96e44a825443ef7fb795fd42e69af75f6cdf4b57
[safe/jmp/linux-2.6] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30
31 char e1000_driver_name[] = "e1000";
32 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
33 #ifndef CONFIG_E1000_NAPI
34 #define DRIVERNAPI
35 #else
36 #define DRIVERNAPI "-NAPI"
37 #endif
38 #define DRV_VERSION "7.2.9-k4"DRIVERNAPI
39 char e1000_driver_version[] = DRV_VERSION;
40 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42 /* e1000_pci_tbl - PCI Device ID Table
43  *
44  * Last entry must be all 0s
45  *
46  * Macro expands to...
47  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48  */
49 static struct pci_device_id e1000_pci_tbl[] = {
50         INTEL_E1000_ETHERNET_DEVICE(0x1000),
51         INTEL_E1000_ETHERNET_DEVICE(0x1001),
52         INTEL_E1000_ETHERNET_DEVICE(0x1004),
53         INTEL_E1000_ETHERNET_DEVICE(0x1008),
54         INTEL_E1000_ETHERNET_DEVICE(0x1009),
55         INTEL_E1000_ETHERNET_DEVICE(0x100C),
56         INTEL_E1000_ETHERNET_DEVICE(0x100D),
57         INTEL_E1000_ETHERNET_DEVICE(0x100E),
58         INTEL_E1000_ETHERNET_DEVICE(0x100F),
59         INTEL_E1000_ETHERNET_DEVICE(0x1010),
60         INTEL_E1000_ETHERNET_DEVICE(0x1011),
61         INTEL_E1000_ETHERNET_DEVICE(0x1012),
62         INTEL_E1000_ETHERNET_DEVICE(0x1013),
63         INTEL_E1000_ETHERNET_DEVICE(0x1014),
64         INTEL_E1000_ETHERNET_DEVICE(0x1015),
65         INTEL_E1000_ETHERNET_DEVICE(0x1016),
66         INTEL_E1000_ETHERNET_DEVICE(0x1017),
67         INTEL_E1000_ETHERNET_DEVICE(0x1018),
68         INTEL_E1000_ETHERNET_DEVICE(0x1019),
69         INTEL_E1000_ETHERNET_DEVICE(0x101A),
70         INTEL_E1000_ETHERNET_DEVICE(0x101D),
71         INTEL_E1000_ETHERNET_DEVICE(0x101E),
72         INTEL_E1000_ETHERNET_DEVICE(0x1026),
73         INTEL_E1000_ETHERNET_DEVICE(0x1027),
74         INTEL_E1000_ETHERNET_DEVICE(0x1028),
75         INTEL_E1000_ETHERNET_DEVICE(0x1049),
76         INTEL_E1000_ETHERNET_DEVICE(0x104A),
77         INTEL_E1000_ETHERNET_DEVICE(0x104B),
78         INTEL_E1000_ETHERNET_DEVICE(0x104C),
79         INTEL_E1000_ETHERNET_DEVICE(0x104D),
80         INTEL_E1000_ETHERNET_DEVICE(0x105E),
81         INTEL_E1000_ETHERNET_DEVICE(0x105F),
82         INTEL_E1000_ETHERNET_DEVICE(0x1060),
83         INTEL_E1000_ETHERNET_DEVICE(0x1075),
84         INTEL_E1000_ETHERNET_DEVICE(0x1076),
85         INTEL_E1000_ETHERNET_DEVICE(0x1077),
86         INTEL_E1000_ETHERNET_DEVICE(0x1078),
87         INTEL_E1000_ETHERNET_DEVICE(0x1079),
88         INTEL_E1000_ETHERNET_DEVICE(0x107A),
89         INTEL_E1000_ETHERNET_DEVICE(0x107B),
90         INTEL_E1000_ETHERNET_DEVICE(0x107C),
91         INTEL_E1000_ETHERNET_DEVICE(0x107D),
92         INTEL_E1000_ETHERNET_DEVICE(0x107E),
93         INTEL_E1000_ETHERNET_DEVICE(0x107F),
94         INTEL_E1000_ETHERNET_DEVICE(0x108A),
95         INTEL_E1000_ETHERNET_DEVICE(0x108B),
96         INTEL_E1000_ETHERNET_DEVICE(0x108C),
97         INTEL_E1000_ETHERNET_DEVICE(0x1096),
98         INTEL_E1000_ETHERNET_DEVICE(0x1098),
99         INTEL_E1000_ETHERNET_DEVICE(0x1099),
100         INTEL_E1000_ETHERNET_DEVICE(0x109A),
101         INTEL_E1000_ETHERNET_DEVICE(0x10A4),
102         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
103         INTEL_E1000_ETHERNET_DEVICE(0x10B9),
104         INTEL_E1000_ETHERNET_DEVICE(0x10BA),
105         INTEL_E1000_ETHERNET_DEVICE(0x10BB),
106         INTEL_E1000_ETHERNET_DEVICE(0x10BC),
107         INTEL_E1000_ETHERNET_DEVICE(0x10C4),
108         INTEL_E1000_ETHERNET_DEVICE(0x10C5),
109         /* required last entry */
110         {0,}
111 };
112
113 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
114
115 int e1000_up(struct e1000_adapter *adapter);
116 void e1000_down(struct e1000_adapter *adapter);
117 void e1000_reinit_locked(struct e1000_adapter *adapter);
118 void e1000_reset(struct e1000_adapter *adapter);
119 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
120 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
121 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
122 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
123 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
124 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
125                              struct e1000_tx_ring *txdr);
126 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
127                              struct e1000_rx_ring *rxdr);
128 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
129                              struct e1000_tx_ring *tx_ring);
130 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
131                              struct e1000_rx_ring *rx_ring);
132 void e1000_update_stats(struct e1000_adapter *adapter);
133
134 static int e1000_init_module(void);
135 static void e1000_exit_module(void);
136 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
137 static void __devexit e1000_remove(struct pci_dev *pdev);
138 static int e1000_alloc_queues(struct e1000_adapter *adapter);
139 static int e1000_sw_init(struct e1000_adapter *adapter);
140 static int e1000_open(struct net_device *netdev);
141 static int e1000_close(struct net_device *netdev);
142 static void e1000_configure_tx(struct e1000_adapter *adapter);
143 static void e1000_configure_rx(struct e1000_adapter *adapter);
144 static void e1000_setup_rctl(struct e1000_adapter *adapter);
145 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
146 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
147 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
148                                 struct e1000_tx_ring *tx_ring);
149 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
150                                 struct e1000_rx_ring *rx_ring);
151 static void e1000_set_multi(struct net_device *netdev);
152 static void e1000_update_phy_info(unsigned long data);
153 static void e1000_watchdog(unsigned long data);
154 static void e1000_82547_tx_fifo_stall(unsigned long data);
155 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
156 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
157 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
158 static int e1000_set_mac(struct net_device *netdev, void *p);
159 static irqreturn_t e1000_intr(int irq, void *data);
160 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
161                                     struct e1000_tx_ring *tx_ring);
162 #ifdef CONFIG_E1000_NAPI
163 static int e1000_clean(struct net_device *poll_dev, int *budget);
164 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
165                                     struct e1000_rx_ring *rx_ring,
166                                     int *work_done, int work_to_do);
167 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
168                                        struct e1000_rx_ring *rx_ring,
169                                        int *work_done, int work_to_do);
170 #else
171 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
172                                     struct e1000_rx_ring *rx_ring);
173 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
174                                        struct e1000_rx_ring *rx_ring);
175 #endif
176 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
177                                    struct e1000_rx_ring *rx_ring,
178                                    int cleaned_count);
179 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
180                                       struct e1000_rx_ring *rx_ring,
181                                       int cleaned_count);
182 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
183 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
184                            int cmd);
185 void e1000_set_ethtool_ops(struct net_device *netdev);
186 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
187 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
188 static void e1000_tx_timeout(struct net_device *dev);
189 static void e1000_reset_task(struct net_device *dev);
190 static void e1000_smartspeed(struct e1000_adapter *adapter);
191 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
192                                        struct sk_buff *skb);
193
194 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
195 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
196 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
197 static void e1000_restore_vlan(struct e1000_adapter *adapter);
198
199 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
200 #ifdef CONFIG_PM
201 static int e1000_resume(struct pci_dev *pdev);
202 #endif
203 static void e1000_shutdown(struct pci_dev *pdev);
204
205 #ifdef CONFIG_NET_POLL_CONTROLLER
206 /* for netdump / net console */
207 static void e1000_netpoll (struct net_device *netdev);
208 #endif
209
210 extern void e1000_check_options(struct e1000_adapter *adapter);
211
212 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
213                      pci_channel_state_t state);
214 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
215 static void e1000_io_resume(struct pci_dev *pdev);
216
217 static struct pci_error_handlers e1000_err_handler = {
218         .error_detected = e1000_io_error_detected,
219         .slot_reset = e1000_io_slot_reset,
220         .resume = e1000_io_resume,
221 };
222
223 static struct pci_driver e1000_driver = {
224         .name     = e1000_driver_name,
225         .id_table = e1000_pci_tbl,
226         .probe    = e1000_probe,
227         .remove   = __devexit_p(e1000_remove),
228 #ifdef CONFIG_PM
229         /* Power Managment Hooks */
230         .suspend  = e1000_suspend,
231         .resume   = e1000_resume,
232 #endif
233         .shutdown = e1000_shutdown,
234         .err_handler = &e1000_err_handler
235 };
236
237 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
238 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
239 MODULE_LICENSE("GPL");
240 MODULE_VERSION(DRV_VERSION);
241
242 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
243 module_param(debug, int, 0);
244 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
245
246 /**
247  * e1000_init_module - Driver Registration Routine
248  *
249  * e1000_init_module is the first routine called when the driver is
250  * loaded. All it does is register with the PCI subsystem.
251  **/
252
253 static int __init
254 e1000_init_module(void)
255 {
256         int ret;
257         printk(KERN_INFO "%s - version %s\n",
258                e1000_driver_string, e1000_driver_version);
259
260         printk(KERN_INFO "%s\n", e1000_copyright);
261
262         ret = pci_register_driver(&e1000_driver);
263
264         return ret;
265 }
266
267 module_init(e1000_init_module);
268
269 /**
270  * e1000_exit_module - Driver Exit Cleanup Routine
271  *
272  * e1000_exit_module is called just before the driver is removed
273  * from memory.
274  **/
275
276 static void __exit
277 e1000_exit_module(void)
278 {
279         pci_unregister_driver(&e1000_driver);
280 }
281
282 module_exit(e1000_exit_module);
283
284 static int e1000_request_irq(struct e1000_adapter *adapter)
285 {
286         struct net_device *netdev = adapter->netdev;
287         int flags, err = 0;
288
289         flags = IRQF_SHARED;
290 #ifdef CONFIG_PCI_MSI
291         if (adapter->hw.mac_type > e1000_82547_rev_2) {
292                 adapter->have_msi = TRUE;
293                 if ((err = pci_enable_msi(adapter->pdev))) {
294                         DPRINTK(PROBE, ERR,
295                          "Unable to allocate MSI interrupt Error: %d\n", err);
296                         adapter->have_msi = FALSE;
297                 }
298         }
299         if (adapter->have_msi)
300                 flags &= ~IRQF_SHARED;
301 #endif
302         if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
303                                netdev->name, netdev)))
304                 DPRINTK(PROBE, ERR,
305                         "Unable to allocate interrupt Error: %d\n", err);
306
307         return err;
308 }
309
310 static void e1000_free_irq(struct e1000_adapter *adapter)
311 {
312         struct net_device *netdev = adapter->netdev;
313
314         free_irq(adapter->pdev->irq, netdev);
315
316 #ifdef CONFIG_PCI_MSI
317         if (adapter->have_msi)
318                 pci_disable_msi(adapter->pdev);
319 #endif
320 }
321
322 /**
323  * e1000_irq_disable - Mask off interrupt generation on the NIC
324  * @adapter: board private structure
325  **/
326
327 static void
328 e1000_irq_disable(struct e1000_adapter *adapter)
329 {
330         atomic_inc(&adapter->irq_sem);
331         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
332         E1000_WRITE_FLUSH(&adapter->hw);
333         synchronize_irq(adapter->pdev->irq);
334 }
335
336 /**
337  * e1000_irq_enable - Enable default interrupt generation settings
338  * @adapter: board private structure
339  **/
340
341 static void
342 e1000_irq_enable(struct e1000_adapter *adapter)
343 {
344         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
345                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
346                 E1000_WRITE_FLUSH(&adapter->hw);
347         }
348 }
349
350 static void
351 e1000_update_mng_vlan(struct e1000_adapter *adapter)
352 {
353         struct net_device *netdev = adapter->netdev;
354         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
355         uint16_t old_vid = adapter->mng_vlan_id;
356         if (adapter->vlgrp) {
357                 if (!adapter->vlgrp->vlan_devices[vid]) {
358                         if (adapter->hw.mng_cookie.status &
359                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
360                                 e1000_vlan_rx_add_vid(netdev, vid);
361                                 adapter->mng_vlan_id = vid;
362                         } else
363                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
364
365                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
366                                         (vid != old_vid) &&
367                                         !adapter->vlgrp->vlan_devices[old_vid])
368                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
369                 } else
370                         adapter->mng_vlan_id = vid;
371         }
372 }
373
374 /**
375  * e1000_release_hw_control - release control of the h/w to f/w
376  * @adapter: address of board private structure
377  *
378  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
379  * For ASF and Pass Through versions of f/w this means that the
380  * driver is no longer loaded. For AMT version (only with 82573) i
381  * of the f/w this means that the network i/f is closed.
