netdev: Remove redundant checks for CAP_NET_ADMIN in MDIO implementations
[safe/jmp/linux-2.6] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.21-k3-NAPI"
35 const char e1000_driver_version[] = DRV_VERSION;
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
37
38 /* e1000_pci_tbl - PCI Device ID Table
39  *
40  * Last entry must be all 0s
41  *
42  * Macro expands to...
43  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
44  */
45 static struct pci_device_id e1000_pci_tbl[] = {
46         INTEL_E1000_ETHERNET_DEVICE(0x1000),
47         INTEL_E1000_ETHERNET_DEVICE(0x1001),
48         INTEL_E1000_ETHERNET_DEVICE(0x1004),
49         INTEL_E1000_ETHERNET_DEVICE(0x1008),
50         INTEL_E1000_ETHERNET_DEVICE(0x1009),
51         INTEL_E1000_ETHERNET_DEVICE(0x100C),
52         INTEL_E1000_ETHERNET_DEVICE(0x100D),
53         INTEL_E1000_ETHERNET_DEVICE(0x100E),
54         INTEL_E1000_ETHERNET_DEVICE(0x100F),
55         INTEL_E1000_ETHERNET_DEVICE(0x1010),
56         INTEL_E1000_ETHERNET_DEVICE(0x1011),
57         INTEL_E1000_ETHERNET_DEVICE(0x1012),
58         INTEL_E1000_ETHERNET_DEVICE(0x1013),
59         INTEL_E1000_ETHERNET_DEVICE(0x1014),
60         INTEL_E1000_ETHERNET_DEVICE(0x1015),
61         INTEL_E1000_ETHERNET_DEVICE(0x1016),
62         INTEL_E1000_ETHERNET_DEVICE(0x1017),
63         INTEL_E1000_ETHERNET_DEVICE(0x1018),
64         INTEL_E1000_ETHERNET_DEVICE(0x1019),
65         INTEL_E1000_ETHERNET_DEVICE(0x101A),
66         INTEL_E1000_ETHERNET_DEVICE(0x101D),
67         INTEL_E1000_ETHERNET_DEVICE(0x101E),
68         INTEL_E1000_ETHERNET_DEVICE(0x1026),
69         INTEL_E1000_ETHERNET_DEVICE(0x1027),
70         INTEL_E1000_ETHERNET_DEVICE(0x1028),
71         INTEL_E1000_ETHERNET_DEVICE(0x1075),
72         INTEL_E1000_ETHERNET_DEVICE(0x1076),
73         INTEL_E1000_ETHERNET_DEVICE(0x1077),
74         INTEL_E1000_ETHERNET_DEVICE(0x1078),
75         INTEL_E1000_ETHERNET_DEVICE(0x1079),
76         INTEL_E1000_ETHERNET_DEVICE(0x107A),
77         INTEL_E1000_ETHERNET_DEVICE(0x107B),
78         INTEL_E1000_ETHERNET_DEVICE(0x107C),
79         INTEL_E1000_ETHERNET_DEVICE(0x108A),
80         INTEL_E1000_ETHERNET_DEVICE(0x1099),
81         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82         /* required last entry */
83         {0,}
84 };
85
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
87
88 int e1000_up(struct e1000_adapter *adapter);
89 void e1000_down(struct e1000_adapter *adapter);
90 void e1000_reinit_locked(struct e1000_adapter *adapter);
91 void e1000_reset(struct e1000_adapter *adapter);
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
98                              struct e1000_tx_ring *txdr);
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
100                              struct e1000_rx_ring *rxdr);
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
102                              struct e1000_tx_ring *tx_ring);
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
104                              struct e1000_rx_ring *rx_ring);
105 void e1000_update_stats(struct e1000_adapter *adapter);
106
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
110 static void __devexit e1000_remove(struct pci_dev *pdev);
111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
112 static int e1000_sw_init(struct e1000_adapter *adapter);
113 static int e1000_open(struct net_device *netdev);
114 static int e1000_close(struct net_device *netdev);
115 static void e1000_configure_tx(struct e1000_adapter *adapter);
116 static void e1000_configure_rx(struct e1000_adapter *adapter);
117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
121                                 struct e1000_tx_ring *tx_ring);
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
123                                 struct e1000_rx_ring *rx_ring);
124 static void e1000_set_rx_mode(struct net_device *netdev);
125 static void e1000_update_phy_info(unsigned long data);
126 static void e1000_watchdog(unsigned long data);
127 static void e1000_82547_tx_fifo_stall(unsigned long data);
128 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
129                                     struct net_device *netdev);
130 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
131 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
132 static int e1000_set_mac(struct net_device *netdev, void *p);
133 static irqreturn_t e1000_intr(int irq, void *data);
134 static irqreturn_t e1000_intr_msi(int irq, void *data);
135 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
136                                struct e1000_tx_ring *tx_ring);
137 static int e1000_clean(struct napi_struct *napi, int budget);
138 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
139                                struct e1000_rx_ring *rx_ring,
140                                int *work_done, int work_to_do);
141 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
142                                      struct e1000_rx_ring *rx_ring,
143                                      int *work_done, int work_to_do);
144 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
145                                    struct e1000_rx_ring *rx_ring,
146                                    int cleaned_count);
147 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
148                                          struct e1000_rx_ring *rx_ring,
149                                          int cleaned_count);
150 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
151 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
152                            int cmd);
153 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
154 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
155 static void e1000_tx_timeout(struct net_device *dev);
156 static void e1000_reset_task(struct work_struct *work);
157 static void e1000_smartspeed(struct e1000_adapter *adapter);
158 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
159                                        struct sk_buff *skb);
160
161 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
162 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
163 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
164 static void e1000_restore_vlan(struct e1000_adapter *adapter);
165
166 #ifdef CONFIG_PM
167 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
168 static int e1000_resume(struct pci_dev *pdev);
169 #endif
170 static void e1000_shutdown(struct pci_dev *pdev);
171
172 #ifdef CONFIG_NET_POLL_CONTROLLER
173 /* for netdump / net console */
174 static void e1000_netpoll (struct net_device *netdev);
175 #endif
176
177 #define COPYBREAK_DEFAULT 256
178 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
179 module_param(copybreak, uint, 0644);
180 MODULE_PARM_DESC(copybreak,
181         "Maximum size of packet that is copied to a new buffer on receive");
182
183 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
184                      pci_channel_state_t state);
185 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
186 static void e1000_io_resume(struct pci_dev *pdev);
187
188 static struct pci_error_handlers e1000_err_handler = {
189         .error_detected = e1000_io_error_detected,
190         .slot_reset = e1000_io_slot_reset,
191         .resume = e1000_io_resume,
192 };
193
194 static struct pci_driver e1000_driver = {
195         .name     = e1000_driver_name,
196         .id_table = e1000_pci_tbl,
197         .probe    = e1000_probe,
198         .remove   = __devexit_p(e1000_remove),
199 #ifdef CONFIG_PM
200         /* Power Managment Hooks */
201         .suspend  = e1000_suspend,
202         .resume   = e1000_resume,
203 #endif
204         .shutdown = e1000_shutdown,
205         .err_handler = &e1000_err_handler
206 };
207
208 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
209 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
210 MODULE_LICENSE("GPL");
211 MODULE_VERSION(DRV_VERSION);
212
213 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
214 module_param(debug, int, 0);
215 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
216
217 /**
218  * e1000_init_module - Driver Registration Routine
219  *
220  * e1000_init_module is the first routine called when the driver is
221  * loaded. All it does is register with the PCI subsystem.
222  **/
223
224 static int __init e1000_init_module(void)
225 {
226         int ret;
227         printk(KERN_INFO "%s - version %s\n",
228                e1000_driver_string, e1000_driver_version);
229
230         printk(KERN_INFO "%s\n", e1000_copyright);
231
232         ret = pci_register_driver(&e1000_driver);
233         if (copybreak != COPYBREAK_DEFAULT) {
234                 if (copybreak == 0)
235                         printk(KERN_INFO "e1000: copybreak disabled\n");
236                 else
237                         printk(KERN_INFO "e1000: copybreak enabled for "
238                                "packets <= %u bytes\n", copybreak);
239         }
240         return ret;
241 }
242
243 module_init(e1000_init_module);
244
245 /**
246  * e1000_exit_module - Driver Exit Cleanup Routine
247  *
248  * e1000_exit_module is called just before the driver is removed
249  * from memory.
250  **/
251
252 static void __exit e1000_exit_module(void)
253 {
254         pci_unregister_driver(&e1000_driver);
255 }
256
257 module_exit(e1000_exit_module);
258
259 static int e1000_request_irq(struct e1000_adapter *adapter)
260 {
261         struct e1000_hw *hw = &adapter->hw;
262         struct net_device *netdev = adapter->netdev;
263         irq_handler_t handler = e1000_intr;
264         int irq_flags = IRQF_SHARED;
265         int err;
266
267         if (hw->mac_type >= e1000_82571) {
268                 adapter->have_msi = !pci_enable_msi(adapter->pdev);
269                 if (adapter->have_msi) {
270                         handler = e1000_intr_msi;
271                         irq_flags = 0;
272                 }
273         }
274
275         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
276                           netdev);
277         if (err) {
278                 if (adapter->have_msi)
279                         pci_disable_msi(adapter->pdev);
280                 DPRINTK(PROBE, ERR,
281                         "Unable to allocate interrupt Error: %d\n", err);
282         }
283
284         return err;
285 }
286
287 static void e1000_free_irq(struct e1000_adapter *adapter)
288 {
289         struct net_device *netdev = adapter->netdev;
290
291         free_irq(adapter->pdev->irq, netdev);
292
293         if (adapter->have_msi)
294                 pci_disable_msi(adapter->pdev);
295 }
296
297 /**
298  * e1000_irq_disable - Mask off interrupt generation on the NIC
299  * @adapter: board private structure
300  **/
301
302 static void e1000_irq_disable(struct e1000_adapter *adapter)
303 {
304         struct e1000_hw *hw = &adapter->hw;
305
306         ew32(IMC, ~0);
307         E1000_WRITE_FLUSH();
308         synchronize_irq(adapter->pdev->irq);
309 }
310
311 /**
312  * e1000_irq_enable - Enable default interrupt generation settings
313  * @adapter: board private structure
314  **/
315
316 static void e1000_irq_enable(struct e1000_adapter *adapter)
317 {
318         struct e1000_hw *hw = &adapter->hw;
319
320         ew32(IMS, IMS_ENABLE_MASK);
321         E1000_WRITE_FLUSH();
322 }
323
324 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
325 {
326         struct e1000_hw *hw = &adapter->hw;
327         struct net_device *netdev = adapter->netdev;
328         u16 vid = hw->mng_cookie.vlan_id;
329         u16 old_vid = adapter->mng_vlan_id;
330         if (adapter->vlgrp) {
331                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
332                         if (hw->mng_cookie.status &
333                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
334                                 e1000_vlan_rx_add_vid(netdev, vid);
335                                 adapter->mng_vlan_id = vid;
336                         } else
337                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
338
339                         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
340                                         (vid != old_vid) &&
341                             !vlan_group_get_device(adapter->vlgrp, old_vid))
342                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
343                 } else
344                         adapter->mng_vlan_id = vid;
345         }
346 }
347
348 /**
349  * e1000_release_hw_control - release control of the h/w to f/w
350  * @adapter: address of board private structure
351  *
352  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
353  * For ASF and Pass Through versions of f/w this means that the
354  * driver is no longer loaded. For AMT version (only with 82573) i
355  * of the f/w this means that the network i/f is closed.
356  *
357  **/
358
359 static void e1000_release_hw_control(struct e1000_adapter *adapter)
360 {
361         u32 ctrl_ext;
362         u32 swsm;
363         struct e1000_hw *hw = &adapter->hw;
364
365         /* Let firmware taken over control of h/w */
366         switch (hw->mac_type) {
367         case e1000_82573:
368                 swsm = er32(SWSM);
369                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
370                 break;
371         case e1000_82571:
372         case e1000_82572:
373         case e1000_80003es2lan:
374         case e1000_ich8lan:
375                 ctrl_ext = er32(CTRL_EXT);
376                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
377                 break;
378         default:
379                 break;
380         }
381 }
382
383 /**
384  * e1000_get_hw_control - get control of the h/w from f/w
385  * @adapter: address of board private structure
386  *
387  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
388  * For ASF and Pass Through versions of f/w this means that
389  * the driver is loaded. For AMT version (only with 82573)
390  * of the f/w this means that the network i/f is open.
391  *
392  **/
393
394 static void e1000_get_hw_control(struct e1000_adapter *adapter)
395 {
396         u32 ctrl_ext;
397         u32 swsm;
398         struct e1000_hw *hw = &adapter->hw;
399
400         /* Let firmware know the driver has taken over */
401         switch (hw->mac_type) {
402         case e1000_82573:
403                 swsm = er32(SWSM);
404                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
405                 break;
406         case e1000_82571:
407         case e1000_82572:
408         case e1000_80003es2lan:
409         case e1000_ich8lan:
410                 ctrl_ext = er32(CTRL_EXT);
411                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
412                 break;
413         default:
414                 break;
415         }
416 }
417
418 static void e1000_init_manageability(struct e1000_adapter *adapter)
419 {
420         struct e1000_hw *hw = &adapter->hw;
421
422         if (adapter->en_mng_pt) {
423                 u32 manc = er32(MANC);
424
425                 /* disable hardware interception of ARP */
426                 manc &= ~(E1000_MANC_ARP_EN);
427
428                 /* enable receiving management packets to the host */
429                 /* this will probably generate destination unreachable messages
430                  * from the host OS, but the packets will be handled on SMBUS */
431                 if (hw->has_manc2h) {
432                         u32 manc2h = er32(MANC2H);
433
434                         manc |= E1000_MANC_EN_MNG2HOST;
435 #define E1000_MNG2HOST_PORT_623 (1 << 5)
436 #define E1000_MNG2HOST_PORT_664 (1 << 6)
437                         manc2h |= E1000_MNG2HOST_PORT_623;
438                         manc2h |= E1000_MNG2HOST_PORT_664;
439                         ew32(MANC2H, manc2h);
440                 }
441
442                 ew32(MANC, manc);
443         }
444 }
445
446 static void e1000_release_manageability(struct e1000_adapter *adapter)
447 {
448         struct e1000_hw *hw = &adapter->hw;
449
450         if (adapter->en_mng_pt) {
451                 u32 manc = er32(MANC);
452
453                 /* re-enable hardware interception of ARP */
454                 manc |= E1000_MANC_ARP_EN;
455
456                 if (hw->has_manc2h)
457                         manc &= ~E1000_MANC_EN_MNG2HOST;
458
459                 /* don't explicitly have to mess with MANC2H since
460                  * MANC has an enable disable that gates MANC2H */
461
462                 ew32(MANC, manc);
463         }
464 }
465
466 /**
467  * e1000_configure - configure the hardware for RX and TX
468  * @adapter = private board structure
469  **/
470 static void e1000_configure(struct e1000_adapter *adapter)
471 {
472         struct net_device *netdev = adapter->netdev;
473         int i;
474
475         e1000_set_rx_mode(netdev);
476
477         e1000_restore_vlan(adapter);
478         e1000_init_manageability(adapter);
479
480         e1000_configure_tx(adapter);
481         e1000_setup_rctl(adapter);
482         e1000_configure_rx(adapter);
483         /* call E1000_DESC_UNUSED which always leaves
484          * at least 1 descriptor unused to make sure
485          * next_to_use != next_to_clean */
486         for (i = 0; i < adapter->num_rx_queues; i++) {
487                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
488                 adapter->alloc_rx_buf(adapter, ring,
489                                       E1000_DESC_UNUSED(ring));
490         }
491
492         adapter->tx_queue_len = netdev->tx_queue_len;
493 }
494
495 int e1000_up(struct e1000_adapter *adapter)
496 {
497         struct e1000_hw *hw = &adapter->hw;
498
499         /* hardware has been reset, we need to reload some things */
500         e1000_configure(adapter);
501
502         clear_bit(__E1000_DOWN, &adapter->flags);
503
504         napi_enable(&adapter->napi);
505
506         e1000_irq_enable(adapter);
507
508         netif_wake_queue(adapter->netdev);
509
510         /* fire a link change interrupt to start the watchdog */
511         ew32(ICS, E1000_ICS_LSC);
512         return 0;
513 }
514
515 /**
516  * e1000_power_up_phy - restore link in case the phy was powered down
517  * @adapter: address of board private structure
518  *
519  * The phy may be powered down to save power and turn off link when the
520  * driver is unloaded and wake on lan is not enabled (among others)
521  * *** this routine MUST be followed by a call to e1000_reset ***
522  *
523  **/
524
525 void e1000_power_up_phy(struct e1000_adapter *adapter)
526 {
527         struct e1000_hw *hw = &adapter->hw;
528         u16 mii_reg = 0;
529
530         /* Just clear the power down bit to wake the phy back up */
531         if (hw->media_type == e1000_media_type_copper) {
532                 /* according to the manual, the phy will retain its
533                  * settings across a power-down/up cycle */
534                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
535                 mii_reg &= ~MII_CR_POWER_DOWN;
536                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
537         }
538 }
539
540 static void e1000_power_down_phy(struct e1000_adapter *adapter)
541 {
542         struct e1000_hw *hw = &adapter->hw;
543
544         /* Power down the PHY so no link is implied when interface is down *
545          * The PHY cannot be powered down if any of the following is true *
546          * (a) WoL is enabled
547          * (b) AMT is active
548          * (c) SoL/IDER session is active */
549         if (!adapter->wol && hw->mac_type >= e1000_82540 &&
550            hw->media_type == e1000_media_type_copper) {
551                 u16 mii_reg = 0;
552
553                 switch (hw->mac_type) {
554                 case e1000_82540:
555                 case e1000_82545:
556                 case e1000_82545_rev_3:
557                 case e1000_82546:
558                 case e1000_82546_rev_3:
559                 case e1000_82541:
560                 case e1000_82541_rev_2:
561                 case e1000_82547:
562                 case e1000_82547_rev_2:
563                         if (er32(MANC) & E1000_MANC_SMBUS_EN)
564                                 goto out;
565                         break;
566                 case e1000_82571:
567                 case e1000_82572:
568                 case e1000_82573:
569                 case e1000_80003es2lan:
570                 case e1000_ich8lan:
571                         if (e1000_check_mng_mode(hw) ||
572                             e1000_check_phy_reset_block(hw))
573                                 goto out;
574                         break;
575                 default:
576                         goto out;
577                 }
578                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
579                 mii_reg |= MII_CR_POWER_DOWN;
580                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
581                 mdelay(1);
582         }
583 out:
584         return;
585 }
586
587 void e1000_down(struct e1000_adapter *adapter)
588 {
589         struct e1000_hw *hw = &adapter->hw;
590         struct net_device *netdev = adapter->netdev;
591         u32 rctl, tctl;
592
593         /* signal that we're down so the interrupt handler does not
594          * reschedule our watchdog timer */
595         set_bit(__E1000_DOWN, &adapter->flags);
596
597         /* disable receives in the hardware */
598         rctl = er32(RCTL);
599         ew32(RCTL, rctl & ~E1000_RCTL_EN);
600         /* flush and sleep below */
601
602         /* can be netif_tx_disable when NETIF_F_LLTX is removed */
603         netif_stop_queue(netdev);
604
605         /* disable transmits in the hardware */
606         tctl = er32(TCTL);
607         tctl &= ~E1000_TCTL_EN;
608         ew32(TCTL, tctl);
609         /* flush both disables and wait for them to finish */
610         E1000_WRITE_FLUSH();
611         msleep(10);
612
613         napi_disable(&adapter->napi);
614
615         e1000_irq_disable(adapter);
616
617         del_timer_sync(&adapter->tx_fifo_stall_timer);
618         del_timer_sync(&adapter->watchdog_timer);
619         del_timer_sync(&adapter->phy_info_timer);
620
621         netdev->tx_queue_len = adapter->tx_queue_len;
622         adapter->link_speed = 0;
623         adapter->link_duplex = 0;
624         netif_carrier_off(netdev);
625
626         e1000_reset(adapter);
627         e1000_clean_all_tx_rings(adapter);
628         e1000_clean_all_rx_rings(adapter);
629 }
630
631 void e1000_reinit_locked(struct e1000_adapter *adapter)
632 {
633         WARN_ON(in_interrupt());
634         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
635                 msleep(1);
636         e1000_down(adapter);
637         e1000_up(adapter);
638         clear_bit(__E1000_RESETTING, &adapter->flags);
639 }
640
641 void e1000_reset(struct e1000_adapter *adapter)
642 {
643         struct e1000_hw *hw = &adapter->hw;
644         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
645         bool legacy_pba_adjust = false;
646         u16 hwm;
647
648         /* Repartition Pba for greater than 9k mtu
649          * To take effect CTRL.RST is required.
