[PATCH] e1000: support ETHTOOL_GPERMADDR
[safe/jmp/linux-2.6] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30
31 /* Change Log
32  * 6.0.58       4/20/05
33  *   o Accepted ethtool cleanup patch from Stephen Hemminger 
34  * 6.0.44+      2/15/05
35  *   o applied Anton's patch to resolve tx hang in hardware
36  *   o Applied Andrew Mortons patch - e1000 stops working after resume
37  */
38
39 char e1000_driver_name[] = "e1000";
40 char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
41 #ifndef CONFIG_E1000_NAPI
42 #define DRIVERNAPI
43 #else
44 #define DRIVERNAPI "-NAPI"
45 #endif
46 #define DRV_VERSION             "6.0.60-k2"DRIVERNAPI
47 char e1000_driver_version[] = DRV_VERSION;
48 char e1000_copyright[] = "Copyright (c) 1999-2005 Intel Corporation.";
49
50 /* e1000_pci_tbl - PCI Device ID Table
51  *
52  * Last entry must be all 0s
53  *
54  * Macro expands to...
55  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
56  */
57 static struct pci_device_id e1000_pci_tbl[] = {
58         INTEL_E1000_ETHERNET_DEVICE(0x1000),
59         INTEL_E1000_ETHERNET_DEVICE(0x1001),
60         INTEL_E1000_ETHERNET_DEVICE(0x1004),
61         INTEL_E1000_ETHERNET_DEVICE(0x1008),
62         INTEL_E1000_ETHERNET_DEVICE(0x1009),
63         INTEL_E1000_ETHERNET_DEVICE(0x100C),
64         INTEL_E1000_ETHERNET_DEVICE(0x100D),
65         INTEL_E1000_ETHERNET_DEVICE(0x100E),
66         INTEL_E1000_ETHERNET_DEVICE(0x100F),
67         INTEL_E1000_ETHERNET_DEVICE(0x1010),
68         INTEL_E1000_ETHERNET_DEVICE(0x1011),
69         INTEL_E1000_ETHERNET_DEVICE(0x1012),
70         INTEL_E1000_ETHERNET_DEVICE(0x1013),
71         INTEL_E1000_ETHERNET_DEVICE(0x1014),
72         INTEL_E1000_ETHERNET_DEVICE(0x1015),
73         INTEL_E1000_ETHERNET_DEVICE(0x1016),
74         INTEL_E1000_ETHERNET_DEVICE(0x1017),
75         INTEL_E1000_ETHERNET_DEVICE(0x1018),
76         INTEL_E1000_ETHERNET_DEVICE(0x1019),
77         INTEL_E1000_ETHERNET_DEVICE(0x101A),
78         INTEL_E1000_ETHERNET_DEVICE(0x101D),
79         INTEL_E1000_ETHERNET_DEVICE(0x101E),
80         INTEL_E1000_ETHERNET_DEVICE(0x1026),
81         INTEL_E1000_ETHERNET_DEVICE(0x1027),
82         INTEL_E1000_ETHERNET_DEVICE(0x1028),
83         INTEL_E1000_ETHERNET_DEVICE(0x1075),
84         INTEL_E1000_ETHERNET_DEVICE(0x1076),
85         INTEL_E1000_ETHERNET_DEVICE(0x1077),
86         INTEL_E1000_ETHERNET_DEVICE(0x1078),
87         INTEL_E1000_ETHERNET_DEVICE(0x1079),
88         INTEL_E1000_ETHERNET_DEVICE(0x107A),
89         INTEL_E1000_ETHERNET_DEVICE(0x107B),
90         INTEL_E1000_ETHERNET_DEVICE(0x107C),
91         INTEL_E1000_ETHERNET_DEVICE(0x108A),
92         INTEL_E1000_ETHERNET_DEVICE(0x108B),
93         INTEL_E1000_ETHERNET_DEVICE(0x108C),
94         INTEL_E1000_ETHERNET_DEVICE(0x1099),
95         /* required last entry */
96         {0,}
97 };
98
99 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
100
101 int e1000_up(struct e1000_adapter *adapter);
102 void e1000_down(struct e1000_adapter *adapter);
103 void e1000_reset(struct e1000_adapter *adapter);
104 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
105 int e1000_setup_tx_resources(struct e1000_adapter *adapter);
106 int e1000_setup_rx_resources(struct e1000_adapter *adapter);
107 void e1000_free_tx_resources(struct e1000_adapter *adapter);
108 void e1000_free_rx_resources(struct e1000_adapter *adapter);
109 void e1000_update_stats(struct e1000_adapter *adapter);
110
111 /* Local Function Prototypes */
112
113 static int e1000_init_module(void);
114 static void e1000_exit_module(void);
115 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
116 static void __devexit e1000_remove(struct pci_dev *pdev);
117 static int e1000_sw_init(struct e1000_adapter *adapter);
118 static int e1000_open(struct net_device *netdev);
119 static int e1000_close(struct net_device *netdev);
120 static void e1000_configure_tx(struct e1000_adapter *adapter);
121 static void e1000_configure_rx(struct e1000_adapter *adapter);
122 static void e1000_setup_rctl(struct e1000_adapter *adapter);
123 static void e1000_clean_tx_ring(struct e1000_adapter *adapter);
124 static void e1000_clean_rx_ring(struct e1000_adapter *adapter);
125 static void e1000_set_multi(struct net_device *netdev);
126 static void e1000_update_phy_info(unsigned long data);
127 static void e1000_watchdog(unsigned long data);
128 static void e1000_watchdog_task(struct e1000_adapter *adapter);
129 static void e1000_82547_tx_fifo_stall(unsigned long data);
130 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
131 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
132 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
133 static int e1000_set_mac(struct net_device *netdev, void *p);
134 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
135 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter);
136 #ifdef CONFIG_E1000_NAPI
137 static int e1000_clean(struct net_device *netdev, int *budget);
138 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
139                                     int *work_done, int work_to_do);
140 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
141                                        int *work_done, int work_to_do);
142 #else
143 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter);
144 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter);
145 #endif
146 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter);
147 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter);
148 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
149 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
150                            int cmd);
151 void e1000_set_ethtool_ops(struct net_device *netdev);
152 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
153 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
154 static void e1000_tx_timeout(struct net_device *dev);
155 static void e1000_tx_timeout_task(struct net_device *dev);
156 static void e1000_smartspeed(struct e1000_adapter *adapter);
157 static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
158                                               struct sk_buff *skb);
159
160 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
161 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
162 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
163 static void e1000_restore_vlan(struct e1000_adapter *adapter);
164
165 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
166 #ifdef CONFIG_PM
167 static int e1000_resume(struct pci_dev *pdev);
168 #endif
169
170 #ifdef CONFIG_NET_POLL_CONTROLLER
171 /* for netdump / net console */
172 static void e1000_netpoll (struct net_device *netdev);
173 #endif
174
175 /* Exported from other modules */
176
177 extern void e1000_check_options(struct e1000_adapter *adapter);
178
179 static struct pci_driver e1000_driver = {
180         .name     = e1000_driver_name,
181         .id_table = e1000_pci_tbl,
182         .probe    = e1000_probe,
183         .remove   = __devexit_p(e1000_remove),
184         /* Power Managment Hooks */
185 #ifdef CONFIG_PM
186         .suspend  = e1000_suspend,
187         .resume   = e1000_resume
188 #endif
189 };
190
191 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
192 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
193 MODULE_LICENSE("GPL");
194 MODULE_VERSION(DRV_VERSION);
195
196 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
197 module_param(debug, int, 0);
198 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
199
200 /**
201  * e1000_init_module - Driver Registration Routine
202  *
203  * e1000_init_module is the first routine called when the driver is
204  * loaded. All it does is register with the PCI subsystem.
205  **/
206
207 static int __init
208 e1000_init_module(void)
209 {
210         int ret;
211         printk(KERN_INFO "%s - version %s\n",
212                e1000_driver_string, e1000_driver_version);
213
214         printk(KERN_INFO "%s\n", e1000_copyright);
215
216         ret = pci_module_init(&e1000_driver);
217
218         return ret;
219 }
220
221 module_init(e1000_init_module);
222
223 /**
224  * e1000_exit_module - Driver Exit Cleanup Routine
225  *
226  * e1000_exit_module is called just before the driver is removed
227  * from memory.
228  **/
229
230 static void __exit
231 e1000_exit_module(void)
232 {
233         pci_unregister_driver(&e1000_driver);
234 }
235
236 module_exit(e1000_exit_module);
237
238 /**
239  * e1000_irq_disable - Mask off interrupt generation on the NIC
240  * @adapter: board private structure
241  **/
242
243 static inline void
244 e1000_irq_disable(struct e1000_adapter *adapter)
245 {
246         atomic_inc(&adapter->irq_sem);
247         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
248         E1000_WRITE_FLUSH(&adapter->hw);
249         synchronize_irq(adapter->pdev->irq);
250 }
251
252 /**
253  * e1000_irq_enable - Enable default interrupt generation settings
254  * @adapter: board private structure
255  **/
256
257 static inline void
258 e1000_irq_enable(struct e1000_adapter *adapter)
259 {
260         if(likely(atomic_dec_and_test(&adapter->irq_sem))) {
261                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
262                 E1000_WRITE_FLUSH(&adapter->hw);
263         }
264 }
265 void
266 e1000_update_mng_vlan(struct e1000_adapter *adapter)
267 {
268         struct net_device *netdev = adapter->netdev;
269         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
270         uint16_t old_vid = adapter->mng_vlan_id;
271         if(adapter->vlgrp) {
272                 if(!adapter->vlgrp->vlan_devices[vid]) {
273                         if(adapter->hw.mng_cookie.status &
274                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
275                                 e1000_vlan_rx_add_vid(netdev, vid);
276                                 adapter->mng_vlan_id = vid;
277                         } else
278                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
279                                 
280                         if((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
281                                         (vid != old_vid) && 
282                                         !adapter->vlgrp->vlan_devices[old_vid])
283                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
284                 }
285         }
286 }
287         
288 int
289 e1000_up(struct e1000_adapter *adapter)
290 {
291         struct net_device *netdev = adapter->netdev;
292         int err;
293
294         /* hardware has been reset, we need to reload some things */
295
296         /* Reset the PHY if it was previously powered down */
297         if(adapter->hw.media_type == e1000_media_type_copper) {
298                 uint16_t mii_reg;
299                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
300                 if(mii_reg & MII_CR_POWER_DOWN)
301                         e1000_phy_reset(&adapter->hw);
302         }
303
304         e1000_set_multi(netdev);
305
306         e1000_restore_vlan(adapter);
307
308         e1000_configure_tx(adapter);
309         e1000_setup_rctl(adapter);
310         e1000_configure_rx(adapter);
311         adapter->alloc_rx_buf(adapter);
312
313 #ifdef CONFIG_PCI_MSI
314         if(adapter->hw.mac_type > e1000_82547_rev_2) {
315                 adapter->have_msi = TRUE;
316                 if((err = pci_enable_msi(adapter->pdev))) {
317                         DPRINTK(PROBE, ERR,
318                          "Unable to allocate MSI interrupt Error: %d\n", err);
319                         adapter->have_msi = FALSE;
320                 }
321         }
322 #endif
323         if((err = request_irq(adapter->pdev->irq, &e1000_intr,
324                               SA_SHIRQ | SA_SAMPLE_RANDOM,
325                               netdev->name, netdev))) {
326                 DPRINTK(PROBE, ERR,
327                     "Unable to allocate interrupt Error: %d\n", err);
328                 return err;
329         }
330
331         mod_timer(&adapter->watchdog_timer, jiffies);
332
333 #ifdef CONFIG_E1000_NAPI
334         netif_poll_enable(netdev);
335 #endif
336         e1000_irq_enable(adapter);
337
338         return 0;
339 }
340
341 void
342 e1000_down(struct e1000_adapter *adapter)
343 {
344         struct net_device *netdev = adapter->netdev;
345
346         e1000_irq_disable(adapter);
347         free_irq(adapter->pdev->irq, netdev);
348 #ifdef CONFIG_PCI_MSI
349         if(adapter->hw.mac_type > e1000_82547_rev_2 &&
350            adapter->have_msi == TRUE)
351                 pci_disable_msi(adapter->pdev);
352 #endif
353         del_timer_sync(&adapter->tx_fifo_stall_timer);
354         del_timer_sync(&adapter->watchdog_timer);
355         del_timer_sync(&adapter->phy_info_timer);
356
357 #ifdef CONFIG_E1000_NAPI
358         netif_poll_disable(netdev);
359 #endif
360         adapter->link_speed = 0;
361         adapter->link_duplex = 0;
362         netif_carrier_off(netdev);
363         netif_stop_queue(netdev);
364
365         e1000_reset(adapter);
366         e1000_clean_tx_ring(adapter);
367         e1000_clean_rx_ring(adapter);
368
369         /* If WoL is not enabled
370          * and management mode is not IAMT
371          * Power down the PHY so no link is implied when interface is down */
372         if(!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
373            adapter->hw.media_type == e1000_media_type_copper &&
374            !e1000_check_mng_mode(&adapter->hw) &&
375            !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN)) {
376                 uint16_t mii_reg;
377                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
378                 mii_reg |= MII_CR_POWER_DOWN;
379                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
380                 mdelay(1);
381         }
382 }
383
384 void
385 e1000_reset(struct e1000_adapter *adapter)
386 {
387         struct net_device *netdev = adapter->netdev;
388         uint32_t pba, manc;
389         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
390         uint16_t fc_low_water_mark = E1000_FC_LOW_DIFF;
391
392         /* Repartition Pba for greater than 9k mtu
393          * To take effect CTRL.RST is required.
394          */
395
396         switch (adapter->hw.mac_type) {
397         case e1000_82547:
398         case e1000_82547_rev_2:
399                 pba = E1000_PBA_30K;
400                 break;
401         case e1000_82573:
402                 pba = E1000_PBA_12K;
403                 break;
404         default:
405                 pba = E1000_PBA_48K;
406                 break;
407         }
408
409         if((adapter->hw.mac_type != e1000_82573) &&
410            (adapter->rx_buffer_len > E1000_RXBUFFER_8192)) {
411                 pba -= 8; /* allocate more FIFO for Tx */
412                 /* send an XOFF when there is enough space in the
413                  * Rx FIFO to hold one extra full size Rx packet 
414                 */
415                 fc_high_water_mark = netdev->mtu + ENET_HEADER_SIZE + 
416                                         ETHERNET_FCS_SIZE + 1;
417                 fc_low_water_mark = fc_high_water_mark + 8;
418         }
419
420
421         if(adapter->hw.mac_type == e1000_82547) {
422                 adapter->tx_fifo_head = 0;
423                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
424                 adapter->tx_fifo_size =
425                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
426                 atomic_set(&adapter->tx_fifo_stall, 0);
427         }
428
429         E1000_WRITE_REG(&adapter->hw, PBA, pba);
430
431         /* flow control settings */
432         adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) -
433                                     fc_high_water_mark;
434         adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) -
435                                    fc_low_water_mark;
436         adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
437         adapter->hw.fc_send_xon = 1;
438         adapter->hw.fc = adapter->hw.original_fc;
439
440         /* Allow time for pending master requests to run */
441         e1000_reset_hw(&adapter->hw);
442         if(adapter->hw.mac_type >= e1000_82544)
443                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
444         if(e1000_init_hw(&adapter->hw))
445                 DPRINTK(PROBE, ERR, "Hardware Error\n");
446         e1000_update_mng_vlan(adapter);
447         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
448         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
449
450         e1000_reset_adaptive(&adapter->hw);
451         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
452         if (adapter->en_mng_pt) {
453                 manc = E1000_READ_REG(&adapter->hw, MANC);
454                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
455                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
456         }
457 }
458
459 /**
460  * e1000_probe - Device Initialization Routine
461  * @pdev: PCI device information struct
462  * @ent: entry in e1000_pci_tbl
463  *
464  * Returns 0 on success, negative on failure
465  *
466  * e1000_probe initializes an adapter identified by a pci_dev structure.