382  *
383  **/
384
385 static void
386 e1000_release_hw_control(struct e1000_adapter *adapter)
387 {
388         uint32_t ctrl_ext;
389         uint32_t swsm;
390         uint32_t extcnf;
391
392         /* Let firmware taken over control of h/w */
393         switch (adapter->hw.mac_type) {
394         case e1000_82571:
395         case e1000_82572:
396         case e1000_80003es2lan:
397                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
398                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
399                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
400                 break;
401         case e1000_82573:
402                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
403                 E1000_WRITE_REG(&adapter->hw, SWSM,
404                                 swsm & ~E1000_SWSM_DRV_LOAD);
405         case e1000_ich8lan:
406                 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
407                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
408                                 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
409                 break;
410         default:
411                 break;
412         }
413 }
414
415 /**
416  * e1000_get_hw_control - get control of the h/w from f/w
417  * @adapter: address of board private structure
418  *
419  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
420  * For ASF and Pass Through versions of f/w this means that
421  * the driver is loaded. For AMT version (only with 82573)
422  * of the f/w this means that the network i/f is open.
423  *
424  **/
425
426 static void
427 e1000_get_hw_control(struct e1000_adapter *adapter)
428 {
429         uint32_t ctrl_ext;
430         uint32_t swsm;
431         uint32_t extcnf;
432
433         /* Let firmware know the driver has taken over */
434         switch (adapter->hw.mac_type) {
435         case e1000_82571:
436         case e1000_82572:
437         case e1000_80003es2lan:
438                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
439                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
440                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
441                 break;
442         case e1000_82573:
443                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
444                 E1000_WRITE_REG(&adapter->hw, SWSM,
445                                 swsm | E1000_SWSM_DRV_LOAD);
446                 break;
447         case e1000_ich8lan:
448                 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
449                 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
450                                 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
451                 break;
452         default:
453                 break;
454         }
455 }
456
457 int
458 e1000_up(struct e1000_adapter *adapter)
459 {
460         struct net_device *netdev = adapter->netdev;
461         int i;
462
463         /* hardware has been reset, we need to reload some things */
464
465         e1000_set_multi(netdev);
466
467         e1000_restore_vlan(adapter);
468
469         e1000_configure_tx(adapter);
470         e1000_setup_rctl(adapter);
471         e1000_configure_rx(adapter);
472         /* call E1000_DESC_UNUSED which always leaves
473          * at least 1 descriptor unused to make sure
474          * next_to_use != next_to_clean */
475         for (i = 0; i < adapter->num_rx_queues; i++) {
476                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
477                 adapter->alloc_rx_buf(adapter, ring,
478                                       E1000_DESC_UNUSED(ring));
479         }
480
481         adapter->tx_queue_len = netdev->tx_queue_len;
482
483 #ifdef CONFIG_E1000_NAPI
484         netif_poll_enable(netdev);
485 #endif
486         e1000_irq_enable(adapter);
487
488         clear_bit(__E1000_DOWN, &adapter->flags);
489
490         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
491         return 0;
492 }
493
494 /**
495  * e1000_power_up_phy - restore link in case the phy was powered down
496  * @adapter: address of board private structure
497  *
498  * The phy may be powered down to save power and turn off link when the
499  * driver is unloaded and wake on lan is not enabled (among others)
500  * *** this routine MUST be followed by a call to e1000_reset ***
501  *
502  **/
503
504 void e1000_power_up_phy(struct e1000_adapter *adapter)
505 {
506         uint16_t mii_reg = 0;
507
508         /* Just clear the power down bit to wake the phy back up */
509         if (adapter->hw.media_type == e1000_media_type_copper) {
510                 /* according to the manual, the phy will retain its
511                  * settings across a power-down/up cycle */
512                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
513                 mii_reg &= ~MII_CR_POWER_DOWN;
514                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
515         }
516 }
517
518 static void e1000_power_down_phy(struct e1000_adapter *adapter)
519 {
520         /* Power down the PHY so no link is implied when interface is down *
521          * The PHY cannot be powered down if any of the following is TRUE *
522          * (a) WoL is enabled
523          * (b) AMT is active
524          * (c) SoL/IDER session is active */
525         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
526            adapter->hw.media_type == e1000_media_type_copper) {
527                 uint16_t mii_reg = 0;
528
529                 switch (adapter->hw.mac_type) {
530                 case e1000_82540:
531                 case e1000_82545:
532                 case e1000_82545_rev_3:
533                 case e1000_82546:
534                 case e1000_82546_rev_3:
535                 case e1000_82541:
536                 case e1000_82541_rev_2:
537                 case e1000_82547:
538                 case e1000_82547_rev_2:
539                         if (E1000_READ_REG(&adapter->hw, MANC) &
540                             E1000_MANC_SMBUS_EN)
541                                 goto out;
542                         break;
543                 case e1000_82571:
544                 case e1000_82572:
545                 case e1000_82573:
546                 case e1000_80003es2lan:
547                 case e1000_ich8lan:
548                         if (e1000_check_mng_mode(&adapter->hw) ||
549                             e1000_check_phy_reset_block(&adapter->hw))
550                                 goto out;
551                         break;
552                 default:
553                         goto out;
554                 }
555                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
556                 mii_reg |= MII_CR_POWER_DOWN;
557                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
558                 mdelay(1);
559         }
560 out:
561         return;
562 }
563
564 void
565 e1000_down(struct e1000_adapter *adapter)
566 {
567         struct net_device *netdev = adapter->netdev;
568
569         /* signal that we're down so the interrupt handler does not
570          * reschedule our watchdog timer */
571         set_bit(__E1000_DOWN, &adapter->flags);
572
573         e1000_irq_disable(adapter);
574
575         del_timer_sync(&adapter->tx_fifo_stall_timer);
576         del_timer_sync(&adapter->watchdog_timer);
577         del_timer_sync(&adapter->phy_info_timer);
578
579 #ifdef CONFIG_E1000_NAPI
580         netif_poll_disable(netdev);
581 #endif
582         netdev->tx_queue_len = adapter->tx_queue_len;
583         adapter->link_speed = 0;
584         adapter->link_duplex = 0;
585         netif_carrier_off(netdev);
586         netif_stop_queue(netdev);
587
588         e1000_reset(adapter);
589         e1000_clean_all_tx_rings(adapter);
590         e1000_clean_all_rx_rings(adapter);
591 }
592
593 void
594 e1000_reinit_locked(struct e1000_adapter *adapter)
595 {
596         WARN_ON(in_interrupt());
597         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
598                 msleep(1);
599         e1000_down(adapter);
600         e1000_up(adapter);
601         clear_bit(__E1000_RESETTING, &adapter->flags);
602 }
603
604 void
605 e1000_reset(struct e1000_adapter *adapter)
606 {
607         uint32_t pba, manc;
608         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
609
610         /* Repartition Pba for greater than 9k mtu
611          * To take effect CTRL.RST is required.
612          */
613
614         switch (adapter->hw.mac_type) {
615         case e1000_82547:
616         case e1000_82547_rev_2:
617                 pba = E1000_PBA_30K;
618                 break;
619         case e1000_82571:
620         case e1000_82572:
621         case e1000_80003es2lan:
622                 pba = E1000_PBA_38K;
623                 break;
624         case e1000_82573:
625                 pba = E1000_PBA_12K;
626                 break;
627         case e1000_ich8lan:
628                 pba = E1000_PBA_8K;
629                 break;
630         default:
631                 pba = E1000_PBA_48K;
632                 break;
633         }
634
635         if ((adapter->hw.mac_type != e1000_82573) &&
636            (adapter->netdev->mtu > E1000_RXBUFFER_8192))
637                 pba -= 8; /* allocate more FIFO for Tx */
638
639
640         if (adapter->hw.mac_type == e1000_82547) {
641                 adapter->tx_fifo_head = 0;
642                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
643                 adapter->tx_fifo_size =
644                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
645                 atomic_set(&adapter->tx_fifo_stall, 0);
646         }
647
648         E1000_WRITE_REG(&adapter->hw, PBA, pba);
649
650         /* flow control settings */
651         /* Set the FC high water mark to 90% of the FIFO size.
652          * Required to clear last 3 LSB */
653         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
654         /* We can't use 90% on small FIFOs because the remainder
655          * would be less than 1 full frame.  In this case, we size
656          * it to allow at least a full frame above the high water
657          *  mark. */
658         if (pba < E1000_PBA_16K)
659                 fc_high_water_mark = (pba * 1024) - 1600;
660
661         adapter->hw.fc_high_water = fc_high_water_mark;
662         adapter->hw.fc_low_water = fc_high_water_mark - 8;
663         if (adapter->hw.mac_type == e1000_80003es2lan)
664                 adapter->hw.fc_pause_time = 0xFFFF;
665         else
666                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
667         adapter->hw.fc_send_xon = 1;
668         adapter->hw.fc = adapter->hw.original_fc;
669
670         /* Allow time for pending master requests to run */
671         e1000_reset_hw(&adapter->hw);
672         if (adapter->hw.mac_type >= e1000_82544)
673                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
674
675         if (e1000_init_hw(&adapter->hw))
676                 DPRINTK(PROBE, ERR, "Hardware Error\n");
677         e1000_update_mng_vlan(adapter);
678         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
679         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
680
681         e1000_reset_adaptive(&adapter->hw);
682         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
683
684         if (!adapter->smart_power_down &&
685             (adapter->hw.mac_type == e1000_82571 ||
686              adapter->hw.mac_type == e1000_82572)) {
687                 uint16_t phy_data = 0;
688                 /* speed up time to link by disabling smart power down, ignore
689                  * the return value of this function because there is nothing
690                  * different we would do if it failed */
691                 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
692                                    &phy_data);
693                 phy_data &= ~IGP02E1000_PM_SPD;
694                 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
695                                     phy_data);
696         }
697
698         if ((adapter->en_mng_pt) &&
699             (adapter->hw.mac_type >= e1000_82540) &&
700             (adapter->hw.mac_type < e1000_82571) &&
701             (adapter->hw.media_type == e1000_media_type_copper)) {
702                 manc = E1000_READ_REG(&adapter->hw, MANC);
703                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
704                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
705         }
706 }
707
708 /**
709  * e1000_probe - Device Initialization Routine
710  * @pdev: PCI device information struct
711  * @ent: entry in e1000_pci_tbl
712  *
713  * Returns 0 on success, negative on failure
714  *
715  * e1000_probe initializes an adapter identified by a pci_dev structure.
716  * The OS initialization, configuring of the adapter private structure,
717  * and a hardware reset occur.
