795d433e656ffbf6d69a8a26d29a5ff62e4bfa53
[safe/jmp/linux-2.6] / drivers / net / e1000e / es2lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 80003ES2LAN Gigabit Ethernet Controller (Copper)
31  * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
32  */
33
34 #include "e1000.h"
35
36 #define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL       0x00
37 #define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL        0x02
38 #define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL         0x10
39 #define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE  0x1F
40
41 #define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS    0x0008
42 #define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS    0x0800
43 #define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING   0x0010
44
45 #define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
46 #define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT   0x0000
47 #define E1000_KMRNCTRLSTA_OPMODE_E_IDLE          0x2000
48
49 #define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
50 #define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN        0x00010000
51
52 #define DEFAULT_TIPG_IPGT_1000_80003ES2LAN       0x8
53 #define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN     0x9
54
55 /* GG82563 PHY Specific Status Register (Page 0, Register 16 */
56 #define GG82563_PSCR_POLARITY_REVERSAL_DISABLE   0x0002 /* 1=Reversal Disab. */
57 #define GG82563_PSCR_CROSSOVER_MODE_MASK         0x0060
58 #define GG82563_PSCR_CROSSOVER_MODE_MDI          0x0000 /* 00=Manual MDI */
59 #define GG82563_PSCR_CROSSOVER_MODE_MDIX         0x0020 /* 01=Manual MDIX */
60 #define GG82563_PSCR_CROSSOVER_MODE_AUTO         0x0060 /* 11=Auto crossover */
61
62 /* PHY Specific Control Register 2 (Page 0, Register 26) */
63 #define GG82563_PSCR2_REVERSE_AUTO_NEG           0x2000
64                                                 /* 1=Reverse Auto-Negotiation */
65
66 /* MAC Specific Control Register (Page 2, Register 21) */
67 /* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
68 #define GG82563_MSCR_TX_CLK_MASK                 0x0007
69 #define GG82563_MSCR_TX_CLK_10MBPS_2_5           0x0004
70 #define GG82563_MSCR_TX_CLK_100MBPS_25           0x0005
71 #define GG82563_MSCR_TX_CLK_1000MBPS_25          0x0007
72
73 #define GG82563_MSCR_ASSERT_CRS_ON_TX            0x0010 /* 1=Assert */
74
75 /* DSP Distance Register (Page 5, Register 26) */
76 #define GG82563_DSPD_CABLE_LENGTH                0x0007 /* 0 = <50M
77                                                            1 = 50-80M
78                                                            2 = 80-110M
79                                                            3 = 110-140M
80                                                            4 = >140M */
81
82 /* Kumeran Mode Control Register (Page 193, Register 16) */
83 #define GG82563_KMCR_PASS_FALSE_CARRIER          0x0800
84
85 /* Max number of times Kumeran read/write should be validated */
86 #define GG82563_MAX_KMRN_RETRY  0x5
87
88 /* Power Management Control Register (Page 193, Register 20) */
89 #define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE      0x0001
90                                            /* 1=Enable SERDES Electrical Idle */
91
92 /* In-Band Control Register (Page 194, Register 18) */
93 #define GG82563_ICR_DIS_PADDING                  0x0010 /* Disable Padding */
94
95 /*
96  * A table for the GG82563 cable length where the range is defined
97  * with a lower bound at "index" and the upper bound at
98  * "index + 5".
99  */
100 static const u16 e1000_gg82563_cable_length_table[] =
101          { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
102
103 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
104 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
105 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
106 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
107 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
108 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
109 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
110 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
111 static s32  e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
112                                             u16 *data);
113 static s32  e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
114                                              u16 data);
115
116 /**
117  *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
118  *  @hw: pointer to the HW structure
119  **/
120 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
121 {
122         struct e1000_phy_info *phy = &hw->phy;
123         s32 ret_val;
124
125         if (hw->phy.media_type != e1000_media_type_copper) {
126                 phy->type       = e1000_phy_none;
127                 return 0;
128         }
129
130         phy->addr               = 1;
131         phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
132         phy->reset_delay_us      = 100;
133         phy->type               = e1000_phy_gg82563;
134
135         /* This can only be done after all function pointers are setup. */
136         ret_val = e1000e_get_phy_id(hw);
137
138         /* Verify phy id */
139         if (phy->id != GG82563_E_PHY_ID)
140                 return -E1000_ERR_PHY;
141
142         return ret_val;
143 }
144
145 /**
146  *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
147  *  @hw: pointer to the HW structure
148  **/
149 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
150 {
151         struct e1000_nvm_info *nvm = &hw->nvm;
152         u32 eecd = er32(EECD);
153         u16 size;
154
155         nvm->opcode_bits        = 8;
156         nvm->delay_usec  = 1;
157         switch (nvm->override) {
158         case e1000_nvm_override_spi_large:
159                 nvm->page_size    = 32;
160                 nvm->address_bits = 16;
161                 break;
162         case e1000_nvm_override_spi_small:
163                 nvm->page_size    = 8;
164                 nvm->address_bits = 8;
165                 break;
166         default:
167                 nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
168                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
169                 break;
170         }
171
172         nvm->type = e1000_nvm_eeprom_spi;
173
174         size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
175                           E1000_EECD_SIZE_EX_SHIFT);
176
177         /*
178          * Added to a constant, "size" becomes the left-shift value
179          * for setting word_size.