467  * The OS initialization, configuring of the adapter private structure,
468  * and a hardware reset occur.
469  **/
470
471 static int __devinit
472 e1000_probe(struct pci_dev *pdev,
473             const struct pci_device_id *ent)
474 {
475         struct net_device *netdev;
476         struct e1000_adapter *adapter;
477         unsigned long mmio_start, mmio_len;
478         uint32_t swsm;
479
480         static int cards_found = 0;
481         int i, err, pci_using_dac;
482         uint16_t eeprom_data;
483         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
484         if((err = pci_enable_device(pdev)))
485                 return err;
486
487         if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
488                 pci_using_dac = 1;
489         } else {
490                 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
491                         E1000_ERR("No usable DMA configuration, aborting\n");
492                         return err;
493                 }
494                 pci_using_dac = 0;
495         }
496
497         if((err = pci_request_regions(pdev, e1000_driver_name)))
498                 return err;
499
500         pci_set_master(pdev);
501
502         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
503         if(!netdev) {
504                 err = -ENOMEM;
505                 goto err_alloc_etherdev;
506         }
507
508         SET_MODULE_OWNER(netdev);
509         SET_NETDEV_DEV(netdev, &pdev->dev);
510
511         pci_set_drvdata(pdev, netdev);
512         adapter = netdev_priv(netdev);
513         adapter->netdev = netdev;
514         adapter->pdev = pdev;
515         adapter->hw.back = adapter;
516         adapter->msg_enable = (1 << debug) - 1;
517
518         mmio_start = pci_resource_start(pdev, BAR_0);
519         mmio_len = pci_resource_len(pdev, BAR_0);
520
521         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
522         if(!adapter->hw.hw_addr) {
523                 err = -EIO;
524                 goto err_ioremap;
525         }
526
527         for(i = BAR_1; i <= BAR_5; i++) {
528                 if(pci_resource_len(pdev, i) == 0)
529                         continue;
530                 if(pci_resource_flags(pdev, i) & IORESOURCE_IO) {
531                         adapter->hw.io_base = pci_resource_start(pdev, i);
532                         break;
533                 }
534         }
535
536         netdev->open = &e1000_open;
537         netdev->stop = &e1000_close;
538         netdev->hard_start_xmit = &e1000_xmit_frame;
539         netdev->get_stats = &e1000_get_stats;
540         netdev->set_multicast_list = &e1000_set_multi;
541         netdev->set_mac_address = &e1000_set_mac;
542         netdev->change_mtu = &e1000_change_mtu;
543         netdev->do_ioctl = &e1000_ioctl;
544         e1000_set_ethtool_ops(netdev);
545         netdev->tx_timeout = &e1000_tx_timeout;
546         netdev->watchdog_timeo = 5 * HZ;
547 #ifdef CONFIG_E1000_NAPI
548         netdev->poll = &e1000_clean;
549         netdev->weight = 64;
550 #endif
551         netdev->vlan_rx_register = e1000_vlan_rx_register;
552         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
553         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
554 #ifdef CONFIG_NET_POLL_CONTROLLER
555         netdev->poll_controller = e1000_netpoll;
556 #endif
557         strcpy(netdev->name, pci_name(pdev));
558
559         netdev->mem_start = mmio_start;
560         netdev->mem_end = mmio_start + mmio_len;
561         netdev->base_addr = adapter->hw.io_base;
562
563         adapter->bd_number = cards_found;
564
565         /* setup the private structure */
566
567         if((err = e1000_sw_init(adapter)))
568                 goto err_sw_init;
569
570         if((err = e1000_check_phy_reset_block(&adapter->hw)))
571                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
572
573         if(adapter->hw.mac_type >= e1000_82543) {
574                 netdev->features = NETIF_F_SG |
575                                    NETIF_F_HW_CSUM |
576                                    NETIF_F_HW_VLAN_TX |
577                                    NETIF_F_HW_VLAN_RX |
578                                    NETIF_F_HW_VLAN_FILTER;
579         }
580
581 #ifdef NETIF_F_TSO
582         if((adapter->hw.mac_type >= e1000_82544) &&
583            (adapter->hw.mac_type != e1000_82547))
584                 netdev->features |= NETIF_F_TSO;
585
586 #ifdef NETIF_F_TSO_IPV6
587         if(adapter->hw.mac_type > e1000_82547_rev_2)
588                 netdev->features |= NETIF_F_TSO_IPV6;
589 #endif
590 #endif
591         if(pci_using_dac)
592                 netdev->features |= NETIF_F_HIGHDMA;
593
594         /* hard_start_xmit is safe against parallel locking */
595         netdev->features |= NETIF_F_LLTX; 
596  
597         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
598
599         /* before reading the EEPROM, reset the controller to 
600          * put the device in a known good starting state */
601         
602         e1000_reset_hw(&adapter->hw);
603
604         /* make sure the EEPROM is good */
605
606         if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
607                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
608                 err = -EIO;
609                 goto err_eeprom;
610         }
611
612         /* copy the MAC address out of the EEPROM */
613
614         if(e1000_read_mac_addr(&adapter->hw))
615                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
616         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
617         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
618
619         if(!is_valid_ether_addr(netdev->perm_addr)) {
620                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
621                 err = -EIO;
622                 goto err_eeprom;
623         }
624
625         e1000_read_part_num(&adapter->hw, &(adapter->part_num));
626
627         e1000_get_bus_info(&adapter->hw);
628
629         init_timer(&adapter->tx_fifo_stall_timer);
630         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
631         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
632
633         init_timer(&adapter->watchdog_timer);
634         adapter->watchdog_timer.function = &e1000_watchdog;
635         adapter->watchdog_timer.data = (unsigned long) adapter;
636
637         INIT_WORK(&adapter->watchdog_task,
638                 (void (*)(void *))e1000_watchdog_task, adapter);
639
640         init_timer(&adapter->phy_info_timer);
641         adapter->phy_info_timer.function = &e1000_update_phy_info;
642         adapter->phy_info_timer.data = (unsigned long) adapter;
643
644         INIT_WORK(&adapter->tx_timeout_task,
645                 (void (*)(void *))e1000_tx_timeout_task, netdev);
646
647         /* we're going to reset, so assume we have no link for now */
648
649         netif_carrier_off(netdev);
650         netif_stop_queue(netdev);
651
652         e1000_check_options(adapter);
653
654         /* Initial Wake on LAN setting
655          * If APM wake is enabled in the EEPROM,
656          * enable the ACPI Magic Packet filter
657          */
658
659         switch(adapter->hw.mac_type) {
660         case e1000_82542_rev2_0:
661         case e1000_82542_rev2_1:
662         case e1000_82543:
663                 break;
664         case e1000_82544:
665                 e1000_read_eeprom(&adapter->hw,
666                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
667                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
668                 break;
669         case e1000_82546:
670         case e1000_82546_rev_3:
671                 if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
672                    && (adapter->hw.media_type == e1000_media_type_copper)) {
673                         e1000_read_eeprom(&adapter->hw,
674                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
675                         break;
676                 }
677                 /* Fall Through */
678         default:
679                 e1000_read_eeprom(&adapter->hw,
680                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
681                 break;
682         }
683         if(eeprom_data & eeprom_apme_mask)
684                 adapter->wol |= E1000_WUFC_MAG;
685
686         /* reset the hardware with the new settings */
687         e1000_reset(adapter);
688
689         /* Let firmware know the driver has taken over */
690         switch(adapter->hw.mac_type) {
691         case e1000_82573:
692                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
693                 E1000_WRITE_REG(&adapter->hw, SWSM,
694                                 swsm | E1000_SWSM_DRV_LOAD);
695                 break;
696         default:
697                 break;
698         }
699
700         strcpy(netdev->name, "eth%d");
701         if((err = register_netdev(netdev)))
702                 goto err_register;
703
704         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
705
706         cards_found++;
707         return 0;
708
709 err_register:
710 err_sw_init:
711 err_eeprom:
712         iounmap(adapter->hw.hw_addr);
713 err_ioremap:
714         free_netdev(netdev);
715 err_alloc_etherdev:
716         pci_release_regions(pdev);
717         return err;
718 }
719
720 /**
721  * e1000_remove - Device Removal Routine
722  * @pdev: PCI device information struct
723  *
724  * e1000_remove is called by the PCI subsystem to alert the driver
725  * that it should release a PCI device.  The could be caused by a
726  * Hot-Plug event, or because the driver is going to be removed from
727  * memory.
728  **/
729
730 static void __devexit
731 e1000_remove(struct pci_dev *pdev)
732 {
733         struct net_device *netdev = pci_get_drvdata(pdev);
734         struct e1000_adapter *adapter = netdev_priv(netdev);
735         uint32_t manc, swsm;
736
737         flush_scheduled_work();
738
739         if(adapter->hw.mac_type >= e1000_82540 &&
740            adapter->hw.media_type == e1000_media_type_copper) {
741                 manc = E1000_READ_REG(&adapter->hw, MANC);
742                 if(manc & E1000_MANC_SMBUS_EN) {
743                         manc |= E1000_MANC_ARP_EN;
744                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
745                 }
746         }
747
748         switch(adapter->hw.mac_type) {
749         case e1000_82573:
750                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
751                 E1000_WRITE_REG(&adapter->hw, SWSM,
752                                 swsm & ~E1000_SWSM_DRV_LOAD);
753                 break;
754
755         default:
756                 break;
757         }
758
759         unregister_netdev(netdev);
760
761         if(!e1000_check_phy_reset_block(&adapter->hw))
762                 e1000_phy_hw_reset(&adapter->hw);
763
764         iounmap(adapter->hw.hw_addr);
765         pci_release_regions(pdev);
766
767         free_netdev(netdev);
768
769         pci_disable_device(pdev);
770 }
771
772 /**
773  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
774  * @adapter: board private structure to initialize
775  *
776  * e1000_sw_init initializes the Adapter private data structure.
777  * Fields are initialized based on PCI device information and
778  * OS network device settings (MTU size).
779  **/
780
781 static int __devinit
782 e1000_sw_init(struct e1000_adapter *adapter)
783 {
784         struct e1000_hw *hw = &adapter->hw;
785         struct net_device *netdev = adapter->netdev;
786         struct pci_dev *pdev = adapter->pdev;
787
788         /* PCI config space info */
789
790         hw->vendor_id = pdev->vendor;
791         hw->device_id = pdev->device;
792         hw->subsystem_vendor_id = pdev->subsystem_vendor;
793         hw->subsystem_id = pdev->subsystem_device;
794
795         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
796
797         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
798
799         adapter->rx_buffer_len = E1000_RXBUFFER_2048;
800         adapter->rx_ps_bsize0 = E1000_RXBUFFER_256;
801         hw->max_frame_size = netdev->mtu +
802                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
803         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
804
805         /* identify the MAC */
806
807         if(e1000_set_mac_type(hw)) {
808                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
809                 return -EIO;
810         }
811
812         /* initialize eeprom parameters */
813
814         if(e1000_init_eeprom_params(hw)) {
815                 E1000_ERR("EEPROM initialization failed\n");
816                 return -EIO;
817         }
818
819         switch(hw->mac_type) {
820         default:
821                 break;
822         case e1000_82541:
823         case e1000_82547:
824         case e1000_82541_rev_2:
825         case e1000_82547_rev_2:
826                 hw->phy_init_script = 1;
827                 break;
828         }
829
830         e1000_set_media_type(hw);
831
832         hw->wait_autoneg_complete = FALSE;
833         hw->tbi_compatibility_en = TRUE;
834         hw->adaptive_ifs = TRUE;
835
836         /* Copper options */
837
838         if(hw->media_type == e1000_media_type_copper) {
839                 hw->mdix = AUTO_ALL_MODES;
840                 hw->disable_polarity_correction = FALSE;
841                 hw->master_slave = E1000_MASTER_SLAVE;
842         }
843
844         atomic_set(&adapter->irq_sem, 1);
845         spin_lock_init(&adapter->stats_lock);
846         spin_lock_init(&adapter->tx_lock);
847
848         return 0;
849 }
850
851 /**
852  * e1000_open - Called when a network interface is made active
853  * @netdev: network interface device structure
854  *
855  * Returns 0 on success, negative value on failure
856  *
857  * The open entry point is called when a network interface is made
858  * active by the system (IFF_UP).  At this point all resources needed
859  * for transmit and receive operations are allocated, the interrupt
860  * handler is registered with the OS, the watchdog timer is started,
861  * and the stack is notified that the interface is ready.
862  **/
863
864 static int
865 e1000_open(struct net_device *netdev)
866 {
867         struct e1000_adapter *adapter = netdev_priv(netdev);
868         int err;
869
870         /* allocate transmit descriptors */
871
872         if((err = e1000_setup_tx_resources(adapter)))
873                 goto err_setup_tx;
874
875         /* allocate receive descriptors */
876
877         if((err = e1000_setup_rx_resources(adapter)))
878                 goto err_setup_rx;
879
880         if((err = e1000_up(adapter)))
881                 goto err_up;
882         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
883         if((adapter->hw.mng_cookie.status &
884                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
885                 e1000_update_mng_vlan(adapter);
886         }
887
888         return E1000_SUCCESS;
889
890 err_up:
891         e1000_free_rx_resources(adapter);
892 err_setup_rx:
893         e1000_free_tx_resources(adapter);
894 err_setup_tx:
895         e1000_reset(adapter);
896
897         return err;
898 }
899
900 /**
901  * e1000_close - Disables a network interface
902  * @netdev: network interface device structure
903  *
904  * Returns 0, this is not allowed to fail
905  *
906  * The close entry point is called when an interface is de-activated
907  * by the OS.  The hardware is still under the drivers control, but
908  * needs to be disabled.  A global MAC reset is issued to stop the
909  * hardware, and all transmit and receive resources are freed.
910  **/
911
912 static int
913 e1000_close(struct net_device *netdev)
914 {
915         struct e1000_adapter *adapter = netdev_priv(netdev);
916
917         e1000_down(adapter);
918
919         e1000_free_tx_resources(adapter);
920         e1000_free_rx_resources(adapter);
921
922         if((adapter->hw.mng_cookie.status &
923                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
924                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
925         }
926         return 0;
927 }
928
929 /**
930  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
931  * @adapter: address of board private structure
932  * @start: address of beginning of memory
933  * @len: length of memory
934  **/
935 static inline boolean_t
936 e1000_check_64k_bound(struct e1000_adapter *adapter,
937                       void *start, unsigned long len)
938 {
939         unsigned long begin = (unsigned long) start;
940         unsigned long end = begin + len;
941
942         /* First rev 82545 and 82546 need to not allow any memory
943          * write location to cross 64k boundary due to errata 23 */
944         if (adapter->hw.mac_type == e1000_82545 ||
945             adapter->hw.mac_type == e1000_82546) {
946                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
947         }
948
949         return TRUE;
950 }
951
952 /**
953  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
954  * @adapter: board private structure
955  *
956  * Return 0 on success, negative on failure
957  **/
958
959 int
960 e1000_setup_tx_resources(struct e1000_adapter *adapter)
961 {
962         struct e1000_desc_ring *txdr = &adapter->tx_ring;
963         struct pci_dev *pdev = adapter->pdev;
964         int size;
965
966         size = sizeof(struct e1000_buffer) * txdr->count;
967         txdr->buffer_info = vmalloc(size);
968         if(!txdr->buffer_info) {
969                 DPRINTK(PROBE, ERR,
970                 "Unable to allocate memory for the transmit descriptor ring\n");
971                 return -ENOMEM;
972         }
973         memset(txdr->buffer_info, 0, size);
974
975         /* round up to nearest 4K */
976
977         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
978         E1000_ROUNDUP(txdr->size, 4096);
979
980         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
981         if(!txdr->desc) {
982 setup_tx_desc_die:
983                 vfree(txdr->buffer_info);
984                 DPRINTK(PROBE, ERR,
985                 "Unable to allocate memory for the transmit descriptor ring\n");
986                 return -ENOMEM;
987         }
988
989         /* Fix for errata 23, can't cross 64kB boundary */
990         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
991                 void *olddesc = txdr->desc;
992                 dma_addr_t olddma = txdr->dma;
993                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
994                                      "at %p\n", txdr->size, txdr->desc);
995                 /* Try again, without freeing the previous */
996                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
997                 if(!txdr->desc) {
998                 /* Failed allocation, critical failure */
999                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1000                         goto setup_tx_desc_die;
1001                 }
1002
1003                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1004                         /* give up */
1005                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1006                                             txdr->dma);
1007                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1008                         DPRINTK(PROBE, ERR,
1009                                 "Unable to allocate aligned memory "
1010                                 "for the transmit descriptor ring\n");
1011                         vfree(txdr->buffer_info);
1012                         return -ENOMEM;
1013                 } else {
1014                         /* Free old allocation, new allocation was successful */
1015                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1016                 }
1017         }
1018         memset(txdr->desc, 0, txdr->size);
1019
1020         txdr->next_to_use = 0;
1021         txdr->next_to_clean = 0;
1022
1023         return 0;
1024 }
1025
1026 /**
1027  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1028  * @adapter: board private structure
1029  *
1030  * Configure the Tx unit of the MAC after a reset.
