e1000e: Fix erroneous display of stats by ethtool -S
[safe/jmp/linux-2.6] / drivers / net / e1000e / ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2008 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/delay.h>
35
36 #include "e1000.h"
37
38 enum {NETDEV_STATS, E1000_STATS};
39
40 struct e1000_stats {
41         char stat_string[ETH_GSTRING_LEN];
42         int type;
43         int sizeof_stat;
44         int stat_offset;
45 };
46
47 #define E1000_STAT(m)           E1000_STATS, \
48                                 sizeof(((struct e1000_adapter *)0)->m), \
49                                 offsetof(struct e1000_adapter, m)
50 #define E1000_NETDEV_STAT(m)    NETDEV_STATS, \
51                                 sizeof(((struct net_device *)0)->m), \
52                                 offsetof(struct net_device, m)
53
54 static const struct e1000_stats e1000_gstrings_stats[] = {
55         { "rx_packets", E1000_STAT(stats.gprc) },
56         { "tx_packets", E1000_STAT(stats.gptc) },
57         { "rx_bytes", E1000_STAT(stats.gorc) },
58         { "tx_bytes", E1000_STAT(stats.gotc) },
59         { "rx_broadcast", E1000_STAT(stats.bprc) },
60         { "tx_broadcast", E1000_STAT(stats.bptc) },
61         { "rx_multicast", E1000_STAT(stats.mprc) },
62         { "tx_multicast", E1000_STAT(stats.mptc) },
63         { "rx_errors", E1000_NETDEV_STAT(stats.rx_errors) },
64         { "tx_errors", E1000_NETDEV_STAT(stats.tx_errors) },
65         { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
66         { "multicast", E1000_STAT(stats.mprc) },
67         { "collisions", E1000_STAT(stats.colc) },
68         { "rx_length_errors", E1000_NETDEV_STAT(stats.rx_length_errors) },
69         { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
70         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
71         { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
72         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
73         { "rx_missed_errors", E1000_STAT(stats.mpc) },
74         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
75         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
76         { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
77         { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
78         { "tx_window_errors", E1000_STAT(stats.latecol) },
79         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
80         { "tx_deferred_ok", E1000_STAT(stats.dc) },
81         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
82         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
83         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
84         { "tx_restart_queue", E1000_STAT(restart_queue) },
85         { "rx_long_length_errors", E1000_STAT(stats.roc) },
86         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
87         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
88         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
89         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
90         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
91         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
92         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
93         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
94         { "rx_long_byte_count", E1000_STAT(stats.gorc) },
95         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
96         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
97         { "rx_header_split", E1000_STAT(rx_hdr_split) },
98         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
99         { "tx_smbus", E1000_STAT(stats.mgptc) },
100         { "rx_smbus", E1000_STAT(stats.mgprc) },
101         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
102         { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
103         { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
104 };
105
106 #define E1000_GLOBAL_STATS_LEN  ARRAY_SIZE(e1000_gstrings_stats)
107 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
108 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
109         "Register test  (offline)", "Eeprom test    (offline)",
110         "Interrupt test (offline)", "Loopback test  (offline)",
111         "Link test   (on/offline)"
112 };
113 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
114
115 static int e1000_get_settings(struct net_device *netdev,
116                               struct ethtool_cmd *ecmd)
117 {
118         struct e1000_adapter *adapter = netdev_priv(netdev);
119         struct e1000_hw *hw = &adapter->hw;
120         u32 status;
121
122         if (hw->phy.media_type == e1000_media_type_copper) {
123
124                 ecmd->supported = (SUPPORTED_10baseT_Half |
125                                    SUPPORTED_10baseT_Full |
126                                    SUPPORTED_100baseT_Half |
127                                    SUPPORTED_100baseT_Full |
128                                    SUPPORTED_1000baseT_Full |
129                                    SUPPORTED_Autoneg |
130                                    SUPPORTED_TP);
131                 if (hw->phy.type == e1000_phy_ife)
132                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
133                 ecmd->advertising = ADVERTISED_TP;
134
135                 if (hw->mac.autoneg == 1) {
136                         ecmd->advertising |= ADVERTISED_Autoneg;
137                         /* the e1000 autoneg seems to match ethtool nicely */
138                         ecmd->advertising |= hw->phy.autoneg_advertised;
139                 }
140
141                 ecmd->port = PORT_TP;
142                 ecmd->phy_address = hw->phy.addr;
143                 ecmd->transceiver = XCVR_INTERNAL;
144
145         } else {
146                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
147                                      SUPPORTED_FIBRE |
148                                      SUPPORTED_Autoneg);
149
150                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
151                                      ADVERTISED_FIBRE |
152                                      ADVERTISED_Autoneg);
153
154                 ecmd->port = PORT_FIBRE;
155                 ecmd->transceiver = XCVR_EXTERNAL;
156         }
157
158         status = er32(STATUS);
159         if (status & E1000_STATUS_LU) {
160                 if (status & E1000_STATUS_SPEED_1000)
161                         ecmd->speed = 1000;
162                 else if (status & E1000_STATUS_SPEED_100)
163                         ecmd->speed = 100;
164                 else
165                         ecmd->speed = 10;
166
167                 if (status & E1000_STATUS_FD)
168                         ecmd->duplex = DUPLEX_FULL;
169                 else
170                         ecmd->duplex = DUPLEX_HALF;
171         } else {
172                 ecmd->speed = -1;
173                 ecmd->duplex = -1;
174         }
175
176         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
177                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
178
179         /* MDI-X => 2; MDI =>1; Invalid =>0 */
180         if ((hw->phy.media_type == e1000_media_type_copper) &&
181             !hw->mac.get_link_status)
182                 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
183                                                       ETH_TP_MDI;
184         else
185                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
186
187         return 0;
188 }
189
190 static u32 e1000_get_link(struct net_device *netdev)
191 {
192         struct e1000_adapter *adapter = netdev_priv(netdev);
193
194         return e1000_has_link(adapter);
195 }
196
197 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
198 {
199         struct e1000_mac_info *mac = &adapter->hw.mac;
200
201         mac->autoneg = 0;
202
203         /* Fiber NICs only allow 1000 gbps Full duplex */
204         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
205                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
206                 e_err("Unsupported Speed/Duplex configuration\n");
207                 return -EINVAL;
208         }
209
210         switch (spddplx) {
211         case SPEED_10 + DUPLEX_HALF:
212                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
213                 break;
214         case SPEED_10 + DUPLEX_FULL:
215                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
216                 break;
217         case SPEED_100 + DUPLEX_HALF:
218                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
219                 break;
220         case SPEED_100 + DUPLEX_FULL:
221                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
222                 break;
223         case SPEED_1000 + DUPLEX_FULL:
224                 mac->autoneg = 1;
225                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
226                 break;
227         case SPEED_1000 + DUPLEX_HALF: /* not supported */
228         default:
229                 e_err("Unsupported Speed/Duplex configuration\n");
230                 return -EINVAL;
231         }
232         return 0;
233 }
234
235 static int e1000_set_settings(struct net_device *netdev,
236                               struct ethtool_cmd *ecmd)
237 {
238         struct e1000_adapter *adapter = netdev_priv(netdev);
239         struct e1000_hw *hw = &adapter->hw;
240
241         /*
242          * When SoL/IDER sessions are active, autoneg/speed/duplex
243          * cannot be changed
244          */
245         if (e1000_check_reset_block(hw)) {
246                 e_err("Cannot change link characteristics when SoL/IDER is "
247                       "active.\n");
248                 return -EINVAL;
249         }
250
251         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
252                 msleep(1);
253
254         if (ecmd->autoneg == AUTONEG_ENABLE) {
255                 hw->mac.autoneg = 1;
256                 if (hw->phy.media_type == e1000_media_type_fiber)
257                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
258                                                      ADVERTISED_FIBRE |
259                                                      ADVERTISED_Autoneg;
260                 else
261                         hw->phy.autoneg_advertised = ecmd->advertising |