650          */
651
652         switch (hw->mac_type) {
653         case e1000_82542_rev2_0:
654         case e1000_82542_rev2_1:
655         case e1000_82543:
656         case e1000_82544:
657         case e1000_82540:
658         case e1000_82541:
659         case e1000_82541_rev_2:
660                 legacy_pba_adjust = true;
661                 pba = E1000_PBA_48K;
662                 break;
663         case e1000_82545:
664         case e1000_82545_rev_3:
665         case e1000_82546:
666         case e1000_82546_rev_3:
667                 pba = E1000_PBA_48K;
668                 break;
669         case e1000_82547:
670         case e1000_82547_rev_2:
671                 legacy_pba_adjust = true;
672                 pba = E1000_PBA_30K;
673                 break;
674         case e1000_82571:
675         case e1000_82572:
676         case e1000_80003es2lan:
677                 pba = E1000_PBA_38K;
678                 break;
679         case e1000_82573:
680                 pba = E1000_PBA_20K;
681                 break;
682         case e1000_ich8lan:
683                 pba = E1000_PBA_8K;
684         case e1000_undefined:
685         case e1000_num_macs:
686                 break;
687         }
688
689         if (legacy_pba_adjust) {
690                 if (hw->max_frame_size > E1000_RXBUFFER_8192)
691                         pba -= 8; /* allocate more FIFO for Tx */
692
693                 if (hw->mac_type == e1000_82547) {
694                         adapter->tx_fifo_head = 0;
695                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
696                         adapter->tx_fifo_size =
697                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
698                         atomic_set(&adapter->tx_fifo_stall, 0);
699                 }
700         } else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
701                 /* adjust PBA for jumbo frames */
702                 ew32(PBA, pba);
703
704                 /* To maintain wire speed transmits, the Tx FIFO should be
705                  * large enough to accommodate two full transmit packets,
706                  * rounded up to the next 1KB and expressed in KB.  Likewise,
707                  * the Rx FIFO should be large enough to accommodate at least
708                  * one full receive packet and is similarly rounded up and
709                  * expressed in KB. */
710                 pba = er32(PBA);
711                 /* upper 16 bits has Tx packet buffer allocation size in KB */
712                 tx_space = pba >> 16;
713                 /* lower 16 bits has Rx packet buffer allocation size in KB */
714                 pba &= 0xffff;
715                 /*
716                  * the tx fifo also stores 16 bytes of information about the tx
717                  * but don't include ethernet FCS because hardware appends it
718                  */
719                 min_tx_space = (hw->max_frame_size +
720                                 sizeof(struct e1000_tx_desc) -
721                                 ETH_FCS_LEN) * 2;
722                 min_tx_space = ALIGN(min_tx_space, 1024);
723                 min_tx_space >>= 10;
724                 /* software strips receive CRC, so leave room for it */
725                 min_rx_space = hw->max_frame_size;
726                 min_rx_space = ALIGN(min_rx_space, 1024);
727                 min_rx_space >>= 10;
728
729                 /* If current Tx allocation is less than the min Tx FIFO size,
730                  * and the min Tx FIFO size is less than the current Rx FIFO
731                  * allocation, take space away from current Rx allocation */
732                 if (tx_space < min_tx_space &&
733                     ((min_tx_space - tx_space) < pba)) {
734                         pba = pba - (min_tx_space - tx_space);
735
736                         /* PCI/PCIx hardware has PBA alignment constraints */
737                         switch (hw->mac_type) {
738                         case e1000_82545 ... e1000_82546_rev_3:
739                                 pba &= ~(E1000_PBA_8K - 1);
740                                 break;
741                         default:
742                                 break;
743                         }
744
745                         /* if short on rx space, rx wins and must trump tx
746                          * adjustment or use Early Receive if available */
747                         if (pba < min_rx_space) {
748                                 switch (hw->mac_type) {
749                                 case e1000_82573:
750                                         /* ERT enabled in e1000_configure_rx */
751                                         break;
752                                 default:
753                                         pba = min_rx_space;
754                                         break;
755                                 }
756                         }
757                 }
758         }
759
760         ew32(PBA, pba);
761
762         /*
763          * flow control settings:
764          * The high water mark must be low enough to fit one full frame
765          * (or the size used for early receive) above it in the Rx FIFO.
766          * Set it to the lower of:
767          * - 90% of the Rx FIFO size, and
768          * - the full Rx FIFO size minus the early receive size (for parts
769          *   with ERT support assuming ERT set to E1000_ERT_2048), or
770          * - the full Rx FIFO size minus one full frame
771          */
772         hwm = min(((pba << 10) * 9 / 10),
773                   ((pba << 10) - hw->max_frame_size));
774
775         hw->fc_high_water = hwm & 0xFFF8;       /* 8-byte granularity */
776         hw->fc_low_water = hw->fc_high_water - 8;
777         hw->fc_pause_time = E1000_FC_PAUSE_TIME;
778         hw->fc_send_xon = 1;
779         hw->fc = hw->original_fc;
780
781         /* Allow time for pending master requests to run */
782         e1000_reset_hw(hw);
783         if (hw->mac_type >= e1000_82544)
784                 ew32(WUC, 0);
785
786         if (e1000_init_hw(hw))
787                 DPRINTK(PROBE, ERR, "Hardware Error\n");
788         e1000_update_mng_vlan(adapter);
789
790         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
791         if (hw->mac_type >= e1000_82544 &&
792             hw->mac_type <= e1000_82547_rev_2 &&
793             hw->autoneg == 1 &&
794             hw->autoneg_advertised == ADVERTISE_1000_FULL) {
795                 u32 ctrl = er32(CTRL);
796                 /* clear phy power management bit if we are in gig only mode,
797                  * which if enabled will attempt negotiation to 100Mb, which
798                  * can cause a loss of link at power off or driver unload */
799                 ctrl &= ~E1000_CTRL_SWDPIN3;
800                 ew32(CTRL, ctrl);
801         }
802
803         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
804         ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
805
806         e1000_reset_adaptive(hw);
807         e1000_phy_get_info(hw, &adapter->phy_info);
808
809         if (!adapter->smart_power_down &&
810             (hw->mac_type == e1000_82571 ||
811              hw->mac_type == e1000_82572)) {
812                 u16 phy_data = 0;
813                 /* speed up time to link by disabling smart power down, ignore
814                  * the return value of this function because there is nothing
815                  * different we would do if it failed */
816                 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
817                                    &phy_data);
818                 phy_data &= ~IGP02E1000_PM_SPD;
819                 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
820                                     phy_data);
821         }
822
823         e1000_release_manageability(adapter);
824 }
825
826 /**
827  *  Dump the eeprom for users having checksum issues
828  **/
829 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
830 {
831         struct net_device *netdev = adapter->netdev;
832         struct ethtool_eeprom eeprom;
833         const struct ethtool_ops *ops = netdev->ethtool_ops;
834         u8 *data;
835         int i;
836         u16 csum_old, csum_new = 0;
837
838         eeprom.len = ops->get_eeprom_len(netdev);
839         eeprom.offset = 0;
840
841         data = kmalloc(eeprom.len, GFP_KERNEL);
842         if (!data) {
843                 printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
844                        " data\n");
845                 return;
846         }
847
848         ops->get_eeprom(netdev, &eeprom, data);
849
850         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
851                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
852         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
853                 csum_new += data[i] + (data[i + 1] << 8);
854         csum_new = EEPROM_SUM - csum_new;
855
856         printk(KERN_ERR "/*********************/\n");
857         printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
858         printk(KERN_ERR "Calculated              : 0x%04x\n", csum_new);
859
860         printk(KERN_ERR "Offset    Values\n");
861         printk(KERN_ERR "========  ======\n");
862         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
863
864         printk(KERN_ERR "Include this output when contacting your support "
865                "provider.\n");
866         printk(KERN_ERR "This is not a software error! Something bad "
867                "happened to your hardware or\n");
868         printk(KERN_ERR "EEPROM image. Ignoring this "
869                "problem could result in further problems,\n");
870         printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
871         printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
872                "which is invalid\n");
873         printk(KERN_ERR "and requires you to set the proper MAC "
874                "address manually before continuing\n");
875         printk(KERN_ERR "to enable this network device.\n");
876         printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
877                "to your hardware vendor\n");
878         printk(KERN_ERR "or Intel Customer Support.\n");
879         printk(KERN_ERR "/*********************/\n");
880
881         kfree(data);
882 }
883
884 /**
885  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
886  * @pdev: PCI device information struct
887  *
888  * Return true if an adapter needs ioport resources
889  **/
890 static int e1000_is_need_ioport(struct pci_dev *pdev)
891 {
892         switch (pdev->device) {
893         case E1000_DEV_ID_82540EM:
894         case E1000_DEV_ID_82540EM_LOM:
895         case E1000_DEV_ID_82540EP:
896         case E1000_DEV_ID_82540EP_LOM:
897         case E1000_DEV_ID_82540EP_LP:
898         case E1000_DEV_ID_82541EI:
899         case E1000_DEV_ID_82541EI_MOBILE:
900         case E1000_DEV_ID_82541ER:
901         case E1000_DEV_ID_82541ER_LOM:
902         case E1000_DEV_ID_82541GI:
903         case E1000_DEV_ID_82541GI_LF:
904         case E1000_DEV_ID_82541GI_MOBILE:
905         case E1000_DEV_ID_82544EI_COPPER:
906         case E1000_DEV_ID_82544EI_FIBER:
907         case E1000_DEV_ID_82544GC_COPPER:
908         case E1000_DEV_ID_82544GC_LOM:
909         case E1000_DEV_ID_82545EM_COPPER:
910         case E1000_DEV_ID_82545EM_FIBER:
911         case E1000_DEV_ID_82546EB_COPPER:
912         case E1000_DEV_ID_82546EB_FIBER:
913         case E1000_DEV_ID_82546EB_QUAD_COPPER:
914                 return true;
915         default:
916                 return false;
917         }
918 }
919
920 static const struct net_device_ops e1000_netdev_ops = {
921         .ndo_open               = e1000_open,
922         .ndo_stop               = e1000_close,
923         .ndo_start_xmit         = e1000_xmit_frame,
924         .ndo_get_stats          = e1000_get_stats,
925         .ndo_set_rx_mode        = e1000_set_rx_mode,
926         .ndo_set_mac_address    = e1000_set_mac,
927         .ndo_tx_timeout         = e1000_tx_timeout,
928         .ndo_change_mtu         = e1000_change_mtu,
929         .ndo_do_ioctl           = e1000_ioctl,
930         .ndo_validate_addr      = eth_validate_addr,
931
932         .ndo_vlan_rx_register   = e1000_vlan_rx_register,
933         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
934         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
935 #ifdef CONFIG_NET_POLL_CONTROLLER
936         .ndo_poll_controller    = e1000_netpoll,
937 #endif
938 };
939
940 /**
941  * e1000_probe - Device Initialization Routine
942  * @pdev: PCI device information struct
943  * @ent: entry in e1000_pci_tbl
944  *
945  * Returns 0 on success, negative on failure
946  *
947  * e1000_probe initializes an adapter identified by a pci_dev structure.
948  * The OS initialization, configuring of the adapter private structure,
949  * and a hardware reset occur.
950  **/
951 static int __devinit e1000_probe(struct pci_dev *pdev,
952                                  const struct pci_device_id *ent)
953 {
954         struct net_device *netdev;
955         struct e1000_adapter *adapter;
956         struct e1000_hw *hw;
957
958         static int cards_found = 0;
959         static int global_quad_port_a = 0; /* global ksp3 port a indication */
960         int i, err, pci_using_dac;
961         u16 eeprom_data = 0;
962         u16 eeprom_apme_mask = E1000_EEPROM_APME;
963         int bars, need_ioport;
964
965         /* do not allocate ioport bars when not needed */
966         need_ioport = e1000_is_need_ioport(pdev);
967         if (need_ioport) {
968                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
969                 err = pci_enable_device(pdev);
970         } else {
971                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
972                 err = pci_enable_device_mem(pdev);
973         }
974         if (err)
975                 return err;
976
977         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
978             !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
979                 pci_using_dac = 1;
980         } else {
981                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
982                 if (err) {
983                         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
984                         if (err) {
985                                 E1000_ERR("No usable DMA configuration, "
986                                           "aborting\n");
987                                 goto err_dma;
988                         }
989                 }
990                 pci_using_dac = 0;
991         }
992
993         err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
994         if (err)
995                 goto err_pci_reg;
996
997         pci_set_master(pdev);
998
999         err = -ENOMEM;
1000         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
1001         if (!netdev)
1002                 goto err_alloc_etherdev;
1003
1004         SET_NETDEV_DEV(netdev, &pdev->dev);
1005
1006         pci_set_drvdata(pdev, netdev);
1007         adapter = netdev_priv(netdev);
1008         adapter->netdev = netdev;
1009         adapter->pdev = pdev;
1010         adapter->msg_enable = (1 << debug) - 1;
1011         adapter->bars = bars;
1012         adapter->need_ioport = need_ioport;
1013
1014         hw = &adapter->hw;
1015         hw->back = adapter;
1016
1017         err = -EIO;
1018         hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
1019         if (!hw->hw_addr)
1020                 goto err_ioremap;
1021
1022         if (adapter->need_ioport) {
1023                 for (i = BAR_1; i <= BAR_5; i++) {
1024                         if (pci_resource_len(pdev, i) == 0)
1025                                 continue;
1026                         if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1027                                 hw->io_base = pci_resource_start(pdev, i);
1028                                 break;
1029                         }
1030                 }
1031         }
1032
1033         netdev->netdev_ops = &e1000_netdev_ops;
1034         e1000_set_ethtool_ops(netdev);
1035         netdev->watchdog_timeo = 5 * HZ;
1036         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1037
1038         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1039
1040         adapter->bd_number = cards_found;
1041
1042         /* setup the private structure */
1043
1044         err = e1000_sw_init(adapter);
1045         if (err)
1046                 goto err_sw_init;
1047
1048         err = -EIO;
1049         /* Flash BAR mapping must happen after e1000_sw_init
1050          * because it depends on mac_type */
1051         if ((hw->mac_type == e1000_ich8lan) &&
1052            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
1053                 hw->flash_address = pci_ioremap_bar(pdev, 1);
1054                 if (!hw->flash_address)
1055                         goto err_flashmap;
1056         }
1057
1058         if (e1000_check_phy_reset_block(hw))
1059                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
1060
1061         if (hw->mac_type >= e1000_82543) {
1062                 netdev->features = NETIF_F_SG |
1063                                    NETIF_F_HW_CSUM |
1064                                    NETIF_F_HW_VLAN_TX |
1065                                    NETIF_F_HW_VLAN_RX |
1066                                    NETIF_F_HW_VLAN_FILTER;
1067                 if (hw->mac_type == e1000_ich8lan)
1068                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
1069         }
1070
1071         if ((hw->mac_type >= e1000_82544) &&
1072            (hw->mac_type != e1000_82547))
1073                 netdev->features |= NETIF_F_TSO;
1074
1075         if (hw->mac_type > e1000_82547_rev_2)
1076                 netdev->features |= NETIF_F_TSO6;
1077         if (pci_using_dac)
1078                 netdev->features |= NETIF_F_HIGHDMA;
1079
1080         netdev->vlan_features |= NETIF_F_TSO;
1081         netdev->vlan_features |= NETIF_F_TSO6;
1082         netdev->vlan_features |= NETIF_F_HW_CSUM;
1083         netdev->vlan_features |= NETIF_F_SG;
1084
1085         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1086
1087         /* initialize eeprom parameters */
1088         if (e1000_init_eeprom_params(hw)) {
1089                 E1000_ERR("EEPROM initialization failed\n");
1090                 goto err_eeprom;
1091         }
1092
1093         /* before reading the EEPROM, reset the controller to
1094          * put the device in a known good starting state */
1095
1096         e1000_reset_hw(hw);
1097
1098         /* make sure the EEPROM is good */
1099         if (e1000_validate_eeprom_checksum(hw) < 0) {
1100                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1101                 e1000_dump_eeprom(adapter);
1102                 /*
1103                  * set MAC address to all zeroes to invalidate and temporary
1104                  * disable this device for the user. This blocks regular
1105                  * traffic while still permitting ethtool ioctls from reaching
1106                  * the hardware as well as allowing the user to run the
1107                  * interface after manually setting a hw addr using
1108                  * `ip set address`
1109                  */
1110                 memset(hw->mac_addr, 0, netdev->addr_len);
1111         } else {
1112                 /* copy the MAC address out of the EEPROM */
1113                 if (e1000_read_mac_addr(hw))
1114                         DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1115         }
1116         /* don't block initalization here due to bad MAC address */
1117         memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1118         memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1119
1120         if (!is_valid_ether_addr(netdev->perm_addr))
1121                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1122
1123         e1000_get_bus_info(hw);
1124
1125         init_timer(&adapter->tx_fifo_stall_timer);
1126         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1127         adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
1128
1129         init_timer(&adapter->watchdog_timer);
1130         adapter->watchdog_timer.function = &e1000_watchdog;
1131         adapter->watchdog_timer.data = (unsigned long) adapter;
1132
1133         init_timer(&adapter->phy_info_timer);
1134         adapter->phy_info_timer.function = &e1000_update_phy_info;
1135         adapter->phy_info_timer.data = (unsigned long)adapter;
1136
1137         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1138
1139         e1000_check_options(adapter);
1140
1141         /* Initial Wake on LAN setting
1142          * If APM wake is enabled in the EEPROM,
1143          * enable the ACPI Magic Packet filter
1144          */
1145
1146         switch (hw->mac_type) {
1147         case e1000_82542_rev2_0:
1148         case e1000_82542_rev2_1:
1149         case e1000_82543:
1150                 break;
1151         case e1000_82544:
1152                 e1000_read_eeprom(hw,
1153                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1154                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1155                 break;
1156         case e1000_ich8lan:
1157                 e1000_read_eeprom(hw,
1158                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1159                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1160                 break;
1161         case e1000_82546:
1162         case e1000_82546_rev_3:
1163         case e1000_82571:
1164         case e1000_80003es2lan:
1165                 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1166                         e1000_read_eeprom(hw,
1167                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1168                         break;
1169                 }
1170                 /* Fall Through */
1171         default:
1172                 e1000_read_eeprom(hw,
1173                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1174                 break;
1175         }
1176         if (eeprom_data & eeprom_apme_mask)
1177                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1178
1179         /* now that we have the eeprom settings, apply the special cases
1180          * where the eeprom may be wrong or the board simply won't support
1181          * wake on lan on a particular port */
1182         switch (pdev->device) {
1183         case E1000_DEV_ID_82546GB_PCIE:
1184                 adapter->eeprom_wol = 0;
1185                 break;
1186         case E1000_DEV_ID_82546EB_FIBER:
1187         case E1000_DEV_ID_82546GB_FIBER:
1188         case E1000_DEV_ID_82571EB_FIBER:
1189                 /* Wake events only supported on port A for dual fiber
1190                  * regardless of eeprom setting */
1191                 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1192                         adapter->eeprom_wol = 0;
1193                 break;
1194         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1195         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1196         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1197         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1198         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1199                 /* if quad port adapter, disable WoL on all but port A */
1200                 if (global_quad_port_a != 0)
1201                         adapter->eeprom_wol = 0;
1202                 else
1203                         adapter->quad_port_a = 1;
1204                 /* Reset for multiple quad port adapters */
1205                 if (++global_quad_port_a == 4)
1206                         global_quad_port_a = 0;
1207                 break;
1208         }
1209
1210         /* initialize the wol settings based on the eeprom settings */
1211         adapter->wol = adapter->eeprom_wol;
1212         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1213
1214         /* print bus type/speed/width info */
1215         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1216                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1217                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1218                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1219                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1220                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1221                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1222                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1223                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1224                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1225                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1226                  "32-bit"));
1227
1228         printk("%pM\n", netdev->dev_addr);
1229
1230         if (hw->bus_type == e1000_bus_type_pci_express) {
1231                 DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no "
1232                         "longer be supported by this driver in the future.\n",
1233                         pdev->vendor, pdev->device);
1234                 DPRINTK(PROBE, WARNING, "please use the \"e1000e\" "
1235                         "driver instead.\n");
1236         }
1237
1238         /* reset the hardware with the new settings */
1239         e1000_reset(adapter);
1240
1241         /* If the controller is 82573 and f/w is AMT, do not set
1242          * DRV_LOAD until the interface is up.  For all other cases,
1243          * let the f/w know that the h/w is now under the control
1244          * of the driver. */
1245         if (hw->mac_type != e1000_82573 ||
1246             !e1000_check_mng_mode(hw))
1247                 e1000_get_hw_control(adapter);
1248
1249         strcpy(netdev->name, "eth%d");
1250         err = register_netdev(netdev);
1251         if (err)
1252                 goto err_register;
1253
1254         /* carrier off reporting is important to ethtool even BEFORE open */
1255         netif_carrier_off(netdev);
1256
1257         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1258
1259         cards_found++;
1260         return 0;
1261
1262 err_register:
1263         e1000_release_hw_control(adapter);
1264 err_eeprom:
1265         if (!e1000_check_phy_reset_block(hw))
1266                 e1000_phy_hw_reset(hw);
1267
1268         if (hw->flash_address)
1269                 iounmap(hw->flash_address);
1270 err_flashmap:
1271         kfree(adapter->tx_ring);
1272         kfree(adapter->rx_ring);
1273 err_sw_init:
1274         iounmap(hw->hw_addr);
1275 err_ioremap:
1276         free_netdev(netdev);
1277 err_alloc_etherdev:
1278         pci_release_selected_regions(pdev, bars);
1279 err_pci_reg:
1280 err_dma:
1281         pci_disable_device(pdev);
1282         return err;
1283 }
1284
1285 /**
1286  * e1000_remove - Device Removal Routine
1287  * @pdev: PCI device information struct
1288  *
1289  * e1000_remove is called by the PCI subsystem to alert the driver
1290  * that it should release a PCI device.  The could be caused by a
1291  * Hot-Plug event, or because the driver is going to be removed from
1292  * memory.
1293  **/
1294
1295 static void __devexit e1000_remove(struct pci_dev *pdev)
1296 {
1297         struct net_device *netdev = pci_get_drvdata(pdev);
1298         struct e1000_adapter *adapter = netdev_priv(netdev);
1299         struct e1000_hw *hw = &adapter->hw;
1300
1301         cancel_work_sync(&adapter->reset_task);
1302
1303         e1000_release_manageability(adapter);
1304
1305         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1306          * would have already happened in close and is redundant. */
1307         e1000_release_hw_control(adapter);
1308
1309         unregister_netdev(netdev);
1310
1311         if (!e1000_check_phy_reset_block(hw))
1312                 e1000_phy_hw_reset(hw);
1313
1314         kfree(adapter->tx_ring);
1315         kfree(adapter->rx_ring);
1316
1317         iounmap(hw->hw_addr);
1318         if (hw->flash_address)
1319                 iounmap(hw->flash_address);
1320         pci_release_selected_regions(pdev, adapter->bars);
1321
1322         free_netdev(netdev);
1323
1324         pci_disable_device(pdev);
1325 }
1326
1327 /**
1328  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1329  * @adapter: board private structure to initialize
1330  *
1331  * e1000_sw_init initializes the Adapter private data structure.
