e1000e: reformat comment blocks, cosmetic changes only
[safe/jmp/linux-2.6] / drivers / net / e1000e / ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2008 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/delay.h>
35
36 #include "e1000.h"
37
38 struct e1000_stats {
39         char stat_string[ETH_GSTRING_LEN];
40         int sizeof_stat;
41         int stat_offset;
42 };
43
44 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
45                       offsetof(struct e1000_adapter, m)
46 static const struct e1000_stats e1000_gstrings_stats[] = {
47         { "rx_packets", E1000_STAT(stats.gprc) },
48         { "tx_packets", E1000_STAT(stats.gptc) },
49         { "rx_bytes", E1000_STAT(stats.gorcl) },
50         { "tx_bytes", E1000_STAT(stats.gotcl) },
51         { "rx_broadcast", E1000_STAT(stats.bprc) },
52         { "tx_broadcast", E1000_STAT(stats.bptc) },
53         { "rx_multicast", E1000_STAT(stats.mprc) },
54         { "tx_multicast", E1000_STAT(stats.mptc) },
55         { "rx_errors", E1000_STAT(net_stats.rx_errors) },
56         { "tx_errors", E1000_STAT(net_stats.tx_errors) },
57         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
58         { "multicast", E1000_STAT(stats.mprc) },
59         { "collisions", E1000_STAT(stats.colc) },
60         { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
61         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
62         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
63         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
64         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
65         { "rx_missed_errors", E1000_STAT(stats.mpc) },
66         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
67         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
68         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
69         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
70         { "tx_window_errors", E1000_STAT(stats.latecol) },
71         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
72         { "tx_deferred_ok", E1000_STAT(stats.dc) },
73         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
74         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
75         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
76         { "tx_restart_queue", E1000_STAT(restart_queue) },
77         { "rx_long_length_errors", E1000_STAT(stats.roc) },
78         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
79         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
80         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
81         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
82         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
83         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
84         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
85         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
86         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
87         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
88         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
89         { "rx_header_split", E1000_STAT(rx_hdr_split) },
90         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
91         { "tx_smbus", E1000_STAT(stats.mgptc) },
92         { "rx_smbus", E1000_STAT(stats.mgprc) },
93         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
94         { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
95         { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
96 };
97
98 #define E1000_GLOBAL_STATS_LEN  ARRAY_SIZE(e1000_gstrings_stats)
99 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
100 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
101         "Register test  (offline)", "Eeprom test    (offline)",
102         "Interrupt test (offline)", "Loopback test  (offline)",
103         "Link test   (on/offline)"
104 };
105 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
106
107 static int e1000_get_settings(struct net_device *netdev,
108                               struct ethtool_cmd *ecmd)
109 {
110         struct e1000_adapter *adapter = netdev_priv(netdev);
111         struct e1000_hw *hw = &adapter->hw;
112         u32 status;
113
114         if (hw->media_type == e1000_media_type_copper) {
115
116                 ecmd->supported = (SUPPORTED_10baseT_Half |
117                                    SUPPORTED_10baseT_Full |
118                                    SUPPORTED_100baseT_Half |
119                                    SUPPORTED_100baseT_Full |
120                                    SUPPORTED_1000baseT_Full |
121                                    SUPPORTED_Autoneg |
122                                    SUPPORTED_TP);
123                 if (hw->phy.type == e1000_phy_ife)
124                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
125                 ecmd->advertising = ADVERTISED_TP;
126
127                 if (hw->mac.autoneg == 1) {
128                         ecmd->advertising |= ADVERTISED_Autoneg;
129                         /* the e1000 autoneg seems to match ethtool nicely */
130                         ecmd->advertising |= hw->phy.autoneg_advertised;
131                 }
132
133                 ecmd->port = PORT_TP;
134                 ecmd->phy_address = hw->phy.addr;
135                 ecmd->transceiver = XCVR_INTERNAL;
136
137         } else {
138                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
139                                      SUPPORTED_FIBRE |
140                                      SUPPORTED_Autoneg);
141
142                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
143                                      ADVERTISED_FIBRE |
144                                      ADVERTISED_Autoneg);
145
146                 ecmd->port = PORT_FIBRE;
147                 ecmd->transceiver = XCVR_EXTERNAL;
148         }
149
150         status = er32(STATUS);
151         if (status & E1000_STATUS_LU) {
152                 if (status & E1000_STATUS_SPEED_1000)
153                         ecmd->speed = 1000;
154                 else if (status & E1000_STATUS_SPEED_100)
155                         ecmd->speed = 100;
156                 else
157                         ecmd->speed = 10;
158
159                 if (status & E1000_STATUS_FD)
160                         ecmd->duplex = DUPLEX_FULL;
161                 else
162                         ecmd->duplex = DUPLEX_HALF;
163         } else {
164                 ecmd->speed = -1;
165                 ecmd->duplex = -1;
166         }
167
168         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
169                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
170         return 0;
171 }
172
173 static u32 e1000_get_link(struct net_device *netdev)
174 {
175         struct e1000_adapter *adapter = netdev_priv(netdev);
176         struct e1000_hw *hw = &adapter->hw;
177         u32 status;
178         
179         status = er32(STATUS);
180         return (status & E1000_STATUS_LU);
181 }
182
183 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
184 {
185         struct e1000_mac_info *mac = &adapter->hw.mac;
186
187         mac->autoneg = 0;
188
189         /* Fiber NICs only allow 1000 gbps Full duplex */
190         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
191                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
192                 ndev_err(adapter->netdev, "Unsupported Speed/Duplex "
193                          "configuration\n");
194                 return -EINVAL;
195         }
196
197         switch (spddplx) {
198         case SPEED_10 + DUPLEX_HALF:
199                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
200                 break;
201         case SPEED_10 + DUPLEX_FULL:
202                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
203                 break;
204         case SPEED_100 + DUPLEX_HALF:
205                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
206                 break;
207         case SPEED_100 + DUPLEX_FULL:
208                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
209                 break;
210         case SPEED_1000 + DUPLEX_FULL:
211                 mac->autoneg = 1;
212                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
213                 break;
214         case SPEED_1000 + DUPLEX_HALF: /* not supported */
215         default:
216                 ndev_err(adapter->netdev, "Unsupported Speed/Duplex "
217                          "configuration\n");
218                 return -EINVAL;
219         }
220         return 0;
221 }
222
223 static int e1000_set_settings(struct net_device *netdev,
224                               struct ethtool_cmd *ecmd)
225 {
226         struct e1000_adapter *adapter = netdev_priv(netdev);
227         struct e1000_hw *hw = &adapter->hw;
228
229         /*
230          * When SoL/IDER sessions are active, autoneg/speed/duplex
231          * cannot be changed
232          */
233         if (e1000_check_reset_block(hw)) {
234                 ndev_err(netdev, "Cannot change link "
235                          "characteristics when SoL/IDER is active.\n");
236                 return -EINVAL;
237         }
238
239         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
240                 msleep(1);
241
242         if (ecmd->autoneg == AUTONEG_ENABLE) {
243                 hw->mac.autoneg = 1;
244                 if (hw->media_type == e1000_media_type_fiber)
245                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
246                                                      ADVERTISED_FIBRE |
247                                                      ADVERTISED_Autoneg;
248                 else
249                         hw->phy.autoneg_advertised = ecmd->advertising |