262                                                      ADVERTISED_TP |
263                                                      ADVERTISED_Autoneg;
264                 ecmd->advertising = hw->phy.autoneg_advertised;
265                 if (adapter->fc_autoneg)
266                         hw->fc.requested_mode = e1000_fc_default;
267         } else {
268                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
269                         clear_bit(__E1000_RESETTING, &adapter->state);
270                         return -EINVAL;
271                 }
272         }
273
274         /* reset the link */
275
276         if (netif_running(adapter->netdev)) {
277                 e1000e_down(adapter);
278                 e1000e_up(adapter);
279         } else {
280                 e1000e_reset(adapter);
281         }
282
283         clear_bit(__E1000_RESETTING, &adapter->state);
284         return 0;
285 }
286
287 static void e1000_get_pauseparam(struct net_device *netdev,
288                                  struct ethtool_pauseparam *pause)
289 {
290         struct e1000_adapter *adapter = netdev_priv(netdev);
291         struct e1000_hw *hw = &adapter->hw;
292
293         pause->autoneg =
294                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
295
296         if (hw->fc.current_mode == e1000_fc_rx_pause) {
297                 pause->rx_pause = 1;
298         } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
299                 pause->tx_pause = 1;
300         } else if (hw->fc.current_mode == e1000_fc_full) {
301                 pause->rx_pause = 1;
302                 pause->tx_pause = 1;
303         }
304 }
305
306 static int e1000_set_pauseparam(struct net_device *netdev,
307                                 struct ethtool_pauseparam *pause)
308 {
309         struct e1000_adapter *adapter = netdev_priv(netdev);
310         struct e1000_hw *hw = &adapter->hw;
311         int retval = 0;
312
313         adapter->fc_autoneg = pause->autoneg;
314
315         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
316                 msleep(1);
317
318         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
319                 hw->fc.requested_mode = e1000_fc_default;
320                 if (netif_running(adapter->netdev)) {
321                         e1000e_down(adapter);
322                         e1000e_up(adapter);
323                 } else {
324                         e1000e_reset(adapter);
325                 }
326         } else {
327                 if (pause->rx_pause && pause->tx_pause)
328                         hw->fc.requested_mode = e1000_fc_full;
329                 else if (pause->rx_pause && !pause->tx_pause)
330                         hw->fc.requested_mode = e1000_fc_rx_pause;
331                 else if (!pause->rx_pause && pause->tx_pause)
332                         hw->fc.requested_mode = e1000_fc_tx_pause;
333                 else if (!pause->rx_pause && !pause->tx_pause)
334                         hw->fc.requested_mode = e1000_fc_none;
335
336                 hw->fc.current_mode = hw->fc.requested_mode;
337
338                 retval = ((hw->phy.media_type == e1000_media_type_fiber) ?
339                           hw->mac.ops.setup_link(hw) : e1000e_force_mac_fc(hw));
340         }
341
342         clear_bit(__E1000_RESETTING, &adapter->state);
343         return retval;
344 }
345
346 static u32 e1000_get_rx_csum(struct net_device *netdev)
347 {
348         struct e1000_adapter *adapter = netdev_priv(netdev);
349         return (adapter->flags & FLAG_RX_CSUM_ENABLED);
350 }
351
352 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
353 {
354         struct e1000_adapter *adapter = netdev_priv(netdev);
355
356         if (data)
357                 adapter->flags |= FLAG_RX_CSUM_ENABLED;
358         else
359                 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
360
361         if (netif_running(netdev))
362                 e1000e_reinit_locked(adapter);
363         else
364                 e1000e_reset(adapter);
365         return 0;
366 }
367
368 static u32 e1000_get_tx_csum(struct net_device *netdev)
369 {
370         return ((netdev->features & NETIF_F_HW_CSUM) != 0);
371 }
372
373 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
374 {
375         if (data)
376                 netdev->features |= NETIF_F_HW_CSUM;
377         else
378                 netdev->features &= ~NETIF_F_HW_CSUM;
379
380         return 0;
381 }
382
383 static int e1000_set_tso(struct net_device *netdev, u32 data)
384 {
385         struct e1000_adapter *adapter = netdev_priv(netdev);
386
387         if (data) {
388                 netdev->features |= NETIF_F_TSO;
389                 netdev->features |= NETIF_F_TSO6;
390         } else {
391                 netdev->features &= ~NETIF_F_TSO;
392                 netdev->features &= ~NETIF_F_TSO6;
393         }
394
395         e_info("TSO is %s\n", data ? "Enabled" : "Disabled");
396         adapter->flags |= FLAG_TSO_FORCE;
397         return 0;
398 }
399
400 static u32 e1000_get_msglevel(struct net_device *netdev)
401 {
402         struct e1000_adapter *adapter = netdev_priv(netdev);
403         return adapter->msg_enable;
404 }
405
406 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
407 {
408         struct e1000_adapter *adapter = netdev_priv(netdev);
409         adapter->msg_enable = data;
410 }
411
412 static int e1000_get_regs_len(struct net_device *netdev)
413 {
414 #define E1000_REGS_LEN 32 /* overestimate */
415         return E1000_REGS_LEN * sizeof(u32);
416 }
417
418 static void e1000_get_regs(struct net_device *netdev,
419                            struct ethtool_regs *regs, void *p)
420 {
421         struct e1000_adapter *adapter = netdev_priv(netdev);
422         struct e1000_hw *hw = &adapter->hw;
423         u32 *regs_buff = p;
424         u16 phy_data;
425         u8 revision_id;
426
427         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
428
429         pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
430
431         regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
432
433         regs_buff[0]  = er32(CTRL);
434         regs_buff[1]  = er32(STATUS);
435
436         regs_buff[2]  = er32(RCTL);
437         regs_buff[3]  = er32(RDLEN);
438         regs_buff[4]  = er32(RDH);
439         regs_buff[5]  = er32(RDT);
440         regs_buff[6]  = er32(RDTR);
441
442         regs_buff[7]  = er32(TCTL);
443         regs_buff[8]  = er32(TDLEN);
444         regs_buff[9]  = er32(TDH);
445         regs_buff[10] = er32(TDT);
446         regs_buff[11] = er32(TIDV);
447
448         regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
449
450         /* ethtool doesn't use anything past this point, so all this
451          * code is likely legacy junk for apps that may or may not
452          * exist */
453         if (hw->phy.type == e1000_phy_m88) {
454                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
455                 regs_buff[13] = (u32)phy_data; /* cable length */
456                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
457                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
458                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
459                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
460                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
461                 regs_buff[18] = regs_buff[13]; /* cable polarity */
462                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
463                 regs_buff[20] = regs_buff[17]; /* polarity correction */
464                 /* phy receive errors */
465                 regs_buff[22] = adapter->phy_stats.receive_errors;
466                 regs_buff[23] = regs_buff[13]; /* mdix mode */
467         }
468         regs_buff[21] = 0; /* was idle_errors */
469         e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
470         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
471         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
472 }
473
474 static int e1000_get_eeprom_len(struct net_device *netdev)
475 {
476         struct e1000_adapter *adapter = netdev_priv(netdev);
477         return adapter->hw.nvm.word_size * 2;
478 }
479
480 static int e1000_get_eeprom(struct net_device *netdev,
481                             struct ethtool_eeprom *eeprom, u8 *bytes)
482 {
483         struct e1000_adapter *adapter = netdev_priv(netdev);
484         struct e1000_hw *hw = &adapter->hw;
485         u16 *eeprom_buff;
486         int first_word;
487         int last_word;
488         int ret_val = 0;
489         u16 i;
490
491         if (eeprom->len == 0)
492                 return -EINVAL;
493
494         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
495
496         first_word = eeprom->offset >> 1;
497         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
498
499         eeprom_buff = kmalloc(sizeof(u16) *
500                         (last_word - first_word + 1), GFP_KERNEL);
501         if (!eeprom_buff)
502                 return -ENOMEM;
503
504         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
505                 ret_val = e1000_read_nvm(hw, first_word,
506                                          last_word - first_word + 1,
507                                          eeprom_buff);
508         } else {
509                 for (i = 0; i < last_word - first_word + 1; i++) {
510                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
511                                                       &eeprom_buff[i]);
512                         if (ret_val)
513                                 break;
514                 }
515         }
516
517         if (ret_val) {
518                 /* a read error occurred, throw away the result */
519                 memset(eeprom_buff, 0xff, sizeof(eeprom_buff));
520         } else {
521                 /* Device's eeprom is always little-endian, word addressable */
522                 for (i = 0; i < last_word - first_word + 1; i++)
523                         le16_to_cpus(&eeprom_buff[i]);
524         }
525
526         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
527         kfree(eeprom_buff);
528
529         return ret_val;
530 }
531
532 static int e1000_set_eeprom(struct net_device *netdev,
533                             struct ethtool_eeprom *eeprom, u8 *bytes)
534 {