1332  * Fields are initialized based on PCI device information and
1333  * OS network device settings (MTU size).
1334  **/
1335
1336 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1337 {
1338         struct e1000_hw *hw = &adapter->hw;
1339         struct net_device *netdev = adapter->netdev;
1340         struct pci_dev *pdev = adapter->pdev;
1341
1342         /* PCI config space info */
1343
1344         hw->vendor_id = pdev->vendor;
1345         hw->device_id = pdev->device;
1346         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1347         hw->subsystem_id = pdev->subsystem_device;
1348         hw->revision_id = pdev->revision;
1349
1350         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1351
1352         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1353         hw->max_frame_size = netdev->mtu +
1354                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1355         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1356
1357         /* identify the MAC */
1358
1359         if (e1000_set_mac_type(hw)) {
1360                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1361                 return -EIO;
1362         }
1363
1364         switch (hw->mac_type) {
1365         default:
1366                 break;
1367         case e1000_82541:
1368         case e1000_82547:
1369         case e1000_82541_rev_2:
1370         case e1000_82547_rev_2:
1371                 hw->phy_init_script = 1;
1372                 break;
1373         }
1374
1375         e1000_set_media_type(hw);
1376
1377         hw->wait_autoneg_complete = false;
1378         hw->tbi_compatibility_en = true;
1379         hw->adaptive_ifs = true;
1380
1381         /* Copper options */
1382
1383         if (hw->media_type == e1000_media_type_copper) {
1384                 hw->mdix = AUTO_ALL_MODES;
1385                 hw->disable_polarity_correction = false;
1386                 hw->master_slave = E1000_MASTER_SLAVE;
1387         }
1388
1389         adapter->num_tx_queues = 1;
1390         adapter->num_rx_queues = 1;
1391
1392         if (e1000_alloc_queues(adapter)) {
1393                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1394                 return -ENOMEM;
1395         }
1396
1397         /* Explicitly disable IRQ since the NIC can be in any state. */
1398         e1000_irq_disable(adapter);
1399
1400         spin_lock_init(&adapter->stats_lock);
1401
1402         set_bit(__E1000_DOWN, &adapter->flags);
1403
1404         return 0;
1405 }
1406
1407 /**
1408  * e1000_alloc_queues - Allocate memory for all rings
1409  * @adapter: board private structure to initialize
1410  *
1411  * We allocate one ring per queue at run-time since we don't know the
1412  * number of queues at compile-time.
1413  **/
1414
1415 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1416 {
1417         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1418                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1419         if (!adapter->tx_ring)
1420                 return -ENOMEM;
1421
1422         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1423                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1424         if (!adapter->rx_ring) {
1425                 kfree(adapter->tx_ring);
1426                 return -ENOMEM;
1427         }
1428
1429         return E1000_SUCCESS;
1430 }
1431
1432 /**
1433  * e1000_open - Called when a network interface is made active
1434  * @netdev: network interface device structure
1435  *
1436  * Returns 0 on success, negative value on failure
1437  *
1438  * The open entry point is called when a network interface is made
1439  * active by the system (IFF_UP).  At this point all resources needed
1440  * for transmit and receive operations are allocated, the interrupt
1441  * handler is registered with the OS, the watchdog timer is started,
1442  * and the stack is notified that the interface is ready.
1443  **/
1444
1445 static int e1000_open(struct net_device *netdev)
1446 {
1447         struct e1000_adapter *adapter = netdev_priv(netdev);
1448         struct e1000_hw *hw = &adapter->hw;
1449         int err;
1450
1451         /* disallow open during test */
1452         if (test_bit(__E1000_TESTING, &adapter->flags))
1453                 return -EBUSY;
1454
1455         netif_carrier_off(netdev);
1456
1457         /* allocate transmit descriptors */
1458         err = e1000_setup_all_tx_resources(adapter);
1459         if (err)
1460                 goto err_setup_tx;
1461
1462         /* allocate receive descriptors */
1463         err = e1000_setup_all_rx_resources(adapter);
1464         if (err)
1465                 goto err_setup_rx;
1466
1467         e1000_power_up_phy(adapter);
1468
1469         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1470         if ((hw->mng_cookie.status &
1471                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1472                 e1000_update_mng_vlan(adapter);
1473         }
1474
1475         /* If AMT is enabled, let the firmware know that the network
1476          * interface is now open */
1477         if (hw->mac_type == e1000_82573 &&
1478             e1000_check_mng_mode(hw))
1479                 e1000_get_hw_control(adapter);
1480
1481         /* before we allocate an interrupt, we must be ready to handle it.
1482          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1483          * as soon as we call pci_request_irq, so we have to setup our
1484          * clean_rx handler before we do so.  */
1485         e1000_configure(adapter);
1486
1487         err = e1000_request_irq(adapter);
1488         if (err)
1489                 goto err_req_irq;
1490
1491         /* From here on the code is the same as e1000_up() */
1492         clear_bit(__E1000_DOWN, &adapter->flags);
1493
1494         napi_enable(&adapter->napi);
1495
1496         e1000_irq_enable(adapter);
1497
1498         netif_start_queue(netdev);
1499
1500         /* fire a link status change interrupt to start the watchdog */
1501         ew32(ICS, E1000_ICS_LSC);
1502
1503         return E1000_SUCCESS;
1504
1505 err_req_irq:
1506         e1000_release_hw_control(adapter);
1507         e1000_power_down_phy(adapter);
1508         e1000_free_all_rx_resources(adapter);
1509 err_setup_rx:
1510         e1000_free_all_tx_resources(adapter);
1511 err_setup_tx:
1512         e1000_reset(adapter);
1513
1514         return err;
1515 }
1516
1517 /**
1518  * e1000_close - Disables a network interface
1519  * @netdev: network interface device structure
1520  *
1521  * Returns 0, this is not allowed to fail
1522  *
1523  * The close entry point is called when an interface is de-activated
1524  * by the OS.  The hardware is still under the drivers control, but
1525  * needs to be disabled.  A global MAC reset is issued to stop the
1526  * hardware, and all transmit and receive resources are freed.
1527  **/
1528
1529 static int e1000_close(struct net_device *netdev)
1530 {
1531         struct e1000_adapter *adapter = netdev_priv(netdev);
1532         struct e1000_hw *hw = &adapter->hw;
1533
1534         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1535         e1000_down(adapter);
1536         e1000_power_down_phy(adapter);
1537         e1000_free_irq(adapter);
1538
1539         e1000_free_all_tx_resources(adapter);
1540         e1000_free_all_rx_resources(adapter);
1541
1542         /* kill manageability vlan ID if supported, but not if a vlan with
1543          * the same ID is registered on the host OS (let 8021q kill it) */
1544         if ((hw->mng_cookie.status &
1545                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1546              !(adapter->vlgrp &&
1547                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1548                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1549         }
1550
1551         /* If AMT is enabled, let the firmware know that the network
1552          * interface is now closed */
1553         if (hw->mac_type == e1000_82573 &&
1554             e1000_check_mng_mode(hw))
1555                 e1000_release_hw_control(adapter);
1556
1557         return 0;
1558 }
1559
1560 /**
1561  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1562  * @adapter: address of board private structure
1563  * @start: address of beginning of memory
1564  * @len: length of memory
1565  **/
1566 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1567                                   unsigned long len)
1568 {
1569         struct e1000_hw *hw = &adapter->hw;
1570         unsigned long begin = (unsigned long)start;
1571         unsigned long end = begin + len;
1572
1573         /* First rev 82545 and 82546 need to not allow any memory
1574          * write location to cross 64k boundary due to errata 23 */
1575         if (hw->mac_type == e1000_82545 ||
1576             hw->mac_type == e1000_82546) {
1577                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1578         }
1579
1580         return true;
1581 }
1582
1583 /**
1584  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1585  * @adapter: board private structure
1586  * @txdr:    tx descriptor ring (for a specific queue) to setup
1587  *
1588  * Return 0 on success, negative on failure
1589  **/
1590
1591 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1592                                     struct e1000_tx_ring *txdr)
1593 {
1594         struct pci_dev *pdev = adapter->pdev;
1595         int size;
1596
1597         size = sizeof(struct e1000_buffer) * txdr->count;
1598         txdr->buffer_info = vmalloc(size);
1599         if (!txdr->buffer_info) {
1600                 DPRINTK(PROBE, ERR,
1601                 "Unable to allocate memory for the transmit descriptor ring\n");
1602                 return -ENOMEM;
1603         }
1604         memset(txdr->buffer_info, 0, size);
1605
1606         /* round up to nearest 4K */
1607
1608         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1609         txdr->size = ALIGN(txdr->size, 4096);
1610
1611         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1612         if (!txdr->desc) {
1613 setup_tx_desc_die:
1614                 vfree(txdr->buffer_info);
1615                 DPRINTK(PROBE, ERR,
1616                 "Unable to allocate memory for the transmit descriptor ring\n");
1617                 return -ENOMEM;
1618         }
1619
1620         /* Fix for errata 23, can't cross 64kB boundary */
1621         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1622                 void *olddesc = txdr->desc;
1623                 dma_addr_t olddma = txdr->dma;
1624                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1625                                      "at %p\n", txdr->size, txdr->desc);
1626                 /* Try again, without freeing the previous */
1627                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1628                 /* Failed allocation, critical failure */
1629                 if (!txdr->desc) {
1630                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1631                         goto setup_tx_desc_die;
1632                 }
1633
1634                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1635                         /* give up */
1636                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1637                                             txdr->dma);
1638                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1639                         DPRINTK(PROBE, ERR,
1640                                 "Unable to allocate aligned memory "
1641                                 "for the transmit descriptor ring\n");
1642                         vfree(txdr->buffer_info);
1643                         return -ENOMEM;
1644                 } else {
1645                         /* Free old allocation, new allocation was successful */
1646                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1647                 }
1648         }
1649         memset(txdr->desc, 0, txdr->size);
1650
1651         txdr->next_to_use = 0;
1652         txdr->next_to_clean = 0;
1653
1654         return 0;
1655 }
1656
1657 /**
1658  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1659  *                                (Descriptors) for all queues
1660  * @adapter: board private structure
1661  *
1662  * Return 0 on success, negative on failure
1663  **/
1664
1665 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1666 {
1667         int i, err = 0;
1668
1669         for (i = 0; i < adapter->num_tx_queues; i++) {
1670                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1671                 if (err) {
1672                         DPRINTK(PROBE, ERR,
1673                                 "Allocation for Tx Queue %u failed\n", i);
1674                         for (i-- ; i >= 0; i--)
1675                                 e1000_free_tx_resources(adapter,
1676                                                         &adapter->tx_ring[i]);
1677                         break;
1678                 }
1679         }
1680
1681         return err;
1682 }
1683
1684 /**
1685  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1686  * @adapter: board private structure
1687  *
1688  * Configure the Tx unit of the MAC after a reset.
1689  **/
1690
1691 static void e1000_configure_tx(struct e1000_adapter *adapter)
1692 {
1693         u64 tdba;
1694         struct e1000_hw *hw = &adapter->hw;
1695         u32 tdlen, tctl, tipg, tarc;
1696         u32 ipgr1, ipgr2;
1697
1698         /* Setup the HW Tx Head and Tail descriptor pointers */
1699
1700         switch (adapter->num_tx_queues) {
1701         case 1:
1702         default:
1703                 tdba = adapter->tx_ring[0].dma;
1704                 tdlen = adapter->tx_ring[0].count *
1705                         sizeof(struct e1000_tx_desc);
1706                 ew32(TDLEN, tdlen);
1707                 ew32(TDBAH, (tdba >> 32));
1708                 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1709                 ew32(TDT, 0);
1710                 ew32(TDH, 0);
1711                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1712                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1713                 break;
1714         }
1715
1716         /* Set the default values for the Tx Inter Packet Gap timer */
1717         if (hw->mac_type <= e1000_82547_rev_2 &&
1718             (hw->media_type == e1000_media_type_fiber ||
1719              hw->media_type == e1000_media_type_internal_serdes))
1720                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1721         else
1722                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1723
1724         switch (hw->mac_type) {
1725         case e1000_82542_rev2_0:
1726         case e1000_82542_rev2_1:
1727                 tipg = DEFAULT_82542_TIPG_IPGT;
1728                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1729                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1730                 break;
1731         case e1000_80003es2lan:
1732                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1733                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1734                 break;
1735         default:
1736                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1737                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1738                 break;
1739         }
1740         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1741         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1742         ew32(TIPG, tipg);
1743
1744         /* Set the Tx Interrupt Delay register */
1745
1746         ew32(TIDV, adapter->tx_int_delay);
1747         if (hw->mac_type >= e1000_82540)
1748                 ew32(TADV, adapter->tx_abs_int_delay);
1749
1750         /* Program the Transmit Control Register */
1751
1752         tctl = er32(TCTL);
1753         tctl &= ~E1000_TCTL_CT;
1754         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1755                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1756
1757         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1758                 tarc = er32(TARC0);
1759                 /* set the speed mode bit, we'll clear it if we're not at
1760                  * gigabit link later */
1761                 tarc |= (1 << 21);
1762                 ew32(TARC0, tarc);
1763         } else if (hw->mac_type == e1000_80003es2lan) {
1764                 tarc = er32(TARC0);
1765                 tarc |= 1;
1766                 ew32(TARC0, tarc);
1767                 tarc = er32(TARC1);
1768                 tarc |= 1;
1769                 ew32(TARC1, tarc);
1770         }
1771
1772         e1000_config_collision_dist(hw);
1773
1774         /* Setup Transmit Descriptor Settings for eop descriptor */
1775         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1776
1777         /* only set IDE if we are delaying interrupts using the timers */
1778         if (adapter->tx_int_delay)
1779                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1780
1781         if (hw->mac_type < e1000_82543)
1782                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1783         else
1784                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1785
1786         /* Cache if we're 82544 running in PCI-X because we'll
1787          * need this to apply a workaround later in the send path. */
1788         if (hw->mac_type == e1000_82544 &&
1789             hw->bus_type == e1000_bus_type_pcix)
1790                 adapter->pcix_82544 = 1;
1791
1792         ew32(TCTL, tctl);
1793
1794 }
1795
1796 /**
1797  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1798  * @adapter: board private structure
1799  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1800  *
1801  * Returns 0 on success, negative on failure
1802  **/
1803
1804 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1805                                     struct e1000_rx_ring *rxdr)
1806 {
1807         struct e1000_hw *hw = &adapter->hw;
1808         struct pci_dev *pdev = adapter->pdev;
1809         int size, desc_len;
1810
1811         size = sizeof(struct e1000_buffer) * rxdr->count;
1812         rxdr->buffer_info = vmalloc(size);
1813         if (!rxdr->buffer_info) {
1814                 DPRINTK(PROBE, ERR,
1815                 "Unable to allocate memory for the receive descriptor ring\n");
1816                 return -ENOMEM;
1817         }
1818         memset(rxdr->buffer_info, 0, size);
1819
1820         if (hw->mac_type <= e1000_82547_rev_2)
1821                 desc_len = sizeof(struct e1000_rx_desc);
1822         else
1823                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1824
1825         /* Round up to nearest 4K */
1826
1827         rxdr->size = rxdr->count * desc_len;
1828         rxdr->size = ALIGN(rxdr->size, 4096);
1829
1830         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1831
1832         if (!rxdr->desc) {
1833                 DPRINTK(PROBE, ERR,
1834                 "Unable to allocate memory for the receive descriptor ring\n");
1835 setup_rx_desc_die:
1836                 vfree(rxdr->buffer_info);
1837                 return -ENOMEM;
1838         }
1839
1840         /* Fix for errata 23, can't cross 64kB boundary */
1841         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1842                 void *olddesc = rxdr->desc;
1843                 dma_addr_t olddma = rxdr->dma;
1844                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1845                                      "at %p\n", rxdr->size, rxdr->desc);
1846                 /* Try again, without freeing the previous */
1847                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1848                 /* Failed allocation, critical failure */
1849                 if (!rxdr->desc) {
1850                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1851                         DPRINTK(PROBE, ERR,
1852                                 "Unable to allocate memory "
1853                                 "for the receive descriptor ring\n");
1854                         goto setup_rx_desc_die;
1855                 }
1856
1857                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1858                         /* give up */
1859                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1860                                             rxdr->dma);
1861                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1862                         DPRINTK(PROBE, ERR,
1863                                 "Unable to allocate aligned memory "
1864                                 "for the receive descriptor ring\n");
1865                         goto setup_rx_desc_die;
1866                 } else {
1867                         /* Free old allocation, new allocation was successful */
1868                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1869                 }
1870         }
1871         memset(rxdr->desc, 0, rxdr->size);
1872
1873         rxdr->next_to_clean = 0;
1874         rxdr->next_to_use = 0;
1875         rxdr->rx_skb_top = NULL;
1876
1877         return 0;
1878 }
1879
1880 /**
1881  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1882  *                                (Descriptors) for all queues
1883  * @adapter: board private structure
1884  *
1885  * Return 0 on success, negative on failure
1886  **/
1887
1888 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1889 {
1890         int i, err = 0;
1891
1892         for (i = 0; i < adapter->num_rx_queues; i++) {
1893                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1894                 if (err) {
1895                         DPRINTK(PROBE, ERR,
1896                                 "Allocation for Rx Queue %u failed\n", i);
1897                         for (i-- ; i >= 0; i--)
1898                                 e1000_free_rx_resources(adapter,
1899                                                         &adapter->rx_ring[i]);
1900                         break;
1901                 }
1902         }
1903
1904         return err;
1905 }
1906
1907 /**
1908  * e1000_setup_rctl - configure the receive control registers
1909  * @adapter: Board private structure
1910  **/
1911 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1912 {
1913         struct e1000_hw *hw = &adapter->hw;
1914         u32 rctl;
1915
1916         rctl = er32(RCTL);
1917
1918         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1919
1920         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1921                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1922                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1923
1924         if (hw->tbi_compatibility_on == 1)
1925                 rctl |= E1000_RCTL_SBP;
1926         else
1927                 rctl &= ~E1000_RCTL_SBP;
1928
1929         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1930                 rctl &= ~E1000_RCTL_LPE;
1931         else
1932                 rctl |= E1000_RCTL_LPE;
1933
1934         /* Setup buffer sizes */
1935         rctl &= ~E1000_RCTL_SZ_4096;
1936         rctl |= E1000_RCTL_BSEX;
1937         switch (adapter->rx_buffer_len) {
1938                 case E1000_RXBUFFER_256:
1939                         rctl |= E1000_RCTL_SZ_256;
1940                         rctl &= ~E1000_RCTL_BSEX;
1941                         break;
1942                 case E1000_RXBUFFER_512:
1943                         rctl |= E1000_RCTL_SZ_512;
1944                         rctl &= ~E1000_RCTL_BSEX;
1945                         break;
1946                 case E1000_RXBUFFER_1024:
1947                         rctl |= E1000_RCTL_SZ_1024;
1948                         rctl &= ~E1000_RCTL_BSEX;
1949                         break;
1950                 case E1000_RXBUFFER_2048:
1951                 default:
1952                         rctl |= E1000_RCTL_SZ_2048;
1953                         rctl &= ~E1000_RCTL_BSEX;
1954                         break;
1955                 case E1000_RXBUFFER_4096:
1956                         rctl |= E1000_RCTL_SZ_4096;
1957                         break;
1958                 case E1000_RXBUFFER_8192:
1959                         rctl |= E1000_RCTL_SZ_8192;
1960                         break;
1961                 case E1000_RXBUFFER_16384:
1962                         rctl |= E1000_RCTL_SZ_16384;
1963                         break;
1964         }
1965
1966         ew32(RCTL, rctl);
1967 }
1968
1969 /**
1970  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1971  * @adapter: board private structure
1972  *
1973  * Configure the Rx unit of the MAC after a reset.
