e1000 endianness annotations
[safe/jmp/linux-2.6] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.3.20-k2"DRIVERNAPI
40 const char e1000_driver_version[] = DRV_VERSION;
41 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44  *
45  * Last entry must be all 0s
46  *
47  * Macro expands to...
48  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49  */
50 static struct pci_device_id e1000_pci_tbl[] = {
51         INTEL_E1000_ETHERNET_DEVICE(0x1000),
52         INTEL_E1000_ETHERNET_DEVICE(0x1001),
53         INTEL_E1000_ETHERNET_DEVICE(0x1004),
54         INTEL_E1000_ETHERNET_DEVICE(0x1008),
55         INTEL_E1000_ETHERNET_DEVICE(0x1009),
56         INTEL_E1000_ETHERNET_DEVICE(0x100C),
57         INTEL_E1000_ETHERNET_DEVICE(0x100D),
58         INTEL_E1000_ETHERNET_DEVICE(0x100E),
59         INTEL_E1000_ETHERNET_DEVICE(0x100F),
60         INTEL_E1000_ETHERNET_DEVICE(0x1010),
61         INTEL_E1000_ETHERNET_DEVICE(0x1011),
62         INTEL_E1000_ETHERNET_DEVICE(0x1012),
63         INTEL_E1000_ETHERNET_DEVICE(0x1013),
64         INTEL_E1000_ETHERNET_DEVICE(0x1014),
65         INTEL_E1000_ETHERNET_DEVICE(0x1015),
66         INTEL_E1000_ETHERNET_DEVICE(0x1016),
67         INTEL_E1000_ETHERNET_DEVICE(0x1017),
68         INTEL_E1000_ETHERNET_DEVICE(0x1018),
69         INTEL_E1000_ETHERNET_DEVICE(0x1019),
70         INTEL_E1000_ETHERNET_DEVICE(0x101A),
71         INTEL_E1000_ETHERNET_DEVICE(0x101D),
72         INTEL_E1000_ETHERNET_DEVICE(0x101E),
73         INTEL_E1000_ETHERNET_DEVICE(0x1026),
74         INTEL_E1000_ETHERNET_DEVICE(0x1027),
75         INTEL_E1000_ETHERNET_DEVICE(0x1028),
76         INTEL_E1000_ETHERNET_DEVICE(0x1075),
77         INTEL_E1000_ETHERNET_DEVICE(0x1076),
78         INTEL_E1000_ETHERNET_DEVICE(0x1077),
79         INTEL_E1000_ETHERNET_DEVICE(0x1078),
80         INTEL_E1000_ETHERNET_DEVICE(0x1079),
81         INTEL_E1000_ETHERNET_DEVICE(0x107A),
82         INTEL_E1000_ETHERNET_DEVICE(0x107B),
83         INTEL_E1000_ETHERNET_DEVICE(0x107C),
84         INTEL_E1000_ETHERNET_DEVICE(0x108A),
85         INTEL_E1000_ETHERNET_DEVICE(0x1099),
86         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
87         /* required last entry */
88         {0,}
89 };
90
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
98 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
99 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
101 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
102 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
103                              struct e1000_tx_ring *txdr);
104 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
105                              struct e1000_rx_ring *rxdr);
106 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
107                              struct e1000_tx_ring *tx_ring);
108 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
109                              struct e1000_rx_ring *rx_ring);
110 void e1000_update_stats(struct e1000_adapter *adapter);
111
112 static int e1000_init_module(void);
113 static void e1000_exit_module(void);
114 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
115 static void __devexit e1000_remove(struct pci_dev *pdev);
116 static int e1000_alloc_queues(struct e1000_adapter *adapter);
117 static int e1000_sw_init(struct e1000_adapter *adapter);
118 static int e1000_open(struct net_device *netdev);
119 static int e1000_close(struct net_device *netdev);
120 static void e1000_configure_tx(struct e1000_adapter *adapter);
121 static void e1000_configure_rx(struct e1000_adapter *adapter);
122 static void e1000_setup_rctl(struct e1000_adapter *adapter);
123 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
125 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
126                                 struct e1000_tx_ring *tx_ring);
127 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
128                                 struct e1000_rx_ring *rx_ring);
129 static void e1000_set_rx_mode(struct net_device *netdev);
130 static void e1000_update_phy_info(unsigned long data);
131 static void e1000_watchdog(unsigned long data);
132 static void e1000_82547_tx_fifo_stall(unsigned long data);
133 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136 static int e1000_set_mac(struct net_device *netdev, void *p);
137 static irqreturn_t e1000_intr(int irq, void *data);
138 static irqreturn_t e1000_intr_msi(int irq, void *data);
139 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
140                                     struct e1000_tx_ring *tx_ring);
141 #ifdef CONFIG_E1000_NAPI
142 static int e1000_clean(struct napi_struct *napi, int budget);
143 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
144                                     struct e1000_rx_ring *rx_ring,
145                                     int *work_done, int work_to_do);
146 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
147                                        struct e1000_rx_ring *rx_ring,
148                                        int *work_done, int work_to_do);
149 #else
150 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
151                                     struct e1000_rx_ring *rx_ring);
152 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
153                                        struct e1000_rx_ring *rx_ring);
154 #endif
155 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
156                                    struct e1000_rx_ring *rx_ring,
157                                    int cleaned_count);
158 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
159                                       struct e1000_rx_ring *rx_ring,
160                                       int cleaned_count);
161 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
162 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
163                            int cmd);
164 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
165 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
166 static void e1000_tx_timeout(struct net_device *dev);
167 static void e1000_reset_task(struct work_struct *work);
168 static void e1000_smartspeed(struct e1000_adapter *adapter);
169 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
170                                        struct sk_buff *skb);
171
172 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
173 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
174 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
175 static void e1000_restore_vlan(struct e1000_adapter *adapter);
176
177 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
178 #ifdef CONFIG_PM
179 static int e1000_resume(struct pci_dev *pdev);
180 #endif
181 static void e1000_shutdown(struct pci_dev *pdev);
182
183 #ifdef CONFIG_NET_POLL_CONTROLLER
184 /* for netdump / net console */
185 static void e1000_netpoll (struct net_device *netdev);
186 #endif
187
188 #define COPYBREAK_DEFAULT 256
189 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
190 module_param(copybreak, uint, 0644);
191 MODULE_PARM_DESC(copybreak,
192         "Maximum size of packet that is copied to a new buffer on receive");
193
194 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
195                      pci_channel_state_t state);
196 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
197 static void e1000_io_resume(struct pci_dev *pdev);
198
199 static struct pci_error_handlers e1000_err_handler = {
200         .error_detected = e1000_io_error_detected,
201         .slot_reset = e1000_io_slot_reset,
202         .resume = e1000_io_resume,
203 };
204
205 static struct pci_driver e1000_driver = {
206         .name     = e1000_driver_name,
207         .id_table = e1000_pci_tbl,
208         .probe    = e1000_probe,
209         .remove   = __devexit_p(e1000_remove),
210 #ifdef CONFIG_PM
211         /* Power Managment Hooks */
212         .suspend  = e1000_suspend,
213         .resume   = e1000_resume,
214 #endif
215         .shutdown = e1000_shutdown,
216         .err_handler = &e1000_err_handler
217 };
218
219 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
220 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
221 MODULE_LICENSE("GPL");
222 MODULE_VERSION(DRV_VERSION);
223
224 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
225 module_param(debug, int, 0);
226 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
227
228 /**
229  * e1000_init_module - Driver Registration Routine
230  *
231  * e1000_init_module is the first routine called when the driver is
232  * loaded. All it does is register with the PCI subsystem.
233  **/
234
235 static int __init
236 e1000_init_module(void)
237 {
238         int ret;
239         printk(KERN_INFO "%s - version %s\n",
240                e1000_driver_string, e1000_driver_version);
241
242         printk(KERN_INFO "%s\n", e1000_copyright);
243
244         ret = pci_register_driver(&e1000_driver);
245         if (copybreak != COPYBREAK_DEFAULT) {
246                 if (copybreak == 0)
247                         printk(KERN_INFO "e1000: copybreak disabled\n");
248                 else
249                         printk(KERN_INFO "e1000: copybreak enabled for "
250                                "packets <= %u bytes\n", copybreak);
251         }
252         return ret;
253 }
254
255 module_init(e1000_init_module);
256
257 /**
258  * e1000_exit_module - Driver Exit Cleanup Routine
259  *
260  * e1000_exit_module is called just before the driver is removed
261  * from memory.
262  **/
263
264 static void __exit
265 e1000_exit_module(void)
266 {
267         pci_unregister_driver(&e1000_driver);
268 }
269
270 module_exit(e1000_exit_module);
271
272 static int e1000_request_irq(struct e1000_adapter *adapter)
273 {
274         struct net_device *netdev = adapter->netdev;
275         irq_handler_t handler = e1000_intr;
276         int irq_flags = IRQF_SHARED;
277         int err;
278
279         if (adapter->hw.mac_type >= e1000_82571) {
280                 adapter->have_msi = !pci_enable_msi(adapter->pdev);
281                 if (adapter->have_msi) {
282                         handler = e1000_intr_msi;
283                         irq_flags = 0;
284                 }
285         }
286
287         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
288                           netdev);
289         if (err) {
290                 if (adapter->have_msi)
291                         pci_disable_msi(adapter->pdev);
292                 DPRINTK(PROBE, ERR,
293                         "Unable to allocate interrupt Error: %d\n", err);
294         }
295
296         return err;
297 }
298
299 static void e1000_free_irq(struct e1000_adapter *adapter)
300 {
301         struct net_device *netdev = adapter->netdev;
302
303         free_irq(adapter->pdev->irq, netdev);
304
305         if (adapter->have_msi)
306                 pci_disable_msi(adapter->pdev);
307 }
308
309 /**
310  * e1000_irq_disable - Mask off interrupt generation on the NIC
311  * @adapter: board private structure
312  **/
313
314 static void
315 e1000_irq_disable(struct e1000_adapter *adapter)
316 {
317         atomic_inc(&adapter->irq_sem);
318         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
319         E1000_WRITE_FLUSH(&adapter->hw);
320         synchronize_irq(adapter->pdev->irq);
321 }
322
323 /**
324  * e1000_irq_enable - Enable default interrupt generation settings
325  * @adapter: board private structure
326  **/
327
328 static void
329 e1000_irq_enable(struct e1000_adapter *adapter)
330 {
331         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
332                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
333                 E1000_WRITE_FLUSH(&adapter->hw);
334         }
335 }
336
337 static void
338 e1000_update_mng_vlan(struct e1000_adapter *adapter)
339 {
340         struct net_device *netdev = adapter->netdev;
341         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
342         uint16_t old_vid = adapter->mng_vlan_id;
343         if (adapter->vlgrp) {
344                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
345                         if (adapter->hw.mng_cookie.status &
346                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
347                                 e1000_vlan_rx_add_vid(netdev, vid);
348                                 adapter->mng_vlan_id = vid;
349                         } else
350                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
351
352                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
353                                         (vid != old_vid) &&
354                             !vlan_group_get_device(adapter->vlgrp, old_vid))
355                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
356                 } else
357                         adapter->mng_vlan_id = vid;
358         }
359 }
360
361 /**
362  * e1000_release_hw_control - release control of the h/w to f/w
363  * @adapter: address of board private structure
364  *
365  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
366  * For ASF and Pass Through versions of f/w this means that the
367  * driver is no longer loaded. For AMT version (only with 82573) i
368  * of the f/w this means that the network i/f is closed.
369  *
370  **/
371
372 static void
373 e1000_release_hw_control(struct e1000_adapter *adapter)
374 {
375         uint32_t ctrl_ext;
376         uint32_t swsm;
377
378         /* Let firmware taken over control of h/w */
379         switch (adapter->hw.mac_type) {
380         case e1000_82573:
381                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
382                 E1000_WRITE_REG(&adapter->hw, SWSM,
383                                 swsm & ~E1000_SWSM_DRV_LOAD);
384                 break;
385         case e1000_82571:
386         case e1000_82572:
387         case e1000_80003es2lan:
388         case e1000_ich8lan:
389                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
390                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
391                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
392                 break;
393         default:
394                 break;
395         }
396 }
397
398 /**
399  * e1000_get_hw_control - get control of the h/w from f/w
400  * @adapter: address of board private structure
401  *
402  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
403  * For ASF and Pass Through versions of f/w this means that
404  * the driver is loaded. For AMT version (only with 82573)
405  * of the f/w this means that the network i/f is open.
406  *
407  **/
408
409 static void
410 e1000_get_hw_control(struct e1000_adapter *adapter)
411 {
412         uint32_t ctrl_ext;
413         uint32_t swsm;
414
415         /* Let firmware know the driver has taken over */
416         switch (adapter->hw.mac_type) {
417         case e1000_82573:
418                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
419                 E1000_WRITE_REG(&adapter->hw, SWSM,
420                                 swsm | E1000_SWSM_DRV_LOAD);
421                 break;
422         case e1000_82571:
423         case e1000_82572:
424         case e1000_80003es2lan:
425         case e1000_ich8lan:
426                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
427                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
428                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
429                 break;
430         default:
431                 break;
432         }
433 }
434
435 static void
436 e1000_init_manageability(struct e1000_adapter *adapter)
437 {
438         if (adapter->en_mng_pt) {
439                 uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
440
441                 /* disable hardware interception of ARP */
442                 manc &= ~(E1000_MANC_ARP_EN);
443
444                 /* enable receiving management packets to the host */
445                 /* this will probably generate destination unreachable messages
446                  * from the host OS, but the packets will be handled on SMBUS */
447                 if (adapter->hw.has_manc2h) {
448                         uint32_t manc2h = E1000_READ_REG(&adapter->hw, MANC2H);
449
450                         manc |= E1000_MANC_EN_MNG2HOST;
451 #define E1000_MNG2HOST_PORT_623 (1 << 5)
452 #define E1000_MNG2HOST_PORT_664 (1 << 6)
453                         manc2h |= E1000_MNG2HOST_PORT_623;
454                         manc2h |= E1000_MNG2HOST_PORT_664;
455                         E1000_WRITE_REG(&adapter->hw, MANC2H, manc2h);
456                 }
457
458                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
459         }
460 }
461
462 static void
463 e1000_release_manageability(struct e1000_adapter *adapter)
464 {
465         if (adapter->en_mng_pt) {
466                 uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
467
468                 /* re-enable hardware interception of ARP */
469                 manc |= E1000_MANC_ARP_EN;
470
471                 if (adapter->hw.has_manc2h)
472                         manc &= ~E1000_MANC_EN_MNG2HOST;
473
474                 /* don't explicitly have to mess with MANC2H since
475                  * MANC has an enable disable that gates MANC2H */
476
477                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
478         }
479 }
480
481 /**
482  * e1000_configure - configure the hardware for RX and TX
483  * @adapter = private board structure
484  **/
485 static void e1000_configure(struct e1000_adapter *adapter)
486 {
487         struct net_device *netdev = adapter->netdev;
488         int i;
489
490         e1000_set_rx_mode(netdev);
491
492         e1000_restore_vlan(adapter);
493         e1000_init_manageability(adapter);
494
495         e1000_configure_tx(adapter);
496         e1000_setup_rctl(adapter);
497         e1000_configure_rx(adapter);
498         /* call E1000_DESC_UNUSED which always leaves
499          * at least 1 descriptor unused to make sure
500          * next_to_use != next_to_clean */
501         for (i = 0; i < adapter->num_rx_queues; i++) {
502                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
503                 adapter->alloc_rx_buf(adapter, ring,
504                                       E1000_DESC_UNUSED(ring));
505         }
506
507         adapter->tx_queue_len = netdev->tx_queue_len;
508 }
509
510 int e1000_up(struct e1000_adapter *adapter)
511 {
512         /* hardware has been reset, we need to reload some things */
513         e1000_configure(adapter);
514
515         clear_bit(__E1000_DOWN, &adapter->flags);
516
517 #ifdef CONFIG_E1000_NAPI
518         napi_enable(&adapter->napi);
519 #endif
520         e1000_irq_enable(adapter);
521
522         /* fire a link change interrupt to start the watchdog */
523         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
524         return 0;
525 }
526
527 /**
528  * e1000_power_up_phy - restore link in case the phy was powered down
529  * @adapter: address of board private structure
530  *
531  * The phy may be powered down to save power and turn off link when the
532  * driver is unloaded and wake on lan is not enabled (among others)
533  * *** this routine MUST be followed by a call to e1000_reset ***
534  *
535  **/
536
537 void e1000_power_up_phy(struct e1000_adapter *adapter)
538 {
539         uint16_t mii_reg = 0;
540
541         /* Just clear the power down bit to wake the phy back up */
542         if (adapter->hw.media_type == e1000_media_type_copper) {
543                 /* according to the manual, the phy will retain its
544                  * settings across a power-down/up cycle */
545                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
546                 mii_reg &= ~MII_CR_POWER_DOWN;
547                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
548         }
549 }
550
551 static void e1000_power_down_phy(struct e1000_adapter *adapter)
552 {
553         /* Power down the PHY so no link is implied when interface is down *
554          * The PHY cannot be powered down if any of the following is TRUE *
555          * (a) WoL is enabled
556          * (b) AMT is active
557          * (c) SoL/IDER session is active */
558         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
559            adapter->hw.media_type == e1000_media_type_copper) {
560                 uint16_t mii_reg = 0;
561
562                 switch (adapter->hw.mac_type) {
563                 case e1000_82540:
564                 case e1000_82545:
565                 case e1000_82545_rev_3:
566                 case e1000_82546:
567                 case e1000_82546_rev_3:
568                 case e1000_82541:
569                 case e1000_82541_rev_2:
570                 case e1000_82547:
571                 case e1000_82547_rev_2:
572                         if (E1000_READ_REG(&adapter->hw, MANC) &
573                             E1000_MANC_SMBUS_EN)
574                                 goto out;
575                         break;
576                 case e1000_82571:
577                 case e1000_82572:
578                 case e1000_82573:
579                 case e1000_80003es2lan:
580                 case e1000_ich8lan:
581                         if (e1000_check_mng_mode(&adapter->hw) ||
582                             e1000_check_phy_reset_block(&adapter->hw))
583                                 goto out;
584                         break;
585                 default:
586                         goto out;
587                 }
588                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
589                 mii_reg |= MII_CR_POWER_DOWN;
590                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
591                 mdelay(1);
592         }
593 out:
594         return;
595 }
596
597 void
598 e1000_down(struct e1000_adapter *adapter)
599 {
600         struct net_device *netdev = adapter->netdev;
601
602         /* signal that we're down so the interrupt handler does not
603          * reschedule our watchdog timer */
604         set_bit(__E1000_DOWN, &adapter->flags);
605
606 #ifdef CONFIG_E1000_NAPI
607         napi_disable(&adapter->napi);
608         atomic_set(&adapter->irq_sem, 0);
609 #endif
610         e1000_irq_disable(adapter);
611
612         del_timer_sync(&adapter->tx_fifo_stall_timer);
613         del_timer_sync(&adapter->watchdog_timer);
614         del_timer_sync(&adapter->phy_info_timer);
615
616         netdev->tx_queue_len = adapter->tx_queue_len;
617         adapter->link_speed = 0;
618         adapter->link_duplex = 0;
619         netif_carrier_off(netdev);
620         netif_stop_queue(netdev);
621
622         e1000_reset(adapter);
623         e1000_clean_all_tx_rings(adapter);
624         e1000_clean_all_rx_rings(adapter);
625 }
626
627 void
628 e1000_reinit_locked(struct e1000_adapter *adapter)
629 {
630         WARN_ON(in_interrupt());
631         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
632                 msleep(1);
633         e1000_down(adapter);
634         e1000_up(adapter);
635         clear_bit(__E1000_RESETTING, &adapter->flags);
636 }
637
638 void
639 e1000_reset(struct e1000_adapter *adapter)
640 {
641         uint32_t pba = 0, tx_space, min_tx_space, min_rx_space;
642         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
643         boolean_t legacy_pba_adjust = FALSE;
644
645         /* Repartition Pba for greater than 9k mtu
646          * To take effect CTRL.RST is required.