535         struct e1000_adapter *adapter = netdev_priv(netdev);
536         struct e1000_hw *hw = &adapter->hw;
537         u16 *eeprom_buff;
538         void *ptr;
539         int max_len;
540         int first_word;
541         int last_word;
542         int ret_val = 0;
543         u16 i;
544
545         if (eeprom->len == 0)
546                 return -EOPNOTSUPP;
547
548         if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
549                 return -EFAULT;
550
551         if (adapter->flags & FLAG_READ_ONLY_NVM)
552                 return -EINVAL;
553
554         max_len = hw->nvm.word_size * 2;
555
556         first_word = eeprom->offset >> 1;
557         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
558         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
559         if (!eeprom_buff)
560                 return -ENOMEM;
561
562         ptr = (void *)eeprom_buff;
563
564         if (eeprom->offset & 1) {
565                 /* need read/modify/write of first changed EEPROM word */
566                 /* only the second byte of the word is being modified */
567                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
568                 ptr++;
569         }
570         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
571                 /* need read/modify/write of last changed EEPROM word */
572                 /* only the first byte of the word is being modified */
573                 ret_val = e1000_read_nvm(hw, last_word, 1,
574                                   &eeprom_buff[last_word - first_word]);
575
576         if (ret_val)
577                 goto out;
578
579         /* Device's eeprom is always little-endian, word addressable */
580         for (i = 0; i < last_word - first_word + 1; i++)
581                 le16_to_cpus(&eeprom_buff[i]);
582
583         memcpy(ptr, bytes, eeprom->len);
584
585         for (i = 0; i < last_word - first_word + 1; i++)
586                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
587
588         ret_val = e1000_write_nvm(hw, first_word,
589                                   last_word - first_word + 1, eeprom_buff);
590
591         if (ret_val)
592                 goto out;
593
594         /*
595          * Update the checksum over the first part of the EEPROM if needed
596          * and flush shadow RAM for applicable controllers
597          */
598         if ((first_word <= NVM_CHECKSUM_REG) ||
599             (hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82573))
600                 ret_val = e1000e_update_nvm_checksum(hw);
601
602 out:
603         kfree(eeprom_buff);
604         return ret_val;
605 }
606
607 static void e1000_get_drvinfo(struct net_device *netdev,
608                               struct ethtool_drvinfo *drvinfo)
609 {
610         struct e1000_adapter *adapter = netdev_priv(netdev);
611         char firmware_version[32];
612
613         strncpy(drvinfo->driver,  e1000e_driver_name, 32);
614         strncpy(drvinfo->version, e1000e_driver_version, 32);
615
616         /*
617          * EEPROM image version # is reported as firmware version # for
618          * PCI-E controllers
619          */
620         sprintf(firmware_version, "%d.%d-%d",
621                 (adapter->eeprom_vers & 0xF000) >> 12,
622                 (adapter->eeprom_vers & 0x0FF0) >> 4,
623                 (adapter->eeprom_vers & 0x000F));
624
625         strncpy(drvinfo->fw_version, firmware_version, 32);
626         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
627         drvinfo->regdump_len = e1000_get_regs_len(netdev);
628         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
629 }
630
631 static void e1000_get_ringparam(struct net_device *netdev,
632                                 struct ethtool_ringparam *ring)
633 {
634         struct e1000_adapter *adapter = netdev_priv(netdev);
635         struct e1000_ring *tx_ring = adapter->tx_ring;
636         struct e1000_ring *rx_ring = adapter->rx_ring;
637
638         ring->rx_max_pending = E1000_MAX_RXD;
639         ring->tx_max_pending = E1000_MAX_TXD;
640         ring->rx_mini_max_pending = 0;
641         ring->rx_jumbo_max_pending = 0;
642         ring->rx_pending = rx_ring->count;
643         ring->tx_pending = tx_ring->count;
644         ring->rx_mini_pending = 0;
645         ring->rx_jumbo_pending = 0;
646 }
647
648 static int e1000_set_ringparam(struct net_device *netdev,
649                                struct ethtool_ringparam *ring)
650 {
651         struct e1000_adapter *adapter = netdev_priv(netdev);
652         struct e1000_ring *tx_ring, *tx_old;
653         struct e1000_ring *rx_ring, *rx_old;
654         int err;
655
656         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
657                 return -EINVAL;
658
659         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
660                 msleep(1);
661
662         if (netif_running(adapter->netdev))
663                 e1000e_down(adapter);
664
665         tx_old = adapter->tx_ring;
666         rx_old = adapter->rx_ring;
667
668         err = -ENOMEM;
669         tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
670         if (!tx_ring)
671                 goto err_alloc_tx;
672         /*
673          * use a memcpy to save any previously configured
674          * items like napi structs from having to be
675          * reinitialized
676          */
677         memcpy(tx_ring, tx_old, sizeof(struct e1000_ring));
678
679         rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
680         if (!rx_ring)
681                 goto err_alloc_rx;
682         memcpy(rx_ring, rx_old, sizeof(struct e1000_ring));
683
684         adapter->tx_ring = tx_ring;
685         adapter->rx_ring = rx_ring;
686
687         rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
688         rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
689         rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
690
691         tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
692         tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
693         tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
694
695         if (netif_running(adapter->netdev)) {
696                 /* Try to get new resources before deleting old */
697                 err = e1000e_setup_rx_resources(adapter);
698                 if (err)
699                         goto err_setup_rx;
700                 err = e1000e_setup_tx_resources(adapter);
701                 if (err)
702                         goto err_setup_tx;
703
704                 /*
705                  * restore the old in order to free it,
706                  * then add in the new
707                  */
708                 adapter->rx_ring = rx_old;
709                 adapter->tx_ring = tx_old;
710                 e1000e_free_rx_resources(adapter);
711                 e1000e_free_tx_resources(adapter);
712                 kfree(tx_old);
713                 kfree(rx_old);
714                 adapter->rx_ring = rx_ring;
715                 adapter->tx_ring = tx_ring;
716                 err = e1000e_up(adapter);
717                 if (err)
718                         goto err_setup;
719         }
720
721         clear_bit(__E1000_RESETTING, &adapter->state);
722         return 0;
723 err_setup_tx:
724         e1000e_free_rx_resources(adapter);
725 err_setup_rx:
726         adapter->rx_ring = rx_old;
727         adapter->tx_ring = tx_old;
728         kfree(rx_ring);
729 err_alloc_rx:
730         kfree(tx_ring);
731 err_alloc_tx:
732         e1000e_up(adapter);
733 err_setup:
734         clear_bit(__E1000_RESETTING, &adapter->state);
735         return err;
736 }
737
738 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
739                              int reg, int offset, u32 mask, u32 write)
740 {
741         u32 pat, val;
742         static const u32 test[] =
743                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
744         for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
745                 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
746                                       (test[pat] & write));
747                 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
748                 if (val != (test[pat] & write & mask)) {
749                         e_err("pattern test reg %04X failed: got 0x%08X "
750                               "expected 0x%08X\n", reg + offset, val,
751                               (test[pat] & write & mask));
752                         *data = reg;
753                         return 1;
754                 }
755         }
756         return 0;
757 }
758
759 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
760                               int reg, u32 mask, u32 write)
761 {
762         u32 val;
763         __ew32(&adapter->hw, reg, write & mask);
764         val = __er32(&adapter->hw, reg);
765         if ((write & mask) != (val & mask)) {
766                 e_err("set/check reg %04X test failed: got 0x%08X "
767                       "expected 0x%08X\n", reg, (val & mask), (write & mask));
768                 *data = reg;
769                 return 1;
770         }
771         return 0;
772 }
773 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
774         do {                                                                   \
775                 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
776                         return 1;                                              \
777         } while (0)
778 #define REG_PATTERN_TEST(reg, mask, write)                                     \
779         REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
780
781 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
782         do {                                                                   \
783                 if (reg_set_and_check(adapter, data, reg, mask, write))        \
784                         return 1;                                              \
785         } while (0)
786
787 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
788 {
789         struct e1000_hw *hw = &adapter->hw;
790         struct e1000_mac_info *mac = &adapter->hw.mac;
791         u32 value;
792         u32 before;
793         u32 after;
794         u32 i;
795         u32 toggle;
796         u32 mask;
797
798         /*
799          * The status register is Read Only, so a write should fail.