250                                                      ADVERTISED_TP |
251                                                      ADVERTISED_Autoneg;
252                 ecmd->advertising = hw->phy.autoneg_advertised;
253         } else {
254                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
255                         clear_bit(__E1000_RESETTING, &adapter->state);
256                         return -EINVAL;
257                 }
258         }
259
260         /* reset the link */
261
262         if (netif_running(adapter->netdev)) {
263                 e1000e_down(adapter);
264                 e1000e_up(adapter);
265         } else {
266                 e1000e_reset(adapter);
267         }
268
269         clear_bit(__E1000_RESETTING, &adapter->state);
270         return 0;
271 }
272
273 static void e1000_get_pauseparam(struct net_device *netdev,
274                                  struct ethtool_pauseparam *pause)
275 {
276         struct e1000_adapter *adapter = netdev_priv(netdev);
277         struct e1000_hw *hw = &adapter->hw;
278
279         pause->autoneg =
280                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
281
282         if (hw->mac.fc == e1000_fc_rx_pause) {
283                 pause->rx_pause = 1;
284         } else if (hw->mac.fc == e1000_fc_tx_pause) {
285                 pause->tx_pause = 1;
286         } else if (hw->mac.fc == e1000_fc_full) {
287                 pause->rx_pause = 1;
288                 pause->tx_pause = 1;
289         }
290 }
291
292 static int e1000_set_pauseparam(struct net_device *netdev,
293                                 struct ethtool_pauseparam *pause)
294 {
295         struct e1000_adapter *adapter = netdev_priv(netdev);
296         struct e1000_hw *hw = &adapter->hw;
297         int retval = 0;
298
299         adapter->fc_autoneg = pause->autoneg;
300
301         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
302                 msleep(1);
303
304         if (pause->rx_pause && pause->tx_pause)
305                 hw->mac.fc = e1000_fc_full;
306         else if (pause->rx_pause && !pause->tx_pause)
307                 hw->mac.fc = e1000_fc_rx_pause;
308         else if (!pause->rx_pause && pause->tx_pause)
309                 hw->mac.fc = e1000_fc_tx_pause;
310         else if (!pause->rx_pause && !pause->tx_pause)
311                 hw->mac.fc = e1000_fc_none;
312
313         hw->mac.original_fc = hw->mac.fc;
314
315         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
316                 hw->mac.fc = e1000_fc_default;
317                 if (netif_running(adapter->netdev)) {
318                         e1000e_down(adapter);
319                         e1000e_up(adapter);
320                 } else {
321                         e1000e_reset(adapter);
322                 }
323         } else {
324                 retval = ((hw->media_type == e1000_media_type_fiber) ?
325                           hw->mac.ops.setup_link(hw) : e1000e_force_mac_fc(hw));
326         }
327
328         clear_bit(__E1000_RESETTING, &adapter->state);
329         return retval;
330 }
331
332 static u32 e1000_get_rx_csum(struct net_device *netdev)
333 {
334         struct e1000_adapter *adapter = netdev_priv(netdev);
335         return (adapter->flags & FLAG_RX_CSUM_ENABLED);
336 }
337
338 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
339 {
340         struct e1000_adapter *adapter = netdev_priv(netdev);
341
342         if (data)
343                 adapter->flags |= FLAG_RX_CSUM_ENABLED;
344         else
345                 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
346
347         if (netif_running(netdev))
348                 e1000e_reinit_locked(adapter);
349         else
350                 e1000e_reset(adapter);
351         return 0;
352 }
353
354 static u32 e1000_get_tx_csum(struct net_device *netdev)
355 {
356         return ((netdev->features & NETIF_F_HW_CSUM) != 0);
357 }
358
359 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
360 {
361         if (data)
362                 netdev->features |= NETIF_F_HW_CSUM;
363         else
364                 netdev->features &= ~NETIF_F_HW_CSUM;
365
366         return 0;
367 }
368
369 static int e1000_set_tso(struct net_device *netdev, u32 data)
370 {
371         struct e1000_adapter *adapter = netdev_priv(netdev);
372
373         if (data) {
374                 netdev->features |= NETIF_F_TSO;
375                 netdev->features |= NETIF_F_TSO6;
376         } else {
377                 netdev->features &= ~NETIF_F_TSO;
378                 netdev->features &= ~NETIF_F_TSO6;
379         }
380
381         ndev_info(netdev, "TSO is %s\n",
382                   data ? "Enabled" : "Disabled");
383         adapter->flags |= FLAG_TSO_FORCE;
384         return 0;
385 }
386
387 static u32 e1000_get_msglevel(struct net_device *netdev)
388 {
389         struct e1000_adapter *adapter = netdev_priv(netdev);
390         return adapter->msg_enable;
391 }
392
393 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
394 {
395         struct e1000_adapter *adapter = netdev_priv(netdev);
396         adapter->msg_enable = data;
397 }
398
399 static int e1000_get_regs_len(struct net_device *netdev)
400 {
401 #define E1000_REGS_LEN 32 /* overestimate */
402         return E1000_REGS_LEN * sizeof(u32);
403 }
404
405 static void e1000_get_regs(struct net_device *netdev,
406                            struct ethtool_regs *regs, void *p)
407 {
408         struct e1000_adapter *adapter = netdev_priv(netdev);
409         struct e1000_hw *hw = &adapter->hw;
410         u32 *regs_buff = p;
411         u16 phy_data;
412         u8 revision_id;
413
414         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
415
416         pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
417
418         regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
419
420         regs_buff[0]  = er32(CTRL);
421         regs_buff[1]  = er32(STATUS);
422
423         regs_buff[2]  = er32(RCTL);
424         regs_buff[3]  = er32(RDLEN);
425         regs_buff[4]  = er32(RDH);
426         regs_buff[5]  = er32(RDT);
427         regs_buff[6]  = er32(RDTR);
428
429         regs_buff[7]  = er32(TCTL);
430         regs_buff[8]  = er32(TDLEN);
431         regs_buff[9]  = er32(TDH);
432         regs_buff[10] = er32(TDT);
433         regs_buff[11] = er32(TIDV);
434
435         regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
436         if (hw->phy.type == e1000_phy_m88) {
437                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
438                 regs_buff[13] = (u32)phy_data; /* cable length */
439                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
440                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
441                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
442                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
443                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
444                 regs_buff[18] = regs_buff[13]; /* cable polarity */
445                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
446                 regs_buff[20] = regs_buff[17]; /* polarity correction */
447                 /* phy receive errors */
448                 regs_buff[22] = adapter->phy_stats.receive_errors;
449                 regs_buff[23] = regs_buff[13]; /* mdix mode */
450         }
451         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
452         e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
453         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
454         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
455 }
456
457 static int e1000_get_eeprom_len(struct net_device *netdev)
458 {
459         struct e1000_adapter *adapter = netdev_priv(netdev);
460         return adapter->hw.nvm.word_size * 2;
461 }
462
463 static int e1000_get_eeprom(struct net_device *netdev,
464                             struct ethtool_eeprom *eeprom, u8 *bytes)
465 {
466         struct e1000_adapter *adapter = netdev_priv(netdev);
467         struct e1000_hw *hw = &adapter->hw;
468         u16 *eeprom_buff;
469         int first_word;
470         int last_word;
471         int ret_val = 0;
472         u16 i;
473
474         if (eeprom->len == 0)
475                 return -EINVAL;
476
477         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
478
479         first_word = eeprom->offset >> 1;
480         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
481
482         eeprom_buff = kmalloc(sizeof(u16) *
483                         (last_word - first_word + 1), GFP_KERNEL);
484         if (!eeprom_buff)
485                 return -ENOMEM;
486
487         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
488                 ret_val = e1000_read_nvm(hw, first_word,
489                                          last_word - first_word + 1,
490                                          eeprom_buff);
491         } else {
492                 for (i = 0; i < last_word - first_word + 1; i++) {
493                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
494                                                       &eeprom_buff[i]);
495                         if (ret_val)
496                                 break;
497                 }
498         }
499
500         /* Device's eeprom is always little-endian, word addressable */
501         for (i = 0; i < last_word - first_word + 1; i++)
502                 le16_to_cpus(&eeprom_buff[i]);
503
504         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
505         kfree(eeprom_buff);
506
507         return ret_val;
508 }
509
510 static int e1000_set_eeprom(struct net_device *netdev,
511                             struct ethtool_eeprom *eeprom, u8 *bytes)
512 {
513         struct e1000_adapter *adapter = netdev_priv(netdev);