180          */
181         size += NVM_WORD_SIZE_BASE_SHIFT;
182
183         /* EEPROM access above 16k is unsupported */
184         if (size > 14)
185                 size = 14;
186         nvm->word_size  = 1 << size;
187
188         return 0;
189 }
190
191 /**
192  *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
193  *  @hw: pointer to the HW structure
194  **/
195 static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
196 {
197         struct e1000_hw *hw = &adapter->hw;
198         struct e1000_mac_info *mac = &hw->mac;
199         struct e1000_mac_operations *func = &mac->ops;
200
201         /* Set media type */
202         switch (adapter->pdev->device) {
203         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
204                 hw->phy.media_type = e1000_media_type_internal_serdes;
205                 break;
206         default:
207                 hw->phy.media_type = e1000_media_type_copper;
208                 break;
209         }
210
211         /* Set mta register count */
212         mac->mta_reg_count = 128;
213         /* Set rar entry count */
214         mac->rar_entry_count = E1000_RAR_ENTRIES;
215         /* Set if manageability features are enabled. */
216         mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK)
217                         ? true : false;
218
219         /* check for link */
220         switch (hw->phy.media_type) {
221         case e1000_media_type_copper:
222                 func->setup_physical_interface = e1000_setup_copper_link_80003es2lan;
223                 func->check_for_link = e1000e_check_for_copper_link;
224                 break;
225         case e1000_media_type_fiber:
226                 func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
227                 func->check_for_link = e1000e_check_for_fiber_link;
228                 break;
229         case e1000_media_type_internal_serdes:
230                 func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
231                 func->check_for_link = e1000e_check_for_serdes_link;
232                 break;
233         default:
234                 return -E1000_ERR_CONFIG;
235                 break;
236         }
237
238         return 0;
239 }
240
241 static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
242 {
243         struct e1000_hw *hw = &adapter->hw;
244         s32 rc;
245
246         rc = e1000_init_mac_params_80003es2lan(adapter);
247         if (rc)
248                 return rc;
249
250         rc = e1000_init_nvm_params_80003es2lan(hw);
251         if (rc)
252                 return rc;
253
254         rc = e1000_init_phy_params_80003es2lan(hw);
255         if (rc)
256                 return rc;
257
258         return 0;
259 }
260
261 /**
262  *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
263  *  @hw: pointer to the HW structure
264  *
265  *  A wrapper to acquire access rights to the correct PHY.
266  **/
267 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
268 {
269         u16 mask;
270
271         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
272         return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
273 }
274
275 /**
276  *  e1000_release_phy_80003es2lan - Release rights to access PHY
277  *  @hw: pointer to the HW structure
278  *
279  *  A wrapper to release access rights to the correct PHY.
280  **/
281 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
282 {
283         u16 mask;
284
285         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
286         e1000_release_swfw_sync_80003es2lan(hw, mask);
287 }
288
289 /**
290  *  e1000_acquire_mac_csr_80003es2lan - Acquire rights to access Kumeran register
291  *  @hw: pointer to the HW structure
292  *
293  *  Acquire the semaphore to access the Kumeran interface.
294  *
295  **/
296 static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
297 {
298         u16 mask;
299
300         mask = E1000_SWFW_CSR_SM;
301
302         return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
303 }
304
305 /**
306  *  e1000_release_mac_csr_80003es2lan - Release rights to access Kumeran Register
307  *  @hw: pointer to the HW structure
308  *
309  *  Release the semaphore used to access the Kumeran interface
310  **/
311 static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
312 {
313         u16 mask;
314
315         mask = E1000_SWFW_CSR_SM;
316
317         e1000_release_swfw_sync_80003es2lan(hw, mask);
318 }
319
320 /**
321  *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
322  *  @hw: pointer to the HW structure
323  *
324  *  Acquire the semaphore to access the EEPROM.
325  **/
326 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
327 {
328         s32 ret_val;
329
330         ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
331         if (ret_val)
332                 return ret_val;
333
334         ret_val = e1000e_acquire_nvm(hw);
335
336         if (ret_val)
337                 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
338
339         return ret_val;
340 }
341
342 /**
343  *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
344  *  @hw: pointer to the HW structure
345  *
346  *  Release the semaphore used to access the EEPROM.
347  **/
348 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
349 {
350         e1000e_release_nvm(hw);
351         e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
352 }
353
354 /**
355  *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
356  *  @hw: pointer to the HW structure
357  *  @mask: specifies which semaphore to acquire
358  *
359  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
360  *  will also specify which port we're acquiring the lock for.