800          * Some bits that get toggled are ignored.
801          */
802         switch (mac->type) {
803         /* there are several bits on newer hardware that are r/w */
804         case e1000_82571:
805         case e1000_82572:
806         case e1000_80003es2lan:
807                 toggle = 0x7FFFF3FF;
808                 break;
809         default:
810                 toggle = 0x7FFFF033;
811                 break;
812         }
813
814         before = er32(STATUS);
815         value = (er32(STATUS) & toggle);
816         ew32(STATUS, toggle);
817         after = er32(STATUS) & toggle;
818         if (value != after) {
819                 e_err("failed STATUS register test got: 0x%08X expected: "
820                       "0x%08X\n", after, value);
821                 *data = 1;
822                 return 1;
823         }
824         /* restore previous status */
825         ew32(STATUS, before);
826
827         if (!(adapter->flags & FLAG_IS_ICH)) {
828                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
829                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
830                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
831                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
832         }
833
834         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
835         REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
836         REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
837         REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
838         REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
839         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
840         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
841         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
842         REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
843         REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
844
845         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
846
847         before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
848         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
849         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
850
851         REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
852         REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
853         if (!(adapter->flags & FLAG_IS_ICH))
854                 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
855         REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
856         REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
857         mask = 0x8003FFFF;
858         switch (mac->type) {
859         case e1000_ich10lan:
860         case e1000_pchlan:
861                 mask |= (1 << 18);
862                 break;
863         default:
864                 break;
865         }
866         for (i = 0; i < mac->rar_entry_count; i++)
867                 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
868                                        mask, 0xFFFFFFFF);
869
870         for (i = 0; i < mac->mta_reg_count; i++)
871                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
872
873         *data = 0;
874         return 0;
875 }
876
877 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
878 {
879         u16 temp;
880         u16 checksum = 0;
881         u16 i;
882
883         *data = 0;
884         /* Read and add up the contents of the EEPROM */
885         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
886                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
887                         *data = 1;
888                         return *data;
889                 }
890                 checksum += temp;
891         }
892
893         /* If Checksum is not Correct return error else test passed */
894         if ((checksum != (u16) NVM_SUM) && !(*data))
895                 *data = 2;
896
897         return *data;
898 }
899
900 static irqreturn_t e1000_test_intr(int irq, void *data)
901 {
902         struct net_device *netdev = (struct net_device *) data;
903         struct e1000_adapter *adapter = netdev_priv(netdev);
904         struct e1000_hw *hw = &adapter->hw;
905
906         adapter->test_icr |= er32(ICR);
907
908         return IRQ_HANDLED;
909 }
910
911 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
912 {
913         struct net_device *netdev = adapter->netdev;
914         struct e1000_hw *hw = &adapter->hw;
915         u32 mask;
916         u32 shared_int = 1;
917         u32 irq = adapter->pdev->irq;
918         int i;
919         int ret_val = 0;
920         int int_mode = E1000E_INT_MODE_LEGACY;
921
922         *data = 0;
923
924         /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
925         if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
926                 int_mode = adapter->int_mode;
927                 e1000e_reset_interrupt_capability(adapter);
928                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
929                 e1000e_set_interrupt_capability(adapter);
930         }
931         /* Hook up test interrupt handler just for this test */
932         if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
933                          netdev)) {
934                 shared_int = 0;
935         } else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
936                  netdev->name, netdev)) {
937                 *data = 1;
938                 ret_val = -1;
939                 goto out;
940         }
941         e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
942
943         /* Disable all the interrupts */
944         ew32(IMC, 0xFFFFFFFF);
945         msleep(10);
946
947         /* Test each interrupt */
948         for (i = 0; i < 10; i++) {
949                 /* Interrupt to test */
950                 mask = 1 << i;
951
952                 if (adapter->flags & FLAG_IS_ICH) {
953                         switch (mask) {
954                         case E1000_ICR_RXSEQ:
955                                 continue;
956                         case 0x00000100:
957                                 if (adapter->hw.mac.type == e1000_ich8lan ||
958                                     adapter->hw.mac.type == e1000_ich9lan)
959                                         continue;
960                                 break;
961                         default:
962                                 break;
963                         }
964                 }
965
966                 if (!shared_int) {
967                         /*
968                          * Disable the interrupt to be reported in
969                          * the cause register and then force the same
970                          * interrupt and see if one gets posted.  If
971                          * an interrupt was posted to the bus, the
972                          * test failed.
973                          */
974                         adapter->test_icr = 0;
975                         ew32(IMC, mask);
976                         ew32(ICS, mask);
977                         msleep(10);
978
979                         if (adapter->test_icr & mask) {
980                                 *data = 3;
981                                 break;
982                         }
983                 }
984
985                 /*
986                  * Enable the interrupt to be reported in
987                  * the cause register and then force the same
988                  * interrupt and see if one gets posted.  If
989                  * an interrupt was not posted to the bus, the
990                  * test failed.
991                  */
992                 adapter->test_icr = 0;
993                 ew32(IMS, mask);
994                 ew32(ICS, mask);
995                 msleep(10);
996
997                 if (!(adapter->test_icr & mask)) {
998                         *data = 4;
999                         break;
1000                 }
1001
1002                 if (!shared_int) {
1003                         /*
1004                          * Disable the other interrupts to be reported in
1005                          * the cause register and then force the other
1006                          * interrupts and see if any get posted.  If
1007                          * an interrupt was posted to the bus, the
1008                          * test failed.
