e1000e: Use the instance of net_device_stats from net_device.
[safe/jmp/linux-2.6] / drivers / net / e1000e / ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2008 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/delay.h>
35
36 #include "e1000.h"
37
38 struct e1000_stats {
39         char stat_string[ETH_GSTRING_LEN];
40         int sizeof_stat;
41         int stat_offset;
42 };
43
44 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
45                       offsetof(struct e1000_adapter, m)
46 #define E1000_NETDEV_STAT(m) sizeof(((struct net_device *)0)->m), \
47                       offsetof(struct net_device, m)
48 static const struct e1000_stats e1000_gstrings_stats[] = {
49         { "rx_packets", E1000_STAT(stats.gprc) },
50         { "tx_packets", E1000_STAT(stats.gptc) },
51         { "rx_bytes", E1000_STAT(stats.gorc) },
52         { "tx_bytes", E1000_STAT(stats.gotc) },
53         { "rx_broadcast", E1000_STAT(stats.bprc) },
54         { "tx_broadcast", E1000_STAT(stats.bptc) },
55         { "rx_multicast", E1000_STAT(stats.mprc) },
56         { "tx_multicast", E1000_STAT(stats.mptc) },
57         { "rx_errors", E1000_NETDEV_STAT(stats.rx_errors) },
58         { "tx_errors", E1000_NETDEV_STAT(stats.tx_errors) },
59         { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
60         { "multicast", E1000_STAT(stats.mprc) },
61         { "collisions", E1000_STAT(stats.colc) },
62         { "rx_length_errors", E1000_NETDEV_STAT(stats.rx_length_errors) },
63         { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
64         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
65         { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
66         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
67         { "rx_missed_errors", E1000_STAT(stats.mpc) },
68         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
69         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
70         { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
71         { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
72         { "tx_window_errors", E1000_STAT(stats.latecol) },
73         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
74         { "tx_deferred_ok", E1000_STAT(stats.dc) },
75         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
76         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
77         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
78         { "tx_restart_queue", E1000_STAT(restart_queue) },
79         { "rx_long_length_errors", E1000_STAT(stats.roc) },
80         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
81         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
82         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
83         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
84         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
85         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
86         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
87         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
88         { "rx_long_byte_count", E1000_STAT(stats.gorc) },
89         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
90         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
91         { "rx_header_split", E1000_STAT(rx_hdr_split) },
92         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
93         { "tx_smbus", E1000_STAT(stats.mgptc) },
94         { "rx_smbus", E1000_STAT(stats.mgprc) },
95         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
96         { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
97         { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
98 };
99
100 #define E1000_GLOBAL_STATS_LEN  ARRAY_SIZE(e1000_gstrings_stats)
101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
103         "Register test  (offline)", "Eeprom test    (offline)",
104         "Interrupt test (offline)", "Loopback test  (offline)",
105         "Link test   (on/offline)"
106 };
107 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
108
109 static int e1000_get_settings(struct net_device *netdev,
110                               struct ethtool_cmd *ecmd)
111 {
112         struct e1000_adapter *adapter = netdev_priv(netdev);
113         struct e1000_hw *hw = &adapter->hw;
114         u32 status;
115
116         if (hw->phy.media_type == e1000_media_type_copper) {
117
118                 ecmd->supported = (SUPPORTED_10baseT_Half |
119                                    SUPPORTED_10baseT_Full |
120                                    SUPPORTED_100baseT_Half |
121                                    SUPPORTED_100baseT_Full |
122                                    SUPPORTED_1000baseT_Full |
123                                    SUPPORTED_Autoneg |
124                                    SUPPORTED_TP);
125                 if (hw->phy.type == e1000_phy_ife)
126                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
127                 ecmd->advertising = ADVERTISED_TP;
128
129                 if (hw->mac.autoneg == 1) {
130                         ecmd->advertising |= ADVERTISED_Autoneg;
131                         /* the e1000 autoneg seems to match ethtool nicely */
132                         ecmd->advertising |= hw->phy.autoneg_advertised;
133                 }
134
135                 ecmd->port = PORT_TP;
136                 ecmd->phy_address = hw->phy.addr;
137                 ecmd->transceiver = XCVR_INTERNAL;
138
139         } else {
140                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
141                                      SUPPORTED_FIBRE |
142                                      SUPPORTED_Autoneg);
143
144                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
145                                      ADVERTISED_FIBRE |
146                                      ADVERTISED_Autoneg);
147
148                 ecmd->port = PORT_FIBRE;
149                 ecmd->transceiver = XCVR_EXTERNAL;
150         }
151
152         status = er32(STATUS);
153         if (status & E1000_STATUS_LU) {
154                 if (status & E1000_STATUS_SPEED_1000)
155                         ecmd->speed = 1000;
156                 else if (status & E1000_STATUS_SPEED_100)
157                         ecmd->speed = 100;
158                 else
159                         ecmd->speed = 10;
160
161                 if (status & E1000_STATUS_FD)
162                         ecmd->duplex = DUPLEX_FULL;
163                 else
164                         ecmd->duplex = DUPLEX_HALF;
165         } else {
166                 ecmd->speed = -1;
167                 ecmd->duplex = -1;
168         }
169
170         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
171                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
172
173         /* MDI-X => 2; MDI =>1; Invalid =>0 */
174         if ((hw->phy.media_type == e1000_media_type_copper) &&
175             !hw->mac.get_link_status)
176                 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
177                                                       ETH_TP_MDI;
178         else
179                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
180
181         return 0;
182 }
183
184 static u32 e1000_get_link(struct net_device *netdev)
185 {
186         struct e1000_adapter *adapter = netdev_priv(netdev);
187
188         return e1000_has_link(adapter);
189 }
190
191 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
192 {
193         struct e1000_mac_info *mac = &adapter->hw.mac;
194
195         mac->autoneg = 0;
196
197         /* Fiber NICs only allow 1000 gbps Full duplex */
198         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
199                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
200                 e_err("Unsupported Speed/Duplex configuration\n");
201                 return -EINVAL;
202         }
203
204         switch (spddplx) {
205         case SPEED_10 + DUPLEX_HALF:
206                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
207                 break;
208         case SPEED_10 + DUPLEX_FULL:
209                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
210                 break;
211         case SPEED_100 + DUPLEX_HALF:
212                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
213                 break;
214         case SPEED_100 + DUPLEX_FULL:
215                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
216                 break;
217         case SPEED_1000 + DUPLEX_FULL:
218                 mac->autoneg = 1;
219                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
220                 break;
221         case SPEED_1000 + DUPLEX_HALF: /* not supported */
222         default:
223                 e_err("Unsupported Speed/Duplex configuration\n");
224                 return -EINVAL;
225         }
226         return 0;
227 }
228
229 static int e1000_set_settings(struct net_device *netdev,
230                               struct ethtool_cmd *ecmd)
231 {
232         struct e1000_adapter *adapter = netdev_priv(netdev);
233         struct e1000_hw *hw = &adapter->hw;
234
235         /*
236          * When SoL/IDER sessions are active, autoneg/speed/duplex
237          * cannot be changed
238          */
239         if (e1000_check_reset_block(hw)) {
240                 e_err("Cannot change link characteristics when SoL/IDER is "
241                       "active.\n");
242                 return -EINVAL;
243         }
244
245         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
246                 msleep(1);
247
248         if (ecmd->autoneg == AUTONEG_ENABLE) {
249                 hw->mac.autoneg = 1;
250                 if (hw->phy.media_type == e1000_media_type_fiber)
251                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
252                                                      ADVERTISED_FIBRE |
253                                                      ADVERTISED_Autoneg;
254                 else
255                         hw->phy.autoneg_advertised = ecmd->advertising |
256                                                      ADVERTISED_TP |
257                                                      ADVERTISED_Autoneg;
258                 ecmd->advertising = hw->phy.autoneg_advertised;