361  **/
362 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
363 {
364         u32 swfw_sync;
365         u32 swmask = mask;
366         u32 fwmask = mask << 16;
367         s32 i = 0;
368         s32 timeout = 50;
369
370         while (i < timeout) {
371                 if (e1000e_get_hw_semaphore(hw))
372                         return -E1000_ERR_SWFW_SYNC;
373
374                 swfw_sync = er32(SW_FW_SYNC);
375                 if (!(swfw_sync & (fwmask | swmask)))
376                         break;
377
378                 /*
379                  * Firmware currently using resource (fwmask)
380                  * or other software thread using resource (swmask)
381                  */
382                 e1000e_put_hw_semaphore(hw);
383                 mdelay(5);
384                 i++;
385         }
386
387         if (i == timeout) {
388                 e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
389                 return -E1000_ERR_SWFW_SYNC;
390         }
391
392         swfw_sync |= swmask;
393         ew32(SW_FW_SYNC, swfw_sync);
394
395         e1000e_put_hw_semaphore(hw);
396
397         return 0;
398 }
399
400 /**
401  *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
402  *  @hw: pointer to the HW structure
403  *  @mask: specifies which semaphore to acquire
404  *
405  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
406  *  will also specify which port we're releasing the lock for.
407  **/
408 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
409 {
410         u32 swfw_sync;
411
412         while (e1000e_get_hw_semaphore(hw) != 0);
413         /* Empty */
414
415         swfw_sync = er32(SW_FW_SYNC);
416         swfw_sync &= ~mask;
417         ew32(SW_FW_SYNC, swfw_sync);
418
419         e1000e_put_hw_semaphore(hw);
420 }
421
422 /**
423  *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
424  *  @hw: pointer to the HW structure
425  *  @offset: offset of the register to read
426  *  @data: pointer to the data returned from the operation
427  *
428  *  Read the GG82563 PHY register.
429  **/
430 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
431                                                   u32 offset, u16 *data)
432 {
433         s32 ret_val;
434         u32 page_select;
435         u16 temp;
436
437         ret_val = e1000_acquire_phy_80003es2lan(hw);
438         if (ret_val)
439                 return ret_val;
440
441         /* Select Configuration Page */
442         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
443                 page_select = GG82563_PHY_PAGE_SELECT;
444         } else {
445                 /*
446                  * Use Alternative Page Select register to access
447                  * registers 30 and 31
448                  */
449                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
450         }
451
452         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
453         ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
454         if (ret_val) {
455                 e1000_release_phy_80003es2lan(hw);
456                 return ret_val;
457         }
458
459         /*
460          * The "ready" bit in the MDIC register may be incorrectly set
461          * before the device has completed the "Page Select" MDI
462          * transaction.  So we wait 200us after each MDI command...
463          */
464         udelay(200);
465
466         /* ...and verify the command was successful. */
467         ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
468
469         if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
470                 ret_val = -E1000_ERR_PHY;
471                 e1000_release_phy_80003es2lan(hw);
472                 return ret_val;
473         }
474
475         udelay(200);
476
477         ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
478                                            data);
479
480         udelay(200);
481         e1000_release_phy_80003es2lan(hw);
482
483         return ret_val;
484 }
485
486 /**
487  *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
488  *  @hw: pointer to the HW structure
489  *  @offset: offset of the register to read
490  *  @data: value to write to the register
491  *
492  *  Write to the GG82563 PHY register.
493  **/
494 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
495                                                    u32 offset, u16 data)
496 {
497         s32 ret_val;
498         u32 page_select;
499         u16 temp;
500
501         ret_val = e1000_acquire_phy_80003es2lan(hw);
502         if (ret_val)
503                 return ret_val;
504
505         /* Select Configuration Page */
506         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
507                 page_select = GG82563_PHY_PAGE_SELECT;
508         } else {
509                 /*
510                  * Use Alternative Page Select register to access
511                  * registers 30 and 31
512                  */
513                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
514         }
515
516         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
517         ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
518         if (ret_val) {
519                 e1000_release_phy_80003es2lan(hw);
520                 return ret_val;
521         }
522
523
524         /*
525          * The "ready" bit in the MDIC register may be incorrectly set
526          * before the device has completed the "Page Select" MDI
527          * transaction.  So we wait 200us after each MDI command...
528          */
529         udelay(200);
530
531         /* ...and verify the command was successful. */
532         ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
533
534         if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
535                 e1000_release_phy_80003es2lan(hw);
536                 return -E1000_ERR_PHY;
537         }
538
539         udelay(200);
540
541         ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
542                                             data);
543
544         udelay(200);
545         e1000_release_phy_80003es2lan(hw);
546
547         return ret_val;
548 }
549
550 /**
551  *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
552  *  @hw: pointer to the HW structure
553  *  @offset: offset of the register to read
554  *  @words: number of words to write
555  *  @data: buffer of data to write to the NVM
556  *
557  *  Write "words" of data to the ESB2 NVM.