647          */
648
649         switch (adapter->hw.mac_type) {
650         case e1000_82542_rev2_0:
651         case e1000_82542_rev2_1:
652         case e1000_82543:
653         case e1000_82544:
654         case e1000_82540:
655         case e1000_82541:
656         case e1000_82541_rev_2:
657                 legacy_pba_adjust = TRUE;
658                 pba = E1000_PBA_48K;
659                 break;
660         case e1000_82545:
661         case e1000_82545_rev_3:
662         case e1000_82546:
663         case e1000_82546_rev_3:
664                 pba = E1000_PBA_48K;
665                 break;
666         case e1000_82547:
667         case e1000_82547_rev_2:
668                 legacy_pba_adjust = TRUE;
669                 pba = E1000_PBA_30K;
670                 break;
671         case e1000_82571:
672         case e1000_82572:
673         case e1000_80003es2lan:
674                 pba = E1000_PBA_38K;
675                 break;
676         case e1000_82573:
677                 pba = E1000_PBA_20K;
678                 break;
679         case e1000_ich8lan:
680                 pba = E1000_PBA_8K;
681         case e1000_undefined:
682         case e1000_num_macs:
683                 break;
684         }
685
686         if (legacy_pba_adjust == TRUE) {
687                 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
688                         pba -= 8; /* allocate more FIFO for Tx */
689
690                 if (adapter->hw.mac_type == e1000_82547) {
691                         adapter->tx_fifo_head = 0;
692                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
693                         adapter->tx_fifo_size =
694                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
695                         atomic_set(&adapter->tx_fifo_stall, 0);
696                 }
697         } else if (adapter->hw.max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
698                 /* adjust PBA for jumbo frames */
699                 E1000_WRITE_REG(&adapter->hw, PBA, pba);
700
701                 /* To maintain wire speed transmits, the Tx FIFO should be
702                  * large enough to accomodate two full transmit packets,
703                  * rounded up to the next 1KB and expressed in KB.  Likewise,
704                  * the Rx FIFO should be large enough to accomodate at least
705                  * one full receive packet and is similarly rounded up and
706                  * expressed in KB. */
707                 pba = E1000_READ_REG(&adapter->hw, PBA);
708                 /* upper 16 bits has Tx packet buffer allocation size in KB */
709                 tx_space = pba >> 16;
710                 /* lower 16 bits has Rx packet buffer allocation size in KB */
711                 pba &= 0xffff;
712                 /* don't include ethernet FCS because hardware appends/strips */
713                 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
714                                VLAN_TAG_SIZE;
715                 min_tx_space = min_rx_space;
716                 min_tx_space *= 2;
717                 min_tx_space = ALIGN(min_tx_space, 1024);
718                 min_tx_space >>= 10;
719                 min_rx_space = ALIGN(min_rx_space, 1024);
720                 min_rx_space >>= 10;
721
722                 /* If current Tx allocation is less than the min Tx FIFO size,
723                  * and the min Tx FIFO size is less than the current Rx FIFO
724                  * allocation, take space away from current Rx allocation */
725                 if (tx_space < min_tx_space &&
726                     ((min_tx_space - tx_space) < pba)) {
727                         pba = pba - (min_tx_space - tx_space);
728
729                         /* PCI/PCIx hardware has PBA alignment constraints */
730                         switch (adapter->hw.mac_type) {
731                         case e1000_82545 ... e1000_82546_rev_3:
732                                 pba &= ~(E1000_PBA_8K - 1);
733                                 break;
734                         default:
735                                 break;
736                         }
737
738                         /* if short on rx space, rx wins and must trump tx
739                          * adjustment or use Early Receive if available */
740                         if (pba < min_rx_space) {
741                                 switch (adapter->hw.mac_type) {
742                                 case e1000_82573:
743                                         /* ERT enabled in e1000_configure_rx */
744                                         break;
745                                 default:
746                                         pba = min_rx_space;
747                                         break;
748                                 }
749                         }
750                 }
751         }
752
753         E1000_WRITE_REG(&adapter->hw, PBA, pba);
754
755         /* flow control settings */
756         /* Set the FC high water mark to 90% of the FIFO size.
757          * Required to clear last 3 LSB */
758         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
759         /* We can't use 90% on small FIFOs because the remainder
760          * would be less than 1 full frame.  In this case, we size
761          * it to allow at least a full frame above the high water
762          *  mark. */
763         if (pba < E1000_PBA_16K)
764                 fc_high_water_mark = (pba * 1024) - 1600;
765
766         adapter->hw.fc_high_water = fc_high_water_mark;
767         adapter->hw.fc_low_water = fc_high_water_mark - 8;
768         if (adapter->hw.mac_type == e1000_80003es2lan)
769                 adapter->hw.fc_pause_time = 0xFFFF;
770         else
771                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
772         adapter->hw.fc_send_xon = 1;
773         adapter->hw.fc = adapter->hw.original_fc;
774
775         /* Allow time for pending master requests to run */
776         e1000_reset_hw(&adapter->hw);
777         if (adapter->hw.mac_type >= e1000_82544)
778                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
779
780         if (e1000_init_hw(&adapter->hw))
781                 DPRINTK(PROBE, ERR, "Hardware Error\n");
782         e1000_update_mng_vlan(adapter);
783
784         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
785         if (adapter->hw.mac_type >= e1000_82544 &&
786             adapter->hw.mac_type <= e1000_82547_rev_2 &&
787             adapter->hw.autoneg == 1 &&
788             adapter->hw.autoneg_advertised == ADVERTISE_1000_FULL) {
789                 uint32_t ctrl = E1000_READ_REG(&adapter->hw, CTRL);
790                 /* clear phy power management bit if we are in gig only mode,
791                  * which if enabled will attempt negotiation to 100Mb, which
792                  * can cause a loss of link at power off or driver unload */
793                 ctrl &= ~E1000_CTRL_SWDPIN3;
794                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
795         }
796
797         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
798         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
799
800         e1000_reset_adaptive(&adapter->hw);
801         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
802
803         if (!adapter->smart_power_down &&
804             (adapter->hw.mac_type == e1000_82571 ||
805              adapter->hw.mac_type == e1000_82572)) {
806                 uint16_t phy_data = 0;
807                 /* speed up time to link by disabling smart power down, ignore
808                  * the return value of this function because there is nothing
809                  * different we would do if it failed */
810                 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
811                                    &phy_data);
812                 phy_data &= ~IGP02E1000_PM_SPD;
813                 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
814                                     phy_data);
815         }
816
817         e1000_release_manageability(adapter);
818 }
819
820 /**
821  * e1000_probe - Device Initialization Routine
822  * @pdev: PCI device information struct
823  * @ent: entry in e1000_pci_tbl
824  *
825  * Returns 0 on success, negative on failure
826  *
827  * e1000_probe initializes an adapter identified by a pci_dev structure.
828  * The OS initialization, configuring of the adapter private structure,
829  * and a hardware reset occur.
830  **/
831
832 static int __devinit
833 e1000_probe(struct pci_dev *pdev,
834             const struct pci_device_id *ent)
835 {
836         struct net_device *netdev;
837         struct e1000_adapter *adapter;
838         unsigned long mmio_start, mmio_len;
839         unsigned long flash_start, flash_len;
840
841         static int cards_found = 0;
842         static int global_quad_port_a = 0; /* global ksp3 port a indication */
843         int i, err, pci_using_dac;
844         uint16_t eeprom_data = 0;
845         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
846         DECLARE_MAC_BUF(mac);
847
848         if ((err = pci_enable_device(pdev)))
849                 return err;
850
851         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
852             !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
853                 pci_using_dac = 1;
854         } else {
855                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
856                     (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
857                         E1000_ERR("No usable DMA configuration, aborting\n");
858                         goto err_dma;
859                 }
860                 pci_using_dac = 0;
861         }
862
863         if ((err = pci_request_regions(pdev, e1000_driver_name)))
864                 goto err_pci_reg;
865
866         pci_set_master(pdev);
867
868         err = -ENOMEM;
869         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
870         if (!netdev)
871                 goto err_alloc_etherdev;
872
873         SET_NETDEV_DEV(netdev, &pdev->dev);
874
875         pci_set_drvdata(pdev, netdev);
876         adapter = netdev_priv(netdev);
877         adapter->netdev = netdev;
878         adapter->pdev = pdev;
879         adapter->hw.back = adapter;
880         adapter->msg_enable = (1 << debug) - 1;
881
882         mmio_start = pci_resource_start(pdev, BAR_0);
883         mmio_len = pci_resource_len(pdev, BAR_0);
884
885         err = -EIO;
886         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
887         if (!adapter->hw.hw_addr)
888                 goto err_ioremap;
889
890         for (i = BAR_1; i <= BAR_5; i++) {
891                 if (pci_resource_len(pdev, i) == 0)
892                         continue;
893                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
894                         adapter->hw.io_base = pci_resource_start(pdev, i);
895                         break;
896                 }
897         }
898
899         netdev->open = &e1000_open;
900         netdev->stop = &e1000_close;
901         netdev->hard_start_xmit = &e1000_xmit_frame;
902         netdev->get_stats = &e1000_get_stats;
903         netdev->set_rx_mode = &e1000_set_rx_mode;
904         netdev->set_mac_address = &e1000_set_mac;
905         netdev->change_mtu = &e1000_change_mtu;
906         netdev->do_ioctl = &e1000_ioctl;
907         e1000_set_ethtool_ops(netdev);
908         netdev->tx_timeout = &e1000_tx_timeout;
909         netdev->watchdog_timeo = 5 * HZ;
910 #ifdef CONFIG_E1000_NAPI
911         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
912 #endif
913         netdev->vlan_rx_register = e1000_vlan_rx_register;
914         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
915         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
916 #ifdef CONFIG_NET_POLL_CONTROLLER
917         netdev->poll_controller = e1000_netpoll;
918 #endif
919         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
920
921         netdev->mem_start = mmio_start;
922         netdev->mem_end = mmio_start + mmio_len;
923         netdev->base_addr = adapter->hw.io_base;
924
925         adapter->bd_number = cards_found;
926
927         /* setup the private structure */
928
929         if ((err = e1000_sw_init(adapter)))
930                 goto err_sw_init;
931
932         err = -EIO;
933         /* Flash BAR mapping must happen after e1000_sw_init
934          * because it depends on mac_type */
935         if ((adapter->hw.mac_type == e1000_ich8lan) &&
936            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
937                 flash_start = pci_resource_start(pdev, 1);
938                 flash_len = pci_resource_len(pdev, 1);
939                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
940                 if (!adapter->hw.flash_address)
941                         goto err_flashmap;
942         }
943
944         if (e1000_check_phy_reset_block(&adapter->hw))
945                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
946
947         if (adapter->hw.mac_type >= e1000_82543) {
948                 netdev->features = NETIF_F_SG |
949                                    NETIF_F_HW_CSUM |
950                                    NETIF_F_HW_VLAN_TX |
951                                    NETIF_F_HW_VLAN_RX |
952                                    NETIF_F_HW_VLAN_FILTER;
953                 if (adapter->hw.mac_type == e1000_ich8lan)
954                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
955         }
956
957         if ((adapter->hw.mac_type >= e1000_82544) &&
958            (adapter->hw.mac_type != e1000_82547))
959                 netdev->features |= NETIF_F_TSO;
960
961         if (adapter->hw.mac_type > e1000_82547_rev_2)
962                 netdev->features |= NETIF_F_TSO6;
963         if (pci_using_dac)
964                 netdev->features |= NETIF_F_HIGHDMA;
965
966         netdev->features |= NETIF_F_LLTX;
967
968         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
969
970         /* initialize eeprom parameters */
971
972         if (e1000_init_eeprom_params(&adapter->hw)) {
973                 E1000_ERR("EEPROM initialization failed\n");
974                 goto err_eeprom;
975         }
976
977         /* before reading the EEPROM, reset the controller to
978          * put the device in a known good starting state */
979
980         e1000_reset_hw(&adapter->hw);
981
982         /* make sure the EEPROM is good */
983
984         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
985                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
986                 goto err_eeprom;
987         }
988
989         /* copy the MAC address out of the EEPROM */
990
991         if (e1000_read_mac_addr(&adapter->hw))
992                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
993         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
994         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
995
996         if (!is_valid_ether_addr(netdev->perm_addr)) {
997                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
998                 goto err_eeprom;
999         }
1000
1001         e1000_get_bus_info(&adapter->hw);
1002
1003         init_timer(&adapter->tx_fifo_stall_timer);
1004         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1005         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
1006
1007         init_timer(&adapter->watchdog_timer);
1008         adapter->watchdog_timer.function = &e1000_watchdog;
1009         adapter->watchdog_timer.data = (unsigned long) adapter;
1010
1011         init_timer(&adapter->phy_info_timer);
1012         adapter->phy_info_timer.function = &e1000_update_phy_info;
1013         adapter->phy_info_timer.data = (unsigned long) adapter;
1014
1015         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1016
1017         e1000_check_options(adapter);
1018
1019         /* Initial Wake on LAN setting
1020          * If APM wake is enabled in the EEPROM,
1021          * enable the ACPI Magic Packet filter
1022          */
1023
1024         switch (adapter->hw.mac_type) {
1025         case e1000_82542_rev2_0:
1026         case e1000_82542_rev2_1:
1027         case e1000_82543:
1028                 break;
1029         case e1000_82544:
1030                 e1000_read_eeprom(&adapter->hw,
1031                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1032                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1033                 break;
1034         case e1000_ich8lan:
1035                 e1000_read_eeprom(&adapter->hw,
1036                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1037                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1038                 break;
1039         case e1000_82546:
1040         case e1000_82546_rev_3:
1041         case e1000_82571:
1042         case e1000_80003es2lan:
1043                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
1044                         e1000_read_eeprom(&adapter->hw,
1045                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1046                         break;
1047                 }
1048                 /* Fall Through */
1049         default:
1050                 e1000_read_eeprom(&adapter->hw,
1051                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1052                 break;
1053         }
1054         if (eeprom_data & eeprom_apme_mask)
1055                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1056
1057         /* now that we have the eeprom settings, apply the special cases
1058          * where the eeprom may be wrong or the board simply won't support
1059          * wake on lan on a particular port */
1060         switch (pdev->device) {
1061         case E1000_DEV_ID_82546GB_PCIE:
1062                 adapter->eeprom_wol = 0;
1063                 break;
1064         case E1000_DEV_ID_82546EB_FIBER:
1065         case E1000_DEV_ID_82546GB_FIBER:
1066         case E1000_DEV_ID_82571EB_FIBER:
1067                 /* Wake events only supported on port A for dual fiber
1068                  * regardless of eeprom setting */
1069                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
1070                         adapter->eeprom_wol = 0;
1071                 break;
1072         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1073         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1074         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1075         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1076         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1077                 /* if quad port adapter, disable WoL on all but port A */
1078                 if (global_quad_port_a != 0)
1079                         adapter->eeprom_wol = 0;
1080                 else
1081                         adapter->quad_port_a = 1;
1082                 /* Reset for multiple quad port adapters */
1083                 if (++global_quad_port_a == 4)
1084                         global_quad_port_a = 0;
1085                 break;
1086         }
1087
1088         /* initialize the wol settings based on the eeprom settings */
1089         adapter->wol = adapter->eeprom_wol;
1090
1091         /* print bus type/speed/width info */
1092         {
1093         struct e1000_hw *hw = &adapter->hw;
1094         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1095                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1096                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1097                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1098                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1099                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1100                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1101                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1102                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1103                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1104                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1105                  "32-bit"));
1106         }
1107
1108         printk("%s\n", print_mac(mac, netdev->dev_addr));
1109
1110         /* reset the hardware with the new settings */
1111         e1000_reset(adapter);
1112
1113         /* If the controller is 82573 and f/w is AMT, do not set
1114          * DRV_LOAD until the interface is up.  For all other cases,
1115          * let the f/w know that the h/w is now under the control
1116          * of the driver. */
1117         if (adapter->hw.mac_type != e1000_82573 ||
1118             !e1000_check_mng_mode(&adapter->hw))
1119                 e1000_get_hw_control(adapter);
1120
1121         /* tell the stack to leave us alone until e1000_open() is called */
1122         netif_carrier_off(netdev);
1123         netif_stop_queue(netdev);
1124
1125         strcpy(netdev->name, "eth%d");
1126         if ((err = register_netdev(netdev)))
1127                 goto err_register;
1128
1129         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1130
1131         cards_found++;
1132         return 0;
1133
1134 err_register:
1135         e1000_release_hw_control(adapter);
1136 err_eeprom:
1137         if (!e1000_check_phy_reset_block(&adapter->hw))
1138                 e1000_phy_hw_reset(&adapter->hw);
1139
1140         if (adapter->hw.flash_address)
1141                 iounmap(adapter->hw.flash_address);
1142 err_flashmap:
1143 #ifdef CONFIG_E1000_NAPI
1144         for (i = 0; i < adapter->num_rx_queues; i++)
1145                 dev_put(&adapter->polling_netdev[i]);
1146 #endif
1147
1148         kfree(adapter->tx_ring);
1149         kfree(adapter->rx_ring);
1150 #ifdef CONFIG_E1000_NAPI
1151         kfree(adapter->polling_netdev);
1152 #endif
1153 err_sw_init:
1154         iounmap(adapter->hw.hw_addr);
1155 err_ioremap:
1156         free_netdev(netdev);
1157 err_alloc_etherdev:
1158         pci_release_regions(pdev);
1159 err_pci_reg:
1160 err_dma:
1161         pci_disable_device(pdev);
1162         return err;
1163 }
1164
1165 /**
1166  * e1000_remove - Device Removal Routine
1167  * @pdev: PCI device information struct
1168  *
1169  * e1000_remove is called by the PCI subsystem to alert the driver
1170  * that it should release a PCI device.  The could be caused by a
1171  * Hot-Plug event, or because the driver is going to be removed from
1172  * memory.
1173  **/
1174
1175 static void __devexit
1176 e1000_remove(struct pci_dev *pdev)
1177 {
1178         struct net_device *netdev = pci_get_drvdata(pdev);
1179         struct e1000_adapter *adapter = netdev_priv(netdev);
1180 #ifdef CONFIG_E1000_NAPI
1181         int i;
1182 #endif
1183
1184         cancel_work_sync(&adapter->reset_task);
1185
1186         e1000_release_manageability(adapter);
1187
1188         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1189          * would have already happened in close and is redundant. */
1190         e1000_release_hw_control(adapter);
1191
1192 #ifdef CONFIG_E1000_NAPI
1193         for (i = 0; i < adapter->num_rx_queues; i++)
1194                 dev_put(&adapter->polling_netdev[i]);
1195 #endif
1196
1197         unregister_netdev(netdev);
1198
1199         if (!e1000_check_phy_reset_block(&adapter->hw))
1200                 e1000_phy_hw_reset(&adapter->hw);
1201
1202         kfree(adapter->tx_ring);
1203         kfree(adapter->rx_ring);
1204 #ifdef CONFIG_E1000_NAPI
1205         kfree(adapter->polling_netdev);
1206 #endif
1207
1208         iounmap(adapter->hw.hw_addr);
1209         if (adapter->hw.flash_address)
1210                 iounmap(adapter->hw.flash_address);
1211         pci_release_regions(pdev);
1212
1213         free_netdev(netdev);
1214
1215         pci_disable_device(pdev);
1216 }
1217
1218 /**
1219  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1220  * @adapter: board private structure to initialize
1221  *
1222  * e1000_sw_init initializes the Adapter private data structure.
1223  * Fields are initialized based on PCI device information and
1224  * OS network device settings (MTU size).
1225  **/
1226
1227 static int __devinit
1228 e1000_sw_init(struct e1000_adapter *adapter)
1229 {
1230         struct e1000_hw *hw = &adapter->hw;
1231         struct net_device *netdev = adapter->netdev;
1232         struct pci_dev *pdev = adapter->pdev;
1233 #ifdef CONFIG_E1000_NAPI
1234         int i;
1235 #endif
1236
1237         /* PCI config space info */
1238
1239         hw->vendor_id = pdev->vendor;
1240         hw->device_id = pdev->device;
1241         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1242         hw->subsystem_id = pdev->subsystem_device;
1243         hw->revision_id = pdev->revision;
1244
1245         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1246
1247         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1248         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1249         hw->max_frame_size = netdev->mtu +
1250                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1251         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1252
1253         /* identify the MAC */
1254
1255         if (e1000_set_mac_type(hw)) {
1256                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1257                 return -EIO;
1258         }
1259
1260         switch (hw->mac_type) {
1261         default:
1262                 break;
1263         case e1000_82541:
1264         case e1000_82547:
1265         case e1000_82541_rev_2:
1266         case e1000_82547_rev_2:
1267                 hw->phy_init_script = 1;
1268                 break;
1269         }
1270
1271         e1000_set_media_type(hw);
1272
1273         hw->wait_autoneg_complete = FALSE;
1274         hw->tbi_compatibility_en = TRUE;
1275         hw->adaptive_ifs = TRUE;
1276
1277         /* Copper options */
1278
1279         if (hw->media_type == e1000_media_type_copper) {
1280                 hw->mdix = AUTO_ALL_MODES;
1281                 hw->disable_polarity_correction = FALSE;
1282                 hw->master_slave = E1000_MASTER_SLAVE;
1283         }
1284
1285         adapter->num_tx_queues = 1;
1286         adapter->num_rx_queues = 1;
1287
1288         if (e1000_alloc_queues(adapter)) {
1289                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1290                 return -ENOMEM;
1291         }
1292
1293 #ifdef CONFIG_E1000_NAPI
1294         for (i = 0; i < adapter->num_rx_queues; i++) {
1295                 adapter->polling_netdev[i].priv = adapter;
1296                 dev_hold(&adapter->polling_netdev[i]);
1297                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1298         }
1299         spin_lock_init(&adapter->tx_queue_lock);
1300 #endif
1301
1302         /* Explicitly disable IRQ since the NIC can be in any state. */
1303         atomic_set(&adapter->irq_sem, 0);
1304         e1000_irq_disable(adapter);
1305
1306         spin_lock_init(&adapter->stats_lock);
1307
1308         set_bit(__E1000_DOWN, &adapter->flags);
1309
1310         return 0;
1311 }
1312
1313 /**
1314  * e1000_alloc_queues - Allocate memory for all rings
1315  * @adapter: board private structure to initialize
1316  *
1317  * We allocate one ring per queue at run-time since we don't know the
1318  * number of queues at compile-time.  The polling_netdev array is
1319  * intended for Multiqueue, but should work fine with a single queue.
