e1000/e1000e: Move PCI-Express device IDs over to e1000e
[safe/jmp/linux-2.6] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.3.20-k2"DRIVERNAPI
40 const char e1000_driver_version[] = DRV_VERSION;
41 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44  *
45  * Last entry must be all 0s
46  *
47  * Macro expands to...
48  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49  */
50 static struct pci_device_id e1000_pci_tbl[] = {
51         INTEL_E1000_ETHERNET_DEVICE(0x1000),
52         INTEL_E1000_ETHERNET_DEVICE(0x1001),
53         INTEL_E1000_ETHERNET_DEVICE(0x1004),
54         INTEL_E1000_ETHERNET_DEVICE(0x1008),
55         INTEL_E1000_ETHERNET_DEVICE(0x1009),
56         INTEL_E1000_ETHERNET_DEVICE(0x100C),
57         INTEL_E1000_ETHERNET_DEVICE(0x100D),
58         INTEL_E1000_ETHERNET_DEVICE(0x100E),
59         INTEL_E1000_ETHERNET_DEVICE(0x100F),
60         INTEL_E1000_ETHERNET_DEVICE(0x1010),
61         INTEL_E1000_ETHERNET_DEVICE(0x1011),
62         INTEL_E1000_ETHERNET_DEVICE(0x1012),
63         INTEL_E1000_ETHERNET_DEVICE(0x1013),
64         INTEL_E1000_ETHERNET_DEVICE(0x1014),
65         INTEL_E1000_ETHERNET_DEVICE(0x1015),
66         INTEL_E1000_ETHERNET_DEVICE(0x1016),
67         INTEL_E1000_ETHERNET_DEVICE(0x1017),
68         INTEL_E1000_ETHERNET_DEVICE(0x1018),
69         INTEL_E1000_ETHERNET_DEVICE(0x1019),
70         INTEL_E1000_ETHERNET_DEVICE(0x101A),
71         INTEL_E1000_ETHERNET_DEVICE(0x101D),
72         INTEL_E1000_ETHERNET_DEVICE(0x101E),
73         INTEL_E1000_ETHERNET_DEVICE(0x1026),
74         INTEL_E1000_ETHERNET_DEVICE(0x1027),
75         INTEL_E1000_ETHERNET_DEVICE(0x1028),
76         INTEL_E1000_ETHERNET_DEVICE(0x1075),
77         INTEL_E1000_ETHERNET_DEVICE(0x1076),
78         INTEL_E1000_ETHERNET_DEVICE(0x1077),
79         INTEL_E1000_ETHERNET_DEVICE(0x1078),
80         INTEL_E1000_ETHERNET_DEVICE(0x1079),
81         INTEL_E1000_ETHERNET_DEVICE(0x107A),
82         INTEL_E1000_ETHERNET_DEVICE(0x107B),
83         INTEL_E1000_ETHERNET_DEVICE(0x107C),
84         INTEL_E1000_ETHERNET_DEVICE(0x108A),
85         INTEL_E1000_ETHERNET_DEVICE(0x1099),
86         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
87         /* required last entry */
88         {0,}
89 };
90
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
98 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
99 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
101 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
102 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
103                              struct e1000_tx_ring *txdr);
104 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
105                              struct e1000_rx_ring *rxdr);
106 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
107                              struct e1000_tx_ring *tx_ring);
108 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
109                              struct e1000_rx_ring *rx_ring);
110 void e1000_update_stats(struct e1000_adapter *adapter);
111
112 static int e1000_init_module(void);
113 static void e1000_exit_module(void);
114 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
115 static void __devexit e1000_remove(struct pci_dev *pdev);
116 static int e1000_alloc_queues(struct e1000_adapter *adapter);
117 static int e1000_sw_init(struct e1000_adapter *adapter);
118 static int e1000_open(struct net_device *netdev);
119 static int e1000_close(struct net_device *netdev);
120 static void e1000_configure_tx(struct e1000_adapter *adapter);
121 static void e1000_configure_rx(struct e1000_adapter *adapter);
122 static void e1000_setup_rctl(struct e1000_adapter *adapter);
123 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
125 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
126                                 struct e1000_tx_ring *tx_ring);
127 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
128                                 struct e1000_rx_ring *rx_ring);
129 static void e1000_set_multi(struct net_device *netdev);
130 static void e1000_update_phy_info(unsigned long data);
131 static void e1000_watchdog(unsigned long data);
132 static void e1000_82547_tx_fifo_stall(unsigned long data);
133 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136 static int e1000_set_mac(struct net_device *netdev, void *p);
137 static irqreturn_t e1000_intr(int irq, void *data);
138 static irqreturn_t e1000_intr_msi(int irq, void *data);
139 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
140                                     struct e1000_tx_ring *tx_ring);
141 #ifdef CONFIG_E1000_NAPI
142 static int e1000_clean(struct napi_struct *napi, int budget);
143 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
144                                     struct e1000_rx_ring *rx_ring,
145                                     int *work_done, int work_to_do);
146 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
147                                        struct e1000_rx_ring *rx_ring,
148                                        int *work_done, int work_to_do);
149 #else
150 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
151                                     struct e1000_rx_ring *rx_ring);
152 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
153                                        struct e1000_rx_ring *rx_ring);
154 #endif
155 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
156                                    struct e1000_rx_ring *rx_ring,
157                                    int cleaned_count);
158 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
159                                       struct e1000_rx_ring *rx_ring,
160                                       int cleaned_count);
161 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
162 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
163                            int cmd);
164 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
165 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
166 static void e1000_tx_timeout(struct net_device *dev);
167 static void e1000_reset_task(struct work_struct *work);
168 static void e1000_smartspeed(struct e1000_adapter *adapter);
169 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
170                                        struct sk_buff *skb);
171
172 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
173 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
174 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
175 static void e1000_restore_vlan(struct e1000_adapter *adapter);
176
177 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
178 #ifdef CONFIG_PM
179 static int e1000_resume(struct pci_dev *pdev);
180 #endif
181 static void e1000_shutdown(struct pci_dev *pdev);
182
183 #ifdef CONFIG_NET_POLL_CONTROLLER
184 /* for netdump / net console */
185 static void e1000_netpoll (struct net_device *netdev);
186 #endif
187
188 #define COPYBREAK_DEFAULT 256
189 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
190 module_param(copybreak, uint, 0644);
191 MODULE_PARM_DESC(copybreak,
192         "Maximum size of packet that is copied to a new buffer on receive");
193
194 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
195                      pci_channel_state_t state);
196 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
197 static void e1000_io_resume(struct pci_dev *pdev);
198
199 static struct pci_error_handlers e1000_err_handler = {
200         .error_detected = e1000_io_error_detected,
201         .slot_reset = e1000_io_slot_reset,
202         .resume = e1000_io_resume,
203 };
204
205 static struct pci_driver e1000_driver = {
206         .name     = e1000_driver_name,
207         .id_table = e1000_pci_tbl,
208         .probe    = e1000_probe,
209         .remove   = __devexit_p(e1000_remove),
210 #ifdef CONFIG_PM
211         /* Power Managment Hooks */
212         .suspend  = e1000_suspend,
213         .resume   = e1000_resume,
214 #endif
215         .shutdown = e1000_shutdown,
216         .err_handler = &e1000_err_handler
217 };
218
219 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
220 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
221 MODULE_LICENSE("GPL");
222 MODULE_VERSION(DRV_VERSION);
223
224 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
225 module_param(debug, int, 0);
226 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
227
228 /**
229  * e1000_init_module - Driver Registration Routine
230  *
231  * e1000_init_module is the first routine called when the driver is
232  * loaded. All it does is register with the PCI subsystem.
233  **/
234
235 static int __init
236 e1000_init_module(void)
237 {
238         int ret;
239         printk(KERN_INFO "%s - version %s\n",
240                e1000_driver_string, e1000_driver_version);
241
242         printk(KERN_INFO "%s\n", e1000_copyright);
243
244         ret = pci_register_driver(&e1000_driver);
245         if (copybreak != COPYBREAK_DEFAULT) {
246                 if (copybreak == 0)
247                         printk(KERN_INFO "e1000: copybreak disabled\n");
248                 else
249                         printk(KERN_INFO "e1000: copybreak enabled for "
250                                "packets <= %u bytes\n", copybreak);
251         }
252         return ret;
253 }
254
255 module_init(e1000_init_module);
256
257 /**
258  * e1000_exit_module - Driver Exit Cleanup Routine
259  *
260  * e1000_exit_module is called just before the driver is removed
261  * from memory.
262  **/
263
264 static void __exit
265 e1000_exit_module(void)
266 {
267         pci_unregister_driver(&e1000_driver);
268 }
269
270 module_exit(e1000_exit_module);
271
272 static int e1000_request_irq(struct e1000_adapter *adapter)
273 {
274         struct net_device *netdev = adapter->netdev;
275         void (*handler) = &e1000_intr;
276         int irq_flags = IRQF_SHARED;
277         int err;
278
279         if (adapter->hw.mac_type >= e1000_82571) {
280                 adapter->have_msi = !pci_enable_msi(adapter->pdev);
281                 if (adapter->have_msi) {
282                         handler = &e1000_intr_msi;
283                         irq_flags = 0;
284                 }
285         }
286
287         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
288                           netdev);
289         if (err) {
290                 if (adapter->have_msi)
291                         pci_disable_msi(adapter->pdev);
292                 DPRINTK(PROBE, ERR,
293                         "Unable to allocate interrupt Error: %d\n", err);
294         }
295
296         return err;
297 }
298
299 static void e1000_free_irq(struct e1000_adapter *adapter)
300 {
301         struct net_device *netdev = adapter->netdev;
302
303         free_irq(adapter->pdev->irq, netdev);
304
305         if (adapter->have_msi)
306                 pci_disable_msi(adapter->pdev);
307 }
308
309 /**
310  * e1000_irq_disable - Mask off interrupt generation on the NIC
311  * @adapter: board private structure
312  **/
313
314 static void
315 e1000_irq_disable(struct e1000_adapter *adapter)
316 {
317         atomic_inc(&adapter->irq_sem);
318         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
319         E1000_WRITE_FLUSH(&adapter->hw);
320         synchronize_irq(adapter->pdev->irq);
321 }
322
323 /**
324  * e1000_irq_enable - Enable default interrupt generation settings
325  * @adapter: board private structure
326  **/
327
328 static void
329 e1000_irq_enable(struct e1000_adapter *adapter)
330 {
331         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
332                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
333                 E1000_WRITE_FLUSH(&adapter->hw);
334         }
335 }
336
337 static void
338 e1000_update_mng_vlan(struct e1000_adapter *adapter)
339 {
340         struct net_device *netdev = adapter->netdev;
341         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
342         uint16_t old_vid = adapter->mng_vlan_id;
343         if (adapter->vlgrp) {
344                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
345                         if (adapter->hw.mng_cookie.status &
346                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
347                                 e1000_vlan_rx_add_vid(netdev, vid);
348                                 adapter->mng_vlan_id = vid;
349                         } else
350                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
351
352                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
353                                         (vid != old_vid) &&
354                             !vlan_group_get_device(adapter->vlgrp, old_vid))
355                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
356                 } else
357                         adapter->mng_vlan_id = vid;
358         }
359 }
360
361 /**
362  * e1000_release_hw_control - release control of the h/w to f/w
363  * @adapter: address of board private structure
364  *
365  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
366  * For ASF and Pass Through versions of f/w this means that the
367  * driver is no longer loaded. For AMT version (only with 82573) i
368  * of the f/w this means that the network i/f is closed.
369  *
370  **/
371
372 static void
373 e1000_release_hw_control(struct e1000_adapter *adapter)
374 {
375         uint32_t ctrl_ext;
376         uint32_t swsm;
377
378         /* Let firmware taken over control of h/w */
379         switch (adapter->hw.mac_type) {
380         case e1000_82573:
381                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
382                 E1000_WRITE_REG(&adapter->hw, SWSM,
383                                 swsm & ~E1000_SWSM_DRV_LOAD);
384                 break;
385         case e1000_82571:
386         case e1000_82572:
387         case e1000_80003es2lan:
388         case e1000_ich8lan:
389                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
390                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
391                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
392                 break;
393         default:
394                 break;
395         }
396 }
397
398 /**
399  * e1000_get_hw_control - get control of the h/w from f/w
400  * @adapter: address of board private structure
401  *
402  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
403  * For ASF and Pass Through versions of f/w this means that
404  * the driver is loaded. For AMT version (only with 82573)
405  * of the f/w this means that the network i/f is open.
406  *
407  **/
408
409 static void
410 e1000_get_hw_control(struct e1000_adapter *adapter)
411 {
412         uint32_t ctrl_ext;
413         uint32_t swsm;
414
415         /* Let firmware know the driver has taken over */
416         switch (adapter->hw.mac_type) {
417         case e1000_82573:
418                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
419                 E1000_WRITE_REG(&adapter->hw, SWSM,
420                                 swsm | E1000_SWSM_DRV_LOAD);
421                 break;
422         case e1000_82571:
423         case e1000_82572:
424         case e1000_80003es2lan:
425         case e1000_ich8lan:
426                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
427                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
428                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
429                 break;
430         default:
431                 break;
432         }
433 }
434
435 static void
436 e1000_init_manageability(struct e1000_adapter *adapter)
437 {
438         if (adapter->en_mng_pt) {
439                 uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
440
441                 /* disable hardware interception of ARP */
442                 manc &= ~(E1000_MANC_ARP_EN);
443
444                 /* enable receiving management packets to the host */
445                 /* this will probably generate destination unreachable messages
446                  * from the host OS, but the packets will be handled on SMBUS */
447                 if (adapter->hw.has_manc2h) {
448                         uint32_t manc2h = E1000_READ_REG(&adapter->hw, MANC2H);
449
450                         manc |= E1000_MANC_EN_MNG2HOST;
451 #define E1000_MNG2HOST_PORT_623 (1 << 5)
452 #define E1000_MNG2HOST_PORT_664 (1 << 6)
453                         manc2h |= E1000_MNG2HOST_PORT_623;
454                         manc2h |= E1000_MNG2HOST_PORT_664;
455                         E1000_WRITE_REG(&adapter->hw, MANC2H, manc2h);
456                 }
457
458                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
459         }
460 }
461
462 static void
463 e1000_release_manageability(struct e1000_adapter *adapter)
464 {
465         if (adapter->en_mng_pt) {
466                 uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
467
468                 /* re-enable hardware interception of ARP */
469                 manc |= E1000_MANC_ARP_EN;
470
471                 if (adapter->hw.has_manc2h)
472                         manc &= ~E1000_MANC_EN_MNG2HOST;
473
474                 /* don't explicitly have to mess with MANC2H since
475                  * MANC has an enable disable that gates MANC2H */
476
477                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
478         }
479 }
480
481 /**
482  * e1000_configure - configure the hardware for RX and TX
483  * @adapter = private board structure
484  **/
485 static void e1000_configure(struct e1000_adapter *adapter)
486 {
487         struct net_device *netdev = adapter->netdev;
488         int i;
489
490         e1000_set_multi(netdev);
491
492         e1000_restore_vlan(adapter);
493         e1000_init_manageability(adapter);
494
495         e1000_configure_tx(adapter);
496         e1000_setup_rctl(adapter);
497         e1000_configure_rx(adapter);
498         /* call E1000_DESC_UNUSED which always leaves
499          * at least 1 descriptor unused to make sure
500          * next_to_use != next_to_clean */
501         for (i = 0; i < adapter->num_rx_queues; i++) {
502                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
503                 adapter->alloc_rx_buf(adapter, ring,
504                                       E1000_DESC_UNUSED(ring));
505         }
506
507         adapter->tx_queue_len = netdev->tx_queue_len;
508 }
509
510 int e1000_up(struct e1000_adapter *adapter)
511 {
512         /* hardware has been reset, we need to reload some things */
513         e1000_configure(adapter);
514
515         clear_bit(__E1000_DOWN, &adapter->flags);
516
517 #ifdef CONFIG_E1000_NAPI
518         napi_enable(&adapter->napi);
519 #endif
520         e1000_irq_enable(adapter);
521
522         /* fire a link change interrupt to start the watchdog */
523         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
524         return 0;
525 }
526
527 /**
528  * e1000_power_up_phy - restore link in case the phy was powered down
529  * @adapter: address of board private structure
530  *
531  * The phy may be powered down to save power and turn off link when the
532  * driver is unloaded and wake on lan is not enabled (among others)
533  * *** this routine MUST be followed by a call to e1000_reset ***
534  *
535  **/
536
537 void e1000_power_up_phy(struct e1000_adapter *adapter)
538 {
539         uint16_t mii_reg = 0;
540
541         /* Just clear the power down bit to wake the phy back up */
542         if (adapter->hw.media_type == e1000_media_type_copper) {
543                 /* according to the manual, the phy will retain its
544                  * settings across a power-down/up cycle */
545                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
546                 mii_reg &= ~MII_CR_POWER_DOWN;
547                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
548         }
549 }
550
551 static void e1000_power_down_phy(struct e1000_adapter *adapter)
552 {
553         /* Power down the PHY so no link is implied when interface is down *
554          * The PHY cannot be powered down if any of the following is TRUE *
555          * (a) WoL is enabled
556          * (b) AMT is active
557          * (c) SoL/IDER session is active */
558         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
559            adapter->hw.media_type == e1000_media_type_copper) {
560                 uint16_t mii_reg = 0;
561
562                 switch (adapter->hw.mac_type) {
563                 case e1000_82540:
564                 case e1000_82545:
565                 case e1000_82545_rev_3:
566                 case e1000_82546:
567                 case e1000_82546_rev_3:
568                 case e1000_82541:
569                 case e1000_82541_rev_2:
570                 case e1000_82547:
571                 case e1000_82547_rev_2:
572                         if (E1000_READ_REG(&adapter->hw, MANC) &
573                             E1000_MANC_SMBUS_EN)
574                                 goto out;
575                         break;
576                 case e1000_82571:
577                 case e1000_82572:
578                 case e1000_82573:
579                 case e1000_80003es2lan:
580                 case e1000_ich8lan:
581                         if (e1000_check_mng_mode(&adapter->hw) ||
582                             e1000_check_phy_reset_block(&adapter->hw))
583                                 goto out;
584                         break;
585                 default:
586                         goto out;
587                 }
588                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
589                 mii_reg |= MII_CR_POWER_DOWN;
590                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
591                 mdelay(1);
592         }
593 out:
594         return;
595 }
596
597 void
598 e1000_down(struct e1000_adapter *adapter)
599 {
600         struct net_device *netdev = adapter->netdev;
601
602         /* signal that we're down so the interrupt handler does not
603          * reschedule our watchdog timer */
604         set_bit(__E1000_DOWN, &adapter->flags);
605
606 #ifdef CONFIG_E1000_NAPI
607         napi_disable(&adapter->napi);
608         atomic_set(&adapter->irq_sem, 0);
609 #endif
610         e1000_irq_disable(adapter);
611
612         del_timer_sync(&adapter->tx_fifo_stall_timer);
613         del_timer_sync(&adapter->watchdog_timer);
614         del_timer_sync(&adapter->phy_info_timer);
615
616         netdev->tx_queue_len = adapter->tx_queue_len;
617         adapter->link_speed = 0;
618         adapter->link_duplex = 0;
619         netif_carrier_off(netdev);
620         netif_stop_queue(netdev);
621
622         e1000_reset(adapter);
623         e1000_clean_all_tx_rings(adapter);
624         e1000_clean_all_rx_rings(adapter);
625 }
626
627 void
628 e1000_reinit_locked(struct e1000_adapter *adapter)
629 {
630         WARN_ON(in_interrupt());
631         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
632                 msleep(1);
633         e1000_down(adapter);
634         e1000_up(adapter);
635         clear_bit(__E1000_RESETTING, &adapter->flags);
636 }
637
638 void
639 e1000_reset(struct e1000_adapter *adapter)
640 {
641         uint32_t pba = 0, tx_space, min_tx_space, min_rx_space;
642         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
643         boolean_t legacy_pba_adjust = FALSE;
644
645         /* Repartition Pba for greater than 9k mtu
646          * To take effect CTRL.RST is required.