1031  **/
1032
1033 static void
1034 e1000_configure_tx(struct e1000_adapter *adapter)
1035 {
1036         uint64_t tdba = adapter->tx_ring.dma;
1037         uint32_t tdlen = adapter->tx_ring.count * sizeof(struct e1000_tx_desc);
1038         uint32_t tctl, tipg;
1039
1040         E1000_WRITE_REG(&adapter->hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1041         E1000_WRITE_REG(&adapter->hw, TDBAH, (tdba >> 32));
1042
1043         E1000_WRITE_REG(&adapter->hw, TDLEN, tdlen);
1044
1045         /* Setup the HW Tx Head and Tail descriptor pointers */
1046
1047         E1000_WRITE_REG(&adapter->hw, TDH, 0);
1048         E1000_WRITE_REG(&adapter->hw, TDT, 0);
1049
1050         /* Set the default values for the Tx Inter Packet Gap timer */
1051
1052         switch (adapter->hw.mac_type) {
1053         case e1000_82542_rev2_0:
1054         case e1000_82542_rev2_1:
1055                 tipg = DEFAULT_82542_TIPG_IPGT;
1056                 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
1057                 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
1058                 break;
1059         default:
1060                 if(adapter->hw.media_type == e1000_media_type_fiber ||
1061                    adapter->hw.media_type == e1000_media_type_internal_serdes)
1062                         tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1063                 else
1064                         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1065                 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
1066                 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
1067         }
1068         E1000_WRITE_REG(&adapter->hw, TIPG, tipg);
1069
1070         /* Set the Tx Interrupt Delay register */
1071
1072         E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay);
1073         if(adapter->hw.mac_type >= e1000_82540)
1074                 E1000_WRITE_REG(&adapter->hw, TADV, adapter->tx_abs_int_delay);
1075
1076         /* Program the Transmit Control Register */
1077
1078         tctl = E1000_READ_REG(&adapter->hw, TCTL);
1079
1080         tctl &= ~E1000_TCTL_CT;
1081         tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
1082                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1083
1084         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
1085
1086         e1000_config_collision_dist(&adapter->hw);
1087
1088         /* Setup Transmit Descriptor Settings for eop descriptor */
1089         adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1090                 E1000_TXD_CMD_IFCS;
1091
1092         if(adapter->hw.mac_type < e1000_82543)
1093                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1094         else
1095                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1096
1097         /* Cache if we're 82544 running in PCI-X because we'll
1098          * need this to apply a workaround later in the send path. */
1099         if(adapter->hw.mac_type == e1000_82544 &&
1100            adapter->hw.bus_type == e1000_bus_type_pcix)
1101                 adapter->pcix_82544 = 1;
1102 }
1103
1104 /**
1105  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1106  * @adapter: board private structure
1107  *
1108  * Returns 0 on success, negative on failure
1109  **/
1110
1111 int
1112 e1000_setup_rx_resources(struct e1000_adapter *adapter)
1113 {
1114         struct e1000_desc_ring *rxdr = &adapter->rx_ring;
1115         struct pci_dev *pdev = adapter->pdev;
1116         int size, desc_len;
1117
1118         size = sizeof(struct e1000_buffer) * rxdr->count;
1119         rxdr->buffer_info = vmalloc(size);
1120         if(!rxdr->buffer_info) {
1121                 DPRINTK(PROBE, ERR,
1122                 "Unable to allocate memory for the receive descriptor ring\n");
1123                 return -ENOMEM;
1124         }
1125         memset(rxdr->buffer_info, 0, size);
1126
1127         size = sizeof(struct e1000_ps_page) * rxdr->count;
1128         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1129         if(!rxdr->ps_page) {
1130                 vfree(rxdr->buffer_info);
1131                 DPRINTK(PROBE, ERR,
1132                 "Unable to allocate memory for the receive descriptor ring\n");
1133                 return -ENOMEM;
1134         }
1135         memset(rxdr->ps_page, 0, size);
1136
1137         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1138         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1139         if(!rxdr->ps_page_dma) {
1140                 vfree(rxdr->buffer_info);
1141                 kfree(rxdr->ps_page);
1142                 DPRINTK(PROBE, ERR,
1143                 "Unable to allocate memory for the receive descriptor ring\n");
1144                 return -ENOMEM;
1145         }
1146         memset(rxdr->ps_page_dma, 0, size);
1147
1148         if(adapter->hw.mac_type <= e1000_82547_rev_2)
1149                 desc_len = sizeof(struct e1000_rx_desc);
1150         else
1151                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1152
1153         /* Round up to nearest 4K */
1154
1155         rxdr->size = rxdr->count * desc_len;
1156         E1000_ROUNDUP(rxdr->size, 4096);
1157
1158         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1159
1160         if(!rxdr->desc) {
1161 setup_rx_desc_die:
1162                 vfree(rxdr->buffer_info);
1163                 kfree(rxdr->ps_page);
1164                 kfree(rxdr->ps_page_dma);
1165                 DPRINTK(PROBE, ERR,
1166                 "Unable to allocate memory for the receive descriptor ring\n");
1167                 return -ENOMEM;
1168         }
1169
1170         /* Fix for errata 23, can't cross 64kB boundary */
1171         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1172                 void *olddesc = rxdr->desc;
1173                 dma_addr_t olddma = rxdr->dma;
1174                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1175                                      "at %p\n", rxdr->size, rxdr->desc);
1176                 /* Try again, without freeing the previous */
1177                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1178                 if(!rxdr->desc) {
1179                 /* Failed allocation, critical failure */
1180                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1181                         goto setup_rx_desc_die;
1182                 }
1183
1184                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1185                         /* give up */
1186                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1187                                             rxdr->dma);
1188                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1189                         DPRINTK(PROBE, ERR,
1190                                 "Unable to allocate aligned memory "
1191                                 "for the receive descriptor ring\n");
1192                         vfree(rxdr->buffer_info);
1193                         kfree(rxdr->ps_page);
1194                         kfree(rxdr->ps_page_dma);
1195                         return -ENOMEM;
1196                 } else {
1197                         /* Free old allocation, new allocation was successful */
1198                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1199                 }
1200         }
1201         memset(rxdr->desc, 0, rxdr->size);
1202
1203         rxdr->next_to_clean = 0;
1204         rxdr->next_to_use = 0;
1205
1206         return 0;
1207 }
1208
1209 /**
1210  * e1000_setup_rctl - configure the receive control registers
1211  * @adapter: Board private structure
1212  **/
1213
1214 static void
1215 e1000_setup_rctl(struct e1000_adapter *adapter)
1216 {
1217         uint32_t rctl, rfctl;
1218         uint32_t psrctl = 0;
1219
1220         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1221
1222         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1223
1224         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1225                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1226                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1227
1228         if(adapter->hw.tbi_compatibility_on == 1)
1229                 rctl |= E1000_RCTL_SBP;
1230         else
1231                 rctl &= ~E1000_RCTL_SBP;
1232
1233         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1234                 rctl &= ~E1000_RCTL_LPE;
1235         else
1236                 rctl |= E1000_RCTL_LPE;
1237
1238         /* Setup buffer sizes */
1239         if(adapter->hw.mac_type == e1000_82573) {
1240                 /* We can now specify buffers in 1K increments.
1241                  * BSIZE and BSEX are ignored in this case. */
1242                 rctl |= adapter->rx_buffer_len << 0x11;
1243         } else {
1244                 rctl &= ~E1000_RCTL_SZ_4096;
1245                 rctl |= E1000_RCTL_BSEX; 
1246                 switch (adapter->rx_buffer_len) {
1247                 case E1000_RXBUFFER_2048:
1248                 default:
1249                         rctl |= E1000_RCTL_SZ_2048;
1250                         rctl &= ~E1000_RCTL_BSEX;
1251                         break;
1252                 case E1000_RXBUFFER_4096:
1253                         rctl |= E1000_RCTL_SZ_4096;
1254                         break;
1255                 case E1000_RXBUFFER_8192:
1256                         rctl |= E1000_RCTL_SZ_8192;
1257                         break;
1258                 case E1000_RXBUFFER_16384:
1259                         rctl |= E1000_RCTL_SZ_16384;
1260                         break;
1261                 }
1262         }
1263
1264 #ifdef CONFIG_E1000_PACKET_SPLIT
1265         /* 82571 and greater support packet-split where the protocol
1266          * header is placed in skb->data and the packet data is
1267          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1268          * In the case of a non-split, skb->data is linearly filled,
1269          * followed by the page buffers.  Therefore, skb->data is
1270          * sized to hold the largest protocol header.
1271          */
1272         adapter->rx_ps = (adapter->hw.mac_type > e1000_82547_rev_2) 
1273                           && (adapter->netdev->mtu 
1274                               < ((3 * PAGE_SIZE) + adapter->rx_ps_bsize0));
1275 #endif
1276         if(adapter->rx_ps) {
1277                 /* Configure extra packet-split registers */
1278                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1279                 rfctl |= E1000_RFCTL_EXTEN;
1280                 /* disable IPv6 packet split support */
1281                 rfctl |= E1000_RFCTL_IPV6_DIS;
1282                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1283
1284                 rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
1285                 
1286                 psrctl |= adapter->rx_ps_bsize0 >>
1287                         E1000_PSRCTL_BSIZE0_SHIFT;
1288                 psrctl |= PAGE_SIZE >>
1289                         E1000_PSRCTL_BSIZE1_SHIFT;
1290                 psrctl |= PAGE_SIZE <<
1291                         E1000_PSRCTL_BSIZE2_SHIFT;
1292                 psrctl |= PAGE_SIZE <<
1293                         E1000_PSRCTL_BSIZE3_SHIFT;
1294
1295                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1296         }
1297
1298         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1299 }
1300
1301 /**
1302  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1303  * @adapter: board private structure
1304  *
1305  * Configure the Rx unit of the MAC after a reset.
1306  **/
1307
1308 static void
1309 e1000_configure_rx(struct e1000_adapter *adapter)
1310 {
1311         uint64_t rdba = adapter->rx_ring.dma;
1312         uint32_t rdlen, rctl, rxcsum;
1313
1314         if(adapter->rx_ps) {
1315                 rdlen = adapter->rx_ring.count *
1316                         sizeof(union e1000_rx_desc_packet_split);
1317                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1318                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1319         } else {
1320                 rdlen = adapter->rx_ring.count * sizeof(struct e1000_rx_desc);
1321                 adapter->clean_rx = e1000_clean_rx_irq;
1322                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1323         }
1324
1325         /* disable receives while setting up the descriptors */
1326         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1327         E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1328
1329         /* set the Receive Delay Timer Register */
1330         E1000_WRITE_REG(&adapter->hw, RDTR, adapter->rx_int_delay);
1331
1332         if(adapter->hw.mac_type >= e1000_82540) {
1333                 E1000_WRITE_REG(&adapter->hw, RADV, adapter->rx_abs_int_delay);
1334                 if(adapter->itr > 1)
1335                         E1000_WRITE_REG(&adapter->hw, ITR,
1336                                 1000000000 / (adapter->itr * 256));
1337         }
1338
1339         /* Setup the Base and Length of the Rx Descriptor Ring */
1340         E1000_WRITE_REG(&adapter->hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1341         E1000_WRITE_REG(&adapter->hw, RDBAH, (rdba >> 32));
1342
1343         E1000_WRITE_REG(&adapter->hw, RDLEN, rdlen);
1344
1345         /* Setup the HW Rx Head and Tail Descriptor Pointers */
1346         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1347         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1348
1349         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1350         if(adapter->hw.mac_type >= e1000_82543) {
1351                 rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM);
1352                 if(adapter->rx_csum == TRUE) {
1353                         rxcsum |= E1000_RXCSUM_TUOFL;
1354
1355                         /* Enable 82573 IPv4 payload checksum for UDP fragments
1356                          * Must be used in conjunction with packet-split. */
1357                         if((adapter->hw.mac_type > e1000_82547_rev_2) && 
1358                            (adapter->rx_ps)) {
1359                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1360                         }
1361                 } else {
1362                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1363                         /* don't need to clear IPPCSE as it defaults to 0 */
1364                 }
1365                 E1000_WRITE_REG(&adapter->hw, RXCSUM, rxcsum);
1366         }
1367
1368         if (adapter->hw.mac_type == e1000_82573)
1369                 E1000_WRITE_REG(&adapter->hw, ERT, 0x0100);
1370
1371         /* Enable Receives */
1372         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1373 }
1374
1375 /**
1376  * e1000_free_tx_resources - Free Tx Resources
1377  * @adapter: board private structure
1378  *
1379  * Free all transmit software resources
1380  **/
1381
1382 void
1383 e1000_free_tx_resources(struct e1000_adapter *adapter)
1384 {
1385         struct pci_dev *pdev = adapter->pdev;
1386
1387         e1000_clean_tx_ring(adapter);
1388
1389         vfree(adapter->tx_ring.buffer_info);
1390         adapter->tx_ring.buffer_info = NULL;
1391
1392         pci_free_consistent(pdev, adapter->tx_ring.size,
1393                             adapter->tx_ring.desc, adapter->tx_ring.dma);
1394
1395         adapter->tx_ring.desc = NULL;
1396 }
1397
1398 static inline void
1399 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1400                         struct e1000_buffer *buffer_info)
1401 {
1402         if(buffer_info->dma) {
1403                 pci_unmap_page(adapter->pdev,
1404                                 buffer_info->dma,
1405                                 buffer_info->length,
1406                                 PCI_DMA_TODEVICE);
1407                 buffer_info->dma = 0;
1408         }
1409         if(buffer_info->skb) {
1410                 dev_kfree_skb_any(buffer_info->skb);
1411                 buffer_info->skb = NULL;
1412         }
1413 }
1414
1415 /**
1416  * e1000_clean_tx_ring - Free Tx Buffers
1417  * @adapter: board private structure
1418  **/
1419
1420 static void
1421 e1000_clean_tx_ring(struct e1000_adapter *adapter)
1422 {
1423         struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
1424         struct e1000_buffer *buffer_info;