1320  **/
1321
1322 static int __devinit
1323 e1000_alloc_queues(struct e1000_adapter *adapter)
1324 {
1325         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1326                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1327         if (!adapter->tx_ring)
1328                 return -ENOMEM;
1329
1330         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1331                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1332         if (!adapter->rx_ring) {
1333                 kfree(adapter->tx_ring);
1334                 return -ENOMEM;
1335         }
1336
1337 #ifdef CONFIG_E1000_NAPI
1338         adapter->polling_netdev = kcalloc(adapter->num_rx_queues,
1339                                           sizeof(struct net_device),
1340                                           GFP_KERNEL);
1341         if (!adapter->polling_netdev) {
1342                 kfree(adapter->tx_ring);
1343                 kfree(adapter->rx_ring);
1344                 return -ENOMEM;
1345         }
1346 #endif
1347
1348         return E1000_SUCCESS;
1349 }
1350
1351 /**
1352  * e1000_open - Called when a network interface is made active
1353  * @netdev: network interface device structure
1354  *
1355  * Returns 0 on success, negative value on failure
1356  *
1357  * The open entry point is called when a network interface is made
1358  * active by the system (IFF_UP).  At this point all resources needed
1359  * for transmit and receive operations are allocated, the interrupt
1360  * handler is registered with the OS, the watchdog timer is started,
1361  * and the stack is notified that the interface is ready.
1362  **/
1363
1364 static int
1365 e1000_open(struct net_device *netdev)
1366 {
1367         struct e1000_adapter *adapter = netdev_priv(netdev);
1368         int err;
1369
1370         /* disallow open during test */
1371         if (test_bit(__E1000_TESTING, &adapter->flags))
1372                 return -EBUSY;
1373
1374         /* allocate transmit descriptors */
1375         err = e1000_setup_all_tx_resources(adapter);
1376         if (err)
1377                 goto err_setup_tx;
1378
1379         /* allocate receive descriptors */
1380         err = e1000_setup_all_rx_resources(adapter);
1381         if (err)
1382                 goto err_setup_rx;
1383
1384         e1000_power_up_phy(adapter);
1385
1386         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1387         if ((adapter->hw.mng_cookie.status &
1388                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1389                 e1000_update_mng_vlan(adapter);
1390         }
1391
1392         /* If AMT is enabled, let the firmware know that the network
1393          * interface is now open */
1394         if (adapter->hw.mac_type == e1000_82573 &&
1395             e1000_check_mng_mode(&adapter->hw))
1396                 e1000_get_hw_control(adapter);
1397
1398         /* before we allocate an interrupt, we must be ready to handle it.
1399          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1400          * as soon as we call pci_request_irq, so we have to setup our
1401          * clean_rx handler before we do so.  */
1402         e1000_configure(adapter);
1403
1404         err = e1000_request_irq(adapter);
1405         if (err)
1406                 goto err_req_irq;
1407
1408         /* From here on the code is the same as e1000_up() */
1409         clear_bit(__E1000_DOWN, &adapter->flags);
1410
1411 #ifdef CONFIG_E1000_NAPI
1412         napi_enable(&adapter->napi);
1413 #endif
1414
1415         e1000_irq_enable(adapter);
1416
1417         /* fire a link status change interrupt to start the watchdog */
1418         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
1419
1420         return E1000_SUCCESS;
1421
1422 err_req_irq:
1423         e1000_release_hw_control(adapter);
1424         e1000_power_down_phy(adapter);
1425         e1000_free_all_rx_resources(adapter);
1426 err_setup_rx:
1427         e1000_free_all_tx_resources(adapter);
1428 err_setup_tx:
1429         e1000_reset(adapter);
1430
1431         return err;
1432 }
1433
1434 /**
1435  * e1000_close - Disables a network interface
1436  * @netdev: network interface device structure
1437  *
1438  * Returns 0, this is not allowed to fail
1439  *
1440  * The close entry point is called when an interface is de-activated
1441  * by the OS.  The hardware is still under the drivers control, but
1442  * needs to be disabled.  A global MAC reset is issued to stop the
1443  * hardware, and all transmit and receive resources are freed.
1444  **/
1445
1446 static int
1447 e1000_close(struct net_device *netdev)
1448 {
1449         struct e1000_adapter *adapter = netdev_priv(netdev);
1450
1451         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1452         e1000_down(adapter);
1453         e1000_power_down_phy(adapter);
1454         e1000_free_irq(adapter);
1455
1456         e1000_free_all_tx_resources(adapter);
1457         e1000_free_all_rx_resources(adapter);
1458
1459         /* kill manageability vlan ID if supported, but not if a vlan with
1460          * the same ID is registered on the host OS (let 8021q kill it) */
1461         if ((adapter->hw.mng_cookie.status &
1462                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1463              !(adapter->vlgrp &&
1464                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1465                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1466         }
1467
1468         /* If AMT is enabled, let the firmware know that the network
1469          * interface is now closed */
1470         if (adapter->hw.mac_type == e1000_82573 &&
1471             e1000_check_mng_mode(&adapter->hw))
1472                 e1000_release_hw_control(adapter);
1473
1474         return 0;
1475 }
1476
1477 /**
1478  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1479  * @adapter: address of board private structure
1480  * @start: address of beginning of memory
1481  * @len: length of memory
1482  **/
1483 static boolean_t
1484 e1000_check_64k_bound(struct e1000_adapter *adapter,
1485                       void *start, unsigned long len)
1486 {
1487         unsigned long begin = (unsigned long) start;
1488         unsigned long end = begin + len;
1489
1490         /* First rev 82545 and 82546 need to not allow any memory
1491          * write location to cross 64k boundary due to errata 23 */
1492         if (adapter->hw.mac_type == e1000_82545 ||
1493             adapter->hw.mac_type == e1000_82546) {
1494                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1495         }
1496
1497         return TRUE;
1498 }
1499
1500 /**
1501  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1502  * @adapter: board private structure
1503  * @txdr:    tx descriptor ring (for a specific queue) to setup
1504  *
1505  * Return 0 on success, negative on failure
1506  **/
1507
1508 static int
1509 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1510                          struct e1000_tx_ring *txdr)
1511 {
1512         struct pci_dev *pdev = adapter->pdev;
1513         int size;
1514
1515         size = sizeof(struct e1000_buffer) * txdr->count;
1516         txdr->buffer_info = vmalloc(size);
1517         if (!txdr->buffer_info) {
1518                 DPRINTK(PROBE, ERR,
1519                 "Unable to allocate memory for the transmit descriptor ring\n");
1520                 return -ENOMEM;
1521         }
1522         memset(txdr->buffer_info, 0, size);
1523
1524         /* round up to nearest 4K */
1525
1526         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1527         txdr->size = ALIGN(txdr->size, 4096);
1528
1529         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1530         if (!txdr->desc) {
1531 setup_tx_desc_die:
1532                 vfree(txdr->buffer_info);
1533                 DPRINTK(PROBE, ERR,
1534                 "Unable to allocate memory for the transmit descriptor ring\n");
1535                 return -ENOMEM;
1536         }
1537
1538         /* Fix for errata 23, can't cross 64kB boundary */
1539         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1540                 void *olddesc = txdr->desc;
1541                 dma_addr_t olddma = txdr->dma;
1542                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1543                                      "at %p\n", txdr->size, txdr->desc);
1544                 /* Try again, without freeing the previous */
1545                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1546                 /* Failed allocation, critical failure */
1547                 if (!txdr->desc) {
1548                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1549                         goto setup_tx_desc_die;
1550                 }
1551
1552                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1553                         /* give up */
1554                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1555                                             txdr->dma);
1556                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1557                         DPRINTK(PROBE, ERR,
1558                                 "Unable to allocate aligned memory "
1559                                 "for the transmit descriptor ring\n");
1560                         vfree(txdr->buffer_info);
1561                         return -ENOMEM;
1562                 } else {
1563                         /* Free old allocation, new allocation was successful */
1564                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1565                 }
1566         }
1567         memset(txdr->desc, 0, txdr->size);
1568
1569         txdr->next_to_use = 0;
1570         txdr->next_to_clean = 0;
1571         spin_lock_init(&txdr->tx_lock);
1572
1573         return 0;
1574 }
1575
1576 /**
1577  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1578  *                                (Descriptors) for all queues
1579  * @adapter: board private structure
1580  *
1581  * Return 0 on success, negative on failure
1582  **/
1583
1584 int
1585 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1586 {
1587         int i, err = 0;
1588
1589         for (i = 0; i < adapter->num_tx_queues; i++) {
1590                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1591                 if (err) {
1592                         DPRINTK(PROBE, ERR,
1593                                 "Allocation for Tx Queue %u failed\n", i);
1594                         for (i-- ; i >= 0; i--)
1595                                 e1000_free_tx_resources(adapter,
1596                                                         &adapter->tx_ring[i]);
1597                         break;
1598                 }
1599         }
1600
1601         return err;
1602 }
1603
1604 /**
1605  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1606  * @adapter: board private structure
1607  *
1608  * Configure the Tx unit of the MAC after a reset.
1609  **/
1610
1611 static void
1612 e1000_configure_tx(struct e1000_adapter *adapter)
1613 {
1614         uint64_t tdba;
1615         struct e1000_hw *hw = &adapter->hw;
1616         uint32_t tdlen, tctl, tipg, tarc;
1617         uint32_t ipgr1, ipgr2;
1618
1619         /* Setup the HW Tx Head and Tail descriptor pointers */
1620
1621         switch (adapter->num_tx_queues) {
1622         case 1:
1623         default:
1624                 tdba = adapter->tx_ring[0].dma;
1625                 tdlen = adapter->tx_ring[0].count *
1626                         sizeof(struct e1000_tx_desc);
1627                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1628                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1629                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1630                 E1000_WRITE_REG(hw, TDT, 0);
1631                 E1000_WRITE_REG(hw, TDH, 0);
1632                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1633                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1634                 break;
1635         }
1636
1637         /* Set the default values for the Tx Inter Packet Gap timer */
1638         if (adapter->hw.mac_type <= e1000_82547_rev_2 &&
1639             (hw->media_type == e1000_media_type_fiber ||
1640              hw->media_type == e1000_media_type_internal_serdes))
1641                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1642         else
1643                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1644
1645         switch (hw->mac_type) {
1646         case e1000_82542_rev2_0:
1647         case e1000_82542_rev2_1:
1648                 tipg = DEFAULT_82542_TIPG_IPGT;
1649                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1650                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1651                 break;
1652         case e1000_80003es2lan:
1653                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1654                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1655                 break;
1656         default:
1657                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1658                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1659                 break;
1660         }
1661         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1662         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1663         E1000_WRITE_REG(hw, TIPG, tipg);
1664
1665         /* Set the Tx Interrupt Delay register */
1666
1667         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1668         if (hw->mac_type >= e1000_82540)
1669                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1670
1671         /* Program the Transmit Control Register */
1672
1673         tctl = E1000_READ_REG(hw, TCTL);
1674         tctl &= ~E1000_TCTL_CT;
1675         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1676                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1677
1678         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1679                 tarc = E1000_READ_REG(hw, TARC0);
1680                 /* set the speed mode bit, we'll clear it if we're not at
1681                  * gigabit link later */
1682                 tarc |= (1 << 21);
1683                 E1000_WRITE_REG(hw, TARC0, tarc);
1684         } else if (hw->mac_type == e1000_80003es2lan) {
1685                 tarc = E1000_READ_REG(hw, TARC0);
1686                 tarc |= 1;
1687                 E1000_WRITE_REG(hw, TARC0, tarc);
1688                 tarc = E1000_READ_REG(hw, TARC1);
1689                 tarc |= 1;
1690                 E1000_WRITE_REG(hw, TARC1, tarc);
1691         }
1692
1693         e1000_config_collision_dist(hw);
1694
1695         /* Setup Transmit Descriptor Settings for eop descriptor */
1696         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1697
1698         /* only set IDE if we are delaying interrupts using the timers */
1699         if (adapter->tx_int_delay)
1700                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1701
1702         if (hw->mac_type < e1000_82543)
1703                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1704         else
1705                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1706
1707         /* Cache if we're 82544 running in PCI-X because we'll
1708          * need this to apply a workaround later in the send path. */
1709         if (hw->mac_type == e1000_82544 &&
1710             hw->bus_type == e1000_bus_type_pcix)
1711                 adapter->pcix_82544 = 1;
1712
1713         E1000_WRITE_REG(hw, TCTL, tctl);
1714
1715 }
1716
1717 /**
1718  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1719  * @adapter: board private structure
1720  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1721  *
1722  * Returns 0 on success, negative on failure
1723  **/
1724
1725 static int
1726 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1727                          struct e1000_rx_ring *rxdr)
1728 {
1729         struct pci_dev *pdev = adapter->pdev;
1730         int size, desc_len;
1731
1732         size = sizeof(struct e1000_buffer) * rxdr->count;
1733         rxdr->buffer_info = vmalloc(size);
1734         if (!rxdr->buffer_info) {
1735                 DPRINTK(PROBE, ERR,
1736                 "Unable to allocate memory for the receive descriptor ring\n");
1737                 return -ENOMEM;
1738         }
1739         memset(rxdr->buffer_info, 0, size);
1740
1741         rxdr->ps_page = kcalloc(rxdr->count, sizeof(struct e1000_ps_page),
1742                                 GFP_KERNEL);
1743         if (!rxdr->ps_page) {
1744                 vfree(rxdr->buffer_info);
1745                 DPRINTK(PROBE, ERR,
1746                 "Unable to allocate memory for the receive descriptor ring\n");
1747                 return -ENOMEM;
1748         }
1749
1750         rxdr->ps_page_dma = kcalloc(rxdr->count,
1751                                     sizeof(struct e1000_ps_page_dma),
1752                                     GFP_KERNEL);
1753         if (!rxdr->ps_page_dma) {
1754                 vfree(rxdr->buffer_info);
1755                 kfree(rxdr->ps_page);
1756                 DPRINTK(PROBE, ERR,
1757                 "Unable to allocate memory for the receive descriptor ring\n");
1758                 return -ENOMEM;
1759         }
1760
1761         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1762                 desc_len = sizeof(struct e1000_rx_desc);
1763         else
1764                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1765
1766         /* Round up to nearest 4K */
1767
1768         rxdr->size = rxdr->count * desc_len;
1769         rxdr->size = ALIGN(rxdr->size, 4096);
1770
1771         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1772
1773         if (!rxdr->desc) {
1774                 DPRINTK(PROBE, ERR,
1775                 "Unable to allocate memory for the receive descriptor ring\n");
1776 setup_rx_desc_die:
1777                 vfree(rxdr->buffer_info);
1778                 kfree(rxdr->ps_page);
1779                 kfree(rxdr->ps_page_dma);
1780                 return -ENOMEM;
1781         }
1782
1783         /* Fix for errata 23, can't cross 64kB boundary */
1784         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1785                 void *olddesc = rxdr->desc;
1786                 dma_addr_t olddma = rxdr->dma;
1787                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1788                                      "at %p\n", rxdr->size, rxdr->desc);
1789                 /* Try again, without freeing the previous */
1790                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1791                 /* Failed allocation, critical failure */
1792                 if (!rxdr->desc) {
1793                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1794                         DPRINTK(PROBE, ERR,
1795                                 "Unable to allocate memory "
1796                                 "for the receive descriptor ring\n");
1797                         goto setup_rx_desc_die;
1798                 }
1799
1800                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1801                         /* give up */
1802                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1803                                             rxdr->dma);
1804                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1805                         DPRINTK(PROBE, ERR,
1806                                 "Unable to allocate aligned memory "
1807                                 "for the receive descriptor ring\n");
1808                         goto setup_rx_desc_die;
1809                 } else {
1810                         /* Free old allocation, new allocation was successful */
1811                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1812                 }
1813         }
1814         memset(rxdr->desc, 0, rxdr->size);
1815
1816         rxdr->next_to_clean = 0;
1817         rxdr->next_to_use = 0;
1818
1819         return 0;
1820 }
1821
1822 /**
1823  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1824  *                                (Descriptors) for all queues
1825  * @adapter: board private structure
1826  *
1827  * Return 0 on success, negative on failure
1828  **/
1829
1830 int
1831 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1832 {
1833         int i, err = 0;
1834
1835         for (i = 0; i < adapter->num_rx_queues; i++) {
1836                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1837                 if (err) {
1838                         DPRINTK(PROBE, ERR,
1839                                 "Allocation for Rx Queue %u failed\n", i);
1840                         for (i-- ; i >= 0; i--)
1841                                 e1000_free_rx_resources(adapter,
1842                                                         &adapter->rx_ring[i]);
1843                         break;
1844                 }
1845         }
1846
1847         return err;
1848 }
1849
1850 /**
1851  * e1000_setup_rctl - configure the receive control registers
1852  * @adapter: Board private structure
1853  **/
1854 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1855                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1856 static void
1857 e1000_setup_rctl(struct e1000_adapter *adapter)
1858 {
1859         uint32_t rctl, rfctl;
1860         uint32_t psrctl = 0;
1861 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1862         uint32_t pages = 0;
1863 #endif
1864
1865         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1866
1867         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1868
1869         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1870                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1871                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1872
1873         if (adapter->hw.tbi_compatibility_on == 1)
1874                 rctl |= E1000_RCTL_SBP;
1875         else
1876                 rctl &= ~E1000_RCTL_SBP;
1877
1878         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1879                 rctl &= ~E1000_RCTL_LPE;
1880         else
1881                 rctl |= E1000_RCTL_LPE;
1882
1883         /* Setup buffer sizes */
1884         rctl &= ~E1000_RCTL_SZ_4096;
1885         rctl |= E1000_RCTL_BSEX;
1886         switch (adapter->rx_buffer_len) {
1887                 case E1000_RXBUFFER_256:
1888                         rctl |= E1000_RCTL_SZ_256;
1889                         rctl &= ~E1000_RCTL_BSEX;
1890                         break;
1891                 case E1000_RXBUFFER_512:
1892                         rctl |= E1000_RCTL_SZ_512;
1893                         rctl &= ~E1000_RCTL_BSEX;
1894                         break;
1895                 case E1000_RXBUFFER_1024:
1896                         rctl |= E1000_RCTL_SZ_1024;
1897                         rctl &= ~E1000_RCTL_BSEX;
1898                         break;
1899                 case E1000_RXBUFFER_2048:
1900                 default:
1901                         rctl |= E1000_RCTL_SZ_2048;
1902                         rctl &= ~E1000_RCTL_BSEX;
1903                         break;
1904                 case E1000_RXBUFFER_4096:
1905                         rctl |= E1000_RCTL_SZ_4096;
1906                         break;
1907                 case E1000_RXBUFFER_8192:
1908                         rctl |= E1000_RCTL_SZ_8192;
1909                         break;
1910                 case E1000_RXBUFFER_16384:
1911                         rctl |= E1000_RCTL_SZ_16384;
1912                         break;
1913         }
1914
1915 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1916         /* 82571 and greater support packet-split where the protocol
1917          * header is placed in skb->data and the packet data is
1918          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1919          * In the case of a non-split, skb->data is linearly filled,
1920          * followed by the page buffers.  Therefore, skb->data is
1921          * sized to hold the largest protocol header.
1922          */
1923         /* allocations using alloc_page take too long for regular MTU
1924          * so only enable packet split for jumbo frames */
1925         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1926         if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
1927             PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
1928                 adapter->rx_ps_pages = pages;
1929         else
1930                 adapter->rx_ps_pages = 0;
1931 #endif
1932         if (adapter->rx_ps_pages) {
1933                 /* Configure extra packet-split registers */
1934                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1935                 rfctl |= E1000_RFCTL_EXTEN;
1936                 /* disable packet split support for IPv6 extension headers,
1937                  * because some malformed IPv6 headers can hang the RX */
1938                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1939                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
1940
1941                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1942
1943                 rctl |= E1000_RCTL_DTYP_PS;
1944
1945                 psrctl |= adapter->rx_ps_bsize0 >>
1946                         E1000_PSRCTL_BSIZE0_SHIFT;
1947
1948                 switch (adapter->rx_ps_pages) {
1949                 case 3:
1950                         psrctl |= PAGE_SIZE <<
1951                                 E1000_PSRCTL_BSIZE3_SHIFT;
1952                 case 2:
1953                         psrctl |= PAGE_SIZE <<
1954                                 E1000_PSRCTL_BSIZE2_SHIFT;
1955                 case 1:
1956                         psrctl |= PAGE_SIZE >>
1957                                 E1000_PSRCTL_BSIZE1_SHIFT;
1958                         break;
1959                 }
1960
1961                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1962         }
1963
1964         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1965 }
1966
1967 /**
1968  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1969  * @adapter: board private structure
1970  *
1971  * Configure the Rx unit of the MAC after a reset.