647          */
648
649         switch (adapter->hw.mac_type) {
650         case e1000_82542_rev2_0:
651         case e1000_82542_rev2_1:
652         case e1000_82543:
653         case e1000_82544:
654         case e1000_82540:
655         case e1000_82541:
656         case e1000_82541_rev_2:
657                 legacy_pba_adjust = TRUE;
658                 pba = E1000_PBA_48K;
659                 break;
660         case e1000_82545:
661         case e1000_82545_rev_3:
662         case e1000_82546:
663         case e1000_82546_rev_3:
664                 pba = E1000_PBA_48K;
665                 break;
666         case e1000_82547:
667         case e1000_82547_rev_2:
668                 legacy_pba_adjust = TRUE;
669                 pba = E1000_PBA_30K;
670                 break;
671         case e1000_82571:
672         case e1000_82572:
673         case e1000_80003es2lan:
674                 pba = E1000_PBA_38K;
675                 break;
676         case e1000_82573:
677                 pba = E1000_PBA_20K;
678                 break;
679         case e1000_ich8lan:
680                 pba = E1000_PBA_8K;
681         case e1000_undefined:
682         case e1000_num_macs:
683                 break;
684         }
685
686         if (legacy_pba_adjust == TRUE) {
687                 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
688                         pba -= 8; /* allocate more FIFO for Tx */
689
690                 if (adapter->hw.mac_type == e1000_82547) {
691                         adapter->tx_fifo_head = 0;
692                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
693                         adapter->tx_fifo_size =
694                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
695                         atomic_set(&adapter->tx_fifo_stall, 0);
696                 }
697         } else if (adapter->hw.max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
698                 /* adjust PBA for jumbo frames */
699                 E1000_WRITE_REG(&adapter->hw, PBA, pba);
700
701                 /* To maintain wire speed transmits, the Tx FIFO should be
702                  * large enough to accomodate two full transmit packets,
703                  * rounded up to the next 1KB and expressed in KB.  Likewise,
704                  * the Rx FIFO should be large enough to accomodate at least
705                  * one full receive packet and is similarly rounded up and
706                  * expressed in KB. */
707                 pba = E1000_READ_REG(&adapter->hw, PBA);
708                 /* upper 16 bits has Tx packet buffer allocation size in KB */
709                 tx_space = pba >> 16;
710                 /* lower 16 bits has Rx packet buffer allocation size in KB */
711                 pba &= 0xffff;
712                 /* don't include ethernet FCS because hardware appends/strips */
713                 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
714                                VLAN_TAG_SIZE;
715                 min_tx_space = min_rx_space;
716                 min_tx_space *= 2;
717                 min_tx_space = ALIGN(min_tx_space, 1024);
718                 min_tx_space >>= 10;
719                 min_rx_space = ALIGN(min_rx_space, 1024);
720                 min_rx_space >>= 10;
721
722                 /* If current Tx allocation is less than the min Tx FIFO size,
723                  * and the min Tx FIFO size is less than the current Rx FIFO
724                  * allocation, take space away from current Rx allocation */
725                 if (tx_space < min_tx_space &&
726                     ((min_tx_space - tx_space) < pba)) {
727                         pba = pba - (min_tx_space - tx_space);
728
729                         /* PCI/PCIx hardware has PBA alignment constraints */
730                         switch (adapter->hw.mac_type) {
731                         case e1000_82545 ... e1000_82546_rev_3:
732                                 pba &= ~(E1000_PBA_8K - 1);
733                                 break;
734                         default:
735                                 break;
736                         }
737
738                         /* if short on rx space, rx wins and must trump tx
739                          * adjustment or use Early Receive if available */
740                         if (pba < min_rx_space) {
741                                 switch (adapter->hw.mac_type) {
742                                 case e1000_82573:
743                                         /* ERT enabled in e1000_configure_rx */
744                                         break;
745                                 default:
746                                         pba = min_rx_space;
747                                         break;
748                                 }
749                         }
750                 }
751         }
752
753         E1000_WRITE_REG(&adapter->hw, PBA, pba);
754
755         /* flow control settings */
756         /* Set the FC high water mark to 90% of the FIFO size.
757          * Required to clear last 3 LSB */
758         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
759         /* We can't use 90% on small FIFOs because the remainder
760          * would be less than 1 full frame.  In this case, we size
761          * it to allow at least a full frame above the high water
762          *  mark. */
763         if (pba < E1000_PBA_16K)
764                 fc_high_water_mark = (pba * 1024) - 1600;
765
766         adapter->hw.fc_high_water = fc_high_water_mark;
767         adapter->hw.fc_low_water = fc_high_water_mark - 8;
768         if (adapter->hw.mac_type == e1000_80003es2lan)
769                 adapter->hw.fc_pause_time = 0xFFFF;
770         else
771                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
772         adapter->hw.fc_send_xon = 1;
773         adapter->hw.fc = adapter->hw.original_fc;
774
775         /* Allow time for pending master requests to run */
776         e1000_reset_hw(&adapter->hw);
777         if (adapter->hw.mac_type >= e1000_82544)
778                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
779
780         if (e1000_init_hw(&adapter->hw))
781                 DPRINTK(PROBE, ERR, "Hardware Error\n");
782         e1000_update_mng_vlan(adapter);
783
784         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
785         if (adapter->hw.mac_type >= e1000_82544 &&
786             adapter->hw.mac_type <= e1000_82547_rev_2 &&
787             adapter->hw.autoneg == 1 &&
788             adapter->hw.autoneg_advertised == ADVERTISE_1000_FULL) {
789                 uint32_t ctrl = E1000_READ_REG(&adapter->hw, CTRL);
790                 /* clear phy power management bit if we are in gig only mode,
791                  * which if enabled will attempt negotiation to 100Mb, which
792                  * can cause a loss of link at power off or driver unload */
793                 ctrl &= ~E1000_CTRL_SWDPIN3;
794                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
795         }
796
797         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
798         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
799
800         e1000_reset_adaptive(&adapter->hw);
801         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
802
803         if (!adapter->smart_power_down &&
804             (adapter->hw.mac_type == e1000_82571 ||
805              adapter->hw.mac_type == e1000_82572)) {
806                 uint16_t phy_data = 0;
807                 /* speed up time to link by disabling smart power down, ignore
808                  * the return value of this function because there is nothing
809                  * different we would do if it failed */
810                 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
811                                    &phy_data);
812                 phy_data &= ~IGP02E1000_PM_SPD;
813                 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
814                                     phy_data);
815         }
816
817         e1000_release_manageability(adapter);
818 }
819
820 /**
821  * e1000_probe - Device Initialization Routine
822  * @pdev: PCI device information struct
823  * @ent: entry in e1000_pci_tbl
824  *
825  * Returns 0 on success, negative on failure
826  *
827  * e1000_probe initializes an adapter identified by a pci_dev structure.
828  * The OS initialization, configuring of the adapter private structure,
829  * and a hardware reset occur.
830  **/
831
832 static int __devinit
833 e1000_probe(struct pci_dev *pdev,
834             const struct pci_device_id *ent)
835 {
836         struct net_device *netdev;
837         struct e1000_adapter *adapter;
838         unsigned long mmio_start, mmio_len;
839         unsigned long flash_start, flash_len;
840
841         static int cards_found = 0;
842         static int global_quad_port_a = 0; /* global ksp3 port a indication */
843         int i, err, pci_using_dac;
844         uint16_t eeprom_data = 0;
845         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
846         DECLARE_MAC_BUF(mac);
847
848         if ((err = pci_enable_device(pdev)))
849                 return err;
850
851         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
852             !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
853                 pci_using_dac = 1;
854         } else {
855                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
856                     (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
857                         E1000_ERR("No usable DMA configuration, aborting\n");
858                         goto err_dma;
859                 }
860                 pci_using_dac = 0;
861         }
862
863         if ((err = pci_request_regions(pdev, e1000_driver_name)))
864                 goto err_pci_reg;
865
866         pci_set_master(pdev);
867
868         err = -ENOMEM;
869         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
870         if (!netdev)
871                 goto err_alloc_etherdev;
872
873         SET_NETDEV_DEV(netdev, &pdev->dev);
874
875         pci_set_drvdata(pdev, netdev);
876         adapter = netdev_priv(netdev);
877         adapter->netdev = netdev;
878         adapter->pdev = pdev;
879         adapter->hw.back = adapter;
880         adapter->msg_enable = (1 << debug) - 1;
881
882         mmio_start = pci_resource_start(pdev, BAR_0);
883         mmio_len = pci_resource_len(pdev, BAR_0);
884
885         err = -EIO;
886         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
887         if (!adapter->hw.hw_addr)
888                 goto err_ioremap;
889
890         for (i = BAR_1; i <= BAR_5; i++) {
891                 if (pci_resource_len(pdev, i) == 0)
892                         continue;
893                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
894                         adapter->hw.io_base = pci_resource_start(pdev, i);
895                         break;
896                 }
897         }
898
899         netdev->open = &e1000_open;
900         netdev->stop = &e1000_close;
901         netdev->hard_start_xmit = &e1000_xmit_frame;
902         netdev->get_stats = &e1000_get_stats;
903         netdev->set_multicast_list = &e1000_set_multi;
904         netdev->set_mac_address = &e1000_set_mac;
905         netdev->change_mtu = &e1000_change_mtu;
906         netdev->do_ioctl = &e1000_ioctl;
907         e1000_set_ethtool_ops(netdev);
908         netdev->tx_timeout = &e1000_tx_timeout;
909         netdev->watchdog_timeo = 5 * HZ;
910 #ifdef CONFIG_E1000_NAPI
911         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
912 #endif
913         netdev->vlan_rx_register = e1000_vlan_rx_register;
914         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
915         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
916 #ifdef CONFIG_NET_POLL_CONTROLLER
917         netdev->poll_controller = e1000_netpoll;
918 #endif
919         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
920
921         netdev->mem_start = mmio_start;
922         netdev->mem_end = mmio_start + mmio_len;
923         netdev->base_addr = adapter->hw.io_base;
924
925         adapter->bd_number = cards_found;
926
927         /* setup the private structure */
928
929         if ((err = e1000_sw_init(adapter)))
930                 goto err_sw_init;
931
932         err = -EIO;
933         /* Flash BAR mapping must happen after e1000_sw_init
934          * because it depends on mac_type */
935         if ((adapter->hw.mac_type == e1000_ich8lan) &&
936            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
937                 flash_start = pci_resource_start(pdev, 1);
938                 flash_len = pci_resource_len(pdev, 1);
939                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
940                 if (!adapter->hw.flash_address)
941                         goto err_flashmap;
942         }
943
944         if (e1000_check_phy_reset_block(&adapter->hw))
945                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
946
947         if (adapter->hw.mac_type >= e1000_82543) {
948                 netdev->features = NETIF_F_SG |
949                                    NETIF_F_HW_CSUM |
950                                    NETIF_F_HW_VLAN_TX |
951                                    NETIF_F_HW_VLAN_RX |
952                                    NETIF_F_HW_VLAN_FILTER;
953                 if (adapter->hw.mac_type == e1000_ich8lan)
954                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
955         }
956
957         if ((adapter->hw.mac_type >= e1000_82544) &&
958            (adapter->hw.mac_type != e1000_82547))
959                 netdev->features |= NETIF_F_TSO;
960
961         if (adapter->hw.mac_type > e1000_82547_rev_2)
962                 netdev->features |= NETIF_F_TSO6;
963         if (pci_using_dac)
964                 netdev->features |= NETIF_F_HIGHDMA;
965
966         netdev->features |= NETIF_F_LLTX;
967
968         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
969
970         /* initialize eeprom parameters */
971
972         if (e1000_init_eeprom_params(&adapter->hw)) {
973                 E1000_ERR("EEPROM initialization failed\n");
974                 goto err_eeprom;
975         }
976
977         /* before reading the EEPROM, reset the controller to
978          * put the device in a known good starting state */
979
980         e1000_reset_hw(&adapter->hw);
981
982         /* make sure the EEPROM is good */
983
984         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
985                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
986                 goto err_eeprom;
987         }
988
989         /* copy the MAC address out of the EEPROM */
990
991         if (e1000_read_mac_addr(&adapter->hw))
992                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
993         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
994         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
995
996         if (!is_valid_ether_addr(netdev->perm_addr)) {
997                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
998                 goto err_eeprom;
999         }
1000
1001         e1000_get_bus_info(&adapter->hw);
1002
1003         init_timer(&adapter->tx_fifo_stall_timer);
1004         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1005         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
1006
1007         init_timer(&adapter->watchdog_timer);
1008         adapter->watchdog_timer.function = &e1000_watchdog;
1009         adapter->watchdog_timer.data = (unsigned long) adapter;
1010
1011         init_timer(&adapter->phy_info_timer);
1012         adapter->phy_info_timer.function = &e1000_update_phy_info;
1013         adapter->phy_info_timer.data = (unsigned long) adapter;
1014
1015         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1016
1017         e1000_check_options(adapter);
1018
1019         /* Initial Wake on LAN setting
1020          * If APM wake is enabled in the EEPROM,
1021          * enable the ACPI Magic Packet filter
1022          */
1023
1024         switch (adapter->hw.mac_type) {
1025         case e1000_82542_rev2_0:
1026         case e1000_82542_rev2_1:
1027         case e1000_82543:
1028                 break;
1029         case e1000_82544:
1030                 e1000_read_eeprom(&adapter->hw,
1031                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1032                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1033                 break;
1034         case e1000_ich8lan:
1035                 e1000_read_eeprom(&adapter->hw,
1036                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1037                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1038                 break;
1039         case e1000_82546:
1040         case e1000_82546_rev_3:
1041         case e1000_82571:
1042         case e1000_80003es2lan:
1043                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
1044                         e1000_read_eeprom(&adapter->hw,
1045                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1046                         break;
1047                 }
1048                 /* Fall Through */
1049         default:
1050                 e1000_read_eeprom(&adapter->hw,
1051                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1052                 break;
1053         }
1054         if (eeprom_data & eeprom_apme_mask)
1055                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1056
1057         /* now that we have the eeprom settings, apply the special cases
1058          * where the eeprom may be wrong or the board simply won't support
1059          * wake on lan on a particular port */
1060         switch (pdev->device) {
1061         case E1000_DEV_ID_82546GB_PCIE:
1062                 adapter->eeprom_wol = 0;
1063                 break;
1064         case E1000_DEV_ID_82546EB_FIBER:
1065         case E1000_DEV_ID_82546GB_FIBER:
1066         case E1000_DEV_ID_82571EB_FIBER:
1067                 /* Wake events only supported on port A for dual fiber
1068                  * regardless of eeprom setting */
1069                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
1070                         adapter->eeprom_wol = 0;
1071                 break;
1072         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1073         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1074         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1075         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1076         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1077                 /* if quad port adapter, disable WoL on all but port A */
1078                 if (global_quad_port_a != 0)
1079                         adapter->eeprom_wol = 0;
1080                 else
1081                         adapter->quad_port_a = 1;
1082                 /* Reset for multiple quad port adapters */
1083                 if (++global_quad_port_a == 4)
1084                         global_quad_port_a = 0;
1085                 break;
1086         }
1087
1088         /* initialize the wol settings based on the eeprom settings */
1089         adapter->wol = adapter->eeprom_wol;
1090
1091         /* print bus type/speed/width info */
1092         {
1093         struct e1000_hw *hw = &adapter->hw;
1094         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1095                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1096                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1097                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1098                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1099                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1100                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1101                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1102                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1103                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1104                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1105                  "32-bit"));
1106         }
1107
1108         printk("%s\n", print_mac(mac, netdev->dev_addr));
1109
1110         /* reset the hardware with the new settings */
1111         e1000_reset(adapter);
1112
1113         /* If the controller is 82573 and f/w is AMT, do not set
1114          * DRV_LOAD until the interface is up.  For all other cases,
1115          * let the f/w know that the h/w is now under the control
1116          * of the driver. */
1117         if (adapter->hw.mac_type != e1000_82573 ||
1118             !e1000_check_mng_mode(&adapter->hw))
1119                 e1000_get_hw_control(adapter);
1120
1121         /* tell the stack to leave us alone until e1000_open() is called */
1122         netif_carrier_off(netdev);
1123         netif_stop_queue(netdev);
1124
1125         strcpy(netdev->name, "eth%d");
1126         if ((err = register_netdev(netdev)))
1127                 goto err_register;
1128
1129         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1130
1131         cards_found++;
1132         return 0;
1133
1134 err_register:
1135         e1000_release_hw_control(adapter);
1136 err_eeprom:
1137         if (!e1000_check_phy_reset_block(&adapter->hw))
1138                 e1000_phy_hw_reset(&adapter->hw);
1139
1140         if (adapter->hw.flash_address)
1141                 iounmap(adapter->hw.flash_address);
1142 err_flashmap:
1143 #ifdef CONFIG_E1000_NAPI
1144         for (i = 0; i < adapter->num_rx_queues; i++)
1145                 dev_put(&adapter->polling_netdev[i]);
1146 #endif
1147
1148         kfree(adapter->tx_ring);
1149         kfree(adapter->rx_ring);
1150 #ifdef CONFIG_E1000_NAPI
1151         kfree(adapter->polling_netdev);
1152 #endif
1153 err_sw_init:
1154         iounmap(adapter->hw.hw_addr);
1155 err_ioremap:
1156         free_netdev(netdev);
1157 err_alloc_etherdev:
1158         pci_release_regions(pdev);
1159 err_pci_reg:
1160 err_dma:
1161         pci_disable_device(pdev);
1162         return err;
1163 }
1164
1165 /**
1166  * e1000_remove - Device Removal Routine
1167  * @pdev: PCI device information struct
1168  *
1169  * e1000_remove is called by the PCI subsystem to alert the driver
1170  * that it should release a PCI device.  The could be caused by a
1171  * Hot-Plug event, or because the driver is going to be removed from
1172  * memory.
1173  **/
1174
1175 static void __devexit
1176 e1000_remove(struct pci_dev *pdev)
1177 {
1178         struct net_device *netdev = pci_get_drvdata(pdev);
1179         struct e1000_adapter *adapter = netdev_priv(netdev);
1180 #ifdef CONFIG_E1000_NAPI
1181         int i;
1182 #endif
1183
1184         cancel_work_sync(&adapter->reset_task);
1185
1186         e1000_release_manageability(adapter);
1187
1188         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1189          * would have already happened in close and is redundant. */
1190         e1000_release_hw_control(adapter);
1191
1192 #ifdef CONFIG_E1000_NAPI
1193         for (i = 0; i < adapter->num_rx_queues; i++)
1194                 dev_put(&adapter->polling_netdev[i]);
1195 #endif
1196
1197         unregister_netdev(netdev);
1198
1199         if (!e1000_check_phy_reset_block(&adapter->hw))
1200                 e1000_phy_hw_reset(&adapter->hw);
1201
1202         kfree(adapter->tx_ring);
1203         kfree(adapter->rx_ring);
1204 #ifdef CONFIG_E1000_NAPI
1205         kfree(adapter->polling_netdev);
1206 #endif
1207
1208         iounmap(adapter->hw.hw_addr);
1209         if (adapter->hw.flash_address)
1210                 iounmap(adapter->hw.flash_address);
1211         pci_release_regions(pdev);
1212
1213         free_netdev(netdev);
1214
1215         pci_disable_device(pdev);
1216 }
1217
1218 /**
1219  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1220  * @adapter: board private structure to initialize
1221  *
1222  * e1000_sw_init initializes the Adapter private data structure.
1223  * Fields are initialized based on PCI device information and
1224  * OS network device settings (MTU size).
1225  **/
1226
1227 static int __devinit
1228 e1000_sw_init(struct e1000_adapter *adapter)
1229 {
1230         struct e1000_hw *hw = &adapter->hw;
1231         struct net_device *netdev = adapter->netdev;
1232         struct pci_dev *pdev = adapter->pdev;
1233 #ifdef CONFIG_E1000_NAPI
1234         int i;
1235 #endif
1236
1237         /* PCI config space info */
1238
1239         hw->vendor_id = pdev->vendor;
1240         hw->device_id = pdev->device;
1241         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1242         hw->subsystem_id = pdev->subsystem_device;
1243         hw->revision_id = pdev->revision;
1244
1245         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1246
1247         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1248         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1249         hw->max_frame_size = netdev->mtu +
1250                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1251         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1252
1253         /* identify the MAC */
1254
1255         if (e1000_set_mac_type(hw)) {
1256                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1257                 return -EIO;
1258         }
1259
1260         switch (hw->mac_type) {
1261         default:
1262                 break;
1263         case e1000_82541:
1264         case e1000_82547:
1265         case e1000_82541_rev_2:
1266         case e1000_82547_rev_2:
1267                 hw->phy_init_script = 1;
1268                 break;
1269         }
1270
1271         e1000_set_media_type(hw);
1272
1273         hw->wait_autoneg_complete = FALSE;
1274         hw->tbi_compatibility_en = TRUE;
1275         hw->adaptive_ifs = TRUE;
1276
1277         /* Copper options */
1278
1279         if (hw->media_type == e1000_media_type_copper) {
1280                 hw->mdix = AUTO_ALL_MODES;
1281                 hw->disable_polarity_correction = FALSE;
1282                 hw->master_slave = E1000_MASTER_SLAVE;
1283         }
1284
1285         adapter->num_tx_queues = 1;
1286         adapter->num_rx_queues = 1;
1287
1288         if (e1000_alloc_queues(adapter)) {
1289                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1290                 return -ENOMEM;
1291         }
1292
1293 #ifdef CONFIG_E1000_NAPI
1294         for (i = 0; i < adapter->num_rx_queues; i++) {
1295                 adapter->polling_netdev[i].priv = adapter;
1296                 dev_hold(&adapter->polling_netdev[i]);
1297                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1298         }
1299         spin_lock_init(&adapter->tx_queue_lock);
1300 #endif
1301
1302         /* Explicitly disable IRQ since the NIC can be in any state. */
1303         atomic_set(&adapter->irq_sem, 0);
1304         e1000_irq_disable(adapter);
1305
1306         spin_lock_init(&adapter->stats_lock);
1307
1308         set_bit(__E1000_DOWN, &adapter->flags);
1309
1310         return 0;
1311 }
1312
1313 /**
1314  * e1000_alloc_queues - Allocate memory for all rings
1315  * @adapter: board private structure to initialize
1316  *
1317  * We allocate one ring per queue at run-time since we don't know the
1318  * number of queues at compile-time.  The polling_netdev array is
1319  * intended for Multiqueue, but should work fine with a single queue.