1425         unsigned long size;
1426         unsigned int i;
1427
1428         /* Free all the Tx ring sk_buffs */
1429
1430         if (likely(adapter->previous_buffer_info.skb != NULL)) {
1431                 e1000_unmap_and_free_tx_resource(adapter,
1432                                 &adapter->previous_buffer_info);
1433         }
1434
1435         for(i = 0; i < tx_ring->count; i++) {
1436                 buffer_info = &tx_ring->buffer_info[i];
1437                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1438         }
1439
1440         size = sizeof(struct e1000_buffer) * tx_ring->count;
1441         memset(tx_ring->buffer_info, 0, size);
1442
1443         /* Zero out the descriptor ring */
1444
1445         memset(tx_ring->desc, 0, tx_ring->size);
1446
1447         tx_ring->next_to_use = 0;
1448         tx_ring->next_to_clean = 0;
1449
1450         E1000_WRITE_REG(&adapter->hw, TDH, 0);
1451         E1000_WRITE_REG(&adapter->hw, TDT, 0);
1452 }
1453
1454 /**
1455  * e1000_free_rx_resources - Free Rx Resources
1456  * @adapter: board private structure
1457  *
1458  * Free all receive software resources
1459  **/
1460
1461 void
1462 e1000_free_rx_resources(struct e1000_adapter *adapter)
1463 {
1464         struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
1465         struct pci_dev *pdev = adapter->pdev;
1466
1467         e1000_clean_rx_ring(adapter);
1468
1469         vfree(rx_ring->buffer_info);
1470         rx_ring->buffer_info = NULL;
1471         kfree(rx_ring->ps_page);
1472         rx_ring->ps_page = NULL;
1473         kfree(rx_ring->ps_page_dma);
1474         rx_ring->ps_page_dma = NULL;
1475
1476         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1477
1478         rx_ring->desc = NULL;
1479 }
1480
1481 /**
1482  * e1000_clean_rx_ring - Free Rx Buffers
1483  * @adapter: board private structure
1484  **/
1485
1486 static void
1487 e1000_clean_rx_ring(struct e1000_adapter *adapter)
1488 {
1489         struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
1490         struct e1000_buffer *buffer_info;
1491         struct e1000_ps_page *ps_page;
1492         struct e1000_ps_page_dma *ps_page_dma;
1493         struct pci_dev *pdev = adapter->pdev;
1494         unsigned long size;
1495         unsigned int i, j;
1496
1497         /* Free all the Rx ring sk_buffs */
1498
1499         for(i = 0; i < rx_ring->count; i++) {
1500                 buffer_info = &rx_ring->buffer_info[i];
1501                 if(buffer_info->skb) {
1502                         ps_page = &rx_ring->ps_page[i];
1503                         ps_page_dma = &rx_ring->ps_page_dma[i];
1504                         pci_unmap_single(pdev,
1505                                          buffer_info->dma,
1506                                          buffer_info->length,
1507                                          PCI_DMA_FROMDEVICE);
1508
1509                         dev_kfree_skb(buffer_info->skb);
1510                         buffer_info->skb = NULL;
1511
1512                         for(j = 0; j < PS_PAGE_BUFFERS; j++) {
1513                                 if(!ps_page->ps_page[j]) break;
1514                                 pci_unmap_single(pdev,
1515                                                  ps_page_dma->ps_page_dma[j],
1516                                                  PAGE_SIZE, PCI_DMA_FROMDEVICE);
1517                                 ps_page_dma->ps_page_dma[j] = 0;
1518                                 put_page(ps_page->ps_page[j]);
1519                                 ps_page->ps_page[j] = NULL;
1520                         }
1521                 }
1522         }
1523
1524         size = sizeof(struct e1000_buffer) * rx_ring->count;
1525         memset(rx_ring->buffer_info, 0, size);
1526         size = sizeof(struct e1000_ps_page) * rx_ring->count;
1527         memset(rx_ring->ps_page, 0, size);
1528         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
1529         memset(rx_ring->ps_page_dma, 0, size);
1530
1531         /* Zero out the descriptor ring */
1532
1533         memset(rx_ring->desc, 0, rx_ring->size);
1534
1535         rx_ring->next_to_clean = 0;
1536         rx_ring->next_to_use = 0;
1537
1538         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1539         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1540 }
1541
1542 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
1543  * and memory write and invalidate disabled for certain operations
1544  */
1545 static void
1546 e1000_enter_82542_rst(struct e1000_adapter *adapter)
1547 {
1548         struct net_device *netdev = adapter->netdev;
1549         uint32_t rctl;
1550
1551         e1000_pci_clear_mwi(&adapter->hw);
1552
1553         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1554         rctl |= E1000_RCTL_RST;
1555         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1556         E1000_WRITE_FLUSH(&adapter->hw);
1557         mdelay(5);
1558
1559         if(netif_running(netdev))
1560                 e1000_clean_rx_ring(adapter);
1561 }
1562
1563 static void
1564 e1000_leave_82542_rst(struct e1000_adapter *adapter)
1565 {
1566         struct net_device *netdev = adapter->netdev;
1567         uint32_t rctl;
1568
1569         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1570         rctl &= ~E1000_RCTL_RST;
1571         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1572         E1000_WRITE_FLUSH(&adapter->hw);
1573         mdelay(5);
1574
1575         if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
1576                 e1000_pci_set_mwi(&adapter->hw);
1577
1578         if(netif_running(netdev)) {
1579                 e1000_configure_rx(adapter);
1580                 e1000_alloc_rx_buffers(adapter);
1581         }
1582 }
1583
1584 /**
1585  * e1000_set_mac - Change the Ethernet Address of the NIC
1586  * @netdev: network interface device structure
1587  * @p: pointer to an address structure
1588  *
1589  * Returns 0 on success, negative on failure
1590  **/
1591
1592 static int
1593 e1000_set_mac(struct net_device *netdev, void *p)
1594 {
1595         struct e1000_adapter *adapter = netdev_priv(netdev);
1596         struct sockaddr *addr = p;
1597
1598         if(!is_valid_ether_addr(addr->sa_data))
1599                 return -EADDRNOTAVAIL;
1600
1601         /* 82542 2.0 needs to be in reset to write receive address registers */
1602
1603         if(adapter->hw.mac_type == e1000_82542_rev2_0)
1604                 e1000_enter_82542_rst(adapter);
1605
1606         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1607         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
1608
1609         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
1610
1611         if(adapter->hw.mac_type == e1000_82542_rev2_0)
1612                 e1000_leave_82542_rst(adapter);
1613
1614         return 0;
1615 }
1616
1617 /**
1618  * e1000_set_multi - Multicast and Promiscuous mode set
1619  * @netdev: network interface device structure
1620  *
1621  * The set_multi entry point is called whenever the multicast address
1622  * list or the network interface flags are updated.  This routine is
1623  * responsible for configuring the hardware for proper multicast,
1624  * promiscuous mode, and all-multi behavior.
1625  **/
1626
1627 static void
1628 e1000_set_multi(struct net_device *netdev)
1629 {
1630         struct e1000_adapter *adapter = netdev_priv(netdev);
1631         struct e1000_hw *hw = &adapter->hw;
1632         struct dev_mc_list *mc_ptr;
1633         unsigned long flags;
1634         uint32_t rctl;
1635         uint32_t hash_value;
1636         int i;
1637
1638         spin_lock_irqsave(&adapter->tx_lock, flags);
1639
1640         /* Check for Promiscuous and All Multicast modes */
1641
1642         rctl = E1000_READ_REG(hw, RCTL);
1643
1644         if(netdev->flags & IFF_PROMISC) {
1645                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1646         } else if(netdev->flags & IFF_ALLMULTI) {
1647                 rctl |= E1000_RCTL_MPE;
1648                 rctl &= ~E1000_RCTL_UPE;
1649         } else {
1650                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
1651         }
1652
1653         E1000_WRITE_REG(hw, RCTL, rctl);
1654
1655         /* 82542 2.0 needs to be in reset to write receive address registers */
1656
1657         if(hw->mac_type == e1000_82542_rev2_0)
1658                 e1000_enter_82542_rst(adapter);
1659
1660         /* load the first 14 multicast address into the exact filters 1-14
1661          * RAR 0 is used for the station MAC adddress
1662          * if there are not 14 addresses, go ahead and clear the filters
1663          */
1664         mc_ptr = netdev->mc_list;
1665
1666         for(i = 1; i < E1000_RAR_ENTRIES; i++) {
1667                 if(mc_ptr) {
1668                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
1669                         mc_ptr = mc_ptr->next;
1670                 } else {
1671                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
1672                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
1673                 }
1674         }
1675
1676         /* clear the old settings from the multicast hash table */
1677
1678         for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
1679                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1680
1681         /* load any remaining addresses into the hash table */
1682
1683         for(; mc_ptr; mc_ptr = mc_ptr->next) {
1684                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
1685                 e1000_mta_set(hw, hash_value);
1686         }
1687
1688         if(hw->mac_type == e1000_82542_rev2_0)
1689                 e1000_leave_82542_rst(adapter);
1690
1691         spin_unlock_irqrestore(&adapter->tx_lock, flags);
1692 }
1693
1694 /* Need to wait a few seconds after link up to get diagnostic information from
1695  * the phy */
1696
1697 static void
1698 e1000_update_phy_info(unsigned long data)
1699 {
1700         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1701         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
1702 }
1703
1704 /**
1705  * e1000_82547_tx_fifo_stall - Timer Call-back
1706  * @data: pointer to adapter cast into an unsigned long
1707  **/
1708
1709 static void
1710 e1000_82547_tx_fifo_stall(unsigned long data)
1711 {
1712         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1713         struct net_device *netdev = adapter->netdev;
1714         uint32_t tctl;
1715
1716         if(atomic_read(&adapter->tx_fifo_stall)) {
1717                 if((E1000_READ_REG(&adapter->hw, TDT) ==
1718                     E1000_READ_REG(&adapter->hw, TDH)) &&
1719                    (E1000_READ_REG(&adapter->hw, TDFT) ==
1720                     E1000_READ_REG(&adapter->hw, TDFH)) &&
1721                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
1722                     E1000_READ_REG(&adapter->hw, TDFHS))) {
1723                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
1724                         E1000_WRITE_REG(&adapter->hw, TCTL,
1725                                         tctl & ~E1000_TCTL_EN);
1726                         E1000_WRITE_REG(&adapter->hw, TDFT,
1727                                         adapter->tx_head_addr);
1728                         E1000_WRITE_REG(&adapter->hw, TDFH,
1729                                         adapter->tx_head_addr);
1730                         E1000_WRITE_REG(&adapter->hw, TDFTS,
1731                                         adapter->tx_head_addr);
1732                         E1000_WRITE_REG(&adapter->hw, TDFHS,
1733                                         adapter->tx_head_addr);
1734                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
1735                         E1000_WRITE_FLUSH(&adapter->hw);
1736
1737                         adapter->tx_fifo_head = 0;
1738                         atomic_set(&adapter->tx_fifo_stall, 0);
1739                         netif_wake_queue(netdev);
1740                 } else {
1741                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
1742                 }
1743         }
1744 }
1745
1746 /**
1747  * e1000_watchdog - Timer Call-back
1748  * @data: pointer to adapter cast into an unsigned long
1749  **/
1750 static void
1751 e1000_watchdog(unsigned long data)
1752 {
1753         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1754
1755         /* Do the rest outside of interrupt context */
1756         schedule_work(&adapter->watchdog_task);
1757 }
1758
1759 static void
1760 e1000_watchdog_task(struct e1000_adapter *adapter)
1761 {
1762         struct net_device *netdev = adapter->netdev;
1763         struct e1000_desc_ring *txdr = &adapter->tx_ring;
1764         uint32_t link;
1765
1766         e1000_check_for_link(&adapter->hw);
1767         if (adapter->hw.mac_type == e1000_82573) {
1768                 e1000_enable_tx_pkt_filtering(&adapter->hw);
1769                 if(adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
1770                         e1000_update_mng_vlan(adapter);
1771         }       
1772
1773         if((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
1774            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
1775                 link = !adapter->hw.serdes_link_down;
1776         else
1777                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
1778
1779         if(link) {
1780                 if(!netif_carrier_ok(netdev)) {
1781                         e1000_get_speed_and_duplex(&adapter->hw,
1782                                                    &adapter->link_speed,
1783                                                    &adapter->link_duplex);
1784
1785                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
1786                                adapter->link_speed,
1787                                adapter->link_duplex == FULL_DUPLEX ?
1788                                "Full Duplex" : "Half Duplex");
1789
1790                         netif_carrier_on(netdev);
1791                         netif_wake_queue(netdev);
1792                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
1793                         adapter->smartspeed = 0;
1794                 }
1795         } else {
1796                 if(netif_carrier_ok(netdev)) {
1797                         adapter->link_speed = 0;
1798                         adapter->link_duplex = 0;
1799                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
1800                         netif_carrier_off(netdev);
1801                         netif_stop_queue(netdev);
1802                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
1803                 }
1804
1805                 e1000_smartspeed(adapter);
1806         }
1807
1808         e1000_update_stats(adapter);
1809
1810         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
1811         adapter->tpt_old = adapter->stats.tpt;
1812         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
1813         adapter->colc_old = adapter->stats.colc;
1814
1815         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
1816         adapter->gorcl_old = adapter->stats.gorcl;
1817         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
1818         adapter->gotcl_old = adapter->stats.gotcl;
1819
1820         e1000_update_adaptive(&adapter->hw);
1821
1822         if(!netif_carrier_ok(netdev)) {
1823                 if(E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
1824                         /* We've lost link, so the controller stops DMA,
1825                          * but we've got queued Tx work that's never going
1826                          * to get done, so reset controller to flush Tx.
1827                          * (Do the reset outside of interrupt context). */
1828                         schedule_work(&adapter->tx_timeout_task);
1829                 }
1830         }
1831
1832         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
1833         if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
1834                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
1835                  * asymmetrical Tx or Rx gets ITR=8000; everyone
1836                  * else is between 2000-8000. */
1837                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
1838                 uint32_t dif = (adapter->gotcl > adapter->gorcl ? 