1009                          */
1010                         adapter->test_icr = 0;
1011                         ew32(IMC, ~mask & 0x00007FFF);
1012                         ew32(ICS, ~mask & 0x00007FFF);
1013                         msleep(10);
1014
1015                         if (adapter->test_icr) {
1016                                 *data = 5;
1017                                 break;
1018                         }
1019                 }
1020         }
1021
1022         /* Disable all the interrupts */
1023         ew32(IMC, 0xFFFFFFFF);
1024         msleep(10);
1025
1026         /* Unhook test interrupt handler */
1027         free_irq(irq, netdev);
1028
1029 out:
1030         if (int_mode == E1000E_INT_MODE_MSIX) {
1031                 e1000e_reset_interrupt_capability(adapter);
1032                 adapter->int_mode = int_mode;
1033                 e1000e_set_interrupt_capability(adapter);
1034         }
1035
1036         return ret_val;
1037 }
1038
1039 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1040 {
1041         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1042         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1043         struct pci_dev *pdev = adapter->pdev;
1044         int i;
1045
1046         if (tx_ring->desc && tx_ring->buffer_info) {
1047                 for (i = 0; i < tx_ring->count; i++) {
1048                         if (tx_ring->buffer_info[i].dma)
1049                                 pci_unmap_single(pdev,
1050                                         tx_ring->buffer_info[i].dma,
1051                                         tx_ring->buffer_info[i].length,
1052                                         PCI_DMA_TODEVICE);
1053                         if (tx_ring->buffer_info[i].skb)
1054                                 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1055                 }
1056         }
1057
1058         if (rx_ring->desc && rx_ring->buffer_info) {
1059                 for (i = 0; i < rx_ring->count; i++) {
1060                         if (rx_ring->buffer_info[i].dma)
1061                                 pci_unmap_single(pdev,
1062                                         rx_ring->buffer_info[i].dma,
1063                                         2048, PCI_DMA_FROMDEVICE);
1064                         if (rx_ring->buffer_info[i].skb)
1065                                 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1066                 }
1067         }
1068
1069         if (tx_ring->desc) {
1070                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1071                                   tx_ring->dma);
1072                 tx_ring->desc = NULL;
1073         }
1074         if (rx_ring->desc) {
1075                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1076                                   rx_ring->dma);
1077                 rx_ring->desc = NULL;
1078         }
1079
1080         kfree(tx_ring->buffer_info);
1081         tx_ring->buffer_info = NULL;
1082         kfree(rx_ring->buffer_info);
1083         rx_ring->buffer_info = NULL;
1084 }
1085
1086 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1087 {
1088         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1089         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1090         struct pci_dev *pdev = adapter->pdev;
1091         struct e1000_hw *hw = &adapter->hw;
1092         u32 rctl;
1093         int i;
1094         int ret_val;
1095
1096         /* Setup Tx descriptor ring and Tx buffers */
1097
1098         if (!tx_ring->count)
1099                 tx_ring->count = E1000_DEFAULT_TXD;
1100
1101         tx_ring->buffer_info = kcalloc(tx_ring->count,
1102                                        sizeof(struct e1000_buffer),
1103                                        GFP_KERNEL);
1104         if (!(tx_ring->buffer_info)) {
1105                 ret_val = 1;
1106                 goto err_nomem;
1107         }
1108
1109         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1110         tx_ring->size = ALIGN(tx_ring->size, 4096);
1111         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1112                                            &tx_ring->dma, GFP_KERNEL);
1113         if (!tx_ring->desc) {
1114                 ret_val = 2;
1115                 goto err_nomem;
1116         }
1117         tx_ring->next_to_use = 0;
1118         tx_ring->next_to_clean = 0;
1119
1120         ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1121         ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1122         ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1123         ew32(TDH, 0);
1124         ew32(TDT, 0);
1125         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1126              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1127              E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1128
1129         for (i = 0; i < tx_ring->count; i++) {
1130                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1131                 struct sk_buff *skb;
1132                 unsigned int skb_size = 1024;
1133
1134                 skb = alloc_skb(skb_size, GFP_KERNEL);
1135                 if (!skb) {
1136                         ret_val = 3;
1137                         goto err_nomem;
1138                 }
1139                 skb_put(skb, skb_size);
1140                 tx_ring->buffer_info[i].skb = skb;
1141                 tx_ring->buffer_info[i].length = skb->len;
1142                 tx_ring->buffer_info[i].dma =
1143                         pci_map_single(pdev, skb->data, skb->len,
1144                                        PCI_DMA_TODEVICE);
1145                 if (pci_dma_mapping_error(pdev, tx_ring->buffer_info[i].dma)) {
1146                         ret_val = 4;
1147                         goto err_nomem;
1148                 }
1149                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1150                 tx_desc->lower.data = cpu_to_le32(skb->len);
1151                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1152                                                    E1000_TXD_CMD_IFCS |
1153                                                    E1000_TXD_CMD_RS);
1154                 tx_desc->upper.data = 0;
1155         }
1156
1157         /* Setup Rx descriptor ring and Rx buffers */
1158
1159         if (!rx_ring->count)
1160                 rx_ring->count = E1000_DEFAULT_RXD;
1161
1162         rx_ring->buffer_info = kcalloc(rx_ring->count,
1163                                        sizeof(struct e1000_buffer),
1164                                        GFP_KERNEL);
1165         if (!(rx_ring->buffer_info)) {
1166                 ret_val = 5;
1167                 goto err_nomem;
1168         }
1169
1170         rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1171         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1172                                            &rx_ring->dma, GFP_KERNEL);
1173         if (!rx_ring->desc) {
1174                 ret_val = 6;
1175                 goto err_nomem;
1176         }
1177         rx_ring->next_to_use = 0;
1178         rx_ring->next_to_clean = 0;
1179
1180         rctl = er32(RCTL);
1181         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1182         ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1183         ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1184         ew32(RDLEN, rx_ring->size);
1185         ew32(RDH, 0);
1186         ew32(RDT, 0);
1187         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1188                 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1189                 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1190                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1191                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1192         ew32(RCTL, rctl);
1193
1194         for (i = 0; i < rx_ring->count; i++) {
1195                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1196                 struct sk_buff *skb;
1197
1198                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1199                 if (!skb) {
1200                         ret_val = 7;
1201                         goto err_nomem;
1202                 }
1203                 skb_reserve(skb, NET_IP_ALIGN);
1204                 rx_ring->buffer_info[i].skb = skb;
1205                 rx_ring->buffer_info[i].dma =
1206                         pci_map_single(pdev, skb->data, 2048,
1207                                        PCI_DMA_FROMDEVICE);
1208                 if (pci_dma_mapping_error(pdev, rx_ring->buffer_info[i].dma)) {
1209                         ret_val = 8;
1210                         goto err_nomem;
1211                 }
1212                 rx_desc->buffer_addr =
1213                         cpu_to_le64(rx_ring->buffer_info[i].dma);
1214                 memset(skb->data, 0x00, skb->len);
1215         }
1216
1217         return 0;
1218
1219 err_nomem:
1220         e1000_free_desc_rings(adapter);
1221         return ret_val;
1222 }
1223
1224 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1225 {
1226         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1227         e1e_wphy(&adapter->hw, 29, 0x001F);
1228         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1229         e1e_wphy(&adapter->hw, 29, 0x001A);
1230         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1231 }
1232
1233 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1234 {
1235         struct e1000_hw *hw = &adapter->hw;
1236         u32 ctrl_reg = 0;
1237         u32 stat_reg = 0;
1238         u16 phy_reg = 0;
1239
1240         hw->mac.autoneg = 0;
1241
1242         if (hw->phy.type == e1000_phy_m88) {
1243                 /* Auto-MDI/MDIX Off */
1244                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1245                 /* reset to update Auto-MDI/MDIX */
1246                 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1247                 /* autoneg off */
1248                 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1249         } else if (hw->phy.type == e1000_phy_gg82563)
1250                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1251
1252         ctrl_reg = er32(CTRL);
1253
1254         switch (hw->phy.type) {
1255         case e1000_phy_ife:
1256                 /* force 100, set loopback */
1257                 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1258
1259                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1260                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1261                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1262                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1263                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1264                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1265                 break;
1266         case e1000_phy_bm:
1267                 /* Set Default MAC Interface speed to 1GB */
1268                 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1269                 phy_reg &= ~0x0007;
1270                 phy_reg |= 0x006;
1271                 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1272                 /* Assert SW reset for above settings to take effect */
1273                 e1000e_commit_phy(hw);
1274                 mdelay(1);
1275                 /* Force Full Duplex */
1276                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1277                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1278                 /* Set Link Up (in force link) */
1279                 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1280                 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1281                 /* Force Link */
1282                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1283                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1284                 /* Set Early Link Enable */
1285                 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1286                 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1287                 /* fall through */
1288         default:
1289                 /* force 1000, set loopback */
1290                 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1291                 mdelay(250);
1292
1293                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1294                 ctrl_reg = er32(CTRL);
1295                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1296                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1297                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1298                              E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1299                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1300
1301                 if (adapter->flags & FLAG_IS_ICH)
1302                         ctrl_reg |= E1000_CTRL_SLU;     /* Set Link Up */
1303         }
1304
1305         if (hw->phy.media_type == e1000_media_type_copper &&
1306             hw->phy.type == e1000_phy_m88) {
1307                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1308         } else {
1309                 /*
1310                  * Set the ILOS bit on the fiber Nic if half duplex link is
1311                  * detected.