1320  **/
1321
1322 static int __devinit
1323 e1000_alloc_queues(struct e1000_adapter *adapter)
1324 {
1325         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1326                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1327         if (!adapter->tx_ring)
1328                 return -ENOMEM;
1329
1330         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1331                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1332         if (!adapter->rx_ring) {
1333                 kfree(adapter->tx_ring);
1334                 return -ENOMEM;
1335         }
1336
1337 #ifdef CONFIG_E1000_NAPI
1338         adapter->polling_netdev = kcalloc(adapter->num_rx_queues,
1339                                           sizeof(struct net_device),
1340                                           GFP_KERNEL);
1341         if (!adapter->polling_netdev) {
1342                 kfree(adapter->tx_ring);
1343                 kfree(adapter->rx_ring);
1344                 return -ENOMEM;
1345         }
1346 #endif
1347
1348         return E1000_SUCCESS;
1349 }
1350
1351 /**
1352  * e1000_open - Called when a network interface is made active
1353  * @netdev: network interface device structure
1354  *
1355  * Returns 0 on success, negative value on failure
1356  *
1357  * The open entry point is called when a network interface is made
1358  * active by the system (IFF_UP).  At this point all resources needed
1359  * for transmit and receive operations are allocated, the interrupt
1360  * handler is registered with the OS, the watchdog timer is started,
1361  * and the stack is notified that the interface is ready.
1362  **/
1363
1364 static int
1365 e1000_open(struct net_device *netdev)
1366 {
1367         struct e1000_adapter *adapter = netdev_priv(netdev);
1368         int err;
1369
1370         /* disallow open during test */
1371         if (test_bit(__E1000_TESTING, &adapter->flags))
1372                 return -EBUSY;
1373
1374         /* allocate transmit descriptors */
1375         err = e1000_setup_all_tx_resources(adapter);
1376         if (err)
1377                 goto err_setup_tx;
1378
1379         /* allocate receive descriptors */
1380         err = e1000_setup_all_rx_resources(adapter);
1381         if (err)
1382                 goto err_setup_rx;
1383
1384         e1000_power_up_phy(adapter);
1385
1386         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1387         if ((adapter->hw.mng_cookie.status &
1388                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1389                 e1000_update_mng_vlan(adapter);
1390         }
1391
1392         /* If AMT is enabled, let the firmware know that the network
1393          * interface is now open */
1394         if (adapter->hw.mac_type == e1000_82573 &&
1395             e1000_check_mng_mode(&adapter->hw))
1396                 e1000_get_hw_control(adapter);
1397
1398         /* before we allocate an interrupt, we must be ready to handle it.
1399          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1400          * as soon as we call pci_request_irq, so we have to setup our
1401          * clean_rx handler before we do so.  */
1402         e1000_configure(adapter);
1403
1404         err = e1000_request_irq(adapter);
1405         if (err)
1406                 goto err_req_irq;
1407
1408         /* From here on the code is the same as e1000_up() */
1409         clear_bit(__E1000_DOWN, &adapter->flags);
1410
1411 #ifdef CONFIG_E1000_NAPI
1412         napi_enable(&adapter->napi);
1413 #endif
1414
1415         e1000_irq_enable(adapter);
1416
1417         /* fire a link status change interrupt to start the watchdog */
1418         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
1419
1420         return E1000_SUCCESS;
1421
1422 err_req_irq:
1423         e1000_release_hw_control(adapter);
1424         e1000_power_down_phy(adapter);
1425         e1000_free_all_rx_resources(adapter);
1426 err_setup_rx:
1427         e1000_free_all_tx_resources(adapter);
1428 err_setup_tx:
1429         e1000_reset(adapter);
1430
1431         return err;
1432 }
1433
1434 /**
1435  * e1000_close - Disables a network interface
1436  * @netdev: network interface device structure
1437  *
1438  * Returns 0, this is not allowed to fail
1439  *
1440  * The close entry point is called when an interface is de-activated
1441  * by the OS.  The hardware is still under the drivers control, but
1442  * needs to be disabled.  A global MAC reset is issued to stop the
1443  * hardware, and all transmit and receive resources are freed.
1444  **/
1445
1446 static int
1447 e1000_close(struct net_device *netdev)
1448 {
1449         struct e1000_adapter *adapter = netdev_priv(netdev);
1450
1451         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1452         e1000_down(adapter);
1453         e1000_power_down_phy(adapter);
1454         e1000_free_irq(adapter);
1455
1456         e1000_free_all_tx_resources(adapter);
1457         e1000_free_all_rx_resources(adapter);
1458
1459         /* kill manageability vlan ID if supported, but not if a vlan with
1460          * the same ID is registered on the host OS (let 8021q kill it) */
1461         if ((adapter->hw.mng_cookie.status &
1462                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1463              !(adapter->vlgrp &&
1464                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1465                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1466         }
1467
1468         /* If AMT is enabled, let the firmware know that the network
1469          * interface is now closed */
1470         if (adapter->hw.mac_type == e1000_82573 &&
1471             e1000_check_mng_mode(&adapter->hw))
1472                 e1000_release_hw_control(adapter);
1473
1474         return 0;
1475 }
1476
1477 /**
1478  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1479  * @adapter: address of board private structure
1480  * @start: address of beginning of memory
1481  * @len: length of memory
1482  **/
1483 static boolean_t
1484 e1000_check_64k_bound(struct e1000_adapter *adapter,
1485                       void *start, unsigned long len)
1486 {
1487         unsigned long begin = (unsigned long) start;
1488         unsigned long end = begin + len;
1489
1490         /* First rev 82545 and 82546 need to not allow any memory
1491          * write location to cross 64k boundary due to errata 23 */
1492         if (adapter->hw.mac_type == e1000_82545 ||
1493             adapter->hw.mac_type == e1000_82546) {
1494                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1495         }
1496
1497         return TRUE;
1498 }
1499
1500 /**
1501  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1502  * @adapter: board private structure
1503  * @txdr:    tx descriptor ring (for a specific queue) to setup
1504  *
1505  * Return 0 on success, negative on failure
1506  **/
1507
1508 static int
1509 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1510                          struct e1000_tx_ring *txdr)
1511 {
1512         struct pci_dev *pdev = adapter->pdev;
1513         int size;
1514
1515         size = sizeof(struct e1000_buffer) * txdr->count;
1516         txdr->buffer_info = vmalloc(size);
1517         if (!txdr->buffer_info) {
1518                 DPRINTK(PROBE, ERR,
1519                 "Unable to allocate memory for the transmit descriptor ring\n");
1520                 return -ENOMEM;
1521         }
1522         memset(txdr->buffer_info, 0, size);
1523
1524         /* round up to nearest 4K */
1525
1526         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1527         txdr->size = ALIGN(txdr->size, 4096);
1528
1529         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1530         if (!txdr->desc) {
1531 setup_tx_desc_die:
1532                 vfree(txdr->buffer_info);
1533                 DPRINTK(PROBE, ERR,
1534                 "Unable to allocate memory for the transmit descriptor ring\n");
1535                 return -ENOMEM;
1536         }
1537
1538         /* Fix for errata 23, can't cross 64kB boundary */
1539         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1540                 void *olddesc = txdr->desc;
1541                 dma_addr_t olddma = txdr->dma;
1542                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1543                                      "at %p\n", txdr->size, txdr->desc);
1544                 /* Try again, without freeing the previous */
1545                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1546                 /* Failed allocation, critical failure */
1547                 if (!txdr->desc) {
1548                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1549                         goto setup_tx_desc_die;
1550                 }
1551
1552                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1553                         /* give up */
1554                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1555                                             txdr->dma);
1556                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1557                         DPRINTK(PROBE, ERR,
1558                                 "Unable to allocate aligned memory "
1559                                 "for the transmit descriptor ring\n");
1560                         vfree(txdr->buffer_info);
1561                         return -ENOMEM;
1562                 } else {
1563                         /* Free old allocation, new allocation was successful */
1564                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1565                 }
1566         }
1567         memset(txdr->desc, 0, txdr->size);
1568
1569         txdr->next_to_use = 0;
1570         txdr->next_to_clean = 0;
1571         spin_lock_init(&txdr->tx_lock);
1572
1573         return 0;
1574 }
1575
1576 /**
1577  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1578  *                                (Descriptors) for all queues
1579  * @adapter: board private structure
1580  *
1581  * Return 0 on success, negative on failure
1582  **/
1583
1584 int
1585 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1586 {
1587         int i, err = 0;
1588
1589         for (i = 0; i < adapter->num_tx_queues; i++) {
1590                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1591                 if (err) {
1592                         DPRINTK(PROBE, ERR,
1593                                 "Allocation for Tx Queue %u failed\n", i);
1594                         for (i-- ; i >= 0; i--)
1595                                 e1000_free_tx_resources(adapter,
1596                                                         &adapter->tx_ring[i]);
1597                         break;
1598                 }
1599         }
1600
1601         return err;
1602 }
1603
1604 /**
1605  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1606  * @adapter: board private structure
1607  *
1608  * Configure the Tx unit of the MAC after a reset.
1609  **/
1610
1611 static void
1612 e1000_configure_tx(struct e1000_adapter *adapter)
1613 {
1614         uint64_t tdba;
1615         struct e1000_hw *hw = &adapter->hw;
1616         uint32_t tdlen, tctl, tipg, tarc;
1617         uint32_t ipgr1, ipgr2;
1618
1619         /* Setup the HW Tx Head and Tail descriptor pointers */
1620
1621         switch (adapter->num_tx_queues) {
1622         case 1:
1623         default:
1624                 tdba = adapter->tx_ring[0].dma;
1625                 tdlen = adapter->tx_ring[0].count *
1626                         sizeof(struct e1000_tx_desc);
1627                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1628                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1629                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1630                 E1000_WRITE_REG(hw, TDT, 0);
1631                 E1000_WRITE_REG(hw, TDH, 0);
1632                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1633                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1634                 break;
1635         }
1636
1637         /* Set the default values for the Tx Inter Packet Gap timer */
1638         if (adapter->hw.mac_type <= e1000_82547_rev_2 &&
1639             (hw->media_type == e1000_media_type_fiber ||
1640              hw->media_type == e1000_media_type_internal_serdes))
1641                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1642         else
1643                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1644
1645         switch (hw->mac_type) {
1646         case e1000_82542_rev2_0:
1647         case e1000_82542_rev2_1:
1648                 tipg = DEFAULT_82542_TIPG_IPGT;
1649                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1650                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1651                 break;
1652         case e1000_80003es2lan:
1653                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1654                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1655                 break;
1656         default:
1657                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1658                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1659                 break;
1660         }
1661         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1662         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1663         E1000_WRITE_REG(hw, TIPG, tipg);
1664
1665         /* Set the Tx Interrupt Delay register */
1666
1667         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1668         if (hw->mac_type >= e1000_82540)
1669                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1670
1671         /* Program the Transmit Control Register */
1672
1673         tctl = E1000_READ_REG(hw, TCTL);
1674         tctl &= ~E1000_TCTL_CT;
1675         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1676                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1677
1678         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1679                 tarc = E1000_READ_REG(hw, TARC0);
1680                 /* set the speed mode bit, we'll clear it if we're not at
1681                  * gigabit link later */
1682                 tarc |= (1 << 21);
1683                 E1000_WRITE_REG(hw, TARC0, tarc);
1684         } else if (hw->mac_type == e1000_80003es2lan) {
1685                 tarc = E1000_READ_REG(hw, TARC0);
1686                 tarc |= 1;
1687                 E1000_WRITE_REG(hw, TARC0, tarc);
1688                 tarc = E1000_READ_REG(hw, TARC1);
1689                 tarc |= 1;
1690                 E1000_WRITE_REG(hw, TARC1, tarc);
1691         }
1692
1693         e1000_config_collision_dist(hw);
1694
1695         /* Setup Transmit Descriptor Settings for eop descriptor */
1696         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1697
1698         /* only set IDE if we are delaying interrupts using the timers */
1699         if (adapter->tx_int_delay)
1700                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1701
1702         if (hw->mac_type < e1000_82543)
1703                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1704         else
1705                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1706
1707         /* Cache if we're 82544 running in PCI-X because we'll
1708          * need this to apply a workaround later in the send path. */
1709         if (hw->mac_type == e1000_82544 &&
1710             hw->bus_type == e1000_bus_type_pcix)
1711                 adapter->pcix_82544 = 1;
1712
1713         E1000_WRITE_REG(hw, TCTL, tctl);
1714
1715 }
1716
1717 /**
1718  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1719  * @adapter: board private structure
1720  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1721  *
1722  * Returns 0 on success, negative on failure
1723  **/
1724
1725 static int
1726 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1727                          struct e1000_rx_ring *rxdr)
1728 {
1729         struct pci_dev *pdev = adapter->pdev;
1730         int size, desc_len;
1731
1732         size = sizeof(struct e1000_buffer) * rxdr->count;
1733         rxdr->buffer_info = vmalloc(size);
1734         if (!rxdr->buffer_info) {
1735                 DPRINTK(PROBE, ERR,
1736                 "Unable to allocate memory for the receive descriptor ring\n");
1737                 return -ENOMEM;
1738         }
1739         memset(rxdr->buffer_info, 0, size);
1740
1741         rxdr->ps_page = kcalloc(rxdr->count, sizeof(struct e1000_ps_page),
1742                                 GFP_KERNEL);
1743         if (!rxdr->ps_page) {
1744                 vfree(rxdr->buffer_info);
1745                 DPRINTK(PROBE, ERR,
1746                 "Unable to allocate memory for the receive descriptor ring\n");
1747                 return -ENOMEM;
1748         }
1749
1750         rxdr->ps_page_dma = kcalloc(rxdr->count,
1751                                     sizeof(struct e1000_ps_page_dma),
1752                                     GFP_KERNEL);
1753         if (!rxdr->ps_page_dma) {
1754                 vfree(rxdr->buffer_info);
1755                 kfree(rxdr->ps_page);
1756                 DPRINTK(PROBE, ERR,
1757                 "Unable to allocate memory for the receive descriptor ring\n");
1758                 return -ENOMEM;
1759         }
1760
1761         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1762                 desc_len = sizeof(struct e1000_rx_desc);
1763         else
1764                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1765
1766         /* Round up to nearest 4K */
1767
1768         rxdr->size = rxdr->count * desc_len;
1769         rxdr->size = ALIGN(rxdr->size, 4096);
1770
1771         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1772
1773         if (!rxdr->desc) {
1774                 DPRINTK(PROBE, ERR,
1775                 "Unable to allocate memory for the receive descriptor ring\n");
1776 setup_rx_desc_die:
1777                 vfree(rxdr->buffer_info);
1778                 kfree(rxdr->ps_page);
1779                 kfree(rxdr->ps_page_dma);
1780                 return -ENOMEM;
1781         }
1782
1783         /* Fix for errata 23, can't cross 64kB boundary */
1784         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1785                 void *olddesc = rxdr->desc;
1786                 dma_addr_t olddma = rxdr->dma;
1787                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1788                                      "at %p\n", rxdr->size, rxdr->desc);
1789                 /* Try again, without freeing the previous */
1790                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1791                 /* Failed allocation, critical failure */
1792                 if (!rxdr->desc) {
1793                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1794                         DPRINTK(PROBE, ERR,
1795                                 "Unable to allocate memory "
1796                                 "for the receive descriptor ring\n");
1797                         goto setup_rx_desc_die;
1798                 }
1799
1800                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1801                         /* give up */
1802                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1803                                             rxdr->dma);
1804                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1805                         DPRINTK(PROBE, ERR,
1806                                 "Unable to allocate aligned memory "
1807                                 "for the receive descriptor ring\n");
1808                         goto setup_rx_desc_die;
1809                 } else {
1810                         /* Free old allocation, new allocation was successful */
1811                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1812                 }
1813         }
1814         memset(rxdr->desc, 0, rxdr->size);
1815
1816         rxdr->next_to_clean = 0;
1817         rxdr->next_to_use = 0;
1818
1819         return 0;
1820 }
1821
1822 /**
1823  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1824  *                                (Descriptors) for all queues
1825  * @adapter: board private structure
1826  *
1827  * Return 0 on success, negative on failure
1828  **/
1829
1830 int
1831 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1832 {
1833         int i, err = 0;
1834
1835         for (i = 0; i < adapter->num_rx_queues; i++) {
1836                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1837                 if (err) {
1838                         DPRINTK(PROBE, ERR,
1839                                 "Allocation for Rx Queue %u failed\n", i);
1840                         for (i-- ; i >= 0; i--)
1841                                 e1000_free_rx_resources(adapter,
1842                                                         &adapter->rx_ring[i]);
1843                         break;
1844                 }
1845         }
1846
1847         return err;
1848 }
1849
1850 /**
1851  * e1000_setup_rctl - configure the receive control registers
1852  * @adapter: Board private structure
1853  **/
1854 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1855                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1856 static void
1857 e1000_setup_rctl(struct e1000_adapter *adapter)
1858 {
1859         uint32_t rctl, rfctl;
1860         uint32_t psrctl = 0;
1861 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1862         uint32_t pages = 0;
1863 #endif
1864
1865         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1866
1867         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1868
1869         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1870                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1871                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1872
1873         if (adapter->hw.tbi_compatibility_on == 1)
1874                 rctl |= E1000_RCTL_SBP;
1875         else
1876                 rctl &= ~E1000_RCTL_SBP;
1877
1878         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1879                 rctl &= ~E1000_RCTL_LPE;
1880         else
1881                 rctl |= E1000_RCTL_LPE;
1882
1883         /* Setup buffer sizes */
1884         rctl &= ~E1000_RCTL_SZ_4096;
1885         rctl |= E1000_RCTL_BSEX;
1886         switch (adapter->rx_buffer_len) {
1887                 case E1000_RXBUFFER_256:
1888                         rctl |= E1000_RCTL_SZ_256;
1889                         rctl &= ~E1000_RCTL_BSEX;
1890                         break;
1891                 case E1000_RXBUFFER_512:
1892                         rctl |= E1000_RCTL_SZ_512;
1893                         rctl &= ~E1000_RCTL_BSEX;
1894                         break;
1895                 case E1000_RXBUFFER_1024:
1896                         rctl |= E1000_RCTL_SZ_1024;
1897                         rctl &= ~E1000_RCTL_BSEX;
1898                         break;
1899                 case E1000_RXBUFFER_2048:
1900                 default:
1901                         rctl |= E1000_RCTL_SZ_2048;
1902                         rctl &= ~E1000_RCTL_BSEX;
1903                         break;
1904                 case E1000_RXBUFFER_4096:
1905                         rctl |= E1000_RCTL_SZ_4096;
1906                         break;
1907                 case E1000_RXBUFFER_8192:
1908                         rctl |= E1000_RCTL_SZ_8192;
1909                         break;
1910                 case E1000_RXBUFFER_16384:
1911                         rctl |= E1000_RCTL_SZ_16384;
1912                         break;
1913         }
1914
1915 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1916         /* 82571 and greater support packet-split where the protocol
1917          * header is placed in skb->data and the packet data is
1918          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1919          * In the case of a non-split, skb->data is linearly filled,
1920          * followed by the page buffers.  Therefore, skb->data is
1921          * sized to hold the largest protocol header.
1922          */
1923         /* allocations using alloc_page take too long for regular MTU
1924          * so only enable packet split for jumbo frames */
1925         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1926         if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
1927             PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
1928                 adapter->rx_ps_pages = pages;
1929         else
1930                 adapter->rx_ps_pages = 0;
1931 #endif
1932         if (adapter->rx_ps_pages) {
1933                 /* Configure extra packet-split registers */
1934                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1935                 rfctl |= E1000_RFCTL_EXTEN;
1936                 /* disable packet split support for IPv6 extension headers,
1937                  * because some malformed IPv6 headers can hang the RX */
1938                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1939                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
1940
1941                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1942
1943                 rctl |= E1000_RCTL_DTYP_PS;
1944
1945                 psrctl |= adapter->rx_ps_bsize0 >>
1946                         E1000_PSRCTL_BSIZE0_SHIFT;
1947
1948                 switch (adapter->rx_ps_pages) {
1949                 case 3:
1950                         psrctl |= PAGE_SIZE <<
1951                                 E1000_PSRCTL_BSIZE3_SHIFT;
1952                 case 2:
1953                         psrctl |= PAGE_SIZE <<
1954                                 E1000_PSRCTL_BSIZE2_SHIFT;
1955                 case 1:
1956                         psrctl |= PAGE_SIZE >>
1957                                 E1000_PSRCTL_BSIZE1_SHIFT;
1958                         break;
1959                 }
1960
1961                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1962         }
1963
1964         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1965 }
1966
1967 /**
1968  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1969  * @adapter: board private structure
1970  *
1971  * Configure the Rx unit of the MAC after a reset.