558  **/
559 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
560                                        u16 words, u16 *data)
561 {
562         return e1000e_write_nvm_spi(hw, offset, words, data);
563 }
564
565 /**
566  *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
567  *  @hw: pointer to the HW structure
568  *
569  *  Wait a specific amount of time for manageability processes to complete.
570  *  This is a function pointer entry point called by the phy module.
571  **/
572 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
573 {
574         s32 timeout = PHY_CFG_TIMEOUT;
575         u32 mask = E1000_NVM_CFG_DONE_PORT_0;
576
577         if (hw->bus.func == 1)
578                 mask = E1000_NVM_CFG_DONE_PORT_1;
579
580         while (timeout) {
581                 if (er32(EEMNGCTL) & mask)
582                         break;
583                 msleep(1);
584                 timeout--;
585         }
586         if (!timeout) {
587                 e_dbg("MNG configuration cycle has not completed.\n");
588                 return -E1000_ERR_RESET;
589         }
590
591         return 0;
592 }
593
594 /**
595  *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
596  *  @hw: pointer to the HW structure
597  *
598  *  Force the speed and duplex settings onto the PHY.  This is a
599  *  function pointer entry point called by the phy module.
600  **/
601 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
602 {
603         s32 ret_val;
604         u16 phy_data;
605         bool link;
606
607         /*
608          * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
609          * forced whenever speed and duplex are forced.
610          */
611         ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
612         if (ret_val)
613                 return ret_val;
614
615         phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
616         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
617         if (ret_val)
618                 return ret_val;
619
620         e_dbg("GG82563 PSCR: %X\n", phy_data);
621
622         ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
623         if (ret_val)
624                 return ret_val;
625
626         e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
627
628         /* Reset the phy to commit changes. */
629         phy_data |= MII_CR_RESET;
630
631         ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
632         if (ret_val)
633                 return ret_val;
634
635         udelay(1);
636
637         if (hw->phy.autoneg_wait_to_complete) {
638                 e_dbg("Waiting for forced speed/duplex link "
639                          "on GG82563 phy.\n");
640
641                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
642                                                      100000, &link);
643                 if (ret_val)
644                         return ret_val;
645
646                 if (!link) {
647                         /*
648                          * We didn't get link.
649                          * Reset the DSP and cross our fingers.
650                          */
651                         ret_val = e1000e_phy_reset_dsp(hw);
652                         if (ret_val)
653                                 return ret_val;
654                 }
655
656                 /* Try once more */
657                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
658                                                      100000, &link);
659                 if (ret_val)
660                         return ret_val;
661         }
662
663         ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
664         if (ret_val)
665                 return ret_val;
666
667         /*
668          * Resetting the phy means we need to verify the TX_CLK corresponds
669          * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
670          */
671         phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
672         if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
673                 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
674         else
675                 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
676
677         /*
678          * In addition, we must re-enable CRS on Tx for both half and full
679          * duplex.
680          */
681         phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
682         ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
683
684         return ret_val;
685 }
686
687 /**
688  *  e1000_get_cable_length_80003es2lan - Set approximate cable length
689  *  @hw: pointer to the HW structure
690  *
691  *  Find the approximate cable length as measured by the GG82563 PHY.
692  *  This is a function pointer entry point called by the phy module.
693  **/
694 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
695 {
696         struct e1000_phy_info *phy = &hw->phy;
697         s32 ret_val;
698         u16 phy_data;
699         u16 index;
700
701         ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
702         if (ret_val)
703                 return ret_val;
704
705         index = phy_data & GG82563_DSPD_CABLE_LENGTH;
706         phy->min_cable_length = e1000_gg82563_cable_length_table[index];
707         phy->max_cable_length = e1000_gg82563_cable_length_table[index+5];
708
709         phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
710
711         return 0;
712 }
713
714 /**
715  *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
716  *  @hw: pointer to the HW structure
717  *  @speed: pointer to speed buffer
718  *  @duplex: pointer to duplex buffer
719  *
720  *  Retrieve the current speed and duplex configuration.
721  **/
722 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
723                                               u16 *duplex)
724 {
725         s32 ret_val;
726
727         if (hw->phy.media_type == e1000_media_type_copper) {
728                 ret_val = e1000e_get_speed_and_duplex_copper(hw,
729                                                                     speed,
730                                                                     duplex);
731                 hw->phy.ops.cfg_on_link_up(hw);
732         } else {
733                 ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
734                                                                   speed,
735                                                                   duplex);
736         }
737
738         return ret_val;
739 }
740
741 /**
742  *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
743  *  @hw: pointer to the HW structure
744  *
745  *  Perform a global reset to the ESB2 controller.