259                 if (adapter->fc_autoneg)
260                         hw->fc.requested_mode = e1000_fc_default;
261         } else {
262                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
263                         clear_bit(__E1000_RESETTING, &adapter->state);
264                         return -EINVAL;
265                 }
266         }
267
268         /* reset the link */
269
270         if (netif_running(adapter->netdev)) {
271                 e1000e_down(adapter);
272                 e1000e_up(adapter);
273         } else {
274                 e1000e_reset(adapter);
275         }
276
277         clear_bit(__E1000_RESETTING, &adapter->state);
278         return 0;
279 }
280
281 static void e1000_get_pauseparam(struct net_device *netdev,
282                                  struct ethtool_pauseparam *pause)
283 {
284         struct e1000_adapter *adapter = netdev_priv(netdev);
285         struct e1000_hw *hw = &adapter->hw;
286
287         pause->autoneg =
288                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
289
290         if (hw->fc.current_mode == e1000_fc_rx_pause) {
291                 pause->rx_pause = 1;
292         } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
293                 pause->tx_pause = 1;
294         } else if (hw->fc.current_mode == e1000_fc_full) {
295                 pause->rx_pause = 1;
296                 pause->tx_pause = 1;
297         }
298 }
299
300 static int e1000_set_pauseparam(struct net_device *netdev,
301                                 struct ethtool_pauseparam *pause)
302 {
303         struct e1000_adapter *adapter = netdev_priv(netdev);
304         struct e1000_hw *hw = &adapter->hw;
305         int retval = 0;
306
307         adapter->fc_autoneg = pause->autoneg;
308
309         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
310                 msleep(1);
311
312         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
313                 hw->fc.requested_mode = e1000_fc_default;
314                 if (netif_running(adapter->netdev)) {
315                         e1000e_down(adapter);
316                         e1000e_up(adapter);
317                 } else {
318                         e1000e_reset(adapter);
319                 }
320         } else {
321                 if (pause->rx_pause && pause->tx_pause)
322                         hw->fc.requested_mode = e1000_fc_full;
323                 else if (pause->rx_pause && !pause->tx_pause)
324                         hw->fc.requested_mode = e1000_fc_rx_pause;
325                 else if (!pause->rx_pause && pause->tx_pause)
326                         hw->fc.requested_mode = e1000_fc_tx_pause;
327                 else if (!pause->rx_pause && !pause->tx_pause)
328                         hw->fc.requested_mode = e1000_fc_none;
329
330                 hw->fc.current_mode = hw->fc.requested_mode;
331
332                 retval = ((hw->phy.media_type == e1000_media_type_fiber) ?
333                           hw->mac.ops.setup_link(hw) : e1000e_force_mac_fc(hw));
334         }
335
336         clear_bit(__E1000_RESETTING, &adapter->state);
337         return retval;
338 }
339
340 static u32 e1000_get_rx_csum(struct net_device *netdev)
341 {
342         struct e1000_adapter *adapter = netdev_priv(netdev);
343         return (adapter->flags & FLAG_RX_CSUM_ENABLED);
344 }
345
346 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
347 {
348         struct e1000_adapter *adapter = netdev_priv(netdev);
349
350         if (data)
351                 adapter->flags |= FLAG_RX_CSUM_ENABLED;
352         else
353                 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
354
355         if (netif_running(netdev))
356                 e1000e_reinit_locked(adapter);
357         else
358                 e1000e_reset(adapter);
359         return 0;
360 }
361
362 static u32 e1000_get_tx_csum(struct net_device *netdev)
363 {
364         return ((netdev->features & NETIF_F_HW_CSUM) != 0);
365 }
366
367 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
368 {
369         if (data)
370                 netdev->features |= NETIF_F_HW_CSUM;
371         else
372                 netdev->features &= ~NETIF_F_HW_CSUM;
373
374         return 0;
375 }
376
377 static int e1000_set_tso(struct net_device *netdev, u32 data)
378 {
379         struct e1000_adapter *adapter = netdev_priv(netdev);
380
381         if (data) {
382                 netdev->features |= NETIF_F_TSO;
383                 netdev->features |= NETIF_F_TSO6;
384         } else {
385                 netdev->features &= ~NETIF_F_TSO;
386                 netdev->features &= ~NETIF_F_TSO6;
387         }
388
389         e_info("TSO is %s\n", data ? "Enabled" : "Disabled");
390         adapter->flags |= FLAG_TSO_FORCE;
391         return 0;
392 }
393
394 static u32 e1000_get_msglevel(struct net_device *netdev)
395 {
396         struct e1000_adapter *adapter = netdev_priv(netdev);
397         return adapter->msg_enable;
398 }
399
400 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
401 {
402         struct e1000_adapter *adapter = netdev_priv(netdev);
403         adapter->msg_enable = data;
404 }
405
406 static int e1000_get_regs_len(struct net_device *netdev)
407 {
408 #define E1000_REGS_LEN 32 /* overestimate */
409         return E1000_REGS_LEN * sizeof(u32);
410 }
411
412 static void e1000_get_regs(struct net_device *netdev,
413                            struct ethtool_regs *regs, void *p)
414 {
415         struct e1000_adapter *adapter = netdev_priv(netdev);
416         struct e1000_hw *hw = &adapter->hw;
417         u32 *regs_buff = p;
418         u16 phy_data;
419         u8 revision_id;
420
421         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
422
423         pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
424
425         regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
426
427         regs_buff[0]  = er32(CTRL);
428         regs_buff[1]  = er32(STATUS);
429
430         regs_buff[2]  = er32(RCTL);
431         regs_buff[3]  = er32(RDLEN);
432         regs_buff[4]  = er32(RDH);
433         regs_buff[5]  = er32(RDT);
434         regs_buff[6]  = er32(RDTR);
435
436         regs_buff[7]  = er32(TCTL);
437         regs_buff[8]  = er32(TDLEN);
438         regs_buff[9]  = er32(TDH);
439         regs_buff[10] = er32(TDT);
440         regs_buff[11] = er32(TIDV);
441
442         regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
443
444         /* ethtool doesn't use anything past this point, so all this
445          * code is likely legacy junk for apps that may or may not
446          * exist */
447         if (hw->phy.type == e1000_phy_m88) {
448                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
449                 regs_buff[13] = (u32)phy_data; /* cable length */
450                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
451                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
452                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
453                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
454                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
455                 regs_buff[18] = regs_buff[13]; /* cable polarity */
456                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
457                 regs_buff[20] = regs_buff[17]; /* polarity correction */
458                 /* phy receive errors */
459                 regs_buff[22] = adapter->phy_stats.receive_errors;
460                 regs_buff[23] = regs_buff[13]; /* mdix mode */
461         }
462         regs_buff[21] = 0; /* was idle_errors */
463         e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
464         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
465         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
466 }
467
468 static int e1000_get_eeprom_len(struct net_device *netdev)
469 {
470         struct e1000_adapter *adapter = netdev_priv(netdev);
471         return adapter->hw.nvm.word_size * 2;
472 }
473
474 static int e1000_get_eeprom(struct net_device *netdev,
475                             struct ethtool_eeprom *eeprom, u8 *bytes)
476 {
477         struct e1000_adapter *adapter = netdev_priv(netdev);
478         struct e1000_hw *hw = &adapter->hw;
479         u16 *eeprom_buff;
480         int first_word;
481         int last_word;
482         int ret_val = 0;
483         u16 i;
484
485         if (eeprom->len == 0)
486                 return -EINVAL;
487
488         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
489
490         first_word = eeprom->offset >> 1;
491         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
492
493         eeprom_buff = kmalloc(sizeof(u16) *
494                         (last_word - first_word + 1), GFP_KERNEL);
495         if (!eeprom_buff)
496                 return -ENOMEM;
497
498         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
499                 ret_val = e1000_read_nvm(hw, first_word,
500                                          last_word - first_word + 1,
501                                          eeprom_buff);
502         } else {
503                 for (i = 0; i < last_word - first_word + 1; i++) {
504                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
505                                                       &eeprom_buff[i]);
506                         if (ret_val)
507                                 break;
508                 }
509         }
510
511         if (ret_val) {
512                 /* a read error occurred, throw away the result */
513                 memset(eeprom_buff, 0xff, sizeof(eeprom_buff));
514         } else {
515                 /* Device's eeprom is always little-endian, word addressable */
516                 for (i = 0; i < last_word - first_word + 1; i++)
517                         le16_to_cpus(&eeprom_buff[i]);
518         }
519
520         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
521         kfree(eeprom_buff);
522
523         return ret_val;
524 }
525
526 static int e1000_set_eeprom(struct net_device *netdev,
527                             struct ethtool_eeprom *eeprom, u8 *bytes)
528 {
529         struct e1000_adapter *adapter = netdev_priv(netdev);
530         struct e1000_hw *hw = &adapter->hw;