1972  **/
1973
1974 static void
1975 e1000_configure_rx(struct e1000_adapter *adapter)
1976 {
1977         uint64_t rdba;
1978         struct e1000_hw *hw = &adapter->hw;
1979         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1980
1981         if (adapter->rx_ps_pages) {
1982                 /* this is a 32 byte descriptor */
1983                 rdlen = adapter->rx_ring[0].count *
1984                         sizeof(union e1000_rx_desc_packet_split);
1985                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1986                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1987         } else {
1988                 rdlen = adapter->rx_ring[0].count *
1989                         sizeof(struct e1000_rx_desc);
1990                 adapter->clean_rx = e1000_clean_rx_irq;
1991                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1992         }
1993
1994         /* disable receives while setting up the descriptors */
1995         rctl = E1000_READ_REG(hw, RCTL);
1996         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1997
1998         /* set the Receive Delay Timer Register */
1999         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
2000
2001         if (hw->mac_type >= e1000_82540) {
2002                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
2003                 if (adapter->itr_setting != 0)
2004                         E1000_WRITE_REG(hw, ITR,
2005                                 1000000000 / (adapter->itr * 256));
2006         }
2007
2008         if (hw->mac_type >= e1000_82571) {
2009                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2010                 /* Reset delay timers after every interrupt */
2011                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2012 #ifdef CONFIG_E1000_NAPI
2013                 /* Auto-Mask interrupts upon ICR access */
2014                 ctrl_ext |= E1000_CTRL_EXT_IAME;
2015                 E1000_WRITE_REG(hw, IAM, 0xffffffff);
2016 #endif
2017                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2018                 E1000_WRITE_FLUSH(hw);
2019         }
2020
2021         /* Setup the HW Rx Head and Tail Descriptor Pointers and
2022          * the Base and Length of the Rx Descriptor Ring */
2023         switch (adapter->num_rx_queues) {
2024         case 1:
2025         default:
2026                 rdba = adapter->rx_ring[0].dma;
2027                 E1000_WRITE_REG(hw, RDLEN, rdlen);
2028                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
2029                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
2030                 E1000_WRITE_REG(hw, RDT, 0);
2031                 E1000_WRITE_REG(hw, RDH, 0);
2032                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
2033                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2034                 break;
2035         }
2036
2037         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2038         if (hw->mac_type >= e1000_82543) {
2039                 rxcsum = E1000_READ_REG(hw, RXCSUM);
2040                 if (adapter->rx_csum == TRUE) {
2041                         rxcsum |= E1000_RXCSUM_TUOFL;
2042
2043                         /* Enable 82571 IPv4 payload checksum for UDP fragments
2044                          * Must be used in conjunction with packet-split. */
2045                         if ((hw->mac_type >= e1000_82571) &&
2046                             (adapter->rx_ps_pages)) {
2047                                 rxcsum |= E1000_RXCSUM_IPPCSE;
2048                         }
2049                 } else {
2050                         rxcsum &= ~E1000_RXCSUM_TUOFL;
2051                         /* don't need to clear IPPCSE as it defaults to 0 */
2052                 }
2053                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
2054         }
2055
2056         /* enable early receives on 82573, only takes effect if using > 2048
2057          * byte total frame size.  for example only for jumbo frames */
2058 #define E1000_ERT_2048 0x100
2059         if (hw->mac_type == e1000_82573)
2060                 E1000_WRITE_REG(hw, ERT, E1000_ERT_2048);
2061
2062         /* Enable Receives */
2063         E1000_WRITE_REG(hw, RCTL, rctl);
2064 }
2065
2066 /**
2067  * e1000_free_tx_resources - Free Tx Resources per Queue
2068  * @adapter: board private structure
2069  * @tx_ring: Tx descriptor ring for a specific queue
2070  *
2071  * Free all transmit software resources
2072  **/
2073
2074 static void
2075 e1000_free_tx_resources(struct e1000_adapter *adapter,
2076                         struct e1000_tx_ring *tx_ring)
2077 {
2078         struct pci_dev *pdev = adapter->pdev;
2079
2080         e1000_clean_tx_ring(adapter, tx_ring);
2081
2082         vfree(tx_ring->buffer_info);
2083         tx_ring->buffer_info = NULL;
2084
2085         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2086
2087         tx_ring->desc = NULL;
2088 }
2089
2090 /**
2091  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2092  * @adapter: board private structure
2093  *
2094  * Free all transmit software resources
2095  **/
2096
2097 void
2098 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2099 {
2100         int i;
2101
2102         for (i = 0; i < adapter->num_tx_queues; i++)
2103                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2104 }
2105
2106 static void
2107 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2108                         struct e1000_buffer *buffer_info)
2109 {
2110         if (buffer_info->dma) {
2111                 pci_unmap_page(adapter->pdev,
2112                                 buffer_info->dma,
2113                                 buffer_info->length,
2114                                 PCI_DMA_TODEVICE);
2115                 buffer_info->dma = 0;
2116         }
2117         if (buffer_info->skb) {
2118                 dev_kfree_skb_any(buffer_info->skb);
2119                 buffer_info->skb = NULL;
2120         }
2121         /* buffer_info must be completely set up in the transmit path */
2122 }
2123
2124 /**
2125  * e1000_clean_tx_ring - Free Tx Buffers
2126  * @adapter: board private structure
2127  * @tx_ring: ring to be cleaned
2128  **/
2129
2130 static void
2131 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2132                     struct e1000_tx_ring *tx_ring)
2133 {
2134         struct e1000_buffer *buffer_info;
2135         unsigned long size;
2136         unsigned int i;
2137
2138         /* Free all the Tx ring sk_buffs */
2139
2140         for (i = 0; i < tx_ring->count; i++) {
2141                 buffer_info = &tx_ring->buffer_info[i];
2142                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2143         }
2144
2145         size = sizeof(struct e1000_buffer) * tx_ring->count;
2146         memset(tx_ring->buffer_info, 0, size);
2147
2148         /* Zero out the descriptor ring */
2149
2150         memset(tx_ring->desc, 0, tx_ring->size);
2151
2152         tx_ring->next_to_use = 0;
2153         tx_ring->next_to_clean = 0;
2154         tx_ring->last_tx_tso = 0;
2155
2156         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2157         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2158 }
2159
2160 /**
2161  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2162  * @adapter: board private structure
2163  **/
2164
2165 static void
2166 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2167 {
2168         int i;
2169
2170         for (i = 0; i < adapter->num_tx_queues; i++)
2171                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2172 }
2173
2174 /**
2175  * e1000_free_rx_resources - Free Rx Resources
2176  * @adapter: board private structure
2177  * @rx_ring: ring to clean the resources from
2178  *
2179  * Free all receive software resources
2180  **/
2181
2182 static void
2183 e1000_free_rx_resources(struct e1000_adapter *adapter,
2184                         struct e1000_rx_ring *rx_ring)
2185 {
2186         struct pci_dev *pdev = adapter->pdev;
2187
2188         e1000_clean_rx_ring(adapter, rx_ring);
2189
2190         vfree(rx_ring->buffer_info);
2191         rx_ring->buffer_info = NULL;
2192         kfree(rx_ring->ps_page);
2193         rx_ring->ps_page = NULL;
2194         kfree(rx_ring->ps_page_dma);
2195         rx_ring->ps_page_dma = NULL;
2196
2197         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2198
2199         rx_ring->desc = NULL;
2200 }
2201
2202 /**
2203  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2204  * @adapter: board private structure
2205  *
2206  * Free all receive software resources
2207  **/
2208
2209 void
2210 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2211 {
2212         int i;
2213
2214         for (i = 0; i < adapter->num_rx_queues; i++)
2215                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2216 }
2217
2218 /**
2219  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2220  * @adapter: board private structure
2221  * @rx_ring: ring to free buffers from
2222  **/
2223
2224 static void
2225 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2226                     struct e1000_rx_ring *rx_ring)
2227 {
2228         struct e1000_buffer *buffer_info;
2229         struct e1000_ps_page *ps_page;
2230         struct e1000_ps_page_dma *ps_page_dma;
2231         struct pci_dev *pdev = adapter->pdev;
2232         unsigned long size;
2233         unsigned int i, j;
2234
2235         /* Free all the Rx ring sk_buffs */
2236         for (i = 0; i < rx_ring->count; i++) {
2237                 buffer_info = &rx_ring->buffer_info[i];
2238                 if (buffer_info->skb) {
2239                         pci_unmap_single(pdev,
2240                                          buffer_info->dma,
2241                                          buffer_info->length,
2242                                          PCI_DMA_FROMDEVICE);
2243
2244                         dev_kfree_skb(buffer_info->skb);
2245                         buffer_info->skb = NULL;
2246                 }
2247                 ps_page = &rx_ring->ps_page[i];
2248                 ps_page_dma = &rx_ring->ps_page_dma[i];
2249                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2250                         if (!ps_page->ps_page[j]) break;
2251                         pci_unmap_page(pdev,
2252                                        ps_page_dma->ps_page_dma[j],
2253                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2254                         ps_page_dma->ps_page_dma[j] = 0;
2255                         put_page(ps_page->ps_page[j]);
2256                         ps_page->ps_page[j] = NULL;
2257                 }
2258         }
2259
2260         size = sizeof(struct e1000_buffer) * rx_ring->count;
2261         memset(rx_ring->buffer_info, 0, size);
2262         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2263         memset(rx_ring->ps_page, 0, size);
2264         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2265         memset(rx_ring->ps_page_dma, 0, size);
2266
2267         /* Zero out the descriptor ring */
2268
2269         memset(rx_ring->desc, 0, rx_ring->size);
2270
2271         rx_ring->next_to_clean = 0;
2272         rx_ring->next_to_use = 0;
2273
2274         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2275         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2276 }
2277
2278 /**
2279  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2280  * @adapter: board private structure
2281  **/
2282
2283 static void
2284 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2285 {
2286         int i;
2287
2288         for (i = 0; i < adapter->num_rx_queues; i++)
2289                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2290 }
2291
2292 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2293  * and memory write and invalidate disabled for certain operations
2294  */
2295 static void
2296 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2297 {
2298         struct net_device *netdev = adapter->netdev;
2299         uint32_t rctl;
2300
2301         e1000_pci_clear_mwi(&adapter->hw);
2302
2303         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2304         rctl |= E1000_RCTL_RST;
2305         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2306         E1000_WRITE_FLUSH(&adapter->hw);
2307         mdelay(5);
2308
2309         if (netif_running(netdev))
2310                 e1000_clean_all_rx_rings(adapter);
2311 }
2312
2313 static void
2314 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2315 {
2316         struct net_device *netdev = adapter->netdev;
2317         uint32_t rctl;
2318
2319         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2320         rctl &= ~E1000_RCTL_RST;
2321         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2322         E1000_WRITE_FLUSH(&adapter->hw);
2323         mdelay(5);
2324
2325         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2326                 e1000_pci_set_mwi(&adapter->hw);
2327
2328         if (netif_running(netdev)) {
2329                 /* No need to loop, because 82542 supports only 1 queue */
2330                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2331                 e1000_configure_rx(adapter);
2332                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2333         }
2334 }
2335
2336 /**
2337  * e1000_set_mac - Change the Ethernet Address of the NIC
2338  * @netdev: network interface device structure
2339  * @p: pointer to an address structure
2340  *
2341  * Returns 0 on success, negative on failure
2342  **/
2343
2344 static int
2345 e1000_set_mac(struct net_device *netdev, void *p)
2346 {
2347         struct e1000_adapter *adapter = netdev_priv(netdev);
2348         struct sockaddr *addr = p;
2349
2350         if (!is_valid_ether_addr(addr->sa_data))
2351                 return -EADDRNOTAVAIL;
2352
2353         /* 82542 2.0 needs to be in reset to write receive address registers */
2354
2355         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2356                 e1000_enter_82542_rst(adapter);
2357
2358         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2359         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2360
2361         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2362
2363         /* With 82571 controllers, LAA may be overwritten (with the default)
2364          * due to controller reset from the other port. */
2365         if (adapter->hw.mac_type == e1000_82571) {
2366                 /* activate the work around */
2367                 adapter->hw.laa_is_present = 1;
2368
2369                 /* Hold a copy of the LAA in RAR[14] This is done so that
2370                  * between the time RAR[0] gets clobbered  and the time it
2371                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2372                  * of the RARs and no incoming packets directed to this port
2373                  * are dropped. Eventaully the LAA will be in RAR[0] and
2374                  * RAR[14] */
2375                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2376                                         E1000_RAR_ENTRIES - 1);
2377         }
2378
2379         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2380                 e1000_leave_82542_rst(adapter);
2381
2382         return 0;
2383 }
2384
2385 /**
2386  * e1000_set_multi - Multicast and Promiscuous mode set
2387  * @netdev: network interface device structure
2388  *
2389  * The set_multi entry point is called whenever the multicast address
2390  * list or the network interface flags are updated.  This routine is
2391  * responsible for configuring the hardware for proper multicast,
2392  * promiscuous mode, and all-multi behavior.
2393  **/
2394
2395 static void
2396 e1000_set_multi(struct net_device *netdev)
2397 {
2398         struct e1000_adapter *adapter = netdev_priv(netdev);
2399         struct e1000_hw *hw = &adapter->hw;
2400         struct dev_mc_list *mc_ptr;
2401         uint32_t rctl;
2402         uint32_t hash_value;
2403         int i, rar_entries = E1000_RAR_ENTRIES;
2404         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2405                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2406                                 E1000_NUM_MTA_REGISTERS;
2407
2408         if (adapter->hw.mac_type == e1000_ich8lan)
2409                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2410
2411         /* reserve RAR[14] for LAA over-write work-around */
2412         if (adapter->hw.mac_type == e1000_82571)
2413                 rar_entries--;
2414
2415         /* Check for Promiscuous and All Multicast modes */
2416
2417         rctl = E1000_READ_REG(hw, RCTL);
2418
2419         if (netdev->flags & IFF_PROMISC) {
2420                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2421         } else if (netdev->flags & IFF_ALLMULTI) {
2422                 rctl |= E1000_RCTL_MPE;
2423                 rctl &= ~E1000_RCTL_UPE;
2424         } else {
2425                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2426         }
2427
2428         E1000_WRITE_REG(hw, RCTL, rctl);
2429
2430         /* 82542 2.0 needs to be in reset to write receive address registers */
2431
2432         if (hw->mac_type == e1000_82542_rev2_0)
2433                 e1000_enter_82542_rst(adapter);
2434
2435         /* load the first 14 multicast address into the exact filters 1-14
2436          * RAR 0 is used for the station MAC adddress
2437          * if there are not 14 addresses, go ahead and clear the filters
2438          * -- with 82571 controllers only 0-13 entries are filled here
2439          */
2440         mc_ptr = netdev->mc_list;
2441
2442         for (i = 1; i < rar_entries; i++) {
2443                 if (mc_ptr) {
2444                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2445                         mc_ptr = mc_ptr->next;
2446                 } else {
2447                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2448                         E1000_WRITE_FLUSH(hw);
2449                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2450                         E1000_WRITE_FLUSH(hw);
2451                 }
2452         }
2453
2454         /* clear the old settings from the multicast hash table */
2455
2456         for (i = 0; i < mta_reg_count; i++) {
2457                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2458                 E1000_WRITE_FLUSH(hw);
2459         }
2460
2461         /* load any remaining addresses into the hash table */
2462
2463         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2464                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2465                 e1000_mta_set(hw, hash_value);
2466         }
2467
2468         if (hw->mac_type == e1000_82542_rev2_0)
2469                 e1000_leave_82542_rst(adapter);
2470 }
2471
2472 /* Need to wait a few seconds after link up to get diagnostic information from
2473  * the phy */
2474
2475 static void
2476 e1000_update_phy_info(unsigned long data)
2477 {
2478         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2479         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2480 }
2481
2482 /**
2483  * e1000_82547_tx_fifo_stall - Timer Call-back
2484  * @data: pointer to adapter cast into an unsigned long
2485  **/
2486
2487 static void
2488 e1000_82547_tx_fifo_stall(unsigned long data)
2489 {
2490         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2491         struct net_device *netdev = adapter->netdev;
2492         uint32_t tctl;
2493
2494         if (atomic_read(&adapter->tx_fifo_stall)) {
2495                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2496                     E1000_READ_REG(&adapter->hw, TDH)) &&
2497                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2498                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2499                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2500                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2501                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2502                         E1000_WRITE_REG(&adapter->hw, TCTL,
2503                                         tctl & ~E1000_TCTL_EN);
2504                         E1000_WRITE_REG(&adapter->hw, TDFT,
2505                                         adapter->tx_head_addr);
2506                         E1000_WRITE_REG(&adapter->hw, TDFH,
2507                                         adapter->tx_head_addr);
2508                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2509                                         adapter->tx_head_addr);
2510                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2511                                         adapter->tx_head_addr);
2512                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2513                         E1000_WRITE_FLUSH(&adapter->hw);
2514
2515                         adapter->tx_fifo_head = 0;
2516                         atomic_set(&adapter->tx_fifo_stall, 0);
2517                         netif_wake_queue(netdev);
2518                 } else {
2519                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2520                 }
2521         }
2522 }
2523
2524 /**
2525  * e1000_watchdog - Timer Call-back
2526  * @data: pointer to adapter cast into an unsigned long
2527  **/
2528 static void
2529 e1000_watchdog(unsigned long data)
2530 {
2531         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2532         struct net_device *netdev = adapter->netdev;
2533         struct e1000_tx_ring *txdr = adapter->tx_ring;
2534         uint32_t link, tctl;
2535         int32_t ret_val;
2536
2537         ret_val = e1000_check_for_link(&adapter->hw);
2538         if ((ret_val == E1000_ERR_PHY) &&
2539             (adapter->hw.phy_type == e1000_phy_igp_3) &&
2540             (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2541                 /* See e1000_kumeran_lock_loss_workaround() */
2542                 DPRINTK(LINK, INFO,
2543                         "Gigabit has been disabled, downgrading speed\n");
2544         }
2545
2546         if (adapter->hw.mac_type == e1000_82573) {
2547                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2548                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2549                         e1000_update_mng_vlan(adapter);
2550         }
2551
2552         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2553            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2554                 link = !adapter->hw.serdes_link_down;
2555         else
2556                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2557
2558         if (link) {
2559                 if (!netif_carrier_ok(netdev)) {
2560                         uint32_t ctrl;
2561                         boolean_t txb2b = 1;
2562                         e1000_get_speed_and_duplex(&adapter->hw,
2563                                                    &adapter->link_speed,
2564                                                    &adapter->link_duplex);
2565
2566                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
2567                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, "
2568                                 "Flow Control: %s\n",
2569                                 adapter->link_speed,
2570                                 adapter->link_duplex == FULL_DUPLEX ?
2571                                 "Full Duplex" : "Half Duplex",
2572                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2573                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2574                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2575                                 E1000_CTRL_TFCE) ? "TX" : "None" )));
2576
2577                         /* tweak tx_queue_len according to speed/duplex
2578                          * and adjust the timeout factor */
2579                         netdev->tx_queue_len = adapter->tx_queue_len;
2580                         adapter->tx_timeout_factor = 1;
2581                         switch (adapter->link_speed) {
2582                         case SPEED_10:
2583                                 txb2b = 0;
2584                                 netdev->tx_queue_len = 10;
2585                                 adapter->tx_timeout_factor = 8;
2586                                 break;
2587                         case SPEED_100:
2588                                 txb2b = 0;
2589                                 netdev->tx_queue_len = 100;
2590                                 /* maybe add some timeout factor ? */
2591                                 break;
2592                         }
2593
2594                         if ((adapter->hw.mac_type == e1000_82571 ||
2595                              adapter->hw.mac_type == e1000_82572) &&
2596                             txb2b == 0) {
2597                                 uint32_t tarc0;
2598                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2599                                 tarc0 &= ~(1 << 21);
2600                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2601                         }
2602
2603                         /* disable TSO for pcie and 10/100 speeds, to avoid
2604                          * some hardware issues */
2605                         if (!adapter->tso_force &&
2606                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2607                                 switch (adapter->link_speed) {
2608                                 case SPEED_10:
2609                                 case SPEED_100:
2610                                         DPRINTK(PROBE,INFO,
2611                                         "10/100 speed: disabling TSO\n");
2612                                         netdev->features &= ~NETIF_F_TSO;
2613                                         netdev->features &= ~NETIF_F_TSO6;
2614                                         break;
2615                                 case SPEED_1000:
2616                                         netdev->features |= NETIF_F_TSO;
2617                                         netdev->features |= NETIF_F_TSO6;
2618                                         break;
2619                                 default:
2620                                         /* oops */
2621                                         break;
2622                                 }
2623                         }
2624
2625                         /* enable transmits in the hardware, need to do this
2626                          * after setting TARC0 */
2627                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2628                         tctl |= E1000_TCTL_EN;
2629                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2630
2631                         netif_carrier_on(netdev);
2632                         netif_wake_queue(netdev);
2633                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2634                         adapter->smartspeed = 0;
2635                 } else {
2636                         /* make sure the receive unit is started */
2637                         if (adapter->hw.rx_needs_kicking) {
2638                                 struct e1000_hw *hw = &adapter->hw;
2639                                 uint32_t rctl = E1000_READ_REG(hw, RCTL);
2640                                 E1000_WRITE_REG(hw, RCTL, rctl | E1000_RCTL_EN);
2641                         }
2642                 }
2643         } else {
2644                 if (netif_carrier_ok(netdev)) {
2645                         adapter->link_speed = 0;
2646                         adapter->link_duplex = 0;
2647                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2648                         netif_carrier_off(netdev);
2649                         netif_stop_queue(netdev);
2650                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2651
2652                         /* 80003ES2LAN workaround--
2653                          * For packet buffer work-around on link down event;
2654                          * disable receives in the ISR and
2655                          * reset device here in the watchdog
2656                          */
2657                         if (adapter->hw.mac_type == e1000_80003es2lan)
2658                                 /* reset device */
2659                                 schedule_work(&adapter->reset_task);
2660                 }
2661
2662                 e1000_smartspeed(adapter);
2663         }
2664
2665         e1000_update_stats(adapter);
2666
2667         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2668         adapter->tpt_old = adapter->stats.tpt;
2669         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2670         adapter->colc_old = adapter->stats.colc;
2671
2672         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2673         adapter->gorcl_old = adapter->stats.gorcl;
2674         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2675         adapter->gotcl_old = adapter->stats.gotcl;
2676
2677         e1000_update_adaptive(&adapter->hw);
2678
2679         if (!netif_carrier_ok(netdev)) {
2680                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2681                         /* We've lost link, so the controller stops DMA,
2682                          * but we've got queued Tx work that's never going
2683                          * to get done, so reset controller to flush Tx.