1972  **/
1973
1974 static void
1975 e1000_configure_rx(struct e1000_adapter *adapter)
1976 {
1977         uint64_t rdba;
1978         struct e1000_hw *hw = &adapter->hw;
1979         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1980
1981         if (adapter->rx_ps_pages) {
1982                 /* this is a 32 byte descriptor */
1983                 rdlen = adapter->rx_ring[0].count *
1984                         sizeof(union e1000_rx_desc_packet_split);
1985                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1986                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1987         } else {
1988                 rdlen = adapter->rx_ring[0].count *
1989                         sizeof(struct e1000_rx_desc);
1990                 adapter->clean_rx = e1000_clean_rx_irq;
1991                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1992         }
1993
1994         /* disable receives while setting up the descriptors */
1995         rctl = E1000_READ_REG(hw, RCTL);
1996         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1997
1998         /* set the Receive Delay Timer Register */
1999         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
2000
2001         if (hw->mac_type >= e1000_82540) {
2002                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
2003                 if (adapter->itr_setting != 0)
2004                         E1000_WRITE_REG(hw, ITR,
2005                                 1000000000 / (adapter->itr * 256));
2006         }
2007
2008         if (hw->mac_type >= e1000_82571) {
2009                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2010                 /* Reset delay timers after every interrupt */
2011                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2012 #ifdef CONFIG_E1000_NAPI
2013                 /* Auto-Mask interrupts upon ICR access */
2014                 ctrl_ext |= E1000_CTRL_EXT_IAME;
2015                 E1000_WRITE_REG(hw, IAM, 0xffffffff);
2016 #endif
2017                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2018                 E1000_WRITE_FLUSH(hw);
2019         }
2020
2021         /* Setup the HW Rx Head and Tail Descriptor Pointers and
2022          * the Base and Length of the Rx Descriptor Ring */
2023         switch (adapter->num_rx_queues) {
2024         case 1:
2025         default:
2026                 rdba = adapter->rx_ring[0].dma;
2027                 E1000_WRITE_REG(hw, RDLEN, rdlen);
2028                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
2029                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
2030                 E1000_WRITE_REG(hw, RDT, 0);
2031                 E1000_WRITE_REG(hw, RDH, 0);
2032                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
2033                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2034                 break;
2035         }
2036
2037         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2038         if (hw->mac_type >= e1000_82543) {
2039                 rxcsum = E1000_READ_REG(hw, RXCSUM);
2040                 if (adapter->rx_csum == TRUE) {
2041                         rxcsum |= E1000_RXCSUM_TUOFL;
2042
2043                         /* Enable 82571 IPv4 payload checksum for UDP fragments
2044                          * Must be used in conjunction with packet-split. */
2045                         if ((hw->mac_type >= e1000_82571) &&
2046                             (adapter->rx_ps_pages)) {
2047                                 rxcsum |= E1000_RXCSUM_IPPCSE;
2048                         }
2049                 } else {
2050                         rxcsum &= ~E1000_RXCSUM_TUOFL;
2051                         /* don't need to clear IPPCSE as it defaults to 0 */
2052                 }
2053                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
2054         }
2055
2056         /* enable early receives on 82573, only takes effect if using > 2048
2057          * byte total frame size.  for example only for jumbo frames */
2058 #define E1000_ERT_2048 0x100
2059         if (hw->mac_type == e1000_82573)
2060                 E1000_WRITE_REG(hw, ERT, E1000_ERT_2048);
2061
2062         /* Enable Receives */
2063         E1000_WRITE_REG(hw, RCTL, rctl);
2064 }
2065
2066 /**
2067  * e1000_free_tx_resources - Free Tx Resources per Queue
2068  * @adapter: board private structure
2069  * @tx_ring: Tx descriptor ring for a specific queue
2070  *
2071  * Free all transmit software resources
2072  **/
2073
2074 static void
2075 e1000_free_tx_resources(struct e1000_adapter *adapter,
2076                         struct e1000_tx_ring *tx_ring)
2077 {
2078         struct pci_dev *pdev = adapter->pdev;
2079
2080         e1000_clean_tx_ring(adapter, tx_ring);
2081
2082         vfree(tx_ring->buffer_info);
2083         tx_ring->buffer_info = NULL;
2084
2085         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2086
2087         tx_ring->desc = NULL;
2088 }
2089
2090 /**
2091  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2092  * @adapter: board private structure
2093  *
2094  * Free all transmit software resources
2095  **/
2096
2097 void
2098 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2099 {
2100         int i;
2101
2102         for (i = 0; i < adapter->num_tx_queues; i++)
2103                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2104 }
2105
2106 static void
2107 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2108                         struct e1000_buffer *buffer_info)
2109 {
2110         if (buffer_info->dma) {
2111                 pci_unmap_page(adapter->pdev,
2112                                 buffer_info->dma,
2113                                 buffer_info->length,
2114                                 PCI_DMA_TODEVICE);
2115                 buffer_info->dma = 0;
2116         }
2117         if (buffer_info->skb) {
2118                 dev_kfree_skb_any(buffer_info->skb);
2119                 buffer_info->skb = NULL;
2120         }
2121         /* buffer_info must be completely set up in the transmit path */
2122 }
2123
2124 /**
2125  * e1000_clean_tx_ring - Free Tx Buffers
2126  * @adapter: board private structure
2127  * @tx_ring: ring to be cleaned
2128  **/
2129
2130 static void
2131 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2132                     struct e1000_tx_ring *tx_ring)
2133 {
2134         struct e1000_buffer *buffer_info;
2135         unsigned long size;
2136         unsigned int i;
2137
2138         /* Free all the Tx ring sk_buffs */
2139
2140         for (i = 0; i < tx_ring->count; i++) {
2141                 buffer_info = &tx_ring->buffer_info[i];
2142                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2143         }
2144
2145         size = sizeof(struct e1000_buffer) * tx_ring->count;
2146         memset(tx_ring->buffer_info, 0, size);
2147
2148         /* Zero out the descriptor ring */
2149
2150         memset(tx_ring->desc, 0, tx_ring->size);
2151
2152         tx_ring->next_to_use = 0;
2153         tx_ring->next_to_clean = 0;
2154         tx_ring->last_tx_tso = 0;
2155
2156         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2157         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2158 }
2159
2160 /**
2161  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2162  * @adapter: board private structure
2163  **/
2164
2165 static void
2166 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2167 {
2168         int i;
2169
2170         for (i = 0; i < adapter->num_tx_queues; i++)
2171                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2172 }
2173
2174 /**
2175  * e1000_free_rx_resources - Free Rx Resources
2176  * @adapter: board private structure
2177  * @rx_ring: ring to clean the resources from
2178  *
2179  * Free all receive software resources
2180  **/
2181
2182 static void
2183 e1000_free_rx_resources(struct e1000_adapter *adapter,
2184                         struct e1000_rx_ring *rx_ring)
2185 {
2186         struct pci_dev *pdev = adapter->pdev;
2187
2188         e1000_clean_rx_ring(adapter, rx_ring);
2189
2190         vfree(rx_ring->buffer_info);
2191         rx_ring->buffer_info = NULL;
2192         kfree(rx_ring->ps_page);
2193         rx_ring->ps_page = NULL;
2194         kfree(rx_ring->ps_page_dma);
2195         rx_ring->ps_page_dma = NULL;
2196
2197         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2198
2199         rx_ring->desc = NULL;
2200 }
2201
2202 /**
2203  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2204  * @adapter: board private structure
2205  *
2206  * Free all receive software resources
2207  **/
2208
2209 void
2210 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2211 {
2212         int i;
2213
2214         for (i = 0; i < adapter->num_rx_queues; i++)
2215                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2216 }
2217
2218 /**
2219  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2220  * @adapter: board private structure
2221  * @rx_ring: ring to free buffers from
2222  **/
2223
2224 static void
2225 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2226                     struct e1000_rx_ring *rx_ring)
2227 {
2228         struct e1000_buffer *buffer_info;
2229         struct e1000_ps_page *ps_page;
2230         struct e1000_ps_page_dma *ps_page_dma;
2231         struct pci_dev *pdev = adapter->pdev;
2232         unsigned long size;
2233         unsigned int i, j;
2234
2235         /* Free all the Rx ring sk_buffs */
2236         for (i = 0; i < rx_ring->count; i++) {
2237                 buffer_info = &rx_ring->buffer_info[i];
2238                 if (buffer_info->skb) {
2239                         pci_unmap_single(pdev,
2240                                          buffer_info->dma,
2241                                          buffer_info->length,
2242                                          PCI_DMA_FROMDEVICE);
2243
2244                         dev_kfree_skb(buffer_info->skb);
2245                         buffer_info->skb = NULL;
2246                 }
2247                 ps_page = &rx_ring->ps_page[i];
2248                 ps_page_dma = &rx_ring->ps_page_dma[i];
2249                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2250                         if (!ps_page->ps_page[j]) break;
2251                         pci_unmap_page(pdev,
2252                                        ps_page_dma->ps_page_dma[j],
2253                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2254                         ps_page_dma->ps_page_dma[j] = 0;
2255                         put_page(ps_page->ps_page[j]);
2256                         ps_page->ps_page[j] = NULL;
2257                 }
2258         }
2259
2260         size = sizeof(struct e1000_buffer) * rx_ring->count;
2261         memset(rx_ring->buffer_info, 0, size);
2262         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2263         memset(rx_ring->ps_page, 0, size);
2264         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2265         memset(rx_ring->ps_page_dma, 0, size);
2266
2267         /* Zero out the descriptor ring */
2268
2269         memset(rx_ring->desc, 0, rx_ring->size);
2270
2271         rx_ring->next_to_clean = 0;
2272         rx_ring->next_to_use = 0;
2273
2274         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2275         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2276 }
2277
2278 /**
2279  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2280  * @adapter: board private structure
2281  **/
2282
2283 static void
2284 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2285 {
2286         int i;
2287
2288         for (i = 0; i < adapter->num_rx_queues; i++)
2289                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2290 }
2291
2292 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2293  * and memory write and invalidate disabled for certain operations
2294  */
2295 static void
2296 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2297 {
2298         struct net_device *netdev = adapter->netdev;
2299         uint32_t rctl;
2300
2301         e1000_pci_clear_mwi(&adapter->hw);
2302
2303         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2304         rctl |= E1000_RCTL_RST;
2305         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2306         E1000_WRITE_FLUSH(&adapter->hw);
2307         mdelay(5);
2308
2309         if (netif_running(netdev))
2310                 e1000_clean_all_rx_rings(adapter);
2311 }
2312
2313 static void
2314 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2315 {
2316         struct net_device *netdev = adapter->netdev;
2317         uint32_t rctl;
2318
2319         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2320         rctl &= ~E1000_RCTL_RST;
2321         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2322         E1000_WRITE_FLUSH(&adapter->hw);
2323         mdelay(5);
2324
2325         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2326                 e1000_pci_set_mwi(&adapter->hw);
2327
2328         if (netif_running(netdev)) {
2329                 /* No need to loop, because 82542 supports only 1 queue */
2330                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2331                 e1000_configure_rx(adapter);
2332                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2333         }
2334 }
2335
2336 /**
2337  * e1000_set_mac - Change the Ethernet Address of the NIC
2338  * @netdev: network interface device structure
2339  * @p: pointer to an address structure
2340  *
2341  * Returns 0 on success, negative on failure
2342  **/
2343
2344 static int
2345 e1000_set_mac(struct net_device *netdev, void *p)
2346 {
2347         struct e1000_adapter *adapter = netdev_priv(netdev);
2348         struct sockaddr *addr = p;
2349
2350         if (!is_valid_ether_addr(addr->sa_data))
2351                 return -EADDRNOTAVAIL;
2352
2353         /* 82542 2.0 needs to be in reset to write receive address registers */
2354
2355         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2356                 e1000_enter_82542_rst(adapter);
2357
2358         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2359         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2360
2361         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2362
2363         /* With 82571 controllers, LAA may be overwritten (with the default)
2364          * due to controller reset from the other port. */
2365         if (adapter->hw.mac_type == e1000_82571) {
2366                 /* activate the work around */
2367                 adapter->hw.laa_is_present = 1;
2368
2369                 /* Hold a copy of the LAA in RAR[14] This is done so that
2370                  * between the time RAR[0] gets clobbered  and the time it
2371                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2372                  * of the RARs and no incoming packets directed to this port
2373                  * are dropped. Eventaully the LAA will be in RAR[0] and
2374                  * RAR[14] */
2375                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2376                                         E1000_RAR_ENTRIES - 1);
2377         }
2378
2379         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2380                 e1000_leave_82542_rst(adapter);
2381
2382         return 0;
2383 }
2384
2385 /**
2386  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2387  * @netdev: network interface device structure
2388  *
2389  * The set_rx_mode entry point is called whenever the unicast or multicast
2390  * address lists or the network interface flags are updated. This routine is
2391  * responsible for configuring the hardware for proper unicast, multicast,
2392  * promiscuous mode, and all-multi behavior.
2393  **/
2394
2395 static void
2396 e1000_set_rx_mode(struct net_device *netdev)
2397 {
2398         struct e1000_adapter *adapter = netdev_priv(netdev);
2399         struct e1000_hw *hw = &adapter->hw;
2400         struct dev_addr_list *uc_ptr;
2401         struct dev_addr_list *mc_ptr;
2402         uint32_t rctl;
2403         uint32_t hash_value;
2404         int i, rar_entries = E1000_RAR_ENTRIES;
2405         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2406                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2407                                 E1000_NUM_MTA_REGISTERS;
2408
2409         if (adapter->hw.mac_type == e1000_ich8lan)
2410                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2411
2412         /* reserve RAR[14] for LAA over-write work-around */
2413         if (adapter->hw.mac_type == e1000_82571)
2414                 rar_entries--;
2415
2416         /* Check for Promiscuous and All Multicast modes */
2417
2418         rctl = E1000_READ_REG(hw, RCTL);
2419
2420         if (netdev->flags & IFF_PROMISC) {
2421                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2422         } else if (netdev->flags & IFF_ALLMULTI) {
2423                 rctl |= E1000_RCTL_MPE;
2424         } else {
2425                 rctl &= ~E1000_RCTL_MPE;
2426         }
2427
2428         uc_ptr = NULL;
2429         if (netdev->uc_count > rar_entries - 1) {
2430                 rctl |= E1000_RCTL_UPE;
2431         } else if (!(netdev->flags & IFF_PROMISC)) {
2432                 rctl &= ~E1000_RCTL_UPE;
2433                 uc_ptr = netdev->uc_list;
2434         }
2435
2436         E1000_WRITE_REG(hw, RCTL, rctl);
2437
2438         /* 82542 2.0 needs to be in reset to write receive address registers */
2439
2440         if (hw->mac_type == e1000_82542_rev2_0)
2441                 e1000_enter_82542_rst(adapter);
2442
2443         /* load the first 14 addresses into the exact filters 1-14. Unicast
2444          * addresses take precedence to avoid disabling unicast filtering
2445          * when possible.
2446          *
2447          * RAR 0 is used for the station MAC adddress
2448          * if there are not 14 addresses, go ahead and clear the filters
2449          * -- with 82571 controllers only 0-13 entries are filled here
2450          */
2451         mc_ptr = netdev->mc_list;
2452
2453         for (i = 1; i < rar_entries; i++) {
2454                 if (uc_ptr) {
2455                         e1000_rar_set(hw, uc_ptr->da_addr, i);
2456                         uc_ptr = uc_ptr->next;
2457                 } else if (mc_ptr) {
2458                         e1000_rar_set(hw, mc_ptr->da_addr, i);
2459                         mc_ptr = mc_ptr->next;
2460                 } else {
2461                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2462                         E1000_WRITE_FLUSH(hw);
2463                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2464                         E1000_WRITE_FLUSH(hw);
2465                 }
2466         }
2467         WARN_ON(uc_ptr != NULL);
2468
2469         /* clear the old settings from the multicast hash table */
2470
2471         for (i = 0; i < mta_reg_count; i++) {
2472                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2473                 E1000_WRITE_FLUSH(hw);
2474         }
2475
2476         /* load any remaining addresses into the hash table */
2477
2478         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2479                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
2480                 e1000_mta_set(hw, hash_value);
2481         }
2482
2483         if (hw->mac_type == e1000_82542_rev2_0)
2484                 e1000_leave_82542_rst(adapter);
2485 }
2486
2487 /* Need to wait a few seconds after link up to get diagnostic information from
2488  * the phy */
2489
2490 static void
2491 e1000_update_phy_info(unsigned long data)
2492 {
2493         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2494         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2495 }
2496
2497 /**
2498  * e1000_82547_tx_fifo_stall - Timer Call-back
2499  * @data: pointer to adapter cast into an unsigned long
2500  **/
2501
2502 static void
2503 e1000_82547_tx_fifo_stall(unsigned long data)
2504 {
2505         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2506         struct net_device *netdev = adapter->netdev;
2507         uint32_t tctl;
2508
2509         if (atomic_read(&adapter->tx_fifo_stall)) {
2510                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2511                     E1000_READ_REG(&adapter->hw, TDH)) &&
2512                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2513                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2514                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2515                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2516                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2517                         E1000_WRITE_REG(&adapter->hw, TCTL,
2518                                         tctl & ~E1000_TCTL_EN);
2519                         E1000_WRITE_REG(&adapter->hw, TDFT,
2520                                         adapter->tx_head_addr);
2521                         E1000_WRITE_REG(&adapter->hw, TDFH,
2522                                         adapter->tx_head_addr);
2523                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2524                                         adapter->tx_head_addr);
2525                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2526                                         adapter->tx_head_addr);
2527                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2528                         E1000_WRITE_FLUSH(&adapter->hw);
2529
2530                         adapter->tx_fifo_head = 0;
2531                         atomic_set(&adapter->tx_fifo_stall, 0);
2532                         netif_wake_queue(netdev);
2533                 } else {
2534                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2535                 }
2536         }
2537 }
2538
2539 /**
2540  * e1000_watchdog - Timer Call-back
2541  * @data: pointer to adapter cast into an unsigned long
2542  **/
2543 static void
2544 e1000_watchdog(unsigned long data)
2545 {
2546         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2547         struct net_device *netdev = adapter->netdev;
2548         struct e1000_tx_ring *txdr = adapter->tx_ring;
2549         uint32_t link, tctl;
2550         int32_t ret_val;
2551
2552         ret_val = e1000_check_for_link(&adapter->hw);
2553         if ((ret_val == E1000_ERR_PHY) &&
2554             (adapter->hw.phy_type == e1000_phy_igp_3) &&
2555             (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2556                 /* See e1000_kumeran_lock_loss_workaround() */
2557                 DPRINTK(LINK, INFO,
2558                         "Gigabit has been disabled, downgrading speed\n");
2559         }
2560
2561         if (adapter->hw.mac_type == e1000_82573) {
2562                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2563                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2564                         e1000_update_mng_vlan(adapter);
2565         }
2566
2567         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2568            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2569                 link = !adapter->hw.serdes_link_down;
2570         else
2571                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2572
2573         if (link) {
2574                 if (!netif_carrier_ok(netdev)) {
2575                         uint32_t ctrl;
2576                         boolean_t txb2b = 1;
2577                         e1000_get_speed_and_duplex(&adapter->hw,
2578                                                    &adapter->link_speed,
2579                                                    &adapter->link_duplex);
2580
2581                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
2582                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, "
2583                                 "Flow Control: %s\n",
2584                                 adapter->link_speed,
2585                                 adapter->link_duplex == FULL_DUPLEX ?
2586                                 "Full Duplex" : "Half Duplex",
2587                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2588                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2589                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2590                                 E1000_CTRL_TFCE) ? "TX" : "None" )));
2591
2592                         /* tweak tx_queue_len according to speed/duplex
2593                          * and adjust the timeout factor */
2594                         netdev->tx_queue_len = adapter->tx_queue_len;
2595                         adapter->tx_timeout_factor = 1;
2596                         switch (adapter->link_speed) {
2597                         case SPEED_10:
2598                                 txb2b = 0;
2599                                 netdev->tx_queue_len = 10;
2600                                 adapter->tx_timeout_factor = 8;
2601                                 break;
2602                         case SPEED_100:
2603                                 txb2b = 0;
2604                                 netdev->tx_queue_len = 100;
2605                                 /* maybe add some timeout factor ? */
2606                                 break;
2607                         }
2608
2609                         if ((adapter->hw.mac_type == e1000_82571 ||
2610                              adapter->hw.mac_type == e1000_82572) &&
2611                             txb2b == 0) {
2612                                 uint32_t tarc0;
2613                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2614                                 tarc0 &= ~(1 << 21);
2615                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2616                         }
2617
2618                         /* disable TSO for pcie and 10/100 speeds, to avoid
2619                          * some hardware issues */
2620                         if (!adapter->tso_force &&
2621                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2622                                 switch (adapter->link_speed) {
2623                                 case SPEED_10:
2624                                 case SPEED_100:
2625                                         DPRINTK(PROBE,INFO,
2626                                         "10/100 speed: disabling TSO\n");
2627                                         netdev->features &= ~NETIF_F_TSO;
2628                                         netdev->features &= ~NETIF_F_TSO6;
2629                                         break;
2630                                 case SPEED_1000:
2631                                         netdev->features |= NETIF_F_TSO;
2632                                         netdev->features |= NETIF_F_TSO6;
2633                                         break;
2634                                 default:
2635                                         /* oops */
2636                                         break;
2637                                 }
2638                         }
2639
2640                         /* enable transmits in the hardware, need to do this
2641                          * after setting TARC0 */
2642                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2643                         tctl |= E1000_TCTL_EN;
2644                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2645
2646                         netif_carrier_on(netdev);
2647                         netif_wake_queue(netdev);
2648                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2649                         adapter->smartspeed = 0;
2650                 } else {
2651                         /* make sure the receive unit is started */
2652                         if (adapter->hw.rx_needs_kicking) {
2653                                 struct e1000_hw *hw = &adapter->hw;
2654                                 uint32_t rctl = E1000_READ_REG(hw, RCTL);
2655                                 E1000_WRITE_REG(hw, RCTL, rctl | E1000_RCTL_EN);
2656                         }
2657                 }
2658         } else {
2659                 if (netif_carrier_ok(netdev)) {
2660                         adapter->link_speed = 0;
2661                         adapter->link_duplex = 0;
2662                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2663                         netif_carrier_off(netdev);
2664                         netif_stop_queue(netdev);
2665                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2666
2667                         /* 80003ES2LAN workaround--
2668                          * For packet buffer work-around on link down event;
2669                          * disable receives in the ISR and
2670                          * reset device here in the watchdog
2671                          */
2672                         if (adapter->hw.mac_type == e1000_80003es2lan)
2673                                 /* reset device */
2674                                 schedule_work(&adapter->reset_task);
2675                 }
2676
2677                 e1000_smartspeed(adapter);
2678         }
2679
2680         e1000_update_stats(adapter);
2681
2682         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2683         adapter->tpt_old = adapter->stats.tpt;
2684         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2685         adapter->colc_old = adapter->stats.colc;
2686
2687         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2688         adapter->gorcl_old = adapter->stats.gorcl;
2689         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2690         adapter->gotcl_old = adapter->stats.gotcl;
2691
2692         e1000_update_adaptive(&adapter->hw);
2693
2694         if (!netif_carrier_ok(netdev)) {
2695                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2696                         /* We've lost link, so the controller stops DMA,
2697                          * but we've got queued Tx work that's never going
2698                          * to get done, so reset controller to flush Tx.