531         u16 *eeprom_buff;
532         void *ptr;
533         int max_len;
534         int first_word;
535         int last_word;
536         int ret_val = 0;
537         u16 i;
538
539         if (eeprom->len == 0)
540                 return -EOPNOTSUPP;
541
542         if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
543                 return -EFAULT;
544
545         if (adapter->flags & FLAG_READ_ONLY_NVM)
546                 return -EINVAL;
547
548         max_len = hw->nvm.word_size * 2;
549
550         first_word = eeprom->offset >> 1;
551         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
552         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
553         if (!eeprom_buff)
554                 return -ENOMEM;
555
556         ptr = (void *)eeprom_buff;
557
558         if (eeprom->offset & 1) {
559                 /* need read/modify/write of first changed EEPROM word */
560                 /* only the second byte of the word is being modified */
561                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
562                 ptr++;
563         }
564         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
565                 /* need read/modify/write of last changed EEPROM word */
566                 /* only the first byte of the word is being modified */
567                 ret_val = e1000_read_nvm(hw, last_word, 1,
568                                   &eeprom_buff[last_word - first_word]);
569
570         if (ret_val)
571                 goto out;
572
573         /* Device's eeprom is always little-endian, word addressable */
574         for (i = 0; i < last_word - first_word + 1; i++)
575                 le16_to_cpus(&eeprom_buff[i]);
576
577         memcpy(ptr, bytes, eeprom->len);
578
579         for (i = 0; i < last_word - first_word + 1; i++)
580                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
581
582         ret_val = e1000_write_nvm(hw, first_word,
583                                   last_word - first_word + 1, eeprom_buff);
584
585         if (ret_val)
586                 goto out;
587
588         /*
589          * Update the checksum over the first part of the EEPROM if needed
590          * and flush shadow RAM for applicable controllers
591          */
592         if ((first_word <= NVM_CHECKSUM_REG) ||
593             (hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82573))
594                 ret_val = e1000e_update_nvm_checksum(hw);
595
596 out:
597         kfree(eeprom_buff);
598         return ret_val;
599 }
600
601 static void e1000_get_drvinfo(struct net_device *netdev,
602                               struct ethtool_drvinfo *drvinfo)
603 {
604         struct e1000_adapter *adapter = netdev_priv(netdev);
605         char firmware_version[32];
606
607         strncpy(drvinfo->driver,  e1000e_driver_name, 32);
608         strncpy(drvinfo->version, e1000e_driver_version, 32);
609
610         /*
611          * EEPROM image version # is reported as firmware version # for
612          * PCI-E controllers
613          */
614         sprintf(firmware_version, "%d.%d-%d",
615                 (adapter->eeprom_vers & 0xF000) >> 12,
616                 (adapter->eeprom_vers & 0x0FF0) >> 4,
617                 (adapter->eeprom_vers & 0x000F));
618
619         strncpy(drvinfo->fw_version, firmware_version, 32);
620         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
621         drvinfo->regdump_len = e1000_get_regs_len(netdev);
622         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
623 }
624
625 static void e1000_get_ringparam(struct net_device *netdev,
626                                 struct ethtool_ringparam *ring)
627 {
628         struct e1000_adapter *adapter = netdev_priv(netdev);
629         struct e1000_ring *tx_ring = adapter->tx_ring;
630         struct e1000_ring *rx_ring = adapter->rx_ring;
631
632         ring->rx_max_pending = E1000_MAX_RXD;
633         ring->tx_max_pending = E1000_MAX_TXD;
634         ring->rx_mini_max_pending = 0;
635         ring->rx_jumbo_max_pending = 0;
636         ring->rx_pending = rx_ring->count;
637         ring->tx_pending = tx_ring->count;
638         ring->rx_mini_pending = 0;
639         ring->rx_jumbo_pending = 0;
640 }
641
642 static int e1000_set_ringparam(struct net_device *netdev,
643                                struct ethtool_ringparam *ring)
644 {
645         struct e1000_adapter *adapter = netdev_priv(netdev);
646         struct e1000_ring *tx_ring, *tx_old;
647         struct e1000_ring *rx_ring, *rx_old;
648         int err;
649
650         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
651                 return -EINVAL;
652
653         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
654                 msleep(1);
655
656         if (netif_running(adapter->netdev))
657                 e1000e_down(adapter);
658
659         tx_old = adapter->tx_ring;
660         rx_old = adapter->rx_ring;
661
662         err = -ENOMEM;
663         tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
664         if (!tx_ring)
665                 goto err_alloc_tx;
666         /*
667          * use a memcpy to save any previously configured
668          * items like napi structs from having to be
669          * reinitialized
670          */
671         memcpy(tx_ring, tx_old, sizeof(struct e1000_ring));
672
673         rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
674         if (!rx_ring)
675                 goto err_alloc_rx;
676         memcpy(rx_ring, rx_old, sizeof(struct e1000_ring));
677
678         adapter->tx_ring = tx_ring;
679         adapter->rx_ring = rx_ring;
680
681         rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
682         rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
683         rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
684
685         tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
686         tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
687         tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
688
689         if (netif_running(adapter->netdev)) {
690                 /* Try to get new resources before deleting old */
691                 err = e1000e_setup_rx_resources(adapter);
692                 if (err)
693                         goto err_setup_rx;
694                 err = e1000e_setup_tx_resources(adapter);
695                 if (err)
696                         goto err_setup_tx;
697
698                 /*
699                  * restore the old in order to free it,
700                  * then add in the new
701                  */
702                 adapter->rx_ring = rx_old;
703                 adapter->tx_ring = tx_old;
704                 e1000e_free_rx_resources(adapter);
705                 e1000e_free_tx_resources(adapter);
706                 kfree(tx_old);
707                 kfree(rx_old);
708                 adapter->rx_ring = rx_ring;
709                 adapter->tx_ring = tx_ring;
710                 err = e1000e_up(adapter);
711                 if (err)
712                         goto err_setup;
713         }
714
715         clear_bit(__E1000_RESETTING, &adapter->state);
716         return 0;
717 err_setup_tx:
718         e1000e_free_rx_resources(adapter);
719 err_setup_rx:
720         adapter->rx_ring = rx_old;
721         adapter->tx_ring = tx_old;
722         kfree(rx_ring);
723 err_alloc_rx:
724         kfree(tx_ring);
725 err_alloc_tx:
726         e1000e_up(adapter);
727 err_setup:
728         clear_bit(__E1000_RESETTING, &adapter->state);
729         return err;
730 }
731
732 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
733                              int reg, int offset, u32 mask, u32 write)
734 {
735         u32 pat, val;
736         static const u32 test[] =
737                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
738         for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
739                 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
740                                       (test[pat] & write));
741                 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
742                 if (val != (test[pat] & write & mask)) {
743                         e_err("pattern test reg %04X failed: got 0x%08X "
744                               "expected 0x%08X\n", reg + offset, val,
745                               (test[pat] & write & mask));
746                         *data = reg;
747                         return 1;
748                 }
749         }
750         return 0;
751 }
752
753 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
754                               int reg, u32 mask, u32 write)
755 {
756         u32 val;
757         __ew32(&adapter->hw, reg, write & mask);
758         val = __er32(&adapter->hw, reg);
759         if ((write & mask) != (val & mask)) {
760                 e_err("set/check reg %04X test failed: got 0x%08X "
761                       "expected 0x%08X\n", reg, (val & mask), (write & mask));
762                 *data = reg;
763                 return 1;
764         }
765         return 0;
766 }
767 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
768         do {                                                                   \
769                 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
770                         return 1;                                              \
771         } while (0)
772 #define REG_PATTERN_TEST(reg, mask, write)                                     \
773         REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
774
775 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
776         do {                                                                   \
777                 if (reg_set_and_check(adapter, data, reg, mask, write))        \
778                         return 1;                                              \
779         } while (0)
780
781 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
782 {
783         struct e1000_hw *hw = &adapter->hw;
784         struct e1000_mac_info *mac = &adapter->hw.mac;
785         u32 value;
786         u32 before;
787         u32 after;
788         u32 i;
789         u32 toggle;
790         u32 mask;
791
792         /*
793          * The status register is Read Only, so a write should fail.