718  **/
719
720 static int __devinit
721 e1000_probe(struct pci_dev *pdev,
722             const struct pci_device_id *ent)
723 {
724         struct net_device *netdev;
725         struct e1000_adapter *adapter;
726         unsigned long mmio_start, mmio_len;
727         unsigned long flash_start, flash_len;
728
729         static int cards_found = 0;
730         static int global_quad_port_a = 0; /* global ksp3 port a indication */
731         int i, err, pci_using_dac;
732         uint16_t eeprom_data = 0;
733         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
734         if ((err = pci_enable_device(pdev)))
735                 return err;
736
737         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
738             !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
739                 pci_using_dac = 1;
740         } else {
741                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
742                     (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
743                         E1000_ERR("No usable DMA configuration, aborting\n");
744                         goto err_dma;
745                 }
746                 pci_using_dac = 0;
747         }
748
749         if ((err = pci_request_regions(pdev, e1000_driver_name)))
750                 goto err_pci_reg;
751
752         pci_set_master(pdev);
753
754         err = -ENOMEM;
755         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
756         if (!netdev)
757                 goto err_alloc_etherdev;
758
759         SET_MODULE_OWNER(netdev);
760         SET_NETDEV_DEV(netdev, &pdev->dev);
761
762         pci_set_drvdata(pdev, netdev);
763         adapter = netdev_priv(netdev);
764         adapter->netdev = netdev;
765         adapter->pdev = pdev;
766         adapter->hw.back = adapter;
767         adapter->msg_enable = (1 << debug) - 1;
768
769         mmio_start = pci_resource_start(pdev, BAR_0);
770         mmio_len = pci_resource_len(pdev, BAR_0);
771
772         err = -EIO;
773         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
774         if (!adapter->hw.hw_addr)
775                 goto err_ioremap;
776
777         for (i = BAR_1; i <= BAR_5; i++) {
778                 if (pci_resource_len(pdev, i) == 0)
779                         continue;
780                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
781                         adapter->hw.io_base = pci_resource_start(pdev, i);
782                         break;
783                 }
784         }
785
786         netdev->open = &e1000_open;
787         netdev->stop = &e1000_close;
788         netdev->hard_start_xmit = &e1000_xmit_frame;
789         netdev->get_stats = &e1000_get_stats;
790         netdev->set_multicast_list = &e1000_set_multi;
791         netdev->set_mac_address = &e1000_set_mac;
792         netdev->change_mtu = &e1000_change_mtu;
793         netdev->do_ioctl = &e1000_ioctl;
794         e1000_set_ethtool_ops(netdev);
795         netdev->tx_timeout = &e1000_tx_timeout;
796         netdev->watchdog_timeo = 5 * HZ;
797 #ifdef CONFIG_E1000_NAPI
798         netdev->poll = &e1000_clean;
799         netdev->weight = 64;
800 #endif
801         netdev->vlan_rx_register = e1000_vlan_rx_register;
802         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
803         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
804 #ifdef CONFIG_NET_POLL_CONTROLLER
805         netdev->poll_controller = e1000_netpoll;
806 #endif
807         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
808
809         netdev->mem_start = mmio_start;
810         netdev->mem_end = mmio_start + mmio_len;
811         netdev->base_addr = adapter->hw.io_base;
812
813         adapter->bd_number = cards_found;
814
815         /* setup the private structure */
816
817         if ((err = e1000_sw_init(adapter)))
818                 goto err_sw_init;
819
820         err = -EIO;
821         /* Flash BAR mapping must happen after e1000_sw_init
822          * because it depends on mac_type */
823         if ((adapter->hw.mac_type == e1000_ich8lan) &&
824            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
825                 flash_start = pci_resource_start(pdev, 1);
826                 flash_len = pci_resource_len(pdev, 1);
827                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
828                 if (!adapter->hw.flash_address)
829                         goto err_flashmap;
830         }
831
832         if (e1000_check_phy_reset_block(&adapter->hw))
833                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
834
835         if (adapter->hw.mac_type >= e1000_82543) {
836                 netdev->features = NETIF_F_SG |
837                                    NETIF_F_HW_CSUM |
838                                    NETIF_F_HW_VLAN_TX |
839                                    NETIF_F_HW_VLAN_RX |
840                                    NETIF_F_HW_VLAN_FILTER;
841                 if (adapter->hw.mac_type == e1000_ich8lan)
842                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
843         }
844
845 #ifdef NETIF_F_TSO
846         if ((adapter->hw.mac_type >= e1000_82544) &&
847            (adapter->hw.mac_type != e1000_82547))
848                 netdev->features |= NETIF_F_TSO;
849
850 #ifdef NETIF_F_TSO6
851         if (adapter->hw.mac_type > e1000_82547_rev_2)
852                 netdev->features |= NETIF_F_TSO6;
853 #endif
854 #endif
855         if (pci_using_dac)
856                 netdev->features |= NETIF_F_HIGHDMA;
857
858         netdev->features |= NETIF_F_LLTX;
859
860         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
861
862         /* initialize eeprom parameters */
863
864         if (e1000_init_eeprom_params(&adapter->hw)) {
865                 E1000_ERR("EEPROM initialization failed\n");
866                 goto err_eeprom;
867         }
868
869         /* before reading the EEPROM, reset the controller to
870          * put the device in a known good starting state */
871
872         e1000_reset_hw(&adapter->hw);
873
874         /* make sure the EEPROM is good */
875
876         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
877                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
878                 goto err_eeprom;
879         }
880
881         /* copy the MAC address out of the EEPROM */
882
883         if (e1000_read_mac_addr(&adapter->hw))
884                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
885         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
886         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
887
888         if (!is_valid_ether_addr(netdev->perm_addr)) {
889                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
890                 goto err_eeprom;
891         }
892
893         e1000_get_bus_info(&adapter->hw);
894
895         init_timer(&adapter->tx_fifo_stall_timer);
896         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
897         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
898
899         init_timer(&adapter->watchdog_timer);
900         adapter->watchdog_timer.function = &e1000_watchdog;
901         adapter->watchdog_timer.data = (unsigned long) adapter;
902
903         init_timer(&adapter->phy_info_timer);
904         adapter->phy_info_timer.function = &e1000_update_phy_info;
905         adapter->phy_info_timer.data = (unsigned long) adapter;
906
907         INIT_WORK(&adapter->reset_task,
908                 (void (*)(void *))e1000_reset_task, netdev);
909
910         e1000_check_options(adapter);
911
912         /* Initial Wake on LAN setting
913          * If APM wake is enabled in the EEPROM,
914          * enable the ACPI Magic Packet filter
915          */
916
917         switch (adapter->hw.mac_type) {
918         case e1000_82542_rev2_0:
919         case e1000_82542_rev2_1:
920         case e1000_82543:
921                 break;
922         case e1000_82544:
923                 e1000_read_eeprom(&adapter->hw,
924                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
925                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
926                 break;
927         case e1000_ich8lan:
928                 e1000_read_eeprom(&adapter->hw,
929                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
930                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
931                 break;
932         case e1000_82546:
933         case e1000_82546_rev_3:
934         case e1000_82571:
935         case e1000_80003es2lan:
936                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
937                         e1000_read_eeprom(&adapter->hw,
938                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
939                         break;
940                 }
941                 /* Fall Through */
942         default:
943                 e1000_read_eeprom(&adapter->hw,
944                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
945                 break;
946         }
947         if (eeprom_data & eeprom_apme_mask)
948                 adapter->eeprom_wol |= E1000_WUFC_MAG;
949
950         /* now that we have the eeprom settings, apply the special cases
951          * where the eeprom may be wrong or the board simply won't support
952          * wake on lan on a particular port */
953         switch (pdev->device) {
954         case E1000_DEV_ID_82546GB_PCIE:
955                 adapter->eeprom_wol = 0;
956                 break;
957         case E1000_DEV_ID_82546EB_FIBER:
958         case E1000_DEV_ID_82546GB_FIBER:
959         case E1000_DEV_ID_82571EB_FIBER:
960                 /* Wake events only supported on port A for dual fiber
961                  * regardless of eeprom setting */
962                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
963                         adapter->eeprom_wol = 0;
964                 break;
965         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
966         case E1000_DEV_ID_82571EB_QUAD_COPPER:
967         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
968                 /* if quad port adapter, disable WoL on all but port A */
969                 if (global_quad_port_a != 0)
970                         adapter->eeprom_wol = 0;
971                 else
972                         adapter->quad_port_a = 1;
973                 /* Reset for multiple quad port adapters */
974                 if (++global_quad_port_a == 4)
975                         global_quad_port_a = 0;
976                 break;
977         }
978
979         /* initialize the wol settings based on the eeprom settings */
980         adapter->wol = adapter->eeprom_wol;
981
982         /* print bus type/speed/width info */
983         {
984         struct e1000_hw *hw = &adapter->hw;
985         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
986                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
987                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
988                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
989                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
990                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
991                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
992                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
993                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
994                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
995                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
996                  "32-bit"));
997         }
998
999         for (i = 0; i < 6; i++)
1000                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
1001
1002         /* reset the hardware with the new settings */
1003         e1000_reset(adapter);
1004
1005         /* If the controller is 82573 and f/w is AMT, do not set
1006          * DRV_LOAD until the interface is up.  For all other cases,
1007          * let the f/w know that the h/w is now under the control
1008          * of the driver. */
1009         if (adapter->hw.mac_type != e1000_82573 ||
1010             !e1000_check_mng_mode(&adapter->hw))
1011                 e1000_get_hw_control(adapter);
1012
1013         strcpy(netdev->name, "eth%d");
1014         if ((err = register_netdev(netdev)))
1015                 goto err_register;
1016
1017         /* tell the stack to leave us alone until e1000_open() is called */
1018         netif_carrier_off(netdev);
1019         netif_stop_queue(netdev);
1020
1021         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1022
1023         cards_found++;
1024         return 0;
1025
1026 err_register:
1027         e1000_release_hw_control(adapter);
1028 err_eeprom:
1029         if (!e1000_check_phy_reset_block(&adapter->hw))
1030                 e1000_phy_hw_reset(&adapter->hw);
1031
1032         if (adapter->hw.flash_address)
1033                 iounmap(adapter->hw.flash_address);
1034 err_flashmap:
1035 #ifdef CONFIG_E1000_NAPI
1036         for (i = 0; i < adapter->num_rx_queues; i++)
1037                 dev_put(&adapter->polling_netdev[i]);
1038 #endif
1039
1040         kfree(adapter->tx_ring);
1041         kfree(adapter->rx_ring);
1042 #ifdef CONFIG_E1000_NAPI
1043         kfree(adapter->polling_netdev);
1044 #endif
1045 err_sw_init:
1046         iounmap(adapter->hw.hw_addr);
1047 err_ioremap:
1048         free_netdev(netdev);
1049 err_alloc_etherdev:
1050         pci_release_regions(pdev);
1051 err_pci_reg:
1052 err_dma:
1053         pci_disable_device(pdev);
1054         return err;
1055 }
1056
1057 /**
1058  * e1000_remove - Device Removal Routine
1059  * @pdev: PCI device information struct
1060  *
1061  * e1000_remove is called by the PCI subsystem to alert the driver
1062  * that it should release a PCI device.  The could be caused by a
1063  * Hot-Plug event, or because the driver is going to be removed from
1064  * memory.
1065  **/
1066
1067 static void __devexit
1068 e1000_remove(struct pci_dev *pdev)
1069 {
1070         struct net_device *netdev = pci_get_drvdata(pdev);
1071         struct e1000_adapter *adapter = netdev_priv(netdev);
1072         uint32_t manc;
1073 #ifdef CONFIG_E1000_NAPI
1074         int i;
1075 #endif
1076
1077         flush_scheduled_work();
1078
1079         if (adapter->hw.mac_type >= e1000_82540 &&
1080             adapter->hw.mac_type < e1000_82571 &&
1081             adapter->hw.media_type == e1000_media_type_copper) {
1082                 manc = E1000_READ_REG(&adapter->hw, MANC);
1083                 if (manc & E1000_MANC_SMBUS_EN) {
1084                         manc |= E1000_MANC_ARP_EN;
1085                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
1086                 }
1087         }
1088
1089         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1090          * would have already happened in close and is redundant. */
1091         e1000_release_hw_control(adapter);
1092
1093         unregister_netdev(netdev);
1094 #ifdef CONFIG_E1000_NAPI
1095         for (i = 0; i < adapter->num_rx_queues; i++)
1096                 dev_put(&adapter->polling_netdev[i]);
1097 #endif
1098
1099         if (!e1000_check_phy_reset_block(&adapter->hw))
1100                 e1000_phy_hw_reset(&adapter->hw);
1101
1102         kfree(adapter->tx_ring);
1103         kfree(adapter->rx_ring);
1104 #ifdef CONFIG_E1000_NAPI
1105         kfree(adapter->polling_netdev);
1106 #endif
1107
1108         iounmap(adapter->hw.hw_addr);
1109         if (adapter->hw.flash_address)
1110                 iounmap(adapter->hw.flash_address);
1111         pci_release_regions(pdev);
1112
1113         free_netdev(netdev);
1114
1115         pci_disable_device(pdev);
1116 }
1117
1118 /**
1119  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1120  * @adapter: board private structure to initialize
1121  *
1122  * e1000_sw_init initializes the Adapter private data structure.
1123  * Fields are initialized based on PCI device information and
1124  * OS network device settings (MTU size).
1125  **/
1126
1127 static int __devinit
1128 e1000_sw_init(struct e1000_adapter *adapter)
1129 {
1130         struct e1000_hw *hw = &adapter->hw;
1131         struct net_device *netdev = adapter->netdev;
1132         struct pci_dev *pdev = adapter->pdev;
1133 #ifdef CONFIG_E1000_NAPI
1134         int i;
1135 #endif
1136
1137         /* PCI config space info */
1138
1139         hw->vendor_id = pdev->vendor;
1140         hw->device_id = pdev->device;
1141         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1142         hw->subsystem_id = pdev->subsystem_device;
1143
1144         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1145
1146         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1147
1148         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1149         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1150         hw->max_frame_size = netdev->mtu +
1151                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1152         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1153
1154         /* identify the MAC */
1155
1156         if (e1000_set_mac_type(hw)) {
1157                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1158                 return -EIO;
1159         }
1160
1161         switch (hw->mac_type) {
1162         default:
1163                 break;
1164         case e1000_82541:
1165         case e1000_82547:
1166         case e1000_82541_rev_2:
1167         case e1000_82547_rev_2:
1168                 hw->phy_init_script = 1;
1169                 break;
1170         }
1171
1172         e1000_set_media_type(hw);
1173
1174         hw->wait_autoneg_complete = FALSE;
1175         hw->tbi_compatibility_en = TRUE;
1176         hw->adaptive_ifs = TRUE;
1177
1178         /* Copper options */
1179
1180         if (hw->media_type == e1000_media_type_copper) {
1181                 hw->mdix = AUTO_ALL_MODES;
1182                 hw->disable_polarity_correction = FALSE;
1183                 hw->master_slave = E1000_MASTER_SLAVE;
1184         }
1185
1186         adapter->num_tx_queues = 1;
1187         adapter->num_rx_queues = 1;
1188
1189         if (e1000_alloc_queues(adapter)) {
1190                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1191                 return -ENOMEM;
1192         }
1193
1194 #ifdef CONFIG_E1000_NAPI
1195         for (i = 0; i < adapter->num_rx_queues; i++) {
1196                 adapter->polling_netdev[i].priv = adapter;
1197                 adapter->polling_netdev[i].poll = &e1000_clean;
1198                 adapter->polling_netdev[i].weight = 64;
1199                 dev_hold(&adapter->polling_netdev[i]);
1200                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1201         }
1202         spin_lock_init(&adapter->tx_queue_lock);
1203 #endif
1204
1205         atomic_set(&adapter->irq_sem, 1);
1206         spin_lock_init(&adapter->stats_lock);
1207
1208         set_bit(__E1000_DOWN, &adapter->flags);
1209
1210         return 0;
1211 }
1212
1213 /**
1214  * e1000_alloc_queues - Allocate memory for all rings
1215  * @adapter: board private structure to initialize
1216  *
1217  * We allocate one ring per queue at run-time since we don't know the
1218  * number of queues at compile-time.  The polling_netdev array is
1219  * intended for Multiqueue, but should work fine with a single queue.
1220  **/
1221
1222 static int __devinit
1223 e1000_alloc_queues(struct e1000_adapter *adapter)
1224 {
1225         int size;
1226
1227         size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1228         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1229         if (!adapter->tx_ring)
1230                 return -ENOMEM;
1231         memset(adapter->tx_ring, 0, size);
1232
1233         size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1234         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1235         if (!adapter->rx_ring) {
1236                 kfree(adapter->tx_ring);
1237                 return -ENOMEM;
1238         }
1239         memset(adapter->rx_ring, 0, size);
1240
1241 #ifdef CONFIG_E1000_NAPI
1242         size = sizeof(struct net_device) * adapter->num_rx_queues;
1243         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1244         if (!adapter->polling_netdev) {
1245                 kfree(adapter->tx_ring);
1246                 kfree(adapter->rx_ring);
1247                 return -ENOMEM;
1248         }
1249         memset(adapter->polling_netdev, 0, size);
1250 #endif
1251
1252         return E1000_SUCCESS;
1253 }
1254
1255 /**
1256  * e1000_open - Called when a network interface is made active
1257  * @netdev: network interface device structure
1258  *
1259  * Returns 0 on success, negative value on failure
1260  *
1261  * The open entry point is called when a network interface is made
1262  * active by the system (IFF_UP).  At this point all resources needed
1263  * for transmit and receive operations are allocated, the interrupt
1264  * handler is registered with the OS, the watchdog timer is started,
1265  * and the stack is notified that the interface is ready.