2699                          * (Do the reset outside of interrupt context). */
2700                         adapter->tx_timeout_count++;
2701                         schedule_work(&adapter->reset_task);
2702                 }
2703         }
2704
2705         /* Cause software interrupt to ensure rx ring is cleaned */
2706         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2707
2708         /* Force detection of hung controller every watchdog period */
2709         adapter->detect_tx_hung = TRUE;
2710
2711         /* With 82571 controllers, LAA may be overwritten due to controller
2712          * reset from the other port. Set the appropriate LAA in RAR[0] */
2713         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2714                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2715
2716         /* Reset the timer */
2717         mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
2718 }
2719
2720 enum latency_range {
2721         lowest_latency = 0,
2722         low_latency = 1,
2723         bulk_latency = 2,
2724         latency_invalid = 255
2725 };
2726
2727 /**
2728  * e1000_update_itr - update the dynamic ITR value based on statistics
2729  *      Stores a new ITR value based on packets and byte
2730  *      counts during the last interrupt.  The advantage of per interrupt
2731  *      computation is faster updates and more accurate ITR for the current
2732  *      traffic pattern.  Constants in this function were computed
2733  *      based on theoretical maximum wire speed and thresholds were set based
2734  *      on testing data as well as attempting to minimize response time
2735  *      while increasing bulk throughput.
2736  *      this functionality is controlled by the InterruptThrottleRate module
2737  *      parameter (see e1000_param.c)
2738  * @adapter: pointer to adapter
2739  * @itr_setting: current adapter->itr
2740  * @packets: the number of packets during this measurement interval
2741  * @bytes: the number of bytes during this measurement interval
2742  **/
2743 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2744                                    uint16_t itr_setting,
2745                                    int packets,
2746                                    int bytes)
2747 {
2748         unsigned int retval = itr_setting;
2749         struct e1000_hw *hw = &adapter->hw;
2750
2751         if (unlikely(hw->mac_type < e1000_82540))
2752                 goto update_itr_done;
2753
2754         if (packets == 0)
2755                 goto update_itr_done;
2756
2757         switch (itr_setting) {
2758         case lowest_latency:
2759                 /* jumbo frames get bulk treatment*/
2760                 if (bytes/packets > 8000)
2761                         retval = bulk_latency;
2762                 else if ((packets < 5) && (bytes > 512))
2763                         retval = low_latency;
2764                 break;
2765         case low_latency:  /* 50 usec aka 20000 ints/s */
2766                 if (bytes > 10000) {
2767                         /* jumbo frames need bulk latency setting */
2768                         if (bytes/packets > 8000)
2769                                 retval = bulk_latency;
2770                         else if ((packets < 10) || ((bytes/packets) > 1200))
2771                                 retval = bulk_latency;
2772                         else if ((packets > 35))
2773                                 retval = lowest_latency;
2774                 } else if (bytes/packets > 2000)
2775                         retval = bulk_latency;
2776                 else if (packets <= 2 && bytes < 512)
2777                         retval = lowest_latency;
2778                 break;
2779         case bulk_latency: /* 250 usec aka 4000 ints/s */
2780                 if (bytes > 25000) {
2781                         if (packets > 35)
2782                                 retval = low_latency;
2783                 } else if (bytes < 6000) {
2784                         retval = low_latency;
2785                 }
2786                 break;
2787         }
2788
2789 update_itr_done:
2790         return retval;
2791 }
2792
2793 static void e1000_set_itr(struct e1000_adapter *adapter)
2794 {
2795         struct e1000_hw *hw = &adapter->hw;
2796         uint16_t current_itr;
2797         uint32_t new_itr = adapter->itr;
2798
2799         if (unlikely(hw->mac_type < e1000_82540))
2800                 return;
2801
2802         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2803         if (unlikely(adapter->link_speed != SPEED_1000)) {
2804                 current_itr = 0;
2805                 new_itr = 4000;
2806                 goto set_itr_now;
2807         }
2808
2809         adapter->tx_itr = e1000_update_itr(adapter,
2810                                     adapter->tx_itr,
2811                                     adapter->total_tx_packets,
2812                                     adapter->total_tx_bytes);
2813         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2814         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2815                 adapter->tx_itr = low_latency;
2816
2817         adapter->rx_itr = e1000_update_itr(adapter,
2818                                     adapter->rx_itr,
2819                                     adapter->total_rx_packets,
2820                                     adapter->total_rx_bytes);
2821         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2822         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2823                 adapter->rx_itr = low_latency;
2824
2825         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2826
2827         switch (current_itr) {
2828         /* counts and packets in update_itr are dependent on these numbers */
2829         case lowest_latency:
2830                 new_itr = 70000;
2831                 break;
2832         case low_latency:
2833                 new_itr = 20000; /* aka hwitr = ~200 */
2834                 break;
2835         case bulk_latency:
2836                 new_itr = 4000;
2837                 break;
2838         default:
2839                 break;
2840         }
2841
2842 set_itr_now:
2843         if (new_itr != adapter->itr) {
2844                 /* this attempts to bias the interrupt rate towards Bulk
2845                  * by adding intermediate steps when interrupt rate is
2846                  * increasing */
2847                 new_itr = new_itr > adapter->itr ?
2848                              min(adapter->itr + (new_itr >> 2), new_itr) :
2849                              new_itr;
2850                 adapter->itr = new_itr;
2851                 E1000_WRITE_REG(hw, ITR, 1000000000 / (new_itr * 256));
2852         }
2853
2854         return;
2855 }
2856
2857 #define E1000_TX_FLAGS_CSUM             0x00000001
2858 #define E1000_TX_FLAGS_VLAN             0x00000002
2859 #define E1000_TX_FLAGS_TSO              0x00000004
2860 #define E1000_TX_FLAGS_IPV4             0x00000008
2861 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2862 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2863
2864 static int
2865 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2866           struct sk_buff *skb)
2867 {
2868         struct e1000_context_desc *context_desc;
2869         struct e1000_buffer *buffer_info;
2870         unsigned int i;
2871         uint32_t cmd_length = 0;
2872         uint16_t ipcse = 0, tucse, mss;
2873         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2874         int err;
2875
2876         if (skb_is_gso(skb)) {
2877                 if (skb_header_cloned(skb)) {
2878                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2879                         if (err)
2880                                 return err;
2881                 }
2882
2883                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2884                 mss = skb_shinfo(skb)->gso_size;
2885                 if (skb->protocol == htons(ETH_P_IP)) {
2886                         struct iphdr *iph = ip_hdr(skb);
2887                         iph->tot_len = 0;
2888                         iph->check = 0;
2889                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2890                                                                  iph->daddr, 0,
2891                                                                  IPPROTO_TCP,
2892                                                                  0);
2893                         cmd_length = E1000_TXD_CMD_IP;
2894                         ipcse = skb_transport_offset(skb) - 1;
2895                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2896                         ipv6_hdr(skb)->payload_len = 0;
2897                         tcp_hdr(skb)->check =
2898                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2899                                                  &ipv6_hdr(skb)->daddr,
2900                                                  0, IPPROTO_TCP, 0);
2901                         ipcse = 0;
2902                 }
2903                 ipcss = skb_network_offset(skb);
2904                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2905                 tucss = skb_transport_offset(skb);
2906                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2907                 tucse = 0;
2908
2909                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2910                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2911
2912                 i = tx_ring->next_to_use;
2913                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2914                 buffer_info = &tx_ring->buffer_info[i];
2915
2916                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2917                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2918                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2919                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2920                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2921                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2922                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2923                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2924                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2925
2926                 buffer_info->time_stamp = jiffies;
2927                 buffer_info->next_to_watch = i;
2928
2929                 if (++i == tx_ring->count) i = 0;
2930                 tx_ring->next_to_use = i;
2931
2932                 return TRUE;
2933         }
2934         return FALSE;
2935 }
2936
2937 static boolean_t
2938 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2939               struct sk_buff *skb)
2940 {
2941         struct e1000_context_desc *context_desc;
2942         struct e1000_buffer *buffer_info;
2943         unsigned int i;
2944         uint8_t css;
2945
2946         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2947                 css = skb_transport_offset(skb);
2948
2949                 i = tx_ring->next_to_use;
2950                 buffer_info = &tx_ring->buffer_info[i];
2951                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2952
2953                 context_desc->lower_setup.ip_config = 0;
2954                 context_desc->upper_setup.tcp_fields.tucss = css;
2955                 context_desc->upper_setup.tcp_fields.tucso =
2956                         css + skb->csum_offset;
2957                 context_desc->upper_setup.tcp_fields.tucse = 0;
2958                 context_desc->tcp_seg_setup.data = 0;
2959                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2960
2961                 buffer_info->time_stamp = jiffies;
2962                 buffer_info->next_to_watch = i;
2963
2964                 if (unlikely(++i == tx_ring->count)) i = 0;
2965                 tx_ring->next_to_use = i;
2966
2967                 return TRUE;
2968         }
2969
2970         return FALSE;
2971 }
2972
2973 #define E1000_MAX_TXD_PWR       12
2974 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2975
2976 static int
2977 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2978              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2979              unsigned int nr_frags, unsigned int mss)
2980 {
2981         struct e1000_buffer *buffer_info;
2982         unsigned int len = skb->len;
2983         unsigned int offset = 0, size, count = 0, i;
2984         unsigned int f;
2985         len -= skb->data_len;
2986
2987         i = tx_ring->next_to_use;
2988
2989         while (len) {
2990                 buffer_info = &tx_ring->buffer_info[i];
2991                 size = min(len, max_per_txd);
2992                 /* Workaround for Controller erratum --
2993                  * descriptor for non-tso packet in a linear SKB that follows a
2994                  * tso gets written back prematurely before the data is fully
2995                  * DMA'd to the controller */
2996                 if (!skb->data_len && tx_ring->last_tx_tso &&
2997                     !skb_is_gso(skb)) {
2998                         tx_ring->last_tx_tso = 0;
2999                         size -= 4;
3000                 }
3001
3002                 /* Workaround for premature desc write-backs
3003                  * in TSO mode.  Append 4-byte sentinel desc */
3004                 if (unlikely(mss && !nr_frags && size == len && size > 8))
3005                         size -= 4;
3006                 /* work-around for errata 10 and it applies
3007                  * to all controllers in PCI-X mode
3008                  * The fix is to make sure that the first descriptor of a
3009                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
3010                  */
3011                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3012                                 (size > 2015) && count == 0))
3013                         size = 2015;
3014
3015                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
3016                  * terminating buffers within evenly-aligned dwords. */
3017                 if (unlikely(adapter->pcix_82544 &&
3018                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
3019                    size > 4))
3020                         size -= 4;
3021
3022                 buffer_info->length = size;
3023                 buffer_info->dma =
3024                         pci_map_single(adapter->pdev,
3025                                 skb->data + offset,
3026                                 size,
3027                                 PCI_DMA_TODEVICE);
3028                 buffer_info->time_stamp = jiffies;
3029                 buffer_info->next_to_watch = i;
3030
3031                 len -= size;
3032                 offset += size;
3033                 count++;
3034                 if (unlikely(++i == tx_ring->count)) i = 0;
3035         }
3036
3037         for (f = 0; f < nr_frags; f++) {
3038                 struct skb_frag_struct *frag;
3039
3040                 frag = &skb_shinfo(skb)->frags[f];
3041                 len = frag->size;
3042                 offset = frag->page_offset;
3043
3044                 while (len) {
3045                         buffer_info = &tx_ring->buffer_info[i];
3046                         size = min(len, max_per_txd);
3047                         /* Workaround for premature desc write-backs
3048                          * in TSO mode.  Append 4-byte sentinel desc */
3049                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
3050                                 size -= 4;
3051                         /* Workaround for potential 82544 hang in PCI-X.
3052                          * Avoid terminating buffers within evenly-aligned
3053                          * dwords. */
3054                         if (unlikely(adapter->pcix_82544 &&
3055                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
3056                            size > 4))
3057                                 size -= 4;
3058
3059                         buffer_info->length = size;
3060                         buffer_info->dma =
3061                                 pci_map_page(adapter->pdev,
3062                                         frag->page,
3063                                         offset,
3064                                         size,
3065                                         PCI_DMA_TODEVICE);
3066                         buffer_info->time_stamp = jiffies;
3067                         buffer_info->next_to_watch = i;
3068
3069                         len -= size;
3070                         offset += size;
3071                         count++;
3072                         if (unlikely(++i == tx_ring->count)) i = 0;
3073                 }
3074         }
3075
3076         i = (i == 0) ? tx_ring->count - 1 : i - 1;
3077         tx_ring->buffer_info[i].skb = skb;
3078         tx_ring->buffer_info[first].next_to_watch = i;
3079
3080         return count;
3081 }
3082
3083 static void
3084 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
3085                int tx_flags, int count)
3086 {
3087         struct e1000_tx_desc *tx_desc = NULL;
3088         struct e1000_buffer *buffer_info;
3089         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3090         unsigned int i;
3091
3092         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3093                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3094                              E1000_TXD_CMD_TSE;
3095                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3096
3097                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3098                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3099         }
3100
3101         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3102                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3103                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3104         }
3105
3106         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3107                 txd_lower |= E1000_TXD_CMD_VLE;
3108                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3109         }
3110
3111         i = tx_ring->next_to_use;
3112
3113         while (count--) {
3114                 buffer_info = &tx_ring->buffer_info[i];
3115                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3116                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3117                 tx_desc->lower.data =
3118                         cpu_to_le32(txd_lower | buffer_info->length);
3119                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3120                 if (unlikely(++i == tx_ring->count)) i = 0;
3121         }
3122
3123         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3124
3125         /* Force memory writes to complete before letting h/w
3126          * know there are new descriptors to fetch.  (Only
3127          * applicable for weak-ordered memory model archs,
3128          * such as IA-64). */
3129         wmb();
3130
3131         tx_ring->next_to_use = i;
3132         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
3133         /* we need this if more than one processor can write to our tail
3134          * at a time, it syncronizes IO on IA64/Altix systems */
3135         mmiowb();
3136 }
3137
3138 /**
3139  * 82547 workaround to avoid controller hang in half-duplex environment.
3140  * The workaround is to avoid queuing a large packet that would span
3141  * the internal Tx FIFO ring boundary by notifying the stack to resend
3142  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3143  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3144  * to the beginning of the Tx FIFO.
3145  **/
3146
3147 #define E1000_FIFO_HDR                  0x10
3148 #define E1000_82547_PAD_LEN             0x3E0
3149
3150 static int
3151 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
3152 {
3153         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3154         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
3155
3156         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3157
3158         if (adapter->link_duplex != HALF_DUPLEX)
3159                 goto no_fifo_stall_required;
3160
3161         if (atomic_read(&adapter->tx_fifo_stall))
3162                 return 1;
3163
3164         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3165                 atomic_set(&adapter->tx_fifo_stall, 1);
3166                 return 1;
3167         }
3168
3169 no_fifo_stall_required:
3170         adapter->tx_fifo_head += skb_fifo_len;
3171         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3172                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3173         return 0;
3174 }
3175
3176 #define MINIMUM_DHCP_PACKET_SIZE 282
3177 static int
3178 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
3179 {
3180         struct e1000_hw *hw =  &adapter->hw;
3181         uint16_t length, offset;
3182         if (vlan_tx_tag_present(skb)) {
3183                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
3184                         ( adapter->hw.mng_cookie.status &
3185                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3186                         return 0;
3187         }
3188         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3189                 struct ethhdr *eth = (struct ethhdr *) skb->data;
3190                 if ((htons(ETH_P_IP) == eth->h_proto)) {
3191                         const struct iphdr *ip =
3192                                 (struct iphdr *)((uint8_t *)skb->data+14);
3193                         if (IPPROTO_UDP == ip->protocol) {
3194                                 struct udphdr *udp =
3195                                         (struct udphdr *)((uint8_t *)ip +
3196                                                 (ip->ihl << 2));
3197                                 if (ntohs(udp->dest) == 67) {
3198                                         offset = (uint8_t *)udp + 8 - skb->data;
3199                                         length = skb->len - offset;
3200
3201                                         return e1000_mng_write_dhcp_info(hw,
3202                                                         (uint8_t *)udp + 8,
3203                                                         length);
3204                                 }
3205                         }
3206                 }
3207         }
3208         return 0;
3209 }
3210
3211 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3212 {
3213         struct e1000_adapter *adapter = netdev_priv(netdev);
3214         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3215
3216         netif_stop_queue(netdev);
3217         /* Herbert's original patch had:
3218          *  smp_mb__after_netif_stop_queue();
3219          * but since that doesn't exist yet, just open code it. */
3220         smp_mb();
3221
3222         /* We need to check again in a case another CPU has just
3223          * made room available. */
3224         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3225                 return -EBUSY;
3226
3227         /* A reprieve! */
3228         netif_start_queue(netdev);
3229         ++adapter->restart_queue;
3230         return 0;
3231 }
3232
3233 static int e1000_maybe_stop_tx(struct net_device *netdev,
3234                                struct e1000_tx_ring *tx_ring, int size)
3235 {
3236         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3237                 return 0;
3238         return __e1000_maybe_stop_tx(netdev, size);
3239 }
3240
3241 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3242 static int
3243 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3244 {
3245         struct e1000_adapter *adapter = netdev_priv(netdev);
3246         struct e1000_tx_ring *tx_ring;
3247         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3248         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3249         unsigned int tx_flags = 0;
3250         unsigned int len = skb->len - skb->data_len;
3251         unsigned long flags;
3252         unsigned int nr_frags;
3253         unsigned int mss;
3254         int count = 0;
3255         int tso;
3256         unsigned int f;
3257
3258         /* This goes back to the question of how to logically map a tx queue
3259          * to a flow.  Right now, performance is impacted slightly negatively
3260          * if using multiple tx queues.  If the stack breaks away from a
3261          * single qdisc implementation, we can look at this again. */
3262         tx_ring = adapter->tx_ring;
3263
3264         if (unlikely(skb->len <= 0)) {
3265                 dev_kfree_skb_any(skb);
3266                 return NETDEV_TX_OK;
3267         }
3268
3269         /* 82571 and newer doesn't need the workaround that limited descriptor
3270          * length to 4kB */
3271         if (adapter->hw.mac_type >= e1000_82571)
3272                 max_per_txd = 8192;
3273
3274         mss = skb_shinfo(skb)->gso_size;
3275         /* The controller does a simple calculation to
3276          * make sure there is enough room in the FIFO before
3277          * initiating the DMA for each buffer.  The calc is:
3278          * 4 = ceil(buffer len/mss).  To make sure we don't
3279          * overrun the FIFO, adjust the max buffer len if mss
3280          * drops. */
3281         if (mss) {
3282                 uint8_t hdr_len;
3283                 max_per_txd = min(mss << 2, max_per_txd);
3284                 max_txd_pwr = fls(max_per_txd) - 1;
3285
3286                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3287                 * points to just header, pull a few bytes of payload from
3288                 * frags into skb->data */
3289                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3290                 if (skb->data_len && hdr_len == len) {
3291                         switch (adapter->hw.mac_type) {
3292                                 unsigned int pull_size;
3293                         case e1000_82544:
3294                                 /* Make sure we have room to chop off 4 bytes,
3295                                  * and that the end alignment will work out to
3296                                  * this hardware's requirements
3297                                  * NOTE: this is a TSO only workaround
3298                                  * if end byte alignment not correct move us
3299                                  * into the next dword */
3300                                 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3301                                         break;
3302                                 /* fall through */
3303                         case e1000_82571:
3304                         case e1000_82572:
3305                         case e1000_82573:
3306                         case e1000_ich8lan:
3307                                 pull_size = min((unsigned int)4, skb->data_len);
3308                                 if (!__pskb_pull_tail(skb, pull_size)) {
3309                                         DPRINTK(DRV, ERR,
3310                                                 "__pskb_pull_tail failed.\n");
3311                                         dev_kfree_skb_any(skb);
3312                                         return NETDEV_TX_OK;
3313                                 }
3314                                 len = skb->len - skb->data_len;
3315                                 break;
3316                         default:
3317                                 /* do nothing */
3318                                 break;
3319                         }
3320                 }
3321         }
3322
3323         /* reserve a descriptor for the offload context */
3324         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3325                 count++;
3326         count++;
3327
3328         /* Controller Erratum workaround */
3329         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3330                 count++;
3331
3332         count += TXD_USE_COUNT(len, max_txd_pwr);
3333
3334         if (adapter->pcix_82544)
3335                 count++;
3336
3337         /* work-around for errata 10 and it applies to all controllers
3338          * in PCI-X mode, so add one more descriptor to the count
3339          */
3340         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3341                         (len > 2015)))
3342                 count++;
3343
3344         nr_frags = skb_shinfo(skb)->nr_frags;
3345         for (f = 0; f < nr_frags; f++)
3346                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3347                                        max_txd_pwr);
3348         if (adapter->pcix_82544)
3349                 count += nr_frags;
3350
3351
3352         if (adapter->hw.tx_pkt_filtering &&
3353             (adapter->hw.mac_type == e1000_82573))
3354                 e1000_transfer_dhcp_info(adapter, skb);
3355
3356         if (!spin_trylock_irqsave(&tx_ring->tx_lock, flags))
3357                 /* Collision - tell upper layer to requeue */
3358                 return NETDEV_TX_LOCKED;
3359
3360         /* need: count + 2 desc gap to keep tail from touching
3361          * head, otherwise try next time */
3362         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3363                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3364                 return NETDEV_TX_BUSY;
3365         }
3366
3367         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3368                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3369                         netif_stop_queue(netdev);
3370                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3371                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3372                         return NETDEV_TX_BUSY;
3373                 }
3374         }
3375
3376         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3377                 tx_flags |= E1000_TX_FLAGS_VLAN;
3378                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3379         }
3380
3381         first = tx_ring->next_to_use;
3382
3383         tso = e1000_tso(adapter, tx_ring, skb);
3384         if (tso < 0) {
3385                 dev_kfree_skb_any(skb);
3386                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3387                 return NETDEV_TX_OK;
3388         }
3389
3390         if (likely(tso)) {
3391                 tx_ring->last_tx_tso = 1;
3392                 tx_flags |= E1000_TX_FLAGS_TSO;
3393         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3394                 tx_flags |= E1000_TX_FLAGS_CSUM;
3395
3396         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3397          * 82571 hardware supports TSO capabilities for IPv6 as well...