2684                          * (Do the reset outside of interrupt context). */
2685                         adapter->tx_timeout_count++;
2686                         schedule_work(&adapter->reset_task);
2687                 }
2688         }
2689
2690         /* Cause software interrupt to ensure rx ring is cleaned */
2691         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2692
2693         /* Force detection of hung controller every watchdog period */
2694         adapter->detect_tx_hung = TRUE;
2695
2696         /* With 82571 controllers, LAA may be overwritten due to controller
2697          * reset from the other port. Set the appropriate LAA in RAR[0] */
2698         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2699                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2700
2701         /* Reset the timer */
2702         mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
2703 }
2704
2705 enum latency_range {
2706         lowest_latency = 0,
2707         low_latency = 1,
2708         bulk_latency = 2,
2709         latency_invalid = 255
2710 };
2711
2712 /**
2713  * e1000_update_itr - update the dynamic ITR value based on statistics
2714  *      Stores a new ITR value based on packets and byte
2715  *      counts during the last interrupt.  The advantage of per interrupt
2716  *      computation is faster updates and more accurate ITR for the current
2717  *      traffic pattern.  Constants in this function were computed
2718  *      based on theoretical maximum wire speed and thresholds were set based
2719  *      on testing data as well as attempting to minimize response time
2720  *      while increasing bulk throughput.
2721  *      this functionality is controlled by the InterruptThrottleRate module
2722  *      parameter (see e1000_param.c)
2723  * @adapter: pointer to adapter
2724  * @itr_setting: current adapter->itr
2725  * @packets: the number of packets during this measurement interval
2726  * @bytes: the number of bytes during this measurement interval
2727  **/
2728 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2729                                    uint16_t itr_setting,
2730                                    int packets,
2731                                    int bytes)
2732 {
2733         unsigned int retval = itr_setting;
2734         struct e1000_hw *hw = &adapter->hw;
2735
2736         if (unlikely(hw->mac_type < e1000_82540))
2737                 goto update_itr_done;
2738
2739         if (packets == 0)
2740                 goto update_itr_done;
2741
2742         switch (itr_setting) {
2743         case lowest_latency:
2744                 /* jumbo frames get bulk treatment*/
2745                 if (bytes/packets > 8000)
2746                         retval = bulk_latency;
2747                 else if ((packets < 5) && (bytes > 512))
2748                         retval = low_latency;
2749                 break;
2750         case low_latency:  /* 50 usec aka 20000 ints/s */
2751                 if (bytes > 10000) {
2752                         /* jumbo frames need bulk latency setting */
2753                         if (bytes/packets > 8000)
2754                                 retval = bulk_latency;
2755                         else if ((packets < 10) || ((bytes/packets) > 1200))
2756                                 retval = bulk_latency;
2757                         else if ((packets > 35))
2758                                 retval = lowest_latency;
2759                 } else if (bytes/packets > 2000)
2760                         retval = bulk_latency;
2761                 else if (packets <= 2 && bytes < 512)
2762                         retval = lowest_latency;
2763                 break;
2764         case bulk_latency: /* 250 usec aka 4000 ints/s */
2765                 if (bytes > 25000) {
2766                         if (packets > 35)
2767                                 retval = low_latency;
2768                 } else if (bytes < 6000) {
2769                         retval = low_latency;
2770                 }
2771                 break;
2772         }
2773
2774 update_itr_done:
2775         return retval;
2776 }
2777
2778 static void e1000_set_itr(struct e1000_adapter *adapter)
2779 {
2780         struct e1000_hw *hw = &adapter->hw;
2781         uint16_t current_itr;
2782         uint32_t new_itr = adapter->itr;
2783
2784         if (unlikely(hw->mac_type < e1000_82540))
2785                 return;
2786
2787         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2788         if (unlikely(adapter->link_speed != SPEED_1000)) {
2789                 current_itr = 0;
2790                 new_itr = 4000;
2791                 goto set_itr_now;
2792         }
2793
2794         adapter->tx_itr = e1000_update_itr(adapter,
2795                                     adapter->tx_itr,
2796                                     adapter->total_tx_packets,
2797                                     adapter->total_tx_bytes);
2798         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2799         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2800                 adapter->tx_itr = low_latency;
2801
2802         adapter->rx_itr = e1000_update_itr(adapter,
2803                                     adapter->rx_itr,
2804                                     adapter->total_rx_packets,
2805                                     adapter->total_rx_bytes);
2806         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2807         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2808                 adapter->rx_itr = low_latency;
2809
2810         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2811
2812         switch (current_itr) {
2813         /* counts and packets in update_itr are dependent on these numbers */
2814         case lowest_latency:
2815                 new_itr = 70000;
2816                 break;
2817         case low_latency:
2818                 new_itr = 20000; /* aka hwitr = ~200 */
2819                 break;
2820         case bulk_latency:
2821                 new_itr = 4000;
2822                 break;
2823         default:
2824                 break;
2825         }
2826
2827 set_itr_now:
2828         if (new_itr != adapter->itr) {
2829                 /* this attempts to bias the interrupt rate towards Bulk
2830                  * by adding intermediate steps when interrupt rate is
2831                  * increasing */
2832                 new_itr = new_itr > adapter->itr ?
2833                              min(adapter->itr + (new_itr >> 2), new_itr) :
2834                              new_itr;
2835                 adapter->itr = new_itr;
2836                 E1000_WRITE_REG(hw, ITR, 1000000000 / (new_itr * 256));
2837         }
2838
2839         return;
2840 }
2841
2842 #define E1000_TX_FLAGS_CSUM             0x00000001
2843 #define E1000_TX_FLAGS_VLAN             0x00000002
2844 #define E1000_TX_FLAGS_TSO              0x00000004
2845 #define E1000_TX_FLAGS_IPV4             0x00000008
2846 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2847 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2848
2849 static int
2850 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2851           struct sk_buff *skb)
2852 {
2853         struct e1000_context_desc *context_desc;
2854         struct e1000_buffer *buffer_info;
2855         unsigned int i;
2856         uint32_t cmd_length = 0;
2857         uint16_t ipcse = 0, tucse, mss;
2858         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2859         int err;
2860
2861         if (skb_is_gso(skb)) {
2862                 if (skb_header_cloned(skb)) {
2863                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2864                         if (err)
2865                                 return err;
2866                 }
2867
2868                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2869                 mss = skb_shinfo(skb)->gso_size;
2870                 if (skb->protocol == htons(ETH_P_IP)) {
2871                         struct iphdr *iph = ip_hdr(skb);
2872                         iph->tot_len = 0;
2873                         iph->check = 0;
2874                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2875                                                                  iph->daddr, 0,
2876                                                                  IPPROTO_TCP,
2877                                                                  0);
2878                         cmd_length = E1000_TXD_CMD_IP;
2879                         ipcse = skb_transport_offset(skb) - 1;
2880                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2881                         ipv6_hdr(skb)->payload_len = 0;
2882                         tcp_hdr(skb)->check =
2883                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2884                                                  &ipv6_hdr(skb)->daddr,
2885                                                  0, IPPROTO_TCP, 0);
2886                         ipcse = 0;
2887                 }
2888                 ipcss = skb_network_offset(skb);
2889                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2890                 tucss = skb_transport_offset(skb);
2891                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2892                 tucse = 0;
2893
2894                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2895                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2896
2897                 i = tx_ring->next_to_use;
2898                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2899                 buffer_info = &tx_ring->buffer_info[i];
2900
2901                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2902                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2903                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2904                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2905                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2906                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2907                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2908                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2909                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2910
2911                 buffer_info->time_stamp = jiffies;
2912                 buffer_info->next_to_watch = i;
2913
2914                 if (++i == tx_ring->count) i = 0;
2915                 tx_ring->next_to_use = i;
2916
2917                 return TRUE;
2918         }
2919         return FALSE;
2920 }
2921
2922 static boolean_t
2923 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2924               struct sk_buff *skb)
2925 {
2926         struct e1000_context_desc *context_desc;
2927         struct e1000_buffer *buffer_info;
2928         unsigned int i;
2929         uint8_t css;
2930
2931         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2932                 css = skb_transport_offset(skb);
2933
2934                 i = tx_ring->next_to_use;
2935                 buffer_info = &tx_ring->buffer_info[i];
2936                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2937
2938                 context_desc->lower_setup.ip_config = 0;
2939                 context_desc->upper_setup.tcp_fields.tucss = css;
2940                 context_desc->upper_setup.tcp_fields.tucso =
2941                         css + skb->csum_offset;
2942                 context_desc->upper_setup.tcp_fields.tucse = 0;
2943                 context_desc->tcp_seg_setup.data = 0;
2944                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2945
2946                 buffer_info->time_stamp = jiffies;
2947                 buffer_info->next_to_watch = i;
2948
2949                 if (unlikely(++i == tx_ring->count)) i = 0;
2950                 tx_ring->next_to_use = i;
2951
2952                 return TRUE;
2953         }
2954
2955         return FALSE;
2956 }
2957
2958 #define E1000_MAX_TXD_PWR       12
2959 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2960
2961 static int
2962 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2963              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2964              unsigned int nr_frags, unsigned int mss)
2965 {
2966         struct e1000_buffer *buffer_info;
2967         unsigned int len = skb->len;
2968         unsigned int offset = 0, size, count = 0, i;
2969         unsigned int f;
2970         len -= skb->data_len;
2971
2972         i = tx_ring->next_to_use;
2973
2974         while (len) {
2975                 buffer_info = &tx_ring->buffer_info[i];
2976                 size = min(len, max_per_txd);
2977                 /* Workaround for Controller erratum --
2978                  * descriptor for non-tso packet in a linear SKB that follows a
2979                  * tso gets written back prematurely before the data is fully
2980                  * DMA'd to the controller */
2981                 if (!skb->data_len && tx_ring->last_tx_tso &&
2982                     !skb_is_gso(skb)) {
2983                         tx_ring->last_tx_tso = 0;
2984                         size -= 4;
2985                 }
2986
2987                 /* Workaround for premature desc write-backs
2988                  * in TSO mode.  Append 4-byte sentinel desc */
2989                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2990                         size -= 4;
2991                 /* work-around for errata 10 and it applies
2992                  * to all controllers in PCI-X mode
2993                  * The fix is to make sure that the first descriptor of a
2994                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2995                  */
2996                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2997                                 (size > 2015) && count == 0))
2998                         size = 2015;
2999
3000                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
3001                  * terminating buffers within evenly-aligned dwords. */
3002                 if (unlikely(adapter->pcix_82544 &&
3003                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
3004                    size > 4))
3005                         size -= 4;
3006
3007                 buffer_info->length = size;
3008                 buffer_info->dma =
3009                         pci_map_single(adapter->pdev,
3010                                 skb->data + offset,
3011                                 size,
3012                                 PCI_DMA_TODEVICE);
3013                 buffer_info->time_stamp = jiffies;
3014                 buffer_info->next_to_watch = i;
3015
3016                 len -= size;
3017                 offset += size;
3018                 count++;
3019                 if (unlikely(++i == tx_ring->count)) i = 0;
3020         }
3021
3022         for (f = 0; f < nr_frags; f++) {
3023                 struct skb_frag_struct *frag;
3024
3025                 frag = &skb_shinfo(skb)->frags[f];
3026                 len = frag->size;
3027                 offset = frag->page_offset;
3028
3029                 while (len) {
3030                         buffer_info = &tx_ring->buffer_info[i];
3031                         size = min(len, max_per_txd);
3032                         /* Workaround for premature desc write-backs
3033                          * in TSO mode.  Append 4-byte sentinel desc */
3034                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
3035                                 size -= 4;
3036                         /* Workaround for potential 82544 hang in PCI-X.
3037                          * Avoid terminating buffers within evenly-aligned
3038                          * dwords. */
3039                         if (unlikely(adapter->pcix_82544 &&
3040                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
3041                            size > 4))
3042                                 size -= 4;
3043
3044                         buffer_info->length = size;
3045                         buffer_info->dma =
3046                                 pci_map_page(adapter->pdev,
3047                                         frag->page,
3048                                         offset,
3049                                         size,
3050                                         PCI_DMA_TODEVICE);
3051                         buffer_info->time_stamp = jiffies;
3052                         buffer_info->next_to_watch = i;
3053
3054                         len -= size;
3055                         offset += size;
3056                         count++;
3057                         if (unlikely(++i == tx_ring->count)) i = 0;
3058                 }
3059         }
3060
3061         i = (i == 0) ? tx_ring->count - 1 : i - 1;
3062         tx_ring->buffer_info[i].skb = skb;
3063         tx_ring->buffer_info[first].next_to_watch = i;
3064
3065         return count;
3066 }
3067
3068 static void
3069 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
3070                int tx_flags, int count)
3071 {
3072         struct e1000_tx_desc *tx_desc = NULL;
3073         struct e1000_buffer *buffer_info;
3074         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3075         unsigned int i;
3076
3077         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3078                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3079                              E1000_TXD_CMD_TSE;
3080                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3081
3082                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3083                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3084         }
3085
3086         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3087                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3088                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3089         }
3090
3091         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3092                 txd_lower |= E1000_TXD_CMD_VLE;
3093                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3094         }
3095
3096         i = tx_ring->next_to_use;
3097
3098         while (count--) {
3099                 buffer_info = &tx_ring->buffer_info[i];
3100                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3101                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3102                 tx_desc->lower.data =
3103                         cpu_to_le32(txd_lower | buffer_info->length);
3104                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3105                 if (unlikely(++i == tx_ring->count)) i = 0;
3106         }
3107
3108         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3109
3110         /* Force memory writes to complete before letting h/w
3111          * know there are new descriptors to fetch.  (Only
3112          * applicable for weak-ordered memory model archs,
3113          * such as IA-64). */
3114         wmb();
3115
3116         tx_ring->next_to_use = i;
3117         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
3118         /* we need this if more than one processor can write to our tail
3119          * at a time, it syncronizes IO on IA64/Altix systems */
3120         mmiowb();
3121 }
3122
3123 /**
3124  * 82547 workaround to avoid controller hang in half-duplex environment.
3125  * The workaround is to avoid queuing a large packet that would span
3126  * the internal Tx FIFO ring boundary by notifying the stack to resend
3127  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3128  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3129  * to the beginning of the Tx FIFO.
3130  **/
3131
3132 #define E1000_FIFO_HDR                  0x10
3133 #define E1000_82547_PAD_LEN             0x3E0
3134
3135 static int
3136 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
3137 {
3138         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3139         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
3140
3141         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3142
3143         if (adapter->link_duplex != HALF_DUPLEX)
3144                 goto no_fifo_stall_required;
3145
3146         if (atomic_read(&adapter->tx_fifo_stall))
3147                 return 1;
3148
3149         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3150                 atomic_set(&adapter->tx_fifo_stall, 1);
3151                 return 1;
3152         }
3153
3154 no_fifo_stall_required:
3155         adapter->tx_fifo_head += skb_fifo_len;
3156         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3157                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3158         return 0;
3159 }
3160
3161 #define MINIMUM_DHCP_PACKET_SIZE 282
3162 static int
3163 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
3164 {
3165         struct e1000_hw *hw =  &adapter->hw;
3166         uint16_t length, offset;
3167         if (vlan_tx_tag_present(skb)) {
3168                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
3169                         ( adapter->hw.mng_cookie.status &
3170                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3171                         return 0;
3172         }
3173         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3174                 struct ethhdr *eth = (struct ethhdr *) skb->data;
3175                 if ((htons(ETH_P_IP) == eth->h_proto)) {
3176                         const struct iphdr *ip =
3177                                 (struct iphdr *)((uint8_t *)skb->data+14);
3178                         if (IPPROTO_UDP == ip->protocol) {
3179                                 struct udphdr *udp =
3180                                         (struct udphdr *)((uint8_t *)ip +
3181                                                 (ip->ihl << 2));
3182                                 if (ntohs(udp->dest) == 67) {
3183                                         offset = (uint8_t *)udp + 8 - skb->data;
3184                                         length = skb->len - offset;
3185
3186                                         return e1000_mng_write_dhcp_info(hw,
3187                                                         (uint8_t *)udp + 8,
3188                                                         length);
3189                                 }
3190                         }
3191                 }
3192         }
3193         return 0;
3194 }
3195
3196 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3197 {
3198         struct e1000_adapter *adapter = netdev_priv(netdev);
3199         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3200
3201         netif_stop_queue(netdev);
3202         /* Herbert's original patch had:
3203          *  smp_mb__after_netif_stop_queue();
3204          * but since that doesn't exist yet, just open code it. */
3205         smp_mb();
3206
3207         /* We need to check again in a case another CPU has just
3208          * made room available. */
3209         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3210                 return -EBUSY;
3211
3212         /* A reprieve! */
3213         netif_start_queue(netdev);
3214         ++adapter->restart_queue;
3215         return 0;
3216 }
3217
3218 static int e1000_maybe_stop_tx(struct net_device *netdev,
3219                                struct e1000_tx_ring *tx_ring, int size)
3220 {
3221         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3222                 return 0;
3223         return __e1000_maybe_stop_tx(netdev, size);
3224 }
3225
3226 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3227 static int
3228 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3229 {
3230         struct e1000_adapter *adapter = netdev_priv(netdev);
3231         struct e1000_tx_ring *tx_ring;
3232         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3233         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3234         unsigned int tx_flags = 0;
3235         unsigned int len = skb->len - skb->data_len;
3236         unsigned long flags;
3237         unsigned int nr_frags;
3238         unsigned int mss;
3239         int count = 0;
3240         int tso;
3241         unsigned int f;
3242
3243         /* This goes back to the question of how to logically map a tx queue
3244          * to a flow.  Right now, performance is impacted slightly negatively
3245          * if using multiple tx queues.  If the stack breaks away from a
3246          * single qdisc implementation, we can look at this again. */
3247         tx_ring = adapter->tx_ring;
3248
3249         if (unlikely(skb->len <= 0)) {
3250                 dev_kfree_skb_any(skb);
3251                 return NETDEV_TX_OK;
3252         }
3253
3254         /* 82571 and newer doesn't need the workaround that limited descriptor
3255          * length to 4kB */
3256         if (adapter->hw.mac_type >= e1000_82571)
3257                 max_per_txd = 8192;
3258
3259         mss = skb_shinfo(skb)->gso_size;
3260         /* The controller does a simple calculation to
3261          * make sure there is enough room in the FIFO before
3262          * initiating the DMA for each buffer.  The calc is:
3263          * 4 = ceil(buffer len/mss).  To make sure we don't
3264          * overrun the FIFO, adjust the max buffer len if mss
3265          * drops. */
3266         if (mss) {
3267                 uint8_t hdr_len;
3268                 max_per_txd = min(mss << 2, max_per_txd);
3269                 max_txd_pwr = fls(max_per_txd) - 1;
3270
3271                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3272                 * points to just header, pull a few bytes of payload from
3273                 * frags into skb->data */
3274                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3275                 if (skb->data_len && hdr_len == len) {
3276                         switch (adapter->hw.mac_type) {
3277                                 unsigned int pull_size;
3278                         case e1000_82544:
3279                                 /* Make sure we have room to chop off 4 bytes,
3280                                  * and that the end alignment will work out to
3281                                  * this hardware's requirements
3282                                  * NOTE: this is a TSO only workaround
3283                                  * if end byte alignment not correct move us
3284                                  * into the next dword */
3285                                 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3286                                         break;
3287                                 /* fall through */
3288                         case e1000_82571:
3289                         case e1000_82572:
3290                         case e1000_82573:
3291                         case e1000_ich8lan:
3292                                 pull_size = min((unsigned int)4, skb->data_len);
3293                                 if (!__pskb_pull_tail(skb, pull_size)) {
3294                                         DPRINTK(DRV, ERR,
3295                                                 "__pskb_pull_tail failed.\n");
3296                                         dev_kfree_skb_any(skb);
3297                                         return NETDEV_TX_OK;
3298                                 }
3299                                 len = skb->len - skb->data_len;
3300                                 break;
3301                         default:
3302                                 /* do nothing */
3303                                 break;
3304                         }
3305                 }
3306         }
3307
3308         /* reserve a descriptor for the offload context */
3309         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3310                 count++;
3311         count++;
3312
3313         /* Controller Erratum workaround */
3314         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3315                 count++;
3316
3317         count += TXD_USE_COUNT(len, max_txd_pwr);
3318
3319         if (adapter->pcix_82544)
3320                 count++;
3321
3322         /* work-around for errata 10 and it applies to all controllers
3323          * in PCI-X mode, so add one more descriptor to the count
3324          */
3325         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3326                         (len > 2015)))
3327                 count++;
3328
3329         nr_frags = skb_shinfo(skb)->nr_frags;
3330         for (f = 0; f < nr_frags; f++)
3331                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3332                                        max_txd_pwr);
3333         if (adapter->pcix_82544)
3334                 count += nr_frags;
3335
3336
3337         if (adapter->hw.tx_pkt_filtering &&
3338             (adapter->hw.mac_type == e1000_82573))
3339                 e1000_transfer_dhcp_info(adapter, skb);
3340
3341         if (!spin_trylock_irqsave(&tx_ring->tx_lock, flags))
3342                 /* Collision - tell upper layer to requeue */
3343                 return NETDEV_TX_LOCKED;
3344
3345         /* need: count + 2 desc gap to keep tail from touching
3346          * head, otherwise try next time */
3347         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3348                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3349                 return NETDEV_TX_BUSY;
3350         }
3351
3352         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3353                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3354                         netif_stop_queue(netdev);
3355                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3356                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3357                         return NETDEV_TX_BUSY;
3358                 }
3359         }
3360
3361         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3362                 tx_flags |= E1000_TX_FLAGS_VLAN;
3363                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3364         }
3365
3366         first = tx_ring->next_to_use;
3367
3368         tso = e1000_tso(adapter, tx_ring, skb);
3369         if (tso < 0) {
3370                 dev_kfree_skb_any(skb);
3371                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3372                 return NETDEV_TX_OK;
3373         }
3374
3375         if (likely(tso)) {
3376                 tx_ring->last_tx_tso = 1;
3377                 tx_flags |= E1000_TX_FLAGS_TSO;
3378         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3379                 tx_flags |= E1000_TX_FLAGS_CSUM;
3380
3381         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3382          * 82571 hardware supports TSO capabilities for IPv6 as well...