1266  **/
1267
1268 static int
1269 e1000_open(struct net_device *netdev)
1270 {
1271         struct e1000_adapter *adapter = netdev_priv(netdev);
1272         int err;
1273
1274         /* disallow open during test */
1275         if (test_bit(__E1000_TESTING, &adapter->flags))
1276                 return -EBUSY;
1277
1278         /* allocate transmit descriptors */
1279         if ((err = e1000_setup_all_tx_resources(adapter)))
1280                 goto err_setup_tx;
1281
1282         /* allocate receive descriptors */
1283         if ((err = e1000_setup_all_rx_resources(adapter)))
1284                 goto err_setup_rx;
1285
1286         err = e1000_request_irq(adapter);
1287         if (err)
1288                 goto err_req_irq;
1289
1290         e1000_power_up_phy(adapter);
1291
1292         if ((err = e1000_up(adapter)))
1293                 goto err_up;
1294         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1295         if ((adapter->hw.mng_cookie.status &
1296                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1297                 e1000_update_mng_vlan(adapter);
1298         }
1299
1300         /* If AMT is enabled, let the firmware know that the network
1301          * interface is now open */
1302         if (adapter->hw.mac_type == e1000_82573 &&
1303             e1000_check_mng_mode(&adapter->hw))
1304                 e1000_get_hw_control(adapter);
1305
1306         return E1000_SUCCESS;
1307
1308 err_up:
1309         e1000_power_down_phy(adapter);
1310         e1000_free_irq(adapter);
1311 err_req_irq:
1312         e1000_free_all_rx_resources(adapter);
1313 err_setup_rx:
1314         e1000_free_all_tx_resources(adapter);
1315 err_setup_tx:
1316         e1000_reset(adapter);
1317
1318         return err;
1319 }
1320
1321 /**
1322  * e1000_close - Disables a network interface
1323  * @netdev: network interface device structure
1324  *
1325  * Returns 0, this is not allowed to fail
1326  *
1327  * The close entry point is called when an interface is de-activated
1328  * by the OS.  The hardware is still under the drivers control, but
1329  * needs to be disabled.  A global MAC reset is issued to stop the
1330  * hardware, and all transmit and receive resources are freed.
1331  **/
1332
1333 static int
1334 e1000_close(struct net_device *netdev)
1335 {
1336         struct e1000_adapter *adapter = netdev_priv(netdev);
1337
1338         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1339         e1000_down(adapter);
1340         e1000_power_down_phy(adapter);
1341         e1000_free_irq(adapter);
1342
1343         e1000_free_all_tx_resources(adapter);
1344         e1000_free_all_rx_resources(adapter);
1345
1346         /* kill manageability vlan ID if supported, but not if a vlan with
1347          * the same ID is registered on the host OS (let 8021q kill it) */
1348         if ((adapter->hw.mng_cookie.status &
1349                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1350              !(adapter->vlgrp &&
1351                           adapter->vlgrp->vlan_devices[adapter->mng_vlan_id])) {
1352                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1353         }
1354
1355         /* If AMT is enabled, let the firmware know that the network
1356          * interface is now closed */
1357         if (adapter->hw.mac_type == e1000_82573 &&
1358             e1000_check_mng_mode(&adapter->hw))
1359                 e1000_release_hw_control(adapter);
1360
1361         return 0;
1362 }
1363
1364 /**
1365  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1366  * @adapter: address of board private structure
1367  * @start: address of beginning of memory
1368  * @len: length of memory
1369  **/
1370 static boolean_t
1371 e1000_check_64k_bound(struct e1000_adapter *adapter,
1372                       void *start, unsigned long len)
1373 {
1374         unsigned long begin = (unsigned long) start;
1375         unsigned long end = begin + len;
1376
1377         /* First rev 82545 and 82546 need to not allow any memory
1378          * write location to cross 64k boundary due to errata 23 */
1379         if (adapter->hw.mac_type == e1000_82545 ||
1380             adapter->hw.mac_type == e1000_82546) {
1381                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1382         }
1383
1384         return TRUE;
1385 }
1386
1387 /**
1388  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1389  * @adapter: board private structure
1390  * @txdr:    tx descriptor ring (for a specific queue) to setup
1391  *
1392  * Return 0 on success, negative on failure
1393  **/
1394
1395 static int
1396 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1397                          struct e1000_tx_ring *txdr)
1398 {
1399         struct pci_dev *pdev = adapter->pdev;
1400         int size;
1401
1402         size = sizeof(struct e1000_buffer) * txdr->count;
1403         txdr->buffer_info = vmalloc(size);
1404         if (!txdr->buffer_info) {
1405                 DPRINTK(PROBE, ERR,
1406                 "Unable to allocate memory for the transmit descriptor ring\n");
1407                 return -ENOMEM;
1408         }
1409         memset(txdr->buffer_info, 0, size);
1410
1411         /* round up to nearest 4K */
1412
1413         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1414         E1000_ROUNDUP(txdr->size, 4096);
1415
1416         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1417         if (!txdr->desc) {
1418 setup_tx_desc_die:
1419                 vfree(txdr->buffer_info);
1420                 DPRINTK(PROBE, ERR,
1421                 "Unable to allocate memory for the transmit descriptor ring\n");
1422                 return -ENOMEM;
1423         }
1424
1425         /* Fix for errata 23, can't cross 64kB boundary */
1426         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1427                 void *olddesc = txdr->desc;
1428                 dma_addr_t olddma = txdr->dma;
1429                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1430                                      "at %p\n", txdr->size, txdr->desc);
1431                 /* Try again, without freeing the previous */
1432                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1433                 /* Failed allocation, critical failure */
1434                 if (!txdr->desc) {
1435                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1436                         goto setup_tx_desc_die;
1437                 }
1438
1439                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1440                         /* give up */
1441                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1442                                             txdr->dma);
1443                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1444                         DPRINTK(PROBE, ERR,
1445                                 "Unable to allocate aligned memory "
1446                                 "for the transmit descriptor ring\n");
1447                         vfree(txdr->buffer_info);
1448                         return -ENOMEM;
1449                 } else {
1450                         /* Free old allocation, new allocation was successful */
1451                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1452                 }
1453         }
1454         memset(txdr->desc, 0, txdr->size);
1455
1456         txdr->next_to_use = 0;
1457         txdr->next_to_clean = 0;
1458         spin_lock_init(&txdr->tx_lock);
1459
1460         return 0;
1461 }
1462
1463 /**
1464  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1465  *                                (Descriptors) for all queues
1466  * @adapter: board private structure
1467  *
1468  * Return 0 on success, negative on failure
1469  **/
1470
1471 int
1472 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1473 {
1474         int i, err = 0;
1475
1476         for (i = 0; i < adapter->num_tx_queues; i++) {
1477                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1478                 if (err) {
1479                         DPRINTK(PROBE, ERR,
1480                                 "Allocation for Tx Queue %u failed\n", i);
1481                         for (i-- ; i >= 0; i--)
1482                                 e1000_free_tx_resources(adapter,
1483                                                         &adapter->tx_ring[i]);
1484                         break;
1485                 }
1486         }
1487
1488         return err;
1489 }
1490
1491 /**
1492  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1493  * @adapter: board private structure
1494  *
1495  * Configure the Tx unit of the MAC after a reset.
1496  **/
1497
1498 static void
1499 e1000_configure_tx(struct e1000_adapter *adapter)
1500 {
1501         uint64_t tdba;
1502         struct e1000_hw *hw = &adapter->hw;
1503         uint32_t tdlen, tctl, tipg, tarc;
1504         uint32_t ipgr1, ipgr2;
1505
1506         /* Setup the HW Tx Head and Tail descriptor pointers */
1507
1508         switch (adapter->num_tx_queues) {
1509         case 1:
1510         default:
1511                 tdba = adapter->tx_ring[0].dma;
1512                 tdlen = adapter->tx_ring[0].count *
1513                         sizeof(struct e1000_tx_desc);
1514                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1515                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1516                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1517                 E1000_WRITE_REG(hw, TDT, 0);
1518                 E1000_WRITE_REG(hw, TDH, 0);
1519                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1520                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1521                 break;
1522         }
1523
1524         /* Set the default values for the Tx Inter Packet Gap timer */
1525
1526         if (hw->media_type == e1000_media_type_fiber ||
1527             hw->media_type == e1000_media_type_internal_serdes)
1528                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1529         else
1530                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1531
1532         switch (hw->mac_type) {
1533         case e1000_82542_rev2_0:
1534         case e1000_82542_rev2_1:
1535                 tipg = DEFAULT_82542_TIPG_IPGT;
1536                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1537                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1538                 break;
1539         case e1000_80003es2lan:
1540                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1541                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1542                 break;
1543         default:
1544                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1545                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1546                 break;
1547         }
1548         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1549         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1550         E1000_WRITE_REG(hw, TIPG, tipg);
1551
1552         /* Set the Tx Interrupt Delay register */
1553
1554         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1555         if (hw->mac_type >= e1000_82540)
1556                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1557
1558         /* Program the Transmit Control Register */
1559
1560         tctl = E1000_READ_REG(hw, TCTL);
1561         tctl &= ~E1000_TCTL_CT;
1562         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1563                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1564
1565         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1566                 tarc = E1000_READ_REG(hw, TARC0);
1567                 /* set the speed mode bit, we'll clear it if we're not at
1568                  * gigabit link later */
1569                 tarc |= (1 << 21);
1570                 E1000_WRITE_REG(hw, TARC0, tarc);
1571         } else if (hw->mac_type == e1000_80003es2lan) {
1572                 tarc = E1000_READ_REG(hw, TARC0);
1573                 tarc |= 1;
1574                 E1000_WRITE_REG(hw, TARC0, tarc);
1575                 tarc = E1000_READ_REG(hw, TARC1);
1576                 tarc |= 1;
1577                 E1000_WRITE_REG(hw, TARC1, tarc);
1578         }
1579
1580         e1000_config_collision_dist(hw);
1581
1582         /* Setup Transmit Descriptor Settings for eop descriptor */
1583         adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1584                 E1000_TXD_CMD_IFCS;
1585
1586         if (hw->mac_type < e1000_82543)
1587                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1588         else
1589                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1590
1591         /* Cache if we're 82544 running in PCI-X because we'll
1592          * need this to apply a workaround later in the send path. */
1593         if (hw->mac_type == e1000_82544 &&
1594             hw->bus_type == e1000_bus_type_pcix)
1595                 adapter->pcix_82544 = 1;
1596
1597         E1000_WRITE_REG(hw, TCTL, tctl);
1598
1599 }
1600
1601 /**
1602  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1603  * @adapter: board private structure
1604  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1605  *
1606  * Returns 0 on success, negative on failure
1607  **/
1608
1609 static int
1610 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1611                          struct e1000_rx_ring *rxdr)
1612 {
1613         struct pci_dev *pdev = adapter->pdev;
1614         int size, desc_len;
1615
1616         size = sizeof(struct e1000_buffer) * rxdr->count;
1617         rxdr->buffer_info = vmalloc(size);
1618         if (!rxdr->buffer_info) {
1619                 DPRINTK(PROBE, ERR,
1620                 "Unable to allocate memory for the receive descriptor ring\n");
1621                 return -ENOMEM;
1622         }
1623         memset(rxdr->buffer_info, 0, size);
1624
1625         size = sizeof(struct e1000_ps_page) * rxdr->count;
1626         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1627         if (!rxdr->ps_page) {
1628                 vfree(rxdr->buffer_info);
1629                 DPRINTK(PROBE, ERR,
1630                 "Unable to allocate memory for the receive descriptor ring\n");
1631                 return -ENOMEM;
1632         }
1633         memset(rxdr->ps_page, 0, size);
1634
1635         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1636         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1637         if (!rxdr->ps_page_dma) {
1638                 vfree(rxdr->buffer_info);
1639                 kfree(rxdr->ps_page);
1640                 DPRINTK(PROBE, ERR,
1641                 "Unable to allocate memory for the receive descriptor ring\n");
1642                 return -ENOMEM;
1643         }
1644         memset(rxdr->ps_page_dma, 0, size);
1645
1646         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1647                 desc_len = sizeof(struct e1000_rx_desc);
1648         else
1649                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1650
1651         /* Round up to nearest 4K */
1652
1653         rxdr->size = rxdr->count * desc_len;
1654         E1000_ROUNDUP(rxdr->size, 4096);
1655
1656         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1657
1658         if (!rxdr->desc) {
1659                 DPRINTK(PROBE, ERR,
1660                 "Unable to allocate memory for the receive descriptor ring\n");
1661 setup_rx_desc_die:
1662                 vfree(rxdr->buffer_info);
1663                 kfree(rxdr->ps_page);
1664                 kfree(rxdr->ps_page_dma);
1665                 return -ENOMEM;
1666         }
1667
1668         /* Fix for errata 23, can't cross 64kB boundary */
1669         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1670                 void *olddesc = rxdr->desc;
1671                 dma_addr_t olddma = rxdr->dma;
1672                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1673                                      "at %p\n", rxdr->size, rxdr->desc);
1674                 /* Try again, without freeing the previous */
1675                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1676                 /* Failed allocation, critical failure */
1677                 if (!rxdr->desc) {
1678                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1679                         DPRINTK(PROBE, ERR,
1680                                 "Unable to allocate memory "
1681                                 "for the receive descriptor ring\n");
1682                         goto setup_rx_desc_die;
1683                 }
1684
1685                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1686                         /* give up */
1687                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1688                                             rxdr->dma);
1689                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1690                         DPRINTK(PROBE, ERR,
1691                                 "Unable to allocate aligned memory "
1692                                 "for the receive descriptor ring\n");
1693                         goto setup_rx_desc_die;
1694                 } else {
1695                         /* Free old allocation, new allocation was successful */
1696                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1697                 }
1698         }
1699         memset(rxdr->desc, 0, rxdr->size);
1700
1701         rxdr->next_to_clean = 0;
1702         rxdr->next_to_use = 0;
1703
1704         return 0;
1705 }
1706
1707 /**
1708  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1709  *                                (Descriptors) for all queues
1710  * @adapter: board private structure
1711  *
1712  * Return 0 on success, negative on failure
1713  **/
1714
1715 int
1716 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1717 {
1718         int i, err = 0;
1719
1720         for (i = 0; i < adapter->num_rx_queues; i++) {
1721                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1722                 if (err) {
1723                         DPRINTK(PROBE, ERR,
1724                                 "Allocation for Rx Queue %u failed\n", i);
1725                         for (i-- ; i >= 0; i--)
1726                                 e1000_free_rx_resources(adapter,
1727                                                         &adapter->rx_ring[i]);
1728                         break;
1729                 }
1730         }
1731
1732         return err;
1733 }
1734
1735 /**
1736  * e1000_setup_rctl - configure the receive control registers
1737  * @adapter: Board private structure
1738  **/
1739 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1740                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1741 static void
1742 e1000_setup_rctl(struct e1000_adapter *adapter)
1743 {
1744         uint32_t rctl, rfctl;
1745         uint32_t psrctl = 0;
1746 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1747         uint32_t pages = 0;
1748 #endif
1749
1750         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1751
1752         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1753
1754         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1755                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1756                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1757
1758         if (adapter->hw.tbi_compatibility_on == 1)
1759                 rctl |= E1000_RCTL_SBP;
1760         else
1761                 rctl &= ~E1000_RCTL_SBP;
1762
1763         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1764                 rctl &= ~E1000_RCTL_LPE;
1765         else
1766                 rctl |= E1000_RCTL_LPE;
1767
1768         /* Setup buffer sizes */
1769         rctl &= ~E1000_RCTL_SZ_4096;
1770         rctl |= E1000_RCTL_BSEX;
1771         switch (adapter->rx_buffer_len) {
1772                 case E1000_RXBUFFER_256:
1773                         rctl |= E1000_RCTL_SZ_256;
1774                         rctl &= ~E1000_RCTL_BSEX;
1775                         break;
1776                 case E1000_RXBUFFER_512:
1777                         rctl |= E1000_RCTL_SZ_512;
1778                         rctl &= ~E1000_RCTL_BSEX;
1779                         break;
1780                 case E1000_RXBUFFER_1024:
1781                         rctl |= E1000_RCTL_SZ_1024;
1782                         rctl &= ~E1000_RCTL_BSEX;
1783                         break;
1784                 case E1000_RXBUFFER_2048:
1785                 default:
1786                         rctl |= E1000_RCTL_SZ_2048;
1787                         rctl &= ~E1000_RCTL_BSEX;
1788                         break;
1789                 case E1000_RXBUFFER_4096:
1790                         rctl |= E1000_RCTL_SZ_4096;
1791                         break;
1792                 case E1000_RXBUFFER_8192:
1793                         rctl |= E1000_RCTL_SZ_8192;
1794                         break;
1795                 case E1000_RXBUFFER_16384:
1796                         rctl |= E1000_RCTL_SZ_16384;
1797                         break;
1798         }
1799
1800 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1801         /* 82571 and greater support packet-split where the protocol
1802          * header is placed in skb->data and the packet data is
1803          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1804          * In the case of a non-split, skb->data is linearly filled,
1805          * followed by the page buffers.  Therefore, skb->data is
1806          * sized to hold the largest protocol header.