1974  **/
1975
1976 static void e1000_configure_rx(struct e1000_adapter *adapter)
1977 {
1978         u64 rdba;
1979         struct e1000_hw *hw = &adapter->hw;
1980         u32 rdlen, rctl, rxcsum, ctrl_ext;
1981
1982         if (adapter->netdev->mtu > ETH_DATA_LEN) {
1983                 rdlen = adapter->rx_ring[0].count *
1984                         sizeof(struct e1000_rx_desc);
1985                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1986                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1987         } else {
1988                 rdlen = adapter->rx_ring[0].count *
1989                         sizeof(struct e1000_rx_desc);
1990                 adapter->clean_rx = e1000_clean_rx_irq;
1991                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1992         }
1993
1994         /* disable receives while setting up the descriptors */
1995         rctl = er32(RCTL);
1996         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1997
1998         /* set the Receive Delay Timer Register */
1999         ew32(RDTR, adapter->rx_int_delay);
2000
2001         if (hw->mac_type >= e1000_82540) {
2002                 ew32(RADV, adapter->rx_abs_int_delay);
2003                 if (adapter->itr_setting != 0)
2004                         ew32(ITR, 1000000000 / (adapter->itr * 256));
2005         }
2006
2007         if (hw->mac_type >= e1000_82571) {
2008                 ctrl_ext = er32(CTRL_EXT);
2009                 /* Reset delay timers after every interrupt */
2010                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2011                 /* Auto-Mask interrupts upon ICR access */
2012                 ctrl_ext |= E1000_CTRL_EXT_IAME;
2013                 ew32(IAM, 0xffffffff);
2014                 ew32(CTRL_EXT, ctrl_ext);
2015                 E1000_WRITE_FLUSH();
2016         }
2017
2018         /* Setup the HW Rx Head and Tail Descriptor Pointers and
2019          * the Base and Length of the Rx Descriptor Ring */
2020         switch (adapter->num_rx_queues) {
2021         case 1:
2022         default:
2023                 rdba = adapter->rx_ring[0].dma;
2024                 ew32(RDLEN, rdlen);
2025                 ew32(RDBAH, (rdba >> 32));
2026                 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
2027                 ew32(RDT, 0);
2028                 ew32(RDH, 0);
2029                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
2030                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2031                 break;
2032         }
2033
2034         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2035         if (hw->mac_type >= e1000_82543) {
2036                 rxcsum = er32(RXCSUM);
2037                 if (adapter->rx_csum)
2038                         rxcsum |= E1000_RXCSUM_TUOFL;
2039                 else
2040                         /* don't need to clear IPPCSE as it defaults to 0 */
2041                         rxcsum &= ~E1000_RXCSUM_TUOFL;
2042                 ew32(RXCSUM, rxcsum);
2043         }
2044
2045         /* Enable Receives */
2046         ew32(RCTL, rctl);
2047 }
2048
2049 /**
2050  * e1000_free_tx_resources - Free Tx Resources per Queue
2051  * @adapter: board private structure
2052  * @tx_ring: Tx descriptor ring for a specific queue
2053  *
2054  * Free all transmit software resources
2055  **/
2056
2057 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
2058                                     struct e1000_tx_ring *tx_ring)
2059 {
2060         struct pci_dev *pdev = adapter->pdev;
2061
2062         e1000_clean_tx_ring(adapter, tx_ring);
2063
2064         vfree(tx_ring->buffer_info);
2065         tx_ring->buffer_info = NULL;
2066
2067         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2068
2069         tx_ring->desc = NULL;
2070 }
2071
2072 /**
2073  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2074  * @adapter: board private structure
2075  *
2076  * Free all transmit software resources
2077  **/
2078
2079 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2080 {
2081         int i;
2082
2083         for (i = 0; i < adapter->num_tx_queues; i++)
2084                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2085 }
2086
2087 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2088                                              struct e1000_buffer *buffer_info)
2089 {
2090         buffer_info->dma = 0;
2091         if (buffer_info->skb) {
2092                 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
2093                               DMA_TO_DEVICE);
2094                 dev_kfree_skb_any(buffer_info->skb);
2095                 buffer_info->skb = NULL;
2096         }
2097         buffer_info->time_stamp = 0;
2098         /* buffer_info must be completely set up in the transmit path */
2099 }
2100
2101 /**
2102  * e1000_clean_tx_ring - Free Tx Buffers
2103  * @adapter: board private structure
2104  * @tx_ring: ring to be cleaned
2105  **/
2106
2107 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2108                                 struct e1000_tx_ring *tx_ring)
2109 {
2110         struct e1000_hw *hw = &adapter->hw;
2111         struct e1000_buffer *buffer_info;
2112         unsigned long size;
2113         unsigned int i;
2114
2115         /* Free all the Tx ring sk_buffs */
2116
2117         for (i = 0; i < tx_ring->count; i++) {
2118                 buffer_info = &tx_ring->buffer_info[i];
2119                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2120         }
2121
2122         size = sizeof(struct e1000_buffer) * tx_ring->count;
2123         memset(tx_ring->buffer_info, 0, size);
2124
2125         /* Zero out the descriptor ring */
2126
2127         memset(tx_ring->desc, 0, tx_ring->size);
2128
2129         tx_ring->next_to_use = 0;
2130         tx_ring->next_to_clean = 0;
2131         tx_ring->last_tx_tso = 0;
2132
2133         writel(0, hw->hw_addr + tx_ring->tdh);
2134         writel(0, hw->hw_addr + tx_ring->tdt);
2135 }
2136
2137 /**
2138  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2139  * @adapter: board private structure
2140  **/
2141
2142 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2143 {
2144         int i;
2145
2146         for (i = 0; i < adapter->num_tx_queues; i++)
2147                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2148 }
2149
2150 /**
2151  * e1000_free_rx_resources - Free Rx Resources
2152  * @adapter: board private structure
2153  * @rx_ring: ring to clean the resources from
2154  *
2155  * Free all receive software resources
2156  **/
2157
2158 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2159                                     struct e1000_rx_ring *rx_ring)
2160 {
2161         struct pci_dev *pdev = adapter->pdev;
2162
2163         e1000_clean_rx_ring(adapter, rx_ring);
2164
2165         vfree(rx_ring->buffer_info);
2166         rx_ring->buffer_info = NULL;
2167
2168         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2169
2170         rx_ring->desc = NULL;
2171 }
2172
2173 /**
2174  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2175  * @adapter: board private structure
2176  *
2177  * Free all receive software resources
2178  **/
2179
2180 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2181 {
2182         int i;
2183
2184         for (i = 0; i < adapter->num_rx_queues; i++)
2185                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2186 }
2187
2188 /**
2189  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2190  * @adapter: board private structure
2191  * @rx_ring: ring to free buffers from
2192  **/
2193
2194 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2195                                 struct e1000_rx_ring *rx_ring)
2196 {
2197         struct e1000_hw *hw = &adapter->hw;
2198         struct e1000_buffer *buffer_info;
2199         struct pci_dev *pdev = adapter->pdev;
2200         unsigned long size;
2201         unsigned int i;
2202
2203         /* Free all the Rx ring sk_buffs */
2204         for (i = 0; i < rx_ring->count; i++) {
2205                 buffer_info = &rx_ring->buffer_info[i];
2206                 if (buffer_info->dma &&
2207                     adapter->clean_rx == e1000_clean_rx_irq) {
2208                         pci_unmap_single(pdev, buffer_info->dma,
2209                                          buffer_info->length,
2210                                          PCI_DMA_FROMDEVICE);
2211                 } else if (buffer_info->dma &&
2212                            adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2213                         pci_unmap_page(pdev, buffer_info->dma,
2214                                        buffer_info->length,
2215                                        PCI_DMA_FROMDEVICE);
2216                 }
2217
2218                 buffer_info->dma = 0;
2219                 if (buffer_info->page) {
2220                         put_page(buffer_info->page);
2221                         buffer_info->page = NULL;
2222                 }
2223                 if (buffer_info->skb) {
2224                         dev_kfree_skb(buffer_info->skb);
2225                         buffer_info->skb = NULL;
2226                 }
2227         }
2228
2229         /* there also may be some cached data from a chained receive */
2230         if (rx_ring->rx_skb_top) {
2231                 dev_kfree_skb(rx_ring->rx_skb_top);
2232                 rx_ring->rx_skb_top = NULL;
2233         }
2234
2235         size = sizeof(struct e1000_buffer) * rx_ring->count;
2236         memset(rx_ring->buffer_info, 0, size);
2237
2238         /* Zero out the descriptor ring */
2239         memset(rx_ring->desc, 0, rx_ring->size);
2240
2241         rx_ring->next_to_clean = 0;
2242         rx_ring->next_to_use = 0;
2243
2244         writel(0, hw->hw_addr + rx_ring->rdh);
2245         writel(0, hw->hw_addr + rx_ring->rdt);
2246 }
2247
2248 /**
2249  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2250  * @adapter: board private structure
2251  **/
2252
2253 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2254 {
2255         int i;
2256
2257         for (i = 0; i < adapter->num_rx_queues; i++)
2258                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2259 }
2260
2261 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2262  * and memory write and invalidate disabled for certain operations
2263  */
2264 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2265 {
2266         struct e1000_hw *hw = &adapter->hw;
2267         struct net_device *netdev = adapter->netdev;
2268         u32 rctl;
2269
2270         e1000_pci_clear_mwi(hw);
2271
2272         rctl = er32(RCTL);
2273         rctl |= E1000_RCTL_RST;
2274         ew32(RCTL, rctl);
2275         E1000_WRITE_FLUSH();
2276         mdelay(5);
2277
2278         if (netif_running(netdev))
2279                 e1000_clean_all_rx_rings(adapter);
2280 }
2281
2282 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2283 {
2284         struct e1000_hw *hw = &adapter->hw;
2285         struct net_device *netdev = adapter->netdev;
2286         u32 rctl;
2287
2288         rctl = er32(RCTL);
2289         rctl &= ~E1000_RCTL_RST;
2290         ew32(RCTL, rctl);
2291         E1000_WRITE_FLUSH();
2292         mdelay(5);
2293
2294         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2295                 e1000_pci_set_mwi(hw);
2296
2297         if (netif_running(netdev)) {
2298                 /* No need to loop, because 82542 supports only 1 queue */
2299                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2300                 e1000_configure_rx(adapter);
2301                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2302         }
2303 }
2304
2305 /**
2306  * e1000_set_mac - Change the Ethernet Address of the NIC
2307  * @netdev: network interface device structure
2308  * @p: pointer to an address structure
2309  *
2310  * Returns 0 on success, negative on failure
2311  **/
2312
2313 static int e1000_set_mac(struct net_device *netdev, void *p)
2314 {
2315         struct e1000_adapter *adapter = netdev_priv(netdev);
2316         struct e1000_hw *hw = &adapter->hw;
2317         struct sockaddr *addr = p;
2318
2319         if (!is_valid_ether_addr(addr->sa_data))
2320                 return -EADDRNOTAVAIL;
2321
2322         /* 82542 2.0 needs to be in reset to write receive address registers */
2323
2324         if (hw->mac_type == e1000_82542_rev2_0)
2325                 e1000_enter_82542_rst(adapter);
2326
2327         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2328         memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2329
2330         e1000_rar_set(hw, hw->mac_addr, 0);
2331
2332         /* With 82571 controllers, LAA may be overwritten (with the default)
2333          * due to controller reset from the other port. */
2334         if (hw->mac_type == e1000_82571) {
2335                 /* activate the work around */
2336                 hw->laa_is_present = 1;
2337
2338                 /* Hold a copy of the LAA in RAR[14] This is done so that
2339                  * between the time RAR[0] gets clobbered  and the time it
2340                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2341                  * of the RARs and no incoming packets directed to this port
2342                  * are dropped. Eventaully the LAA will be in RAR[0] and
2343                  * RAR[14] */
2344                 e1000_rar_set(hw, hw->mac_addr,
2345                                         E1000_RAR_ENTRIES - 1);
2346         }
2347
2348         if (hw->mac_type == e1000_82542_rev2_0)
2349                 e1000_leave_82542_rst(adapter);
2350
2351         return 0;
2352 }
2353
2354 /**
2355  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2356  * @netdev: network interface device structure
2357  *
2358  * The set_rx_mode entry point is called whenever the unicast or multicast
2359  * address lists or the network interface flags are updated. This routine is
2360  * responsible for configuring the hardware for proper unicast, multicast,
2361  * promiscuous mode, and all-multi behavior.
2362  **/
2363
2364 static void e1000_set_rx_mode(struct net_device *netdev)
2365 {
2366         struct e1000_adapter *adapter = netdev_priv(netdev);
2367         struct e1000_hw *hw = &adapter->hw;
2368         struct netdev_hw_addr *ha;
2369         bool use_uc = false;
2370         struct dev_addr_list *mc_ptr;
2371         u32 rctl;
2372         u32 hash_value;
2373         int i, rar_entries = E1000_RAR_ENTRIES;
2374         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2375                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2376                                 E1000_NUM_MTA_REGISTERS;
2377         u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2378
2379         if (!mcarray) {
2380                 DPRINTK(PROBE, ERR, "memory allocation failed\n");
2381                 return;
2382         }
2383
2384         if (hw->mac_type == e1000_ich8lan)
2385                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2386
2387         /* reserve RAR[14] for LAA over-write work-around */
2388         if (hw->mac_type == e1000_82571)
2389                 rar_entries--;
2390
2391         /* Check for Promiscuous and All Multicast modes */
2392
2393         rctl = er32(RCTL);
2394
2395         if (netdev->flags & IFF_PROMISC) {
2396                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2397                 rctl &= ~E1000_RCTL_VFE;
2398         } else {
2399                 if (netdev->flags & IFF_ALLMULTI) {
2400                         rctl |= E1000_RCTL_MPE;
2401                 } else {
2402                         rctl &= ~E1000_RCTL_MPE;
2403                 }
2404                 if (adapter->hw.mac_type != e1000_ich8lan)
2405                         /* Enable VLAN filter if there is a VLAN */
2406                         if (adapter->vlgrp)
2407                                 rctl |= E1000_RCTL_VFE;
2408         }
2409
2410         if (netdev->uc.count > rar_entries - 1) {
2411                 rctl |= E1000_RCTL_UPE;
2412         } else if (!(netdev->flags & IFF_PROMISC)) {
2413                 rctl &= ~E1000_RCTL_UPE;
2414                 use_uc = true;
2415         }
2416
2417         ew32(RCTL, rctl);
2418
2419         /* 82542 2.0 needs to be in reset to write receive address registers */
2420
2421         if (hw->mac_type == e1000_82542_rev2_0)
2422                 e1000_enter_82542_rst(adapter);
2423
2424         /* load the first 14 addresses into the exact filters 1-14. Unicast
2425          * addresses take precedence to avoid disabling unicast filtering
2426          * when possible.
2427          *
2428          * RAR 0 is used for the station MAC adddress
2429          * if there are not 14 addresses, go ahead and clear the filters
2430          * -- with 82571 controllers only 0-13 entries are filled here
2431          */
2432         i = 1;
2433         if (use_uc)
2434                 list_for_each_entry(ha, &netdev->uc.list, list) {
2435                         if (i == rar_entries)
2436                                 break;
2437                         e1000_rar_set(hw, ha->addr, i++);
2438                 }
2439
2440         WARN_ON(i == rar_entries);
2441
2442         mc_ptr = netdev->mc_list;
2443
2444         for (; i < rar_entries; i++) {
2445                 if (mc_ptr) {
2446                         e1000_rar_set(hw, mc_ptr->da_addr, i);
2447                         mc_ptr = mc_ptr->next;
2448                 } else {
2449                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2450                         E1000_WRITE_FLUSH();
2451                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2452                         E1000_WRITE_FLUSH();
2453                 }
2454         }
2455
2456         /* load any remaining addresses into the hash table */
2457
2458         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2459                 u32 hash_reg, hash_bit, mta;
2460                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
2461                 hash_reg = (hash_value >> 5) & 0x7F;
2462                 hash_bit = hash_value & 0x1F;
2463                 mta = (1 << hash_bit);
2464                 mcarray[hash_reg] |= mta;
2465         }
2466
2467         /* write the hash table completely, write from bottom to avoid
2468          * both stupid write combining chipsets, and flushing each write */
2469         for (i = mta_reg_count - 1; i >= 0 ; i--) {
2470                 /*
2471                  * If we are on an 82544 has an errata where writing odd
2472                  * offsets overwrites the previous even offset, but writing
2473                  * backwards over the range solves the issue by always
2474                  * writing the odd offset first
2475                  */
2476                 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2477         }
2478         E1000_WRITE_FLUSH();
2479
2480         if (hw->mac_type == e1000_82542_rev2_0)
2481                 e1000_leave_82542_rst(adapter);
2482
2483         kfree(mcarray);
2484 }
2485
2486 /* Need to wait a few seconds after link up to get diagnostic information from
2487  * the phy */
2488
2489 static void e1000_update_phy_info(unsigned long data)
2490 {
2491         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2492         struct e1000_hw *hw = &adapter->hw;
2493         e1000_phy_get_info(hw, &adapter->phy_info);
2494 }
2495
2496 /**
2497  * e1000_82547_tx_fifo_stall - Timer Call-back
2498  * @data: pointer to adapter cast into an unsigned long
2499  **/
2500
2501 static void e1000_82547_tx_fifo_stall(unsigned long data)
2502 {
2503         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2504         struct e1000_hw *hw = &adapter->hw;
2505         struct net_device *netdev = adapter->netdev;
2506         u32 tctl;
2507
2508         if (atomic_read(&adapter->tx_fifo_stall)) {
2509                 if ((er32(TDT) == er32(TDH)) &&
2510                    (er32(TDFT) == er32(TDFH)) &&
2511                    (er32(TDFTS) == er32(TDFHS))) {
2512                         tctl = er32(TCTL);
2513                         ew32(TCTL, tctl & ~E1000_TCTL_EN);
2514                         ew32(TDFT, adapter->tx_head_addr);
2515                         ew32(TDFH, adapter->tx_head_addr);
2516                         ew32(TDFTS, adapter->tx_head_addr);
2517                         ew32(TDFHS, adapter->tx_head_addr);
2518                         ew32(TCTL, tctl);
2519                         E1000_WRITE_FLUSH();
2520
2521                         adapter->tx_fifo_head = 0;
2522                         atomic_set(&adapter->tx_fifo_stall, 0);
2523                         netif_wake_queue(netdev);
2524                 } else {
2525                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2526                 }
2527         }
2528 }
2529
2530 /**
2531  * e1000_watchdog - Timer Call-back
2532  * @data: pointer to adapter cast into an unsigned long
2533  **/
2534 static void e1000_watchdog(unsigned long data)
2535 {
2536         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2537         struct e1000_hw *hw = &adapter->hw;
2538         struct net_device *netdev = adapter->netdev;
2539         struct e1000_tx_ring *txdr = adapter->tx_ring;
2540         u32 link, tctl;
2541         s32 ret_val;
2542
2543         ret_val = e1000_check_for_link(hw);
2544         if ((ret_val == E1000_ERR_PHY) &&
2545             (hw->phy_type == e1000_phy_igp_3) &&
2546             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2547                 /* See e1000_kumeran_lock_loss_workaround() */
2548                 DPRINTK(LINK, INFO,
2549                         "Gigabit has been disabled, downgrading speed\n");
2550         }
2551
2552         if (hw->mac_type == e1000_82573) {
2553                 e1000_enable_tx_pkt_filtering(hw);
2554                 if (adapter->mng_vlan_id != hw->mng_cookie.vlan_id)
2555                         e1000_update_mng_vlan(adapter);
2556         }
2557
2558         if ((hw->media_type == e1000_media_type_internal_serdes) &&
2559            !(er32(TXCW) & E1000_TXCW_ANE))
2560                 link = !hw->serdes_link_down;
2561         else
2562                 link = er32(STATUS) & E1000_STATUS_LU;
2563
2564         if (link) {
2565                 if (!netif_carrier_ok(netdev)) {
2566                         u32 ctrl;
2567                         bool txb2b = true;
2568                         e1000_get_speed_and_duplex(hw,
2569                                                    &adapter->link_speed,
2570                                                    &adapter->link_duplex);
2571
2572                         ctrl = er32(CTRL);
2573                         printk(KERN_INFO "e1000: %s NIC Link is Up %d Mbps %s, "
2574                                "Flow Control: %s\n",
2575                                netdev->name,
2576                                adapter->link_speed,
2577                                adapter->link_duplex == FULL_DUPLEX ?
2578                                 "Full Duplex" : "Half Duplex",
2579                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2580                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2581                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2582                                 E1000_CTRL_TFCE) ? "TX" : "None" )));
2583
2584                         /* tweak tx_queue_len according to speed/duplex
2585                          * and adjust the timeout factor */
2586                         netdev->tx_queue_len = adapter->tx_queue_len;
2587                         adapter->tx_timeout_factor = 1;
2588                         switch (adapter->link_speed) {
2589                         case SPEED_10:
2590                                 txb2b = false;
2591                                 netdev->tx_queue_len = 10;
2592                                 adapter->tx_timeout_factor = 8;
2593                                 break;
2594                         case SPEED_100:
2595                                 txb2b = false;
2596                                 netdev->tx_queue_len = 100;
2597                                 /* maybe add some timeout factor ? */
2598                                 break;
2599                         }
2600
2601                         if ((hw->mac_type == e1000_82571 ||
2602                              hw->mac_type == e1000_82572) &&
2603                             !txb2b) {
2604                                 u32 tarc0;
2605                                 tarc0 = er32(TARC0);
2606                                 tarc0 &= ~(1 << 21);
2607                                 ew32(TARC0, tarc0);
2608                         }
2609
2610                         /* disable TSO for pcie and 10/100 speeds, to avoid
2611                          * some hardware issues */
2612                         if (!adapter->tso_force &&
2613                             hw->bus_type == e1000_bus_type_pci_express){
2614                                 switch (adapter->link_speed) {
2615                                 case SPEED_10:
2616                                 case SPEED_100:
2617                                         DPRINTK(PROBE,INFO,
2618                                         "10/100 speed: disabling TSO\n");
2619                                         netdev->features &= ~NETIF_F_TSO;
2620                                         netdev->features &= ~NETIF_F_TSO6;
2621                                         break;
2622                                 case SPEED_1000:
2623                                         netdev->features |= NETIF_F_TSO;
2624                                         netdev->features |= NETIF_F_TSO6;
2625                                         break;
2626                                 default:
2627                                         /* oops */
2628                                         break;
2629                                 }
2630                         }
2631
2632                         /* enable transmits in the hardware, need to do this
2633                          * after setting TARC0 */
2634                         tctl = er32(TCTL);
2635                         tctl |= E1000_TCTL_EN;
2636                         ew32(TCTL, tctl);
2637
2638                         netif_carrier_on(netdev);
2639                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2640                         adapter->smartspeed = 0;
2641                 } else {
2642                         /* make sure the receive unit is started */
2643                         if (hw->rx_needs_kicking) {
2644                                 u32 rctl = er32(RCTL);
2645                                 ew32(RCTL, rctl | E1000_RCTL_EN);
2646                         }
2647                 }
2648         } else {
2649                 if (netif_carrier_ok(netdev)) {
2650                         adapter->link_speed = 0;
2651                         adapter->link_duplex = 0;
2652                         printk(KERN_INFO "e1000: %s NIC Link is Down\n",
2653                                netdev->name);
2654                         netif_carrier_off(netdev);
2655                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2656
2657                         /* 80003ES2LAN workaround--
2658                          * For packet buffer work-around on link down event;
2659                          * disable receives in the ISR and
2660                          * reset device here in the watchdog
2661                          */
2662                         if (hw->mac_type == e1000_80003es2lan)
2663                                 /* reset device */
2664                                 schedule_work(&adapter->reset_task);
2665                 }
2666
2667                 e1000_smartspeed(adapter);
2668         }
2669
2670         e1000_update_stats(adapter);
2671
2672         hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2673         adapter->tpt_old = adapter->stats.tpt;
2674         hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2675         adapter->colc_old = adapter->stats.colc;
2676
2677         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2678         adapter->gorcl_old = adapter->stats.gorcl;
2679         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2680         adapter->gotcl_old = adapter->stats.gotcl;
2681
2682         e1000_update_adaptive(hw);
2683
2684         if (!netif_carrier_ok(netdev)) {
2685                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2686                         /* We've lost link, so the controller stops DMA,
2687                          * but we've got queued Tx work that's never going
2688                          * to get done, so reset controller to flush Tx.