794          * Some bits that get toggled are ignored.
795          */
796         switch (mac->type) {
797         /* there are several bits on newer hardware that are r/w */
798         case e1000_82571:
799         case e1000_82572:
800         case e1000_80003es2lan:
801                 toggle = 0x7FFFF3FF;
802                 break;
803         default:
804                 toggle = 0x7FFFF033;
805                 break;
806         }
807
808         before = er32(STATUS);
809         value = (er32(STATUS) & toggle);
810         ew32(STATUS, toggle);
811         after = er32(STATUS) & toggle;
812         if (value != after) {
813                 e_err("failed STATUS register test got: 0x%08X expected: "
814                       "0x%08X\n", after, value);
815                 *data = 1;
816                 return 1;
817         }
818         /* restore previous status */
819         ew32(STATUS, before);
820
821         if (!(adapter->flags & FLAG_IS_ICH)) {
822                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
823                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
824                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
825                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
826         }
827
828         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
829         REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
830         REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
831         REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
832         REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
833         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
834         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
835         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
836         REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
837         REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
838
839         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
840
841         before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
842         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
843         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
844
845         REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
846         REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
847         if (!(adapter->flags & FLAG_IS_ICH))
848                 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
849         REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
850         REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
851         mask = 0x8003FFFF;
852         switch (mac->type) {
853         case e1000_ich10lan:
854         case e1000_pchlan:
855                 mask |= (1 << 18);
856                 break;
857         default:
858                 break;
859         }
860         for (i = 0; i < mac->rar_entry_count; i++)
861                 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
862                                        mask, 0xFFFFFFFF);
863
864         for (i = 0; i < mac->mta_reg_count; i++)
865                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
866
867         *data = 0;
868         return 0;
869 }
870
871 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
872 {
873         u16 temp;
874         u16 checksum = 0;
875         u16 i;
876
877         *data = 0;
878         /* Read and add up the contents of the EEPROM */
879         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
880                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
881                         *data = 1;
882                         return *data;
883                 }
884                 checksum += temp;
885         }
886
887         /* If Checksum is not Correct return error else test passed */
888         if ((checksum != (u16) NVM_SUM) && !(*data))
889                 *data = 2;
890
891         return *data;
892 }
893
894 static irqreturn_t e1000_test_intr(int irq, void *data)
895 {
896         struct net_device *netdev = (struct net_device *) data;
897         struct e1000_adapter *adapter = netdev_priv(netdev);
898         struct e1000_hw *hw = &adapter->hw;
899
900         adapter->test_icr |= er32(ICR);
901
902         return IRQ_HANDLED;
903 }
904
905 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
906 {
907         struct net_device *netdev = adapter->netdev;
908         struct e1000_hw *hw = &adapter->hw;
909         u32 mask;
910         u32 shared_int = 1;
911         u32 irq = adapter->pdev->irq;
912         int i;
913         int ret_val = 0;
914         int int_mode = E1000E_INT_MODE_LEGACY;
915
916         *data = 0;
917
918         /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
919         if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
920                 int_mode = adapter->int_mode;
921                 e1000e_reset_interrupt_capability(adapter);
922                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
923                 e1000e_set_interrupt_capability(adapter);
924         }
925         /* Hook up test interrupt handler just for this test */
926         if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
927                          netdev)) {
928                 shared_int = 0;
929         } else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
930                  netdev->name, netdev)) {
931                 *data = 1;
932                 ret_val = -1;
933                 goto out;
934         }
935         e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
936
937         /* Disable all the interrupts */
938         ew32(IMC, 0xFFFFFFFF);
939         msleep(10);
940
941         /* Test each interrupt */
942         for (i = 0; i < 10; i++) {
943                 /* Interrupt to test */
944                 mask = 1 << i;
945
946                 if (adapter->flags & FLAG_IS_ICH) {
947                         switch (mask) {
948                         case E1000_ICR_RXSEQ:
949                                 continue;
950                         case 0x00000100:
951                                 if (adapter->hw.mac.type == e1000_ich8lan ||
952                                     adapter->hw.mac.type == e1000_ich9lan)
953                                         continue;
954                                 break;
955                         default:
956                                 break;
957                         }
958                 }
959
960                 if (!shared_int) {
961                         /*
962                          * Disable the interrupt to be reported in
963                          * the cause register and then force the same
964                          * interrupt and see if one gets posted.  If
965                          * an interrupt was posted to the bus, the
966                          * test failed.
967                          */
968                         adapter->test_icr = 0;
969                         ew32(IMC, mask);
970                         ew32(ICS, mask);
971                         msleep(10);
972
973                         if (adapter->test_icr & mask) {
974                                 *data = 3;
975                                 break;
976                         }
977                 }
978
979                 /*
980                  * Enable the interrupt to be reported in
981                  * the cause register and then force the same
982                  * interrupt and see if one gets posted.  If
983                  * an interrupt was not posted to the bus, the
984                  * test failed.
985                  */
986                 adapter->test_icr = 0;
987                 ew32(IMS, mask);
988                 ew32(ICS, mask);
989                 msleep(10);
990
991                 if (!(adapter->test_icr & mask)) {
992                         *data = 4;
993                         break;
994                 }
995
996                 if (!shared_int) {
997                         /*
998                          * Disable the other interrupts to be reported in
999                          * the cause register and then force the other
1000                          * interrupts and see if any get posted.  If
1001                          * an interrupt was posted to the bus, the
1002                          * test failed.