514         struct e1000_hw *hw = &adapter->hw;
515         u16 *eeprom_buff;
516         void *ptr;
517         int max_len;
518         int first_word;
519         int last_word;
520         int ret_val = 0;
521         u16 i;
522
523         if (eeprom->len == 0)
524                 return -EOPNOTSUPP;
525
526         if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
527                 return -EFAULT;
528
529         max_len = hw->nvm.word_size * 2;
530
531         first_word = eeprom->offset >> 1;
532         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
533         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
534         if (!eeprom_buff)
535                 return -ENOMEM;
536
537         ptr = (void *)eeprom_buff;
538
539         if (eeprom->offset & 1) {
540                 /* need read/modify/write of first changed EEPROM word */
541                 /* only the second byte of the word is being modified */
542                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
543                 ptr++;
544         }
545         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
546                 /* need read/modify/write of last changed EEPROM word */
547                 /* only the first byte of the word is being modified */
548                 ret_val = e1000_read_nvm(hw, last_word, 1,
549                                   &eeprom_buff[last_word - first_word]);
550
551         /* Device's eeprom is always little-endian, word addressable */
552         for (i = 0; i < last_word - first_word + 1; i++)
553                 le16_to_cpus(&eeprom_buff[i]);
554
555         memcpy(ptr, bytes, eeprom->len);
556
557         for (i = 0; i < last_word - first_word + 1; i++)
558                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
559
560         ret_val = e1000_write_nvm(hw, first_word,
561                                   last_word - first_word + 1, eeprom_buff);
562
563         /*
564          * Update the checksum over the first part of the EEPROM if needed
565          * and flush shadow RAM for 82573 controllers
566          */
567         if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG) ||
568                                (hw->mac.type == e1000_82573)))
569                 e1000e_update_nvm_checksum(hw);
570
571         kfree(eeprom_buff);
572         return ret_val;
573 }
574
575 static void e1000_get_drvinfo(struct net_device *netdev,
576                               struct ethtool_drvinfo *drvinfo)
577 {
578         struct e1000_adapter *adapter = netdev_priv(netdev);
579         char firmware_version[32];
580         u16 eeprom_data;
581
582         strncpy(drvinfo->driver,  e1000e_driver_name, 32);
583         strncpy(drvinfo->version, e1000e_driver_version, 32);
584
585         /*
586          * EEPROM image version # is reported as firmware version # for
587          * PCI-E controllers
588          */
589         e1000_read_nvm(&adapter->hw, 5, 1, &eeprom_data);
590         sprintf(firmware_version, "%d.%d-%d",
591                 (eeprom_data & 0xF000) >> 12,
592                 (eeprom_data & 0x0FF0) >> 4,
593                 eeprom_data & 0x000F);
594
595         strncpy(drvinfo->fw_version, firmware_version, 32);
596         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
597         drvinfo->regdump_len = e1000_get_regs_len(netdev);
598         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
599 }
600
601 static void e1000_get_ringparam(struct net_device *netdev,
602                                 struct ethtool_ringparam *ring)
603 {
604         struct e1000_adapter *adapter = netdev_priv(netdev);
605         struct e1000_ring *tx_ring = adapter->tx_ring;
606         struct e1000_ring *rx_ring = adapter->rx_ring;
607
608         ring->rx_max_pending = E1000_MAX_RXD;
609         ring->tx_max_pending = E1000_MAX_TXD;
610         ring->rx_mini_max_pending = 0;
611         ring->rx_jumbo_max_pending = 0;
612         ring->rx_pending = rx_ring->count;
613         ring->tx_pending = tx_ring->count;
614         ring->rx_mini_pending = 0;
615         ring->rx_jumbo_pending = 0;
616 }
617
618 static int e1000_set_ringparam(struct net_device *netdev,
619                                struct ethtool_ringparam *ring)
620 {
621         struct e1000_adapter *adapter = netdev_priv(netdev);
622         struct e1000_ring *tx_ring, *tx_old;
623         struct e1000_ring *rx_ring, *rx_old;
624         int err;
625
626         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
627                 return -EINVAL;
628
629         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
630                 msleep(1);
631
632         if (netif_running(adapter->netdev))
633                 e1000e_down(adapter);
634
635         tx_old = adapter->tx_ring;
636         rx_old = adapter->rx_ring;
637
638         err = -ENOMEM;
639         tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
640         if (!tx_ring)
641                 goto err_alloc_tx;
642
643         rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
644         if (!rx_ring)
645                 goto err_alloc_rx;
646
647         adapter->tx_ring = tx_ring;
648         adapter->rx_ring = rx_ring;
649
650         rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
651         rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
652         rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
653
654         tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
655         tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
656         tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
657
658         if (netif_running(adapter->netdev)) {
659                 /* Try to get new resources before deleting old */
660                 err = e1000e_setup_rx_resources(adapter);
661                 if (err)
662                         goto err_setup_rx;
663                 err = e1000e_setup_tx_resources(adapter);
664                 if (err)
665                         goto err_setup_tx;
666
667                 /*
668                  * restore the old in order to free it,
669                  * then add in the new
670                  */
671                 adapter->rx_ring = rx_old;
672                 adapter->tx_ring = tx_old;
673                 e1000e_free_rx_resources(adapter);
674                 e1000e_free_tx_resources(adapter);
675                 kfree(tx_old);
676                 kfree(rx_old);
677                 adapter->rx_ring = rx_ring;
678                 adapter->tx_ring = tx_ring;
679                 err = e1000e_up(adapter);
680                 if (err)
681                         goto err_setup;
682         }
683
684         clear_bit(__E1000_RESETTING, &adapter->state);
685         return 0;
686 err_setup_tx:
687         e1000e_free_rx_resources(adapter);
688 err_setup_rx:
689         adapter->rx_ring = rx_old;
690         adapter->tx_ring = tx_old;
691         kfree(rx_ring);
692 err_alloc_rx:
693         kfree(tx_ring);
694 err_alloc_tx:
695         e1000e_up(adapter);
696 err_setup:
697         clear_bit(__E1000_RESETTING, &adapter->state);
698         return err;
699 }
700
701 static bool reg_pattern_test_array(struct e1000_adapter *adapter, u64 *data,
702                                    int reg, int offset, u32 mask, u32 write)
703 {
704         int i;
705         u32 read;
706         static const u32 test[] =
707                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
708         for (i = 0; i < ARRAY_SIZE(test); i++) {
709                 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
710                                       (test[i] & write));
711                 read = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
712                 if (read != (test[i] & write & mask)) {
713                         ndev_err(adapter->netdev, "pattern test reg %04X "
714                                  "failed: got 0x%08X expected 0x%08X\n",
715                                  reg + offset,
716                                  read, (test[i] & write & mask));
717                         *data = reg;
718                         return true;
719                 }
720         }
721         return false;
722 }
723
724 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
725                               int reg, u32 mask, u32 write)
726 {
727         u32 read;
728         __ew32(&adapter->hw, reg, write & mask);
729         read = __er32(&adapter->hw, reg);
730         if ((write & mask) != (read & mask)) {
731                 ndev_err(adapter->netdev, "set/check reg %04X test failed: "
732                          "got 0x%08X expected 0x%08X\n", reg, (read & mask),
733                          (write & mask));
734                 *data = reg;
735                 return true;
736         }
737         return false;
738 }
739
740 #define REG_PATTERN_TEST(R, M, W) \
741         do { \
742                 if (reg_pattern_test_array(adapter, data, R, 0, M, W)) \
743                         return 1; \
744         } while (0)
745
746 #define REG_PATTERN_TEST_ARRAY(R, offset, M, W) \
747         do { \
748                 if (reg_pattern_test_array(adapter, data, R, offset, M, W)) \
749                         return 1; \
750         } while (0)
751
752 #define REG_SET_AND_CHECK(R, M, W) \
753         do { \
754                 if (reg_set_and_check(adapter, data, R, M, W)) \
755                         return 1; \
756         } while (0)
757
758 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
759 {
760         struct e1000_hw *hw = &adapter->hw;
761         struct e1000_mac_info *mac = &adapter->hw.mac;
762         struct net_device *netdev = adapter->netdev;
763         u32 value;
764         u32 before;
765         u32 after;
766         u32 i;
767         u32 toggle;
768
769         /*
770          * The status register is Read Only, so a write should fail.