3383          * no longer assume, we must. */
3384         if (likely(skb->protocol == htons(ETH_P_IP)))
3385                 tx_flags |= E1000_TX_FLAGS_IPV4;
3386
3387         e1000_tx_queue(adapter, tx_ring, tx_flags,
3388                        e1000_tx_map(adapter, tx_ring, skb, first,
3389                                     max_per_txd, nr_frags, mss));
3390
3391         netdev->trans_start = jiffies;
3392
3393         /* Make sure there is space in the ring for the next send. */
3394         e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3395
3396         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3397         return NETDEV_TX_OK;
3398 }
3399
3400 /**
3401  * e1000_tx_timeout - Respond to a Tx Hang
3402  * @netdev: network interface device structure
3403  **/
3404
3405 static void
3406 e1000_tx_timeout(struct net_device *netdev)
3407 {
3408         struct e1000_adapter *adapter = netdev_priv(netdev);
3409
3410         /* Do the reset outside of interrupt context */
3411         adapter->tx_timeout_count++;
3412         schedule_work(&adapter->reset_task);
3413 }
3414
3415 static void
3416 e1000_reset_task(struct work_struct *work)
3417 {
3418         struct e1000_adapter *adapter =
3419                 container_of(work, struct e1000_adapter, reset_task);
3420
3421         e1000_reinit_locked(adapter);
3422 }
3423
3424 /**
3425  * e1000_get_stats - Get System Network Statistics
3426  * @netdev: network interface device structure
3427  *
3428  * Returns the address of the device statistics structure.
3429  * The statistics are actually updated from the timer callback.
3430  **/
3431
3432 static struct net_device_stats *
3433 e1000_get_stats(struct net_device *netdev)
3434 {
3435         struct e1000_adapter *adapter = netdev_priv(netdev);
3436
3437         /* only return the current stats */
3438         return &adapter->net_stats;
3439 }
3440
3441 /**
3442  * e1000_change_mtu - Change the Maximum Transfer Unit
3443  * @netdev: network interface device structure
3444  * @new_mtu: new value for maximum frame size
3445  *
3446  * Returns 0 on success, negative on failure
3447  **/
3448
3449 static int
3450 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3451 {
3452         struct e1000_adapter *adapter = netdev_priv(netdev);
3453         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3454         uint16_t eeprom_data = 0;
3455
3456         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3457             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3458                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3459                 return -EINVAL;
3460         }
3461
3462         /* Adapter-specific max frame size limits. */
3463         switch (adapter->hw.mac_type) {
3464         case e1000_undefined ... e1000_82542_rev2_1:
3465         case e1000_ich8lan:
3466                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3467                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3468                         return -EINVAL;
3469                 }
3470                 break;
3471         case e1000_82573:
3472                 /* Jumbo Frames not supported if:
3473                  * - this is not an 82573L device
3474                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3475                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3476                                   &eeprom_data);
3477                 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3478                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3479                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3480                                 DPRINTK(PROBE, ERR,
3481                                         "Jumbo Frames not supported.\n");
3482                                 return -EINVAL;
3483                         }
3484                         break;
3485                 }
3486                 /* ERT will be enabled later to enable wire speed receives */
3487
3488                 /* fall through to get support */
3489         case e1000_82571:
3490         case e1000_82572:
3491         case e1000_80003es2lan:
3492 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3493                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3494                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3495                         return -EINVAL;
3496                 }
3497                 break;
3498         default:
3499                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3500                 break;
3501         }
3502
3503         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3504          * means we reserve 2 more, this pushes us to allocate from the next
3505          * larger slab size
3506          * i.e. RXBUFFER_2048 --> size-4096 slab */
3507
3508         if (max_frame <= E1000_RXBUFFER_256)
3509                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3510         else if (max_frame <= E1000_RXBUFFER_512)
3511                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3512         else if (max_frame <= E1000_RXBUFFER_1024)
3513                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3514         else if (max_frame <= E1000_RXBUFFER_2048)
3515                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3516         else if (max_frame <= E1000_RXBUFFER_4096)
3517                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3518         else if (max_frame <= E1000_RXBUFFER_8192)
3519                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3520         else if (max_frame <= E1000_RXBUFFER_16384)
3521                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3522
3523         /* adjust allocation if LPE protects us, and we aren't using SBP */
3524         if (!adapter->hw.tbi_compatibility_on &&
3525             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3526              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3527                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3528
3529         netdev->mtu = new_mtu;
3530         adapter->hw.max_frame_size = max_frame;
3531
3532         if (netif_running(netdev))
3533                 e1000_reinit_locked(adapter);
3534
3535         return 0;
3536 }
3537
3538 /**
3539  * e1000_update_stats - Update the board statistics counters
3540  * @adapter: board private structure
3541  **/
3542
3543 void
3544 e1000_update_stats(struct e1000_adapter *adapter)
3545 {
3546         struct e1000_hw *hw = &adapter->hw;
3547         struct pci_dev *pdev = adapter->pdev;
3548         unsigned long flags;
3549         uint16_t phy_tmp;
3550
3551 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3552
3553         /*
3554          * Prevent stats update while adapter is being reset, or if the pci
3555          * connection is down.
3556          */
3557         if (adapter->link_speed == 0)
3558                 return;
3559         if (pci_channel_offline(pdev))
3560                 return;
3561
3562         spin_lock_irqsave(&adapter->stats_lock, flags);
3563
3564         /* these counters are modified from e1000_tbi_adjust_stats,
3565          * called from the interrupt context, so they must only
3566          * be written while holding adapter->stats_lock
3567          */
3568
3569         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3570         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3571         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3572         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3573         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3574         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3575         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3576
3577         if (adapter->hw.mac_type != e1000_ich8lan) {
3578                 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3579                 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3580                 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3581                 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3582                 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3583                 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3584         }
3585
3586         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3587         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3588         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3589         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3590         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3591         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3592         adapter->stats.dc += E1000_READ_REG(hw, DC);
3593         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3594         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3595         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3596         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3597         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3598         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3599         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3600         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3601         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3602         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3603         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3604         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3605         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3606         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3607         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3608         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3609         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3610         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3611         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3612
3613         if (adapter->hw.mac_type != e1000_ich8lan) {
3614                 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3615                 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3616                 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3617                 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3618                 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3619                 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3620         }
3621
3622         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3623         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3624
3625         /* used for adaptive IFS */
3626
3627         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3628         adapter->stats.tpt += hw->tx_packet_delta;
3629         hw->collision_delta = E1000_READ_REG(hw, COLC);
3630         adapter->stats.colc += hw->collision_delta;
3631
3632         if (hw->mac_type >= e1000_82543) {
3633                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3634                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3635                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3636                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3637                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3638                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3639         }
3640         if (hw->mac_type > e1000_82547_rev_2) {
3641                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3642                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3643
3644                 if (adapter->hw.mac_type != e1000_ich8lan) {
3645                         adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3646                         adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3647                         adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3648                         adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3649                         adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3650                         adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3651                         adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3652                 }
3653         }
3654
3655         /* Fill out the OS statistics structure */
3656         adapter->net_stats.rx_packets = adapter->stats.gprc;
3657         adapter->net_stats.tx_packets = adapter->stats.gptc;
3658         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3659         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3660         adapter->net_stats.multicast = adapter->stats.mprc;
3661         adapter->net_stats.collisions = adapter->stats.colc;
3662
3663         /* Rx Errors */
3664
3665         /* RLEC on some newer hardware can be incorrect so build
3666         * our own version based on RUC and ROC */
3667         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3668                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3669                 adapter->stats.ruc + adapter->stats.roc +
3670                 adapter->stats.cexterr;
3671         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3672         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3673         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3674         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3675         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3676
3677         /* Tx Errors */
3678         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3679         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3680         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3681         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3682         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3683         if (adapter->hw.bad_tx_carr_stats_fd &&
3684             adapter->link_duplex == FULL_DUPLEX) {
3685                 adapter->net_stats.tx_carrier_errors = 0;
3686                 adapter->stats.tncrs = 0;
3687         }
3688
3689         /* Tx Dropped needs to be maintained elsewhere */
3690
3691         /* Phy Stats */
3692         if (hw->media_type == e1000_media_type_copper) {
3693                 if ((adapter->link_speed == SPEED_1000) &&
3694                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3695                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3696                         adapter->phy_stats.idle_errors += phy_tmp;
3697                 }
3698
3699                 if ((hw->mac_type <= e1000_82546) &&
3700                    (hw->phy_type == e1000_phy_m88) &&
3701                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3702                         adapter->phy_stats.receive_errors += phy_tmp;
3703         }
3704
3705         /* Management Stats */
3706         if (adapter->hw.has_smbus) {
3707                 adapter->stats.mgptc += E1000_READ_REG(hw, MGTPTC);
3708                 adapter->stats.mgprc += E1000_READ_REG(hw, MGTPRC);
3709                 adapter->stats.mgpdc += E1000_READ_REG(hw, MGTPDC);
3710         }
3711
3712         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3713 }
3714
3715 /**
3716  * e1000_intr_msi - Interrupt Handler
3717  * @irq: interrupt number
3718  * @data: pointer to a network interface device structure
3719  **/
3720
3721 static irqreturn_t
3722 e1000_intr_msi(int irq, void *data)
3723 {
3724         struct net_device *netdev = data;
3725         struct e1000_adapter *adapter = netdev_priv(netdev);
3726         struct e1000_hw *hw = &adapter->hw;
3727 #ifndef CONFIG_E1000_NAPI
3728         int i;
3729 #endif
3730         uint32_t icr = E1000_READ_REG(hw, ICR);
3731
3732 #ifdef CONFIG_E1000_NAPI
3733         /* read ICR disables interrupts using IAM, so keep up with our
3734          * enable/disable accounting */
3735         atomic_inc(&adapter->irq_sem);
3736 #endif
3737         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3738                 hw->get_link_status = 1;
3739                 /* 80003ES2LAN workaround-- For packet buffer work-around on
3740                  * link down event; disable receives here in the ISR and reset
3741                  * adapter in watchdog */
3742                 if (netif_carrier_ok(netdev) &&
3743                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3744                         /* disable receives */
3745                         uint32_t rctl = E1000_READ_REG(hw, RCTL);
3746                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3747                 }
3748                 /* guard against interrupt when we're going down */
3749                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3750                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3751         }
3752
3753 #ifdef CONFIG_E1000_NAPI
3754         if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3755                 adapter->total_tx_bytes = 0;
3756                 adapter->total_tx_packets = 0;
3757                 adapter->total_rx_bytes = 0;
3758                 adapter->total_rx_packets = 0;
3759                 __netif_rx_schedule(netdev, &adapter->napi);
3760         } else
3761                 e1000_irq_enable(adapter);
3762 #else
3763         adapter->total_tx_bytes = 0;
3764         adapter->total_rx_bytes = 0;
3765         adapter->total_tx_packets = 0;
3766         adapter->total_rx_packets = 0;
3767
3768         for (i = 0; i < E1000_MAX_INTR; i++)
3769                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3770                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3771                         break;
3772
3773         if (likely(adapter->itr_setting & 3))
3774                 e1000_set_itr(adapter);
3775 #endif
3776
3777         return IRQ_HANDLED;
3778 }
3779
3780 /**
3781  * e1000_intr - Interrupt Handler
3782  * @irq: interrupt number
3783  * @data: pointer to a network interface device structure
3784  **/
3785
3786 static irqreturn_t
3787 e1000_intr(int irq, void *data)
3788 {
3789         struct net_device *netdev = data;
3790         struct e1000_adapter *adapter = netdev_priv(netdev);
3791         struct e1000_hw *hw = &adapter->hw;
3792         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3793 #ifndef CONFIG_E1000_NAPI
3794         int i;
3795 #endif
3796         if (unlikely(!icr))
3797                 return IRQ_NONE;  /* Not our interrupt */
3798
3799 #ifdef CONFIG_E1000_NAPI
3800         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3801          * not set, then the adapter didn't send an interrupt */
3802         if (unlikely(hw->mac_type >= e1000_82571 &&
3803                      !(icr & E1000_ICR_INT_ASSERTED)))
3804                 return IRQ_NONE;
3805
3806         /* Interrupt Auto-Mask...upon reading ICR,
3807          * interrupts are masked.  No need for the
3808          * IMC write, but it does mean we should
3809          * account for it ASAP. */
3810         if (likely(hw->mac_type >= e1000_82571))
3811                 atomic_inc(&adapter->irq_sem);
3812 #endif
3813
3814         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3815                 hw->get_link_status = 1;
3816                 /* 80003ES2LAN workaround--
3817                  * For packet buffer work-around on link down event;
3818                  * disable receives here in the ISR and
3819                  * reset adapter in watchdog
3820                  */
3821                 if (netif_carrier_ok(netdev) &&
3822                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3823                         /* disable receives */
3824                         rctl = E1000_READ_REG(hw, RCTL);
3825                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3826                 }
3827                 /* guard against interrupt when we're going down */
3828                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3829                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3830         }
3831
3832 #ifdef CONFIG_E1000_NAPI
3833         if (unlikely(hw->mac_type < e1000_82571)) {
3834                 /* disable interrupts, without the synchronize_irq bit */
3835                 atomic_inc(&adapter->irq_sem);
3836                 E1000_WRITE_REG(hw, IMC, ~0);
3837                 E1000_WRITE_FLUSH(hw);
3838         }
3839         if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3840                 adapter->total_tx_bytes = 0;
3841                 adapter->total_tx_packets = 0;
3842                 adapter->total_rx_bytes = 0;
3843                 adapter->total_rx_packets = 0;
3844                 __netif_rx_schedule(netdev, &adapter->napi);
3845         } else
3846                 /* this really should not happen! if it does it is basically a
3847                  * bug, but not a hard error, so enable ints and continue */
3848                 e1000_irq_enable(adapter);
3849 #else
3850         /* Writing IMC and IMS is needed for 82547.
3851          * Due to Hub Link bus being occupied, an interrupt
3852          * de-assertion message is not able to be sent.
3853          * When an interrupt assertion message is generated later,
3854          * two messages are re-ordered and sent out.
3855          * That causes APIC to think 82547 is in de-assertion
3856          * state, while 82547 is in assertion state, resulting
3857          * in dead lock. Writing IMC forces 82547 into
3858          * de-assertion state.
3859          */
3860         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3861                 atomic_inc(&adapter->irq_sem);
3862                 E1000_WRITE_REG(hw, IMC, ~0);
3863         }
3864
3865         adapter->total_tx_bytes = 0;
3866         adapter->total_rx_bytes = 0;
3867         adapter->total_tx_packets = 0;
3868         adapter->total_rx_packets = 0;
3869
3870         for (i = 0; i < E1000_MAX_INTR; i++)
3871                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3872                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3873                         break;
3874
3875         if (likely(adapter->itr_setting & 3))
3876                 e1000_set_itr(adapter);
3877
3878         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3879                 e1000_irq_enable(adapter);
3880
3881 #endif
3882         return IRQ_HANDLED;
3883 }
3884
3885 #ifdef CONFIG_E1000_NAPI
3886 /**
3887  * e1000_clean - NAPI Rx polling callback
3888  * @adapter: board private structure
3889  **/
3890
3891 static int
3892 e1000_clean(struct napi_struct *napi, int budget)
3893 {
3894         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3895         struct net_device *poll_dev = adapter->netdev;
3896         int tx_cleaned = 0, work_done = 0;
3897
3898         /* Must NOT use netdev_priv macro here. */
3899         adapter = poll_dev->priv;
3900
3901         /* e1000_clean is called per-cpu.  This lock protects
3902          * tx_ring[0] from being cleaned by multiple cpus
3903          * simultaneously.  A failure obtaining the lock means
3904          * tx_ring[0] is currently being cleaned anyway. */
3905         if (spin_trylock(&adapter->tx_queue_lock)) {
3906                 tx_cleaned = e1000_clean_tx_irq(adapter,
3907                                                 &adapter->tx_ring[0]);
3908                 spin_unlock(&adapter->tx_queue_lock);
3909         }
3910
3911         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3912                           &work_done, budget);
3913
3914         if (tx_cleaned)
3915                 work_done = budget;
3916
3917         /* If budget not fully consumed, exit the polling mode */
3918         if (work_done < budget) {
3919                 if (likely(adapter->itr_setting & 3))
3920                         e1000_set_itr(adapter);
3921                 netif_rx_complete(poll_dev, napi);
3922                 e1000_irq_enable(adapter);
3923         }
3924
3925         return work_done;
3926 }
3927
3928 #endif
3929 /**
3930  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3931  * @adapter: board private structure
3932  **/
3933
3934 static boolean_t
3935 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3936                    struct e1000_tx_ring *tx_ring)
3937 {
3938         struct net_device *netdev = adapter->netdev;
3939         struct e1000_tx_desc *tx_desc, *eop_desc;
3940         struct e1000_buffer *buffer_info;
3941         unsigned int i, eop;
3942 #ifdef CONFIG_E1000_NAPI
3943         unsigned int count = 0;
3944 #endif
3945         boolean_t cleaned = FALSE;
3946         unsigned int total_tx_bytes=0, total_tx_packets=0;
3947
3948         i = tx_ring->next_to_clean;
3949         eop = tx_ring->buffer_info[i].next_to_watch;
3950         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3951
3952         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3953                 for (cleaned = FALSE; !cleaned; ) {
3954                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3955                         buffer_info = &tx_ring->buffer_info[i];
3956                         cleaned = (i == eop);
3957
3958                         if (cleaned) {
3959                                 struct sk_buff *skb = buffer_info->skb;
3960                                 unsigned int segs, bytecount;
3961                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3962                                 /* multiply data chunks by size of headers */
3963                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3964                                             skb->len;
3965                                 total_tx_packets += segs;
3966                                 total_tx_bytes += bytecount;
3967                         }
3968                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3969                         tx_desc->upper.data = 0;
3970
3971                         if (unlikely(++i == tx_ring->count)) i = 0;
3972                 }
3973
3974                 eop = tx_ring->buffer_info[i].next_to_watch;
3975                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3976 #ifdef CONFIG_E1000_NAPI
3977 #define E1000_TX_WEIGHT 64
3978                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3979                 if (count++ == E1000_TX_WEIGHT) break;
3980 #endif
3981         }
3982
3983         tx_ring->next_to_clean = i;
3984
3985 #define TX_WAKE_THRESHOLD 32
3986         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3987                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3988                 /* Make sure that anybody stopping the queue after this
3989                  * sees the new next_to_clean.