2689                          * (Do the reset outside of interrupt context). */
2690                         adapter->tx_timeout_count++;
2691                         schedule_work(&adapter->reset_task);
2692                         /* return immediately since reset is imminent */
2693                         return;
2694                 }
2695         }
2696
2697         /* Cause software interrupt to ensure rx ring is cleaned */
2698         ew32(ICS, E1000_ICS_RXDMT0);
2699
2700         /* Force detection of hung controller every watchdog period */
2701         adapter->detect_tx_hung = true;
2702
2703         /* With 82571 controllers, LAA may be overwritten due to controller
2704          * reset from the other port. Set the appropriate LAA in RAR[0] */
2705         if (hw->mac_type == e1000_82571 && hw->laa_is_present)
2706                 e1000_rar_set(hw, hw->mac_addr, 0);
2707
2708         /* Reset the timer */
2709         mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
2710 }
2711
2712 enum latency_range {
2713         lowest_latency = 0,
2714         low_latency = 1,
2715         bulk_latency = 2,
2716         latency_invalid = 255
2717 };
2718
2719 /**
2720  * e1000_update_itr - update the dynamic ITR value based on statistics
2721  *      Stores a new ITR value based on packets and byte
2722  *      counts during the last interrupt.  The advantage of per interrupt
2723  *      computation is faster updates and more accurate ITR for the current
2724  *      traffic pattern.  Constants in this function were computed
2725  *      based on theoretical maximum wire speed and thresholds were set based
2726  *      on testing data as well as attempting to minimize response time
2727  *      while increasing bulk throughput.
2728  *      this functionality is controlled by the InterruptThrottleRate module
2729  *      parameter (see e1000_param.c)
2730  * @adapter: pointer to adapter
2731  * @itr_setting: current adapter->itr
2732  * @packets: the number of packets during this measurement interval
2733  * @bytes: the number of bytes during this measurement interval
2734  **/
2735 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2736                                      u16 itr_setting, int packets, int bytes)
2737 {
2738         unsigned int retval = itr_setting;
2739         struct e1000_hw *hw = &adapter->hw;
2740
2741         if (unlikely(hw->mac_type < e1000_82540))
2742                 goto update_itr_done;
2743
2744         if (packets == 0)
2745                 goto update_itr_done;
2746
2747         switch (itr_setting) {
2748         case lowest_latency:
2749                 /* jumbo frames get bulk treatment*/
2750                 if (bytes/packets > 8000)
2751                         retval = bulk_latency;
2752                 else if ((packets < 5) && (bytes > 512))
2753                         retval = low_latency;
2754                 break;
2755         case low_latency:  /* 50 usec aka 20000 ints/s */
2756                 if (bytes > 10000) {
2757                         /* jumbo frames need bulk latency setting */
2758                         if (bytes/packets > 8000)
2759                                 retval = bulk_latency;
2760                         else if ((packets < 10) || ((bytes/packets) > 1200))
2761                                 retval = bulk_latency;
2762                         else if ((packets > 35))
2763                                 retval = lowest_latency;
2764                 } else if (bytes/packets > 2000)
2765                         retval = bulk_latency;
2766                 else if (packets <= 2 && bytes < 512)
2767                         retval = lowest_latency;
2768                 break;
2769         case bulk_latency: /* 250 usec aka 4000 ints/s */
2770                 if (bytes > 25000) {
2771                         if (packets > 35)
2772                                 retval = low_latency;
2773                 } else if (bytes < 6000) {
2774                         retval = low_latency;
2775                 }
2776                 break;
2777         }
2778
2779 update_itr_done:
2780         return retval;
2781 }
2782
2783 static void e1000_set_itr(struct e1000_adapter *adapter)
2784 {
2785         struct e1000_hw *hw = &adapter->hw;
2786         u16 current_itr;
2787         u32 new_itr = adapter->itr;
2788
2789         if (unlikely(hw->mac_type < e1000_82540))
2790                 return;
2791
2792         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2793         if (unlikely(adapter->link_speed != SPEED_1000)) {
2794                 current_itr = 0;
2795                 new_itr = 4000;
2796                 goto set_itr_now;
2797         }
2798
2799         adapter->tx_itr = e1000_update_itr(adapter,
2800                                     adapter->tx_itr,
2801                                     adapter->total_tx_packets,
2802                                     adapter->total_tx_bytes);
2803         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2804         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2805                 adapter->tx_itr = low_latency;
2806
2807         adapter->rx_itr = e1000_update_itr(adapter,
2808                                     adapter->rx_itr,
2809                                     adapter->total_rx_packets,
2810                                     adapter->total_rx_bytes);
2811         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2812         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2813                 adapter->rx_itr = low_latency;
2814
2815         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2816
2817         switch (current_itr) {
2818         /* counts and packets in update_itr are dependent on these numbers */
2819         case lowest_latency:
2820                 new_itr = 70000;
2821                 break;
2822         case low_latency:
2823                 new_itr = 20000; /* aka hwitr = ~200 */
2824                 break;
2825         case bulk_latency:
2826                 new_itr = 4000;
2827                 break;
2828         default:
2829                 break;
2830         }
2831
2832 set_itr_now:
2833         if (new_itr != adapter->itr) {
2834                 /* this attempts to bias the interrupt rate towards Bulk
2835                  * by adding intermediate steps when interrupt rate is
2836                  * increasing */
2837                 new_itr = new_itr > adapter->itr ?
2838                              min(adapter->itr + (new_itr >> 2), new_itr) :
2839                              new_itr;
2840                 adapter->itr = new_itr;
2841                 ew32(ITR, 1000000000 / (new_itr * 256));
2842         }
2843
2844         return;
2845 }
2846
2847 #define E1000_TX_FLAGS_CSUM             0x00000001
2848 #define E1000_TX_FLAGS_VLAN             0x00000002
2849 #define E1000_TX_FLAGS_TSO              0x00000004
2850 #define E1000_TX_FLAGS_IPV4             0x00000008
2851 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2852 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2853
2854 static int e1000_tso(struct e1000_adapter *adapter,
2855                      struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2856 {
2857         struct e1000_context_desc *context_desc;
2858         struct e1000_buffer *buffer_info;
2859         unsigned int i;
2860         u32 cmd_length = 0;
2861         u16 ipcse = 0, tucse, mss;
2862         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2863         int err;
2864
2865         if (skb_is_gso(skb)) {
2866                 if (skb_header_cloned(skb)) {
2867                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2868                         if (err)
2869                                 return err;
2870                 }
2871
2872                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2873                 mss = skb_shinfo(skb)->gso_size;
2874                 if (skb->protocol == htons(ETH_P_IP)) {
2875                         struct iphdr *iph = ip_hdr(skb);
2876                         iph->tot_len = 0;
2877                         iph->check = 0;
2878                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2879                                                                  iph->daddr, 0,
2880                                                                  IPPROTO_TCP,
2881                                                                  0);
2882                         cmd_length = E1000_TXD_CMD_IP;
2883                         ipcse = skb_transport_offset(skb) - 1;
2884                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2885                         ipv6_hdr(skb)->payload_len = 0;
2886                         tcp_hdr(skb)->check =
2887                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2888                                                  &ipv6_hdr(skb)->daddr,
2889                                                  0, IPPROTO_TCP, 0);
2890                         ipcse = 0;
2891                 }
2892                 ipcss = skb_network_offset(skb);
2893                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2894                 tucss = skb_transport_offset(skb);
2895                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2896                 tucse = 0;
2897
2898                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2899                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2900
2901                 i = tx_ring->next_to_use;
2902                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2903                 buffer_info = &tx_ring->buffer_info[i];
2904
2905                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2906                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2907                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2908                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2909                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2910                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2911                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2912                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2913                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2914
2915                 buffer_info->time_stamp = jiffies;
2916                 buffer_info->next_to_watch = i;
2917
2918                 if (++i == tx_ring->count) i = 0;
2919                 tx_ring->next_to_use = i;
2920
2921                 return true;
2922         }
2923         return false;
2924 }
2925
2926 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2927                           struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2928 {
2929         struct e1000_context_desc *context_desc;
2930         struct e1000_buffer *buffer_info;
2931         unsigned int i;
2932         u8 css;
2933         u32 cmd_len = E1000_TXD_CMD_DEXT;
2934
2935         if (skb->ip_summed != CHECKSUM_PARTIAL)
2936                 return false;
2937
2938         switch (skb->protocol) {
2939         case cpu_to_be16(ETH_P_IP):
2940                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2941                         cmd_len |= E1000_TXD_CMD_TCP;
2942                 break;
2943         case cpu_to_be16(ETH_P_IPV6):
2944                 /* XXX not handling all IPV6 headers */
2945                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2946                         cmd_len |= E1000_TXD_CMD_TCP;
2947                 break;
2948         default:
2949                 if (unlikely(net_ratelimit()))
2950                         DPRINTK(DRV, WARNING,
2951                                 "checksum_partial proto=%x!\n", skb->protocol);
2952                 break;
2953         }
2954
2955         css = skb_transport_offset(skb);
2956
2957         i = tx_ring->next_to_use;
2958         buffer_info = &tx_ring->buffer_info[i];
2959         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2960
2961         context_desc->lower_setup.ip_config = 0;
2962         context_desc->upper_setup.tcp_fields.tucss = css;
2963         context_desc->upper_setup.tcp_fields.tucso =
2964                 css + skb->csum_offset;
2965         context_desc->upper_setup.tcp_fields.tucse = 0;
2966         context_desc->tcp_seg_setup.data = 0;
2967         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2968
2969         buffer_info->time_stamp = jiffies;
2970         buffer_info->next_to_watch = i;
2971
2972         if (unlikely(++i == tx_ring->count)) i = 0;
2973         tx_ring->next_to_use = i;
2974
2975         return true;
2976 }
2977
2978 #define E1000_MAX_TXD_PWR       12
2979 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2980
2981 static int e1000_tx_map(struct e1000_adapter *adapter,
2982                         struct e1000_tx_ring *tx_ring,
2983                         struct sk_buff *skb, unsigned int first,
2984                         unsigned int max_per_txd, unsigned int nr_frags,
2985                         unsigned int mss)
2986 {
2987         struct e1000_hw *hw = &adapter->hw;
2988         struct e1000_buffer *buffer_info;
2989         unsigned int len = skb_headlen(skb);
2990         unsigned int offset, size, count = 0, i;
2991         unsigned int f;
2992         dma_addr_t *map;
2993
2994         i = tx_ring->next_to_use;
2995
2996         if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
2997                 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
2998                 return 0;
2999         }
3000
3001         map = skb_shinfo(skb)->dma_maps;
3002         offset = 0;
3003
3004         while (len) {
3005                 buffer_info = &tx_ring->buffer_info[i];
3006                 size = min(len, max_per_txd);
3007                 /* Workaround for Controller erratum --
3008                  * descriptor for non-tso packet in a linear SKB that follows a
3009                  * tso gets written back prematurely before the data is fully
3010                  * DMA'd to the controller */
3011                 if (!skb->data_len && tx_ring->last_tx_tso &&
3012                     !skb_is_gso(skb)) {
3013                         tx_ring->last_tx_tso = 0;
3014                         size -= 4;
3015                 }
3016
3017                 /* Workaround for premature desc write-backs
3018                  * in TSO mode.  Append 4-byte sentinel desc */
3019                 if (unlikely(mss && !nr_frags && size == len && size > 8))
3020                         size -= 4;
3021                 /* work-around for errata 10 and it applies
3022                  * to all controllers in PCI-X mode
3023                  * The fix is to make sure that the first descriptor of a
3024                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
3025                  */
3026                 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3027                                 (size > 2015) && count == 0))
3028                         size = 2015;
3029
3030                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
3031                  * terminating buffers within evenly-aligned dwords. */
3032                 if (unlikely(adapter->pcix_82544 &&
3033                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
3034                    size > 4))
3035                         size -= 4;
3036
3037                 buffer_info->length = size;
3038                 buffer_info->dma = skb_shinfo(skb)->dma_head + offset;
3039                 buffer_info->time_stamp = jiffies;
3040                 buffer_info->next_to_watch = i;
3041
3042                 len -= size;
3043                 offset += size;
3044                 count++;
3045                 if (len) {
3046                         i++;
3047                         if (unlikely(i == tx_ring->count))
3048                                 i = 0;
3049                 }
3050         }
3051
3052         for (f = 0; f < nr_frags; f++) {
3053                 struct skb_frag_struct *frag;
3054
3055                 frag = &skb_shinfo(skb)->frags[f];
3056                 len = frag->size;
3057                 offset = 0;
3058
3059                 while (len) {
3060                         i++;
3061                         if (unlikely(i == tx_ring->count))
3062                                 i = 0;
3063
3064                         buffer_info = &tx_ring->buffer_info[i];
3065                         size = min(len, max_per_txd);
3066                         /* Workaround for premature desc write-backs
3067                          * in TSO mode.  Append 4-byte sentinel desc */
3068                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
3069                                 size -= 4;
3070                         /* Workaround for potential 82544 hang in PCI-X.
3071                          * Avoid terminating buffers within evenly-aligned
3072                          * dwords. */
3073                         if (unlikely(adapter->pcix_82544 &&
3074                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
3075                            size > 4))
3076                                 size -= 4;
3077
3078                         buffer_info->length = size;
3079                         buffer_info->dma = map[f] + offset;
3080                         buffer_info->time_stamp = jiffies;
3081                         buffer_info->next_to_watch = i;
3082
3083                         len -= size;
3084                         offset += size;
3085                         count++;
3086                 }
3087         }
3088
3089         tx_ring->buffer_info[i].skb = skb;
3090         tx_ring->buffer_info[first].next_to_watch = i;
3091
3092         return count;
3093 }
3094
3095 static void e1000_tx_queue(struct e1000_adapter *adapter,
3096                            struct e1000_tx_ring *tx_ring, int tx_flags,
3097                            int count)
3098 {
3099         struct e1000_hw *hw = &adapter->hw;
3100         struct e1000_tx_desc *tx_desc = NULL;
3101         struct e1000_buffer *buffer_info;
3102         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3103         unsigned int i;
3104
3105         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3106                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3107                              E1000_TXD_CMD_TSE;
3108                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3109
3110                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3111                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3112         }
3113
3114         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3115                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3116                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3117         }
3118
3119         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3120                 txd_lower |= E1000_TXD_CMD_VLE;
3121                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3122         }
3123
3124         i = tx_ring->next_to_use;
3125
3126         while (count--) {
3127                 buffer_info = &tx_ring->buffer_info[i];
3128                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3129                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3130                 tx_desc->lower.data =
3131                         cpu_to_le32(txd_lower | buffer_info->length);
3132                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3133                 if (unlikely(++i == tx_ring->count)) i = 0;
3134         }
3135
3136         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3137
3138         /* Force memory writes to complete before letting h/w
3139          * know there are new descriptors to fetch.  (Only
3140          * applicable for weak-ordered memory model archs,
3141          * such as IA-64). */
3142         wmb();
3143
3144         tx_ring->next_to_use = i;
3145         writel(i, hw->hw_addr + tx_ring->tdt);
3146         /* we need this if more than one processor can write to our tail
3147          * at a time, it syncronizes IO on IA64/Altix systems */
3148         mmiowb();
3149 }
3150
3151 /**
3152  * 82547 workaround to avoid controller hang in half-duplex environment.
3153  * The workaround is to avoid queuing a large packet that would span
3154  * the internal Tx FIFO ring boundary by notifying the stack to resend
3155  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3156  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3157  * to the beginning of the Tx FIFO.
3158  **/
3159
3160 #define E1000_FIFO_HDR                  0x10
3161 #define E1000_82547_PAD_LEN             0x3E0
3162
3163 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3164                                        struct sk_buff *skb)
3165 {
3166         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3167         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3168
3169         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3170
3171         if (adapter->link_duplex != HALF_DUPLEX)
3172                 goto no_fifo_stall_required;
3173
3174         if (atomic_read(&adapter->tx_fifo_stall))
3175                 return 1;
3176
3177         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3178                 atomic_set(&adapter->tx_fifo_stall, 1);
3179                 return 1;
3180         }
3181
3182 no_fifo_stall_required:
3183         adapter->tx_fifo_head += skb_fifo_len;
3184         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3185                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3186         return 0;
3187 }
3188
3189 #define MINIMUM_DHCP_PACKET_SIZE 282
3190 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3191                                     struct sk_buff *skb)
3192 {
3193         struct e1000_hw *hw =  &adapter->hw;
3194         u16 length, offset;
3195         if (vlan_tx_tag_present(skb)) {
3196                 if (!((vlan_tx_tag_get(skb) == hw->mng_cookie.vlan_id) &&
3197                         ( hw->mng_cookie.status &
3198                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3199                         return 0;
3200         }
3201         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3202                 struct ethhdr *eth = (struct ethhdr *)skb->data;
3203                 if ((htons(ETH_P_IP) == eth->h_proto)) {
3204                         const struct iphdr *ip =
3205                                 (struct iphdr *)((u8 *)skb->data+14);
3206                         if (IPPROTO_UDP == ip->protocol) {
3207                                 struct udphdr *udp =
3208                                         (struct udphdr *)((u8 *)ip +
3209                                                 (ip->ihl << 2));
3210                                 if (ntohs(udp->dest) == 67) {
3211                                         offset = (u8 *)udp + 8 - skb->data;
3212                                         length = skb->len - offset;
3213
3214                                         return e1000_mng_write_dhcp_info(hw,
3215                                                         (u8 *)udp + 8,
3216                                                         length);
3217                                 }
3218                         }
3219                 }
3220         }
3221         return 0;
3222 }
3223
3224 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3225 {
3226         struct e1000_adapter *adapter = netdev_priv(netdev);
3227         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3228
3229         netif_stop_queue(netdev);
3230         /* Herbert's original patch had:
3231          *  smp_mb__after_netif_stop_queue();
3232          * but since that doesn't exist yet, just open code it. */
3233         smp_mb();
3234
3235         /* We need to check again in a case another CPU has just
3236          * made room available. */
3237         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3238                 return -EBUSY;
3239
3240         /* A reprieve! */
3241         netif_start_queue(netdev);
3242         ++adapter->restart_queue;
3243         return 0;
3244 }
3245
3246 static int e1000_maybe_stop_tx(struct net_device *netdev,
3247                                struct e1000_tx_ring *tx_ring, int size)
3248 {
3249         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3250                 return 0;
3251         return __e1000_maybe_stop_tx(netdev, size);
3252 }
3253
3254 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3255 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3256                                     struct net_device *netdev)
3257 {
3258         struct e1000_adapter *adapter = netdev_priv(netdev);
3259         struct e1000_hw *hw = &adapter->hw;
3260         struct e1000_tx_ring *tx_ring;
3261         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3262         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3263         unsigned int tx_flags = 0;
3264         unsigned int len = skb->len - skb->data_len;
3265         unsigned int nr_frags;
3266         unsigned int mss;
3267         int count = 0;
3268         int tso;
3269         unsigned int f;
3270
3271         /* This goes back to the question of how to logically map a tx queue
3272          * to a flow.  Right now, performance is impacted slightly negatively
3273          * if using multiple tx queues.  If the stack breaks away from a
3274          * single qdisc implementation, we can look at this again. */
3275         tx_ring = adapter->tx_ring;
3276
3277         if (unlikely(skb->len <= 0)) {
3278                 dev_kfree_skb_any(skb);
3279                 return NETDEV_TX_OK;
3280         }
3281
3282         /* 82571 and newer doesn't need the workaround that limited descriptor
3283          * length to 4kB */
3284         if (hw->mac_type >= e1000_82571)
3285                 max_per_txd = 8192;
3286
3287         mss = skb_shinfo(skb)->gso_size;
3288         /* The controller does a simple calculation to
3289          * make sure there is enough room in the FIFO before
3290          * initiating the DMA for each buffer.  The calc is:
3291          * 4 = ceil(buffer len/mss).  To make sure we don't
3292          * overrun the FIFO, adjust the max buffer len if mss
3293          * drops. */
3294         if (mss) {
3295                 u8 hdr_len;
3296                 max_per_txd = min(mss << 2, max_per_txd);
3297                 max_txd_pwr = fls(max_per_txd) - 1;
3298
3299                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3300                 * points to just header, pull a few bytes of payload from
3301                 * frags into skb->data */
3302                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3303                 if (skb->data_len && hdr_len == len) {
3304                         switch (hw->mac_type) {
3305                                 unsigned int pull_size;
3306                         case e1000_82544:
3307                                 /* Make sure we have room to chop off 4 bytes,
3308                                  * and that the end alignment will work out to
3309                                  * this hardware's requirements
3310                                  * NOTE: this is a TSO only workaround
3311                                  * if end byte alignment not correct move us
3312                                  * into the next dword */
3313                                 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3314                                         break;
3315                                 /* fall through */
3316                         case e1000_82571:
3317                         case e1000_82572:
3318                         case e1000_82573:
3319                         case e1000_ich8lan:
3320                                 pull_size = min((unsigned int)4, skb->data_len);
3321                                 if (!__pskb_pull_tail(skb, pull_size)) {
3322                                         DPRINTK(DRV, ERR,
3323                                                 "__pskb_pull_tail failed.\n");
3324                                         dev_kfree_skb_any(skb);
3325                                         return NETDEV_TX_OK;
3326                                 }
3327                                 len = skb->len - skb->data_len;
3328                                 break;
3329                         default:
3330                                 /* do nothing */
3331                                 break;
3332                         }
3333                 }
3334         }
3335
3336         /* reserve a descriptor for the offload context */
3337         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3338                 count++;
3339         count++;
3340
3341         /* Controller Erratum workaround */
3342         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3343                 count++;
3344
3345         count += TXD_USE_COUNT(len, max_txd_pwr);
3346
3347         if (adapter->pcix_82544)
3348                 count++;
3349
3350         /* work-around for errata 10 and it applies to all controllers
3351          * in PCI-X mode, so add one more descriptor to the count
3352          */
3353         if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3354                         (len > 2015)))
3355                 count++;
3356
3357         nr_frags = skb_shinfo(skb)->nr_frags;
3358         for (f = 0; f < nr_frags; f++)
3359                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3360                                        max_txd_pwr);
3361         if (adapter->pcix_82544)
3362                 count += nr_frags;
3363
3364
3365         if (hw->tx_pkt_filtering &&
3366             (hw->mac_type == e1000_82573))
3367                 e1000_transfer_dhcp_info(adapter, skb);
3368
3369         /* need: count + 2 desc gap to keep tail from touching
3370          * head, otherwise try next time */
3371         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3372                 return NETDEV_TX_BUSY;
3373
3374         if (unlikely(hw->mac_type == e1000_82547)) {
3375                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3376                         netif_stop_queue(netdev);
3377                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3378                         return NETDEV_TX_BUSY;
3379                 }
3380         }
3381
3382         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3383                 tx_flags |= E1000_TX_FLAGS_VLAN;
3384                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3385         }
3386
3387         first = tx_ring->next_to_use;
3388
3389         tso = e1000_tso(adapter, tx_ring, skb);
3390         if (tso < 0) {
3391                 dev_kfree_skb_any(skb);
3392                 return NETDEV_TX_OK;
3393         }
3394
3395         if (likely(tso)) {
3396                 tx_ring->last_tx_tso = 1;
3397                 tx_flags |= E1000_TX_FLAGS_TSO;
3398         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3399                 tx_flags |= E1000_TX_FLAGS_CSUM;
3400
3401         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3402          * 82571 hardware supports TSO capabilities for IPv6 as well...