771          * Some bits that get toggled are ignored.
772          */
773         switch (mac->type) {
774         /* there are several bits on newer hardware that are r/w */
775         case e1000_82571:
776         case e1000_82572:
777         case e1000_80003es2lan:
778                 toggle = 0x7FFFF3FF;
779                 break;
780         case e1000_82573:
781         case e1000_ich8lan:
782         case e1000_ich9lan:
783                 toggle = 0x7FFFF033;
784                 break;
785         default:
786                 toggle = 0xFFFFF833;
787                 break;
788         }
789
790         before = er32(STATUS);
791         value = (er32(STATUS) & toggle);
792         ew32(STATUS, toggle);
793         after = er32(STATUS) & toggle;
794         if (value != after) {
795                 ndev_err(netdev, "failed STATUS register test got: "
796                          "0x%08X expected: 0x%08X\n", after, value);
797                 *data = 1;
798                 return 1;
799         }
800         /* restore previous status */
801         ew32(STATUS, before);
802
803         if ((mac->type != e1000_ich8lan) &&
804             (mac->type != e1000_ich9lan)) {
805                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
806                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
807                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
808                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
809         }
810
811         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
812         REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
813         REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
814         REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
815         REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
816         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
817         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
818         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
819         REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
820         REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
821
822         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
823
824         before = (((mac->type == e1000_ich8lan) ||
825                    (mac->type == e1000_ich9lan)) ? 0x06C3B33E : 0x06DFB3FE);
826         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
827         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
828
829         REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
830         REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
831         if ((mac->type != e1000_ich8lan) &&
832             (mac->type != e1000_ich9lan))
833                 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
834         REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
835         REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
836         for (i = 0; i < mac->rar_entry_count; i++)
837                 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
838                                        0x8003FFFF, 0xFFFFFFFF);
839
840         for (i = 0; i < mac->mta_reg_count; i++)
841                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
842
843         *data = 0;
844         return 0;
845 }
846
847 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
848 {
849         u16 temp;
850         u16 checksum = 0;
851         u16 i;
852
853         *data = 0;
854         /* Read and add up the contents of the EEPROM */
855         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
856                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
857                         *data = 1;
858                         break;
859                 }
860                 checksum += temp;
861         }
862
863         /* If Checksum is not Correct return error else test passed */
864         if ((checksum != (u16) NVM_SUM) && !(*data))
865                 *data = 2;
866
867         return *data;
868 }
869
870 static irqreturn_t e1000_test_intr(int irq, void *data)
871 {
872         struct net_device *netdev = (struct net_device *) data;
873         struct e1000_adapter *adapter = netdev_priv(netdev);
874         struct e1000_hw *hw = &adapter->hw;
875
876         adapter->test_icr |= er32(ICR);
877
878         return IRQ_HANDLED;
879 }
880
881 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
882 {
883         struct net_device *netdev = adapter->netdev;
884         struct e1000_hw *hw = &adapter->hw;
885         u32 mask;
886         u32 shared_int = 1;
887         u32 irq = adapter->pdev->irq;
888         int i;
889
890         *data = 0;
891
892         /* NOTE: we don't test MSI interrupts here, yet */
893         /* Hook up test interrupt handler just for this test */
894         if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
895                          netdev)) {
896                 shared_int = 0;
897         } else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
898                  netdev->name, netdev)) {
899                 *data = 1;
900                 return -1;
901         }
902         ndev_info(netdev, "testing %s interrupt\n",
903                   (shared_int ? "shared" : "unshared"));
904
905         /* Disable all the interrupts */
906         ew32(IMC, 0xFFFFFFFF);
907         msleep(10);
908
909         /* Test each interrupt */
910         for (i = 0; i < 10; i++) {
911
912                 if (((adapter->hw.mac.type == e1000_ich8lan) ||
913                      (adapter->hw.mac.type == e1000_ich9lan)) && i == 8)
914                         continue;
915
916                 /* Interrupt to test */
917                 mask = 1 << i;
918
919                 if (!shared_int) {
920                         /*
921                          * Disable the interrupt to be reported in
922                          * the cause register and then force the same
923                          * interrupt and see if one gets posted.  If
924                          * an interrupt was posted to the bus, the
925                          * test failed.
926                          */
927                         adapter->test_icr = 0;
928                         ew32(IMC, mask);
929                         ew32(ICS, mask);
930                         msleep(10);
931
932                         if (adapter->test_icr & mask) {
933                                 *data = 3;
934                                 break;
935                         }
936                 }
937
938                 /*
939                  * Enable the interrupt to be reported in
940                  * the cause register and then force the same
941                  * interrupt and see if one gets posted.  If
942                  * an interrupt was not posted to the bus, the
943                  * test failed.
944                  */
945                 adapter->test_icr = 0;
946                 ew32(IMS, mask);
947                 ew32(ICS, mask);
948                 msleep(10);
949
950                 if (!(adapter->test_icr & mask)) {
951                         *data = 4;
952                         break;
953                 }
954
955                 if (!shared_int) {
956                         /*
957                          * Disable the other interrupts to be reported in
958                          * the cause register and then force the other
959                          * interrupts and see if any get posted.  If
960                          * an interrupt was posted to the bus, the
961                          * test failed.