1839                         adapter->gotcl - adapter->gorcl :
1840                         adapter->gorcl - adapter->gotcl) / 10000;
1841                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
1842                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
1843         }
1844
1845         /* Cause software interrupt to ensure rx ring is cleaned */
1846         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
1847
1848         /* Force detection of hung controller every watchdog period */
1849         adapter->detect_tx_hung = TRUE;
1850
1851         /* Reset the timer */
1852         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
1853 }
1854
1855 #define E1000_TX_FLAGS_CSUM             0x00000001
1856 #define E1000_TX_FLAGS_VLAN             0x00000002
1857 #define E1000_TX_FLAGS_TSO              0x00000004
1858 #define E1000_TX_FLAGS_IPV4             0x00000008
1859 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
1860 #define E1000_TX_FLAGS_VLAN_SHIFT       16
1861
1862 static inline int
1863 e1000_tso(struct e1000_adapter *adapter, struct sk_buff *skb)
1864 {
1865 #ifdef NETIF_F_TSO
1866         struct e1000_context_desc *context_desc;
1867         unsigned int i;
1868         uint32_t cmd_length = 0;
1869         uint16_t ipcse = 0, tucse, mss;
1870         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
1871         int err;
1872
1873         if(skb_shinfo(skb)->tso_size) {
1874                 if (skb_header_cloned(skb)) {
1875                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1876                         if (err)
1877                                 return err;
1878                 }
1879
1880                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
1881                 mss = skb_shinfo(skb)->tso_size;
1882                 if(skb->protocol == ntohs(ETH_P_IP)) {
1883                         skb->nh.iph->tot_len = 0;
1884                         skb->nh.iph->check = 0;
1885                         skb->h.th->check =
1886                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
1887                                                    skb->nh.iph->daddr,
1888                                                    0,
1889                                                    IPPROTO_TCP,
1890                                                    0);
1891                         cmd_length = E1000_TXD_CMD_IP;
1892                         ipcse = skb->h.raw - skb->data - 1;
1893 #ifdef NETIF_F_TSO_IPV6
1894                 } else if(skb->protocol == ntohs(ETH_P_IPV6)) {
1895                         skb->nh.ipv6h->payload_len = 0;
1896                         skb->h.th->check =
1897                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
1898                                                  &skb->nh.ipv6h->daddr,
1899                                                  0,
1900                                                  IPPROTO_TCP,
1901                                                  0);
1902                         ipcse = 0;
1903 #endif
1904                 }
1905                 ipcss = skb->nh.raw - skb->data;
1906                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
1907                 tucss = skb->h.raw - skb->data;
1908                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
1909                 tucse = 0;
1910
1911                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
1912                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
1913
1914                 i = adapter->tx_ring.next_to_use;
1915                 context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
1916
1917                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
1918                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
1919                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
1920                 context_desc->upper_setup.tcp_fields.tucss = tucss;
1921                 context_desc->upper_setup.tcp_fields.tucso = tucso;
1922                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
1923                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
1924                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
1925                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
1926
1927                 if(++i == adapter->tx_ring.count) i = 0;
1928                 adapter->tx_ring.next_to_use = i;
1929
1930                 return 1;
1931         }
1932 #endif
1933
1934         return 0;
1935 }
1936
1937 static inline boolean_t
1938 e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
1939 {
1940         struct e1000_context_desc *context_desc;
1941         unsigned int i;
1942         uint8_t css;
1943
1944         if(likely(skb->ip_summed == CHECKSUM_HW)) {
1945                 css = skb->h.raw - skb->data;
1946
1947                 i = adapter->tx_ring.next_to_use;
1948                 context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
1949
1950                 context_desc->upper_setup.tcp_fields.tucss = css;
1951                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
1952                 context_desc->upper_setup.tcp_fields.tucse = 0;
1953                 context_desc->tcp_seg_setup.data = 0;
1954                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
1955
1956                 if(unlikely(++i == adapter->tx_ring.count)) i = 0;
1957                 adapter->tx_ring.next_to_use = i;
1958
1959                 return TRUE;
1960         }
1961
1962         return FALSE;
1963 }
1964
1965 #define E1000_MAX_TXD_PWR       12
1966 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
1967
1968 static inline int
1969 e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb,
1970         unsigned int first, unsigned int max_per_txd,
1971         unsigned int nr_frags, unsigned int mss)
1972 {
1973         struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
1974         struct e1000_buffer *buffer_info;
1975         unsigned int len = skb->len;
1976         unsigned int offset = 0, size, count = 0, i;
1977         unsigned int f;
1978         len -= skb->data_len;
1979
1980         i = tx_ring->next_to_use;
1981
1982         while(len) {
1983                 buffer_info = &tx_ring->buffer_info[i];
1984                 size = min(len, max_per_txd);
1985 #ifdef NETIF_F_TSO
1986                 /* Workaround for premature desc write-backs
1987                  * in TSO mode.  Append 4-byte sentinel desc */
1988                 if(unlikely(mss && !nr_frags && size == len && size > 8))
1989                         size -= 4;
1990 #endif
1991                 /* work-around for errata 10 and it applies
1992                  * to all controllers in PCI-X mode
1993                  * The fix is to make sure that the first descriptor of a
1994                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
1995                  */
1996                 if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
1997                                 (size > 2015) && count == 0))
1998                         size = 2015;
1999                                                                                 
2000                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2001                  * terminating buffers within evenly-aligned dwords. */
2002                 if(unlikely(adapter->pcix_82544 &&
2003                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2004                    size > 4))
2005                         size -= 4;
2006
2007                 buffer_info->length = size;
2008                 buffer_info->dma =
2009                         pci_map_single(adapter->pdev,
2010                                 skb->data + offset,
2011                                 size,
2012                                 PCI_DMA_TODEVICE);
2013                 buffer_info->time_stamp = jiffies;
2014
2015                 len -= size;
2016                 offset += size;
2017                 count++;
2018                 if(unlikely(++i == tx_ring->count)) i = 0;
2019         }
2020
2021         for(f = 0; f < nr_frags; f++) {
2022                 struct skb_frag_struct *frag;
2023
2024                 frag = &skb_shinfo(skb)->frags[f];
2025                 len = frag->size;
2026                 offset = frag->page_offset;
2027
2028                 while(len) {
2029                         buffer_info = &tx_ring->buffer_info[i];
2030                         size = min(len, max_per_txd);
2031 #ifdef NETIF_F_TSO
2032                         /* Workaround for premature desc write-backs
2033                          * in TSO mode.  Append 4-byte sentinel desc */
2034                         if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2035                                 size -= 4;
2036 #endif
2037                         /* Workaround for potential 82544 hang in PCI-X.
2038                          * Avoid terminating buffers within evenly-aligned
2039                          * dwords. */
2040                         if(unlikely(adapter->pcix_82544 &&
2041                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2042                            size > 4))
2043                                 size -= 4;
2044
2045                         buffer_info->length = size;
2046                         buffer_info->dma =
2047                                 pci_map_page(adapter->pdev,
2048                                         frag->page,
2049                                         offset,
2050                                         size,
2051                                         PCI_DMA_TODEVICE);
2052                         buffer_info->time_stamp = jiffies;
2053
2054                         len -= size;
2055                         offset += size;
2056                         count++;
2057                         if(unlikely(++i == tx_ring->count)) i = 0;
2058                 }
2059         }
2060
2061         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2062         tx_ring->buffer_info[i].skb = skb;
2063         tx_ring->buffer_info[first].next_to_watch = i;
2064
2065         return count;
2066 }
2067
2068 static inline void
2069 e1000_tx_queue(struct e1000_adapter *adapter, int count, int tx_flags)
2070 {
2071         struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
2072         struct e1000_tx_desc *tx_desc = NULL;
2073         struct e1000_buffer *buffer_info;
2074         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2075         unsigned int i;
2076
2077         if(likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2078                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2079                              E1000_TXD_CMD_TSE;
2080                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2081
2082                 if(likely(tx_flags & E1000_TX_FLAGS_IPV4))
2083                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2084         }
2085
2086         if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2087                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2088                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2089         }
2090
2091         if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2092                 txd_lower |= E1000_TXD_CMD_VLE;
2093                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2094         }
2095
2096         i = tx_ring->next_to_use;
2097
2098         while(count--) {
2099                 buffer_info = &tx_ring->buffer_info[i];
2100                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2101                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2102                 tx_desc->lower.data =
2103                         cpu_to_le32(txd_lower | buffer_info->length);
2104                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2105                 if(unlikely(++i == tx_ring->count)) i = 0;
2106         }
2107
2108         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2109
2110         /* Force memory writes to complete before letting h/w
2111          * know there are new descriptors to fetch.  (Only
2112          * applicable for weak-ordered memory model archs,
2113          * such as IA-64). */
2114         wmb();
2115
2116         tx_ring->next_to_use = i;
2117         E1000_WRITE_REG(&adapter->hw, TDT, i);
2118 }
2119
2120 /**
2121  * 82547 workaround to avoid controller hang in half-duplex environment.
2122  * The workaround is to avoid queuing a large packet that would span
2123  * the internal Tx FIFO ring boundary by notifying the stack to resend
2124  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2125  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2126  * to the beginning of the Tx FIFO.
2127  **/
2128
2129 #define E1000_FIFO_HDR                  0x10
2130 #define E1000_82547_PAD_LEN             0x3E0
2131
2132 static inline int
2133 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2134 {
2135         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2136         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2137
2138         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2139
2140         if(adapter->link_duplex != HALF_DUPLEX)
2141                 goto no_fifo_stall_required;
2142
2143         if(atomic_read(&adapter->tx_fifo_stall))
2144                 return 1;
2145
2146         if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2147                 atomic_set(&adapter->tx_fifo_stall, 1);
2148                 return 1;
2149         }
2150
2151 no_fifo_stall_required:
2152         adapter->tx_fifo_head += skb_fifo_len;
2153         if(adapter->tx_fifo_head >= adapter->tx_fifo_size)
2154                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2155         return 0;
2156 }
2157
2158 #define MINIMUM_DHCP_PACKET_SIZE 282
2159 static inline int
2160 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2161 {
2162         struct e1000_hw *hw =  &adapter->hw;
2163         uint16_t length, offset;
2164         if(vlan_tx_tag_present(skb)) {
2165                 if(!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2166                         ( adapter->hw.mng_cookie.status &
2167                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2168                         return 0;
2169         }
2170         if(htons(ETH_P_IP) == skb->protocol) {
2171                 const struct iphdr *ip = skb->nh.iph;
2172                 if(IPPROTO_UDP == ip->protocol) {
2173                         struct udphdr *udp = (struct udphdr *)(skb->h.uh);
2174                         if(ntohs(udp->dest) == 67) {
2175                                 offset = (uint8_t *)udp + 8 - skb->data;
2176                                 length = skb->len - offset;
2177
2178                                 return e1000_mng_write_dhcp_info(hw,
2179                                                 (uint8_t *)udp + 8, length);
2180                         }
2181                 }
2182         } else if((skb->len > MINIMUM_DHCP_PACKET_SIZE) && (!skb->protocol)) {
2183                 struct ethhdr *eth = (struct ethhdr *) skb->data;
2184                 if((htons(ETH_P_IP) == eth->h_proto)) {
2185                         const struct iphdr *ip = 
2186                                 (struct iphdr *)((uint8_t *)skb->data+14);
2187                         if(IPPROTO_UDP == ip->protocol) {
2188                                 struct udphdr *udp = 
2189                                         (struct udphdr *)((uint8_t *)ip + 
2190                                                 (ip->ihl << 2));
2191                                 if(ntohs(udp->dest) == 67) {
2192                                         offset = (uint8_t *)udp + 8 - skb->data;
2193                                         length = skb->len - offset;
2194
2195                                         return e1000_mng_write_dhcp_info(hw,
2196                                                         (uint8_t *)udp + 8, 
2197                                                         length);
2198                                 }
2199                         }
2200                 }
2201         }
2202         return 0;
2203 }
2204
2205 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2206 static int
2207 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2208 {
2209         struct e1000_adapter *adapter = netdev_priv(netdev);
2210         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2211         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2212         unsigned int tx_flags = 0;
2213         unsigned int len = skb->len;
2214         unsigned long flags;
2215         unsigned int nr_frags = 0;
2216         unsigned int mss = 0;
2217         int count = 0;
2218         int tso;
2219         unsigned int f;
2220         len -= skb->data_len;
2221
2222         if(unlikely(skb->len <= 0)) {
2223                 dev_kfree_skb_any(skb);
2224                 return NETDEV_TX_OK;
2225         }
2226
2227 #ifdef NETIF_F_TSO
2228         mss = skb_shinfo(skb)->tso_size;
2229         /* The controller does a simple calculation to 
2230          * make sure there is enough room in the FIFO before
2231          * initiating the DMA for each buffer.  The calc is:
2232          * 4 = ceil(buffer len/mss).  To make sure we don't
2233          * overrun the FIFO, adjust the max buffer len if mss
2234          * drops. */
2235         if(mss) {
2236                 max_per_txd = min(mss << 2, max_per_txd);
2237                 max_txd_pwr = fls(max_per_txd) - 1;
2238         }
2239
2240         if((mss) || (skb->ip_summed == CHECKSUM_HW))
2241                 count++;
2242         count++;
2243 #else
2244         if(skb->ip_summed == CHECKSUM_HW)
2245                 count++;
2246 #endif
2247         count += TXD_USE_COUNT(len, max_txd_pwr);
2248
2249         if(adapter->pcix_82544)
2250                 count++;
2251
2252         /* work-around for errata 10 and it applies to all controllers 
2253          * in PCI-X mode, so add one more descriptor to the count
2254          */
2255         if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2256                         (len > 2015)))
2257                 count++;
2258
2259         nr_frags = skb_shinfo(skb)->nr_frags;
2260         for(f = 0; f < nr_frags; f++)
2261                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2262                                        max_txd_pwr);
2263         if(adapter->pcix_82544)
2264                 count += nr_frags;
2265
2266         local_irq_save(flags); 
2267         if (!spin_trylock(&adapter->tx_lock)) { 
2268                 /* Collision - tell upper layer to requeue */ 
2269                 local_irq_restore(flags); 
2270                 return NETDEV_TX_LOCKED; 
2271         } 
2272         if(adapter->hw.tx_pkt_filtering && (adapter->hw.mac_type == e1000_82573) )
2273                 e1000_transfer_dhcp_info(adapter, skb);
2274
2275
2276         /* need: count + 2 desc gap to keep tail from touching
2277          * head, otherwise try next time */
2278         if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < count + 2)) {
2279                 netif_stop_queue(netdev);
2280                 spin_unlock_irqrestore(&adapter->tx_lock, flags);
2281                 return NETDEV_TX_BUSY;
2282         }
2283
2284         if(unlikely(adapter->hw.mac_type == e1000_82547)) {
2285                 if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2286                         netif_stop_queue(netdev);
2287                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2288                         spin_unlock_irqrestore(&adapter->tx_lock, flags);
2289                         return NETDEV_TX_BUSY;
2290                 }
2291         }
2292
2293         if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2294                 tx_flags |= E1000_TX_FLAGS_VLAN;
2295                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2296         }
2297
2298         first = adapter->tx_ring.next_to_use;
2299         
2300         tso = e1000_tso(adapter, skb);
2301         if (tso < 0) {
2302                 dev_kfree_skb_any(skb);
2303                 spin_unlock_irqrestore(&adapter->tx_lock, flags);
2304                 return NETDEV_TX_OK;
2305         }
2306
2307         if (likely(tso))
2308                 tx_flags |= E1000_TX_FLAGS_TSO;
2309         else if(likely(e1000_tx_csum(adapter, skb)))
2310                 tx_flags |= E1000_TX_FLAGS_CSUM;
2311
2312         /* Old method was to assume IPv4 packet by default if TSO was enabled.
2313          * 82573 hardware supports TSO capabilities for IPv6 as well...
2314          * no longer assume, we must. */
2315         if(likely(skb->protocol == ntohs(ETH_P_IP)))
2316                 tx_flags |= E1000_TX_FLAGS_IPV4;
2317
2318         e1000_tx_queue(adapter,
2319                 e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss),
2320                 tx_flags);
2321
2322         netdev->trans_start = jiffies;
2323
2324         /* Make sure there is space in the ring for the next send. */
2325         if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < MAX_SKB_FRAGS + 2))
2326                 netif_stop_queue(netdev);
2327
2328         spin_unlock_irqrestore(&adapter->tx_lock, flags);
2329         return NETDEV_TX_OK;
2330 }
2331
2332 /**
2333  * e1000_tx_timeout - Respond to a Tx Hang
2334  * @netdev: network interface device structure
2335  **/
2336
2337 static void
2338 e1000_tx_timeout(struct net_device *netdev)
2339 {
2340         struct e1000_adapter *adapter = netdev_priv(netdev);
2341
2342         /* Do the reset outside of interrupt context */
2343         schedule_work(&adapter->tx_timeout_task);
2344 }
2345
2346 static void
2347 e1000_tx_timeout_task(struct net_device *netdev)
2348 {
2349         struct e1000_adapter *adapter = netdev_priv(netdev);
2350
2351         e1000_down(adapter);
2352         e1000_up(adapter);
2353 }
2354
2355 /**
2356  * e1000_get_stats - Get System Network Statistics
2357  * @netdev: network interface device structure
2358  *
2359  * Returns the address of the device statistics structure.
2360  * The statistics are actually updated from the timer callback.