3398          * no longer assume, we must. */
3399         if (likely(skb->protocol == htons(ETH_P_IP)))
3400                 tx_flags |= E1000_TX_FLAGS_IPV4;
3401
3402         e1000_tx_queue(adapter, tx_ring, tx_flags,
3403                        e1000_tx_map(adapter, tx_ring, skb, first,
3404                                     max_per_txd, nr_frags, mss));
3405
3406         netdev->trans_start = jiffies;
3407
3408         /* Make sure there is space in the ring for the next send. */
3409         e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3410
3411         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3412         return NETDEV_TX_OK;
3413 }
3414
3415 /**
3416  * e1000_tx_timeout - Respond to a Tx Hang
3417  * @netdev: network interface device structure
3418  **/
3419
3420 static void
3421 e1000_tx_timeout(struct net_device *netdev)
3422 {
3423         struct e1000_adapter *adapter = netdev_priv(netdev);
3424
3425         /* Do the reset outside of interrupt context */
3426         adapter->tx_timeout_count++;
3427         schedule_work(&adapter->reset_task);
3428 }
3429
3430 static void
3431 e1000_reset_task(struct work_struct *work)
3432 {
3433         struct e1000_adapter *adapter =
3434                 container_of(work, struct e1000_adapter, reset_task);
3435
3436         e1000_reinit_locked(adapter);
3437 }
3438
3439 /**
3440  * e1000_get_stats - Get System Network Statistics
3441  * @netdev: network interface device structure
3442  *
3443  * Returns the address of the device statistics structure.
3444  * The statistics are actually updated from the timer callback.
3445  **/
3446
3447 static struct net_device_stats *
3448 e1000_get_stats(struct net_device *netdev)
3449 {
3450         struct e1000_adapter *adapter = netdev_priv(netdev);
3451
3452         /* only return the current stats */
3453         return &adapter->net_stats;
3454 }
3455
3456 /**
3457  * e1000_change_mtu - Change the Maximum Transfer Unit
3458  * @netdev: network interface device structure
3459  * @new_mtu: new value for maximum frame size
3460  *
3461  * Returns 0 on success, negative on failure
3462  **/
3463
3464 static int
3465 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3466 {
3467         struct e1000_adapter *adapter = netdev_priv(netdev);
3468         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3469         uint16_t eeprom_data = 0;
3470
3471         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3472             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3473                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3474                 return -EINVAL;
3475         }
3476
3477         /* Adapter-specific max frame size limits. */
3478         switch (adapter->hw.mac_type) {
3479         case e1000_undefined ... e1000_82542_rev2_1:
3480         case e1000_ich8lan:
3481                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3482                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3483                         return -EINVAL;
3484                 }
3485                 break;
3486         case e1000_82573:
3487                 /* Jumbo Frames not supported if:
3488                  * - this is not an 82573L device
3489                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3490                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3491                                   &eeprom_data);
3492                 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3493                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3494                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3495                                 DPRINTK(PROBE, ERR,
3496                                         "Jumbo Frames not supported.\n");
3497                                 return -EINVAL;
3498                         }
3499                         break;
3500                 }
3501                 /* ERT will be enabled later to enable wire speed receives */
3502
3503                 /* fall through to get support */
3504         case e1000_82571:
3505         case e1000_82572:
3506         case e1000_80003es2lan:
3507 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3508                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3509                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3510                         return -EINVAL;
3511                 }
3512                 break;
3513         default:
3514                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3515                 break;
3516         }
3517
3518         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3519          * means we reserve 2 more, this pushes us to allocate from the next
3520          * larger slab size
3521          * i.e. RXBUFFER_2048 --> size-4096 slab */
3522
3523         if (max_frame <= E1000_RXBUFFER_256)
3524                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3525         else if (max_frame <= E1000_RXBUFFER_512)
3526                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3527         else if (max_frame <= E1000_RXBUFFER_1024)
3528                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3529         else if (max_frame <= E1000_RXBUFFER_2048)
3530                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3531         else if (max_frame <= E1000_RXBUFFER_4096)
3532                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3533         else if (max_frame <= E1000_RXBUFFER_8192)
3534                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3535         else if (max_frame <= E1000_RXBUFFER_16384)
3536                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3537
3538         /* adjust allocation if LPE protects us, and we aren't using SBP */
3539         if (!adapter->hw.tbi_compatibility_on &&
3540             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3541              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3542                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3543
3544         netdev->mtu = new_mtu;
3545         adapter->hw.max_frame_size = max_frame;
3546
3547         if (netif_running(netdev))
3548                 e1000_reinit_locked(adapter);
3549
3550         return 0;
3551 }
3552
3553 /**
3554  * e1000_update_stats - Update the board statistics counters
3555  * @adapter: board private structure
3556  **/
3557
3558 void
3559 e1000_update_stats(struct e1000_adapter *adapter)
3560 {
3561         struct e1000_hw *hw = &adapter->hw;
3562         struct pci_dev *pdev = adapter->pdev;
3563         unsigned long flags;
3564         uint16_t phy_tmp;
3565
3566 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3567
3568         /*
3569          * Prevent stats update while adapter is being reset, or if the pci
3570          * connection is down.
3571          */
3572         if (adapter->link_speed == 0)
3573                 return;
3574         if (pci_channel_offline(pdev))
3575                 return;
3576
3577         spin_lock_irqsave(&adapter->stats_lock, flags);
3578
3579         /* these counters are modified from e1000_tbi_adjust_stats,
3580          * called from the interrupt context, so they must only
3581          * be written while holding adapter->stats_lock
3582          */
3583
3584         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3585         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3586         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3587         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3588         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3589         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3590         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3591
3592         if (adapter->hw.mac_type != e1000_ich8lan) {
3593                 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3594                 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3595                 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3596                 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3597                 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3598                 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3599         }
3600
3601         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3602         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3603         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3604         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3605         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3606         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3607         adapter->stats.dc += E1000_READ_REG(hw, DC);
3608         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3609         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3610         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3611         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3612         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3613         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3614         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3615         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3616         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3617         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3618         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3619         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3620         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3621         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3622         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3623         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3624         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3625         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3626         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3627
3628         if (adapter->hw.mac_type != e1000_ich8lan) {
3629                 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3630                 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3631                 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3632                 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3633                 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3634                 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3635         }
3636
3637         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3638         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3639
3640         /* used for adaptive IFS */
3641
3642         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3643         adapter->stats.tpt += hw->tx_packet_delta;
3644         hw->collision_delta = E1000_READ_REG(hw, COLC);
3645         adapter->stats.colc += hw->collision_delta;
3646
3647         if (hw->mac_type >= e1000_82543) {
3648                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3649                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3650                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3651                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3652                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3653                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3654         }
3655         if (hw->mac_type > e1000_82547_rev_2) {
3656                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3657                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3658
3659                 if (adapter->hw.mac_type != e1000_ich8lan) {
3660                         adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3661                         adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3662                         adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3663                         adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3664                         adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3665                         adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3666                         adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3667                 }
3668         }
3669
3670         /* Fill out the OS statistics structure */
3671         adapter->net_stats.multicast = adapter->stats.mprc;
3672         adapter->net_stats.collisions = adapter->stats.colc;
3673
3674         /* Rx Errors */
3675
3676         /* RLEC on some newer hardware can be incorrect so build
3677         * our own version based on RUC and ROC */
3678         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3679                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3680                 adapter->stats.ruc + adapter->stats.roc +
3681                 adapter->stats.cexterr;
3682         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3683         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3684         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3685         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3686         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3687
3688         /* Tx Errors */
3689         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3690         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3691         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3692         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3693         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3694         if (adapter->hw.bad_tx_carr_stats_fd &&
3695             adapter->link_duplex == FULL_DUPLEX) {
3696                 adapter->net_stats.tx_carrier_errors = 0;
3697                 adapter->stats.tncrs = 0;
3698         }
3699
3700         /* Tx Dropped needs to be maintained elsewhere */
3701
3702         /* Phy Stats */
3703         if (hw->media_type == e1000_media_type_copper) {
3704                 if ((adapter->link_speed == SPEED_1000) &&
3705                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3706                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3707                         adapter->phy_stats.idle_errors += phy_tmp;
3708                 }
3709
3710                 if ((hw->mac_type <= e1000_82546) &&
3711                    (hw->phy_type == e1000_phy_m88) &&
3712                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3713                         adapter->phy_stats.receive_errors += phy_tmp;
3714         }
3715
3716         /* Management Stats */
3717         if (adapter->hw.has_smbus) {
3718                 adapter->stats.mgptc += E1000_READ_REG(hw, MGTPTC);
3719                 adapter->stats.mgprc += E1000_READ_REG(hw, MGTPRC);
3720                 adapter->stats.mgpdc += E1000_READ_REG(hw, MGTPDC);
3721         }
3722
3723         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3724 }
3725
3726 /**
3727  * e1000_intr_msi - Interrupt Handler
3728  * @irq: interrupt number
3729  * @data: pointer to a network interface device structure
3730  **/
3731
3732 static irqreturn_t
3733 e1000_intr_msi(int irq, void *data)
3734 {
3735         struct net_device *netdev = data;
3736         struct e1000_adapter *adapter = netdev_priv(netdev);
3737         struct e1000_hw *hw = &adapter->hw;
3738 #ifndef CONFIG_E1000_NAPI
3739         int i;
3740 #endif
3741         uint32_t icr = E1000_READ_REG(hw, ICR);
3742
3743 #ifdef CONFIG_E1000_NAPI
3744         /* read ICR disables interrupts using IAM, so keep up with our
3745          * enable/disable accounting */
3746         atomic_inc(&adapter->irq_sem);
3747 #endif
3748         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3749                 hw->get_link_status = 1;
3750                 /* 80003ES2LAN workaround-- For packet buffer work-around on
3751                  * link down event; disable receives here in the ISR and reset
3752                  * adapter in watchdog */
3753                 if (netif_carrier_ok(netdev) &&
3754                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3755                         /* disable receives */
3756                         uint32_t rctl = E1000_READ_REG(hw, RCTL);
3757                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3758                 }
3759                 /* guard against interrupt when we're going down */
3760                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3761                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3762         }
3763
3764 #ifdef CONFIG_E1000_NAPI
3765         if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3766                 adapter->total_tx_bytes = 0;
3767                 adapter->total_tx_packets = 0;
3768                 adapter->total_rx_bytes = 0;
3769                 adapter->total_rx_packets = 0;
3770                 __netif_rx_schedule(netdev, &adapter->napi);
3771         } else
3772                 e1000_irq_enable(adapter);
3773 #else
3774         adapter->total_tx_bytes = 0;
3775         adapter->total_rx_bytes = 0;
3776         adapter->total_tx_packets = 0;
3777         adapter->total_rx_packets = 0;
3778
3779         for (i = 0; i < E1000_MAX_INTR; i++)
3780                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3781                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3782                         break;
3783
3784         if (likely(adapter->itr_setting & 3))
3785                 e1000_set_itr(adapter);
3786 #endif
3787
3788         return IRQ_HANDLED;
3789 }
3790
3791 /**
3792  * e1000_intr - Interrupt Handler
3793  * @irq: interrupt number
3794  * @data: pointer to a network interface device structure
3795  **/
3796
3797 static irqreturn_t
3798 e1000_intr(int irq, void *data)
3799 {
3800         struct net_device *netdev = data;
3801         struct e1000_adapter *adapter = netdev_priv(netdev);
3802         struct e1000_hw *hw = &adapter->hw;
3803         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3804 #ifndef CONFIG_E1000_NAPI
3805         int i;
3806 #endif
3807         if (unlikely(!icr))
3808                 return IRQ_NONE;  /* Not our interrupt */
3809
3810 #ifdef CONFIG_E1000_NAPI
3811         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3812          * not set, then the adapter didn't send an interrupt */
3813         if (unlikely(hw->mac_type >= e1000_82571 &&
3814                      !(icr & E1000_ICR_INT_ASSERTED)))
3815                 return IRQ_NONE;
3816
3817         /* Interrupt Auto-Mask...upon reading ICR,
3818          * interrupts are masked.  No need for the
3819          * IMC write, but it does mean we should
3820          * account for it ASAP. */
3821         if (likely(hw->mac_type >= e1000_82571))
3822                 atomic_inc(&adapter->irq_sem);
3823 #endif
3824
3825         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3826                 hw->get_link_status = 1;
3827                 /* 80003ES2LAN workaround--
3828                  * For packet buffer work-around on link down event;
3829                  * disable receives here in the ISR and
3830                  * reset adapter in watchdog
3831                  */
3832                 if (netif_carrier_ok(netdev) &&
3833                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3834                         /* disable receives */
3835                         rctl = E1000_READ_REG(hw, RCTL);
3836                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3837                 }
3838                 /* guard against interrupt when we're going down */
3839                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3840                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3841         }
3842
3843 #ifdef CONFIG_E1000_NAPI
3844         if (unlikely(hw->mac_type < e1000_82571)) {
3845                 /* disable interrupts, without the synchronize_irq bit */
3846                 atomic_inc(&adapter->irq_sem);
3847                 E1000_WRITE_REG(hw, IMC, ~0);
3848                 E1000_WRITE_FLUSH(hw);
3849         }
3850         if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3851                 adapter->total_tx_bytes = 0;
3852                 adapter->total_tx_packets = 0;
3853                 adapter->total_rx_bytes = 0;
3854                 adapter->total_rx_packets = 0;
3855                 __netif_rx_schedule(netdev, &adapter->napi);
3856         } else
3857                 /* this really should not happen! if it does it is basically a
3858                  * bug, but not a hard error, so enable ints and continue */
3859                 e1000_irq_enable(adapter);
3860 #else
3861         /* Writing IMC and IMS is needed for 82547.
3862          * Due to Hub Link bus being occupied, an interrupt
3863          * de-assertion message is not able to be sent.
3864          * When an interrupt assertion message is generated later,
3865          * two messages are re-ordered and sent out.
3866          * That causes APIC to think 82547 is in de-assertion
3867          * state, while 82547 is in assertion state, resulting
3868          * in dead lock. Writing IMC forces 82547 into
3869          * de-assertion state.
3870          */
3871         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3872                 atomic_inc(&adapter->irq_sem);
3873                 E1000_WRITE_REG(hw, IMC, ~0);
3874         }
3875
3876         adapter->total_tx_bytes = 0;
3877         adapter->total_rx_bytes = 0;
3878         adapter->total_tx_packets = 0;
3879         adapter->total_rx_packets = 0;
3880
3881         for (i = 0; i < E1000_MAX_INTR; i++)
3882                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3883                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3884                         break;
3885
3886         if (likely(adapter->itr_setting & 3))
3887                 e1000_set_itr(adapter);
3888
3889         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3890                 e1000_irq_enable(adapter);
3891
3892 #endif
3893         return IRQ_HANDLED;
3894 }
3895
3896 #ifdef CONFIG_E1000_NAPI
3897 /**
3898  * e1000_clean - NAPI Rx polling callback
3899  * @adapter: board private structure
3900  **/
3901
3902 static int
3903 e1000_clean(struct napi_struct *napi, int budget)
3904 {
3905         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3906         struct net_device *poll_dev = adapter->netdev;
3907         int tx_cleaned = 0, work_done = 0;
3908
3909         /* Must NOT use netdev_priv macro here. */
3910         adapter = poll_dev->priv;
3911
3912         /* e1000_clean is called per-cpu.  This lock protects
3913          * tx_ring[0] from being cleaned by multiple cpus
3914          * simultaneously.  A failure obtaining the lock means
3915          * tx_ring[0] is currently being cleaned anyway. */
3916         if (spin_trylock(&adapter->tx_queue_lock)) {
3917                 tx_cleaned = e1000_clean_tx_irq(adapter,
3918                                                 &adapter->tx_ring[0]);
3919                 spin_unlock(&adapter->tx_queue_lock);
3920         }
3921
3922         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3923                           &work_done, budget);
3924
3925         if (tx_cleaned)
3926                 work_done = budget;
3927
3928         /* If budget not fully consumed, exit the polling mode */
3929         if (work_done < budget) {
3930                 if (likely(adapter->itr_setting & 3))
3931                         e1000_set_itr(adapter);
3932                 netif_rx_complete(poll_dev, napi);
3933                 e1000_irq_enable(adapter);
3934         }
3935
3936         return work_done;
3937 }
3938
3939 #endif
3940 /**
3941  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3942  * @adapter: board private structure
3943  **/
3944
3945 static boolean_t
3946 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3947                    struct e1000_tx_ring *tx_ring)
3948 {
3949         struct net_device *netdev = adapter->netdev;
3950         struct e1000_tx_desc *tx_desc, *eop_desc;
3951         struct e1000_buffer *buffer_info;
3952         unsigned int i, eop;
3953 #ifdef CONFIG_E1000_NAPI
3954         unsigned int count = 0;
3955 #endif
3956         boolean_t cleaned = FALSE;
3957         unsigned int total_tx_bytes=0, total_tx_packets=0;
3958
3959         i = tx_ring->next_to_clean;
3960         eop = tx_ring->buffer_info[i].next_to_watch;
3961         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3962
3963         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3964                 for (cleaned = FALSE; !cleaned; ) {
3965                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3966                         buffer_info = &tx_ring->buffer_info[i];
3967                         cleaned = (i == eop);
3968
3969                         if (cleaned) {
3970                                 struct sk_buff *skb = buffer_info->skb;
3971                                 unsigned int segs, bytecount;
3972                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3973                                 /* multiply data chunks by size of headers */
3974                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3975                                             skb->len;
3976                                 total_tx_packets += segs;
3977                                 total_tx_bytes += bytecount;
3978                         }
3979                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3980                         tx_desc->upper.data = 0;
3981
3982                         if (unlikely(++i == tx_ring->count)) i = 0;
3983                 }
3984
3985                 eop = tx_ring->buffer_info[i].next_to_watch;
3986                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3987 #ifdef CONFIG_E1000_NAPI
3988 #define E1000_TX_WEIGHT 64
3989                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3990                 if (count++ == E1000_TX_WEIGHT) break;
3991 #endif
3992         }
3993
3994         tx_ring->next_to_clean = i;
3995
3996 #define TX_WAKE_THRESHOLD 32
3997         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3998                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3999                 /* Make sure that anybody stopping the queue after this
4000                  * sees the new next_to_clean.