962                          */
963                         adapter->test_icr = 0;
964                         ew32(IMC, ~mask & 0x00007FFF);
965                         ew32(ICS, ~mask & 0x00007FFF);
966                         msleep(10);
967
968                         if (adapter->test_icr) {
969                                 *data = 5;
970                                 break;
971                         }
972                 }
973         }
974
975         /* Disable all the interrupts */
976         ew32(IMC, 0xFFFFFFFF);
977         msleep(10);
978
979         /* Unhook test interrupt handler */
980         free_irq(irq, netdev);
981
982         return *data;
983 }
984
985 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
986 {
987         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
988         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
989         struct pci_dev *pdev = adapter->pdev;
990         int i;
991
992         if (tx_ring->desc && tx_ring->buffer_info) {
993                 for (i = 0; i < tx_ring->count; i++) {
994                         if (tx_ring->buffer_info[i].dma)
995                                 pci_unmap_single(pdev,
996                                         tx_ring->buffer_info[i].dma,
997                                         tx_ring->buffer_info[i].length,
998                                         PCI_DMA_TODEVICE);
999                         if (tx_ring->buffer_info[i].skb)
1000                                 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1001                 }
1002         }
1003
1004         if (rx_ring->desc && rx_ring->buffer_info) {
1005                 for (i = 0; i < rx_ring->count; i++) {
1006                         if (rx_ring->buffer_info[i].dma)
1007                                 pci_unmap_single(pdev,
1008                                         rx_ring->buffer_info[i].dma,
1009                                         2048, PCI_DMA_FROMDEVICE);
1010                         if (rx_ring->buffer_info[i].skb)
1011                                 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1012                 }
1013         }
1014
1015         if (tx_ring->desc) {
1016                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1017                                   tx_ring->dma);
1018                 tx_ring->desc = NULL;
1019         }
1020         if (rx_ring->desc) {
1021                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1022                                   rx_ring->dma);
1023                 rx_ring->desc = NULL;
1024         }
1025
1026         kfree(tx_ring->buffer_info);
1027         tx_ring->buffer_info = NULL;
1028         kfree(rx_ring->buffer_info);
1029         rx_ring->buffer_info = NULL;
1030 }
1031
1032 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1033 {
1034         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1035         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1036         struct pci_dev *pdev = adapter->pdev;
1037         struct e1000_hw *hw = &adapter->hw;
1038         u32 rctl;
1039         int size;
1040         int i;
1041         int ret_val;
1042
1043         /* Setup Tx descriptor ring and Tx buffers */
1044
1045         if (!tx_ring->count)
1046                 tx_ring->count = E1000_DEFAULT_TXD;
1047
1048         size = tx_ring->count * sizeof(struct e1000_buffer);
1049         tx_ring->buffer_info = kmalloc(size, GFP_KERNEL);
1050         if (!tx_ring->buffer_info) {
1051                 ret_val = 1;
1052                 goto err_nomem;
1053         }
1054         memset(tx_ring->buffer_info, 0, size);
1055
1056         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1057         tx_ring->size = ALIGN(tx_ring->size, 4096);
1058         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1059                                            &tx_ring->dma, GFP_KERNEL);
1060         if (!tx_ring->desc) {
1061                 ret_val = 2;
1062                 goto err_nomem;
1063         }
1064         memset(tx_ring->desc, 0, tx_ring->size);
1065         tx_ring->next_to_use = 0;
1066         tx_ring->next_to_clean = 0;
1067
1068         ew32(TDBAL,
1069                         ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1070         ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1071         ew32(TDLEN,
1072                         tx_ring->count * sizeof(struct e1000_tx_desc));
1073         ew32(TDH, 0);
1074         ew32(TDT, 0);
1075         ew32(TCTL,
1076                         E1000_TCTL_PSP | E1000_TCTL_EN |
1077                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1078                         E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1079
1080         for (i = 0; i < tx_ring->count; i++) {
1081                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1082                 struct sk_buff *skb;
1083                 unsigned int skb_size = 1024;
1084
1085                 skb = alloc_skb(skb_size, GFP_KERNEL);
1086                 if (!skb) {
1087                         ret_val = 3;
1088                         goto err_nomem;
1089                 }
1090                 skb_put(skb, skb_size);
1091                 tx_ring->buffer_info[i].skb = skb;
1092                 tx_ring->buffer_info[i].length = skb->len;
1093                 tx_ring->buffer_info[i].dma =
1094                         pci_map_single(pdev, skb->data, skb->len,
1095                                        PCI_DMA_TODEVICE);
1096                 if (pci_dma_mapping_error(tx_ring->buffer_info[i].dma)) {
1097                         ret_val = 4;
1098                         goto err_nomem;
1099                 }
1100                 tx_desc->buffer_addr = cpu_to_le64(
1101                                          tx_ring->buffer_info[i].dma);
1102                 tx_desc->lower.data = cpu_to_le32(skb->len);
1103                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1104                                                    E1000_TXD_CMD_IFCS |
1105                                                    E1000_TXD_CMD_RPS);
1106                 tx_desc->upper.data = 0;
1107         }
1108
1109         /* Setup Rx descriptor ring and Rx buffers */
1110
1111         if (!rx_ring->count)
1112                 rx_ring->count = E1000_DEFAULT_RXD;
1113
1114         size = rx_ring->count * sizeof(struct e1000_buffer);
1115         rx_ring->buffer_info = kmalloc(size, GFP_KERNEL);
1116         if (!rx_ring->buffer_info) {
1117                 ret_val = 5;
1118                 goto err_nomem;
1119         }
1120         memset(rx_ring->buffer_info, 0, size);
1121
1122         rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1123         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1124                                            &rx_ring->dma, GFP_KERNEL);
1125         if (!rx_ring->desc) {
1126                 ret_val = 6;
1127                 goto err_nomem;
1128         }
1129         memset(rx_ring->desc, 0, rx_ring->size);
1130         rx_ring->next_to_use = 0;
1131         rx_ring->next_to_clean = 0;
1132
1133         rctl = er32(RCTL);
1134         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1135         ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1136         ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1137         ew32(RDLEN, rx_ring->size);
1138         ew32(RDH, 0);
1139         ew32(RDT, 0);
1140         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1141                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1142                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1143         ew32(RCTL, rctl);
1144
1145         for (i = 0; i < rx_ring->count; i++) {
1146                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1147                 struct sk_buff *skb;
1148
1149                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1150                 if (!skb) {
1151                         ret_val = 7;
1152                         goto err_nomem;
1153                 }
1154                 skb_reserve(skb, NET_IP_ALIGN);
1155                 rx_ring->buffer_info[i].skb = skb;
1156                 rx_ring->buffer_info[i].dma =
1157                         pci_map_single(pdev, skb->data, 2048,
1158                                        PCI_DMA_FROMDEVICE);
1159                 if (pci_dma_mapping_error(rx_ring->buffer_info[i].dma)) {
1160                         ret_val = 8;
1161                         goto err_nomem;
1162                 }
1163                 rx_desc->buffer_addr =
1164                         cpu_to_le64(rx_ring->buffer_info[i].dma);
1165                 memset(skb->data, 0x00, skb->len);
1166         }
1167
1168         return 0;
1169
1170 err_nomem:
1171         e1000_free_desc_rings(adapter);
1172         return ret_val;
1173 }
1174
1175 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1176 {
1177         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1178         e1e_wphy(&adapter->hw, 29, 0x001F);
1179         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1180         e1e_wphy(&adapter->hw, 29, 0x001A);
1181         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1182 }
1183
1184 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1185 {
1186         struct e1000_hw *hw = &adapter->hw;
1187         u32 ctrl_reg = 0;
1188         u32 stat_reg = 0;
1189
1190         adapter->hw.mac.autoneg = 0;
1191
1192         if (adapter->hw.phy.type == e1000_phy_m88) {
1193                 /* Auto-MDI/MDIX Off */
1194                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1195                 /* reset to update Auto-MDI/MDIX */
1196                 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1197                 /* autoneg off */
1198                 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1199         } else if (adapter->hw.phy.type == e1000_phy_gg82563)
1200                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1201
1202         ctrl_reg = er32(CTRL);
1203
1204         if (adapter->hw.phy.type == e1000_phy_ife) {
1205                 /* force 100, set loopback */
1206                 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1207
1208                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1209                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1210                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1211                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1212                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1213                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1214         } else {
1215                 /* force 1000, set loopback */
1216                 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1217
1218                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1219                 ctrl_reg = er32(CTRL);
1220                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1221                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1222                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1223                              E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1224                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1225         }
1226
1227         if (adapter->hw.media_type == e1000_media_type_copper &&
1228            adapter->hw.phy.type == e1000_phy_m88) {
1229                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1230         } else {
1231                 /*
1232                  * Set the ILOS bit on the fiber Nic if half duplex link is
1233                  * detected.