3990                  */
3991                 smp_mb();
3992                 if (netif_queue_stopped(netdev)) {
3993                         netif_wake_queue(netdev);
3994                         ++adapter->restart_queue;
3995                 }
3996         }
3997
3998         if (adapter->detect_tx_hung) {
3999                 /* Detect a transmit hang in hardware, this serializes the
4000                  * check with the clearing of time_stamp and movement of i */
4001                 adapter->detect_tx_hung = FALSE;
4002                 if (tx_ring->buffer_info[eop].dma &&
4003                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
4004                                (adapter->tx_timeout_factor * HZ))
4005                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
4006                          E1000_STATUS_TXOFF)) {
4007
4008                         /* detected Tx unit hang */
4009                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
4010                                         "  Tx Queue             <%lu>\n"
4011                                         "  TDH                  <%x>\n"
4012                                         "  TDT                  <%x>\n"
4013                                         "  next_to_use          <%x>\n"
4014                                         "  next_to_clean        <%x>\n"
4015                                         "buffer_info[next_to_clean]\n"
4016                                         "  time_stamp           <%lx>\n"
4017                                         "  next_to_watch        <%x>\n"
4018                                         "  jiffies              <%lx>\n"
4019                                         "  next_to_watch.status <%x>\n",
4020                                 (unsigned long)((tx_ring - adapter->tx_ring) /
4021                                         sizeof(struct e1000_tx_ring)),
4022                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
4023                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
4024                                 tx_ring->next_to_use,
4025                                 tx_ring->next_to_clean,
4026                                 tx_ring->buffer_info[eop].time_stamp,
4027                                 eop,
4028                                 jiffies,
4029                                 eop_desc->upper.fields.status);
4030                         netif_stop_queue(netdev);
4031                 }
4032         }
4033         adapter->total_tx_bytes += total_tx_bytes;
4034         adapter->total_tx_packets += total_tx_packets;
4035         return cleaned;
4036 }
4037
4038 /**
4039  * e1000_rx_checksum - Receive Checksum Offload for 82543
4040  * @adapter:     board private structure
4041  * @status_err:  receive descriptor status and error fields
4042  * @csum:        receive descriptor csum field
4043  * @sk_buff:     socket buffer with received data
4044  **/
4045
4046 static void
4047 e1000_rx_checksum(struct e1000_adapter *adapter,
4048                   uint32_t status_err, uint32_t csum,
4049                   struct sk_buff *skb)
4050 {
4051         uint16_t status = (uint16_t)status_err;
4052         uint8_t errors = (uint8_t)(status_err >> 24);
4053         skb->ip_summed = CHECKSUM_NONE;
4054
4055         /* 82543 or newer only */
4056         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
4057         /* Ignore Checksum bit is set */
4058         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
4059         /* TCP/UDP checksum error bit is set */
4060         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
4061                 /* let the stack verify checksum errors */
4062                 adapter->hw_csum_err++;
4063                 return;
4064         }
4065         /* TCP/UDP Checksum has not been calculated */
4066         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
4067                 if (!(status & E1000_RXD_STAT_TCPCS))
4068                         return;
4069         } else {
4070                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
4071                         return;
4072         }
4073         /* It must be a TCP or UDP packet with a valid checksum */
4074         if (likely(status & E1000_RXD_STAT_TCPCS)) {
4075                 /* TCP checksum is good */
4076                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4077         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
4078                 /* IP fragment with UDP payload */
4079                 /* Hardware complements the payload checksum, so we undo it
4080                  * and then put the value in host order for further stack use.
4081                  */
4082                 csum = ntohl(csum ^ 0xFFFF);
4083                 skb->csum = csum;
4084                 skb->ip_summed = CHECKSUM_COMPLETE;
4085         }
4086         adapter->hw_csum_good++;
4087 }
4088
4089 /**
4090  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4091  * @adapter: board private structure
4092  **/
4093
4094 static boolean_t
4095 #ifdef CONFIG_E1000_NAPI
4096 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4097                    struct e1000_rx_ring *rx_ring,
4098                    int *work_done, int work_to_do)
4099 #else
4100 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4101                    struct e1000_rx_ring *rx_ring)
4102 #endif
4103 {
4104         struct net_device *netdev = adapter->netdev;
4105         struct pci_dev *pdev = adapter->pdev;
4106         struct e1000_rx_desc *rx_desc, *next_rxd;
4107         struct e1000_buffer *buffer_info, *next_buffer;
4108         unsigned long flags;
4109         uint32_t length;
4110         uint8_t last_byte;
4111         unsigned int i;
4112         int cleaned_count = 0;
4113         boolean_t cleaned = FALSE;
4114         unsigned int total_rx_bytes=0, total_rx_packets=0;
4115
4116         i = rx_ring->next_to_clean;
4117         rx_desc = E1000_RX_DESC(*rx_ring, i);
4118         buffer_info = &rx_ring->buffer_info[i];
4119
4120         while (rx_desc->status & E1000_RXD_STAT_DD) {
4121                 struct sk_buff *skb;
4122                 u8 status;
4123
4124 #ifdef CONFIG_E1000_NAPI
4125                 if (*work_done >= work_to_do)
4126                         break;
4127                 (*work_done)++;
4128 #endif
4129                 status = rx_desc->status;
4130                 skb = buffer_info->skb;
4131                 buffer_info->skb = NULL;
4132
4133                 prefetch(skb->data - NET_IP_ALIGN);
4134
4135                 if (++i == rx_ring->count) i = 0;
4136                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4137                 prefetch(next_rxd);
4138
4139                 next_buffer = &rx_ring->buffer_info[i];
4140
4141                 cleaned = TRUE;
4142                 cleaned_count++;
4143                 pci_unmap_single(pdev,
4144                                  buffer_info->dma,
4145                                  buffer_info->length,
4146                                  PCI_DMA_FROMDEVICE);
4147
4148                 length = le16_to_cpu(rx_desc->length);
4149
4150                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4151                         /* All receives must fit into a single buffer */
4152                         E1000_DBG("%s: Receive packet consumed multiple"
4153                                   " buffers\n", netdev->name);
4154                         /* recycle */
4155                         buffer_info->skb = skb;
4156                         goto next_desc;
4157                 }
4158
4159                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4160                         last_byte = *(skb->data + length - 1);
4161                         if (TBI_ACCEPT(&adapter->hw, status,
4162                                       rx_desc->errors, length, last_byte)) {
4163                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4164                                 e1000_tbi_adjust_stats(&adapter->hw,
4165                                                        &adapter->stats,
4166                                                        length, skb->data);
4167                                 spin_unlock_irqrestore(&adapter->stats_lock,
4168                                                        flags);
4169                                 length--;
4170                         } else {
4171                                 /* recycle */
4172                                 buffer_info->skb = skb;
4173                                 goto next_desc;
4174                         }
4175                 }
4176
4177                 /* adjust length to remove Ethernet CRC, this must be
4178                  * done after the TBI_ACCEPT workaround above */
4179                 length -= 4;
4180
4181                 /* probably a little skewed due to removing CRC */
4182                 total_rx_bytes += length;
4183                 total_rx_packets++;
4184
4185                 /* code added for copybreak, this should improve
4186                  * performance for small packets with large amounts
4187                  * of reassembly being done in the stack */
4188                 if (length < copybreak) {
4189                         struct sk_buff *new_skb =
4190                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4191                         if (new_skb) {
4192                                 skb_reserve(new_skb, NET_IP_ALIGN);
4193                                 skb_copy_to_linear_data_offset(new_skb,
4194                                                                -NET_IP_ALIGN,
4195                                                                (skb->data -
4196                                                                 NET_IP_ALIGN),
4197                                                                (length +
4198                                                                 NET_IP_ALIGN));
4199                                 /* save the skb in buffer_info as good */
4200                                 buffer_info->skb = skb;
4201                                 skb = new_skb;
4202                         }
4203                         /* else just continue with the old one */
4204                 }
4205                 /* end copybreak code */
4206                 skb_put(skb, length);
4207
4208                 /* Receive Checksum Offload */
4209                 e1000_rx_checksum(adapter,
4210                                   (uint32_t)(status) |
4211                                   ((uint32_t)(rx_desc->errors) << 24),
4212                                   le16_to_cpu(rx_desc->csum), skb);
4213
4214                 skb->protocol = eth_type_trans(skb, netdev);
4215 #ifdef CONFIG_E1000_NAPI
4216                 if (unlikely(adapter->vlgrp &&
4217                             (status & E1000_RXD_STAT_VP))) {
4218                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4219                                                  le16_to_cpu(rx_desc->special) &
4220                                                  E1000_RXD_SPC_VLAN_MASK);
4221                 } else {
4222                         netif_receive_skb(skb);
4223                 }
4224 #else /* CONFIG_E1000_NAPI */
4225                 if (unlikely(adapter->vlgrp &&
4226                             (status & E1000_RXD_STAT_VP))) {
4227                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4228                                         le16_to_cpu(rx_desc->special) &
4229                                         E1000_RXD_SPC_VLAN_MASK);
4230                 } else {
4231                         netif_rx(skb);
4232                 }
4233 #endif /* CONFIG_E1000_NAPI */
4234                 netdev->last_rx = jiffies;
4235
4236 next_desc:
4237                 rx_desc->status = 0;
4238
4239                 /* return some buffers to hardware, one at a time is too slow */
4240                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4241                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4242                         cleaned_count = 0;
4243                 }
4244
4245                 /* use prefetched values */
4246                 rx_desc = next_rxd;
4247                 buffer_info = next_buffer;
4248         }
4249         rx_ring->next_to_clean = i;
4250
4251         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4252         if (cleaned_count)
4253                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4254
4255         adapter->total_rx_packets += total_rx_packets;
4256         adapter->total_rx_bytes += total_rx_bytes;
4257         return cleaned;
4258 }
4259
4260 /**
4261  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
4262  * @adapter: board private structure
4263  **/
4264
4265 static boolean_t
4266 #ifdef CONFIG_E1000_NAPI
4267 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4268                       struct e1000_rx_ring *rx_ring,
4269                       int *work_done, int work_to_do)
4270 #else
4271 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4272                       struct e1000_rx_ring *rx_ring)
4273 #endif
4274 {
4275         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
4276         struct net_device *netdev = adapter->netdev;
4277         struct pci_dev *pdev = adapter->pdev;
4278         struct e1000_buffer *buffer_info, *next_buffer;
4279         struct e1000_ps_page *ps_page;
4280         struct e1000_ps_page_dma *ps_page_dma;
4281         struct sk_buff *skb;
4282         unsigned int i, j;
4283         uint32_t length, staterr;
4284         int cleaned_count = 0;
4285         boolean_t cleaned = FALSE;
4286         unsigned int total_rx_bytes=0, total_rx_packets=0;
4287
4288         i = rx_ring->next_to_clean;
4289         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4290         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4291         buffer_info = &rx_ring->buffer_info[i];
4292
4293         while (staterr & E1000_RXD_STAT_DD) {
4294                 ps_page = &rx_ring->ps_page[i];
4295                 ps_page_dma = &rx_ring->ps_page_dma[i];
4296 #ifdef CONFIG_E1000_NAPI
4297                 if (unlikely(*work_done >= work_to_do))
4298                         break;
4299                 (*work_done)++;
4300 #endif
4301                 skb = buffer_info->skb;
4302
4303                 /* in the packet split case this is header only */
4304                 prefetch(skb->data - NET_IP_ALIGN);
4305
4306                 if (++i == rx_ring->count) i = 0;
4307                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
4308                 prefetch(next_rxd);
4309
4310                 next_buffer = &rx_ring->buffer_info[i];
4311
4312                 cleaned = TRUE;
4313                 cleaned_count++;
4314                 pci_unmap_single(pdev, buffer_info->dma,
4315                                  buffer_info->length,
4316                                  PCI_DMA_FROMDEVICE);
4317
4318                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
4319                         E1000_DBG("%s: Packet Split buffers didn't pick up"
4320                                   " the full packet\n", netdev->name);
4321                         dev_kfree_skb_irq(skb);
4322                         goto next_desc;
4323                 }
4324
4325                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
4326                         dev_kfree_skb_irq(skb);
4327                         goto next_desc;
4328                 }
4329
4330                 length = le16_to_cpu(rx_desc->wb.middle.length0);
4331
4332                 if (unlikely(!length)) {
4333                         E1000_DBG("%s: Last part of the packet spanning"
4334                                   " multiple descriptors\n", netdev->name);
4335                         dev_kfree_skb_irq(skb);
4336                         goto next_desc;
4337                 }
4338
4339                 /* Good Receive */
4340                 skb_put(skb, length);
4341
4342                 {
4343                 /* this looks ugly, but it seems compiler issues make it
4344                    more efficient than reusing j */
4345                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
4346
4347                 /* page alloc/put takes too long and effects small packet
4348                  * throughput, so unsplit small packets and save the alloc/put*/
4349                 if (l1 && (l1 <= copybreak) && ((length + l1) <= adapter->rx_ps_bsize0)) {
4350                         u8 *vaddr;
4351                         /* there is no documentation about how to call
4352                          * kmap_atomic, so we can't hold the mapping
4353                          * very long */
4354                         pci_dma_sync_single_for_cpu(pdev,
4355                                 ps_page_dma->ps_page_dma[0],
4356                                 PAGE_SIZE,
4357                                 PCI_DMA_FROMDEVICE);
4358                         vaddr = kmap_atomic(ps_page->ps_page[0],
4359                                             KM_SKB_DATA_SOFTIRQ);
4360                         memcpy(skb_tail_pointer(skb), vaddr, l1);
4361                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
4362                         pci_dma_sync_single_for_device(pdev,
4363                                 ps_page_dma->ps_page_dma[0],
4364                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4365                         /* remove the CRC */
4366                         l1 -= 4;
4367                         skb_put(skb, l1);
4368                         goto copydone;
4369                 } /* if */
4370                 }
4371
4372                 for (j = 0; j < adapter->rx_ps_pages; j++) {
4373                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
4374                                 break;
4375                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
4376                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
4377                         ps_page_dma->ps_page_dma[j] = 0;
4378                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4379                                            length);
4380                         ps_page->ps_page[j] = NULL;
4381                         skb->len += length;
4382                         skb->data_len += length;
4383                         skb->truesize += length;
4384                 }
4385
4386                 /* strip the ethernet crc, problem is we're using pages now so
4387                  * this whole operation can get a little cpu intensive */
4388                 pskb_trim(skb, skb->len - 4);
4389
4390 copydone:
4391                 total_rx_bytes += skb->len;
4392                 total_rx_packets++;
4393
4394                 e1000_rx_checksum(adapter, staterr,
4395                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4396                 skb->protocol = eth_type_trans(skb, netdev);
4397
4398                 if (likely(rx_desc->wb.upper.header_status &
4399                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4400                         adapter->rx_hdr_split++;
4401 #ifdef CONFIG_E1000_NAPI
4402                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4403                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4404                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4405                                 E1000_RXD_SPC_VLAN_MASK);
4406                 } else {
4407                         netif_receive_skb(skb);
4408                 }
4409 #else /* CONFIG_E1000_NAPI */
4410                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4411                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4412                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4413                                 E1000_RXD_SPC_VLAN_MASK);
4414                 } else {
4415                         netif_rx(skb);
4416                 }
4417 #endif /* CONFIG_E1000_NAPI */
4418                 netdev->last_rx = jiffies;
4419
4420 next_desc:
4421                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4422                 buffer_info->skb = NULL;
4423
4424                 /* return some buffers to hardware, one at a time is too slow */
4425                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4426                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4427                         cleaned_count = 0;
4428                 }
4429
4430                 /* use prefetched values */
4431                 rx_desc = next_rxd;
4432                 buffer_info = next_buffer;
4433
4434                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4435         }
4436         rx_ring->next_to_clean = i;
4437
4438         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4439         if (cleaned_count)
4440                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4441
4442         adapter->total_rx_packets += total_rx_packets;
4443         adapter->total_rx_bytes += total_rx_bytes;
4444         return cleaned;
4445 }
4446
4447 /**
4448  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4449  * @adapter: address of board private structure
4450  **/
4451
4452 static void
4453 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4454                        struct e1000_rx_ring *rx_ring,
4455                        int cleaned_count)
4456 {
4457         struct net_device *netdev = adapter->netdev;
4458         struct pci_dev *pdev = adapter->pdev;
4459         struct e1000_rx_desc *rx_desc;
4460         struct e1000_buffer *buffer_info;
4461         struct sk_buff *skb;
4462         unsigned int i;
4463         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4464
4465         i = rx_ring->next_to_use;
4466         buffer_info = &rx_ring->buffer_info[i];
4467
4468         while (cleaned_count--) {
4469                 skb = buffer_info->skb;
4470                 if (skb) {
4471                         skb_trim(skb, 0);
4472                         goto map_skb;
4473                 }
4474
4475                 skb = netdev_alloc_skb(netdev, bufsz);
4476                 if (unlikely(!skb)) {
4477                         /* Better luck next round */
4478                         adapter->alloc_rx_buff_failed++;
4479                         break;
4480                 }
4481
4482                 /* Fix for errata 23, can't cross 64kB boundary */
4483                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4484                         struct sk_buff *oldskb = skb;
4485                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4486                                              "at %p\n", bufsz, skb->data);
4487                         /* Try again, without freeing the previous */
4488                         skb = netdev_alloc_skb(netdev, bufsz);
4489                         /* Failed allocation, critical failure */
4490                         if (!skb) {
4491                                 dev_kfree_skb(oldskb);
4492                                 break;
4493                         }
4494
4495                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4496                                 /* give up */
4497                                 dev_kfree_skb(skb);
4498                                 dev_kfree_skb(oldskb);
4499                                 break; /* while !buffer_info->skb */
4500                         }
4501
4502                         /* Use new allocation */
4503                         dev_kfree_skb(oldskb);
4504                 }
4505                 /* Make buffer alignment 2 beyond a 16 byte boundary
4506                  * this will result in a 16 byte aligned IP header after
4507                  * the 14 byte MAC header is removed
4508                  */
4509                 skb_reserve(skb, NET_IP_ALIGN);
4510
4511                 buffer_info->skb = skb;
4512                 buffer_info->length = adapter->rx_buffer_len;
4513 map_skb:
4514                 buffer_info->dma = pci_map_single(pdev,
4515                                                   skb->data,
4516                                                   adapter->rx_buffer_len,
4517                                                   PCI_DMA_FROMDEVICE);
4518
4519                 /* Fix for errata 23, can't cross 64kB boundary */
4520                 if (!e1000_check_64k_bound(adapter,
4521                                         (void *)(unsigned long)buffer_info->dma,
4522                                         adapter->rx_buffer_len)) {
4523                         DPRINTK(RX_ERR, ERR,
4524                                 "dma align check failed: %u bytes at %p\n",
4525                                 adapter->rx_buffer_len,
4526                                 (void *)(unsigned long)buffer_info->dma);
4527                         dev_kfree_skb(skb);
4528                         buffer_info->skb = NULL;
4529
4530                         pci_unmap_single(pdev, buffer_info->dma,
4531                                          adapter->rx_buffer_len,
4532                                          PCI_DMA_FROMDEVICE);
4533
4534                         break; /* while !buffer_info->skb */
4535                 }
4536                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4537                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4538
4539                 if (unlikely(++i == rx_ring->count))
4540                         i = 0;
4541                 buffer_info = &rx_ring->buffer_info[i];
4542         }
4543
4544         if (likely(rx_ring->next_to_use != i)) {
4545                 rx_ring->next_to_use = i;
4546                 if (unlikely(i-- == 0))
4547                         i = (rx_ring->count - 1);
4548
4549                 /* Force memory writes to complete before letting h/w
4550                  * know there are new descriptors to fetch.  (Only
4551                  * applicable for weak-ordered memory model archs,
4552                  * such as IA-64). */
4553                 wmb();
4554                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4555         }
4556 }
4557
4558 /**
4559  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4560  * @adapter: address of board private structure
4561  **/
4562
4563 static void
4564 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4565                           struct e1000_rx_ring *rx_ring,
4566                           int cleaned_count)
4567 {
4568         struct net_device *netdev = adapter->netdev;
4569         struct pci_dev *pdev = adapter->pdev;
4570         union e1000_rx_desc_packet_split *rx_desc;
4571         struct e1000_buffer *buffer_info;
4572         struct e1000_ps_page *ps_page;
4573         struct e1000_ps_page_dma *ps_page_dma;
4574         struct sk_buff *skb;
4575         unsigned int i, j;
4576
4577         i = rx_ring->next_to_use;
4578         buffer_info = &rx_ring->buffer_info[i];
4579         ps_page = &rx_ring->ps_page[i];
4580         ps_page_dma = &rx_ring->ps_page_dma[i];
4581
4582         while (cleaned_count--) {
4583                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4584
4585                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4586                         if (j < adapter->rx_ps_pages) {
4587                                 if (likely(!ps_page->ps_page[j])) {
4588                                         ps_page->ps_page[j] =
4589                                                 alloc_page(GFP_ATOMIC);
4590                                         if (unlikely(!ps_page->ps_page[j])) {
4591                                                 adapter->alloc_rx_buff_failed++;
4592                                                 goto no_buffers;
4593                                         }
4594                                         ps_page_dma->ps_page_dma[j] =
4595                                                 pci_map_page(pdev,
4596                                                             ps_page->ps_page[j],
4597                                                             0, PAGE_SIZE,
4598                                                             PCI_DMA_FROMDEVICE);
4599                                 }
4600                                 /* Refresh the desc even if buffer_addrs didn't
4601                                  * change because each write-back erases
4602                                  * this info.