1003                          */
1004                         adapter->test_icr = 0;
1005                         ew32(IMC, ~mask & 0x00007FFF);
1006                         ew32(ICS, ~mask & 0x00007FFF);
1007                         msleep(10);
1008
1009                         if (adapter->test_icr) {
1010                                 *data = 5;
1011                                 break;
1012                         }
1013                 }
1014         }
1015
1016         /* Disable all the interrupts */
1017         ew32(IMC, 0xFFFFFFFF);
1018         msleep(10);
1019
1020         /* Unhook test interrupt handler */
1021         free_irq(irq, netdev);
1022
1023 out:
1024         if (int_mode == E1000E_INT_MODE_MSIX) {
1025                 e1000e_reset_interrupt_capability(adapter);
1026                 adapter->int_mode = int_mode;
1027                 e1000e_set_interrupt_capability(adapter);
1028         }
1029
1030         return ret_val;
1031 }
1032
1033 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1034 {
1035         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1036         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1037         struct pci_dev *pdev = adapter->pdev;
1038         int i;
1039
1040         if (tx_ring->desc && tx_ring->buffer_info) {
1041                 for (i = 0; i < tx_ring->count; i++) {
1042                         if (tx_ring->buffer_info[i].dma)
1043                                 pci_unmap_single(pdev,
1044                                         tx_ring->buffer_info[i].dma,
1045                                         tx_ring->buffer_info[i].length,
1046                                         PCI_DMA_TODEVICE);
1047                         if (tx_ring->buffer_info[i].skb)
1048                                 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1049                 }
1050         }
1051
1052         if (rx_ring->desc && rx_ring->buffer_info) {
1053                 for (i = 0; i < rx_ring->count; i++) {
1054                         if (rx_ring->buffer_info[i].dma)
1055                                 pci_unmap_single(pdev,
1056                                         rx_ring->buffer_info[i].dma,
1057                                         2048, PCI_DMA_FROMDEVICE);
1058                         if (rx_ring->buffer_info[i].skb)
1059                                 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1060                 }
1061         }
1062
1063         if (tx_ring->desc) {
1064                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1065                                   tx_ring->dma);
1066                 tx_ring->desc = NULL;
1067         }
1068         if (rx_ring->desc) {
1069                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1070                                   rx_ring->dma);
1071                 rx_ring->desc = NULL;
1072         }
1073
1074         kfree(tx_ring->buffer_info);
1075         tx_ring->buffer_info = NULL;
1076         kfree(rx_ring->buffer_info);
1077         rx_ring->buffer_info = NULL;
1078 }
1079
1080 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1081 {
1082         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1083         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1084         struct pci_dev *pdev = adapter->pdev;
1085         struct e1000_hw *hw = &adapter->hw;
1086         u32 rctl;
1087         int i;
1088         int ret_val;
1089
1090         /* Setup Tx descriptor ring and Tx buffers */
1091
1092         if (!tx_ring->count)
1093                 tx_ring->count = E1000_DEFAULT_TXD;
1094
1095         tx_ring->buffer_info = kcalloc(tx_ring->count,
1096                                        sizeof(struct e1000_buffer),
1097                                        GFP_KERNEL);
1098         if (!(tx_ring->buffer_info)) {
1099                 ret_val = 1;
1100                 goto err_nomem;
1101         }
1102
1103         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1104         tx_ring->size = ALIGN(tx_ring->size, 4096);
1105         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1106                                            &tx_ring->dma, GFP_KERNEL);
1107         if (!tx_ring->desc) {
1108                 ret_val = 2;
1109                 goto err_nomem;
1110         }
1111         tx_ring->next_to_use = 0;
1112         tx_ring->next_to_clean = 0;
1113
1114         ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1115         ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1116         ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1117         ew32(TDH, 0);
1118         ew32(TDT, 0);
1119         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1120              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1121              E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1122
1123         for (i = 0; i < tx_ring->count; i++) {
1124                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1125                 struct sk_buff *skb;
1126                 unsigned int skb_size = 1024;
1127
1128                 skb = alloc_skb(skb_size, GFP_KERNEL);
1129                 if (!skb) {
1130                         ret_val = 3;
1131                         goto err_nomem;
1132                 }
1133                 skb_put(skb, skb_size);
1134                 tx_ring->buffer_info[i].skb = skb;
1135                 tx_ring->buffer_info[i].length = skb->len;
1136                 tx_ring->buffer_info[i].dma =
1137                         pci_map_single(pdev, skb->data, skb->len,
1138                                        PCI_DMA_TODEVICE);
1139                 if (pci_dma_mapping_error(pdev, tx_ring->buffer_info[i].dma)) {
1140                         ret_val = 4;
1141                         goto err_nomem;
1142                 }
1143                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1144                 tx_desc->lower.data = cpu_to_le32(skb->len);
1145                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1146                                                    E1000_TXD_CMD_IFCS |
1147                                                    E1000_TXD_CMD_RS);
1148                 tx_desc->upper.data = 0;
1149         }
1150
1151         /* Setup Rx descriptor ring and Rx buffers */
1152
1153         if (!rx_ring->count)
1154                 rx_ring->count = E1000_DEFAULT_RXD;
1155
1156         rx_ring->buffer_info = kcalloc(rx_ring->count,
1157                                        sizeof(struct e1000_buffer),
1158                                        GFP_KERNEL);
1159         if (!(rx_ring->buffer_info)) {
1160                 ret_val = 5;
1161                 goto err_nomem;
1162         }
1163
1164         rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1165         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1166                                            &rx_ring->dma, GFP_KERNEL);
1167         if (!rx_ring->desc) {
1168                 ret_val = 6;
1169                 goto err_nomem;
1170         }
1171         rx_ring->next_to_use = 0;
1172         rx_ring->next_to_clean = 0;
1173
1174         rctl = er32(RCTL);
1175         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1176         ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1177         ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1178         ew32(RDLEN, rx_ring->size);
1179         ew32(RDH, 0);
1180         ew32(RDT, 0);
1181         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1182                 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1183                 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1184                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1185                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1186         ew32(RCTL, rctl);
1187
1188         for (i = 0; i < rx_ring->count; i++) {
1189                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1190                 struct sk_buff *skb;
1191
1192                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1193                 if (!skb) {
1194                         ret_val = 7;
1195                         goto err_nomem;
1196                 }
1197                 skb_reserve(skb, NET_IP_ALIGN);
1198                 rx_ring->buffer_info[i].skb = skb;
1199                 rx_ring->buffer_info[i].dma =
1200                         pci_map_single(pdev, skb->data, 2048,
1201                                        PCI_DMA_FROMDEVICE);
1202                 if (pci_dma_mapping_error(pdev, rx_ring->buffer_info[i].dma)) {
1203                         ret_val = 8;
1204                         goto err_nomem;
1205                 }
1206                 rx_desc->buffer_addr =
1207                         cpu_to_le64(rx_ring->buffer_info[i].dma);
1208                 memset(skb->data, 0x00, skb->len);
1209         }
1210
1211         return 0;
1212
1213 err_nomem:
1214         e1000_free_desc_rings(adapter);
1215         return ret_val;
1216 }
1217
1218 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1219 {
1220         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1221         e1e_wphy(&adapter->hw, 29, 0x001F);
1222         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1223         e1e_wphy(&adapter->hw, 29, 0x001A);
1224         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1225 }
1226
1227 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1228 {
1229         struct e1000_hw *hw = &adapter->hw;
1230         u32 ctrl_reg = 0;
1231         u32 stat_reg = 0;
1232         u16 phy_reg = 0;
1233
1234         hw->mac.autoneg = 0;
1235
1236         if (hw->phy.type == e1000_phy_m88) {
1237                 /* Auto-MDI/MDIX Off */
1238                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1239                 /* reset to update Auto-MDI/MDIX */
1240                 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1241                 /* autoneg off */
1242                 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1243         } else if (hw->phy.type == e1000_phy_gg82563)
1244                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1245
1246         ctrl_reg = er32(CTRL);
1247
1248         switch (hw->phy.type) {
1249         case e1000_phy_ife:
1250                 /* force 100, set loopback */
1251                 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1252
1253                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1254                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1255                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1256                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1257                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1258                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1259                 break;
1260         case e1000_phy_bm:
1261                 /* Set Default MAC Interface speed to 1GB */
1262                 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1263                 phy_reg &= ~0x0007;
1264                 phy_reg |= 0x006;
1265                 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1266                 /* Assert SW reset for above settings to take effect */
1267                 e1000e_commit_phy(hw);
1268                 mdelay(1);
1269                 /* Force Full Duplex */
1270                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1271                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1272                 /* Set Link Up (in force link) */
1273                 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1274                 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1275                 /* Force Link */
1276                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1277                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1278                 /* Set Early Link Enable */
1279                 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1280                 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1281                 /* fall through */
1282         default:
1283                 /* force 1000, set loopback */
1284                 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1285                 mdelay(250);
1286
1287                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1288                 ctrl_reg = er32(CTRL);
1289                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1290                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1291                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1292                              E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1293                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1294
1295                 if (adapter->flags & FLAG_IS_ICH)
1296                         ctrl_reg |= E1000_CTRL_SLU;     /* Set Link Up */
1297         }
1298
1299         if (hw->phy.media_type == e1000_media_type_copper &&
1300             hw->phy.type == e1000_phy_m88) {
1301                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1302         } else {
1303                 /*
1304                  * Set the ILOS bit on the fiber Nic if half duplex link is
1305                  * detected.