3403          * no longer assume, we must. */
3404         if (likely(skb->protocol == htons(ETH_P_IP)))
3405                 tx_flags |= E1000_TX_FLAGS_IPV4;
3406
3407         count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3408                              nr_frags, mss);
3409
3410         if (count) {
3411                 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3412                 /* Make sure there is space in the ring for the next send. */
3413                 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3414
3415         } else {
3416                 dev_kfree_skb_any(skb);
3417                 tx_ring->buffer_info[first].time_stamp = 0;
3418                 tx_ring->next_to_use = first;
3419         }
3420
3421         return NETDEV_TX_OK;
3422 }
3423
3424 /**
3425  * e1000_tx_timeout - Respond to a Tx Hang
3426  * @netdev: network interface device structure
3427  **/
3428
3429 static void e1000_tx_timeout(struct net_device *netdev)
3430 {
3431         struct e1000_adapter *adapter = netdev_priv(netdev);
3432
3433         /* Do the reset outside of interrupt context */
3434         adapter->tx_timeout_count++;
3435         schedule_work(&adapter->reset_task);
3436 }
3437
3438 static void e1000_reset_task(struct work_struct *work)
3439 {
3440         struct e1000_adapter *adapter =
3441                 container_of(work, struct e1000_adapter, reset_task);
3442
3443         e1000_reinit_locked(adapter);
3444 }
3445
3446 /**
3447  * e1000_get_stats - Get System Network Statistics
3448  * @netdev: network interface device structure
3449  *
3450  * Returns the address of the device statistics structure.
3451  * The statistics are actually updated from the timer callback.
3452  **/
3453
3454 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3455 {
3456         struct e1000_adapter *adapter = netdev_priv(netdev);
3457
3458         /* only return the current stats */
3459         return &adapter->net_stats;
3460 }
3461
3462 /**
3463  * e1000_change_mtu - Change the Maximum Transfer Unit
3464  * @netdev: network interface device structure
3465  * @new_mtu: new value for maximum frame size
3466  *
3467  * Returns 0 on success, negative on failure
3468  **/
3469
3470 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3471 {
3472         struct e1000_adapter *adapter = netdev_priv(netdev);
3473         struct e1000_hw *hw = &adapter->hw;
3474         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3475         u16 eeprom_data = 0;
3476
3477         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3478             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3479                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3480                 return -EINVAL;
3481         }
3482
3483         /* Adapter-specific max frame size limits. */
3484         switch (hw->mac_type) {
3485         case e1000_undefined ... e1000_82542_rev2_1:
3486         case e1000_ich8lan:
3487                 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3488                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3489                         return -EINVAL;
3490                 }
3491                 break;
3492         case e1000_82573:
3493                 /* Jumbo Frames not supported if:
3494                  * - this is not an 82573L device
3495                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3496                 e1000_read_eeprom(hw, EEPROM_INIT_3GIO_3, 1,
3497                                   &eeprom_data);
3498                 if ((hw->device_id != E1000_DEV_ID_82573L) ||
3499                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3500                         if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3501                                 DPRINTK(PROBE, ERR,
3502                                         "Jumbo Frames not supported.\n");
3503                                 return -EINVAL;
3504                         }
3505                         break;
3506                 }
3507                 /* ERT will be enabled later to enable wire speed receives */
3508
3509                 /* fall through to get support */
3510         case e1000_82571:
3511         case e1000_82572:
3512         case e1000_80003es2lan:
3513 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3514                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3515                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3516                         return -EINVAL;
3517                 }
3518                 break;
3519         default:
3520                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3521                 break;
3522         }
3523
3524         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3525          * means we reserve 2 more, this pushes us to allocate from the next
3526          * larger slab size.
3527          * i.e. RXBUFFER_2048 --> size-4096 slab
3528          *  however with the new *_jumbo_rx* routines, jumbo receives will use
3529          *  fragmented skbs */
3530
3531         if (max_frame <= E1000_RXBUFFER_256)
3532                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3533         else if (max_frame <= E1000_RXBUFFER_512)
3534                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3535         else if (max_frame <= E1000_RXBUFFER_1024)
3536                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3537         else if (max_frame <= E1000_RXBUFFER_2048)
3538                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3539         else
3540 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3541                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3542 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3543                 adapter->rx_buffer_len = PAGE_SIZE;
3544 #endif
3545
3546         /* adjust allocation if LPE protects us, and we aren't using SBP */
3547         if (!hw->tbi_compatibility_on &&
3548             ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3549              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3550                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3551
3552         netdev->mtu = new_mtu;
3553         hw->max_frame_size = max_frame;
3554
3555         if (netif_running(netdev))
3556                 e1000_reinit_locked(adapter);
3557
3558         return 0;
3559 }
3560
3561 /**
3562  * e1000_update_stats - Update the board statistics counters
3563  * @adapter: board private structure
3564  **/
3565
3566 void e1000_update_stats(struct e1000_adapter *adapter)
3567 {
3568         struct e1000_hw *hw = &adapter->hw;
3569         struct pci_dev *pdev = adapter->pdev;
3570         unsigned long flags;
3571         u16 phy_tmp;
3572
3573 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3574
3575         /*
3576          * Prevent stats update while adapter is being reset, or if the pci
3577          * connection is down.
3578          */
3579         if (adapter->link_speed == 0)
3580                 return;
3581         if (pci_channel_offline(pdev))
3582                 return;
3583
3584         spin_lock_irqsave(&adapter->stats_lock, flags);
3585
3586         /* these counters are modified from e1000_tbi_adjust_stats,
3587          * called from the interrupt context, so they must only
3588          * be written while holding adapter->stats_lock
3589          */
3590
3591         adapter->stats.crcerrs += er32(CRCERRS);
3592         adapter->stats.gprc += er32(GPRC);
3593         adapter->stats.gorcl += er32(GORCL);
3594         adapter->stats.gorch += er32(GORCH);
3595         adapter->stats.bprc += er32(BPRC);
3596         adapter->stats.mprc += er32(MPRC);
3597         adapter->stats.roc += er32(ROC);
3598
3599         if (hw->mac_type != e1000_ich8lan) {
3600                 adapter->stats.prc64 += er32(PRC64);
3601                 adapter->stats.prc127 += er32(PRC127);
3602                 adapter->stats.prc255 += er32(PRC255);
3603                 adapter->stats.prc511 += er32(PRC511);
3604                 adapter->stats.prc1023 += er32(PRC1023);
3605                 adapter->stats.prc1522 += er32(PRC1522);
3606         }
3607
3608         adapter->stats.symerrs += er32(SYMERRS);
3609         adapter->stats.mpc += er32(MPC);
3610         adapter->stats.scc += er32(SCC);
3611         adapter->stats.ecol += er32(ECOL);
3612         adapter->stats.mcc += er32(MCC);
3613         adapter->stats.latecol += er32(LATECOL);
3614         adapter->stats.dc += er32(DC);
3615         adapter->stats.sec += er32(SEC);
3616         adapter->stats.rlec += er32(RLEC);
3617         adapter->stats.xonrxc += er32(XONRXC);
3618         adapter->stats.xontxc += er32(XONTXC);
3619         adapter->stats.xoffrxc += er32(XOFFRXC);
3620         adapter->stats.xofftxc += er32(XOFFTXC);
3621         adapter->stats.fcruc += er32(FCRUC);
3622         adapter->stats.gptc += er32(GPTC);
3623         adapter->stats.gotcl += er32(GOTCL);
3624         adapter->stats.gotch += er32(GOTCH);
3625         adapter->stats.rnbc += er32(RNBC);
3626         adapter->stats.ruc += er32(RUC);
3627         adapter->stats.rfc += er32(RFC);
3628         adapter->stats.rjc += er32(RJC);
3629         adapter->stats.torl += er32(TORL);
3630         adapter->stats.torh += er32(TORH);
3631         adapter->stats.totl += er32(TOTL);
3632         adapter->stats.toth += er32(TOTH);
3633         adapter->stats.tpr += er32(TPR);
3634
3635         if (hw->mac_type != e1000_ich8lan) {
3636                 adapter->stats.ptc64 += er32(PTC64);
3637                 adapter->stats.ptc127 += er32(PTC127);
3638                 adapter->stats.ptc255 += er32(PTC255);
3639                 adapter->stats.ptc511 += er32(PTC511);
3640                 adapter->stats.ptc1023 += er32(PTC1023);
3641                 adapter->stats.ptc1522 += er32(PTC1522);
3642         }
3643
3644         adapter->stats.mptc += er32(MPTC);
3645         adapter->stats.bptc += er32(BPTC);
3646
3647         /* used for adaptive IFS */
3648
3649         hw->tx_packet_delta = er32(TPT);
3650         adapter->stats.tpt += hw->tx_packet_delta;
3651         hw->collision_delta = er32(COLC);
3652         adapter->stats.colc += hw->collision_delta;
3653
3654         if (hw->mac_type >= e1000_82543) {
3655                 adapter->stats.algnerrc += er32(ALGNERRC);
3656                 adapter->stats.rxerrc += er32(RXERRC);
3657                 adapter->stats.tncrs += er32(TNCRS);
3658                 adapter->stats.cexterr += er32(CEXTERR);
3659                 adapter->stats.tsctc += er32(TSCTC);
3660                 adapter->stats.tsctfc += er32(TSCTFC);
3661         }
3662         if (hw->mac_type > e1000_82547_rev_2) {
3663                 adapter->stats.iac += er32(IAC);
3664                 adapter->stats.icrxoc += er32(ICRXOC);
3665
3666                 if (hw->mac_type != e1000_ich8lan) {
3667                         adapter->stats.icrxptc += er32(ICRXPTC);
3668                         adapter->stats.icrxatc += er32(ICRXATC);
3669                         adapter->stats.ictxptc += er32(ICTXPTC);
3670                         adapter->stats.ictxatc += er32(ICTXATC);
3671                         adapter->stats.ictxqec += er32(ICTXQEC);
3672                         adapter->stats.ictxqmtc += er32(ICTXQMTC);
3673                         adapter->stats.icrxdmtc += er32(ICRXDMTC);
3674                 }
3675         }
3676
3677         /* Fill out the OS statistics structure */
3678         adapter->net_stats.multicast = adapter->stats.mprc;
3679         adapter->net_stats.collisions = adapter->stats.colc;
3680
3681         /* Rx Errors */
3682
3683         /* RLEC on some newer hardware can be incorrect so build
3684         * our own version based on RUC and ROC */
3685         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3686                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3687                 adapter->stats.ruc + adapter->stats.roc +
3688                 adapter->stats.cexterr;
3689         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3690         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3691         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3692         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3693         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3694
3695         /* Tx Errors */
3696         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3697         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3698         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3699         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3700         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3701         if (hw->bad_tx_carr_stats_fd &&
3702             adapter->link_duplex == FULL_DUPLEX) {
3703                 adapter->net_stats.tx_carrier_errors = 0;
3704                 adapter->stats.tncrs = 0;
3705         }
3706
3707         /* Tx Dropped needs to be maintained elsewhere */
3708
3709         /* Phy Stats */
3710         if (hw->media_type == e1000_media_type_copper) {
3711                 if ((adapter->link_speed == SPEED_1000) &&
3712                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3713                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3714                         adapter->phy_stats.idle_errors += phy_tmp;
3715                 }
3716
3717                 if ((hw->mac_type <= e1000_82546) &&
3718                    (hw->phy_type == e1000_phy_m88) &&
3719                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3720                         adapter->phy_stats.receive_errors += phy_tmp;
3721         }
3722
3723         /* Management Stats */
3724         if (hw->has_smbus) {
3725                 adapter->stats.mgptc += er32(MGTPTC);
3726                 adapter->stats.mgprc += er32(MGTPRC);
3727                 adapter->stats.mgpdc += er32(MGTPDC);
3728         }
3729
3730         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3731 }
3732
3733 /**
3734  * e1000_intr_msi - Interrupt Handler
3735  * @irq: interrupt number
3736  * @data: pointer to a network interface device structure
3737  **/
3738
3739 static irqreturn_t e1000_intr_msi(int irq, void *data)
3740 {
3741         struct net_device *netdev = data;
3742         struct e1000_adapter *adapter = netdev_priv(netdev);
3743         struct e1000_hw *hw = &adapter->hw;
3744         u32 icr = er32(ICR);
3745
3746         /* in NAPI mode read ICR disables interrupts using IAM */
3747
3748         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3749                 hw->get_link_status = 1;
3750                 /* 80003ES2LAN workaround-- For packet buffer work-around on
3751                  * link down event; disable receives here in the ISR and reset
3752                  * adapter in watchdog */
3753                 if (netif_carrier_ok(netdev) &&
3754                     (hw->mac_type == e1000_80003es2lan)) {
3755                         /* disable receives */
3756                         u32 rctl = er32(RCTL);
3757                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3758                 }
3759                 /* guard against interrupt when we're going down */
3760                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3761                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3762         }
3763
3764         if (likely(napi_schedule_prep(&adapter->napi))) {
3765                 adapter->total_tx_bytes = 0;
3766                 adapter->total_tx_packets = 0;
3767                 adapter->total_rx_bytes = 0;
3768                 adapter->total_rx_packets = 0;
3769                 __napi_schedule(&adapter->napi);
3770         } else
3771                 e1000_irq_enable(adapter);
3772
3773         return IRQ_HANDLED;
3774 }
3775
3776 /**
3777  * e1000_intr - Interrupt Handler
3778  * @irq: interrupt number
3779  * @data: pointer to a network interface device structure
3780  **/
3781
3782 static irqreturn_t e1000_intr(int irq, void *data)
3783 {
3784         struct net_device *netdev = data;
3785         struct e1000_adapter *adapter = netdev_priv(netdev);
3786         struct e1000_hw *hw = &adapter->hw;
3787         u32 rctl, icr = er32(ICR);
3788
3789         if (unlikely((!icr) || test_bit(__E1000_DOWN, &adapter->flags)))
3790                 return IRQ_NONE;  /* Not our interrupt */
3791
3792         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3793          * not set, then the adapter didn't send an interrupt */
3794         if (unlikely(hw->mac_type >= e1000_82571 &&
3795                      !(icr & E1000_ICR_INT_ASSERTED)))
3796                 return IRQ_NONE;
3797
3798         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3799          * need for the IMC write */
3800
3801         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3802                 hw->get_link_status = 1;
3803                 /* 80003ES2LAN workaround--
3804                  * For packet buffer work-around on link down event;
3805                  * disable receives here in the ISR and
3806                  * reset adapter in watchdog
3807                  */
3808                 if (netif_carrier_ok(netdev) &&
3809                     (hw->mac_type == e1000_80003es2lan)) {
3810                         /* disable receives */
3811                         rctl = er32(RCTL);
3812                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3813                 }
3814                 /* guard against interrupt when we're going down */
3815                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3816                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3817         }
3818
3819         if (unlikely(hw->mac_type < e1000_82571)) {
3820                 /* disable interrupts, without the synchronize_irq bit */
3821                 ew32(IMC, ~0);
3822                 E1000_WRITE_FLUSH();
3823         }
3824         if (likely(napi_schedule_prep(&adapter->napi))) {
3825                 adapter->total_tx_bytes = 0;
3826                 adapter->total_tx_packets = 0;
3827                 adapter->total_rx_bytes = 0;
3828                 adapter->total_rx_packets = 0;
3829                 __napi_schedule(&adapter->napi);
3830         } else {
3831                 /* this really should not happen! if it does it is basically a
3832                  * bug, but not a hard error, so enable ints and continue */
3833                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3834                         e1000_irq_enable(adapter);
3835         }
3836
3837         return IRQ_HANDLED;
3838 }
3839
3840 /**
3841  * e1000_clean - NAPI Rx polling callback
3842  * @adapter: board private structure
3843  **/
3844 static int e1000_clean(struct napi_struct *napi, int budget)
3845 {
3846         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3847         struct net_device *poll_dev = adapter->netdev;
3848         int tx_cleaned = 0, work_done = 0;
3849
3850         adapter = netdev_priv(poll_dev);
3851
3852         tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3853
3854         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3855                           &work_done, budget);
3856
3857         if (!tx_cleaned)
3858                 work_done = budget;
3859
3860         /* If budget not fully consumed, exit the polling mode */
3861         if (work_done < budget) {
3862                 if (likely(adapter->itr_setting & 3))
3863                         e1000_set_itr(adapter);
3864                 napi_complete(napi);
3865                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3866                         e1000_irq_enable(adapter);
3867         }
3868
3869         return work_done;
3870 }
3871
3872 /**
3873  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3874  * @adapter: board private structure
3875  **/
3876 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3877                                struct e1000_tx_ring *tx_ring)
3878 {
3879         struct e1000_hw *hw = &adapter->hw;
3880         struct net_device *netdev = adapter->netdev;
3881         struct e1000_tx_desc *tx_desc, *eop_desc;
3882         struct e1000_buffer *buffer_info;
3883         unsigned int i, eop;
3884         unsigned int count = 0;
3885         unsigned int total_tx_bytes=0, total_tx_packets=0;
3886
3887         i = tx_ring->next_to_clean;
3888         eop = tx_ring->buffer_info[i].next_to_watch;
3889         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3890
3891         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3892                (count < tx_ring->count)) {
3893                 bool cleaned = false;
3894                 for ( ; !cleaned; count++) {
3895                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3896                         buffer_info = &tx_ring->buffer_info[i];
3897                         cleaned = (i == eop);
3898
3899                         if (cleaned) {
3900                                 struct sk_buff *skb = buffer_info->skb;
3901                                 unsigned int segs, bytecount;
3902                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3903                                 /* multiply data chunks by size of headers */
3904                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3905                                             skb->len;
3906                                 total_tx_packets += segs;
3907                                 total_tx_bytes += bytecount;
3908                         }
3909                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3910                         tx_desc->upper.data = 0;
3911
3912                         if (unlikely(++i == tx_ring->count)) i = 0;
3913                 }
3914
3915                 eop = tx_ring->buffer_info[i].next_to_watch;
3916                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3917         }
3918
3919         tx_ring->next_to_clean = i;
3920
3921 #define TX_WAKE_THRESHOLD 32
3922         if (unlikely(count && netif_carrier_ok(netdev) &&
3923                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3924                 /* Make sure that anybody stopping the queue after this
3925                  * sees the new next_to_clean.
3926                  */
3927                 smp_mb();
3928                 if (netif_queue_stopped(netdev)) {
3929                         netif_wake_queue(netdev);
3930                         ++adapter->restart_queue;
3931                 }
3932         }
3933
3934         if (adapter->detect_tx_hung) {
3935                 /* Detect a transmit hang in hardware, this serializes the
3936                  * check with the clearing of time_stamp and movement of i */
3937                 adapter->detect_tx_hung = false;
3938                 if (tx_ring->buffer_info[i].time_stamp &&
3939                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3940                                (adapter->tx_timeout_factor * HZ))
3941                     && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3942
3943                         /* detected Tx unit hang */
3944                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3945                                         "  Tx Queue             <%lu>\n"
3946                                         "  TDH                  <%x>\n"
3947                                         "  TDT                  <%x>\n"
3948                                         "  next_to_use          <%x>\n"
3949                                         "  next_to_clean        <%x>\n"
3950                                         "buffer_info[next_to_clean]\n"
3951                                         "  time_stamp           <%lx>\n"
3952                                         "  next_to_watch        <%x>\n"
3953                                         "  jiffies              <%lx>\n"
3954                                         "  next_to_watch.status <%x>\n",
3955                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3956                                         sizeof(struct e1000_tx_ring)),
3957                                 readl(hw->hw_addr + tx_ring->tdh),
3958                                 readl(hw->hw_addr + tx_ring->tdt),
3959                                 tx_ring->next_to_use,
3960                                 tx_ring->next_to_clean,
3961                                 tx_ring->buffer_info[i].time_stamp,
3962                                 eop,
3963                                 jiffies,
3964                                 eop_desc->upper.fields.status);
3965                         netif_stop_queue(netdev);
3966                 }
3967         }
3968         adapter->total_tx_bytes += total_tx_bytes;
3969         adapter->total_tx_packets += total_tx_packets;
3970         adapter->net_stats.tx_bytes += total_tx_bytes;
3971         adapter->net_stats.tx_packets += total_tx_packets;
3972         return (count < tx_ring->count);
3973 }
3974
3975 /**
3976  * e1000_rx_checksum - Receive Checksum Offload for 82543
3977  * @adapter:     board private structure
3978  * @status_err:  receive descriptor status and error fields
3979  * @csum:        receive descriptor csum field
3980  * @sk_buff:     socket buffer with received data
3981  **/
3982
3983 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3984                               u32 csum, struct sk_buff *skb)
3985 {
3986         struct e1000_hw *hw = &adapter->hw;
3987         u16 status = (u16)status_err;
3988         u8 errors = (u8)(status_err >> 24);
3989         skb->ip_summed = CHECKSUM_NONE;
3990
3991         /* 82543 or newer only */
3992         if (unlikely(hw->mac_type < e1000_82543)) return;
3993         /* Ignore Checksum bit is set */
3994         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3995         /* TCP/UDP checksum error bit is set */
3996         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3997                 /* let the stack verify checksum errors */
3998                 adapter->hw_csum_err++;
3999                 return;
4000         }
4001         /* TCP/UDP Checksum has not been calculated */
4002         if (hw->mac_type <= e1000_82547_rev_2) {
4003                 if (!(status & E1000_RXD_STAT_TCPCS))
4004                         return;
4005         } else {
4006                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
4007                         return;
4008         }
4009         /* It must be a TCP or UDP packet with a valid checksum */
4010         if (likely(status & E1000_RXD_STAT_TCPCS)) {
4011                 /* TCP checksum is good */
4012                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4013         } else if (hw->mac_type > e1000_82547_rev_2) {
4014                 /* IP fragment with UDP payload */
4015                 /* Hardware complements the payload checksum, so we undo it
4016                  * and then put the value in host order for further stack use.