1807          */
1808         /* allocations using alloc_page take too long for regular MTU
1809          * so only enable packet split for jumbo frames */
1810         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1811         if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
1812             PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
1813                 adapter->rx_ps_pages = pages;
1814         else
1815                 adapter->rx_ps_pages = 0;
1816 #endif
1817         if (adapter->rx_ps_pages) {
1818                 /* Configure extra packet-split registers */
1819                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1820                 rfctl |= E1000_RFCTL_EXTEN;
1821                 /* disable packet split support for IPv6 extension headers,
1822                  * because some malformed IPv6 headers can hang the RX */
1823                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1824                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
1825
1826                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1827
1828                 rctl |= E1000_RCTL_DTYP_PS;
1829
1830                 psrctl |= adapter->rx_ps_bsize0 >>
1831                         E1000_PSRCTL_BSIZE0_SHIFT;
1832
1833                 switch (adapter->rx_ps_pages) {
1834                 case 3:
1835                         psrctl |= PAGE_SIZE <<
1836                                 E1000_PSRCTL_BSIZE3_SHIFT;
1837                 case 2:
1838                         psrctl |= PAGE_SIZE <<
1839                                 E1000_PSRCTL_BSIZE2_SHIFT;
1840                 case 1:
1841                         psrctl |= PAGE_SIZE >>
1842                                 E1000_PSRCTL_BSIZE1_SHIFT;
1843                         break;
1844                 }
1845
1846                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1847         }
1848
1849         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1850 }
1851
1852 /**
1853  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1854  * @adapter: board private structure
1855  *
1856  * Configure the Rx unit of the MAC after a reset.
1857  **/
1858
1859 static void
1860 e1000_configure_rx(struct e1000_adapter *adapter)
1861 {
1862         uint64_t rdba;
1863         struct e1000_hw *hw = &adapter->hw;
1864         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1865
1866         if (adapter->rx_ps_pages) {
1867                 /* this is a 32 byte descriptor */
1868                 rdlen = adapter->rx_ring[0].count *
1869                         sizeof(union e1000_rx_desc_packet_split);
1870                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1871                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1872         } else {
1873                 rdlen = adapter->rx_ring[0].count *
1874                         sizeof(struct e1000_rx_desc);
1875                 adapter->clean_rx = e1000_clean_rx_irq;
1876                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1877         }
1878
1879         /* disable receives while setting up the descriptors */
1880         rctl = E1000_READ_REG(hw, RCTL);
1881         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1882
1883         /* set the Receive Delay Timer Register */
1884         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1885
1886         if (hw->mac_type >= e1000_82540) {
1887                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1888                 if (adapter->itr > 1)
1889                         E1000_WRITE_REG(hw, ITR,
1890                                 1000000000 / (adapter->itr * 256));
1891         }
1892
1893         if (hw->mac_type >= e1000_82571) {
1894                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1895                 /* Reset delay timers after every interrupt */
1896                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1897 #ifdef CONFIG_E1000_NAPI
1898                 /* Auto-Mask interrupts upon ICR read. */
1899                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1900 #endif
1901                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1902                 E1000_WRITE_REG(hw, IAM, ~0);
1903                 E1000_WRITE_FLUSH(hw);
1904         }
1905
1906         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1907          * the Base and Length of the Rx Descriptor Ring */
1908         switch (adapter->num_rx_queues) {
1909         case 1:
1910         default:
1911                 rdba = adapter->rx_ring[0].dma;
1912                 E1000_WRITE_REG(hw, RDLEN, rdlen);
1913                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1914                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1915                 E1000_WRITE_REG(hw, RDT, 0);
1916                 E1000_WRITE_REG(hw, RDH, 0);
1917                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1918                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1919                 break;
1920         }
1921
1922         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1923         if (hw->mac_type >= e1000_82543) {
1924                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1925                 if (adapter->rx_csum == TRUE) {
1926                         rxcsum |= E1000_RXCSUM_TUOFL;
1927
1928                         /* Enable 82571 IPv4 payload checksum for UDP fragments
1929                          * Must be used in conjunction with packet-split. */
1930                         if ((hw->mac_type >= e1000_82571) &&
1931                             (adapter->rx_ps_pages)) {
1932                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1933                         }
1934                 } else {
1935                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1936                         /* don't need to clear IPPCSE as it defaults to 0 */
1937                 }
1938                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1939         }
1940
1941         /* enable early receives on 82573, only takes effect if using > 2048
1942          * byte total frame size.  for example only for jumbo frames */
1943 #define E1000_ERT_2048 0x100
1944         if (hw->mac_type == e1000_82573)
1945                 E1000_WRITE_REG(hw, ERT, E1000_ERT_2048);
1946
1947         /* Enable Receives */
1948         E1000_WRITE_REG(hw, RCTL, rctl);
1949 }
1950
1951 /**
1952  * e1000_free_tx_resources - Free Tx Resources per Queue
1953  * @adapter: board private structure
1954  * @tx_ring: Tx descriptor ring for a specific queue
1955  *
1956  * Free all transmit software resources
1957  **/
1958
1959 static void
1960 e1000_free_tx_resources(struct e1000_adapter *adapter,
1961                         struct e1000_tx_ring *tx_ring)
1962 {
1963         struct pci_dev *pdev = adapter->pdev;
1964
1965         e1000_clean_tx_ring(adapter, tx_ring);
1966
1967         vfree(tx_ring->buffer_info);
1968         tx_ring->buffer_info = NULL;
1969
1970         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1971
1972         tx_ring->desc = NULL;
1973 }
1974
1975 /**
1976  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1977  * @adapter: board private structure
1978  *
1979  * Free all transmit software resources
1980  **/
1981
1982 void
1983 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1984 {
1985         int i;
1986
1987         for (i = 0; i < adapter->num_tx_queues; i++)
1988                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1989 }
1990
1991 static void
1992 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1993                         struct e1000_buffer *buffer_info)
1994 {
1995         if (buffer_info->dma) {
1996                 pci_unmap_page(adapter->pdev,
1997                                 buffer_info->dma,
1998                                 buffer_info->length,
1999                                 PCI_DMA_TODEVICE);
2000                 buffer_info->dma = 0;
2001         }
2002         if (buffer_info->skb) {
2003                 dev_kfree_skb_any(buffer_info->skb);
2004                 buffer_info->skb = NULL;
2005         }
2006         /* buffer_info must be completely set up in the transmit path */
2007 }
2008
2009 /**
2010  * e1000_clean_tx_ring - Free Tx Buffers
2011  * @adapter: board private structure
2012  * @tx_ring: ring to be cleaned
2013  **/
2014
2015 static void
2016 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2017                     struct e1000_tx_ring *tx_ring)
2018 {
2019         struct e1000_buffer *buffer_info;
2020         unsigned long size;
2021         unsigned int i;
2022
2023         /* Free all the Tx ring sk_buffs */
2024
2025         for (i = 0; i < tx_ring->count; i++) {
2026                 buffer_info = &tx_ring->buffer_info[i];
2027                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2028         }
2029
2030         size = sizeof(struct e1000_buffer) * tx_ring->count;
2031         memset(tx_ring->buffer_info, 0, size);
2032
2033         /* Zero out the descriptor ring */
2034
2035         memset(tx_ring->desc, 0, tx_ring->size);
2036
2037         tx_ring->next_to_use = 0;
2038         tx_ring->next_to_clean = 0;
2039         tx_ring->last_tx_tso = 0;
2040
2041         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2042         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2043 }
2044
2045 /**
2046  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2047  * @adapter: board private structure
2048  **/
2049
2050 static void
2051 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2052 {
2053         int i;
2054
2055         for (i = 0; i < adapter->num_tx_queues; i++)
2056                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2057 }
2058
2059 /**
2060  * e1000_free_rx_resources - Free Rx Resources
2061  * @adapter: board private structure
2062  * @rx_ring: ring to clean the resources from
2063  *
2064  * Free all receive software resources
2065  **/
2066
2067 static void
2068 e1000_free_rx_resources(struct e1000_adapter *adapter,
2069                         struct e1000_rx_ring *rx_ring)
2070 {
2071         struct pci_dev *pdev = adapter->pdev;
2072
2073         e1000_clean_rx_ring(adapter, rx_ring);
2074
2075         vfree(rx_ring->buffer_info);
2076         rx_ring->buffer_info = NULL;
2077         kfree(rx_ring->ps_page);
2078         rx_ring->ps_page = NULL;
2079         kfree(rx_ring->ps_page_dma);
2080         rx_ring->ps_page_dma = NULL;
2081
2082         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2083
2084         rx_ring->desc = NULL;
2085 }
2086
2087 /**
2088  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2089  * @adapter: board private structure
2090  *
2091  * Free all receive software resources
2092  **/
2093
2094 void
2095 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2096 {
2097         int i;
2098
2099         for (i = 0; i < adapter->num_rx_queues; i++)
2100                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2101 }
2102
2103 /**
2104  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2105  * @adapter: board private structure
2106  * @rx_ring: ring to free buffers from
2107  **/
2108
2109 static void
2110 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2111                     struct e1000_rx_ring *rx_ring)
2112 {
2113         struct e1000_buffer *buffer_info;
2114         struct e1000_ps_page *ps_page;
2115         struct e1000_ps_page_dma *ps_page_dma;
2116         struct pci_dev *pdev = adapter->pdev;
2117         unsigned long size;
2118         unsigned int i, j;
2119
2120         /* Free all the Rx ring sk_buffs */
2121         for (i = 0; i < rx_ring->count; i++) {
2122                 buffer_info = &rx_ring->buffer_info[i];
2123                 if (buffer_info->skb) {
2124                         pci_unmap_single(pdev,
2125                                          buffer_info->dma,
2126                                          buffer_info->length,
2127                                          PCI_DMA_FROMDEVICE);
2128
2129                         dev_kfree_skb(buffer_info->skb);
2130                         buffer_info->skb = NULL;
2131                 }
2132                 ps_page = &rx_ring->ps_page[i];
2133                 ps_page_dma = &rx_ring->ps_page_dma[i];
2134                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2135                         if (!ps_page->ps_page[j]) break;
2136                         pci_unmap_page(pdev,
2137                                        ps_page_dma->ps_page_dma[j],
2138                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2139                         ps_page_dma->ps_page_dma[j] = 0;
2140                         put_page(ps_page->ps_page[j]);
2141                         ps_page->ps_page[j] = NULL;
2142                 }
2143         }
2144
2145         size = sizeof(struct e1000_buffer) * rx_ring->count;
2146         memset(rx_ring->buffer_info, 0, size);
2147         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2148         memset(rx_ring->ps_page, 0, size);
2149         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2150         memset(rx_ring->ps_page_dma, 0, size);
2151
2152         /* Zero out the descriptor ring */
2153
2154         memset(rx_ring->desc, 0, rx_ring->size);
2155
2156         rx_ring->next_to_clean = 0;
2157         rx_ring->next_to_use = 0;
2158
2159         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2160         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2161 }
2162
2163 /**
2164  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2165  * @adapter: board private structure
2166  **/
2167
2168 static void
2169 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2170 {
2171         int i;
2172
2173         for (i = 0; i < adapter->num_rx_queues; i++)
2174                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2175 }
2176
2177 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2178  * and memory write and invalidate disabled for certain operations
2179  */
2180 static void
2181 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2182 {
2183         struct net_device *netdev = adapter->netdev;
2184         uint32_t rctl;
2185
2186         e1000_pci_clear_mwi(&adapter->hw);
2187
2188         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2189         rctl |= E1000_RCTL_RST;
2190         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2191         E1000_WRITE_FLUSH(&adapter->hw);
2192         mdelay(5);
2193
2194         if (netif_running(netdev))
2195                 e1000_clean_all_rx_rings(adapter);
2196 }
2197
2198 static void
2199 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2200 {
2201         struct net_device *netdev = adapter->netdev;
2202         uint32_t rctl;
2203
2204         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2205         rctl &= ~E1000_RCTL_RST;
2206         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2207         E1000_WRITE_FLUSH(&adapter->hw);
2208         mdelay(5);
2209
2210         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2211                 e1000_pci_set_mwi(&adapter->hw);
2212
2213         if (netif_running(netdev)) {
2214                 /* No need to loop, because 82542 supports only 1 queue */
2215                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2216                 e1000_configure_rx(adapter);
2217                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2218         }
2219 }
2220
2221 /**
2222  * e1000_set_mac - Change the Ethernet Address of the NIC
2223  * @netdev: network interface device structure
2224  * @p: pointer to an address structure
2225  *
2226  * Returns 0 on success, negative on failure
2227  **/
2228
2229 static int
2230 e1000_set_mac(struct net_device *netdev, void *p)
2231 {
2232         struct e1000_adapter *adapter = netdev_priv(netdev);
2233         struct sockaddr *addr = p;
2234
2235         if (!is_valid_ether_addr(addr->sa_data))
2236                 return -EADDRNOTAVAIL;
2237
2238         /* 82542 2.0 needs to be in reset to write receive address registers */
2239
2240         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2241                 e1000_enter_82542_rst(adapter);
2242
2243         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2244         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2245
2246         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2247
2248         /* With 82571 controllers, LAA may be overwritten (with the default)
2249          * due to controller reset from the other port. */
2250         if (adapter->hw.mac_type == e1000_82571) {
2251                 /* activate the work around */
2252                 adapter->hw.laa_is_present = 1;
2253
2254                 /* Hold a copy of the LAA in RAR[14] This is done so that
2255                  * between the time RAR[0] gets clobbered  and the time it
2256                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2257                  * of the RARs and no incoming packets directed to this port
2258                  * are dropped. Eventaully the LAA will be in RAR[0] and
2259                  * RAR[14] */
2260                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2261                                         E1000_RAR_ENTRIES - 1);
2262         }
2263
2264         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2265                 e1000_leave_82542_rst(adapter);
2266
2267         return 0;
2268 }
2269
2270 /**
2271  * e1000_set_multi - Multicast and Promiscuous mode set
2272  * @netdev: network interface device structure
2273  *
2274  * The set_multi entry point is called whenever the multicast address
2275  * list or the network interface flags are updated.  This routine is
2276  * responsible for configuring the hardware for proper multicast,
2277  * promiscuous mode, and all-multi behavior.