1306                  */
1307                 stat_reg = er32(STATUS);
1308                 if ((stat_reg & E1000_STATUS_FD) == 0)
1309                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1310         }
1311
1312         ew32(CTRL, ctrl_reg);
1313
1314         /*
1315          * Disable the receiver on the PHY so when a cable is plugged in, the
1316          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1317          */
1318         if (hw->phy.type == e1000_phy_m88)
1319                 e1000_phy_disable_receiver(adapter);
1320
1321         udelay(500);
1322
1323         return 0;
1324 }
1325
1326 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1327 {
1328         struct e1000_hw *hw = &adapter->hw;
1329         u32 ctrl = er32(CTRL);
1330         int link = 0;
1331
1332         /* special requirements for 82571/82572 fiber adapters */
1333
1334         /*
1335          * jump through hoops to make sure link is up because serdes
1336          * link is hardwired up
1337          */
1338         ctrl |= E1000_CTRL_SLU;
1339         ew32(CTRL, ctrl);
1340
1341         /* disable autoneg */
1342         ctrl = er32(TXCW);
1343         ctrl &= ~(1 << 31);
1344         ew32(TXCW, ctrl);
1345
1346         link = (er32(STATUS) & E1000_STATUS_LU);
1347
1348         if (!link) {
1349                 /* set invert loss of signal */
1350                 ctrl = er32(CTRL);
1351                 ctrl |= E1000_CTRL_ILOS;
1352                 ew32(CTRL, ctrl);
1353         }
1354
1355         /*
1356          * special write to serdes control register to enable SerDes analog
1357          * loopback
1358          */
1359 #define E1000_SERDES_LB_ON 0x410
1360         ew32(SCTL, E1000_SERDES_LB_ON);
1361         msleep(10);
1362
1363         return 0;
1364 }
1365
1366 /* only call this for fiber/serdes connections to es2lan */
1367 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1368 {
1369         struct e1000_hw *hw = &adapter->hw;
1370         u32 ctrlext = er32(CTRL_EXT);
1371         u32 ctrl = er32(CTRL);
1372
1373         /*
1374          * save CTRL_EXT to restore later, reuse an empty variable (unused
1375          * on mac_type 80003es2lan)
1376          */
1377         adapter->tx_fifo_head = ctrlext;
1378
1379         /* clear the serdes mode bits, putting the device into mac loopback */
1380         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1381         ew32(CTRL_EXT, ctrlext);
1382
1383         /* force speed to 1000/FD, link up */
1384         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1385         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1386                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1387         ew32(CTRL, ctrl);
1388
1389         /* set mac loopback */
1390         ctrl = er32(RCTL);
1391         ctrl |= E1000_RCTL_LBM_MAC;
1392         ew32(RCTL, ctrl);
1393
1394         /* set testing mode parameters (no need to reset later) */
1395 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1396 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1397         ew32(KMRNCTRLSTA,
1398              (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1399
1400         return 0;
1401 }
1402
1403 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1404 {
1405         struct e1000_hw *hw = &adapter->hw;
1406         u32 rctl;
1407
1408         if (hw->phy.media_type == e1000_media_type_fiber ||
1409             hw->phy.media_type == e1000_media_type_internal_serdes) {
1410                 switch (hw->mac.type) {
1411                 case e1000_80003es2lan:
1412                         return e1000_set_es2lan_mac_loopback(adapter);
1413                         break;
1414                 case e1000_82571:
1415                 case e1000_82572:
1416                         return e1000_set_82571_fiber_loopback(adapter);
1417                         break;
1418                 default:
1419                         rctl = er32(RCTL);
1420                         rctl |= E1000_RCTL_LBM_TCVR;
1421                         ew32(RCTL, rctl);
1422                         return 0;
1423                 }
1424         } else if (hw->phy.media_type == e1000_media_type_copper) {
1425                 return e1000_integrated_phy_loopback(adapter);
1426         }
1427
1428         return 7;
1429 }
1430
1431 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1432 {
1433         struct e1000_hw *hw = &adapter->hw;
1434         u32 rctl;
1435         u16 phy_reg;
1436
1437         rctl = er32(RCTL);
1438         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1439         ew32(RCTL, rctl);
1440
1441         switch (hw->mac.type) {
1442         case e1000_80003es2lan:
1443                 if (hw->phy.media_type == e1000_media_type_fiber ||
1444                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1445                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1446                         ew32(CTRL_EXT, adapter->tx_fifo_head);
1447                         adapter->tx_fifo_head = 0;
1448                 }
1449                 /* fall through */
1450         case e1000_82571:
1451         case e1000_82572:
1452                 if (hw->phy.media_type == e1000_media_type_fiber ||
1453                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1454 #define E1000_SERDES_LB_OFF 0x400
1455                         ew32(SCTL, E1000_SERDES_LB_OFF);
1456                         msleep(10);
1457                         break;
1458                 }
1459                 /* Fall Through */
1460         default:
1461                 hw->mac.autoneg = 1;
1462                 if (hw->phy.type == e1000_phy_gg82563)
1463                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1464                 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1465                 if (phy_reg & MII_CR_LOOPBACK) {
1466                         phy_reg &= ~MII_CR_LOOPBACK;
1467                         e1e_wphy(hw, PHY_CONTROL, phy_reg);
1468                         e1000e_commit_phy(hw);
1469                 }
1470                 break;
1471         }
1472 }
1473
1474 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1475                                       unsigned int frame_size)
1476 {
1477         memset(skb->data, 0xFF, frame_size);
1478         frame_size &= ~1;
1479         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1480         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1481         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1482 }
1483
1484 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1485                                     unsigned int frame_size)
1486 {
1487         frame_size &= ~1;
1488         if (*(skb->data + 3) == 0xFF)
1489                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1490                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1491                         return 0;
1492         return 13;
1493 }
1494
1495 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1496 {
1497         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1498         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1499         struct pci_dev *pdev = adapter->pdev;
1500         struct e1000_hw *hw = &adapter->hw;
1501         int i, j, k, l;
1502         int lc;
1503         int good_cnt;
1504         int ret_val = 0;
1505         unsigned long time;
1506
1507         ew32(RDT, rx_ring->count - 1);
1508
1509         /*
1510          * Calculate the loop count based on the largest descriptor ring
1511          * The idea is to wrap the largest ring a number of times using 64
1512          * send/receive pairs during each loop
1513          */
1514
1515         if (rx_ring->count <= tx_ring->count)
1516                 lc = ((tx_ring->count / 64) * 2) + 1;
1517         else
1518                 lc = ((rx_ring->count / 64) * 2) + 1;
1519
1520         k = 0;
1521         l = 0;
1522         for (j = 0; j <= lc; j++) { /* loop count loop */
1523                 for (i = 0; i < 64; i++) { /* send the packets */
1524                         e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1525                                                   1024);
1526                         pci_dma_sync_single_for_device(pdev,
1527                                         tx_ring->buffer_info[k].dma,
1528                                         tx_ring->buffer_info[k].length,
1529                                         PCI_DMA_TODEVICE);
1530                         k++;
1531                         if (k == tx_ring->count)
1532                                 k = 0;
1533                 }
1534                 ew32(TDT, k);
1535                 msleep(200);
1536                 time = jiffies; /* set the start time for the receive */
1537                 good_cnt = 0;