4603                                  */
4604                                 rx_desc->read.buffer_addr[j+1] =
4605                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4606                         } else
4607                                 rx_desc->read.buffer_addr[j+1] = ~0;
4608                 }
4609
4610                 skb = netdev_alloc_skb(netdev,
4611                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4612
4613                 if (unlikely(!skb)) {
4614                         adapter->alloc_rx_buff_failed++;
4615                         break;
4616                 }
4617
4618                 /* Make buffer alignment 2 beyond a 16 byte boundary
4619                  * this will result in a 16 byte aligned IP header after
4620                  * the 14 byte MAC header is removed
4621                  */
4622                 skb_reserve(skb, NET_IP_ALIGN);
4623
4624                 buffer_info->skb = skb;
4625                 buffer_info->length = adapter->rx_ps_bsize0;
4626                 buffer_info->dma = pci_map_single(pdev, skb->data,
4627                                                   adapter->rx_ps_bsize0,
4628                                                   PCI_DMA_FROMDEVICE);
4629
4630                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4631
4632                 if (unlikely(++i == rx_ring->count)) i = 0;
4633                 buffer_info = &rx_ring->buffer_info[i];
4634                 ps_page = &rx_ring->ps_page[i];
4635                 ps_page_dma = &rx_ring->ps_page_dma[i];
4636         }
4637
4638 no_buffers:
4639         if (likely(rx_ring->next_to_use != i)) {
4640                 rx_ring->next_to_use = i;
4641                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4642
4643                 /* Force memory writes to complete before letting h/w
4644                  * know there are new descriptors to fetch.  (Only
4645                  * applicable for weak-ordered memory model archs,
4646                  * such as IA-64). */
4647                 wmb();
4648                 /* Hardware increments by 16 bytes, but packet split
4649                  * descriptors are 32 bytes...so we increment tail
4650                  * twice as much.
4651                  */
4652                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4653         }
4654 }
4655
4656 /**
4657  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4658  * @adapter:
4659  **/
4660
4661 static void
4662 e1000_smartspeed(struct e1000_adapter *adapter)
4663 {
4664         uint16_t phy_status;
4665         uint16_t phy_ctrl;
4666
4667         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4668            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4669                 return;
4670
4671         if (adapter->smartspeed == 0) {
4672                 /* If Master/Slave config fault is asserted twice,
4673                  * we assume back-to-back */
4674                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4675                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4676                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4677                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4678                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4679                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4680                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4681                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4682                                             phy_ctrl);
4683                         adapter->smartspeed++;
4684                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4685                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4686                                                &phy_ctrl)) {
4687                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4688                                              MII_CR_RESTART_AUTO_NEG);
4689                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4690                                                     phy_ctrl);
4691                         }
4692                 }
4693                 return;
4694         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4695                 /* If still no link, perhaps using 2/3 pair cable */
4696                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4697                 phy_ctrl |= CR_1000T_MS_ENABLE;
4698                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4699                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4700                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4701                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4702                                      MII_CR_RESTART_AUTO_NEG);
4703                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4704                 }
4705         }
4706         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4707         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4708                 adapter->smartspeed = 0;
4709 }
4710
4711 /**
4712  * e1000_ioctl -
4713  * @netdev:
4714  * @ifreq:
4715  * @cmd:
4716  **/
4717
4718 static int
4719 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4720 {
4721         switch (cmd) {
4722         case SIOCGMIIPHY:
4723         case SIOCGMIIREG:
4724         case SIOCSMIIREG:
4725                 return e1000_mii_ioctl(netdev, ifr, cmd);
4726         default:
4727                 return -EOPNOTSUPP;
4728         }
4729 }
4730
4731 /**
4732  * e1000_mii_ioctl -
4733  * @netdev:
4734  * @ifreq:
4735  * @cmd:
4736  **/
4737
4738 static int
4739 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4740 {
4741         struct e1000_adapter *adapter = netdev_priv(netdev);
4742         struct mii_ioctl_data *data = if_mii(ifr);
4743         int retval;
4744         uint16_t mii_reg;
4745         uint16_t spddplx;
4746         unsigned long flags;
4747
4748         if (adapter->hw.media_type != e1000_media_type_copper)
4749                 return -EOPNOTSUPP;
4750
4751         switch (cmd) {
4752         case SIOCGMIIPHY:
4753                 data->phy_id = adapter->hw.phy_addr;
4754                 break;
4755         case SIOCGMIIREG:
4756                 if (!capable(CAP_NET_ADMIN))
4757                         return -EPERM;
4758                 spin_lock_irqsave(&adapter->stats_lock, flags);
4759                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4760                                    &data->val_out)) {
4761                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4762                         return -EIO;
4763                 }
4764                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4765                 break;
4766         case SIOCSMIIREG:
4767                 if (!capable(CAP_NET_ADMIN))
4768                         return -EPERM;
4769                 if (data->reg_num & ~(0x1F))
4770                         return -EFAULT;
4771                 mii_reg = data->val_in;
4772                 spin_lock_irqsave(&adapter->stats_lock, flags);
4773                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4774                                         mii_reg)) {
4775                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4776                         return -EIO;
4777                 }
4778                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4779                 if (adapter->hw.media_type == e1000_media_type_copper) {
4780                         switch (data->reg_num) {
4781                         case PHY_CTRL:
4782                                 if (mii_reg & MII_CR_POWER_DOWN)
4783                                         break;
4784                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4785                                         adapter->hw.autoneg = 1;
4786                                         adapter->hw.autoneg_advertised = 0x2F;
4787                                 } else {
4788                                         if (mii_reg & 0x40)
4789                                                 spddplx = SPEED_1000;
4790                                         else if (mii_reg & 0x2000)
4791                                                 spddplx = SPEED_100;
4792                                         else
4793                                                 spddplx = SPEED_10;
4794                                         spddplx += (mii_reg & 0x100)
4795                                                    ? DUPLEX_FULL :
4796                                                    DUPLEX_HALF;
4797                                         retval = e1000_set_spd_dplx(adapter,
4798                                                                     spddplx);
4799                                         if (retval)
4800                                                 return retval;
4801                                 }
4802                                 if (netif_running(adapter->netdev))
4803                                         e1000_reinit_locked(adapter);
4804                                 else
4805                                         e1000_reset(adapter);
4806                                 break;
4807                         case M88E1000_PHY_SPEC_CTRL:
4808                         case M88E1000_EXT_PHY_SPEC_CTRL:
4809                                 if (e1000_phy_reset(&adapter->hw))
4810                                         return -EIO;
4811                                 break;
4812                         }
4813                 } else {
4814                         switch (data->reg_num) {
4815                         case PHY_CTRL:
4816                                 if (mii_reg & MII_CR_POWER_DOWN)
4817                                         break;
4818                                 if (netif_running(adapter->netdev))
4819                                         e1000_reinit_locked(adapter);
4820                                 else
4821                                         e1000_reset(adapter);
4822                                 break;
4823                         }
4824                 }
4825                 break;
4826         default:
4827                 return -EOPNOTSUPP;
4828         }
4829         return E1000_SUCCESS;
4830 }
4831
4832 void
4833 e1000_pci_set_mwi(struct e1000_hw *hw)
4834 {
4835         struct e1000_adapter *adapter = hw->back;
4836         int ret_val = pci_set_mwi(adapter->pdev);
4837
4838         if (ret_val)
4839                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4840 }
4841
4842 void
4843 e1000_pci_clear_mwi(struct e1000_hw *hw)
4844 {
4845         struct e1000_adapter *adapter = hw->back;
4846
4847         pci_clear_mwi(adapter->pdev);
4848 }
4849
4850 void
4851 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4852 {
4853         struct e1000_adapter *adapter = hw->back;
4854
4855         pci_read_config_word(adapter->pdev, reg, value);
4856 }
4857
4858 void
4859 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4860 {
4861         struct e1000_adapter *adapter = hw->back;
4862
4863         pci_write_config_word(adapter->pdev, reg, *value);
4864 }
4865
4866 int
4867 e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4868 {
4869         struct e1000_adapter *adapter = hw->back;
4870         return pcix_get_mmrbc(adapter->pdev);
4871 }
4872
4873 void
4874 e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4875 {
4876         struct e1000_adapter *adapter = hw->back;
4877         pcix_set_mmrbc(adapter->pdev, mmrbc);
4878 }
4879
4880 int32_t
4881 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4882 {
4883     struct e1000_adapter *adapter = hw->back;
4884     uint16_t cap_offset;
4885
4886     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4887     if (!cap_offset)
4888         return -E1000_ERR_CONFIG;
4889
4890     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4891
4892     return E1000_SUCCESS;
4893 }
4894
4895 void
4896 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4897 {
4898         outl(value, port);
4899 }
4900
4901 static void
4902 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4903 {
4904         struct e1000_adapter *adapter = netdev_priv(netdev);
4905         uint32_t ctrl, rctl;
4906
4907         e1000_irq_disable(adapter);
4908         adapter->vlgrp = grp;
4909
4910         if (grp) {
4911                 /* enable VLAN tag insert/strip */
4912                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4913                 ctrl |= E1000_CTRL_VME;
4914                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4915
4916                 if (adapter->hw.mac_type != e1000_ich8lan) {
4917                         /* enable VLAN receive filtering */
4918                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4919                         rctl |= E1000_RCTL_VFE;
4920                         rctl &= ~E1000_RCTL_CFIEN;
4921                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4922                         e1000_update_mng_vlan(adapter);
4923                 }
4924         } else {
4925                 /* disable VLAN tag insert/strip */
4926                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4927                 ctrl &= ~E1000_CTRL_VME;
4928                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4929
4930                 if (adapter->hw.mac_type != e1000_ich8lan) {
4931                         /* disable VLAN filtering */
4932                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4933                         rctl &= ~E1000_RCTL_VFE;
4934                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4935                         if (adapter->mng_vlan_id !=
4936                             (uint16_t)E1000_MNG_VLAN_NONE) {
4937                                 e1000_vlan_rx_kill_vid(netdev,
4938                                                        adapter->mng_vlan_id);
4939                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4940                         }
4941                 }
4942         }
4943
4944         e1000_irq_enable(adapter);
4945 }
4946
4947 static void
4948 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4949 {
4950         struct e1000_adapter *adapter = netdev_priv(netdev);
4951         uint32_t vfta, index;
4952
4953         if ((adapter->hw.mng_cookie.status &
4954              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4955             (vid == adapter->mng_vlan_id))
4956                 return;
4957         /* add VID to filter table */
4958         index = (vid >> 5) & 0x7F;
4959         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4960         vfta |= (1 << (vid & 0x1F));
4961         e1000_write_vfta(&adapter->hw, index, vfta);
4962 }
4963
4964 static void
4965 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4966 {
4967         struct e1000_adapter *adapter = netdev_priv(netdev);
4968         uint32_t vfta, index;
4969
4970         e1000_irq_disable(adapter);
4971         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4972         e1000_irq_enable(adapter);
4973
4974         if ((adapter->hw.mng_cookie.status &
4975              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4976             (vid == adapter->mng_vlan_id)) {
4977                 /* release control to f/w */
4978                 e1000_release_hw_control(adapter);
4979                 return;
4980         }
4981
4982         /* remove VID from filter table */
4983         index = (vid >> 5) & 0x7F;
4984         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4985         vfta &= ~(1 << (vid & 0x1F));
4986         e1000_write_vfta(&adapter->hw, index, vfta);
4987 }
4988
4989 static void
4990 e1000_restore_vlan(struct e1000_adapter *adapter)
4991 {
4992         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4993
4994         if (adapter->vlgrp) {
4995                 uint16_t vid;
4996                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4997                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4998                                 continue;
4999                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
5000                 }
5001         }
5002 }
5003
5004 int
5005 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
5006 {
5007         adapter->hw.autoneg = 0;
5008
5009         /* Fiber NICs only allow 1000 gbps Full duplex */
5010         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
5011                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
5012                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5013                 return -EINVAL;
5014         }
5015
5016         switch (spddplx) {
5017         case SPEED_10 + DUPLEX_HALF:
5018                 adapter->hw.forced_speed_duplex = e1000_10_half;
5019                 break;
5020         case SPEED_10 + DUPLEX_FULL:
5021                 adapter->hw.forced_speed_duplex = e1000_10_full;
5022                 break;
5023         case SPEED_100 + DUPLEX_HALF:
5024                 adapter->hw.forced_speed_duplex = e1000_100_half;
5025                 break;
5026         case SPEED_100 + DUPLEX_FULL:
5027                 adapter->hw.forced_speed_duplex = e1000_100_full;
5028                 break;
5029         case SPEED_1000 + DUPLEX_FULL:
5030                 adapter->hw.autoneg = 1;
5031                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
5032                 break;
5033         case SPEED_1000 + DUPLEX_HALF: /* not supported */
5034         default:
5035                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5036                 return -EINVAL;
5037         }
5038         return 0;
5039 }
5040
5041 static int
5042 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5043 {
5044         struct net_device *netdev = pci_get_drvdata(pdev);
5045         struct e1000_adapter *adapter = netdev_priv(netdev);
5046         uint32_t ctrl, ctrl_ext, rctl, status;
5047         uint32_t wufc = adapter->wol;
5048 #ifdef CONFIG_PM
5049         int retval = 0;
5050 #endif
5051
5052         netif_device_detach(netdev);
5053
5054         if (netif_running(netdev)) {
5055                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5056                 e1000_down(adapter);
5057         }
5058
5059 #ifdef CONFIG_PM
5060         retval = pci_save_state(pdev);
5061         if (retval)
5062                 return retval;
5063 #endif
5064
5065         status = E1000_READ_REG(&adapter->hw, STATUS);
5066         if (status & E1000_STATUS_LU)
5067                 wufc &= ~E1000_WUFC_LNKC;
5068
5069         if (wufc) {
5070                 e1000_setup_rctl(adapter);
5071                 e1000_set_multi(netdev);
5072
5073                 /* turn on all-multi mode if wake on multicast is enabled */
5074                 if (wufc & E1000_WUFC_MC) {
5075                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
5076                         rctl |= E1000_RCTL_MPE;
5077                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
5078                 }
5079
5080                 if (adapter->hw.mac_type >= e1000_82540) {
5081                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
5082                         /* advertise wake from D3Cold */
5083                         #define E1000_CTRL_ADVD3WUC 0x00100000
5084                         /* phy power management enable */
5085                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5086                         ctrl |= E1000_CTRL_ADVD3WUC |
5087                                 E1000_CTRL_EN_PHY_PWR_MGMT;
5088                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
5089                 }
5090
5091                 if (adapter->hw.media_type == e1000_media_type_fiber ||
5092                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
5093                         /* keep the laser running in D3 */
5094                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
5095                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5096                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
5097                 }
5098
5099                 /* Allow time for pending master requests to run */
5100                 e1000_disable_pciex_master(&adapter->hw);
5101
5102                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
5103                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
5104                 pci_enable_wake(pdev, PCI_D3hot, 1);
5105                 pci_enable_wake(pdev, PCI_D3cold, 1);
5106         } else {
5107                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
5108                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
5109                 pci_enable_wake(pdev, PCI_D3hot, 0);
5110                 pci_enable_wake(pdev, PCI_D3cold, 0);
5111         }
5112
5113         e1000_release_manageability(adapter);
5114
5115         /* make sure adapter isn't asleep if manageability is enabled */
5116         if (adapter->en_mng_pt) {
5117                 pci_enable_wake(pdev, PCI_D3hot, 1);
5118                 pci_enable_wake(pdev, PCI_D3cold, 1);
5119         }
5120
5121         if (adapter->hw.phy_type == e1000_phy_igp_3)
5122                 e1000_phy_powerdown_workaround(&adapter->hw);
5123
5124         if (netif_running(netdev))
5125                 e1000_free_irq(adapter);
5126
5127         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5128          * would have already happened in close and is redundant. */
5129         e1000_release_hw_control(adapter);
5130
5131         pci_disable_device(pdev);
5132
5133         pci_set_power_state(pdev, pci_choose_state(pdev, state));
5134
5135         return 0;
5136 }
5137
5138 #ifdef CONFIG_PM
5139 static int
5140 e1000_resume(struct pci_dev *pdev)
5141 {
5142         struct net_device *netdev = pci_get_drvdata(pdev);
5143         struct e1000_adapter *adapter = netdev_priv(netdev);
5144         uint32_t err;
5145
5146         pci_set_power_state(pdev, PCI_D0);
5147         pci_restore_state(pdev);
5148         if ((err = pci_enable_device(pdev))) {
5149                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
5150                 return err;
5151         }
5152         pci_set_master(pdev);
5153
5154         pci_enable_wake(pdev, PCI_D3hot, 0);
5155         pci_enable_wake(pdev, PCI_D3cold, 0);
5156
5157         if (netif_running(netdev) && (err = e1000_request_irq(adapter)))
5158                 return err;
5159
5160         e1000_power_up_phy(adapter);
5161         e1000_reset(adapter);
5162         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5163
5164         e1000_init_manageability(adapter);
5165
5166         if (netif_running(netdev))
5167                 e1000_up(adapter);
5168
5169         netif_device_attach(netdev);
5170
5171         /* If the controller is 82573 and f/w is AMT, do not set
5172          * DRV_LOAD until the interface is up.  For all other cases,
5173          * let the f/w know that the h/w is now under the control
5174          * of the driver. */
5175         if (adapter->hw.mac_type != e1000_82573 ||
5176             !e1000_check_mng_mode(&adapter->hw))
5177                 e1000_get_hw_control(adapter);
5178
5179         return 0;
5180 }
5181 #endif
5182
5183 static void e1000_shutdown(struct pci_dev *pdev)
5184 {
5185         e1000_suspend(pdev, PMSG_SUSPEND);
5186 }
5187
5188 #ifdef CONFIG_NET_POLL_CONTROLLER
5189 /*
5190  * Polling 'interrupt' - used by things like netconsole to send skbs
5191  * without having to re-enable interrupts. It's not called while
5192  * the interrupt routine is executing.
5193  */
5194 static void
5195 e1000_netpoll(struct net_device *netdev)
5196 {
5197         struct e1000_adapter *adapter = netdev_priv(netdev);
5198
5199         disable_irq(adapter->pdev->irq);
5200         e1000_intr(adapter->pdev->irq, netdev);
5201         e1000_clean_tx_irq(adapter, adapter->tx_ring);
5202 #ifndef CONFIG_E1000_NAPI
5203         adapter->clean_rx(adapter, adapter->rx_ring);
5204 #endif
5205         enable_irq(adapter->pdev->irq);
5206 }
5207 #endif
5208
5209 /**
5210  * e1000_io_error_detected - called when PCI error is detected
5211  * @pdev: Pointer to PCI device
5212  * @state: The current pci conneection state
5213  *
5214  * This function is called after a PCI bus error affecting
5215  * this device has been detected.
5216  */
5217 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
5218 {
5219         struct net_device *netdev = pci_get_drvdata(pdev);
5220         struct e1000_adapter *adapter = netdev->priv;
5221
5222         netif_device_detach(netdev);
5223
5224         if (netif_running(netdev))
5225                 e1000_down(adapter);
5226         pci_disable_device(pdev);
5227
5228         /* Request a slot slot reset. */
5229         return PCI_ERS_RESULT_NEED_RESET;
5230 }
5231
5232 /**
5233  * e1000_io_slot_reset - called after the pci bus has been reset.
5234  * @pdev: Pointer to PCI device
5235  *
5236  * Restart the card from scratch, as if from a cold-boot. Implementation
5237  * resembles the first-half of the e1000_resume routine.
5238  */
5239 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5240 {
5241         struct net_device *netdev = pci_get_drvdata(pdev);
5242         struct e1000_adapter *adapter = netdev->priv;
5243
5244         if (pci_enable_device(pdev)) {
5245                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
5246                 return PCI_ERS_RESULT_DISCONNECT;
5247         }
5248         pci_set_master(pdev);
5249
5250         pci_enable_wake(pdev, PCI_D3hot, 0);
5251         pci_enable_wake(pdev, PCI_D3cold, 0);
5252
5253         e1000_reset(adapter);
5254         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5255
5256         return PCI_ERS_RESULT_RECOVERED;
5257 }
5258
5259 /**
5260  * e1000_io_resume - called when traffic can start flowing again.
5261  * @pdev: Pointer to PCI device
5262  *
5263  * This callback is called when the error recovery driver tells us that
5264  * its OK to resume normal operation. Implementation resembles the
5265  * second-half of the e1000_resume routine.
5266  */
5267 static void e1000_io_resume(struct pci_dev *pdev)
5268 {
5269         struct net_device *netdev = pci_get_drvdata(pdev);
5270         struct e1000_adapter *adapter = netdev->priv;
5271
5272         e1000_init_manageability(adapter);
5273
5274         if (netif_running(netdev)) {
5275                 if (e1000_up(adapter)) {
5276                         printk("e1000: can't bring device back up after reset\n");
5277                         return;
5278                 }
5279         }
5280
5281         netif_device_attach(netdev);
5282
5283         /* If the controller is 82573 and f/w is AMT, do not set
5284          * DRV_LOAD until the interface is up.  For all other cases,
5285          * let the f/w know that the h/w is now under the control
5286          * of the driver. */
5287         if (adapter->hw.mac_type != e1000_82573 ||
5288             !e1000_check_mng_mode(&adapter->hw))
5289                 e1000_get_hw_control(adapter);
5290
5291 }
5292
5293 /* e1000_main.c */