2278  **/
2279
2280 static void
2281 e1000_set_multi(struct net_device *netdev)
2282 {
2283         struct e1000_adapter *adapter = netdev_priv(netdev);
2284         struct e1000_hw *hw = &adapter->hw;
2285         struct dev_mc_list *mc_ptr;
2286         uint32_t rctl;
2287         uint32_t hash_value;
2288         int i, rar_entries = E1000_RAR_ENTRIES;
2289         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2290                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2291                                 E1000_NUM_MTA_REGISTERS;
2292
2293         if (adapter->hw.mac_type == e1000_ich8lan)
2294                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2295
2296         /* reserve RAR[14] for LAA over-write work-around */
2297         if (adapter->hw.mac_type == e1000_82571)
2298                 rar_entries--;
2299
2300         /* Check for Promiscuous and All Multicast modes */
2301
2302         rctl = E1000_READ_REG(hw, RCTL);
2303
2304         if (netdev->flags & IFF_PROMISC) {
2305                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2306         } else if (netdev->flags & IFF_ALLMULTI) {
2307                 rctl |= E1000_RCTL_MPE;
2308                 rctl &= ~E1000_RCTL_UPE;
2309         } else {
2310                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2311         }
2312
2313         E1000_WRITE_REG(hw, RCTL, rctl);
2314
2315         /* 82542 2.0 needs to be in reset to write receive address registers */
2316
2317         if (hw->mac_type == e1000_82542_rev2_0)
2318                 e1000_enter_82542_rst(adapter);
2319
2320         /* load the first 14 multicast address into the exact filters 1-14
2321          * RAR 0 is used for the station MAC adddress
2322          * if there are not 14 addresses, go ahead and clear the filters
2323          * -- with 82571 controllers only 0-13 entries are filled here
2324          */
2325         mc_ptr = netdev->mc_list;
2326
2327         for (i = 1; i < rar_entries; i++) {
2328                 if (mc_ptr) {
2329                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2330                         mc_ptr = mc_ptr->next;
2331                 } else {
2332                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2333                         E1000_WRITE_FLUSH(hw);
2334                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2335                         E1000_WRITE_FLUSH(hw);
2336                 }
2337         }
2338
2339         /* clear the old settings from the multicast hash table */
2340
2341         for (i = 0; i < mta_reg_count; i++) {
2342                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2343                 E1000_WRITE_FLUSH(hw);
2344         }
2345
2346         /* load any remaining addresses into the hash table */
2347
2348         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2349                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2350                 e1000_mta_set(hw, hash_value);
2351         }
2352
2353         if (hw->mac_type == e1000_82542_rev2_0)
2354                 e1000_leave_82542_rst(adapter);
2355 }
2356
2357 /* Need to wait a few seconds after link up to get diagnostic information from
2358  * the phy */
2359
2360 static void
2361 e1000_update_phy_info(unsigned long data)
2362 {
2363         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2364         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2365 }
2366
2367 /**
2368  * e1000_82547_tx_fifo_stall - Timer Call-back
2369  * @data: pointer to adapter cast into an unsigned long
2370  **/
2371
2372 static void
2373 e1000_82547_tx_fifo_stall(unsigned long data)
2374 {
2375         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2376         struct net_device *netdev = adapter->netdev;
2377         uint32_t tctl;
2378
2379         if (atomic_read(&adapter->tx_fifo_stall)) {
2380                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2381                     E1000_READ_REG(&adapter->hw, TDH)) &&
2382                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2383                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2384                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2385                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2386                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2387                         E1000_WRITE_REG(&adapter->hw, TCTL,
2388                                         tctl & ~E1000_TCTL_EN);
2389                         E1000_WRITE_REG(&adapter->hw, TDFT,
2390                                         adapter->tx_head_addr);
2391                         E1000_WRITE_REG(&adapter->hw, TDFH,
2392                                         adapter->tx_head_addr);
2393                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2394                                         adapter->tx_head_addr);
2395                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2396                                         adapter->tx_head_addr);
2397                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2398                         E1000_WRITE_FLUSH(&adapter->hw);
2399
2400                         adapter->tx_fifo_head = 0;
2401                         atomic_set(&adapter->tx_fifo_stall, 0);
2402                         netif_wake_queue(netdev);
2403                 } else {
2404                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2405                 }
2406         }
2407 }
2408
2409 /**
2410  * e1000_watchdog - Timer Call-back
2411  * @data: pointer to adapter cast into an unsigned long
2412  **/
2413 static void
2414 e1000_watchdog(unsigned long data)
2415 {
2416         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2417         struct net_device *netdev = adapter->netdev;
2418         struct e1000_tx_ring *txdr = adapter->tx_ring;
2419         uint32_t link, tctl;
2420         int32_t ret_val;
2421
2422         ret_val = e1000_check_for_link(&adapter->hw);
2423         if ((ret_val == E1000_ERR_PHY) &&
2424             (adapter->hw.phy_type == e1000_phy_igp_3) &&
2425             (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2426                 /* See e1000_kumeran_lock_loss_workaround() */
2427                 DPRINTK(LINK, INFO,
2428                         "Gigabit has been disabled, downgrading speed\n");
2429         }
2430
2431         if (adapter->hw.mac_type == e1000_82573) {
2432                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2433                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2434                         e1000_update_mng_vlan(adapter);
2435         }
2436
2437         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2438            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2439                 link = !adapter->hw.serdes_link_down;
2440         else
2441                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2442
2443         if (link) {
2444                 if (!netif_carrier_ok(netdev)) {
2445                         boolean_t txb2b = 1;
2446                         e1000_get_speed_and_duplex(&adapter->hw,
2447                                                    &adapter->link_speed,
2448                                                    &adapter->link_duplex);
2449
2450                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2451                                adapter->link_speed,
2452                                adapter->link_duplex == FULL_DUPLEX ?
2453                                "Full Duplex" : "Half Duplex");
2454
2455                         /* tweak tx_queue_len according to speed/duplex
2456                          * and adjust the timeout factor */
2457                         netdev->tx_queue_len = adapter->tx_queue_len;
2458                         adapter->tx_timeout_factor = 1;
2459                         switch (adapter->link_speed) {
2460                         case SPEED_10:
2461                                 txb2b = 0;
2462                                 netdev->tx_queue_len = 10;
2463                                 adapter->tx_timeout_factor = 8;
2464                                 break;
2465                         case SPEED_100:
2466                                 txb2b = 0;
2467                                 netdev->tx_queue_len = 100;
2468                                 /* maybe add some timeout factor ? */
2469                                 break;
2470                         }
2471
2472                         if ((adapter->hw.mac_type == e1000_82571 ||
2473                              adapter->hw.mac_type == e1000_82572) &&
2474                             txb2b == 0) {
2475                                 uint32_t tarc0;
2476                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2477                                 tarc0 &= ~(1 << 21);
2478                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2479                         }
2480
2481 #ifdef NETIF_F_TSO
2482                         /* disable TSO for pcie and 10/100 speeds, to avoid
2483                          * some hardware issues */
2484                         if (!adapter->tso_force &&
2485                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2486                                 switch (adapter->link_speed) {
2487                                 case SPEED_10:
2488                                 case SPEED_100:
2489                                         DPRINTK(PROBE,INFO,
2490                                         "10/100 speed: disabling TSO\n");
2491                                         netdev->features &= ~NETIF_F_TSO;
2492 #ifdef NETIF_F_TSO6
2493                                         netdev->features &= ~NETIF_F_TSO6;
2494 #endif
2495                                         break;
2496                                 case SPEED_1000:
2497                                         netdev->features |= NETIF_F_TSO;
2498 #ifdef NETIF_F_TSO6
2499                                         netdev->features |= NETIF_F_TSO6;
2500 #endif
2501                                         break;
2502                                 default:
2503                                         /* oops */
2504                                         break;
2505                                 }
2506                         }
2507 #endif
2508
2509                         /* enable transmits in the hardware, need to do this
2510                          * after setting TARC0 */
2511                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2512                         tctl |= E1000_TCTL_EN;
2513                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2514
2515                         netif_carrier_on(netdev);
2516                         netif_wake_queue(netdev);
2517                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2518                         adapter->smartspeed = 0;
2519                 }
2520         } else {
2521                 if (netif_carrier_ok(netdev)) {
2522                         adapter->link_speed = 0;
2523                         adapter->link_duplex = 0;
2524                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2525                         netif_carrier_off(netdev);
2526                         netif_stop_queue(netdev);
2527                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2528
2529                         /* 80003ES2LAN workaround--
2530                          * For packet buffer work-around on link down event;
2531                          * disable receives in the ISR and
2532                          * reset device here in the watchdog
2533                          */
2534                         if (adapter->hw.mac_type == e1000_80003es2lan)
2535                                 /* reset device */
2536                                 schedule_work(&adapter->reset_task);
2537                 }
2538
2539                 e1000_smartspeed(adapter);
2540         }
2541
2542         e1000_update_stats(adapter);
2543
2544         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2545         adapter->tpt_old = adapter->stats.tpt;
2546         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2547         adapter->colc_old = adapter->stats.colc;
2548
2549         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2550         adapter->gorcl_old = adapter->stats.gorcl;
2551         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2552         adapter->gotcl_old = adapter->stats.gotcl;
2553
2554         e1000_update_adaptive(&adapter->hw);
2555
2556         if (!netif_carrier_ok(netdev)) {
2557                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2558                         /* We've lost link, so the controller stops DMA,
2559                          * but we've got queued Tx work that's never going
2560                          * to get done, so reset controller to flush Tx.