1538                 do { /* receive the sent packets */
1539                         pci_dma_sync_single_for_cpu(pdev,
1540                                         rx_ring->buffer_info[l].dma, 2048,
1541                                         PCI_DMA_FROMDEVICE);
1542
1543                         ret_val = e1000_check_lbtest_frame(
1544                                         rx_ring->buffer_info[l].skb, 1024);
1545                         if (!ret_val)
1546                                 good_cnt++;
1547                         l++;
1548                         if (l == rx_ring->count)
1549                                 l = 0;
1550                         /*
1551                          * time + 20 msecs (200 msecs on 2.4) is more than
1552                          * enough time to complete the receives, if it's
1553                          * exceeded, break and error off
1554                          */
1555                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1556                 if (good_cnt != 64) {
1557                         ret_val = 13; /* ret_val is the same as mis-compare */
1558                         break;
1559                 }
1560                 if (jiffies >= (time + 20)) {
1561                         ret_val = 14; /* error code for time out error */
1562                         break;
1563                 }
1564         } /* end loop count loop */
1565         return ret_val;
1566 }
1567
1568 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1569 {
1570         /*
1571          * PHY loopback cannot be performed if SoL/IDER
1572          * sessions are active
1573          */
1574         if (e1000_check_reset_block(&adapter->hw)) {
1575                 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1576                 *data = 0;
1577                 goto out;
1578         }
1579
1580         *data = e1000_setup_desc_rings(adapter);
1581         if (*data)
1582                 goto out;
1583
1584         *data = e1000_setup_loopback_test(adapter);
1585         if (*data)
1586                 goto err_loopback;
1587
1588         *data = e1000_run_loopback_test(adapter);
1589         e1000_loopback_cleanup(adapter);
1590
1591 err_loopback:
1592         e1000_free_desc_rings(adapter);
1593 out:
1594         return *data;
1595 }
1596
1597 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1598 {
1599         struct e1000_hw *hw = &adapter->hw;
1600
1601         *data = 0;
1602         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1603                 int i = 0;
1604                 hw->mac.serdes_has_link = false;
1605
1606                 /*
1607                  * On some blade server designs, link establishment
1608                  * could take as long as 2-3 minutes
1609                  */
1610                 do {
1611                         hw->mac.ops.check_for_link(hw);
1612                         if (hw->mac.serdes_has_link)
1613                                 return *data;
1614                         msleep(20);
1615                 } while (i++ < 3750);
1616
1617                 *data = 1;
1618         } else {
1619                 hw->mac.ops.check_for_link(hw);
1620                 if (hw->mac.autoneg)
1621                         msleep(4000);
1622
1623                 if (!(er32(STATUS) &
1624                       E1000_STATUS_LU))
1625                         *data = 1;
1626         }
1627         return *data;
1628 }
1629
1630 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1631 {
1632         switch (sset) {
1633         case ETH_SS_TEST:
1634                 return E1000_TEST_LEN;
1635         case ETH_SS_STATS:
1636                 return E1000_STATS_LEN;
1637         default:
1638                 return -EOPNOTSUPP;
1639         }
1640 }
1641
1642 static void e1000_diag_test(struct net_device *netdev,
1643                             struct ethtool_test *eth_test, u64 *data)
1644 {
1645         struct e1000_adapter *adapter = netdev_priv(netdev);
1646         u16 autoneg_advertised;
1647         u8 forced_speed_duplex;
1648         u8 autoneg;
1649         bool if_running = netif_running(netdev);
1650
1651         set_bit(__E1000_TESTING, &adapter->state);
1652         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1653                 /* Offline tests */
1654
1655                 /* save speed, duplex, autoneg settings */
1656                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1657                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1658                 autoneg = adapter->hw.mac.autoneg;
1659
1660                 e_info("offline testing starting\n");
1661
1662                 /*
1663                  * Link test performed before hardware reset so autoneg doesn't
1664                  * interfere with test result
1665                  */
1666                 if (e1000_link_test(adapter, &data[4]))
1667                         eth_test->flags |= ETH_TEST_FL_FAILED;
1668
1669                 if (if_running)
1670                         /* indicate we're in test mode */
1671                         dev_close(netdev);
1672                 else
1673                         e1000e_reset(adapter);
1674
1675                 if (e1000_reg_test(adapter, &data[0]))
1676                         eth_test->flags |= ETH_TEST_FL_FAILED;
1677
1678                 e1000e_reset(adapter);
1679                 if (e1000_eeprom_test(adapter, &data[1]))
1680                         eth_test->flags |= ETH_TEST_FL_FAILED;
1681
1682                 e1000e_reset(adapter);
1683                 if (e1000_intr_test(adapter, &data[2]))
1684                         eth_test->flags |= ETH_TEST_FL_FAILED;
1685
1686                 e1000e_reset(adapter);
1687                 /* make sure the phy is powered up */
1688                 e1000e_power_up_phy(adapter);
1689                 if (e1000_loopback_test(adapter, &data[3]))
1690                         eth_test->flags |= ETH_TEST_FL_FAILED;
1691
1692                 /* restore speed, duplex, autoneg settings */
1693                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1694                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1695                 adapter->hw.mac.autoneg = autoneg;
1696
1697                 /* force this routine to wait until autoneg complete/timeout */
1698                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1699                 e1000e_reset(adapter);
1700                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1701
1702                 clear_bit(__E1000_TESTING, &adapter->state);
1703                 if (if_running)
1704                         dev_open(netdev);
1705         } else {
1706                 e_info("online testing starting\n");
1707                 /* Online tests */
1708                 if (e1000_link_test(adapter, &data[4]))
1709                         eth_test->flags |= ETH_TEST_FL_FAILED;
1710
1711                 /* Online tests aren't run; pass by default */
1712                 data[0] = 0;
1713                 data[1] = 0;
1714                 data[2] = 0;
1715                 data[3] = 0;
1716
1717                 clear_bit(__E1000_TESTING, &adapter->state);
1718         }
1719         msleep_interruptible(4 * 1000);
1720 }
1721
1722 static void e1000_get_wol(struct net_device *netdev,
1723                           struct ethtool_wolinfo *wol)
1724 {
1725         struct e1000_adapter *adapter = netdev_priv(netdev);
1726
1727         wol->supported = 0;
1728         wol->wolopts = 0;
1729
1730         if (!(adapter->flags & FLAG_HAS_WOL) ||
1731             !device_can_wakeup(&adapter->pdev->dev))
1732                 return;
1733
1734         wol->supported = WAKE_UCAST | WAKE_MCAST |
1735                          WAKE_BCAST | WAKE_MAGIC |
1736                          WAKE_PHY | WAKE_ARP;
1737
1738         /* apply any specific unsupported masks here */
1739         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1740                 wol->supported &= ~WAKE_UCAST;
1741
1742                 if (adapter->wol & E1000_WUFC_EX)
1743                         e_err("Interface does not support directed (unicast) "
1744                               "frame wake-up packets\n");
1745         }
1746
1747         if (adapter->wol & E1000_WUFC_EX)
1748                 wol->wolopts |= WAKE_UCAST;
1749         if (adapter->wol & E1000_WUFC_MC)
1750                 wol->wolopts |= WAKE_MCAST;
1751         if (adapter->wol & E1000_WUFC_BC)
1752                 wol->wolopts |= WAKE_BCAST;
1753         if (adapter->wol & E1000_WUFC_MAG)
1754                 wol->wolopts |= WAKE_MAGIC;
1755         if (adapter->wol & E1000_WUFC_LNKC)
1756                 wol->wolopts |= WAKE_PHY;
1757         if (adapter->wol & E1000_WUFC_ARP)
1758                 wol->wolopts |= WAKE_ARP;
1759 }
1760
1761 static int e1000_set_wol(struct net_device *netdev,