2361  **/
2362
2363 static struct net_device_stats *
2364 e1000_get_stats(struct net_device *netdev)
2365 {
2366         struct e1000_adapter *adapter = netdev_priv(netdev);
2367
2368         e1000_update_stats(adapter);
2369         return &adapter->net_stats;
2370 }
2371
2372 /**
2373  * e1000_change_mtu - Change the Maximum Transfer Unit
2374  * @netdev: network interface device structure
2375  * @new_mtu: new value for maximum frame size
2376  *
2377  * Returns 0 on success, negative on failure
2378  **/
2379
2380 static int
2381 e1000_change_mtu(struct net_device *netdev, int new_mtu)
2382 {
2383         struct e1000_adapter *adapter = netdev_priv(netdev);
2384         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
2385
2386         if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
2387                 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2388                         DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
2389                         return -EINVAL;
2390         }
2391
2392 #define MAX_STD_JUMBO_FRAME_SIZE 9216
2393         /* might want this to be bigger enum check... */
2394         if (adapter->hw.mac_type == e1000_82573 &&
2395             max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
2396                 DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
2397                                     "on 82573\n");
2398                 return -EINVAL;
2399         }
2400
2401         if(adapter->hw.mac_type > e1000_82547_rev_2) {
2402                 adapter->rx_buffer_len = max_frame;
2403                 E1000_ROUNDUP(adapter->rx_buffer_len, 1024);
2404         } else {
2405                 if(unlikely((adapter->hw.mac_type < e1000_82543) &&
2406                    (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE))) {
2407                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
2408                                             "on 82542\n");
2409                         return -EINVAL;
2410
2411                 } else {
2412                         if(max_frame <= E1000_RXBUFFER_2048) {
2413                                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
2414                         } else if(max_frame <= E1000_RXBUFFER_4096) {
2415                                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
2416                         } else if(max_frame <= E1000_RXBUFFER_8192) {
2417                                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
2418                         } else if(max_frame <= E1000_RXBUFFER_16384) {
2419                                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
2420                         }
2421                 }
2422         }
2423
2424         netdev->mtu = new_mtu;
2425
2426         if(netif_running(netdev)) {
2427                 e1000_down(adapter);
2428                 e1000_up(adapter);
2429         }
2430
2431         adapter->hw.max_frame_size = max_frame;
2432
2433         return 0;
2434 }
2435
2436 /**
2437  * e1000_update_stats - Update the board statistics counters
2438  * @adapter: board private structure
2439  **/
2440
2441 void
2442 e1000_update_stats(struct e1000_adapter *adapter)
2443 {
2444         struct e1000_hw *hw = &adapter->hw;
2445         unsigned long flags;
2446         uint16_t phy_tmp;
2447
2448 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2449
2450         spin_lock_irqsave(&adapter->stats_lock, flags);
2451
2452         /* these counters are modified from e1000_adjust_tbi_stats,
2453          * called from the interrupt context, so they must only
2454          * be written while holding adapter->stats_lock
2455          */
2456
2457         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
2458         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
2459         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
2460         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
2461         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
2462         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
2463         adapter->stats.roc += E1000_READ_REG(hw, ROC);
2464         adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
2465         adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
2466         adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
2467         adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
2468         adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
2469         adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
2470
2471         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
2472         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
2473         adapter->stats.scc += E1000_READ_REG(hw, SCC);
2474         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
2475         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
2476         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
2477         adapter->stats.dc += E1000_READ_REG(hw, DC);
2478         adapter->stats.sec += E1000_READ_REG(hw, SEC);
2479         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
2480         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
2481         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
2482         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
2483         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
2484         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
2485         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
2486         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
2487         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
2488         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
2489         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
2490         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
2491         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
2492         adapter->stats.torl += E1000_READ_REG(hw, TORL);
2493         adapter->stats.torh += E1000_READ_REG(hw, TORH);
2494         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
2495         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
2496         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
2497         adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
2498         adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
2499         adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
2500         adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
2501         adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
2502         adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
2503         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
2504         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
2505
2506         /* used for adaptive IFS */
2507
2508         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
2509         adapter->stats.tpt += hw->tx_packet_delta;
2510         hw->collision_delta = E1000_READ_REG(hw, COLC);
2511         adapter->stats.colc += hw->collision_delta;
2512
2513         if(hw->mac_type >= e1000_82543) {
2514                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
2515                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
2516                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
2517                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
2518                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
2519                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
2520         }
2521         if(hw->mac_type > e1000_82547_rev_2) {
2522                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
2523                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
2524                 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
2525                 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
2526                 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
2527                 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
2528                 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
2529                 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
2530                 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
2531         }
2532
2533         /* Fill out the OS statistics structure */
2534
2535         adapter->net_stats.rx_packets = adapter->stats.gprc;
2536         adapter->net_stats.tx_packets = adapter->stats.gptc;
2537         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
2538         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
2539         adapter->net_stats.multicast = adapter->stats.mprc;
2540         adapter->net_stats.collisions = adapter->stats.colc;
2541
2542         /* Rx Errors */
2543
2544         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2545                 adapter->stats.crcerrs + adapter->stats.algnerrc +
2546                 adapter->stats.rlec + adapter->stats.mpc + 
2547                 adapter->stats.cexterr;
2548         adapter->net_stats.rx_dropped = adapter->stats.mpc;
2549         adapter->net_stats.rx_length_errors = adapter->stats.rlec;
2550         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2551         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2552         adapter->net_stats.rx_fifo_errors = adapter->stats.mpc;
2553         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2554
2555         /* Tx Errors */
2556
2557         adapter->net_stats.tx_errors = adapter->stats.ecol +
2558                                        adapter->stats.latecol;
2559         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2560         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2561         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2562
2563         /* Tx Dropped needs to be maintained elsewhere */
2564
2565         /* Phy Stats */
2566
2567         if(hw->media_type == e1000_media_type_copper) {
2568                 if((adapter->link_speed == SPEED_1000) &&
2569                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
2570                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2571                         adapter->phy_stats.idle_errors += phy_tmp;
2572                 }
2573
2574                 if((hw->mac_type <= e1000_82546) &&
2575                    (hw->phy_type == e1000_phy_m88) &&
2576                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
2577                         adapter->phy_stats.receive_errors += phy_tmp;
2578         }
2579
2580         spin_unlock_irqrestore(&adapter->stats_lock, flags);
2581 }
2582
2583 /**
2584  * e1000_intr - Interrupt Handler
2585  * @irq: interrupt number
2586  * @data: pointer to a network interface device structure
2587  * @pt_regs: CPU registers structure
2588  **/
2589
2590 static irqreturn_t
2591 e1000_intr(int irq, void *data, struct pt_regs *regs)
2592 {
2593         struct net_device *netdev = data;
2594         struct e1000_adapter *adapter = netdev_priv(netdev);
2595         struct e1000_hw *hw = &adapter->hw;
2596         uint32_t icr = E1000_READ_REG(hw, ICR);
2597 #ifndef CONFIG_E1000_NAPI
2598         unsigned int i;
2599 #endif
2600
2601         if(unlikely(!icr))
2602                 return IRQ_NONE;  /* Not our interrupt */
2603
2604         if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
2605                 hw->get_link_status = 1;
2606                 mod_timer(&adapter->watchdog_timer, jiffies);
2607         }
2608
2609 #ifdef CONFIG_E1000_NAPI
2610         if(likely(netif_rx_schedule_prep(netdev))) {
2611
2612                 /* Disable interrupts and register for poll. The flush 
2613                   of the posted write is intentionally left out.
2614                 */
2615
2616                 atomic_inc(&adapter->irq_sem);
2617                 E1000_WRITE_REG(hw, IMC, ~0);
2618                 __netif_rx_schedule(netdev);
2619         }
2620 #else
2621         /* Writing IMC and IMS is needed for 82547.
2622            Due to Hub Link bus being occupied, an interrupt
2623            de-assertion message is not able to be sent.
2624            When an interrupt assertion message is generated later,
2625            two messages are re-ordered and sent out.
2626            That causes APIC to think 82547 is in de-assertion
2627            state, while 82547 is in assertion state, resulting
2628            in dead lock. Writing IMC forces 82547 into
2629            de-assertion state.
2630         */
2631         if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2){
2632                 atomic_inc(&adapter->irq_sem);
2633                 E1000_WRITE_REG(hw, IMC, ~0);
2634         }
2635
2636         for(i = 0; i < E1000_MAX_INTR; i++)
2637                 if(unlikely(!adapter->clean_rx(adapter) &
2638                    !e1000_clean_tx_irq(adapter)))
2639                         break;
2640
2641         if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
2642                 e1000_irq_enable(adapter);
2643 #endif
2644
2645         return IRQ_HANDLED;
2646 }
2647
2648 #ifdef CONFIG_E1000_NAPI
2649 /**
2650  * e1000_clean - NAPI Rx polling callback
2651  * @adapter: board private structure
2652  **/
2653
2654 static int
2655 e1000_clean(struct net_device *netdev, int *budget)
2656 {
2657         struct e1000_adapter *adapter = netdev_priv(netdev);
2658         int work_to_do = min(*budget, netdev->quota);
2659         int tx_cleaned;
2660         int work_done = 0;
2661
2662         tx_cleaned = e1000_clean_tx_irq(adapter);
2663         adapter->clean_rx(adapter, &work_done, work_to_do);
2664
2665         *budget -= work_done;
2666         netdev->quota -= work_done;
2667         
2668         if ((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) {
2669         /* If no Tx and not enough Rx work done, exit the polling mode */
2670                 netif_rx_complete(netdev);
2671                 e1000_irq_enable(adapter);
2672                 return 0;
2673         }
2674
2675         return 1;
2676 }
2677
2678 #endif
2679 /**
2680  * e1000_clean_tx_irq - Reclaim resources after transmit completes
2681  * @adapter: board private structure
2682  **/
2683
2684 static boolean_t
2685 e1000_clean_tx_irq(struct e1000_adapter *adapter)
2686 {
2687         struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
2688         struct net_device *netdev = adapter->netdev;
2689         struct e1000_tx_desc *tx_desc, *eop_desc;
2690         struct e1000_buffer *buffer_info;
2691         unsigned int i, eop;
2692         boolean_t cleaned = FALSE;
2693
2694         i = tx_ring->next_to_clean;
2695         eop = tx_ring->buffer_info[i].next_to_watch;
2696         eop_desc = E1000_TX_DESC(*tx_ring, eop);
2697
2698         while(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
2699                 /* Premature writeback of Tx descriptors clear (free buffers
2700                  * and unmap pci_mapping) previous_buffer_info */
2701                 if (likely(adapter->previous_buffer_info.skb != NULL)) {
2702                         e1000_unmap_and_free_tx_resource(adapter,
2703                                         &adapter->previous_buffer_info);
2704                 }
2705
2706                 for(cleaned = FALSE; !cleaned; ) {
2707                         tx_desc = E1000_TX_DESC(*tx_ring, i);
2708                         buffer_info = &tx_ring->buffer_info[i];
2709                         cleaned = (i == eop);
2710
2711 #ifdef NETIF_F_TSO
2712                         if (!(netdev->features & NETIF_F_TSO)) {
2713 #endif
2714                                 e1000_unmap_and_free_tx_resource(adapter,
2715                                                                  buffer_info);
2716 #ifdef NETIF_F_TSO
2717                         } else {
2718                                 if (cleaned) {
2719                                         memcpy(&adapter->previous_buffer_info,
2720                                                buffer_info,
2721                                                sizeof(struct e1000_buffer));
2722                                         memset(buffer_info, 0,
2723                                                sizeof(struct e1000_buffer));
2724                                 } else {
2725                                         e1000_unmap_and_free_tx_resource(
2726                                             adapter, buffer_info);
2727                                 }
2728                         }
2729 #endif
2730
2731                         tx_desc->buffer_addr = 0;
2732                         tx_desc->lower.data = 0;
2733                         tx_desc->upper.data = 0;
2734
2735                         if(unlikely(++i == tx_ring->count)) i = 0;
2736                 }
2737                 
2738                 eop = tx_ring->buffer_info[i].next_to_watch;
2739                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
2740         }
2741
2742         tx_ring->next_to_clean = i;
2743
2744         spin_lock(&adapter->tx_lock);
2745
2746         if(unlikely(cleaned && netif_queue_stopped(netdev) &&
2747                     netif_carrier_ok(netdev)))
2748                 netif_wake_queue(netdev);
2749
2750         spin_unlock(&adapter->tx_lock);
2751         if(adapter->detect_tx_hung) {
2752
2753                 /* Detect a transmit hang in hardware, this serializes the
2754                  * check with the clearing of time_stamp and movement of i */
2755                 adapter->detect_tx_hung = FALSE;
2756                 if (tx_ring->buffer_info[i].dma &&
2757                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ)
2758                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
2759                         E1000_STATUS_TXOFF)) {
2760
2761                         /* detected Tx unit hang */
2762                         i = tx_ring->next_to_clean;
2763                         eop = tx_ring->buffer_info[i].next_to_watch;
2764                         eop_desc = E1000_TX_DESC(*tx_ring, eop);
2765                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
2766                                         "  TDH                  <%x>\n"
2767                                         "  TDT                  <%x>\n"
2768                                         "  next_to_use          <%x>\n"
2769                                         "  next_to_clean        <%x>\n"
2770                                         "buffer_info[next_to_clean]\n"
2771                                         "  dma                  <%llx>\n"
2772                                         "  time_stamp           <%lx>\n"
2773                                         "  next_to_watch        <%x>\n"
2774                                         "  jiffies              <%lx>\n"
2775                                         "  next_to_watch.status <%x>\n",
2776                                 E1000_READ_REG(&adapter->hw, TDH),
2777                                 E1000_READ_REG(&adapter->hw, TDT),
2778                                 tx_ring->next_to_use,
2779                                 i,
2780                                 (unsigned long long)tx_ring->buffer_info[i].dma,
2781                                 tx_ring->buffer_info[i].time_stamp,
2782                                 eop,
2783                                 jiffies,
2784                                 eop_desc->upper.fields.status);
2785                         netif_stop_queue(netdev);
2786                 }
2787         }
2788 #ifdef NETIF_F_TSO
2789
2790         if( unlikely(!(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
2791             time_after(jiffies, adapter->previous_buffer_info.time_stamp + HZ)))
2792                 e1000_unmap_and_free_tx_resource(
2793                     adapter, &adapter->previous_buffer_info);
2794
2795 #endif
2796         return cleaned;
2797 }
2798
2799 /**
2800  * e1000_rx_checksum - Receive Checksum Offload for 82543
2801  * @adapter:     board private structure
2802  * @status_err:  receive descriptor status and error fields
2803  * @csum:        receive descriptor csum field
2804  * @sk_buff:     socket buffer with received data
2805  **/
2806
2807 static inline void
2808 e1000_rx_checksum(struct e1000_adapter *adapter,
2809                   uint32_t status_err, uint32_t csum,
2810                   struct sk_buff *skb)
2811 {
2812         uint16_t status = (uint16_t)status_err;
2813         uint8_t errors = (uint8_t)(status_err >> 24);
2814         skb->ip_summed = CHECKSUM_NONE;
2815
2816         /* 82543 or newer only */
2817         if(unlikely(adapter->hw.mac_type < e1000_82543)) return;
2818         /* Ignore Checksum bit is set */
2819         if(unlikely(status & E1000_RXD_STAT_IXSM)) return;
2820         /* TCP/UDP checksum error bit is set */
2821         if(unlikely(errors & E1000_RXD_ERR_TCPE)) {
2822                 /* let the stack verify checksum errors */
2823                 adapter->hw_csum_err++;
2824                 return;
2825         }
2826         /* TCP/UDP Checksum has not been calculated */
2827         if(adapter->hw.mac_type <= e1000_82547_rev_2) {
2828                 if(!(status & E1000_RXD_STAT_TCPCS))
2829                         return;
2830         } else {
2831                 if(!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
2832                         return;
2833         }
2834         /* It must be a TCP or UDP packet with a valid checksum */
2835         if (likely(status & E1000_RXD_STAT_TCPCS)) {
2836                 /* TCP checksum is good */
2837                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2838         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
2839                 /* IP fragment with UDP payload */
2840                 /* Hardware complements the payload checksum, so we undo it
2841                  * and then put the value in host order for further stack use.