2561                          * (Do the reset outside of interrupt context). */
2562                         adapter->tx_timeout_count++;
2563                         schedule_work(&adapter->reset_task);
2564                 }
2565         }
2566
2567         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2568         if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2569                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2570                  * asymmetrical Tx or Rx gets ITR=8000; everyone
2571                  * else is between 2000-8000. */
2572                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2573                 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2574                         adapter->gotcl - adapter->gorcl :
2575                         adapter->gorcl - adapter->gotcl) / 10000;
2576                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2577                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2578         }
2579
2580         /* Cause software interrupt to ensure rx ring is cleaned */
2581         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2582
2583         /* Force detection of hung controller every watchdog period */
2584         adapter->detect_tx_hung = TRUE;
2585
2586         /* With 82571 controllers, LAA may be overwritten due to controller
2587          * reset from the other port. Set the appropriate LAA in RAR[0] */
2588         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2589                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2590
2591         /* Reset the timer */
2592         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2593 }
2594
2595 #define E1000_TX_FLAGS_CSUM             0x00000001
2596 #define E1000_TX_FLAGS_VLAN             0x00000002
2597 #define E1000_TX_FLAGS_TSO              0x00000004
2598 #define E1000_TX_FLAGS_IPV4             0x00000008
2599 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2600 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2601
2602 static int
2603 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2604           struct sk_buff *skb)
2605 {
2606 #ifdef NETIF_F_TSO
2607         struct e1000_context_desc *context_desc;
2608         struct e1000_buffer *buffer_info;
2609         unsigned int i;
2610         uint32_t cmd_length = 0;
2611         uint16_t ipcse = 0, tucse, mss;
2612         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2613         int err;
2614
2615         if (skb_is_gso(skb)) {
2616                 if (skb_header_cloned(skb)) {
2617                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2618                         if (err)
2619                                 return err;
2620                 }
2621
2622                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2623                 mss = skb_shinfo(skb)->gso_size;
2624                 if (skb->protocol == htons(ETH_P_IP)) {
2625                         skb->nh.iph->tot_len = 0;
2626                         skb->nh.iph->check = 0;
2627                         skb->h.th->check =
2628                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2629                                                    skb->nh.iph->daddr,
2630                                                    0,
2631                                                    IPPROTO_TCP,
2632                                                    0);
2633                         cmd_length = E1000_TXD_CMD_IP;
2634                         ipcse = skb->h.raw - skb->data - 1;
2635 #ifdef NETIF_F_TSO6
2636                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2637                         skb->nh.ipv6h->payload_len = 0;
2638                         skb->h.th->check =
2639                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2640                                                  &skb->nh.ipv6h->daddr,
2641                                                  0,
2642                                                  IPPROTO_TCP,
2643                                                  0);
2644                         ipcse = 0;
2645 #endif
2646                 }
2647                 ipcss = skb->nh.raw - skb->data;
2648                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2649                 tucss = skb->h.raw - skb->data;
2650                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2651                 tucse = 0;
2652
2653                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2654                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2655
2656                 i = tx_ring->next_to_use;
2657                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2658                 buffer_info = &tx_ring->buffer_info[i];
2659
2660                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2661                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2662                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2663                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2664                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2665                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2666                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2667                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2668                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2669
2670                 buffer_info->time_stamp = jiffies;
2671                 buffer_info->next_to_watch = i;
2672
2673                 if (++i == tx_ring->count) i = 0;
2674                 tx_ring->next_to_use = i;
2675
2676                 return TRUE;
2677         }
2678 #endif
2679
2680         return FALSE;
2681 }
2682
2683 static boolean_t
2684 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2685               struct sk_buff *skb)
2686 {
2687         struct e1000_context_desc *context_desc;
2688         struct e1000_buffer *buffer_info;
2689         unsigned int i;
2690         uint8_t css;
2691
2692         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2693                 css = skb->h.raw - skb->data;
2694
2695                 i = tx_ring->next_to_use;
2696                 buffer_info = &tx_ring->buffer_info[i];
2697                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2698
2699                 context_desc->upper_setup.tcp_fields.tucss = css;
2700                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2701                 context_desc->upper_setup.tcp_fields.tucse = 0;
2702                 context_desc->tcp_seg_setup.data = 0;
2703                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2704
2705                 buffer_info->time_stamp = jiffies;
2706                 buffer_info->next_to_watch = i;
2707
2708                 if (unlikely(++i == tx_ring->count)) i = 0;
2709                 tx_ring->next_to_use = i;
2710
2711                 return TRUE;
2712         }
2713
2714         return FALSE;
2715 }
2716
2717 #define E1000_MAX_TXD_PWR       12
2718 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2719
2720 static int
2721 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2722              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2723              unsigned int nr_frags, unsigned int mss)
2724 {
2725         struct e1000_buffer *buffer_info;
2726         unsigned int len = skb->len;
2727         unsigned int offset = 0, size, count = 0, i;
2728         unsigned int f;
2729         len -= skb->data_len;
2730
2731         i = tx_ring->next_to_use;
2732
2733         while (len) {
2734                 buffer_info = &tx_ring->buffer_info[i];
2735                 size = min(len, max_per_txd);
2736 #ifdef NETIF_F_TSO
2737                 /* Workaround for Controller erratum --
2738                  * descriptor for non-tso packet in a linear SKB that follows a
2739                  * tso gets written back prematurely before the data is fully
2740                  * DMA'd to the controller */
2741                 if (!skb->data_len && tx_ring->last_tx_tso &&
2742                     !skb_is_gso(skb)) {
2743                         tx_ring->last_tx_tso = 0;
2744                         size -= 4;
2745                 }
2746
2747                 /* Workaround for premature desc write-backs
2748                  * in TSO mode.  Append 4-byte sentinel desc */
2749                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2750                         size -= 4;
2751 #endif
2752                 /* work-around for errata 10 and it applies
2753                  * to all controllers in PCI-X mode
2754                  * The fix is to make sure that the first descriptor of a
2755                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2756                  */
2757                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2758                                 (size > 2015) && count == 0))
2759                         size = 2015;
2760
2761                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2762                  * terminating buffers within evenly-aligned dwords. */
2763                 if (unlikely(adapter->pcix_82544 &&
2764                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2765                    size > 4))
2766                         size -= 4;
2767
2768                 buffer_info->length = size;
2769                 buffer_info->dma =
2770                         pci_map_single(adapter->pdev,
2771                                 skb->data + offset,
2772                                 size,
2773                                 PCI_DMA_TODEVICE);
2774                 buffer_info->time_stamp = jiffies;
2775                 buffer_info->next_to_watch = i;
2776
2777                 len -= size;
2778                 offset += size;
2779                 count++;
2780                 if (unlikely(++i == tx_ring->count)) i = 0;
2781         }
2782
2783         for (f = 0; f < nr_frags; f++) {
2784                 struct skb_frag_struct *frag;
2785
2786                 frag = &skb_shinfo(skb)->frags[f];
2787                 len = frag->size;
2788                 offset = frag->page_offset;
2789
2790                 while (len) {
2791                         buffer_info = &tx_ring->buffer_info[i];
2792                         size = min(len, max_per_txd);
2793 #ifdef NETIF_F_TSO
2794                         /* Workaround for premature desc write-backs
2795                          * in TSO mode.  Append 4-byte sentinel desc */
2796                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2797                                 size -= 4;
2798 #endif
2799                         /* Workaround for potential 82544 hang in PCI-X.
2800                          * Avoid terminating buffers within evenly-aligned
2801                          * dwords. */
2802                         if (unlikely(adapter->pcix_82544 &&
2803                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2804                            size > 4))
2805                                 size -= 4;
2806
2807                         buffer_info->length = size;
2808                         buffer_info->dma =
2809                                 pci_map_page(adapter->pdev,
2810                                         frag->page,
2811                                         offset,
2812                                         size,
2813                                         PCI_DMA_TODEVICE);
2814                         buffer_info->time_stamp = jiffies;
2815                         buffer_info->next_to_watch = i;
2816
2817                         len -= size;
2818                         offset += size;
2819                         count++;
2820                         if (unlikely(++i == tx_ring->count)) i = 0;
2821                 }
2822         }
2823
2824         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2825         tx_ring->buffer_info[i].skb = skb;
2826         tx_ring->buffer_info[first].next_to_watch = i;
2827
2828         return count;
2829 }
2830
2831 static void
2832 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2833                int tx_flags, int count)
2834 {
2835         struct e1000_tx_desc *tx_desc = NULL;
2836         struct e1000_buffer *buffer_info;
2837         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2838         unsigned int i;
2839
2840         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2841                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2842                              E1000_TXD_CMD_TSE;
2843                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2844
2845                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2846                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2847         }
2848
2849         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2850                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2851                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2852         }
2853
2854         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2855                 txd_lower |= E1000_TXD_CMD_VLE;
2856                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2857         }
2858
2859         i = tx_ring->next_to_use;
2860
2861         while (count--) {
2862                 buffer_info = &tx_ring->buffer_info[i];
2863                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2864                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2865                 tx_desc->lower.data =
2866                         cpu_to_le32(txd_lower | buffer_info->length);
2867                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2868                 if (unlikely(++i == tx_ring->count)) i = 0;
2869         }
2870
2871         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2872
2873         /* Force memory writes to complete before letting h/w
2874          * know there are new descriptors to fetch.  (Only
2875          * applicable for weak-ordered memory model archs,
2876          * such as IA-64). */
2877         wmb();
2878
2879         tx_ring->next_to_use = i;
2880         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2881         /* we need this if more than one processor can write to our tail
2882          * at a time, it syncronizes IO on IA64/Altix systems */
2883         mmiowb();
2884 }
2885
2886 /**
2887  * 82547 workaround to avoid controller hang in half-duplex environment.
2888  * The workaround is to avoid queuing a large packet that would span
2889  * the internal Tx FIFO ring boundary by notifying the stack to resend
2890  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2891  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2892  * to the beginning of the Tx FIFO.
2893  **/
2894
2895 #define E1000_FIFO_HDR                  0x10
2896 #define E1000_82547_PAD_LEN             0x3E0
2897
2898 static int
2899 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2900 {
2901         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2902         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2903
2904         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2905
2906         if (adapter->link_duplex != HALF_DUPLEX)
2907                 goto no_fifo_stall_required;
2908
2909         if (atomic_read(&adapter->tx_fifo_stall))
2910                 return 1;
2911
2912         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2913                 atomic_set(&adapter->tx_fifo_stall, 1);
2914                 return 1;
2915         }
2916
2917 no_fifo_stall_required:
2918         adapter->tx_fifo_head += skb_fifo_len;
2919         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2920                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2921         return 0;
2922 }
2923
2924 #define MINIMUM_DHCP_PACKET_SIZE 282
2925 static int
2926 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2927 {
2928         struct e1000_hw *hw =  &adapter->hw;
2929         uint16_t length, offset;
2930         if (vlan_tx_tag_present(skb)) {
2931                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2932                         ( adapter->hw.mng_cookie.status &
2933                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2934                         return 0;
2935         }
2936         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
2937                 struct ethhdr *eth = (struct ethhdr *) skb->data;
2938                 if ((htons(ETH_P_IP) == eth->h_proto)) {
2939                         const struct iphdr *ip =
2940                                 (struct iphdr *)((uint8_t *)skb->data+14);
2941                         if (IPPROTO_UDP == ip->protocol) {
2942                                 struct udphdr *udp =
2943                                         (struct udphdr *)((uint8_t *)ip +
2944                                                 (ip->ihl << 2));
2945                                 if (ntohs(udp->dest) == 67) {
2946                                         offset = (uint8_t *)udp + 8 - skb->data;
2947                                         length = skb->len - offset;
2948
2949                                         return e1000_mng_write_dhcp_info(hw,
2950                                                         (uint8_t *)udp + 8,
2951                                                         length);
2952                                 }
2953                         }
2954                 }
2955         }
2956         return 0;
2957 }
2958
2959 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
2960 {
2961         struct e1000_adapter *adapter = netdev_priv(netdev);
2962         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
2963
2964         netif_stop_queue(netdev);
2965         /* Herbert's original patch had:
2966          *  smp_mb__after_netif_stop_queue();
2967          * but since that doesn't exist yet, just open code it. */
2968         smp_mb();
2969
2970         /* We need to check again in a case another CPU has just
2971          * made room available. */
2972         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
2973                 return -EBUSY;
2974
2975         /* A reprieve! */
2976         netif_start_queue(netdev);
2977         return 0;
2978 }
2979
2980 static int e1000_maybe_stop_tx(struct net_device *netdev,
2981                                struct e1000_tx_ring *tx_ring, int size)
2982 {
2983         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
2984                 return 0;
2985         return __e1000_maybe_stop_tx(netdev, size);
2986 }
2987
2988 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2989 static int
2990 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2991 {
2992         struct e1000_adapter *adapter = netdev_priv(netdev);
2993         struct e1000_tx_ring *tx_ring;
2994         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2995         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2996         unsigned int tx_flags = 0;
2997         unsigned int len = skb->len;
2998         unsigned long flags;
2999         unsigned int nr_frags = 0;
3000         unsigned int mss = 0;
3001         int count = 0;
3002         int tso;
3003         unsigned int f;
3004         len -= skb->data_len;
3005
3006         /* This goes back to the question of how to logically map a tx queue
3007          * to a flow.  Right now, performance is impacted slightly negatively
3008          * if using multiple tx queues.  If the stack breaks away from a
3009          * single qdisc implementation, we can look at this again. */
3010         tx_ring = adapter->tx_ring;
3011
3012         if (unlikely(skb->len <= 0)) {
3013                 dev_kfree_skb_any(skb);
3014                 return NETDEV_TX_OK;
3015         }
3016
3017         /* 82571 and newer doesn't need the workaround that limited descriptor
3018          * length to 4kB */
3019         if (adapter->hw.mac_type >= e1000_82571)
3020                 max_per_txd = 8192;
3021
3022 #ifdef NETIF_F_TSO
3023         mss = skb_shinfo(skb)->gso_size;
3024         /* The controller does a simple calculation to
3025          * make sure there is enough room in the FIFO before
3026          * initiating the DMA for each buffer.  The calc is:
3027          * 4 = ceil(buffer len/mss).  To make sure we don't
3028          * overrun the FIFO, adjust the max buffer len if mss
3029          * drops. */
3030         if (mss) {
3031                 uint8_t hdr_len;
3032                 max_per_txd = min(mss << 2, max_per_txd);
3033                 max_txd_pwr = fls(max_per_txd) - 1;
3034
3035                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3036                 * points to just header, pull a few bytes of payload from
3037                 * frags into skb->data */
3038                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
3039                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
3040                         switch (adapter->hw.mac_type) {
3041                                 unsigned int pull_size;
3042                         case e1000_82571:
3043                         case e1000_82572:
3044                         case e1000_82573:
3045                         case e1000_ich8lan:
3046                                 pull_size = min((unsigned int)4, skb->data_len);
3047                                 if (!__pskb_pull_tail(skb, pull_size)) {
3048                                         DPRINTK(DRV, ERR,
3049                                                 "__pskb_pull_tail failed.\n");
3050                                         dev_kfree_skb_any(skb);
3051                                         return NETDEV_TX_OK;
3052                                 }
3053                                 len = skb->len - skb->data_len;
3054                                 break;
3055                         default:
3056                                 /* do nothing */
3057                                 break;
3058                         }
3059                 }
3060         }
3061
3062         /* reserve a descriptor for the offload context */
3063         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3064                 count++;
3065         count++;
3066 #else
3067         if (skb->ip_summed == CHECKSUM_PARTIAL)
3068                 count++;
3069 #endif
3070
3071 #ifdef NETIF_F_TSO
3072         /* Controller Erratum workaround */
3073         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3074                 count++;
3075 #endif
3076
3077         count += TXD_USE_COUNT(len, max_txd_pwr);
3078
3079         if (adapter->pcix_82544)
3080                 count++;
3081
3082         /* work-around for errata 10 and it applies to all controllers
3083          * in PCI-X mode, so add one more descriptor to the count
3084          */
3085         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3086                         (len > 2015)))
3087                 count++;
3088
3089         nr_frags = skb_shinfo(skb)->nr_frags;
3090         for (f = 0; f < nr_frags; f++)
3091                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3092                                        max_txd_pwr);
3093         if (adapter->pcix_82544)
3094                 count += nr_frags;
3095
3096
3097         if (adapter->hw.tx_pkt_filtering &&
3098             (adapter->hw.mac_type == e1000_82573))
3099                 e1000_transfer_dhcp_info(adapter, skb);
3100
3101         local_irq_save(flags);
3102         if (!spin_trylock(&tx_ring->tx_lock)) {
3103                 /* Collision - tell upper layer to requeue */
3104                 local_irq_restore(flags);
3105                 return NETDEV_TX_LOCKED;
3106         }
3107
3108         /* need: count + 2 desc gap to keep tail from touching
3109          * head, otherwise try next time */
3110         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3111                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3112                 return NETDEV_TX_BUSY;
3113         }
3114
3115         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3116                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3117                         netif_stop_queue(netdev);
3118                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3119                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3120                         return NETDEV_TX_BUSY;
3121                 }
3122         }
3123
3124         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3125                 tx_flags |= E1000_TX_FLAGS_VLAN;
3126                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3127         }
3128
3129         first = tx_ring->next_to_use;
3130
3131         tso = e1000_tso(adapter, tx_ring, skb);
3132         if (tso < 0) {
3133                 dev_kfree_skb_any(skb);
3134                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3135                 return NETDEV_TX_OK;
3136         }
3137
3138         if (likely(tso)) {
3139                 tx_ring->last_tx_tso = 1;
3140                 tx_flags |= E1000_TX_FLAGS_TSO;
3141         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3142                 tx_flags |= E1000_TX_FLAGS_CSUM;
3143
3144         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3145          * 82571 hardware supports TSO capabilities for IPv6 as well...