4001                  */
4002                 smp_mb();
4003                 if (netif_queue_stopped(netdev)) {
4004                         netif_wake_queue(netdev);
4005                         ++adapter->restart_queue;
4006                 }
4007         }
4008
4009         if (adapter->detect_tx_hung) {
4010                 /* Detect a transmit hang in hardware, this serializes the
4011                  * check with the clearing of time_stamp and movement of i */
4012                 adapter->detect_tx_hung = FALSE;
4013                 if (tx_ring->buffer_info[eop].dma &&
4014                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
4015                                (adapter->tx_timeout_factor * HZ))
4016                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
4017                          E1000_STATUS_TXOFF)) {
4018
4019                         /* detected Tx unit hang */
4020                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
4021                                         "  Tx Queue             <%lu>\n"
4022                                         "  TDH                  <%x>\n"
4023                                         "  TDT                  <%x>\n"
4024                                         "  next_to_use          <%x>\n"
4025                                         "  next_to_clean        <%x>\n"
4026                                         "buffer_info[next_to_clean]\n"
4027                                         "  time_stamp           <%lx>\n"
4028                                         "  next_to_watch        <%x>\n"
4029                                         "  jiffies              <%lx>\n"
4030                                         "  next_to_watch.status <%x>\n",
4031                                 (unsigned long)((tx_ring - adapter->tx_ring) /
4032                                         sizeof(struct e1000_tx_ring)),
4033                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
4034                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
4035                                 tx_ring->next_to_use,
4036                                 tx_ring->next_to_clean,
4037                                 tx_ring->buffer_info[eop].time_stamp,
4038                                 eop,
4039                                 jiffies,
4040                                 eop_desc->upper.fields.status);
4041                         netif_stop_queue(netdev);
4042                 }
4043         }
4044         adapter->total_tx_bytes += total_tx_bytes;
4045         adapter->total_tx_packets += total_tx_packets;
4046         adapter->net_stats.tx_bytes += total_tx_bytes;
4047         adapter->net_stats.tx_packets += total_tx_packets;
4048         return cleaned;
4049 }
4050
4051 /**
4052  * e1000_rx_checksum - Receive Checksum Offload for 82543
4053  * @adapter:     board private structure
4054  * @status_err:  receive descriptor status and error fields
4055  * @csum:        receive descriptor csum field
4056  * @sk_buff:     socket buffer with received data
4057  **/
4058
4059 static void
4060 e1000_rx_checksum(struct e1000_adapter *adapter,
4061                   uint32_t status_err, uint32_t csum,
4062                   struct sk_buff *skb)
4063 {
4064         uint16_t status = (uint16_t)status_err;
4065         uint8_t errors = (uint8_t)(status_err >> 24);
4066         skb->ip_summed = CHECKSUM_NONE;
4067
4068         /* 82543 or newer only */
4069         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
4070         /* Ignore Checksum bit is set */
4071         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
4072         /* TCP/UDP checksum error bit is set */
4073         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
4074                 /* let the stack verify checksum errors */
4075                 adapter->hw_csum_err++;
4076                 return;
4077         }
4078         /* TCP/UDP Checksum has not been calculated */
4079         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
4080                 if (!(status & E1000_RXD_STAT_TCPCS))
4081                         return;
4082         } else {
4083                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
4084                         return;
4085         }
4086         /* It must be a TCP or UDP packet with a valid checksum */
4087         if (likely(status & E1000_RXD_STAT_TCPCS)) {
4088                 /* TCP checksum is good */
4089                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4090         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
4091                 /* IP fragment with UDP payload */
4092                 /* Hardware complements the payload checksum, so we undo it
4093                  * and then put the value in host order for further stack use.
4094                  */
4095                 __sum16 sum = (__force __sum16)htons(csum);
4096                 skb->csum = csum_unfold(~sum);
4097                 skb->ip_summed = CHECKSUM_COMPLETE;
4098         }
4099         adapter->hw_csum_good++;
4100 }
4101
4102 /**
4103  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4104  * @adapter: board private structure
4105  **/
4106
4107 static boolean_t
4108 #ifdef CONFIG_E1000_NAPI
4109 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4110                    struct e1000_rx_ring *rx_ring,
4111                    int *work_done, int work_to_do)
4112 #else
4113 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4114                    struct e1000_rx_ring *rx_ring)
4115 #endif
4116 {
4117         struct net_device *netdev = adapter->netdev;
4118         struct pci_dev *pdev = adapter->pdev;
4119         struct e1000_rx_desc *rx_desc, *next_rxd;
4120         struct e1000_buffer *buffer_info, *next_buffer;
4121         unsigned long flags;
4122         uint32_t length;
4123         uint8_t last_byte;
4124         unsigned int i;
4125         int cleaned_count = 0;
4126         boolean_t cleaned = FALSE;
4127         unsigned int total_rx_bytes=0, total_rx_packets=0;
4128
4129         i = rx_ring->next_to_clean;
4130         rx_desc = E1000_RX_DESC(*rx_ring, i);
4131         buffer_info = &rx_ring->buffer_info[i];
4132
4133         while (rx_desc->status & E1000_RXD_STAT_DD) {
4134                 struct sk_buff *skb;
4135                 u8 status;
4136
4137 #ifdef CONFIG_E1000_NAPI
4138                 if (*work_done >= work_to_do)
4139                         break;
4140                 (*work_done)++;
4141 #endif
4142                 status = rx_desc->status;
4143                 skb = buffer_info->skb;
4144                 buffer_info->skb = NULL;
4145
4146                 prefetch(skb->data - NET_IP_ALIGN);
4147
4148                 if (++i == rx_ring->count) i = 0;
4149                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4150                 prefetch(next_rxd);
4151
4152                 next_buffer = &rx_ring->buffer_info[i];
4153
4154                 cleaned = TRUE;
4155                 cleaned_count++;
4156                 pci_unmap_single(pdev,
4157                                  buffer_info->dma,
4158                                  buffer_info->length,
4159                                  PCI_DMA_FROMDEVICE);
4160
4161                 length = le16_to_cpu(rx_desc->length);
4162
4163                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4164                         /* All receives must fit into a single buffer */
4165                         E1000_DBG("%s: Receive packet consumed multiple"
4166                                   " buffers\n", netdev->name);
4167                         /* recycle */
4168                         buffer_info->skb = skb;
4169                         goto next_desc;
4170                 }
4171
4172                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4173                         last_byte = *(skb->data + length - 1);
4174                         if (TBI_ACCEPT(&adapter->hw, status,
4175                                       rx_desc->errors, length, last_byte)) {
4176                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4177                                 e1000_tbi_adjust_stats(&adapter->hw,
4178                                                        &adapter->stats,
4179                                                        length, skb->data);
4180                                 spin_unlock_irqrestore(&adapter->stats_lock,
4181                                                        flags);
4182                                 length--;
4183                         } else {
4184                                 /* recycle */
4185                                 buffer_info->skb = skb;
4186                                 goto next_desc;
4187                         }
4188                 }
4189
4190                 /* adjust length to remove Ethernet CRC, this must be
4191                  * done after the TBI_ACCEPT workaround above */
4192                 length -= 4;
4193
4194                 /* probably a little skewed due to removing CRC */
4195                 total_rx_bytes += length;
4196                 total_rx_packets++;
4197
4198                 /* code added for copybreak, this should improve
4199                  * performance for small packets with large amounts
4200                  * of reassembly being done in the stack */
4201                 if (length < copybreak) {
4202                         struct sk_buff *new_skb =
4203                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4204                         if (new_skb) {
4205                                 skb_reserve(new_skb, NET_IP_ALIGN);
4206                                 skb_copy_to_linear_data_offset(new_skb,
4207                                                                -NET_IP_ALIGN,
4208                                                                (skb->data -
4209                                                                 NET_IP_ALIGN),
4210                                                                (length +
4211                                                                 NET_IP_ALIGN));
4212                                 /* save the skb in buffer_info as good */
4213                                 buffer_info->skb = skb;
4214                                 skb = new_skb;
4215                         }
4216                         /* else just continue with the old one */
4217                 }
4218                 /* end copybreak code */
4219                 skb_put(skb, length);
4220
4221                 /* Receive Checksum Offload */
4222                 e1000_rx_checksum(adapter,
4223                                   (uint32_t)(status) |
4224                                   ((uint32_t)(rx_desc->errors) << 24),
4225                                   le16_to_cpu(rx_desc->csum), skb);
4226
4227                 skb->protocol = eth_type_trans(skb, netdev);
4228 #ifdef CONFIG_E1000_NAPI
4229                 if (unlikely(adapter->vlgrp &&
4230                             (status & E1000_RXD_STAT_VP))) {
4231                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4232                                                  le16_to_cpu(rx_desc->special) &
4233                                                  E1000_RXD_SPC_VLAN_MASK);
4234                 } else {
4235                         netif_receive_skb(skb);
4236                 }
4237 #else /* CONFIG_E1000_NAPI */
4238                 if (unlikely(adapter->vlgrp &&
4239                             (status & E1000_RXD_STAT_VP))) {
4240                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4241                                         le16_to_cpu(rx_desc->special) &
4242                                         E1000_RXD_SPC_VLAN_MASK);
4243                 } else {
4244                         netif_rx(skb);
4245                 }
4246 #endif /* CONFIG_E1000_NAPI */
4247                 netdev->last_rx = jiffies;
4248
4249 next_desc:
4250                 rx_desc->status = 0;
4251
4252                 /* return some buffers to hardware, one at a time is too slow */
4253                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4254                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4255                         cleaned_count = 0;
4256                 }
4257
4258                 /* use prefetched values */
4259                 rx_desc = next_rxd;
4260                 buffer_info = next_buffer;
4261         }
4262         rx_ring->next_to_clean = i;
4263
4264         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4265         if (cleaned_count)
4266                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4267
4268         adapter->total_rx_packets += total_rx_packets;
4269         adapter->total_rx_bytes += total_rx_bytes;
4270         adapter->net_stats.rx_bytes += total_rx_bytes;
4271         adapter->net_stats.rx_packets += total_rx_packets;
4272         return cleaned;
4273 }
4274
4275 /**
4276  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
4277  * @adapter: board private structure
4278  **/
4279
4280 static boolean_t
4281 #ifdef CONFIG_E1000_NAPI
4282 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4283                       struct e1000_rx_ring *rx_ring,
4284                       int *work_done, int work_to_do)
4285 #else
4286 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4287                       struct e1000_rx_ring *rx_ring)
4288 #endif
4289 {
4290         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
4291         struct net_device *netdev = adapter->netdev;
4292         struct pci_dev *pdev = adapter->pdev;
4293         struct e1000_buffer *buffer_info, *next_buffer;
4294         struct e1000_ps_page *ps_page;
4295         struct e1000_ps_page_dma *ps_page_dma;
4296         struct sk_buff *skb;
4297         unsigned int i, j;
4298         uint32_t length, staterr;
4299         int cleaned_count = 0;
4300         boolean_t cleaned = FALSE;
4301         unsigned int total_rx_bytes=0, total_rx_packets=0;
4302
4303         i = rx_ring->next_to_clean;
4304         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4305         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4306         buffer_info = &rx_ring->buffer_info[i];
4307
4308         while (staterr & E1000_RXD_STAT_DD) {
4309                 ps_page = &rx_ring->ps_page[i];
4310                 ps_page_dma = &rx_ring->ps_page_dma[i];
4311 #ifdef CONFIG_E1000_NAPI
4312                 if (unlikely(*work_done >= work_to_do))
4313                         break;
4314                 (*work_done)++;
4315 #endif
4316                 skb = buffer_info->skb;
4317
4318                 /* in the packet split case this is header only */
4319                 prefetch(skb->data - NET_IP_ALIGN);
4320
4321                 if (++i == rx_ring->count) i = 0;
4322                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
4323                 prefetch(next_rxd);
4324
4325                 next_buffer = &rx_ring->buffer_info[i];
4326
4327                 cleaned = TRUE;
4328                 cleaned_count++;
4329                 pci_unmap_single(pdev, buffer_info->dma,
4330                                  buffer_info->length,
4331                                  PCI_DMA_FROMDEVICE);
4332
4333                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
4334                         E1000_DBG("%s: Packet Split buffers didn't pick up"
4335                                   " the full packet\n", netdev->name);
4336                         dev_kfree_skb_irq(skb);
4337                         goto next_desc;
4338                 }
4339
4340                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
4341                         dev_kfree_skb_irq(skb);
4342                         goto next_desc;
4343                 }
4344
4345                 length = le16_to_cpu(rx_desc->wb.middle.length0);
4346
4347                 if (unlikely(!length)) {
4348                         E1000_DBG("%s: Last part of the packet spanning"
4349                                   " multiple descriptors\n", netdev->name);
4350                         dev_kfree_skb_irq(skb);
4351                         goto next_desc;
4352                 }
4353
4354                 /* Good Receive */
4355                 skb_put(skb, length);
4356
4357                 {
4358                 /* this looks ugly, but it seems compiler issues make it
4359                    more efficient than reusing j */
4360                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
4361
4362                 /* page alloc/put takes too long and effects small packet
4363                  * throughput, so unsplit small packets and save the alloc/put*/
4364                 if (l1 && (l1 <= copybreak) && ((length + l1) <= adapter->rx_ps_bsize0)) {
4365                         u8 *vaddr;
4366                         /* there is no documentation about how to call
4367                          * kmap_atomic, so we can't hold the mapping
4368                          * very long */
4369                         pci_dma_sync_single_for_cpu(pdev,
4370                                 ps_page_dma->ps_page_dma[0],
4371                                 PAGE_SIZE,
4372                                 PCI_DMA_FROMDEVICE);
4373                         vaddr = kmap_atomic(ps_page->ps_page[0],
4374                                             KM_SKB_DATA_SOFTIRQ);
4375                         memcpy(skb_tail_pointer(skb), vaddr, l1);
4376                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
4377                         pci_dma_sync_single_for_device(pdev,
4378                                 ps_page_dma->ps_page_dma[0],
4379                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4380                         /* remove the CRC */
4381                         l1 -= 4;
4382                         skb_put(skb, l1);
4383                         goto copydone;
4384                 } /* if */
4385                 }
4386
4387                 for (j = 0; j < adapter->rx_ps_pages; j++) {
4388                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
4389                                 break;
4390                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
4391                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
4392                         ps_page_dma->ps_page_dma[j] = 0;
4393                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4394                                            length);
4395                         ps_page->ps_page[j] = NULL;
4396                         skb->len += length;
4397                         skb->data_len += length;
4398                         skb->truesize += length;
4399                 }
4400
4401                 /* strip the ethernet crc, problem is we're using pages now so
4402                  * this whole operation can get a little cpu intensive */
4403                 pskb_trim(skb, skb->len - 4);
4404
4405 copydone:
4406                 total_rx_bytes += skb->len;
4407                 total_rx_packets++;
4408
4409                 e1000_rx_checksum(adapter, staterr,
4410                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4411                 skb->protocol = eth_type_trans(skb, netdev);
4412
4413                 if (likely(rx_desc->wb.upper.header_status &
4414                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4415                         adapter->rx_hdr_split++;
4416 #ifdef CONFIG_E1000_NAPI
4417                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4418                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4419                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4420                                 E1000_RXD_SPC_VLAN_MASK);
4421                 } else {
4422                         netif_receive_skb(skb);
4423                 }
4424 #else /* CONFIG_E1000_NAPI */
4425                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4426                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4427                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4428                                 E1000_RXD_SPC_VLAN_MASK);
4429                 } else {
4430                         netif_rx(skb);
4431                 }
4432 #endif /* CONFIG_E1000_NAPI */
4433                 netdev->last_rx = jiffies;
4434
4435 next_desc:
4436                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4437                 buffer_info->skb = NULL;
4438
4439                 /* return some buffers to hardware, one at a time is too slow */
4440                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4441                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4442                         cleaned_count = 0;
4443                 }
4444
4445                 /* use prefetched values */
4446                 rx_desc = next_rxd;
4447                 buffer_info = next_buffer;
4448
4449                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4450         }
4451         rx_ring->next_to_clean = i;
4452
4453         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4454         if (cleaned_count)
4455                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4456
4457         adapter->total_rx_packets += total_rx_packets;
4458         adapter->total_rx_bytes += total_rx_bytes;
4459         adapter->net_stats.rx_bytes += total_rx_bytes;
4460         adapter->net_stats.rx_packets += total_rx_packets;
4461         return cleaned;
4462 }
4463
4464 /**
4465  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4466  * @adapter: address of board private structure
4467  **/
4468
4469 static void
4470 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4471                        struct e1000_rx_ring *rx_ring,
4472                        int cleaned_count)
4473 {
4474         struct net_device *netdev = adapter->netdev;
4475         struct pci_dev *pdev = adapter->pdev;
4476         struct e1000_rx_desc *rx_desc;
4477         struct e1000_buffer *buffer_info;
4478         struct sk_buff *skb;
4479         unsigned int i;
4480         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4481
4482         i = rx_ring->next_to_use;
4483         buffer_info = &rx_ring->buffer_info[i];
4484
4485         while (cleaned_count--) {
4486                 skb = buffer_info->skb;
4487                 if (skb) {
4488                         skb_trim(skb, 0);
4489                         goto map_skb;
4490                 }
4491
4492                 skb = netdev_alloc_skb(netdev, bufsz);
4493                 if (unlikely(!skb)) {
4494                         /* Better luck next round */
4495                         adapter->alloc_rx_buff_failed++;
4496                         break;
4497                 }
4498
4499                 /* Fix for errata 23, can't cross 64kB boundary */
4500                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4501                         struct sk_buff *oldskb = skb;
4502                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4503                                              "at %p\n", bufsz, skb->data);
4504                         /* Try again, without freeing the previous */
4505                         skb = netdev_alloc_skb(netdev, bufsz);
4506                         /* Failed allocation, critical failure */
4507                         if (!skb) {
4508                                 dev_kfree_skb(oldskb);
4509                                 break;
4510                         }
4511
4512                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4513                                 /* give up */
4514                                 dev_kfree_skb(skb);
4515                                 dev_kfree_skb(oldskb);
4516                                 break; /* while !buffer_info->skb */
4517                         }
4518
4519                         /* Use new allocation */
4520                         dev_kfree_skb(oldskb);
4521                 }
4522                 /* Make buffer alignment 2 beyond a 16 byte boundary
4523                  * this will result in a 16 byte aligned IP header after
4524                  * the 14 byte MAC header is removed
4525                  */
4526                 skb_reserve(skb, NET_IP_ALIGN);
4527
4528                 buffer_info->skb = skb;
4529                 buffer_info->length = adapter->rx_buffer_len;
4530 map_skb:
4531                 buffer_info->dma = pci_map_single(pdev,
4532                                                   skb->data,
4533                                                   adapter->rx_buffer_len,
4534                                                   PCI_DMA_FROMDEVICE);
4535
4536                 /* Fix for errata 23, can't cross 64kB boundary */
4537                 if (!e1000_check_64k_bound(adapter,
4538                                         (void *)(unsigned long)buffer_info->dma,
4539                                         adapter->rx_buffer_len)) {
4540                         DPRINTK(RX_ERR, ERR,
4541                                 "dma align check failed: %u bytes at %p\n",
4542                                 adapter->rx_buffer_len,
4543                                 (void *)(unsigned long)buffer_info->dma);
4544                         dev_kfree_skb(skb);
4545                         buffer_info->skb = NULL;
4546
4547                         pci_unmap_single(pdev, buffer_info->dma,
4548                                          adapter->rx_buffer_len,
4549                                          PCI_DMA_FROMDEVICE);
4550
4551                         break; /* while !buffer_info->skb */
4552                 }
4553                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4554                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4555
4556                 if (unlikely(++i == rx_ring->count))
4557                         i = 0;
4558                 buffer_info = &rx_ring->buffer_info[i];
4559         }
4560
4561         if (likely(rx_ring->next_to_use != i)) {
4562                 rx_ring->next_to_use = i;
4563                 if (unlikely(i-- == 0))
4564                         i = (rx_ring->count - 1);
4565
4566                 /* Force memory writes to complete before letting h/w
4567                  * know there are new descriptors to fetch.  (Only
4568                  * applicable for weak-ordered memory model archs,
4569                  * such as IA-64). */
4570                 wmb();
4571                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4572         }
4573 }
4574
4575 /**
4576  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4577  * @adapter: address of board private structure
4578  **/
4579
4580 static void
4581 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4582                           struct e1000_rx_ring *rx_ring,
4583                           int cleaned_count)
4584 {
4585         struct net_device *netdev = adapter->netdev;
4586         struct pci_dev *pdev = adapter->pdev;
4587         union e1000_rx_desc_packet_split *rx_desc;
4588         struct e1000_buffer *buffer_info;
4589         struct e1000_ps_page *ps_page;
4590         struct e1000_ps_page_dma *ps_page_dma;
4591         struct sk_buff *skb;
4592         unsigned int i, j;
4593
4594         i = rx_ring->next_to_use;
4595         buffer_info = &rx_ring->buffer_info[i];
4596         ps_page = &rx_ring->ps_page[i];
4597         ps_page_dma = &rx_ring->ps_page_dma[i];
4598
4599         while (cleaned_count--) {
4600                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4601
4602                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4603                         if (j < adapter->rx_ps_pages) {
4604                                 if (likely(!ps_page->ps_page[j])) {
4605                                         ps_page->ps_page[j] =
4606                                                 alloc_page(GFP_ATOMIC);
4607                                         if (unlikely(!ps_page->ps_page[j])) {
4608                                                 adapter->alloc_rx_buff_failed++;
4609                                                 goto no_buffers;
4610                                         }
4611                                         ps_page_dma->ps_page_dma[j] =
4612                                                 pci_map_page(pdev,
4613                                                             ps_page->ps_page[j],
4614                                                             0, PAGE_SIZE,
4615                                                             PCI_DMA_FROMDEVICE);
4616                                 }
4617                                 /* Refresh the desc even if buffer_addrs didn't
4618                                  * change because each write-back erases
4619                                  * this info.