1234                  */
1235                 stat_reg = er32(STATUS);
1236                 if ((stat_reg & E1000_STATUS_FD) == 0)
1237                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1238         }
1239
1240         ew32(CTRL, ctrl_reg);
1241
1242         /*
1243          * Disable the receiver on the PHY so when a cable is plugged in, the
1244          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1245          */
1246         if (adapter->hw.phy.type == e1000_phy_m88)
1247                 e1000_phy_disable_receiver(adapter);
1248
1249         udelay(500);
1250
1251         return 0;
1252 }
1253
1254 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1255 {
1256         struct e1000_hw *hw = &adapter->hw;
1257         u32 ctrl = er32(CTRL);
1258         int link = 0;
1259
1260         /* special requirements for 82571/82572 fiber adapters */
1261
1262         /*
1263          * jump through hoops to make sure link is up because serdes
1264          * link is hardwired up
1265          */
1266         ctrl |= E1000_CTRL_SLU;
1267         ew32(CTRL, ctrl);
1268
1269         /* disable autoneg */
1270         ctrl = er32(TXCW);
1271         ctrl &= ~(1 << 31);
1272         ew32(TXCW, ctrl);
1273
1274         link = (er32(STATUS) & E1000_STATUS_LU);
1275
1276         if (!link) {
1277                 /* set invert loss of signal */
1278                 ctrl = er32(CTRL);
1279                 ctrl |= E1000_CTRL_ILOS;
1280                 ew32(CTRL, ctrl);
1281         }
1282
1283         /*
1284          * special write to serdes control register to enable SerDes analog
1285          * loopback
1286          */
1287 #define E1000_SERDES_LB_ON 0x410
1288         ew32(SCTL, E1000_SERDES_LB_ON);
1289         msleep(10);
1290
1291         return 0;
1292 }
1293
1294 /* only call this for fiber/serdes connections to es2lan */
1295 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1296 {
1297         struct e1000_hw *hw = &adapter->hw;
1298         u32 ctrlext = er32(CTRL_EXT);
1299         u32 ctrl = er32(CTRL);
1300
1301         /*
1302          * save CTRL_EXT to restore later, reuse an empty variable (unused
1303          * on mac_type 80003es2lan)
1304          */
1305         adapter->tx_fifo_head = ctrlext;
1306
1307         /* clear the serdes mode bits, putting the device into mac loopback */
1308         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1309         ew32(CTRL_EXT, ctrlext);
1310
1311         /* force speed to 1000/FD, link up */
1312         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1313         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1314                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1315         ew32(CTRL, ctrl);
1316
1317         /* set mac loopback */
1318         ctrl = er32(RCTL);
1319         ctrl |= E1000_RCTL_LBM_MAC;
1320         ew32(RCTL, ctrl);
1321
1322         /* set testing mode parameters (no need to reset later) */
1323 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1324 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1325         ew32(KMRNCTRLSTA,
1326                 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1327
1328         return 0;
1329 }
1330
1331 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1332 {
1333         struct e1000_hw *hw = &adapter->hw;
1334         u32 rctl;
1335
1336         if (hw->media_type == e1000_media_type_fiber ||
1337             hw->media_type == e1000_media_type_internal_serdes) {
1338                 switch (hw->mac.type) {
1339                 case e1000_80003es2lan:
1340                         return e1000_set_es2lan_mac_loopback(adapter);
1341                         break;
1342                 case e1000_82571:
1343                 case e1000_82572:
1344                         return e1000_set_82571_fiber_loopback(adapter);
1345                         break;
1346                 default:
1347                         rctl = er32(RCTL);
1348                         rctl |= E1000_RCTL_LBM_TCVR;
1349                         ew32(RCTL, rctl);
1350                         return 0;
1351                 }
1352         } else if (hw->media_type == e1000_media_type_copper) {
1353                 return e1000_integrated_phy_loopback(adapter);
1354         }
1355
1356         return 7;
1357 }
1358
1359 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1360 {
1361         struct e1000_hw *hw = &adapter->hw;
1362         u32 rctl;
1363         u16 phy_reg;
1364
1365         rctl = er32(RCTL);
1366         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1367         ew32(RCTL, rctl);
1368
1369         switch (hw->mac.type) {
1370         case e1000_80003es2lan:
1371                 if (hw->media_type == e1000_media_type_fiber ||
1372                     hw->media_type == e1000_media_type_internal_serdes) {
1373                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1374                         ew32(CTRL_EXT, adapter->tx_fifo_head);
1375                         adapter->tx_fifo_head = 0;
1376                 }
1377                 /* fall through */
1378         case e1000_82571:
1379         case e1000_82572:
1380                 if (hw->media_type == e1000_media_type_fiber ||
1381                     hw->media_type == e1000_media_type_internal_serdes) {
1382 #define E1000_SERDES_LB_OFF 0x400
1383                         ew32(SCTL, E1000_SERDES_LB_OFF);
1384                         msleep(10);
1385                         break;
1386                 }
1387                 /* Fall Through */
1388         default:
1389                 hw->mac.autoneg = 1;
1390                 if (hw->phy.type == e1000_phy_gg82563)
1391                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1392                 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1393                 if (phy_reg & MII_CR_LOOPBACK) {
1394                         phy_reg &= ~MII_CR_LOOPBACK;
1395                         e1e_wphy(hw, PHY_CONTROL, phy_reg);
1396                         e1000e_commit_phy(hw);
1397                 }
1398                 break;
1399         }
1400 }
1401
1402 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1403                                       unsigned int frame_size)
1404 {
1405         memset(skb->data, 0xFF, frame_size);
1406         frame_size &= ~1;
1407         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1408         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1409         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1410 }
1411
1412 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1413                                     unsigned int frame_size)
1414 {
1415         frame_size &= ~1;
1416         if (*(skb->data + 3) == 0xFF)
1417                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1418                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1419                         return 0;
1420         return 13;
1421 }
1422
1423 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1424 {
1425         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1426         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1427         struct pci_dev *pdev = adapter->pdev;
1428         struct e1000_hw *hw = &adapter->hw;
1429         int i, j, k, l;
1430         int lc;
1431         int good_cnt;
1432         int ret_val = 0;
1433         unsigned long time;
1434
1435         ew32(RDT, rx_ring->count - 1);
1436
1437         /*
1438          * Calculate the loop count based on the largest descriptor ring
1439          * The idea is to wrap the largest ring a number of times using 64
1440          * send/receive pairs during each loop
1441          */
1442
1443         if (rx_ring->count <= tx_ring->count)
1444                 lc = ((tx_ring->count / 64) * 2) + 1;
1445         else
1446                 lc = ((rx_ring->count / 64) * 2) + 1;
1447
1448         k = 0;
1449         l = 0;
1450         for (j = 0; j <= lc; j++) { /* loop count loop */
1451                 for (i = 0; i < 64; i++) { /* send the packets */