2842                  */
2843                 csum = ntohl(csum ^ 0xFFFF);
2844                 skb->csum = csum;
2845                 skb->ip_summed = CHECKSUM_HW;
2846         }
2847         adapter->hw_csum_good++;
2848 }
2849
2850 /**
2851  * e1000_clean_rx_irq - Send received data up the network stack; legacy
2852  * @adapter: board private structure
2853  **/
2854
2855 static boolean_t
2856 #ifdef CONFIG_E1000_NAPI
2857 e1000_clean_rx_irq(struct e1000_adapter *adapter, int *work_done,
2858                    int work_to_do)
2859 #else
2860 e1000_clean_rx_irq(struct e1000_adapter *adapter)
2861 #endif
2862 {
2863         struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
2864         struct net_device *netdev = adapter->netdev;
2865         struct pci_dev *pdev = adapter->pdev;
2866         struct e1000_rx_desc *rx_desc;
2867         struct e1000_buffer *buffer_info;
2868         struct sk_buff *skb;
2869         unsigned long flags;
2870         uint32_t length;
2871         uint8_t last_byte;
2872         unsigned int i;
2873         boolean_t cleaned = FALSE;
2874
2875         i = rx_ring->next_to_clean;
2876         rx_desc = E1000_RX_DESC(*rx_ring, i);
2877
2878         while(rx_desc->status & E1000_RXD_STAT_DD) {
2879                 buffer_info = &rx_ring->buffer_info[i];
2880 #ifdef CONFIG_E1000_NAPI
2881                 if(*work_done >= work_to_do)
2882                         break;
2883                 (*work_done)++;
2884 #endif
2885                 cleaned = TRUE;
2886
2887                 pci_unmap_single(pdev,
2888                                  buffer_info->dma,
2889                                  buffer_info->length,
2890                                  PCI_DMA_FROMDEVICE);
2891
2892                 skb = buffer_info->skb;
2893                 length = le16_to_cpu(rx_desc->length);
2894
2895                 if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) {
2896                         /* All receives must fit into a single buffer */
2897                         E1000_DBG("%s: Receive packet consumed multiple"
2898                                   " buffers\n", netdev->name);
2899                         dev_kfree_skb_irq(skb);
2900                         goto next_desc;
2901                 }
2902
2903                 if(unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
2904                         last_byte = *(skb->data + length - 1);
2905                         if(TBI_ACCEPT(&adapter->hw, rx_desc->status,
2906                                       rx_desc->errors, length, last_byte)) {
2907                                 spin_lock_irqsave(&adapter->stats_lock, flags);
2908                                 e1000_tbi_adjust_stats(&adapter->hw,
2909                                                        &adapter->stats,
2910                                                        length, skb->data);
2911                                 spin_unlock_irqrestore(&adapter->stats_lock,
2912                                                        flags);
2913                                 length--;
2914                         } else {
2915                                 dev_kfree_skb_irq(skb);
2916                                 goto next_desc;
2917                         }
2918                 }
2919
2920                 /* Good Receive */
2921                 skb_put(skb, length - ETHERNET_FCS_SIZE);
2922
2923                 /* Receive Checksum Offload */
2924                 e1000_rx_checksum(adapter,
2925                                   (uint32_t)(rx_desc->status) |
2926                                   ((uint32_t)(rx_desc->errors) << 24),
2927                                   rx_desc->csum, skb);
2928                 skb->protocol = eth_type_trans(skb, netdev);
2929 #ifdef CONFIG_E1000_NAPI
2930                 if(unlikely(adapter->vlgrp &&
2931                             (rx_desc->status & E1000_RXD_STAT_VP))) {
2932                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
2933                                                  le16_to_cpu(rx_desc->special) &
2934                                                  E1000_RXD_SPC_VLAN_MASK);
2935                 } else {
2936                         netif_receive_skb(skb);
2937                 }
2938 #else /* CONFIG_E1000_NAPI */
2939                 if(unlikely(adapter->vlgrp &&
2940                             (rx_desc->status & E1000_RXD_STAT_VP))) {
2941                         vlan_hwaccel_rx(skb, adapter->vlgrp,
2942                                         le16_to_cpu(rx_desc->special) &
2943                                         E1000_RXD_SPC_VLAN_MASK);
2944                 } else {
2945                         netif_rx(skb);
2946                 }
2947 #endif /* CONFIG_E1000_NAPI */
2948                 netdev->last_rx = jiffies;
2949
2950 next_desc:
2951                 rx_desc->status = 0;
2952                 buffer_info->skb = NULL;
2953                 if(unlikely(++i == rx_ring->count)) i = 0;
2954
2955                 rx_desc = E1000_RX_DESC(*rx_ring, i);
2956         }
2957         rx_ring->next_to_clean = i;
2958         adapter->alloc_rx_buf(adapter);
2959
2960         return cleaned;
2961 }
2962
2963 /**
2964  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
2965  * @adapter: board private structure
2966  **/
2967
2968 static boolean_t
2969 #ifdef CONFIG_E1000_NAPI
2970 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, int *work_done,
2971                       int work_to_do)
2972 #else
2973 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter)
2974 #endif
2975 {
2976         struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
2977         union e1000_rx_desc_packet_split *rx_desc;
2978         struct net_device *netdev = adapter->netdev;
2979         struct pci_dev *pdev = adapter->pdev;
2980         struct e1000_buffer *buffer_info;
2981         struct e1000_ps_page *ps_page;
2982         struct e1000_ps_page_dma *ps_page_dma;
2983         struct sk_buff *skb;
2984         unsigned int i, j;
2985         uint32_t length, staterr;
2986         boolean_t cleaned = FALSE;
2987
2988         i = rx_ring->next_to_clean;
2989         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
2990         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
2991
2992         while(staterr & E1000_RXD_STAT_DD) {
2993                 buffer_info = &rx_ring->buffer_info[i];
2994                 ps_page = &rx_ring->ps_page[i];
2995                 ps_page_dma = &rx_ring->ps_page_dma[i];
2996 #ifdef CONFIG_E1000_NAPI
2997                 if(unlikely(*work_done >= work_to_do))
2998                         break;
2999                 (*work_done)++;
3000 #endif
3001                 cleaned = TRUE;
3002                 pci_unmap_single(pdev, buffer_info->dma,
3003                                  buffer_info->length,
3004                                  PCI_DMA_FROMDEVICE);
3005
3006                 skb = buffer_info->skb;
3007
3008                 if(unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3009                         E1000_DBG("%s: Packet Split buffers didn't pick up"
3010                                   " the full packet\n", netdev->name);
3011                         dev_kfree_skb_irq(skb);
3012                         goto next_desc;
3013                 }
3014
3015                 if(unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3016                         dev_kfree_skb_irq(skb);
3017                         goto next_desc;
3018                 }
3019
3020                 length = le16_to_cpu(rx_desc->wb.middle.length0);
3021
3022                 if(unlikely(!length)) {
3023                         E1000_DBG("%s: Last part of the packet spanning"
3024                                   " multiple descriptors\n", netdev->name);
3025                         dev_kfree_skb_irq(skb);
3026                         goto next_desc;
3027                 }
3028
3029                 /* Good Receive */
3030                 skb_put(skb, length);
3031
3032                 for(j = 0; j < PS_PAGE_BUFFERS; j++) {
3033                         if(!(length = le16_to_cpu(rx_desc->wb.upper.length[j])))
3034                                 break;
3035
3036                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3037                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
3038                         ps_page_dma->ps_page_dma[j] = 0;
3039                         skb_shinfo(skb)->frags[j].page =
3040                                 ps_page->ps_page[j];
3041                         ps_page->ps_page[j] = NULL;
3042                         skb_shinfo(skb)->frags[j].page_offset = 0;
3043                         skb_shinfo(skb)->frags[j].size = length;
3044                         skb_shinfo(skb)->nr_frags++;
3045                         skb->len += length;
3046                         skb->data_len += length;
3047                 }
3048
3049                 e1000_rx_checksum(adapter, staterr,
3050                                   rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
3051                 skb->protocol = eth_type_trans(skb, netdev);
3052
3053 #ifdef HAVE_RX_ZERO_COPY
3054                 if(likely(rx_desc->wb.upper.header_status &
3055                           E1000_RXDPS_HDRSTAT_HDRSP))
3056                         skb_shinfo(skb)->zero_copy = TRUE;
3057 #endif
3058 #ifdef CONFIG_E1000_NAPI
3059                 if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3060                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3061                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3062                                 E1000_RXD_SPC_VLAN_MASK);
3063                 } else {
3064                         netif_receive_skb(skb);
3065                 }
3066 #else /* CONFIG_E1000_NAPI */
3067                 if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3068                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3069                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3070                                 E1000_RXD_SPC_VLAN_MASK);
3071                 } else {
3072                         netif_rx(skb);
3073                 }
3074 #endif /* CONFIG_E1000_NAPI */
3075                 netdev->last_rx = jiffies;
3076
3077 next_desc:
3078                 rx_desc->wb.middle.status_error &= ~0xFF;
3079                 buffer_info->skb = NULL;
3080                 if(unlikely(++i == rx_ring->count)) i = 0;
3081
3082                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3083                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3084         }
3085         rx_ring->next_to_clean = i;
3086         adapter->alloc_rx_buf(adapter);
3087
3088         return cleaned;
3089 }
3090
3091 /**
3092  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3093  * @adapter: address of board private structure
3094  **/
3095
3096 static void
3097 e1000_alloc_rx_buffers(struct e1000_adapter *adapter)
3098 {
3099         struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
3100         struct net_device *netdev = adapter->netdev;
3101         struct pci_dev *pdev = adapter->pdev;
3102         struct e1000_rx_desc *rx_desc;
3103         struct e1000_buffer *buffer_info;
3104         struct sk_buff *skb;
3105         unsigned int i;
3106         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
3107
3108         i = rx_ring->next_to_use;
3109         buffer_info = &rx_ring->buffer_info[i];
3110
3111         while(!buffer_info->skb) {
3112                 skb = dev_alloc_skb(bufsz);
3113
3114                 if(unlikely(!skb)) {
3115                         /* Better luck next round */
3116                         break;
3117                 }
3118
3119                 /* Fix for errata 23, can't cross 64kB boundary */
3120                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3121                         struct sk_buff *oldskb = skb;
3122                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
3123                                              "at %p\n", bufsz, skb->data);
3124                         /* Try again, without freeing the previous */
3125                         skb = dev_alloc_skb(bufsz);
3126                         /* Failed allocation, critical failure */
3127                         if (!skb) {
3128                                 dev_kfree_skb(oldskb);
3129                                 break;
3130                         }
3131
3132                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3133                                 /* give up */
3134                                 dev_kfree_skb(skb);
3135                                 dev_kfree_skb(oldskb);
3136                                 break; /* while !buffer_info->skb */
3137                         } else {
3138                                 /* Use new allocation */
3139                                 dev_kfree_skb(oldskb);
3140                         }
3141                 }
3142                 /* Make buffer alignment 2 beyond a 16 byte boundary
3143                  * this will result in a 16 byte aligned IP header after
3144                  * the 14 byte MAC header is removed
3145                  */
3146                 skb_reserve(skb, NET_IP_ALIGN);
3147
3148                 skb->dev = netdev;
3149
3150                 buffer_info->skb = skb;
3151                 buffer_info->length = adapter->rx_buffer_len;
3152                 buffer_info->dma = pci_map_single(pdev,
3153                                                   skb->data,
3154                                                   adapter->rx_buffer_len,
3155                                                   PCI_DMA_FROMDEVICE);
3156
3157                 /* Fix for errata 23, can't cross 64kB boundary */
3158                 if (!e1000_check_64k_bound(adapter,
3159                                         (void *)(unsigned long)buffer_info->dma,
3160                                         adapter->rx_buffer_len)) {
3161                         DPRINTK(RX_ERR, ERR,
3162                                 "dma align check failed: %u bytes at %p\n",
3163                                 adapter->rx_buffer_len,
3164                                 (void *)(unsigned long)buffer_info->dma);
3165                         dev_kfree_skb(skb);
3166                         buffer_info->skb = NULL;
3167
3168                         pci_unmap_single(pdev, buffer_info->dma,
3169                                          adapter->rx_buffer_len,
3170                                          PCI_DMA_FROMDEVICE);
3171
3172                         break; /* while !buffer_info->skb */
3173                 }
3174                 rx_desc = E1000_RX_DESC(*rx_ring, i);
3175                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3176
3177                 if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
3178                         /* Force memory writes to complete before letting h/w
3179                          * know there are new descriptors to fetch.  (Only
3180                          * applicable for weak-ordered memory model archs,
3181                          * such as IA-64). */
3182                         wmb();
3183                         E1000_WRITE_REG(&adapter->hw, RDT, i);
3184                 }
3185
3186                 if(unlikely(++i == rx_ring->count)) i = 0;
3187                 buffer_info = &rx_ring->buffer_info[i];
3188         }
3189
3190         rx_ring->next_to_use = i;
3191 }
3192
3193 /**
3194  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
3195  * @adapter: address of board private structure
3196  **/
3197
3198 static void
3199 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter)
3200 {
3201         struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
3202         struct net_device *netdev = adapter->netdev;
3203         struct pci_dev *pdev = adapter->pdev;
3204         union e1000_rx_desc_packet_split *rx_desc;
3205         struct e1000_buffer *buffer_info;
3206         struct e1000_ps_page *ps_page;
3207         struct e1000_ps_page_dma *ps_page_dma;
3208         struct sk_buff *skb;
3209         unsigned int i, j;
3210
3211         i = rx_ring->next_to_use;
3212         buffer_info = &rx_ring->buffer_info[i];
3213         ps_page = &rx_ring->ps_page[i];
3214         ps_page_dma = &rx_ring->ps_page_dma[i];
3215
3216         while(!buffer_info->skb) {
3217                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3218
3219                 for(j = 0; j < PS_PAGE_BUFFERS; j++) {
3220                         if(unlikely(!ps_page->ps_page[j])) {
3221                                 ps_page->ps_page[j] =
3222                                         alloc_page(GFP_ATOMIC);
3223                                 if(unlikely(!ps_page->ps_page[j]))
3224                                         goto no_buffers;
3225                                 ps_page_dma->ps_page_dma[j] =
3226                                         pci_map_page(pdev,
3227                                                      ps_page->ps_page[j],
3228                                                      0, PAGE_SIZE,
3229                                                      PCI_DMA_FROMDEVICE);
3230                         }
3231                         /* Refresh the desc even if buffer_addrs didn't
3232                          * change because each write-back erases this info.
3233                          */
3234                         rx_desc->read.buffer_addr[j+1] =
3235                                 cpu_to_le64(ps_page_dma->ps_page_dma[j]);
3236                 }
3237
3238                 skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
3239
3240                 if(unlikely(!skb))
3241                         break;
3242
3243                 /* Make buffer alignment 2 beyond a 16 byte boundary
3244                  * this will result in a 16 byte aligned IP header after
3245                  * the 14 byte MAC header is removed
3246                  */
3247                 skb_reserve(skb, NET_IP_ALIGN);
3248
3249                 skb->dev = netdev;
3250
3251                 buffer_info->skb = skb;
3252                 buffer_info->length = adapter->rx_ps_bsize0;
3253                 buffer_info->dma = pci_map_single(pdev, skb->data,
3254                                                   adapter->rx_ps_bsize0,
3255                                                   PCI_DMA_FROMDEVICE);
3256
3257                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
3258
3259                 if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
3260                         /* Force memory writes to complete before letting h/w
3261                          * know there are new descriptors to fetch.  (Only
3262                          * applicable for weak-ordered memory model archs,
3263                          * such as IA-64). */
3264                         wmb();
3265                         /* Hardware increments by 16 bytes, but packet split
3266                          * descriptors are 32 bytes...so we increment tail
3267                          * twice as much.