746  **/
747 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
748 {
749         u32 ctrl;
750         u32 icr;
751         s32 ret_val;
752
753         /*
754          * Prevent the PCI-E bus from sticking if there is no TLP connection
755          * on the last TLP read/write transaction when MAC is reset.
756          */
757         ret_val = e1000e_disable_pcie_master(hw);
758         if (ret_val)
759                 e_dbg("PCI-E Master disable polling has failed.\n");
760
761         e_dbg("Masking off all interrupts\n");
762         ew32(IMC, 0xffffffff);
763
764         ew32(RCTL, 0);
765         ew32(TCTL, E1000_TCTL_PSP);
766         e1e_flush();
767
768         msleep(10);
769
770         ctrl = er32(CTRL);
771
772         ret_val = e1000_acquire_phy_80003es2lan(hw);
773         e_dbg("Issuing a global reset to MAC\n");
774         ew32(CTRL, ctrl | E1000_CTRL_RST);
775         e1000_release_phy_80003es2lan(hw);
776
777         ret_val = e1000e_get_auto_rd_done(hw);
778         if (ret_val)
779                 /* We don't want to continue accessing MAC registers. */
780                 return ret_val;
781
782         /* Clear any pending interrupt events. */
783         ew32(IMC, 0xffffffff);
784         icr = er32(ICR);
785
786         return 0;
787 }
788
789 /**
790  *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
791  *  @hw: pointer to the HW structure
792  *
793  *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
794  **/
795 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
796 {
797         struct e1000_mac_info *mac = &hw->mac;
798         u32 reg_data;
799         s32 ret_val;
800         u16 i;
801
802         e1000_initialize_hw_bits_80003es2lan(hw);
803
804         /* Initialize identification LED */
805         ret_val = e1000e_id_led_init(hw);
806         if (ret_val) {
807                 e_dbg("Error initializing identification LED\n");
808                 return ret_val;
809         }
810
811         /* Disabling VLAN filtering */
812         e_dbg("Initializing the IEEE VLAN\n");
813         e1000e_clear_vfta(hw);
814
815         /* Setup the receive address. */
816         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
817
818         /* Zero out the Multicast HASH table */
819         e_dbg("Zeroing the MTA\n");
820         for (i = 0; i < mac->mta_reg_count; i++)
821                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
822
823         /* Setup link and flow control */
824         ret_val = e1000e_setup_link(hw);
825
826         /* Set the transmit descriptor write-back policy */
827         reg_data = er32(TXDCTL(0));
828         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
829                    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
830         ew32(TXDCTL(0), reg_data);
831
832         /* ...for both queues. */
833         reg_data = er32(TXDCTL(1));
834         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
835                    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
836         ew32(TXDCTL(1), reg_data);
837
838         /* Enable retransmit on late collisions */
839         reg_data = er32(TCTL);
840         reg_data |= E1000_TCTL_RTLC;
841         ew32(TCTL, reg_data);
842
843         /* Configure Gigabit Carry Extend Padding */
844         reg_data = er32(TCTL_EXT);
845         reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
846         reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
847         ew32(TCTL_EXT, reg_data);
848
849         /* Configure Transmit Inter-Packet Gap */
850         reg_data = er32(TIPG);
851         reg_data &= ~E1000_TIPG_IPGT_MASK;
852         reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
853         ew32(TIPG, reg_data);
854
855         reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
856         reg_data &= ~0x00100000;
857         E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
858
859         /*
860          * Clear all of the statistics registers (clear on read).  It is
861          * important that we do this after we have tried to establish link
862          * because the symbol error count will increment wildly if there
863          * is no link.
864          */
865         e1000_clear_hw_cntrs_80003es2lan(hw);
866
867         return ret_val;
868 }
869
870 /**
871  *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
872  *  @hw: pointer to the HW structure
873  *
874  *  Initializes required hardware-dependent bits needed for normal operation.