1452                         e1000_create_lbtest_frame(
1453                                 tx_ring->buffer_info[i].skb, 1024);
1454                         pci_dma_sync_single_for_device(pdev,
1455                                         tx_ring->buffer_info[k].dma,
1456                                         tx_ring->buffer_info[k].length,
1457                                         PCI_DMA_TODEVICE);
1458                         k++;
1459                         if (k == tx_ring->count)
1460                                 k = 0;
1461                 }
1462                 ew32(TDT, k);
1463                 msleep(200);
1464                 time = jiffies; /* set the start time for the receive */
1465                 good_cnt = 0;
1466                 do { /* receive the sent packets */
1467                         pci_dma_sync_single_for_cpu(pdev,
1468                                         rx_ring->buffer_info[l].dma, 2048,
1469                                         PCI_DMA_FROMDEVICE);
1470
1471                         ret_val = e1000_check_lbtest_frame(
1472                                         rx_ring->buffer_info[l].skb, 1024);
1473                         if (!ret_val)
1474                                 good_cnt++;
1475                         l++;
1476                         if (l == rx_ring->count)
1477                                 l = 0;
1478                         /*
1479                          * time + 20 msecs (200 msecs on 2.4) is more than
1480                          * enough time to complete the receives, if it's
1481                          * exceeded, break and error off
1482                          */
1483                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1484                 if (good_cnt != 64) {
1485                         ret_val = 13; /* ret_val is the same as mis-compare */
1486                         break;
1487                 }
1488                 if (jiffies >= (time + 2)) {
1489                         ret_val = 14; /* error code for time out error */
1490                         break;
1491                 }
1492         } /* end loop count loop */
1493         return ret_val;
1494 }
1495
1496 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1497 {
1498         /*
1499          * PHY loopback cannot be performed if SoL/IDER
1500          * sessions are active
1501          */
1502         if (e1000_check_reset_block(&adapter->hw)) {
1503                 ndev_err(adapter->netdev, "Cannot do PHY loopback test "
1504                          "when SoL/IDER is active.\n");
1505                 *data = 0;
1506                 goto out;
1507         }
1508
1509         *data = e1000_setup_desc_rings(adapter);
1510         if (*data)
1511                 goto out;
1512
1513         *data = e1000_setup_loopback_test(adapter);
1514         if (*data)
1515                 goto err_loopback;
1516
1517         *data = e1000_run_loopback_test(adapter);
1518         e1000_loopback_cleanup(adapter);
1519
1520 err_loopback:
1521         e1000_free_desc_rings(adapter);
1522 out:
1523         return *data;
1524 }
1525
1526 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1527 {
1528         struct e1000_hw *hw = &adapter->hw;
1529
1530         *data = 0;
1531         if (hw->media_type == e1000_media_type_internal_serdes) {
1532                 int i = 0;
1533                 hw->mac.serdes_has_link = 0;
1534
1535                 /*
1536                  * On some blade server designs, link establishment
1537                  * could take as long as 2-3 minutes
1538                  */
1539                 do {
1540                         hw->mac.ops.check_for_link(hw);
1541                         if (hw->mac.serdes_has_link)
1542                                 return *data;
1543                         msleep(20);
1544                 } while (i++ < 3750);
1545
1546                 *data = 1;
1547         } else {
1548                 hw->mac.ops.check_for_link(hw);
1549                 if (hw->mac.autoneg)
1550                         msleep(4000);
1551
1552                 if (!(er32(STATUS) &
1553                       E1000_STATUS_LU))
1554                         *data = 1;
1555         }
1556         return *data;
1557 }
1558
1559 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1560 {
1561         switch (sset) {
1562         case ETH_SS_TEST:
1563                 return E1000_TEST_LEN;
1564         case ETH_SS_STATS:
1565                 return E1000_STATS_LEN;
1566         default:
1567                 return -EOPNOTSUPP;
1568         }
1569 }
1570
1571 static void e1000_diag_test(struct net_device *netdev,
1572                             struct ethtool_test *eth_test, u64 *data)
1573 {
1574         struct e1000_adapter *adapter = netdev_priv(netdev);
1575         u16 autoneg_advertised;
1576         u8 forced_speed_duplex;
1577         u8 autoneg;
1578         bool if_running = netif_running(netdev);
1579
1580         set_bit(__E1000_TESTING, &adapter->state);
1581         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1582                 /* Offline tests */
1583
1584                 /* save speed, duplex, autoneg settings */
1585                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1586                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1587                 autoneg = adapter->hw.mac.autoneg;
1588
1589                 ndev_info(netdev, "offline testing starting\n");
1590
1591                 /*
1592                  * Link test performed before hardware reset so autoneg doesn't
1593                  * interfere with test result
1594                  */
1595                 if (e1000_link_test(adapter, &data[4]))
1596                         eth_test->flags |= ETH_TEST_FL_FAILED;
1597
1598                 if (if_running)
1599                         /* indicate we're in test mode */
1600                         dev_close(netdev);
1601                 else
1602                         e1000e_reset(adapter);
1603
1604                 if (e1000_reg_test(adapter, &data[0]))
1605                         eth_test->flags |= ETH_TEST_FL_FAILED;
1606
1607                 e1000e_reset(adapter);
1608                 if (e1000_eeprom_test(adapter, &data[1]))
1609                         eth_test->flags |= ETH_TEST_FL_FAILED;
1610
1611                 e1000e_reset(adapter);
1612                 if (e1000_intr_test(adapter, &data[2]))
1613                         eth_test->flags |= ETH_TEST_FL_FAILED;
1614
1615                 e1000e_reset(adapter);
1616                 /* make sure the phy is powered up */
1617                 e1000e_power_up_phy(adapter);
1618                 if (e1000_loopback_test(adapter, &data[3]))
1619                         eth_test->flags |= ETH_TEST_FL_FAILED;
1620
1621                 /* restore speed, duplex, autoneg settings */
1622                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1623                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1624                 adapter->hw.mac.autoneg = autoneg;
1625
1626                 /* force this routine to wait until autoneg complete/timeout */
1627                 adapter->hw.phy.wait_for_link = 1;
1628                 e1000e_reset(adapter);
1629                 adapter->hw.phy.wait_for_link = 0;
1630
1631                 clear_bit(__E1000_TESTING, &adapter->state);
1632                 if (if_running)
1633                         dev_open(netdev);
1634         } else {
1635                 ndev_info(netdev, "online testing starting\n");
1636                 /* Online tests */
1637                 if (e1000_link_test(adapter, &data[4]))
1638                         eth_test->flags |= ETH_TEST_FL_FAILED;
1639
1640                 /* Online tests aren't run; pass by default */
1641                 data[0] = 0;
1642                 data[1] = 0;
1643                 data[2] = 0;
1644                 data[3] = 0;
1645
1646                 clear_bit(__E1000_TESTING, &adapter->state);
1647         }
1648         msleep_interruptible(4 * 1000);
1649 }
1650
1651 static void e1000_get_wol(struct net_device *netdev,