1312                  */
1313                 stat_reg = er32(STATUS);
1314                 if ((stat_reg & E1000_STATUS_FD) == 0)
1315                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1316         }
1317
1318         ew32(CTRL, ctrl_reg);
1319
1320         /*
1321          * Disable the receiver on the PHY so when a cable is plugged in, the
1322          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1323          */
1324         if (hw->phy.type == e1000_phy_m88)
1325                 e1000_phy_disable_receiver(adapter);
1326
1327         udelay(500);
1328
1329         return 0;
1330 }
1331
1332 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1333 {
1334         struct e1000_hw *hw = &adapter->hw;
1335         u32 ctrl = er32(CTRL);
1336         int link = 0;
1337
1338         /* special requirements for 82571/82572 fiber adapters */
1339
1340         /*
1341          * jump through hoops to make sure link is up because serdes
1342          * link is hardwired up
1343          */
1344         ctrl |= E1000_CTRL_SLU;
1345         ew32(CTRL, ctrl);
1346
1347         /* disable autoneg */
1348         ctrl = er32(TXCW);
1349         ctrl &= ~(1 << 31);
1350         ew32(TXCW, ctrl);
1351
1352         link = (er32(STATUS) & E1000_STATUS_LU);
1353
1354         if (!link) {
1355                 /* set invert loss of signal */
1356                 ctrl = er32(CTRL);
1357                 ctrl |= E1000_CTRL_ILOS;
1358                 ew32(CTRL, ctrl);
1359         }
1360
1361         /*
1362          * special write to serdes control register to enable SerDes analog
1363          * loopback
1364          */
1365 #define E1000_SERDES_LB_ON 0x410
1366         ew32(SCTL, E1000_SERDES_LB_ON);
1367         msleep(10);
1368
1369         return 0;
1370 }
1371
1372 /* only call this for fiber/serdes connections to es2lan */
1373 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1374 {
1375         struct e1000_hw *hw = &adapter->hw;
1376         u32 ctrlext = er32(CTRL_EXT);
1377         u32 ctrl = er32(CTRL);
1378
1379         /*
1380          * save CTRL_EXT to restore later, reuse an empty variable (unused
1381          * on mac_type 80003es2lan)
1382          */
1383         adapter->tx_fifo_head = ctrlext;
1384
1385         /* clear the serdes mode bits, putting the device into mac loopback */
1386         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1387         ew32(CTRL_EXT, ctrlext);
1388
1389         /* force speed to 1000/FD, link up */
1390         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1391         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1392                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1393         ew32(CTRL, ctrl);
1394
1395         /* set mac loopback */
1396         ctrl = er32(RCTL);
1397         ctrl |= E1000_RCTL_LBM_MAC;
1398         ew32(RCTL, ctrl);
1399
1400         /* set testing mode parameters (no need to reset later) */
1401 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1402 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1403         ew32(KMRNCTRLSTA,
1404              (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1405
1406         return 0;
1407 }
1408
1409 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1410 {
1411         struct e1000_hw *hw = &adapter->hw;
1412         u32 rctl;
1413
1414         if (hw->phy.media_type == e1000_media_type_fiber ||
1415             hw->phy.media_type == e1000_media_type_internal_serdes) {
1416                 switch (hw->mac.type) {
1417                 case e1000_80003es2lan:
1418                         return e1000_set_es2lan_mac_loopback(adapter);
1419                         break;
1420                 case e1000_82571:
1421                 case e1000_82572:
1422                         return e1000_set_82571_fiber_loopback(adapter);
1423                         break;
1424                 default:
1425                         rctl = er32(RCTL);
1426                         rctl |= E1000_RCTL_LBM_TCVR;
1427                         ew32(RCTL, rctl);
1428                         return 0;
1429                 }
1430         } else if (hw->phy.media_type == e1000_media_type_copper) {
1431                 return e1000_integrated_phy_loopback(adapter);
1432         }
1433
1434         return 7;
1435 }
1436
1437 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1438 {
1439         struct e1000_hw *hw = &adapter->hw;
1440         u32 rctl;
1441         u16 phy_reg;
1442
1443         rctl = er32(RCTL);
1444         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1445         ew32(RCTL, rctl);
1446
1447         switch (hw->mac.type) {
1448         case e1000_80003es2lan:
1449                 if (hw->phy.media_type == e1000_media_type_fiber ||
1450                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1451                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1452                         ew32(CTRL_EXT, adapter->tx_fifo_head);
1453                         adapter->tx_fifo_head = 0;
1454                 }
1455                 /* fall through */
1456         case e1000_82571:
1457         case e1000_82572:
1458                 if (hw->phy.media_type == e1000_media_type_fiber ||
1459                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1460 #define E1000_SERDES_LB_OFF 0x400
1461                         ew32(SCTL, E1000_SERDES_LB_OFF);
1462                         msleep(10);
1463                         break;
1464                 }
1465                 /* Fall Through */
1466         default:
1467                 hw->mac.autoneg = 1;
1468                 if (hw->phy.type == e1000_phy_gg82563)
1469                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1470                 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1471                 if (phy_reg & MII_CR_LOOPBACK) {
1472                         phy_reg &= ~MII_CR_LOOPBACK;
1473                         e1e_wphy(hw, PHY_CONTROL, phy_reg);
1474                         e1000e_commit_phy(hw);
1475                 }
1476                 break;
1477         }
1478 }
1479
1480 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1481                                       unsigned int frame_size)
1482 {
1483         memset(skb->data, 0xFF, frame_size);
1484         frame_size &= ~1;
1485         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1486         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1487         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1488 }
1489
1490 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1491                                     unsigned int frame_size)
1492 {
1493         frame_size &= ~1;
1494         if (*(skb->data + 3) == 0xFF)
1495                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1496                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1497                         return 0;
1498         return 13;
1499 }
1500
1501 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1502 {
1503         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1504         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1505         struct pci_dev *pdev = adapter->pdev;
1506         struct e1000_hw *hw = &adapter->hw;
1507         int i, j, k, l;
1508         int lc;
1509         int good_cnt;
1510         int ret_val = 0;
1511         unsigned long time;
1512
1513         ew32(RDT, rx_ring->count - 1);
1514
1515         /*
1516          * Calculate the loop count based on the largest descriptor ring
1517          * The idea is to wrap the largest ring a number of times using 64
1518          * send/receive pairs during each loop
1519          */
1520
1521         if (rx_ring->count <= tx_ring->count)
1522                 lc = ((tx_ring->count / 64) * 2) + 1;
1523         else
1524                 lc = ((rx_ring->count / 64) * 2) + 1;
1525
1526         k = 0;
1527         l = 0;
1528         for (j = 0; j <= lc; j++) { /* loop count loop */
1529                 for (i = 0; i < 64; i++) { /* send the packets */
1530                         e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1531                                                   1024);
1532                         pci_dma_sync_single_for_device(pdev,
1533                                         tx_ring->buffer_info[k].dma,
1534                                         tx_ring->buffer_info[k].length,
1535                                         PCI_DMA_TODEVICE);
1536                         k++;
1537                         if (k == tx_ring->count)
1538                                 k = 0;
1539                 }
1540                 ew32(TDT, k);
1541                 msleep(200);
1542                 time = jiffies; /* set the start time for the receive */
1543                 good_cnt = 0;
1544                 do { /* receive the sent packets */
1545                         pci_dma_sync_single_for_cpu(pdev,
1546                                         rx_ring->buffer_info[l].dma, 2048,