4017                  */
4018                 __sum16 sum = (__force __sum16)htons(csum);
4019                 skb->csum = csum_unfold(~sum);
4020                 skb->ip_summed = CHECKSUM_COMPLETE;
4021         }
4022         adapter->hw_csum_good++;
4023 }
4024
4025 /**
4026  * e1000_consume_page - helper function
4027  **/
4028 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
4029                                u16 length)
4030 {
4031         bi->page = NULL;
4032         skb->len += length;
4033         skb->data_len += length;
4034         skb->truesize += length;
4035 }
4036
4037 /**
4038  * e1000_receive_skb - helper function to handle rx indications
4039  * @adapter: board private structure
4040  * @status: descriptor status field as written by hardware
4041  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4042  * @skb: pointer to sk_buff to be indicated to stack
4043  */
4044 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4045                               __le16 vlan, struct sk_buff *skb)
4046 {
4047         if (unlikely(adapter->vlgrp && (status & E1000_RXD_STAT_VP))) {
4048                 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4049                                          le16_to_cpu(vlan) &
4050                                          E1000_RXD_SPC_VLAN_MASK);
4051         } else {
4052                 netif_receive_skb(skb);
4053         }
4054 }
4055
4056 /**
4057  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4058  * @adapter: board private structure
4059  * @rx_ring: ring to clean
4060  * @work_done: amount of napi work completed this call
4061  * @work_to_do: max amount of work allowed for this call to do
4062  *
4063  * the return value indicates whether actual cleaning was done, there
4064  * is no guarantee that everything was cleaned
4065  */
4066 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4067                                      struct e1000_rx_ring *rx_ring,
4068                                      int *work_done, int work_to_do)
4069 {
4070         struct e1000_hw *hw = &adapter->hw;
4071         struct net_device *netdev = adapter->netdev;
4072         struct pci_dev *pdev = adapter->pdev;
4073         struct e1000_rx_desc *rx_desc, *next_rxd;
4074         struct e1000_buffer *buffer_info, *next_buffer;
4075         unsigned long irq_flags;
4076         u32 length;
4077         unsigned int i;
4078         int cleaned_count = 0;
4079         bool cleaned = false;
4080         unsigned int total_rx_bytes=0, total_rx_packets=0;
4081
4082         i = rx_ring->next_to_clean;
4083         rx_desc = E1000_RX_DESC(*rx_ring, i);
4084         buffer_info = &rx_ring->buffer_info[i];
4085
4086         while (rx_desc->status & E1000_RXD_STAT_DD) {
4087                 struct sk_buff *skb;
4088                 u8 status;
4089
4090                 if (*work_done >= work_to_do)
4091                         break;
4092                 (*work_done)++;
4093
4094                 status = rx_desc->status;
4095                 skb = buffer_info->skb;
4096                 buffer_info->skb = NULL;
4097
4098                 if (++i == rx_ring->count) i = 0;
4099                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4100                 prefetch(next_rxd);
4101
4102                 next_buffer = &rx_ring->buffer_info[i];
4103
4104                 cleaned = true;
4105                 cleaned_count++;
4106                 pci_unmap_page(pdev, buffer_info->dma, buffer_info->length,
4107                                PCI_DMA_FROMDEVICE);
4108                 buffer_info->dma = 0;
4109
4110                 length = le16_to_cpu(rx_desc->length);
4111
4112                 /* errors is only valid for DD + EOP descriptors */
4113                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4114                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4115                         u8 last_byte = *(skb->data + length - 1);
4116                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4117                                        last_byte)) {
4118                                 spin_lock_irqsave(&adapter->stats_lock,
4119                                                   irq_flags);
4120                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
4121                                                        length, skb->data);
4122                                 spin_unlock_irqrestore(&adapter->stats_lock,
4123                                                        irq_flags);
4124                                 length--;
4125                         } else {
4126                                 /* recycle both page and skb */
4127                                 buffer_info->skb = skb;
4128                                 /* an error means any chain goes out the window
4129                                  * too */
4130                                 if (rx_ring->rx_skb_top)
4131                                         dev_kfree_skb(rx_ring->rx_skb_top);
4132                                 rx_ring->rx_skb_top = NULL;
4133                                 goto next_desc;
4134                         }
4135                 }
4136
4137 #define rxtop rx_ring->rx_skb_top
4138                 if (!(status & E1000_RXD_STAT_EOP)) {
4139                         /* this descriptor is only the beginning (or middle) */
4140                         if (!rxtop) {
4141                                 /* this is the beginning of a chain */
4142                                 rxtop = skb;
4143                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
4144                                                    0, length);
4145                         } else {
4146                                 /* this is the middle of a chain */
4147                                 skb_fill_page_desc(rxtop,
4148                                     skb_shinfo(rxtop)->nr_frags,
4149                                     buffer_info->page, 0, length);
4150                                 /* re-use the skb, only consumed the page */
4151                                 buffer_info->skb = skb;
4152                         }
4153                         e1000_consume_page(buffer_info, rxtop, length);
4154                         goto next_desc;
4155                 } else {
4156                         if (rxtop) {
4157                                 /* end of the chain */
4158                                 skb_fill_page_desc(rxtop,
4159                                     skb_shinfo(rxtop)->nr_frags,
4160                                     buffer_info->page, 0, length);
4161                                 /* re-use the current skb, we only consumed the
4162                                  * page */
4163                                 buffer_info->skb = skb;
4164                                 skb = rxtop;
4165                                 rxtop = NULL;
4166                                 e1000_consume_page(buffer_info, skb, length);
4167                         } else {
4168                                 /* no chain, got EOP, this buf is the packet
4169                                  * copybreak to save the put_page/alloc_page */
4170                                 if (length <= copybreak &&
4171                                     skb_tailroom(skb) >= length) {
4172                                         u8 *vaddr;
4173                                         vaddr = kmap_atomic(buffer_info->page,
4174                                                             KM_SKB_DATA_SOFTIRQ);
4175                                         memcpy(skb_tail_pointer(skb), vaddr, length);
4176                                         kunmap_atomic(vaddr,
4177                                                       KM_SKB_DATA_SOFTIRQ);
4178                                         /* re-use the page, so don't erase
4179                                          * buffer_info->page */
4180                                         skb_put(skb, length);
4181                                 } else {
4182                                         skb_fill_page_desc(skb, 0,
4183                                                            buffer_info->page, 0,
4184                                                            length);
4185                                         e1000_consume_page(buffer_info, skb,
4186                                                            length);
4187                                 }
4188                         }
4189                 }
4190
4191                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4192                 e1000_rx_checksum(adapter,
4193                                   (u32)(status) |
4194                                   ((u32)(rx_desc->errors) << 24),
4195                                   le16_to_cpu(rx_desc->csum), skb);
4196
4197                 pskb_trim(skb, skb->len - 4);
4198
4199                 /* probably a little skewed due to removing CRC */
4200                 total_rx_bytes += skb->len;
4201                 total_rx_packets++;
4202
4203                 /* eth type trans needs skb->data to point to something */
4204                 if (!pskb_may_pull(skb, ETH_HLEN)) {
4205                         DPRINTK(DRV, ERR, "pskb_may_pull failed.\n");
4206                         dev_kfree_skb(skb);
4207                         goto next_desc;
4208                 }
4209
4210                 skb->protocol = eth_type_trans(skb, netdev);
4211
4212                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4213
4214 next_desc:
4215                 rx_desc->status = 0;
4216
4217                 /* return some buffers to hardware, one at a time is too slow */
4218                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4219                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4220                         cleaned_count = 0;
4221                 }
4222
4223                 /* use prefetched values */
4224                 rx_desc = next_rxd;
4225                 buffer_info = next_buffer;
4226         }
4227         rx_ring->next_to_clean = i;
4228
4229         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4230         if (cleaned_count)
4231                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4232
4233         adapter->total_rx_packets += total_rx_packets;
4234         adapter->total_rx_bytes += total_rx_bytes;
4235         adapter->net_stats.rx_bytes += total_rx_bytes;
4236         adapter->net_stats.rx_packets += total_rx_packets;
4237         return cleaned;
4238 }
4239
4240 /**
4241  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4242  * @adapter: board private structure
4243  * @rx_ring: ring to clean
4244  * @work_done: amount of napi work completed this call
4245  * @work_to_do: max amount of work allowed for this call to do
4246  */
4247 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4248                                struct e1000_rx_ring *rx_ring,
4249                                int *work_done, int work_to_do)
4250 {
4251         struct e1000_hw *hw = &adapter->hw;
4252         struct net_device *netdev = adapter->netdev;
4253         struct pci_dev *pdev = adapter->pdev;
4254         struct e1000_rx_desc *rx_desc, *next_rxd;
4255         struct e1000_buffer *buffer_info, *next_buffer;
4256         unsigned long flags;
4257         u32 length;
4258         unsigned int i;
4259         int cleaned_count = 0;
4260         bool cleaned = false;
4261         unsigned int total_rx_bytes=0, total_rx_packets=0;
4262
4263         i = rx_ring->next_to_clean;
4264         rx_desc = E1000_RX_DESC(*rx_ring, i);
4265         buffer_info = &rx_ring->buffer_info[i];
4266
4267         while (rx_desc->status & E1000_RXD_STAT_DD) {
4268                 struct sk_buff *skb;
4269                 u8 status;
4270
4271                 if (*work_done >= work_to_do)
4272                         break;
4273                 (*work_done)++;
4274
4275                 status = rx_desc->status;
4276                 skb = buffer_info->skb;
4277                 buffer_info->skb = NULL;
4278
4279                 prefetch(skb->data - NET_IP_ALIGN);
4280
4281                 if (++i == rx_ring->count) i = 0;
4282                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4283                 prefetch(next_rxd);
4284
4285                 next_buffer = &rx_ring->buffer_info[i];
4286
4287                 cleaned = true;
4288                 cleaned_count++;
4289                 pci_unmap_single(pdev, buffer_info->dma, buffer_info->length,
4290                                  PCI_DMA_FROMDEVICE);
4291                 buffer_info->dma = 0;
4292
4293                 length = le16_to_cpu(rx_desc->length);
4294                 /* !EOP means multiple descriptors were used to store a single
4295                  * packet, also make sure the frame isn't just CRC only */
4296                 if (unlikely(!(status & E1000_RXD_STAT_EOP) || (length <= 4))) {
4297                         /* All receives must fit into a single buffer */
4298                         E1000_DBG("%s: Receive packet consumed multiple"
4299                                   " buffers\n", netdev->name);
4300                         /* recycle */
4301                         buffer_info->skb = skb;
4302                         goto next_desc;
4303                 }
4304
4305                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4306                         u8 last_byte = *(skb->data + length - 1);
4307                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4308                                        last_byte)) {
4309                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4310                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
4311                                                        length, skb->data);
4312                                 spin_unlock_irqrestore(&adapter->stats_lock,
4313                                                        flags);
4314                                 length--;
4315                         } else {
4316                                 /* recycle */
4317                                 buffer_info->skb = skb;
4318                                 goto next_desc;
4319                         }
4320                 }
4321
4322                 /* adjust length to remove Ethernet CRC, this must be
4323                  * done after the TBI_ACCEPT workaround above */
4324                 length -= 4;
4325
4326                 /* probably a little skewed due to removing CRC */
4327                 total_rx_bytes += length;
4328                 total_rx_packets++;
4329
4330                 /* code added for copybreak, this should improve
4331                  * performance for small packets with large amounts
4332                  * of reassembly being done in the stack */
4333                 if (length < copybreak) {
4334                         struct sk_buff *new_skb =
4335                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4336                         if (new_skb) {
4337                                 skb_reserve(new_skb, NET_IP_ALIGN);
4338                                 skb_copy_to_linear_data_offset(new_skb,
4339                                                                -NET_IP_ALIGN,
4340                                                                (skb->data -
4341                                                                 NET_IP_ALIGN),
4342                                                                (length +
4343                                                                 NET_IP_ALIGN));
4344                                 /* save the skb in buffer_info as good */
4345                                 buffer_info->skb = skb;
4346                                 skb = new_skb;
4347                         }
4348                         /* else just continue with the old one */
4349                 }
4350                 /* end copybreak code */
4351                 skb_put(skb, length);
4352
4353                 /* Receive Checksum Offload */
4354                 e1000_rx_checksum(adapter,
4355                                   (u32)(status) |
4356                                   ((u32)(rx_desc->errors) << 24),
4357                                   le16_to_cpu(rx_desc->csum), skb);
4358
4359                 skb->protocol = eth_type_trans(skb, netdev);
4360
4361                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4362
4363 next_desc:
4364                 rx_desc->status = 0;
4365
4366                 /* return some buffers to hardware, one at a time is too slow */
4367                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4368                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4369                         cleaned_count = 0;
4370                 }
4371
4372                 /* use prefetched values */
4373                 rx_desc = next_rxd;
4374                 buffer_info = next_buffer;
4375         }
4376         rx_ring->next_to_clean = i;
4377
4378         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4379         if (cleaned_count)
4380                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4381
4382         adapter->total_rx_packets += total_rx_packets;
4383         adapter->total_rx_bytes += total_rx_bytes;
4384         adapter->net_stats.rx_bytes += total_rx_bytes;
4385         adapter->net_stats.rx_packets += total_rx_packets;
4386         return cleaned;
4387 }
4388
4389 /**
4390  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4391  * @adapter: address of board private structure
4392  * @rx_ring: pointer to receive ring structure
4393  * @cleaned_count: number of buffers to allocate this pass
4394  **/
4395
4396 static void
4397 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4398                              struct e1000_rx_ring *rx_ring, int cleaned_count)
4399 {
4400         struct net_device *netdev = adapter->netdev;
4401         struct pci_dev *pdev = adapter->pdev;
4402         struct e1000_rx_desc *rx_desc;
4403         struct e1000_buffer *buffer_info;
4404         struct sk_buff *skb;
4405         unsigned int i;
4406         unsigned int bufsz = 256 -
4407                              16 /*for skb_reserve */ -
4408                              NET_IP_ALIGN;
4409
4410         i = rx_ring->next_to_use;
4411         buffer_info = &rx_ring->buffer_info[i];
4412
4413         while (cleaned_count--) {
4414                 skb = buffer_info->skb;
4415                 if (skb) {
4416                         skb_trim(skb, 0);
4417                         goto check_page;
4418                 }
4419
4420                 skb = netdev_alloc_skb(netdev, bufsz);
4421                 if (unlikely(!skb)) {
4422                         /* Better luck next round */
4423                         adapter->alloc_rx_buff_failed++;
4424                         break;
4425                 }
4426
4427                 /* Fix for errata 23, can't cross 64kB boundary */
4428                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4429                         struct sk_buff *oldskb = skb;
4430                         DPRINTK(PROBE, ERR, "skb align check failed: %u bytes "
4431                                              "at %p\n", bufsz, skb->data);
4432                         /* Try again, without freeing the previous */
4433                         skb = netdev_alloc_skb(netdev, bufsz);
4434                         /* Failed allocation, critical failure */
4435                         if (!skb) {
4436                                 dev_kfree_skb(oldskb);
4437                                 adapter->alloc_rx_buff_failed++;
4438                                 break;
4439                         }
4440
4441                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4442                                 /* give up */
4443                                 dev_kfree_skb(skb);
4444                                 dev_kfree_skb(oldskb);
4445                                 break; /* while (cleaned_count--) */
4446                         }
4447
4448                         /* Use new allocation */
4449                         dev_kfree_skb(oldskb);
4450                 }
4451                 /* Make buffer alignment 2 beyond a 16 byte boundary
4452                  * this will result in a 16 byte aligned IP header after
4453                  * the 14 byte MAC header is removed
4454                  */
4455                 skb_reserve(skb, NET_IP_ALIGN);
4456
4457                 buffer_info->skb = skb;
4458                 buffer_info->length = adapter->rx_buffer_len;
4459 check_page:
4460                 /* allocate a new page if necessary */
4461                 if (!buffer_info->page) {
4462                         buffer_info->page = alloc_page(GFP_ATOMIC);
4463                         if (unlikely(!buffer_info->page)) {
4464                                 adapter->alloc_rx_buff_failed++;
4465                                 break;
4466                         }
4467                 }
4468
4469                 if (!buffer_info->dma)
4470                         buffer_info->dma = pci_map_page(pdev,
4471                                                         buffer_info->page, 0,
4472                                                         buffer_info->length,
4473                                                         PCI_DMA_FROMDEVICE);
4474
4475                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4476                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4477
4478                 if (unlikely(++i == rx_ring->count))
4479                         i = 0;
4480                 buffer_info = &rx_ring->buffer_info[i];
4481         }
4482
4483         if (likely(rx_ring->next_to_use != i)) {
4484                 rx_ring->next_to_use = i;
4485                 if (unlikely(i-- == 0))
4486                         i = (rx_ring->count - 1);
4487
4488                 /* Force memory writes to complete before letting h/w
4489                  * know there are new descriptors to fetch.  (Only
4490                  * applicable for weak-ordered memory model archs,
4491                  * such as IA-64). */
4492                 wmb();
4493                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4494         }
4495 }
4496
4497 /**
4498  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4499  * @adapter: address of board private structure
4500  **/
4501
4502 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4503                                    struct e1000_rx_ring *rx_ring,
4504                                    int cleaned_count)
4505 {
4506         struct e1000_hw *hw = &adapter->hw;
4507         struct net_device *netdev = adapter->netdev;
4508         struct pci_dev *pdev = adapter->pdev;
4509         struct e1000_rx_desc *rx_desc;
4510         struct e1000_buffer *buffer_info;
4511         struct sk_buff *skb;
4512         unsigned int i;
4513         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4514
4515         i = rx_ring->next_to_use;
4516         buffer_info = &rx_ring->buffer_info[i];
4517
4518         while (cleaned_count--) {
4519                 skb = buffer_info->skb;
4520                 if (skb) {
4521                         skb_trim(skb, 0);
4522                         goto map_skb;
4523                 }
4524
4525                 skb = netdev_alloc_skb(netdev, bufsz);
4526                 if (unlikely(!skb)) {
4527                         /* Better luck next round */
4528                         adapter->alloc_rx_buff_failed++;
4529                         break;
4530                 }
4531
4532                 /* Fix for errata 23, can't cross 64kB boundary */
4533                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4534                         struct sk_buff *oldskb = skb;
4535                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4536                                              "at %p\n", bufsz, skb->data);
4537                         /* Try again, without freeing the previous */
4538                         skb = netdev_alloc_skb(netdev, bufsz);
4539                         /* Failed allocation, critical failure */
4540                         if (!skb) {
4541                                 dev_kfree_skb(oldskb);
4542                                 adapter->alloc_rx_buff_failed++;
4543                                 break;
4544                         }
4545
4546                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4547                                 /* give up */
4548                                 dev_kfree_skb(skb);
4549                                 dev_kfree_skb(oldskb);
4550                                 adapter->alloc_rx_buff_failed++;
4551                                 break; /* while !buffer_info->skb */
4552                         }
4553
4554                         /* Use new allocation */
4555                         dev_kfree_skb(oldskb);
4556                 }
4557                 /* Make buffer alignment 2 beyond a 16 byte boundary
4558                  * this will result in a 16 byte aligned IP header after
4559                  * the 14 byte MAC header is removed
4560                  */
4561                 skb_reserve(skb, NET_IP_ALIGN);
4562
4563                 buffer_info->skb = skb;
4564                 buffer_info->length = adapter->rx_buffer_len;
4565 map_skb:
4566                 buffer_info->dma = pci_map_single(pdev,
4567                                                   skb->data,
4568                                                   buffer_info->length,
4569                                                   PCI_DMA_FROMDEVICE);
4570
4571                 /*
4572                  * XXX if it was allocated cleanly it will never map to a
4573                  * boundary crossing
4574                  */
4575
4576                 /* Fix for errata 23, can't cross 64kB boundary */
4577                 if (!e1000_check_64k_bound(adapter,
4578                                         (void *)(unsigned long)buffer_info->dma,
4579                                         adapter->rx_buffer_len)) {
4580                         DPRINTK(RX_ERR, ERR,
4581                                 "dma align check failed: %u bytes at %p\n",
4582                                 adapter->rx_buffer_len,