1762                          struct ethtool_wolinfo *wol)
1763 {
1764         struct e1000_adapter *adapter = netdev_priv(netdev);
1765
1766         if (wol->wolopts & WAKE_MAGICSECURE)
1767                 return -EOPNOTSUPP;
1768
1769         if (!(adapter->flags & FLAG_HAS_WOL) ||
1770             !device_can_wakeup(&adapter->pdev->dev))
1771                 return wol->wolopts ? -EOPNOTSUPP : 0;
1772
1773         /* these settings will always override what we currently have */
1774         adapter->wol = 0;
1775
1776         if (wol->wolopts & WAKE_UCAST)
1777                 adapter->wol |= E1000_WUFC_EX;
1778         if (wol->wolopts & WAKE_MCAST)
1779                 adapter->wol |= E1000_WUFC_MC;
1780         if (wol->wolopts & WAKE_BCAST)
1781                 adapter->wol |= E1000_WUFC_BC;
1782         if (wol->wolopts & WAKE_MAGIC)
1783                 adapter->wol |= E1000_WUFC_MAG;
1784         if (wol->wolopts & WAKE_PHY)
1785                 adapter->wol |= E1000_WUFC_LNKC;
1786         if (wol->wolopts & WAKE_ARP)
1787                 adapter->wol |= E1000_WUFC_ARP;
1788
1789         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1790
1791         return 0;
1792 }
1793
1794 /* toggle LED 4 times per second = 2 "blinks" per second */
1795 #define E1000_ID_INTERVAL       (HZ/4)
1796
1797 /* bit defines for adapter->led_status */
1798 #define E1000_LED_ON            0
1799
1800 static void e1000e_led_blink_task(struct work_struct *work)
1801 {
1802         struct e1000_adapter *adapter = container_of(work,
1803                                         struct e1000_adapter, led_blink_task);
1804
1805         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1806                 adapter->hw.mac.ops.led_off(&adapter->hw);
1807         else
1808                 adapter->hw.mac.ops.led_on(&adapter->hw);
1809 }
1810
1811 static void e1000_led_blink_callback(unsigned long data)
1812 {
1813         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1814
1815         schedule_work(&adapter->led_blink_task);
1816         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1817 }
1818
1819 static int e1000_phys_id(struct net_device *netdev, u32 data)
1820 {
1821         struct e1000_adapter *adapter = netdev_priv(netdev);
1822         struct e1000_hw *hw = &adapter->hw;
1823
1824         if (!data)
1825                 data = INT_MAX;
1826
1827         if ((hw->phy.type == e1000_phy_ife) ||
1828             (hw->mac.type == e1000_pchlan) ||
1829             (hw->mac.type == e1000_82574)) {
1830                 INIT_WORK(&adapter->led_blink_task, e1000e_led_blink_task);
1831                 if (!adapter->blink_timer.function) {
1832                         init_timer(&adapter->blink_timer);
1833                         adapter->blink_timer.function =
1834                                 e1000_led_blink_callback;
1835                         adapter->blink_timer.data = (unsigned long) adapter;
1836                 }
1837                 mod_timer(&adapter->blink_timer, jiffies);
1838                 msleep_interruptible(data * 1000);
1839                 del_timer_sync(&adapter->blink_timer);
1840                 if (hw->phy.type == e1000_phy_ife)
1841                         e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1842         } else {
1843                 e1000e_blink_led(hw);
1844                 msleep_interruptible(data * 1000);
1845         }
1846
1847         hw->mac.ops.led_off(hw);
1848         clear_bit(E1000_LED_ON, &adapter->led_status);
1849         hw->mac.ops.cleanup_led(hw);
1850
1851         return 0;
1852 }
1853
1854 static int e1000_get_coalesce(struct net_device *netdev,
1855                               struct ethtool_coalesce *ec)
1856 {
1857         struct e1000_adapter *adapter = netdev_priv(netdev);
1858
1859         if (adapter->itr_setting <= 3)
1860                 ec->rx_coalesce_usecs = adapter->itr_setting;
1861         else
1862                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1863
1864         return 0;
1865 }
1866
1867 static int e1000_set_coalesce(struct net_device *netdev,
1868                               struct ethtool_coalesce *ec)
1869 {
1870         struct e1000_adapter *adapter = netdev_priv(netdev);
1871         struct e1000_hw *hw = &adapter->hw;
1872
1873         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1874             ((ec->rx_coalesce_usecs > 3) &&
1875              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1876             (ec->rx_coalesce_usecs == 2))
1877                 return -EINVAL;
1878
1879         if (ec->rx_coalesce_usecs <= 3) {
1880                 adapter->itr = 20000;
1881                 adapter->itr_setting = ec->rx_coalesce_usecs;
1882         } else {
1883                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1884                 adapter->itr_setting = adapter->itr & ~3;
1885         }
1886
1887         if (adapter->itr_setting != 0)
1888                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1889         else
1890                 ew32(ITR, 0);
1891
1892         return 0;
1893 }
1894
1895 static int e1000_nway_reset(struct net_device *netdev)
1896 {
1897         struct e1000_adapter *adapter = netdev_priv(netdev);
1898         if (netif_running(netdev))
1899                 e1000e_reinit_locked(adapter);
1900         return 0;
1901 }
1902
1903 static void e1000_get_ethtool_stats(struct net_device *netdev,
1904                                     struct ethtool_stats *stats,
1905                                     u64 *data)
1906 {
1907         struct e1000_adapter *adapter = netdev_priv(netdev);
1908         int i;
1909
1910         e1000e_update_stats(adapter);
1911         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1912                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1913                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1914                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1915         }
1916 }
1917
1918 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1919                               u8 *data)
1920 {
1921         u8 *p = data;
1922         int i;
1923
1924         switch (stringset) {
1925         case ETH_SS_TEST:
1926                 memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
1927                 break;
1928         case ETH_SS_STATS:
1929                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1930                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1931                                ETH_GSTRING_LEN);
1932                         p += ETH_GSTRING_LEN;
1933                 }
1934                 break;
1935         }
1936 }
1937
1938 static const struct ethtool_ops e1000_ethtool_ops = {
1939         .get_settings           = e1000_get_settings,
1940         .set_settings           = e1000_set_settings,
1941         .get_drvinfo            = e1000_get_drvinfo,
1942         .get_regs_len           = e1000_get_regs_len,
1943         .get_regs               = e1000_get_regs,
1944         .get_wol                = e1000_get_wol,
1945         .set_wol                = e1000_set_wol,
1946         .get_msglevel           = e1000_get_msglevel,
1947         .set_msglevel           = e1000_set_msglevel,
1948         .nway_reset             = e1000_nway_reset,
1949         .get_link               = e1000_get_link,
1950         .get_eeprom_len         = e1000_get_eeprom_len,
1951         .get_eeprom             = e1000_get_eeprom,
1952         .set_eeprom             = e1000_set_eeprom,
1953         .get_ringparam          = e1000_get_ringparam,
1954         .set_ringparam          = e1000_set_ringparam,
1955         .get_pauseparam         = e1000_get_pauseparam,
1956         .set_pauseparam         = e1000_set_pauseparam,
1957         .get_rx_csum            = e1000_get_rx_csum,
1958         .set_rx_csum            = e1000_set_rx_csum,
1959         .get_tx_csum            = e1000_get_tx_csum,
1960         .set_tx_csum            = e1000_set_tx_csum,
1961         .get_sg                 = ethtool_op_get_sg,
1962         .set_sg                 = ethtool_op_set_sg,
1963         .get_tso                = ethtool_op_get_tso,
1964         .set_tso                = e1000_set_tso,
1965         .self_test              = e1000_diag_test,
1966         .get_strings            = e1000_get_strings,
1967         .phys_id                = e1000_phys_id,
1968         .get_ethtool_stats      = e1000_get_ethtool_stats,
1969         .get_sset_count         = e1000e_get_sset_count,
1970         .get_coalesce           = e1000_get_coalesce,
1971         .set_coalesce           = e1000_set_coalesce,
1972 };
1973
1974 void e1000e_set_ethtool_ops(struct net_device *netdev)
1975 {
1976         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1977 }