FLAG_HAS_FLASH
3442                                   | FLAG_APME_IN_WUC,
3443         .pba                    = 8,
3444         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
3445         .get_variants           = e1000_get_variants_ich8lan,
3446         .mac_ops                = &ich8_mac_ops,
3447         .phy_ops                = &ich8_phy_ops,
3448         .nvm_ops                = &ich8_nvm_ops,
3449 };
3450
3451 struct e1000_info e1000_ich9_info = {
3452         .mac                    = e1000_ich9lan,
3453         .flags                  = FLAG_HAS_JUMBO_FRAMES
3454                                   | FLAG_IS_ICH
3455                                   | FLAG_HAS_WOL
3456                                   | FLAG_RX_CSUM_ENABLED
3457                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3458                                   | FLAG_HAS_AMT
3459                                   | FLAG_HAS_ERT
3460                                   | FLAG_HAS_FLASH
3461                                   | FLAG_APME_IN_WUC,
3462         .pba                    = 10,
3463         .max_hw_frame_size      = DEFAULT_JUMBO,
3464         .get_variants           = e1000_get_variants_ich8lan,
3465         .mac_ops                = &ich8_mac_ops,
3466         .phy_ops                = &ich8_phy_ops,
3467         .nvm_ops                = &ich8_nvm_ops,
3468 };
3469
3470 struct e1000_info e1000_ich10_info = {
3471         .mac                    = e1000_ich10lan,
3472         .flags                  = FLAG_HAS_JUMBO_FRAMES
3473                                   | FLAG_IS_ICH
3474                                   | FLAG_HAS_WOL
3475                                   | FLAG_RX_CSUM_ENABLED
3476                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3477                                   | FLAG_HAS_AMT
3478                                   | FLAG_HAS_ERT
3479                                   | FLAG_HAS_FLASH
3480                                   | FLAG_APME_IN_WUC,
3481         .pba                    = 10,
3482         .max_hw_frame_size      = DEFAULT_JUMBO,
3483         .get_variants           = e1000_get_variants_ich8lan,
3484         .mac_ops                = &ich8_mac_ops,
3485         .phy_ops                = &ich8_phy_ops,
3486         .nvm_ops                = &ich8_nvm_ops,
3487 };
3488
3489 struct e1000_info e1000_pch_info = {
3490         .mac                    = e1000_pchlan,
3491         .flags                  = FLAG_IS_ICH
3492                                   | FLAG_HAS_WOL
3493                                   | FLAG_RX_CSUM_ENABLED
3494                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3495                                   | FLAG_HAS_AMT
3496                                   | FLAG_HAS_FLASH
3497                                   | FLAG_HAS_JUMBO_FRAMES
3498                                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
3499                                   | FLAG_APME_IN_WUC,
3500         .pba                    = 26,
3501         .max_hw_frame_size      = 4096,
3502         .get_variants           = e1000_get_variants_ich8lan,
3503         .mac_ops                = &ich8_mac_ops,
3504         .phy_ops                = &ich8_phy_ops,
3505         .nvm_ops                = &ich8_nvm_ops,
3506 };