3268                          */
3269                         E1000_WRITE_REG(&adapter->hw, RDT, i<<1);
3270                 }
3271
3272                 if(unlikely(++i == rx_ring->count)) i = 0;
3273                 buffer_info = &rx_ring->buffer_info[i];
3274                 ps_page = &rx_ring->ps_page[i];
3275                 ps_page_dma = &rx_ring->ps_page_dma[i];
3276         }
3277
3278 no_buffers:
3279         rx_ring->next_to_use = i;
3280 }
3281
3282 /**
3283  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
3284  * @adapter:
3285  **/
3286
3287 static void
3288 e1000_smartspeed(struct e1000_adapter *adapter)
3289 {
3290         uint16_t phy_status;
3291         uint16_t phy_ctrl;
3292
3293         if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
3294            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
3295                 return;
3296
3297         if(adapter->smartspeed == 0) {
3298                 /* If Master/Slave config fault is asserted twice,
3299                  * we assume back-to-back */
3300                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
3301                 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
3302                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
3303                 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
3304                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
3305                 if(phy_ctrl & CR_1000T_MS_ENABLE) {
3306                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
3307                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
3308                                             phy_ctrl);
3309                         adapter->smartspeed++;
3310                         if(!e1000_phy_setup_autoneg(&adapter->hw) &&
3311                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
3312                                                &phy_ctrl)) {
3313                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3314                                              MII_CR_RESTART_AUTO_NEG);
3315                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
3316                                                     phy_ctrl);
3317                         }
3318                 }
3319                 return;
3320         } else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
3321                 /* If still no link, perhaps using 2/3 pair cable */
3322                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
3323                 phy_ctrl |= CR_1000T_MS_ENABLE;
3324                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
3325                 if(!e1000_phy_setup_autoneg(&adapter->hw) &&
3326                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
3327                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3328                                      MII_CR_RESTART_AUTO_NEG);
3329                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
3330                 }
3331         }
3332         /* Restart process after E1000_SMARTSPEED_MAX iterations */
3333         if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
3334                 adapter->smartspeed = 0;
3335 }
3336
3337 /**
3338  * e1000_ioctl -
3339  * @netdev:
3340  * @ifreq:
3341  * @cmd:
3342  **/
3343
3344 static int
3345 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3346 {
3347         switch (cmd) {
3348         case SIOCGMIIPHY:
3349         case SIOCGMIIREG:
3350         case SIOCSMIIREG:
3351                 return e1000_mii_ioctl(netdev, ifr, cmd);
3352         default:
3353                 return -EOPNOTSUPP;
3354         }
3355 }
3356
3357 /**
3358  * e1000_mii_ioctl -
3359  * @netdev:
3360  * @ifreq:
3361  * @cmd:
3362  **/
3363
3364 static int
3365 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3366 {
3367         struct e1000_adapter *adapter = netdev_priv(netdev);
3368         struct mii_ioctl_data *data = if_mii(ifr);
3369         int retval;
3370         uint16_t mii_reg;
3371         uint16_t spddplx;
3372         unsigned long flags;
3373
3374         if(adapter->hw.media_type != e1000_media_type_copper)
3375                 return -EOPNOTSUPP;
3376
3377         switch (cmd) {
3378         case SIOCGMIIPHY:
3379                 data->phy_id = adapter->hw.phy_addr;
3380                 break;
3381         case SIOCGMIIREG:
3382                 if(!capable(CAP_NET_ADMIN))
3383                         return -EPERM;
3384                 spin_lock_irqsave(&adapter->stats_lock, flags);
3385                 if(e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
3386                                    &data->val_out)) {
3387                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3388                         return -EIO;
3389                 }
3390                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3391                 break;
3392         case SIOCSMIIREG:
3393                 if(!capable(CAP_NET_ADMIN))
3394                         return -EPERM;
3395                 if(data->reg_num & ~(0x1F))
3396                         return -EFAULT;
3397                 mii_reg = data->val_in;
3398                 spin_lock_irqsave(&adapter->stats_lock, flags);
3399                 if(e1000_write_phy_reg(&adapter->hw, data->reg_num,
3400                                         mii_reg)) {
3401                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3402                         return -EIO;
3403                 }
3404                 if(adapter->hw.phy_type == e1000_phy_m88) {
3405                         switch (data->reg_num) {
3406                         case PHY_CTRL:
3407                                 if(mii_reg & MII_CR_POWER_DOWN)
3408                                         break;
3409                                 if(mii_reg & MII_CR_AUTO_NEG_EN) {
3410                                         adapter->hw.autoneg = 1;
3411                                         adapter->hw.autoneg_advertised = 0x2F;
3412                                 } else {
3413                                         if (mii_reg & 0x40)
3414                                                 spddplx = SPEED_1000;
3415                                         else if (mii_reg & 0x2000)
3416                                                 spddplx = SPEED_100;
3417                                         else
3418                                                 spddplx = SPEED_10;
3419                                         spddplx += (mii_reg & 0x100)
3420                                                    ? FULL_DUPLEX :
3421                                                    HALF_DUPLEX;
3422                                         retval = e1000_set_spd_dplx(adapter,
3423                                                                     spddplx);
3424                                         if(retval) {
3425                                                 spin_unlock_irqrestore(
3426                                                         &adapter->stats_lock, 
3427                                                         flags);
3428                                                 return retval;
3429                                         }
3430                                 }
3431                                 if(netif_running(adapter->netdev)) {
3432                                         e1000_down(adapter);
3433                                         e1000_up(adapter);
3434                                 } else
3435                                         e1000_reset(adapter);
3436                                 break;
3437                         case M88E1000_PHY_SPEC_CTRL:
3438                         case M88E1000_EXT_PHY_SPEC_CTRL:
3439                                 if(e1000_phy_reset(&adapter->hw)) {
3440                                         spin_unlock_irqrestore(
3441                                                 &adapter->stats_lock, flags);
3442                                         return -EIO;
3443                                 }
3444                                 break;
3445                         }
3446                 } else {
3447                         switch (data->reg_num) {
3448                         case PHY_CTRL:
3449                                 if(mii_reg & MII_CR_POWER_DOWN)
3450                                         break;
3451                                 if(netif_running(adapter->netdev)) {
3452                                         e1000_down(adapter);
3453                                         e1000_up(adapter);
3454                                 } else
3455                                         e1000_reset(adapter);
3456                                 break;
3457                         }
3458                 }
3459                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3460                 break;
3461         default:
3462                 return -EOPNOTSUPP;
3463         }
3464         return E1000_SUCCESS;
3465 }
3466
3467 void
3468 e1000_pci_set_mwi(struct e1000_hw *hw)
3469 {
3470         struct e1000_adapter *adapter = hw->back;
3471         int ret_val = pci_set_mwi(adapter->pdev);
3472
3473         if(ret_val)
3474                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
3475 }
3476
3477 void
3478 e1000_pci_clear_mwi(struct e1000_hw *hw)
3479 {
3480         struct e1000_adapter *adapter = hw->back;
3481
3482         pci_clear_mwi(adapter->pdev);
3483 }
3484
3485 void
3486 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
3487 {
3488         struct e1000_adapter *adapter = hw->back;
3489
3490         pci_read_config_word(adapter->pdev, reg, value);
3491 }
3492
3493 void
3494 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
3495 {
3496         struct e1000_adapter *adapter = hw->back;
3497
3498         pci_write_config_word(adapter->pdev, reg, *value);
3499 }
3500
3501 uint32_t
3502 e1000_io_read(struct e1000_hw *hw, unsigned long port)
3503 {
3504         return inl(port);
3505 }
3506
3507 void
3508 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
3509 {
3510         outl(value, port);
3511 }
3512
3513 static void
3514 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
3515 {
3516         struct e1000_adapter *adapter = netdev_priv(netdev);
3517         uint32_t ctrl, rctl;
3518
3519         e1000_irq_disable(adapter);
3520         adapter->vlgrp = grp;
3521
3522         if(grp) {
3523                 /* enable VLAN tag insert/strip */
3524                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3525                 ctrl |= E1000_CTRL_VME;
3526                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3527
3528                 /* enable VLAN receive filtering */
3529                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
3530                 rctl |= E1000_RCTL_VFE;
3531                 rctl &= ~E1000_RCTL_CFIEN;
3532                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
3533                 e1000_update_mng_vlan(adapter);
3534         } else {
3535                 /* disable VLAN tag insert/strip */
3536                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3537                 ctrl &= ~E1000_CTRL_VME;
3538                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3539
3540                 /* disable VLAN filtering */
3541                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
3542                 rctl &= ~E1000_RCTL_VFE;
3543                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
3544                 if(adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
3545                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3546                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3547                 }
3548         }
3549
3550         e1000_irq_enable(adapter);
3551 }
3552
3553 static void
3554 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
3555 {
3556         struct e1000_adapter *adapter = netdev_priv(netdev);
3557         uint32_t vfta, index;
3558         if((adapter->hw.mng_cookie.status &
3559                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
3560                 (vid == adapter->mng_vlan_id))
3561                 return;
3562         /* add VID to filter table */
3563         index = (vid >> 5) & 0x7F;
3564         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
3565         vfta |= (1 << (vid & 0x1F));
3566         e1000_write_vfta(&adapter->hw, index, vfta);
3567 }
3568
3569 static void
3570 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
3571 {
3572         struct e1000_adapter *adapter = netdev_priv(netdev);
3573         uint32_t vfta, index;
3574
3575         e1000_irq_disable(adapter);
3576
3577         if(adapter->vlgrp)
3578                 adapter->vlgrp->vlan_devices[vid] = NULL;
3579
3580         e1000_irq_enable(adapter);
3581
3582         if((adapter->hw.mng_cookie.status &
3583                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
3584                 (vid == adapter->mng_vlan_id))
3585                 return;
3586         /* remove VID from filter table */
3587         index = (vid >> 5) & 0x7F;
3588         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
3589         vfta &= ~(1 << (vid & 0x1F));
3590         e1000_write_vfta(&adapter->hw, index, vfta);
3591 }
3592
3593 static void
3594 e1000_restore_vlan(struct e1000_adapter *adapter)
3595 {
3596         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
3597
3598         if(adapter->vlgrp) {
3599                 uint16_t vid;
3600                 for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
3601                         if(!adapter->vlgrp->vlan_devices[vid])
3602                                 continue;
3603                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
3604                 }
3605         }
3606 }
3607
3608 int
3609 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
3610 {
3611         adapter->hw.autoneg = 0;
3612
3613         /* Fiber NICs only allow 1000 gbps Full duplex */
3614         if((adapter->hw.media_type == e1000_media_type_fiber) &&
3615                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
3616                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
3617                 return -EINVAL;
3618         }
3619
3620         switch(spddplx) {
3621         case SPEED_10 + DUPLEX_HALF:
3622                 adapter->hw.forced_speed_duplex = e1000_10_half;
3623                 break;
3624         case SPEED_10 + DUPLEX_FULL:
3625                 adapter->hw.forced_speed_duplex = e1000_10_full;
3626                 break;
3627         case SPEED_100 + DUPLEX_HALF:
3628                 adapter->hw.forced_speed_duplex = e1000_100_half;
3629                 break;
3630         case SPEED_100 + DUPLEX_FULL:
3631                 adapter->hw.forced_speed_duplex = e1000_100_full;
3632                 break;
3633         case SPEED_1000 + DUPLEX_FULL:
3634                 adapter->hw.autoneg = 1;
3635                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
3636                 break;
3637         case SPEED_1000 + DUPLEX_HALF: /* not supported */
3638         default:
3639                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
3640                 return -EINVAL;
3641         }
3642         return 0;
3643 }
3644
3645 static int
3646 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
3647 {
3648         struct net_device *netdev = pci_get_drvdata(pdev);
3649         struct e1000_adapter *adapter = netdev_priv(netdev);
3650         uint32_t ctrl, ctrl_ext, rctl, manc, status, swsm;
3651         uint32_t wufc = adapter->wol;
3652
3653         netif_device_detach(netdev);
3654
3655         if(netif_running(netdev))
3656                 e1000_down(adapter);
3657
3658         status = E1000_READ_REG(&adapter->hw, STATUS);
3659         if(status & E1000_STATUS_LU)
3660                 wufc &= ~E1000_WUFC_LNKC;
3661
3662         if(wufc) {
3663                 e1000_setup_rctl(adapter);
3664                 e1000_set_multi(netdev);
3665
3666                 /* turn on all-multi mode if wake on multicast is enabled */
3667                 if(adapter->wol & E1000_WUFC_MC) {
3668                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
3669                         rctl |= E1000_RCTL_MPE;
3670                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
3671                 }
3672
3673                 if(adapter->hw.mac_type >= e1000_82540) {
3674                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3675                         /* advertise wake from D3Cold */
3676                         #define E1000_CTRL_ADVD3WUC 0x00100000
3677                         /* phy power management enable */
3678                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3679                         ctrl |= E1000_CTRL_ADVD3WUC |
3680                                 E1000_CTRL_EN_PHY_PWR_MGMT;
3681                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3682                 }
3683
3684                 if(adapter->hw.media_type == e1000_media_type_fiber ||
3685                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
3686                         /* keep the laser running in D3 */
3687                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
3688                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3689                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
3690                 }
3691
3692                 /* Allow time for pending master requests to run */
3693                 e1000_disable_pciex_master(&adapter->hw);
3694
3695                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
3696                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
3697                 pci_enable_wake(pdev, 3, 1);
3698                 pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
3699         } else {
3700                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
3701                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
3702                 pci_enable_wake(pdev, 3, 0);
3703                 pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
3704         }
3705
3706         pci_save_state(pdev);
3707
3708         if(adapter->hw.mac_type >= e1000_82540 &&
3709            adapter->hw.media_type == e1000_media_type_copper) {
3710                 manc = E1000_READ_REG(&adapter->hw, MANC);
3711                 if(manc & E1000_MANC_SMBUS_EN) {
3712                         manc |= E1000_MANC_ARP_EN;
3713                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
3714                         pci_enable_wake(pdev, 3, 1);
3715                         pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
3716                 }
3717         }
3718
3719         switch(adapter->hw.mac_type) {
3720         case e1000_82573:
3721                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
3722                 E1000_WRITE_REG(&adapter->hw, SWSM,
3723                                 swsm & ~E1000_SWSM_DRV_LOAD);
3724                 break;
3725         default:
3726                 break;
3727         }
3728
3729         pci_disable_device(pdev);
3730         pci_set_power_state(pdev, pci_choose_state(pdev, state));
3731
3732         return 0;
3733 }
3734
3735 #ifdef CONFIG_PM
3736 static int
3737 e1000_resume(struct pci_dev *pdev)
3738 {
3739         struct net_device *netdev = pci_get_drvdata(pdev);
3740         struct e1000_adapter *adapter = netdev_priv(netdev);
3741         uint32_t manc, ret_val, swsm;
3742
3743         pci_set_power_state(pdev, PCI_D0);
3744         pci_restore_state(pdev);
3745         ret_val = pci_enable_device(pdev);
3746         pci_set_master(pdev);
3747
3748         pci_enable_wake(pdev, PCI_D3hot, 0);
3749         pci_enable_wake(pdev, PCI_D3cold, 0);
3750
3751         e1000_reset(adapter);
3752         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
3753
3754         if(netif_running(netdev))
3755                 e1000_up(adapter);
3756
3757         netif_device_attach(netdev);
3758
3759         if(adapter->hw.mac_type >= e1000_82540 &&
3760            adapter->hw.media_type == e1000_media_type_copper) {
3761                 manc = E1000_READ_REG(&adapter->hw, MANC);
3762                 manc &= ~(E1000_MANC_ARP_EN);
3763                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
3764         }
3765
3766         switch(adapter->hw.mac_type) {
3767         case e1000_82573:
3768                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
3769                 E1000_WRITE_REG(&adapter->hw, SWSM,
3770                                 swsm | E1000_SWSM_DRV_LOAD);
3771                 break;
3772         default:
3773                 break;
3774         }
3775
3776         return 0;
3777 }
3778 #endif
3779 #ifdef CONFIG_NET_POLL_CONTROLLER
3780 /*
3781  * Polling 'interrupt' - used by things like netconsole to send skbs
3782  * without having to re-enable interrupts. It's not called while
3783  * the interrupt routine is executing.
3784  */
3785 static void
3786 e1000_netpoll(struct net_device *netdev)
3787 {
3788         struct e1000_adapter *adapter = netdev_priv(netdev);
3789         disable_irq(adapter->pdev->irq);
3790         e1000_intr(adapter->pdev->irq, netdev, NULL);
3791         e1000_clean_tx_irq(adapter);
3792         enable_irq(adapter->pdev->irq);
3793 }
3794 #endif
3795
3796 /* e1000_main.c */