875  **/
876 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
877 {
878         u32 reg;
879
880         /* Transmit Descriptor Control 0 */
881         reg = er32(TXDCTL(0));
882         reg |= (1 << 22);
883         ew32(TXDCTL(0), reg);
884
885         /* Transmit Descriptor Control 1 */
886         reg = er32(TXDCTL(1));
887         reg |= (1 << 22);
888         ew32(TXDCTL(1), reg);
889
890         /* Transmit Arbitration Control 0 */
891         reg = er32(TARC(0));
892         reg &= ~(0xF << 27); /* 30:27 */
893         if (hw->phy.media_type != e1000_media_type_copper)
894                 reg &= ~(1 << 20);
895         ew32(TARC(0), reg);
896
897         /* Transmit Arbitration Control 1 */
898         reg = er32(TARC(1));
899         if (er32(TCTL) & E1000_TCTL_MULR)
900                 reg &= ~(1 << 28);
901         else
902                 reg |= (1 << 28);
903         ew32(TARC(1), reg);
904 }
905
906 /**
907  *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
908  *  @hw: pointer to the HW structure
909  *
910  *  Setup some GG82563 PHY registers for obtaining link
911  **/
912 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
913 {
914         struct e1000_phy_info *phy = &hw->phy;
915         s32 ret_val;
916         u32 ctrl_ext;
917         u16 data;
918
919         ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
920         if (ret_val)
921                 return ret_val;
922
923         data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
924         /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
925         data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
926
927         ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
928         if (ret_val)
929                 return ret_val;
930
931         /*
932          * Options:
933          *   MDI/MDI-X = 0 (default)
934          *   0 - Auto for all speeds
935          *   1 - MDI mode
936          *   2 - MDI-X mode
937          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
938          */
939         ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
940         if (ret_val)
941                 return ret_val;
942
943         data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
944
945         switch (phy->mdix) {
946         case 1:
947                 data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
948                 break;
949         case 2:
950                 data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
951                 break;
952         case 0:
953         default:
954                 data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
955                 break;
956         }
957
958         /*
959          * Options:
960          *   disable_polarity_correction = 0 (default)
961          *       Automatic Correction for Reversed Cable Polarity
962          *   0 - Disabled
963          *   1 - Enabled
964          */
965         data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
966         if (phy->disable_polarity_correction)
967                 data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
968
969         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
970         if (ret_val)
971                 return ret_val;
972
973         /* SW Reset the PHY so all changes take effect */
974         ret_val = e1000e_commit_phy(hw);
975         if (ret_val) {
976                 e_dbg("Error Resetting the PHY\n");
977                 return ret_val;
978         }
979
980         /* Bypass Rx and Tx FIFO's */
981         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
982                                         E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
983                                         E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
984                                         E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
985         if (ret_val)
986                 return ret_val;
987
988         ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
989                                        E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
990                                        &data);
991         if (ret_val)
992                 return ret_val;
993         data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
994         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
995                                         E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
996                                         data);
997         if (ret_val)
998                 return ret_val;
999
1000         ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
1001         if (ret_val)
1002                 return ret_val;
1003
1004         data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
1005         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
1006         if (ret_val)
1007                 return ret_val;
1008
1009         ctrl_ext = er32(CTRL_EXT);
1010         ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
1011         ew32(CTRL_EXT, ctrl_ext);
1012
1013         ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
1014         if (ret_val)
1015                 return ret_val;
1016
1017         /*
1018          * Do not init these registers when the HW is in IAMT mode, since the
1019          * firmware will have already initialized them.  We only initialize
1020          * them if the HW is not in IAMT mode.
1021          */
1022         if (!e1000e_check_mng_mode(hw)) {
1023                 /* Enable Electrical Idle on the PHY */
1024                 data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
1025                 ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
1026                 if (ret_val)
1027                         return ret_val;
1028
1029                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
1030                 if (ret_val)
1031                         return ret_val;
1032
1033                 data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1034                 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
1035                 if (ret_val)
1036                         return ret_val;
1037         }
1038
1039         /*
1040          * Workaround: Disable padding in Kumeran interface in the MAC
1041          * and in the PHY to avoid CRC errors.
1042          */
1043         ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1044         if (ret_val)
1045                 return ret_val;
1046
1047         data |= GG82563_ICR_DIS_PADDING;
1048         ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1049         if (ret_val)
1050                 return ret_val;
1051
1052         return 0;
1053 }
1054
1055 /**
1056  *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1057  *  @hw: pointer to the HW structure
1058  *
1059  *  Essentially a wrapper for setting up all things "copper" related.
1060  *  This is a function pointer entry point called by the mac module.
1061  **/
1062 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1063 {
1064         u32 ctrl;
1065         s32 ret_val;
1066         u16 reg_data;
1067
1068         ctrl = er32(CTRL);
1069         ctrl |= E1000_CTRL_SLU;
1070         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1071         ew32(CTRL, ctrl);
1072
1073         /*
1074          * Set the mac to wait the maximum time between each
1075          * iteration and increase the max iterations when
1076          * polling the phy; this fixes erroneous timeouts at 10Mbps.
1077          */
1078         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1079                                                    0xFFFF);
1080         if (ret_val)
1081                 return ret_val;
1082         ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1083                                                   &reg_data);
1084         if (ret_val)
1085                 return ret_val;
1086         reg_data |= 0x3F;
1087         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1088                                                    reg_data);
1089         if (ret_val)
1090                 return ret_val;
1091         ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
1092                                       E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1093                                       &reg_data);
1094         if (ret_val)
1095                 return ret_val;
1096         reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1097         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1098                                         E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1099                                         reg_data);
1100         if (ret_val)
1101                 return ret_val;
1102
1103         ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1104         if (ret_val)
1105                 return ret_val;
1106
1107         ret_val = e1000e_setup_copper_link(hw);
1108
1109         return 0;
1110 }
1111
1112 /**
1113  *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1114  *  @hw: pointer to the HW structure
1115  *  @duplex: current duplex setting
1116  *
1117  *  Configure the KMRN interface by applying last minute quirks for
1118  *  10/100 operation.