1547                                         PCI_DMA_FROMDEVICE);
1548
1549                         ret_val = e1000_check_lbtest_frame(
1550                                         rx_ring->buffer_info[l].skb, 1024);
1551                         if (!ret_val)
1552                                 good_cnt++;
1553                         l++;
1554                         if (l == rx_ring->count)
1555                                 l = 0;
1556                         /*
1557                          * time + 20 msecs (200 msecs on 2.4) is more than
1558                          * enough time to complete the receives, if it's
1559                          * exceeded, break and error off
1560                          */
1561                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1562                 if (good_cnt != 64) {
1563                         ret_val = 13; /* ret_val is the same as mis-compare */
1564                         break;
1565                 }
1566                 if (jiffies >= (time + 20)) {
1567                         ret_val = 14; /* error code for time out error */
1568                         break;
1569                 }
1570         } /* end loop count loop */
1571         return ret_val;
1572 }
1573
1574 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1575 {
1576         /*
1577          * PHY loopback cannot be performed if SoL/IDER
1578          * sessions are active
1579          */
1580         if (e1000_check_reset_block(&adapter->hw)) {
1581                 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1582                 *data = 0;
1583                 goto out;
1584         }
1585
1586         *data = e1000_setup_desc_rings(adapter);
1587         if (*data)
1588                 goto out;
1589
1590         *data = e1000_setup_loopback_test(adapter);
1591         if (*data)
1592                 goto err_loopback;
1593
1594         *data = e1000_run_loopback_test(adapter);
1595         e1000_loopback_cleanup(adapter);
1596
1597 err_loopback:
1598         e1000_free_desc_rings(adapter);
1599 out:
1600         return *data;
1601 }
1602
1603 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1604 {
1605         struct e1000_hw *hw = &adapter->hw;
1606
1607         *data = 0;
1608         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1609                 int i = 0;
1610                 hw->mac.serdes_has_link = false;
1611
1612                 /*
1613                  * On some blade server designs, link establishment
1614                  * could take as long as 2-3 minutes
1615                  */
1616                 do {
1617                         hw->mac.ops.check_for_link(hw);
1618                         if (hw->mac.serdes_has_link)
1619                                 return *data;
1620                         msleep(20);
1621                 } while (i++ < 3750);
1622
1623                 *data = 1;
1624         } else {
1625                 hw->mac.ops.check_for_link(hw);
1626                 if (hw->mac.autoneg)
1627                         msleep(4000);
1628
1629                 if (!(er32(STATUS) &
1630                       E1000_STATUS_LU))
1631                         *data = 1;
1632         }
1633         return *data;
1634 }
1635
1636 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1637 {
1638         switch (sset) {
1639         case ETH_SS_TEST:
1640                 return E1000_TEST_LEN;
1641         case ETH_SS_STATS:
1642                 return E1000_STATS_LEN;
1643         default:
1644                 return -EOPNOTSUPP;
1645         }
1646 }
1647
1648 static void e1000_diag_test(struct net_device *netdev,
1649                             struct ethtool_test *eth_test, u64 *data)
1650 {
1651         struct e1000_adapter *adapter = netdev_priv(netdev);
1652         u16 autoneg_advertised;
1653         u8 forced_speed_duplex;
1654         u8 autoneg;
1655         bool if_running = netif_running(netdev);
1656
1657         set_bit(__E1000_TESTING, &adapter->state);
1658         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1659                 /* Offline tests */
1660
1661                 /* save speed, duplex, autoneg settings */
1662                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1663                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1664                 autoneg = adapter->hw.mac.autoneg;
1665
1666                 e_info("offline testing starting\n");
1667
1668                 /*
1669                  * Link test performed before hardware reset so autoneg doesn't
1670                  * interfere with test result
1671                  */
1672                 if (e1000_link_test(adapter, &data[4]))
1673                         eth_test->flags |= ETH_TEST_FL_FAILED;
1674
1675                 if (if_running)
1676                         /* indicate we're in test mode */
1677                         dev_close(netdev);
1678                 else
1679                         e1000e_reset(adapter);
1680
1681                 if (e1000_reg_test(adapter, &data[0]))
1682                         eth_test->flags |= ETH_TEST_FL_FAILED;
1683
1684                 e1000e_reset(adapter);
1685                 if (e1000_eeprom_test(adapter, &data[1]))
1686                         eth_test->flags |= ETH_TEST_FL_FAILED;
1687
1688                 e1000e_reset(adapter);
1689                 if (e1000_intr_test(adapter, &data[2]))
1690                         eth_test->flags |= ETH_TEST_FL_FAILED;
1691
1692                 e1000e_reset(adapter);
1693                 /* make sure the phy is powered up */
1694                 e1000e_power_up_phy(adapter);
1695                 if (e1000_loopback_test(adapter, &data[3]))
1696                         eth_test->flags |= ETH_TEST_FL_FAILED;
1697
1698                 /* restore speed, duplex, autoneg settings */
1699                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1700                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1701                 adapter->hw.mac.autoneg = autoneg;
1702
1703                 /* force this routine to wait until autoneg complete/timeout */
1704                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1705                 e1000e_reset(adapter);
1706                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1707
1708                 clear_bit(__E1000_TESTING, &adapter->state);
1709                 if (if_running)
1710                         dev_open(netdev);
1711         } else {
1712                 e_info("online testing starting\n");
1713                 /* Online tests */
1714                 if (e1000_link_test(adapter, &data[4]))
1715                         eth_test->flags |= ETH_TEST_FL_FAILED;
1716
1717                 /* Online tests aren't run; pass by default */
1718                 data[0] = 0;
1719                 data[1] = 0;
1720                 data[2] = 0;
1721                 data[3] = 0;
1722
1723                 clear_bit(__E1000_TESTING, &adapter->state);
1724         }
1725         msleep_interruptible(4 * 1000);
1726 }
1727
1728 static void e1000_get_wol(struct net_device *netdev,
1729                           struct ethtool_wolinfo *wol)
1730 {
1731         struct e1000_adapter *adapter = netdev_priv(netdev);
1732
1733         wol->supported = 0;
1734         wol->wolopts = 0;
1735
1736         if (!(adapter->flags & FLAG_HAS_WOL) ||
1737             !device_can_wakeup(&adapter->pdev->dev))
1738                 return;
1739
1740         wol->supported = WAKE_UCAST | WAKE_MCAST |
1741                          WAKE_BCAST | WAKE_MAGIC |
1742                          WAKE_PHY | WAKE_ARP;
1743
1744         /* apply any specific unsupported masks here */
1745         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1746                 wol->supported &= ~WAKE_UCAST;
1747
1748                 if (adapter->wol & E1000_WUFC_EX)
1749                         e_err("Interface does not support directed (unicast) "
1750                               "frame wake-up packets\n");
1751         }
1752
1753         if (adapter->wol & E1000_WUFC_EX)
1754                 wol->wolopts |= WAKE_UCAST;
1755         if (adapter->wol & E1000_WUFC_MC)
1756                 wol->wolopts |= WAKE_MCAST;
1757         if (adapter->wol & E1000_WUFC_BC)
1758                 wol->wolopts |= WAKE_BCAST;
1759         if (adapter->wol & E1000_WUFC_MAG)
1760                 wol->wolopts |= WAKE_MAGIC;
1761         if (adapter->wol & E1000_WUFC_LNKC)
1762                 wol->wolopts |= WAKE_PHY;
1763         if (adapter->wol & E1000_WUFC_ARP)
1764                 wol->wolopts |= WAKE_ARP;
1765 }
1766
1767 static int e1000_set_wol(struct net_device *netdev,
1768                          struct ethtool_wolinfo *wol)
1769 {
1770         struct e1000_adapter *adapter = netdev_priv(netdev);
1771
1772         if (wol->wolopts & WAKE_MAGICSECURE)
1773                 return -EOPNOTSUPP;
1774
1775         if (!(adapter->flags & FLAG_HAS_WOL) ||