4583                                 (void *)(unsigned long)buffer_info->dma);
4584                         dev_kfree_skb(skb);
4585                         buffer_info->skb = NULL;
4586
4587                         pci_unmap_single(pdev, buffer_info->dma,
4588                                          adapter->rx_buffer_len,
4589                                          PCI_DMA_FROMDEVICE);
4590                         buffer_info->dma = 0;
4591
4592                         adapter->alloc_rx_buff_failed++;
4593                         break; /* while !buffer_info->skb */
4594                 }
4595                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4596                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4597
4598                 if (unlikely(++i == rx_ring->count))
4599                         i = 0;
4600                 buffer_info = &rx_ring->buffer_info[i];
4601         }
4602
4603         if (likely(rx_ring->next_to_use != i)) {
4604                 rx_ring->next_to_use = i;
4605                 if (unlikely(i-- == 0))
4606                         i = (rx_ring->count - 1);
4607
4608                 /* Force memory writes to complete before letting h/w
4609                  * know there are new descriptors to fetch.  (Only
4610                  * applicable for weak-ordered memory model archs,
4611                  * such as IA-64). */
4612                 wmb();
4613                 writel(i, hw->hw_addr + rx_ring->rdt);
4614         }
4615 }
4616
4617 /**
4618  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4619  * @adapter:
4620  **/
4621
4622 static void e1000_smartspeed(struct e1000_adapter *adapter)
4623 {
4624         struct e1000_hw *hw = &adapter->hw;
4625         u16 phy_status;
4626         u16 phy_ctrl;
4627
4628         if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4629            !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4630                 return;
4631
4632         if (adapter->smartspeed == 0) {
4633                 /* If Master/Slave config fault is asserted twice,
4634                  * we assume back-to-back */
4635                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4636                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4637                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4638                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4639                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4640                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4641                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4642                         e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4643                                             phy_ctrl);
4644                         adapter->smartspeed++;
4645                         if (!e1000_phy_setup_autoneg(hw) &&
4646                            !e1000_read_phy_reg(hw, PHY_CTRL,
4647                                                &phy_ctrl)) {
4648                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4649                                              MII_CR_RESTART_AUTO_NEG);
4650                                 e1000_write_phy_reg(hw, PHY_CTRL,
4651                                                     phy_ctrl);
4652                         }
4653                 }
4654                 return;
4655         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4656                 /* If still no link, perhaps using 2/3 pair cable */
4657                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4658                 phy_ctrl |= CR_1000T_MS_ENABLE;
4659                 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4660                 if (!e1000_phy_setup_autoneg(hw) &&
4661                    !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4662                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4663                                      MII_CR_RESTART_AUTO_NEG);
4664                         e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4665                 }
4666         }
4667         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4668         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4669                 adapter->smartspeed = 0;
4670 }
4671
4672 /**
4673  * e1000_ioctl -
4674  * @netdev:
4675  * @ifreq:
4676  * @cmd:
4677  **/
4678
4679 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4680 {
4681         switch (cmd) {
4682         case SIOCGMIIPHY:
4683         case SIOCGMIIREG:
4684         case SIOCSMIIREG:
4685                 return e1000_mii_ioctl(netdev, ifr, cmd);
4686         default:
4687                 return -EOPNOTSUPP;
4688         }
4689 }
4690
4691 /**
4692  * e1000_mii_ioctl -
4693  * @netdev:
4694  * @ifreq:
4695  * @cmd:
4696  **/
4697
4698 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4699                            int cmd)
4700 {
4701         struct e1000_adapter *adapter = netdev_priv(netdev);
4702         struct e1000_hw *hw = &adapter->hw;
4703         struct mii_ioctl_data *data = if_mii(ifr);
4704         int retval;
4705         u16 mii_reg;
4706         u16 spddplx;
4707         unsigned long flags;
4708
4709         if (hw->media_type != e1000_media_type_copper)
4710                 return -EOPNOTSUPP;
4711
4712         switch (cmd) {
4713         case SIOCGMIIPHY:
4714                 data->phy_id = hw->phy_addr;
4715                 break;
4716         case SIOCGMIIREG:
4717                 spin_lock_irqsave(&adapter->stats_lock, flags);
4718                 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4719                                    &data->val_out)) {
4720                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4721                         return -EIO;
4722                 }
4723                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4724                 break;
4725         case SIOCSMIIREG:
4726                 if (data->reg_num & ~(0x1F))
4727                         return -EFAULT;
4728                 mii_reg = data->val_in;
4729                 spin_lock_irqsave(&adapter->stats_lock, flags);
4730                 if (e1000_write_phy_reg(hw, data->reg_num,
4731                                         mii_reg)) {
4732                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4733                         return -EIO;
4734                 }
4735                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4736                 if (hw->media_type == e1000_media_type_copper) {
4737                         switch (data->reg_num) {
4738                         case PHY_CTRL:
4739                                 if (mii_reg & MII_CR_POWER_DOWN)
4740                                         break;
4741                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4742                                         hw->autoneg = 1;
4743                                         hw->autoneg_advertised = 0x2F;
4744                                 } else {
4745                                         if (mii_reg & 0x40)
4746                                                 spddplx = SPEED_1000;
4747                                         else if (mii_reg & 0x2000)
4748                                                 spddplx = SPEED_100;
4749                                         else
4750                                                 spddplx = SPEED_10;
4751                                         spddplx += (mii_reg & 0x100)
4752                                                    ? DUPLEX_FULL :
4753                                                    DUPLEX_HALF;
4754                                         retval = e1000_set_spd_dplx(adapter,
4755                                                                     spddplx);
4756                                         if (retval)
4757                                                 return retval;
4758                                 }
4759                                 if (netif_running(adapter->netdev))
4760                                         e1000_reinit_locked(adapter);
4761                                 else
4762                                         e1000_reset(adapter);
4763                                 break;
4764                         case M88E1000_PHY_SPEC_CTRL:
4765                         case M88E1000_EXT_PHY_SPEC_CTRL:
4766                                 if (e1000_phy_reset(hw))
4767                                         return -EIO;
4768                                 break;
4769                         }
4770                 } else {
4771                         switch (data->reg_num) {
4772                         case PHY_CTRL:
4773                                 if (mii_reg & MII_CR_POWER_DOWN)
4774                                         break;
4775                                 if (netif_running(adapter->netdev))
4776                                         e1000_reinit_locked(adapter);
4777                                 else
4778                                         e1000_reset(adapter);
4779                                 break;
4780                         }
4781                 }
4782                 break;
4783         default:
4784                 return -EOPNOTSUPP;
4785         }
4786         return E1000_SUCCESS;
4787 }
4788
4789 void e1000_pci_set_mwi(struct e1000_hw *hw)
4790 {
4791         struct e1000_adapter *adapter = hw->back;
4792         int ret_val = pci_set_mwi(adapter->pdev);
4793
4794         if (ret_val)
4795                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4796 }
4797
4798 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4799 {
4800         struct e1000_adapter *adapter = hw->back;
4801
4802         pci_clear_mwi(adapter->pdev);
4803 }
4804
4805 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4806 {
4807         struct e1000_adapter *adapter = hw->back;
4808         return pcix_get_mmrbc(adapter->pdev);
4809 }
4810
4811 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4812 {
4813         struct e1000_adapter *adapter = hw->back;
4814         pcix_set_mmrbc(adapter->pdev, mmrbc);
4815 }
4816
4817 s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
4818 {
4819     struct e1000_adapter *adapter = hw->back;
4820     u16 cap_offset;
4821
4822     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4823     if (!cap_offset)
4824         return -E1000_ERR_CONFIG;
4825
4826     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4827
4828     return E1000_SUCCESS;
4829 }
4830
4831 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4832 {
4833         outl(value, port);
4834 }
4835
4836 static void e1000_vlan_rx_register(struct net_device *netdev,
4837                                    struct vlan_group *grp)
4838 {
4839         struct e1000_adapter *adapter = netdev_priv(netdev);
4840         struct e1000_hw *hw = &adapter->hw;
4841         u32 ctrl, rctl;
4842
4843         if (!test_bit(__E1000_DOWN, &adapter->flags))
4844                 e1000_irq_disable(adapter);
4845         adapter->vlgrp = grp;
4846
4847         if (grp) {
4848                 /* enable VLAN tag insert/strip */
4849                 ctrl = er32(CTRL);
4850                 ctrl |= E1000_CTRL_VME;
4851                 ew32(CTRL, ctrl);
4852
4853                 if (adapter->hw.mac_type != e1000_ich8lan) {
4854                         /* enable VLAN receive filtering */
4855                         rctl = er32(RCTL);
4856                         rctl &= ~E1000_RCTL_CFIEN;
4857                         if (!(netdev->flags & IFF_PROMISC))
4858                                 rctl |= E1000_RCTL_VFE;
4859                         ew32(RCTL, rctl);
4860                         e1000_update_mng_vlan(adapter);
4861                 }
4862         } else {
4863                 /* disable VLAN tag insert/strip */
4864                 ctrl = er32(CTRL);
4865                 ctrl &= ~E1000_CTRL_VME;
4866                 ew32(CTRL, ctrl);
4867
4868                 if (adapter->hw.mac_type != e1000_ich8lan) {
4869                         /* disable VLAN receive filtering */
4870                         rctl = er32(RCTL);
4871                         rctl &= ~E1000_RCTL_VFE;
4872                         ew32(RCTL, rctl);
4873
4874                         if (adapter->mng_vlan_id !=
4875                             (u16)E1000_MNG_VLAN_NONE) {
4876                                 e1000_vlan_rx_kill_vid(netdev,
4877                                                        adapter->mng_vlan_id);
4878                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4879                         }
4880                 }
4881         }
4882
4883         if (!test_bit(__E1000_DOWN, &adapter->flags))
4884                 e1000_irq_enable(adapter);
4885 }
4886
4887 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4888 {
4889         struct e1000_adapter *adapter = netdev_priv(netdev);
4890         struct e1000_hw *hw = &adapter->hw;
4891         u32 vfta, index;
4892
4893         if ((hw->mng_cookie.status &
4894              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4895             (vid == adapter->mng_vlan_id))
4896                 return;
4897         /* add VID to filter table */
4898         index = (vid >> 5) & 0x7F;
4899         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4900         vfta |= (1 << (vid & 0x1F));
4901         e1000_write_vfta(hw, index, vfta);
4902 }
4903
4904 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4905 {
4906         struct e1000_adapter *adapter = netdev_priv(netdev);
4907         struct e1000_hw *hw = &adapter->hw;
4908         u32 vfta, index;
4909
4910         if (!test_bit(__E1000_DOWN, &adapter->flags))
4911                 e1000_irq_disable(adapter);
4912         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4913         if (!test_bit(__E1000_DOWN, &adapter->flags))
4914                 e1000_irq_enable(adapter);
4915
4916         if ((hw->mng_cookie.status &
4917              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4918             (vid == adapter->mng_vlan_id)) {
4919                 /* release control to f/w */
4920                 e1000_release_hw_control(adapter);
4921                 return;
4922         }
4923
4924         /* remove VID from filter table */
4925         index = (vid >> 5) & 0x7F;
4926         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4927         vfta &= ~(1 << (vid & 0x1F));
4928         e1000_write_vfta(hw, index, vfta);
4929 }
4930
4931 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4932 {
4933         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4934
4935         if (adapter->vlgrp) {
4936                 u16 vid;
4937                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4938                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4939                                 continue;
4940                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4941                 }
4942         }
4943 }
4944
4945 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4946 {
4947         struct e1000_hw *hw = &adapter->hw;
4948
4949         hw->autoneg = 0;
4950
4951         /* Fiber NICs only allow 1000 gbps Full duplex */
4952         if ((hw->media_type == e1000_media_type_fiber) &&
4953                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4954                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4955                 return -EINVAL;
4956         }
4957
4958         switch (spddplx) {
4959         case SPEED_10 + DUPLEX_HALF:
4960                 hw->forced_speed_duplex = e1000_10_half;
4961                 break;
4962         case SPEED_10 + DUPLEX_FULL:
4963                 hw->forced_speed_duplex = e1000_10_full;
4964                 break;
4965         case SPEED_100 + DUPLEX_HALF:
4966                 hw->forced_speed_duplex = e1000_100_half;
4967                 break;
4968         case SPEED_100 + DUPLEX_FULL:
4969                 hw->forced_speed_duplex = e1000_100_full;
4970                 break;
4971         case SPEED_1000 + DUPLEX_FULL:
4972                 hw->autoneg = 1;
4973                 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4974                 break;
4975         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4976         default:
4977                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4978                 return -EINVAL;
4979         }
4980         return 0;
4981 }
4982
4983 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4984 {
4985         struct net_device *netdev = pci_get_drvdata(pdev);
4986         struct e1000_adapter *adapter = netdev_priv(netdev);
4987         struct e1000_hw *hw = &adapter->hw;
4988         u32 ctrl, ctrl_ext, rctl, status;
4989         u32 wufc = adapter->wol;
4990 #ifdef CONFIG_PM
4991         int retval = 0;
4992 #endif
4993
4994         netif_device_detach(netdev);
4995
4996         if (netif_running(netdev)) {
4997                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4998                 e1000_down(adapter);
4999         }
5000
5001 #ifdef CONFIG_PM
5002         retval = pci_save_state(pdev);
5003         if (retval)
5004                 return retval;
5005 #endif
5006
5007         status = er32(STATUS);
5008         if (status & E1000_STATUS_LU)
5009                 wufc &= ~E1000_WUFC_LNKC;
5010
5011         if (wufc) {
5012                 e1000_setup_rctl(adapter);
5013                 e1000_set_rx_mode(netdev);
5014
5015                 /* turn on all-multi mode if wake on multicast is enabled */
5016                 if (wufc & E1000_WUFC_MC) {
5017                         rctl = er32(RCTL);
5018                         rctl |= E1000_RCTL_MPE;
5019                         ew32(RCTL, rctl);
5020                 }
5021
5022                 if (hw->mac_type >= e1000_82540) {
5023                         ctrl = er32(CTRL);
5024                         /* advertise wake from D3Cold */
5025                         #define E1000_CTRL_ADVD3WUC 0x00100000
5026                         /* phy power management enable */
5027                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5028                         ctrl |= E1000_CTRL_ADVD3WUC |
5029                                 E1000_CTRL_EN_PHY_PWR_MGMT;
5030                         ew32(CTRL, ctrl);
5031                 }
5032
5033                 if (hw->media_type == e1000_media_type_fiber ||
5034                    hw->media_type == e1000_media_type_internal_serdes) {
5035                         /* keep the laser running in D3 */
5036                         ctrl_ext = er32(CTRL_EXT);
5037                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5038                         ew32(CTRL_EXT, ctrl_ext);
5039                 }
5040
5041                 /* Allow time for pending master requests to run */
5042                 e1000_disable_pciex_master(hw);
5043
5044                 ew32(WUC, E1000_WUC_PME_EN);
5045                 ew32(WUFC, wufc);
5046         } else {
5047                 ew32(WUC, 0);
5048                 ew32(WUFC, 0);
5049         }
5050
5051         e1000_release_manageability(adapter);
5052
5053         *enable_wake = !!wufc;
5054
5055         /* make sure adapter isn't asleep if manageability is enabled */
5056         if (adapter->en_mng_pt)
5057                 *enable_wake = true;
5058
5059         if (hw->phy_type == e1000_phy_igp_3)
5060                 e1000_phy_powerdown_workaround(hw);
5061
5062         if (netif_running(netdev))
5063                 e1000_free_irq(adapter);
5064
5065         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5066          * would have already happened in close and is redundant. */
5067         e1000_release_hw_control(adapter);
5068
5069         pci_disable_device(pdev);
5070
5071         return 0;
5072 }
5073
5074 #ifdef CONFIG_PM
5075 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5076 {
5077         int retval;
5078         bool wake;
5079
5080         retval = __e1000_shutdown(pdev, &wake);
5081         if (retval)
5082                 return retval;
5083
5084         if (wake) {
5085                 pci_prepare_to_sleep(pdev);
5086         } else {
5087                 pci_wake_from_d3(pdev, false);
5088                 pci_set_power_state(pdev, PCI_D3hot);
5089         }
5090
5091         return 0;
5092 }
5093
5094 static int e1000_resume(struct pci_dev *pdev)
5095 {
5096         struct net_device *netdev = pci_get_drvdata(pdev);
5097         struct e1000_adapter *adapter = netdev_priv(netdev);
5098         struct e1000_hw *hw = &adapter->hw;
5099         u32 err;
5100
5101         pci_set_power_state(pdev, PCI_D0);
5102         pci_restore_state(pdev);
5103
5104         if (adapter->need_ioport)
5105                 err = pci_enable_device(pdev);
5106         else
5107                 err = pci_enable_device_mem(pdev);
5108         if (err) {
5109                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
5110                 return err;
5111         }
5112         pci_set_master(pdev);
5113
5114         pci_enable_wake(pdev, PCI_D3hot, 0);
5115         pci_enable_wake(pdev, PCI_D3cold, 0);
5116
5117         if (netif_running(netdev)) {
5118                 err = e1000_request_irq(adapter);
5119                 if (err)
5120                         return err;
5121         }
5122
5123         e1000_power_up_phy(adapter);
5124         e1000_reset(adapter);
5125         ew32(WUS, ~0);
5126
5127         e1000_init_manageability(adapter);
5128
5129         if (netif_running(netdev))
5130                 e1000_up(adapter);
5131
5132         netif_device_attach(netdev);
5133
5134         /* If the controller is 82573 and f/w is AMT, do not set
5135          * DRV_LOAD until the interface is up.  For all other cases,
5136          * let the f/w know that the h/w is now under the control
5137          * of the driver. */
5138         if (hw->mac_type != e1000_82573 ||
5139             !e1000_check_mng_mode(hw))
5140                 e1000_get_hw_control(adapter);
5141
5142         return 0;
5143 }
5144 #endif
5145
5146 static void e1000_shutdown(struct pci_dev *pdev)
5147 {
5148         bool wake;
5149
5150         __e1000_shutdown(pdev, &wake);
5151
5152         if (system_state == SYSTEM_POWER_OFF) {
5153                 pci_wake_from_d3(pdev, wake);
5154                 pci_set_power_state(pdev, PCI_D3hot);
5155         }
5156 }
5157
5158 #ifdef CONFIG_NET_POLL_CONTROLLER
5159 /*
5160  * Polling 'interrupt' - used by things like netconsole to send skbs
5161  * without having to re-enable interrupts. It's not called while
5162  * the interrupt routine is executing.
5163  */
5164 static void e1000_netpoll(struct net_device *netdev)
5165 {
5166         struct e1000_adapter *adapter = netdev_priv(netdev);
5167
5168         disable_irq(adapter->pdev->irq);
5169         e1000_intr(adapter->pdev->irq, netdev);
5170         enable_irq(adapter->pdev->irq);
5171 }
5172 #endif
5173
5174 /**
5175  * e1000_io_error_detected - called when PCI error is detected
5176  * @pdev: Pointer to PCI device
5177  * @state: The current pci conneection state
5178  *
5179  * This function is called after a PCI bus error affecting
5180  * this device has been detected.
5181  */
5182 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5183                                                 pci_channel_state_t state)
5184 {
5185         struct net_device *netdev = pci_get_drvdata(pdev);
5186         struct e1000_adapter *adapter = netdev_priv(netdev);
5187
5188         netif_device_detach(netdev);
5189
5190         if (state == pci_channel_io_perm_failure)
5191                 return PCI_ERS_RESULT_DISCONNECT;
5192
5193         if (netif_running(netdev))
5194                 e1000_down(adapter);
5195         pci_disable_device(pdev);
5196
5197         /* Request a slot slot reset. */
5198         return PCI_ERS_RESULT_NEED_RESET;
5199 }
5200
5201 /**
5202  * e1000_io_slot_reset - called after the pci bus has been reset.
5203  * @pdev: Pointer to PCI device
5204  *
5205  * Restart the card from scratch, as if from a cold-boot. Implementation
5206  * resembles the first-half of the e1000_resume routine.
5207  */
5208 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5209 {
5210         struct net_device *netdev = pci_get_drvdata(pdev);
5211         struct e1000_adapter *adapter = netdev_priv(netdev);
5212         struct e1000_hw *hw = &adapter->hw;
5213         int err;
5214
5215         if (adapter->need_ioport)
5216                 err = pci_enable_device(pdev);
5217         else
5218                 err = pci_enable_device_mem(pdev);
5219         if (err) {
5220                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
5221                 return PCI_ERS_RESULT_DISCONNECT;
5222         }
5223         pci_set_master(pdev);
5224
5225         pci_enable_wake(pdev, PCI_D3hot, 0);
5226         pci_enable_wake(pdev, PCI_D3cold, 0);
5227
5228         e1000_reset(adapter);
5229         ew32(WUS, ~0);
5230
5231         return PCI_ERS_RESULT_RECOVERED;
5232 }
5233
5234 /**
5235  * e1000_io_resume - called when traffic can start flowing again.
5236  * @pdev: Pointer to PCI device
5237  *
5238  * This callback is called when the error recovery driver tells us that
5239  * its OK to resume normal operation. Implementation resembles the
5240  * second-half of the e1000_resume routine.
5241  */
5242 static void e1000_io_resume(struct pci_dev *pdev)
5243 {
5244         struct net_device *netdev = pci_get_drvdata(pdev);
5245         struct e1000_adapter *adapter = netdev_priv(netdev);
5246         struct e1000_hw *hw = &adapter->hw;
5247
5248         e1000_init_manageability(adapter);
5249
5250         if (netif_running(netdev)) {
5251                 if (e1000_up(adapter)) {
5252                         printk("e1000: can't bring device back up after reset\n");
5253                         return;
5254                 }
5255         }
5256
5257         netif_device_attach(netdev);
5258
5259         /* If the controller is 82573 and f/w is AMT, do not set
5260          * DRV_LOAD until the interface is up.  For all other cases,
5261          * let the f/w know that the h/w is now under the control
5262          * of the driver. */
5263         if (hw->mac_type != e1000_82573 ||
5264             !e1000_check_mng_mode(hw))
5265                 e1000_get_hw_control(adapter);
5266
5267 }
5268
5269 /* e1000_main.c */