1119  **/
1120 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1121 {
1122         s32 ret_val = 0;
1123         u16 speed;
1124         u16 duplex;
1125
1126         if (hw->phy.media_type == e1000_media_type_copper) {
1127                 ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1128                                                              &duplex);
1129                 if (ret_val)
1130                         return ret_val;
1131
1132                 if (speed == SPEED_1000)
1133                         ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1134                 else
1135                         ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1136         }
1137
1138         return ret_val;
1139 }
1140
1141 /**
1142  *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1143  *  @hw: pointer to the HW structure
1144  *  @duplex: current duplex setting
1145  *
1146  *  Configure the KMRN interface by applying last minute quirks for
1147  *  10/100 operation.
1148  **/
1149 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1150 {
1151         s32 ret_val;
1152         u32 tipg;
1153         u32 i = 0;
1154         u16 reg_data, reg_data2;
1155
1156         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1157         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1158                                        E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1159                                        reg_data);
1160         if (ret_val)
1161                 return ret_val;
1162
1163         /* Configure Transmit Inter-Packet Gap */
1164         tipg = er32(TIPG);
1165         tipg &= ~E1000_TIPG_IPGT_MASK;
1166         tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1167         ew32(TIPG, tipg);
1168
1169         do {
1170                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1171                 if (ret_val)
1172                         return ret_val;
1173
1174                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1175                 if (ret_val)
1176                         return ret_val;
1177                 i++;
1178         } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1179
1180         if (duplex == HALF_DUPLEX)
1181                 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1182         else
1183                 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1184
1185         ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1186
1187         return 0;
1188 }
1189
1190 /**
1191  *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1192  *  @hw: pointer to the HW structure
1193  *
1194  *  Configure the KMRN interface by applying last minute quirks for
1195  *  gigabit operation.
1196  **/
1197 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1198 {
1199         s32 ret_val;
1200         u16 reg_data, reg_data2;
1201         u32 tipg;
1202         u32 i = 0;
1203
1204         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1205         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1206                                        E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1207                                        reg_data);
1208         if (ret_val)
1209                 return ret_val;
1210
1211         /* Configure Transmit Inter-Packet Gap */
1212         tipg = er32(TIPG);
1213         tipg &= ~E1000_TIPG_IPGT_MASK;
1214         tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1215         ew32(TIPG, tipg);
1216
1217         do {
1218                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1219                 if (ret_val)
1220                         return ret_val;
1221
1222                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1223                 if (ret_val)
1224                         return ret_val;
1225                 i++;
1226         } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1227
1228         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1229         ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1230
1231         return ret_val;
1232 }
1233
1234 /**
1235  *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1236  *  @hw: pointer to the HW structure
1237  *  @offset: register offset to be read
1238  *  @data: pointer to the read data
1239  *
1240  *  Acquire semaphore, then read the PHY register at offset
1241  *  using the kumeran interface.  The information retrieved is stored in data.
1242  *  Release the semaphore before exiting.
1243  **/
1244 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1245                                            u16 *data)
1246 {
1247         u32 kmrnctrlsta;
1248         s32 ret_val = 0;
1249
1250         ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1251         if (ret_val)
1252                 return ret_val;
1253
1254         kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1255                        E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1256         ew32(KMRNCTRLSTA, kmrnctrlsta);
1257
1258         udelay(2);
1259
1260         kmrnctrlsta = er32(KMRNCTRLSTA);
1261         *data = (u16)kmrnctrlsta;
1262
1263         e1000_release_mac_csr_80003es2lan(hw);
1264
1265         return ret_val;
1266 }
1267
1268 /**
1269  *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1270  *  @hw: pointer to the HW structure
1271  *  @offset: register offset to write to
1272  *  @data: data to write at register offset
1273  *
1274  *  Acquire semaphore, then write the data to PHY register
1275  *  at the offset using the kumeran interface.  Release semaphore
1276  *  before exiting.
1277  **/
1278 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1279                                             u16 data)
1280 {
1281         u32 kmrnctrlsta;
1282         s32 ret_val = 0;
1283
1284         ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1285         if (ret_val)
1286                 return ret_val;
1287
1288         kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1289                        E1000_KMRNCTRLSTA_OFFSET) | data;
1290         ew32(KMRNCTRLSTA, kmrnctrlsta);
1291
1292         udelay(2);
1293
1294         e1000_release_mac_csr_80003es2lan(hw);
1295
1296         return ret_val;
1297 }
1298
1299 /**
1300  *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1301  *  @hw: pointer to the HW structure
1302  *
1303  *  Clears the hardware counters by reading the counter registers.