4620                                  */
4621                                 rx_desc->read.buffer_addr[j+1] =
4622                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4623                         } else
4624                                 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
4625                 }
4626
4627                 skb = netdev_alloc_skb(netdev,
4628                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4629
4630                 if (unlikely(!skb)) {
4631                         adapter->alloc_rx_buff_failed++;
4632                         break;
4633                 }
4634
4635                 /* Make buffer alignment 2 beyond a 16 byte boundary
4636                  * this will result in a 16 byte aligned IP header after
4637                  * the 14 byte MAC header is removed
4638                  */
4639                 skb_reserve(skb, NET_IP_ALIGN);
4640
4641                 buffer_info->skb = skb;
4642                 buffer_info->length = adapter->rx_ps_bsize0;
4643                 buffer_info->dma = pci_map_single(pdev, skb->data,
4644                                                   adapter->rx_ps_bsize0,
4645                                                   PCI_DMA_FROMDEVICE);
4646
4647                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4648
4649                 if (unlikely(++i == rx_ring->count)) i = 0;
4650                 buffer_info = &rx_ring->buffer_info[i];
4651                 ps_page = &rx_ring->ps_page[i];
4652                 ps_page_dma = &rx_ring->ps_page_dma[i];
4653         }
4654
4655 no_buffers:
4656         if (likely(rx_ring->next_to_use != i)) {
4657                 rx_ring->next_to_use = i;
4658                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4659
4660                 /* Force memory writes to complete before letting h/w
4661                  * know there are new descriptors to fetch.  (Only
4662                  * applicable for weak-ordered memory model archs,
4663                  * such as IA-64). */
4664                 wmb();
4665                 /* Hardware increments by 16 bytes, but packet split
4666                  * descriptors are 32 bytes...so we increment tail
4667                  * twice as much.
4668                  */
4669                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4670         }
4671 }
4672
4673 /**
4674  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4675  * @adapter:
4676  **/
4677
4678 static void
4679 e1000_smartspeed(struct e1000_adapter *adapter)
4680 {
4681         uint16_t phy_status;
4682         uint16_t phy_ctrl;
4683
4684         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4685            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4686                 return;
4687
4688         if (adapter->smartspeed == 0) {
4689                 /* If Master/Slave config fault is asserted twice,
4690                  * we assume back-to-back */
4691                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4692                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4693                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4694                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4695                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4696                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4697                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4698                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4699                                             phy_ctrl);
4700                         adapter->smartspeed++;
4701                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4702                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4703                                                &phy_ctrl)) {
4704                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4705                                              MII_CR_RESTART_AUTO_NEG);
4706                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4707                                                     phy_ctrl);
4708                         }
4709                 }
4710                 return;
4711         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4712                 /* If still no link, perhaps using 2/3 pair cable */
4713                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4714                 phy_ctrl |= CR_1000T_MS_ENABLE;
4715                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4716                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4717                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4718                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4719                                      MII_CR_RESTART_AUTO_NEG);
4720                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4721                 }
4722         }
4723         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4724         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4725                 adapter->smartspeed = 0;
4726 }
4727
4728 /**
4729  * e1000_ioctl -
4730  * @netdev:
4731  * @ifreq:
4732  * @cmd:
4733  **/
4734
4735 static int
4736 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4737 {
4738         switch (cmd) {
4739         case SIOCGMIIPHY:
4740         case SIOCGMIIREG:
4741         case SIOCSMIIREG:
4742                 return e1000_mii_ioctl(netdev, ifr, cmd);
4743         default:
4744                 return -EOPNOTSUPP;
4745         }
4746 }
4747
4748 /**
4749  * e1000_mii_ioctl -
4750  * @netdev:
4751  * @ifreq:
4752  * @cmd:
4753  **/
4754
4755 static int
4756 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4757 {
4758         struct e1000_adapter *adapter = netdev_priv(netdev);
4759         struct mii_ioctl_data *data = if_mii(ifr);
4760         int retval;
4761         uint16_t mii_reg;
4762         uint16_t spddplx;
4763         unsigned long flags;
4764
4765         if (adapter->hw.media_type != e1000_media_type_copper)
4766                 return -EOPNOTSUPP;
4767
4768         switch (cmd) {
4769         case SIOCGMIIPHY:
4770                 data->phy_id = adapter->hw.phy_addr;
4771                 break;
4772         case SIOCGMIIREG:
4773                 if (!capable(CAP_NET_ADMIN))
4774                         return -EPERM;
4775                 spin_lock_irqsave(&adapter->stats_lock, flags);
4776                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4777                                    &data->val_out)) {
4778                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4779                         return -EIO;
4780                 }
4781                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4782                 break;
4783         case SIOCSMIIREG:
4784                 if (!capable(CAP_NET_ADMIN))
4785                         return -EPERM;
4786                 if (data->reg_num & ~(0x1F))
4787                         return -EFAULT;
4788                 mii_reg = data->val_in;
4789                 spin_lock_irqsave(&adapter->stats_lock, flags);
4790                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4791                                         mii_reg)) {
4792                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4793                         return -EIO;
4794                 }
4795                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4796                 if (adapter->hw.media_type == e1000_media_type_copper) {
4797                         switch (data->reg_num) {
4798                         case PHY_CTRL:
4799                                 if (mii_reg & MII_CR_POWER_DOWN)
4800                                         break;
4801                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4802                                         adapter->hw.autoneg = 1;
4803                                         adapter->hw.autoneg_advertised = 0x2F;
4804                                 } else {
4805                                         if (mii_reg & 0x40)
4806                                                 spddplx = SPEED_1000;
4807                                         else if (mii_reg & 0x2000)
4808                                                 spddplx = SPEED_100;
4809                                         else
4810                                                 spddplx = SPEED_10;
4811                                         spddplx += (mii_reg & 0x100)
4812                                                    ? DUPLEX_FULL :
4813                                                    DUPLEX_HALF;
4814                                         retval = e1000_set_spd_dplx(adapter,
4815                                                                     spddplx);
4816                                         if (retval)
4817                                                 return retval;
4818                                 }
4819                                 if (netif_running(adapter->netdev))
4820                                         e1000_reinit_locked(adapter);
4821                                 else
4822                                         e1000_reset(adapter);
4823                                 break;
4824                         case M88E1000_PHY_SPEC_CTRL:
4825                         case M88E1000_EXT_PHY_SPEC_CTRL:
4826                                 if (e1000_phy_reset(&adapter->hw))
4827                                         return -EIO;
4828                                 break;
4829                         }
4830                 } else {
4831                         switch (data->reg_num) {
4832                         case PHY_CTRL:
4833                                 if (mii_reg & MII_CR_POWER_DOWN)
4834                                         break;
4835                                 if (netif_running(adapter->netdev))
4836                                         e1000_reinit_locked(adapter);
4837                                 else
4838                                         e1000_reset(adapter);
4839                                 break;
4840                         }
4841                 }
4842                 break;
4843         default:
4844                 return -EOPNOTSUPP;
4845         }
4846         return E1000_SUCCESS;
4847 }
4848
4849 void
4850 e1000_pci_set_mwi(struct e1000_hw *hw)
4851 {
4852         struct e1000_adapter *adapter = hw->back;
4853         int ret_val = pci_set_mwi(adapter->pdev);
4854
4855         if (ret_val)
4856                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4857 }
4858
4859 void
4860 e1000_pci_clear_mwi(struct e1000_hw *hw)
4861 {
4862         struct e1000_adapter *adapter = hw->back;
4863
4864         pci_clear_mwi(adapter->pdev);
4865 }
4866
4867 void
4868 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4869 {
4870         struct e1000_adapter *adapter = hw->back;
4871
4872         pci_read_config_word(adapter->pdev, reg, value);
4873 }
4874
4875 void
4876 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4877 {
4878         struct e1000_adapter *adapter = hw->back;
4879
4880         pci_write_config_word(adapter->pdev, reg, *value);
4881 }
4882
4883 int
4884 e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4885 {
4886         struct e1000_adapter *adapter = hw->back;
4887         return pcix_get_mmrbc(adapter->pdev);
4888 }
4889
4890 void
4891 e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4892 {
4893         struct e1000_adapter *adapter = hw->back;
4894         pcix_set_mmrbc(adapter->pdev, mmrbc);
4895 }
4896
4897 int32_t
4898 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4899 {
4900     struct e1000_adapter *adapter = hw->back;
4901     uint16_t cap_offset;
4902
4903     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4904     if (!cap_offset)
4905         return -E1000_ERR_CONFIG;
4906
4907     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4908
4909     return E1000_SUCCESS;
4910 }
4911
4912 void
4913 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4914 {
4915         outl(value, port);
4916 }
4917
4918 static void
4919 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4920 {
4921         struct e1000_adapter *adapter = netdev_priv(netdev);
4922         uint32_t ctrl, rctl;
4923
4924         e1000_irq_disable(adapter);
4925         adapter->vlgrp = grp;
4926
4927         if (grp) {
4928                 /* enable VLAN tag insert/strip */
4929                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4930                 ctrl |= E1000_CTRL_VME;
4931                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4932
4933                 if (adapter->hw.mac_type != e1000_ich8lan) {
4934                         /* enable VLAN receive filtering */
4935                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4936                         rctl |= E1000_RCTL_VFE;
4937                         rctl &= ~E1000_RCTL_CFIEN;
4938                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4939                         e1000_update_mng_vlan(adapter);
4940                 }
4941         } else {
4942                 /* disable VLAN tag insert/strip */
4943                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4944                 ctrl &= ~E1000_CTRL_VME;
4945                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4946
4947                 if (adapter->hw.mac_type != e1000_ich8lan) {
4948                         /* disable VLAN filtering */
4949                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4950                         rctl &= ~E1000_RCTL_VFE;
4951                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4952                         if (adapter->mng_vlan_id !=
4953                             (uint16_t)E1000_MNG_VLAN_NONE) {
4954                                 e1000_vlan_rx_kill_vid(netdev,
4955                                                        adapter->mng_vlan_id);
4956                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4957                         }
4958                 }
4959         }
4960
4961         e1000_irq_enable(adapter);
4962 }
4963
4964 static void
4965 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4966 {
4967         struct e1000_adapter *adapter = netdev_priv(netdev);
4968         uint32_t vfta, index;
4969
4970         if ((adapter->hw.mng_cookie.status &
4971              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4972             (vid == adapter->mng_vlan_id))
4973                 return;
4974         /* add VID to filter table */
4975         index = (vid >> 5) & 0x7F;
4976         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4977         vfta |= (1 << (vid & 0x1F));
4978         e1000_write_vfta(&adapter->hw, index, vfta);
4979 }
4980
4981 static void
4982 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4983 {
4984         struct e1000_adapter *adapter = netdev_priv(netdev);
4985         uint32_t vfta, index;
4986
4987         e1000_irq_disable(adapter);
4988         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4989         e1000_irq_enable(adapter);
4990
4991         if ((adapter->hw.mng_cookie.status &
4992              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4993             (vid == adapter->mng_vlan_id)) {
4994                 /* release control to f/w */
4995                 e1000_release_hw_control(adapter);
4996                 return;
4997         }
4998
4999         /* remove VID from filter table */
5000         index = (vid >> 5) & 0x7F;
5001         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
5002         vfta &= ~(1 << (vid & 0x1F));
5003         e1000_write_vfta(&adapter->hw, index, vfta);
5004 }
5005
5006 static void
5007 e1000_restore_vlan(struct e1000_adapter *adapter)
5008 {
5009         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5010
5011         if (adapter->vlgrp) {
5012                 uint16_t vid;
5013                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5014                         if (!vlan_group_get_device(adapter->vlgrp, vid))
5015                                 continue;
5016                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
5017                 }
5018         }
5019 }
5020
5021 int
5022 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
5023 {
5024         adapter->hw.autoneg = 0;
5025
5026         /* Fiber NICs only allow 1000 gbps Full duplex */
5027         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
5028                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
5029                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5030                 return -EINVAL;
5031         }
5032
5033         switch (spddplx) {
5034         case SPEED_10 + DUPLEX_HALF:
5035                 adapter->hw.forced_speed_duplex = e1000_10_half;
5036                 break;
5037         case SPEED_10 + DUPLEX_FULL:
5038                 adapter->hw.forced_speed_duplex = e1000_10_full;
5039                 break;
5040         case SPEED_100 + DUPLEX_HALF:
5041                 adapter->hw.forced_speed_duplex = e1000_100_half;
5042                 break;
5043         case SPEED_100 + DUPLEX_FULL:
5044                 adapter->hw.forced_speed_duplex = e1000_100_full;
5045                 break;
5046         case SPEED_1000 + DUPLEX_FULL:
5047                 adapter->hw.autoneg = 1;
5048                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
5049                 break;
5050         case SPEED_1000 + DUPLEX_HALF: /* not supported */
5051         default:
5052                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5053                 return -EINVAL;
5054         }
5055         return 0;
5056 }
5057
5058 static int
5059 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5060 {
5061         struct net_device *netdev = pci_get_drvdata(pdev);
5062         struct e1000_adapter *adapter = netdev_priv(netdev);
5063         uint32_t ctrl, ctrl_ext, rctl, status;
5064         uint32_t wufc = adapter->wol;
5065 #ifdef CONFIG_PM
5066         int retval = 0;
5067 #endif
5068
5069         netif_device_detach(netdev);
5070
5071         if (netif_running(netdev)) {
5072                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5073                 e1000_down(adapter);
5074         }
5075
5076 #ifdef CONFIG_PM
5077         retval = pci_save_state(pdev);
5078         if (retval)
5079                 return retval;
5080 #endif
5081
5082         status = E1000_READ_REG(&adapter->hw, STATUS);
5083         if (status & E1000_STATUS_LU)
5084                 wufc &= ~E1000_WUFC_LNKC;
5085
5086         if (wufc) {
5087                 e1000_setup_rctl(adapter);
5088                 e1000_set_rx_mode(netdev);
5089
5090                 /* turn on all-multi mode if wake on multicast is enabled */
5091                 if (wufc & E1000_WUFC_MC) {
5092                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
5093                         rctl |= E1000_RCTL_MPE;
5094                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
5095                 }
5096
5097                 if (adapter->hw.mac_type >= e1000_82540) {
5098                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
5099                         /* advertise wake from D3Cold */
5100                         #define E1000_CTRL_ADVD3WUC 0x00100000
5101                         /* phy power management enable */
5102                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5103                         ctrl |= E1000_CTRL_ADVD3WUC |
5104                                 E1000_CTRL_EN_PHY_PWR_MGMT;
5105                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
5106                 }
5107
5108                 if (adapter->hw.media_type == e1000_media_type_fiber ||
5109                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
5110                         /* keep the laser running in D3 */
5111                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
5112                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5113                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
5114                 }
5115
5116                 /* Allow time for pending master requests to run */
5117                 e1000_disable_pciex_master(&adapter->hw);
5118
5119                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
5120                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
5121                 pci_enable_wake(pdev, PCI_D3hot, 1);
5122                 pci_enable_wake(pdev, PCI_D3cold, 1);
5123         } else {
5124                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
5125                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
5126                 pci_enable_wake(pdev, PCI_D3hot, 0);
5127                 pci_enable_wake(pdev, PCI_D3cold, 0);
5128         }
5129
5130         e1000_release_manageability(adapter);
5131
5132         /* make sure adapter isn't asleep if manageability is enabled */
5133         if (adapter->en_mng_pt) {
5134                 pci_enable_wake(pdev, PCI_D3hot, 1);
5135                 pci_enable_wake(pdev, PCI_D3cold, 1);
5136         }
5137
5138         if (adapter->hw.phy_type == e1000_phy_igp_3)
5139                 e1000_phy_powerdown_workaround(&adapter->hw);
5140
5141         if (netif_running(netdev))
5142                 e1000_free_irq(adapter);
5143
5144         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5145          * would have already happened in close and is redundant. */
5146         e1000_release_hw_control(adapter);
5147
5148         pci_disable_device(pdev);
5149
5150         pci_set_power_state(pdev, pci_choose_state(pdev, state));
5151
5152         return 0;
5153 }
5154
5155 #ifdef CONFIG_PM
5156 static int
5157 e1000_resume(struct pci_dev *pdev)
5158 {
5159         struct net_device *netdev = pci_get_drvdata(pdev);
5160         struct e1000_adapter *adapter = netdev_priv(netdev);
5161         uint32_t err;
5162
5163         pci_set_power_state(pdev, PCI_D0);
5164         pci_restore_state(pdev);
5165         if ((err = pci_enable_device(pdev))) {
5166                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
5167                 return err;
5168         }
5169         pci_set_master(pdev);
5170
5171         pci_enable_wake(pdev, PCI_D3hot, 0);
5172         pci_enable_wake(pdev, PCI_D3cold, 0);
5173
5174         if (netif_running(netdev) && (err = e1000_request_irq(adapter)))
5175                 return err;
5176
5177         e1000_power_up_phy(adapter);
5178         e1000_reset(adapter);
5179         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5180
5181         e1000_init_manageability(adapter);
5182
5183         if (netif_running(netdev))
5184                 e1000_up(adapter);
5185
5186         netif_device_attach(netdev);
5187
5188         /* If the controller is 82573 and f/w is AMT, do not set
5189          * DRV_LOAD until the interface is up.  For all other cases,
5190          * let the f/w know that the h/w is now under the control
5191          * of the driver. */
5192         if (adapter->hw.mac_type != e1000_82573 ||
5193             !e1000_check_mng_mode(&adapter->hw))
5194                 e1000_get_hw_control(adapter);
5195
5196         return 0;
5197 }
5198 #endif
5199
5200 static void e1000_shutdown(struct pci_dev *pdev)
5201 {
5202         e1000_suspend(pdev, PMSG_SUSPEND);
5203 }
5204
5205 #ifdef CONFIG_NET_POLL_CONTROLLER
5206 /*
5207  * Polling 'interrupt' - used by things like netconsole to send skbs
5208  * without having to re-enable interrupts. It's not called while
5209  * the interrupt routine is executing.
5210  */
5211 static void
5212 e1000_netpoll(struct net_device *netdev)
5213 {
5214         struct e1000_adapter *adapter = netdev_priv(netdev);
5215
5216         disable_irq(adapter->pdev->irq);
5217         e1000_intr(adapter->pdev->irq, netdev);
5218         e1000_clean_tx_irq(adapter, adapter->tx_ring);
5219 #ifndef CONFIG_E1000_NAPI
5220         adapter->clean_rx(adapter, adapter->rx_ring);
5221 #endif
5222         enable_irq(adapter->pdev->irq);
5223 }
5224 #endif
5225
5226 /**
5227  * e1000_io_error_detected - called when PCI error is detected
5228  * @pdev: Pointer to PCI device
5229  * @state: The current pci conneection state
5230  *
5231  * This function is called after a PCI bus error affecting
5232  * this device has been detected.
5233  */
5234 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
5235 {
5236         struct net_device *netdev = pci_get_drvdata(pdev);
5237         struct e1000_adapter *adapter = netdev->priv;
5238
5239         netif_device_detach(netdev);
5240
5241         if (netif_running(netdev))
5242                 e1000_down(adapter);
5243         pci_disable_device(pdev);
5244
5245         /* Request a slot slot reset. */
5246         return PCI_ERS_RESULT_NEED_RESET;
5247 }
5248
5249 /**
5250  * e1000_io_slot_reset - called after the pci bus has been reset.
5251  * @pdev: Pointer to PCI device
5252  *
5253  * Restart the card from scratch, as if from a cold-boot. Implementation
5254  * resembles the first-half of the e1000_resume routine.
5255  */
5256 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5257 {
5258         struct net_device *netdev = pci_get_drvdata(pdev);
5259         struct e1000_adapter *adapter = netdev->priv;
5260
5261         if (pci_enable_device(pdev)) {
5262                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
5263                 return PCI_ERS_RESULT_DISCONNECT;
5264         }
5265         pci_set_master(pdev);
5266
5267         pci_enable_wake(pdev, PCI_D3hot, 0);
5268         pci_enable_wake(pdev, PCI_D3cold, 0);
5269
5270         e1000_reset(adapter);
5271         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5272
5273         return PCI_ERS_RESULT_RECOVERED;
5274 }
5275
5276 /**
5277  * e1000_io_resume - called when traffic can start flowing again.
5278  * @pdev: Pointer to PCI device
5279  *
5280  * This callback is called when the error recovery driver tells us that
5281  * its OK to resume normal operation. Implementation resembles the
5282  * second-half of the e1000_resume routine.
5283  */
5284 static void e1000_io_resume(struct pci_dev *pdev)
5285 {
5286         struct net_device *netdev = pci_get_drvdata(pdev);
5287         struct e1000_adapter *adapter = netdev->priv;
5288
5289         e1000_init_manageability(adapter);
5290
5291         if (netif_running(netdev)) {
5292                 if (e1000_up(adapter)) {
5293                         printk("e1000: can't bring device back up after reset\n");
5294                         return;
5295                 }
5296         }
5297
5298         netif_device_attach(netdev);
5299
5300         /* If the controller is 82573 and f/w is AMT, do not set
5301          * DRV_LOAD until the interface is up.  For all other cases,
5302          * let the f/w know that the h/w is now under the control
5303          * of the driver. */
5304         if (adapter->hw.mac_type != e1000_82573 ||
5305             !e1000_check_mng_mode(&adapter->hw))
5306                 e1000_get_hw_control(adapter);
5307
5308 }
5309
5310 /* e1000_main.c */