1776             !device_can_wakeup(&adapter->pdev->dev))
1777                 return wol->wolopts ? -EOPNOTSUPP : 0;
1778
1779         /* these settings will always override what we currently have */
1780         adapter->wol = 0;
1781
1782         if (wol->wolopts & WAKE_UCAST)
1783                 adapter->wol |= E1000_WUFC_EX;
1784         if (wol->wolopts & WAKE_MCAST)
1785                 adapter->wol |= E1000_WUFC_MC;
1786         if (wol->wolopts & WAKE_BCAST)
1787                 adapter->wol |= E1000_WUFC_BC;
1788         if (wol->wolopts & WAKE_MAGIC)
1789                 adapter->wol |= E1000_WUFC_MAG;
1790         if (wol->wolopts & WAKE_PHY)
1791                 adapter->wol |= E1000_WUFC_LNKC;
1792         if (wol->wolopts & WAKE_ARP)
1793                 adapter->wol |= E1000_WUFC_ARP;
1794
1795         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1796
1797         return 0;
1798 }
1799
1800 /* toggle LED 4 times per second = 2 "blinks" per second */
1801 #define E1000_ID_INTERVAL       (HZ/4)
1802
1803 /* bit defines for adapter->led_status */
1804 #define E1000_LED_ON            0
1805
1806 static void e1000e_led_blink_task(struct work_struct *work)
1807 {
1808         struct e1000_adapter *adapter = container_of(work,
1809                                         struct e1000_adapter, led_blink_task);
1810
1811         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1812                 adapter->hw.mac.ops.led_off(&adapter->hw);
1813         else
1814                 adapter->hw.mac.ops.led_on(&adapter->hw);
1815 }
1816
1817 static void e1000_led_blink_callback(unsigned long data)
1818 {
1819         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1820
1821         schedule_work(&adapter->led_blink_task);
1822         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1823 }
1824
1825 static int e1000_phys_id(struct net_device *netdev, u32 data)
1826 {
1827         struct e1000_adapter *adapter = netdev_priv(netdev);
1828         struct e1000_hw *hw = &adapter->hw;
1829
1830         if (!data)
1831                 data = INT_MAX;
1832
1833         if ((hw->phy.type == e1000_phy_ife) ||
1834             (hw->mac.type == e1000_pchlan) ||
1835             (hw->mac.type == e1000_82574)) {
1836                 INIT_WORK(&adapter->led_blink_task, e1000e_led_blink_task);
1837                 if (!adapter->blink_timer.function) {
1838                         init_timer(&adapter->blink_timer);
1839                         adapter->blink_timer.function =
1840                                 e1000_led_blink_callback;
1841                         adapter->blink_timer.data = (unsigned long) adapter;
1842                 }
1843                 mod_timer(&adapter->blink_timer, jiffies);
1844                 msleep_interruptible(data * 1000);
1845                 del_timer_sync(&adapter->blink_timer);
1846                 if (hw->phy.type == e1000_phy_ife)
1847                         e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1848         } else {
1849                 e1000e_blink_led(hw);
1850                 msleep_interruptible(data * 1000);
1851         }
1852
1853         hw->mac.ops.led_off(hw);
1854         clear_bit(E1000_LED_ON, &adapter->led_status);
1855         hw->mac.ops.cleanup_led(hw);
1856
1857         return 0;
1858 }
1859
1860 static int e1000_get_coalesce(struct net_device *netdev,
1861                               struct ethtool_coalesce *ec)
1862 {
1863         struct e1000_adapter *adapter = netdev_priv(netdev);
1864
1865         if (adapter->itr_setting <= 3)
1866                 ec->rx_coalesce_usecs = adapter->itr_setting;
1867         else
1868                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1869
1870         return 0;
1871 }
1872
1873 static int e1000_set_coalesce(struct net_device *netdev,
1874                               struct ethtool_coalesce *ec)
1875 {
1876         struct e1000_adapter *adapter = netdev_priv(netdev);
1877         struct e1000_hw *hw = &adapter->hw;
1878
1879         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1880             ((ec->rx_coalesce_usecs > 3) &&
1881              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1882             (ec->rx_coalesce_usecs == 2))
1883                 return -EINVAL;
1884
1885         if (ec->rx_coalesce_usecs <= 3) {
1886                 adapter->itr = 20000;
1887                 adapter->itr_setting = ec->rx_coalesce_usecs;
1888         } else {
1889                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1890                 adapter->itr_setting = adapter->itr & ~3;
1891         }
1892
1893         if (adapter->itr_setting != 0)
1894                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1895         else
1896                 ew32(ITR, 0);
1897
1898         return 0;
1899 }
1900
1901 static int e1000_nway_reset(struct net_device *netdev)
1902 {
1903         struct e1000_adapter *adapter = netdev_priv(netdev);
1904         if (netif_running(netdev))
1905                 e1000e_reinit_locked(adapter);
1906         return 0;
1907 }
1908
1909 static void e1000_get_ethtool_stats(struct net_device *netdev,
1910                                     struct ethtool_stats *stats,
1911                                     u64 *data)
1912 {
1913         struct e1000_adapter *adapter = netdev_priv(netdev);
1914         int i;
1915         char *p = NULL;
1916
1917         e1000e_update_stats(adapter);
1918         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1919                 switch (e1000_gstrings_stats[i].type) {
1920                 case NETDEV_STATS:
1921                         p = (char *) netdev +
1922                                         e1000_gstrings_stats[i].stat_offset;
1923                         break;
1924                 case E1000_STATS:
1925                         p = (char *) adapter +
1926                                         e1000_gstrings_stats[i].stat_offset;
1927                         break;
1928                 }
1929
1930                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1931                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1932         }
1933 }
1934
1935 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1936                               u8 *data)
1937 {
1938         u8 *p = data;
1939         int i;
1940
1941         switch (stringset) {
1942         case ETH_SS_TEST:
1943                 memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
1944                 break;
1945         case ETH_SS_STATS:
1946                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1947                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1948                                ETH_GSTRING_LEN);
1949                         p += ETH_GSTRING_LEN;
1950                 }
1951                 break;
1952         }
1953 }
1954
1955 static const struct ethtool_ops e1000_ethtool_ops = {
1956         .get_settings           = e1000_get_settings,
1957         .set_settings           = e1000_set_settings,
1958         .get_drvinfo            = e1000_get_drvinfo,
1959         .get_regs_len           = e1000_get_regs_len,
1960         .get_regs               = e1000_get_regs,
1961         .get_wol                = e1000_get_wol,
1962         .set_wol                = e1000_set_wol,
1963         .get_msglevel           = e1000_get_msglevel,
1964         .set_msglevel           = e1000_set_msglevel,
1965         .nway_reset             = e1000_nway_reset,
1966         .get_link               = e1000_get_link,
1967         .get_eeprom_len         = e1000_get_eeprom_len,
1968         .get_eeprom             = e1000_get_eeprom,
1969         .set_eeprom             = e1000_set_eeprom,
1970         .get_ringparam          = e1000_get_ringparam,
1971         .set_ringparam          = e1000_set_ringparam,
1972         .get_pauseparam         = e1000_get_pauseparam,
1973         .set_pauseparam         = e1000_set_pauseparam,
1974         .get_rx_csum            = e1000_get_rx_csum,
1975         .set_rx_csum            = e1000_set_rx_csum,
1976         .get_tx_csum            = e1000_get_tx_csum,
1977         .set_tx_csum            = e1000_set_tx_csum,
1978         .get_sg                 = ethtool_op_get_sg,
1979         .set_sg                 = ethtool_op_set_sg,
1980         .get_tso                = ethtool_op_get_tso,
1981         .set_tso                = e1000_set_tso,
1982         .self_test              = e1000_diag_test,
1983         .get_strings            = e1000_get_strings,
1984         .phys_id                = e1000_phys_id,
1985         .get_ethtool_stats      = e1000_get_ethtool_stats,
1986         .get_sset_count         = e1000e_get_sset_count,
1987         .get_coalesce           = e1000_get_coalesce,
1988         .set_coalesce           = e1000_set_coalesce,
1989 };
1990
1991 void e1000e_set_ethtool_ops(struct net_device *netdev)
1992 {
1993         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1994 }