1304  **/
1305 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1306 {
1307         u32 temp;
1308
1309         e1000e_clear_hw_cntrs_base(hw);
1310
1311         temp = er32(PRC64);
1312         temp = er32(PRC127);
1313         temp = er32(PRC255);
1314         temp = er32(PRC511);
1315         temp = er32(PRC1023);
1316         temp = er32(PRC1522);
1317         temp = er32(PTC64);
1318         temp = er32(PTC127);
1319         temp = er32(PTC255);
1320         temp = er32(PTC511);
1321         temp = er32(PTC1023);
1322         temp = er32(PTC1522);
1323
1324         temp = er32(ALGNERRC);
1325         temp = er32(RXERRC);
1326         temp = er32(TNCRS);
1327         temp = er32(CEXTERR);
1328         temp = er32(TSCTC);
1329         temp = er32(TSCTFC);
1330
1331         temp = er32(MGTPRC);
1332         temp = er32(MGTPDC);
1333         temp = er32(MGTPTC);
1334
1335         temp = er32(IAC);
1336         temp = er32(ICRXOC);
1337
1338         temp = er32(ICRXPTC);
1339         temp = er32(ICRXATC);
1340         temp = er32(ICTXPTC);
1341         temp = er32(ICTXATC);
1342         temp = er32(ICTXQEC);
1343         temp = er32(ICTXQMTC);
1344         temp = er32(ICRXDMTC);
1345 }
1346
1347 static struct e1000_mac_operations es2_mac_ops = {
1348         .id_led_init            = e1000e_id_led_init,
1349         .check_mng_mode         = e1000e_check_mng_mode_generic,
1350         /* check_for_link dependent on media type */
1351         .cleanup_led            = e1000e_cleanup_led_generic,
1352         .clear_hw_cntrs         = e1000_clear_hw_cntrs_80003es2lan,
1353         .get_bus_info           = e1000e_get_bus_info_pcie,
1354         .get_link_up_info       = e1000_get_link_up_info_80003es2lan,
1355         .led_on                 = e1000e_led_on_generic,
1356         .led_off                = e1000e_led_off_generic,
1357         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1358         .reset_hw               = e1000_reset_hw_80003es2lan,
1359         .init_hw                = e1000_init_hw_80003es2lan,
1360         .setup_link             = e1000e_setup_link,
1361         /* setup_physical_interface dependent on media type */
1362         .setup_led              = e1000e_setup_led_generic,
1363 };
1364
1365 static struct e1000_phy_operations es2_phy_ops = {
1366         .acquire                = e1000_acquire_phy_80003es2lan,
1367         .check_reset_block      = e1000e_check_reset_block_generic,
1368         .commit                 = e1000e_phy_sw_reset,
1369         .force_speed_duplex     = e1000_phy_force_speed_duplex_80003es2lan,
1370         .get_cfg_done           = e1000_get_cfg_done_80003es2lan,
1371         .get_cable_length       = e1000_get_cable_length_80003es2lan,
1372         .get_info               = e1000e_get_phy_info_m88,
1373         .read_reg               = e1000_read_phy_reg_gg82563_80003es2lan,
1374         .release                = e1000_release_phy_80003es2lan,
1375         .reset                  = e1000e_phy_hw_reset_generic,
1376         .set_d0_lplu_state      = NULL,
1377         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1378         .write_reg              = e1000_write_phy_reg_gg82563_80003es2lan,
1379         .cfg_on_link_up         = e1000_cfg_on_link_up_80003es2lan,
1380 };
1381
1382 static struct e1000_nvm_operations es2_nvm_ops = {
1383         .acquire                = e1000_acquire_nvm_80003es2lan,
1384         .read                   = e1000e_read_nvm_eerd,
1385         .release                = e1000_release_nvm_80003es2lan,
1386         .update                 = e1000e_update_nvm_checksum_generic,
1387         .valid_led_default      = e1000e_valid_led_default,
1388         .validate               = e1000e_validate_nvm_checksum_generic,
1389         .write                  = e1000_write_nvm_80003es2lan,
1390 };
1391
1392 struct e1000_info e1000_es2_info = {
1393         .mac                    = e1000_80003es2lan,
1394         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1395                                   | FLAG_HAS_JUMBO_FRAMES
1396                                   | FLAG_HAS_WOL
1397                                   | FLAG_APME_IN_CTRL3
1398                                   | FLAG_RX_CSUM_ENABLED
1399                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1400                                   | FLAG_RX_NEEDS_RESTART /* errata */
1401                                   | FLAG_TARC_SET_BIT_ZERO /* errata */
1402                                   | FLAG_APME_CHECK_PORT_B
1403                                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
1404                                   | FLAG_TIPG_MEDIUM_FOR_80003ESLAN,
1405         .pba                    = 38,
1406         .max_hw_frame_size      = DEFAULT_JUMBO,
1407         .get_variants           = e1000_get_variants_80003es2lan,
1408         .mac_ops                = &es2_mac_ops,
1409         .phy_ops                = &es2_phy_ops,
1410         .nvm_ops                = &es2_nvm_ops,
1411 };
1412