1652                           struct ethtool_wolinfo *wol)
1653 {
1654         struct e1000_adapter *adapter = netdev_priv(netdev);
1655
1656         wol->supported = 0;
1657         wol->wolopts = 0;
1658
1659         if (!(adapter->flags & FLAG_HAS_WOL))
1660                 return;
1661
1662         wol->supported = WAKE_UCAST | WAKE_MCAST |
1663                          WAKE_BCAST | WAKE_MAGIC |
1664                          WAKE_PHY | WAKE_ARP;
1665
1666         /* apply any specific unsupported masks here */
1667         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1668                 wol->supported &= ~WAKE_UCAST;
1669
1670                 if (adapter->wol & E1000_WUFC_EX)
1671                         ndev_err(netdev, "Interface does not support "
1672                                  "directed (unicast) frame wake-up packets\n");
1673         }
1674
1675         if (adapter->wol & E1000_WUFC_EX)
1676                 wol->wolopts |= WAKE_UCAST;
1677         if (adapter->wol & E1000_WUFC_MC)
1678                 wol->wolopts |= WAKE_MCAST;
1679         if (adapter->wol & E1000_WUFC_BC)
1680                 wol->wolopts |= WAKE_BCAST;
1681         if (adapter->wol & E1000_WUFC_MAG)
1682                 wol->wolopts |= WAKE_MAGIC;
1683         if (adapter->wol & E1000_WUFC_LNKC)
1684                 wol->wolopts |= WAKE_PHY;
1685         if (adapter->wol & E1000_WUFC_ARP)
1686                 wol->wolopts |= WAKE_ARP;
1687 }
1688
1689 static int e1000_set_wol(struct net_device *netdev,
1690                          struct ethtool_wolinfo *wol)
1691 {
1692         struct e1000_adapter *adapter = netdev_priv(netdev);
1693
1694         if (wol->wolopts & WAKE_MAGICSECURE)
1695                 return -EOPNOTSUPP;
1696
1697         if (!(adapter->flags & FLAG_HAS_WOL))
1698                 return wol->wolopts ? -EOPNOTSUPP : 0;
1699
1700         /* these settings will always override what we currently have */
1701         adapter->wol = 0;
1702
1703         if (wol->wolopts & WAKE_UCAST)
1704                 adapter->wol |= E1000_WUFC_EX;
1705         if (wol->wolopts & WAKE_MCAST)
1706                 adapter->wol |= E1000_WUFC_MC;
1707         if (wol->wolopts & WAKE_BCAST)
1708                 adapter->wol |= E1000_WUFC_BC;
1709         if (wol->wolopts & WAKE_MAGIC)
1710                 adapter->wol |= E1000_WUFC_MAG;
1711         if (wol->wolopts & WAKE_PHY)
1712                 adapter->wol |= E1000_WUFC_LNKC;
1713         if (wol->wolopts & WAKE_ARP)
1714                 adapter->wol |= E1000_WUFC_ARP;
1715
1716         return 0;
1717 }
1718
1719 /* toggle LED 4 times per second = 2 "blinks" per second */
1720 #define E1000_ID_INTERVAL       (HZ/4)
1721
1722 /* bit defines for adapter->led_status */
1723 #define E1000_LED_ON            0
1724
1725 static void e1000_led_blink_callback(unsigned long data)
1726 {
1727         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1728
1729         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1730                 adapter->hw.mac.ops.led_off(&adapter->hw);
1731         else
1732                 adapter->hw.mac.ops.led_on(&adapter->hw);
1733
1734         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1735 }
1736
1737 static int e1000_phys_id(struct net_device *netdev, u32 data)
1738 {
1739         struct e1000_adapter *adapter = netdev_priv(netdev);
1740
1741         if (!data)
1742                 data = INT_MAX;
1743
1744         if (adapter->hw.phy.type == e1000_phy_ife) {
1745                 if (!adapter->blink_timer.function) {
1746                         init_timer(&adapter->blink_timer);
1747                         adapter->blink_timer.function =
1748                                 e1000_led_blink_callback;
1749                         adapter->blink_timer.data = (unsigned long) adapter;
1750                 }
1751                 mod_timer(&adapter->blink_timer, jiffies);
1752                 msleep_interruptible(data * 1000);
1753                 del_timer_sync(&adapter->blink_timer);
1754                 e1e_wphy(&adapter->hw,
1755                                     IFE_PHY_SPECIAL_CONTROL_LED, 0);
1756         } else {
1757                 e1000e_blink_led(&adapter->hw);
1758                 msleep_interruptible(data * 1000);
1759         }
1760
1761         adapter->hw.mac.ops.led_off(&adapter->hw);
1762         clear_bit(E1000_LED_ON, &adapter->led_status);
1763         adapter->hw.mac.ops.cleanup_led(&adapter->hw);
1764
1765         return 0;
1766 }
1767
1768 static int e1000_nway_reset(struct net_device *netdev)
1769 {
1770         struct e1000_adapter *adapter = netdev_priv(netdev);
1771         if (netif_running(netdev))
1772                 e1000e_reinit_locked(adapter);
1773         return 0;
1774 }
1775
1776 static void e1000_get_ethtool_stats(struct net_device *netdev,
1777                                     struct ethtool_stats *stats,
1778                                     u64 *data)
1779 {
1780         struct e1000_adapter *adapter = netdev_priv(netdev);
1781         int i;
1782
1783         e1000e_update_stats(adapter);
1784         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1785                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1786                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1787                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1788         }
1789 }
1790
1791 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1792                               u8 *data)
1793 {
1794         u8 *p = data;
1795         int i;
1796
1797         switch (stringset) {
1798         case ETH_SS_TEST:
1799                 memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
1800                 break;
1801         case ETH_SS_STATS:
1802                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1803                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1804                                ETH_GSTRING_LEN);
1805                         p += ETH_GSTRING_LEN;
1806                 }
1807                 break;
1808         }
1809 }
1810
1811 static const struct ethtool_ops e1000_ethtool_ops = {
1812         .get_settings           = e1000_get_settings,
1813         .set_settings           = e1000_set_settings,
1814         .get_drvinfo            = e1000_get_drvinfo,
1815         .get_regs_len           = e1000_get_regs_len,
1816         .get_regs               = e1000_get_regs,
1817         .get_wol                = e1000_get_wol,
1818         .set_wol                = e1000_set_wol,
1819         .get_msglevel           = e1000_get_msglevel,
1820         .set_msglevel           = e1000_set_msglevel,
1821         .nway_reset             = e1000_nway_reset,
1822         .get_link               = e1000_get_link,
1823         .get_eeprom_len         = e1000_get_eeprom_len,
1824         .get_eeprom             = e1000_get_eeprom,
1825         .set_eeprom             = e1000_set_eeprom,
1826         .get_ringparam          = e1000_get_ringparam,
1827         .set_ringparam          = e1000_set_ringparam,
1828         .get_pauseparam         = e1000_get_pauseparam,
1829         .set_pauseparam         = e1000_set_pauseparam,
1830         .get_rx_csum            = e1000_get_rx_csum,
1831         .set_rx_csum            = e1000_set_rx_csum,
1832         .get_tx_csum            = e1000_get_tx_csum,
1833         .set_tx_csum            = e1000_set_tx_csum,
1834         .get_sg                 = ethtool_op_get_sg,
1835         .set_sg                 = ethtool_op_set_sg,
1836         .get_tso                = ethtool_op_get_tso,
1837         .set_tso                = e1000_set_tso,
1838         .self_test              = e1000_diag_test,
1839         .get_strings            = e1000_get_strings,
1840         .phys_id                = e1000_phys_id,
1841         .get_ethtool_stats      = e1000_get_ethtool_stats,
1842         .get_sset_count         = e1000e_get_sset_count,
1843 };
1844
1845 void e1000e_set_ethtool_ops(struct net_device *netdev)
1846 {
1847         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1848 }