3146          * no longer assume, we must. */
3147         if (likely(skb->protocol == htons(ETH_P_IP)))
3148                 tx_flags |= E1000_TX_FLAGS_IPV4;
3149
3150         e1000_tx_queue(adapter, tx_ring, tx_flags,
3151                        e1000_tx_map(adapter, tx_ring, skb, first,
3152                                     max_per_txd, nr_frags, mss));
3153
3154         netdev->trans_start = jiffies;
3155
3156         /* Make sure there is space in the ring for the next send. */
3157         e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3158
3159         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3160         return NETDEV_TX_OK;
3161 }
3162
3163 /**
3164  * e1000_tx_timeout - Respond to a Tx Hang
3165  * @netdev: network interface device structure
3166  **/
3167
3168 static void
3169 e1000_tx_timeout(struct net_device *netdev)
3170 {
3171         struct e1000_adapter *adapter = netdev_priv(netdev);
3172
3173         /* Do the reset outside of interrupt context */
3174         adapter->tx_timeout_count++;
3175         schedule_work(&adapter->reset_task);
3176 }
3177
3178 static void
3179 e1000_reset_task(struct net_device *netdev)
3180 {
3181         struct e1000_adapter *adapter = netdev_priv(netdev);
3182
3183         e1000_reinit_locked(adapter);
3184 }
3185
3186 /**
3187  * e1000_get_stats - Get System Network Statistics
3188  * @netdev: network interface device structure
3189  *
3190  * Returns the address of the device statistics structure.
3191  * The statistics are actually updated from the timer callback.
3192  **/
3193
3194 static struct net_device_stats *
3195 e1000_get_stats(struct net_device *netdev)
3196 {
3197         struct e1000_adapter *adapter = netdev_priv(netdev);
3198
3199         /* only return the current stats */
3200         return &adapter->net_stats;
3201 }
3202
3203 /**
3204  * e1000_change_mtu - Change the Maximum Transfer Unit
3205  * @netdev: network interface device structure
3206  * @new_mtu: new value for maximum frame size
3207  *
3208  * Returns 0 on success, negative on failure
3209  **/
3210
3211 static int
3212 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3213 {
3214         struct e1000_adapter *adapter = netdev_priv(netdev);
3215         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3216         uint16_t eeprom_data = 0;
3217
3218         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3219             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3220                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3221                 return -EINVAL;
3222         }
3223
3224         /* Adapter-specific max frame size limits. */
3225         switch (adapter->hw.mac_type) {
3226         case e1000_undefined ... e1000_82542_rev2_1:
3227         case e1000_ich8lan:
3228                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3229                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3230                         return -EINVAL;
3231                 }
3232                 break;
3233         case e1000_82573:
3234                 /* Jumbo Frames not supported if:
3235                  * - this is not an 82573L device
3236                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3237                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3238                                   &eeprom_data);
3239                 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3240                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3241                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3242                                 DPRINTK(PROBE, ERR,
3243                                         "Jumbo Frames not supported.\n");
3244                                 return -EINVAL;
3245                         }
3246                         break;
3247                 }
3248                 /* ERT will be enabled later to enable wire speed receives */
3249
3250                 /* fall through to get support */
3251         case e1000_82571:
3252         case e1000_82572:
3253         case e1000_80003es2lan:
3254 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3255                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3256                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3257                         return -EINVAL;
3258                 }
3259                 break;
3260         default:
3261                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3262                 break;
3263         }
3264
3265         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3266          * means we reserve 2 more, this pushes us to allocate from the next
3267          * larger slab size
3268          * i.e. RXBUFFER_2048 --> size-4096 slab */
3269
3270         if (max_frame <= E1000_RXBUFFER_256)
3271                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3272         else if (max_frame <= E1000_RXBUFFER_512)
3273                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3274         else if (max_frame <= E1000_RXBUFFER_1024)
3275                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3276         else if (max_frame <= E1000_RXBUFFER_2048)
3277                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3278         else if (max_frame <= E1000_RXBUFFER_4096)
3279                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3280         else if (max_frame <= E1000_RXBUFFER_8192)
3281                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3282         else if (max_frame <= E1000_RXBUFFER_16384)
3283                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3284
3285         /* adjust allocation if LPE protects us, and we aren't using SBP */
3286         if (!adapter->hw.tbi_compatibility_on &&
3287             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3288              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3289                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3290
3291         netdev->mtu = new_mtu;
3292
3293         if (netif_running(netdev))
3294                 e1000_reinit_locked(adapter);
3295
3296         adapter->hw.max_frame_size = max_frame;
3297
3298         return 0;
3299 }
3300
3301 /**
3302  * e1000_update_stats - Update the board statistics counters
3303  * @adapter: board private structure
3304  **/
3305
3306 void
3307 e1000_update_stats(struct e1000_adapter *adapter)
3308 {
3309         struct e1000_hw *hw = &adapter->hw;
3310         struct pci_dev *pdev = adapter->pdev;
3311         unsigned long flags;
3312         uint16_t phy_tmp;
3313
3314 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3315
3316         /*
3317          * Prevent stats update while adapter is being reset, or if the pci
3318          * connection is down.
3319          */
3320         if (adapter->link_speed == 0)
3321                 return;
3322         if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
3323                 return;
3324
3325         spin_lock_irqsave(&adapter->stats_lock, flags);
3326
3327         /* these counters are modified from e1000_adjust_tbi_stats,
3328          * called from the interrupt context, so they must only
3329          * be written while holding adapter->stats_lock
3330          */
3331
3332         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3333         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3334         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3335         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3336         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3337         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3338         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3339
3340         if (adapter->hw.mac_type != e1000_ich8lan) {
3341                 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3342                 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3343                 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3344                 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3345                 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3346                 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3347         }
3348
3349         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3350         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3351         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3352         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3353         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3354         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3355         adapter->stats.dc += E1000_READ_REG(hw, DC);
3356         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3357         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3358         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3359         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3360         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3361         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3362         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3363         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3364         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3365         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3366         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3367         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3368         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3369         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3370         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3371         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3372         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3373         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3374         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3375
3376         if (adapter->hw.mac_type != e1000_ich8lan) {
3377                 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3378                 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3379                 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3380                 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3381                 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3382                 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3383         }
3384
3385         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3386         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3387
3388         /* used for adaptive IFS */
3389
3390         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3391         adapter->stats.tpt += hw->tx_packet_delta;
3392         hw->collision_delta = E1000_READ_REG(hw, COLC);
3393         adapter->stats.colc += hw->collision_delta;
3394
3395         if (hw->mac_type >= e1000_82543) {
3396                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3397                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3398                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3399                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3400                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3401                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3402         }
3403         if (hw->mac_type > e1000_82547_rev_2) {
3404                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3405                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3406
3407                 if (adapter->hw.mac_type != e1000_ich8lan) {
3408                         adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3409                         adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3410                         adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3411                         adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3412                         adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3413                         adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3414                         adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3415                 }
3416         }
3417
3418         /* Fill out the OS statistics structure */
3419         adapter->net_stats.rx_packets = adapter->stats.gprc;
3420         adapter->net_stats.tx_packets = adapter->stats.gptc;
3421         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3422         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3423         adapter->net_stats.multicast = adapter->stats.mprc;
3424         adapter->net_stats.collisions = adapter->stats.colc;
3425
3426         /* Rx Errors */
3427
3428         /* RLEC on some newer hardware can be incorrect so build
3429         * our own version based on RUC and ROC */
3430         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3431                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3432                 adapter->stats.ruc + adapter->stats.roc +
3433                 adapter->stats.cexterr;
3434         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3435         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3436         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3437         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3438         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3439
3440         /* Tx Errors */
3441         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3442         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3443         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3444         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3445         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3446
3447         /* Tx Dropped needs to be maintained elsewhere */
3448
3449         /* Phy Stats */
3450         if (hw->media_type == e1000_media_type_copper) {
3451                 if ((adapter->link_speed == SPEED_1000) &&
3452                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3453                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3454                         adapter->phy_stats.idle_errors += phy_tmp;
3455                 }
3456
3457                 if ((hw->mac_type <= e1000_82546) &&
3458                    (hw->phy_type == e1000_phy_m88) &&
3459                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3460                         adapter->phy_stats.receive_errors += phy_tmp;
3461         }
3462
3463         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3464 }
3465
3466 /**
3467  * e1000_intr - Interrupt Handler
3468  * @irq: interrupt number
3469  * @data: pointer to a network interface device structure
3470  **/
3471
3472 static irqreturn_t
3473 e1000_intr(int irq, void *data)
3474 {
3475         struct net_device *netdev = data;
3476         struct e1000_adapter *adapter = netdev_priv(netdev);
3477         struct e1000_hw *hw = &adapter->hw;
3478         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3479 #ifndef CONFIG_E1000_NAPI
3480         int i;
3481 #else
3482         /* Interrupt Auto-Mask...upon reading ICR,
3483          * interrupts are masked.  No need for the
3484          * IMC write, but it does mean we should
3485          * account for it ASAP. */
3486         if (likely(hw->mac_type >= e1000_82571))
3487                 atomic_inc(&adapter->irq_sem);
3488 #endif
3489
3490         if (unlikely(!icr)) {
3491 #ifdef CONFIG_E1000_NAPI
3492                 if (hw->mac_type >= e1000_82571)
3493                         e1000_irq_enable(adapter);
3494 #endif
3495                 return IRQ_NONE;  /* Not our interrupt */
3496         }
3497
3498         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3499                 hw->get_link_status = 1;
3500                 /* 80003ES2LAN workaround--
3501                  * For packet buffer work-around on link down event;
3502                  * disable receives here in the ISR and
3503                  * reset adapter in watchdog
3504                  */
3505                 if (netif_carrier_ok(netdev) &&
3506                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3507                         /* disable receives */
3508                         rctl = E1000_READ_REG(hw, RCTL);
3509                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3510                 }
3511                 /* guard against interrupt when we're going down */
3512                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3513                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3514         }
3515
3516 #ifdef CONFIG_E1000_NAPI
3517         if (unlikely(hw->mac_type < e1000_82571)) {
3518                 atomic_inc(&adapter->irq_sem);
3519                 E1000_WRITE_REG(hw, IMC, ~0);
3520                 E1000_WRITE_FLUSH(hw);
3521         }
3522         if (likely(netif_rx_schedule_prep(netdev)))
3523                 __netif_rx_schedule(netdev);
3524         else
3525                 /* this really should not happen! if it does it is basically a
3526                  * bug, but not a hard error, so enable ints and continue */
3527                 e1000_irq_enable(adapter);
3528 #else
3529         /* Writing IMC and IMS is needed for 82547.
3530          * Due to Hub Link bus being occupied, an interrupt
3531          * de-assertion message is not able to be sent.
3532          * When an interrupt assertion message is generated later,
3533          * two messages are re-ordered and sent out.
3534          * That causes APIC to think 82547 is in de-assertion
3535          * state, while 82547 is in assertion state, resulting
3536          * in dead lock. Writing IMC forces 82547 into
3537          * de-assertion state.
3538          */
3539         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3540                 atomic_inc(&adapter->irq_sem);
3541                 E1000_WRITE_REG(hw, IMC, ~0);
3542         }
3543
3544         for (i = 0; i < E1000_MAX_INTR; i++)
3545                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3546                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3547                         break;
3548
3549         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3550                 e1000_irq_enable(adapter);
3551
3552 #endif
3553         return IRQ_HANDLED;
3554 }
3555
3556 #ifdef CONFIG_E1000_NAPI
3557 /**
3558  * e1000_clean - NAPI Rx polling callback
3559  * @adapter: board private structure
3560  **/
3561
3562 static int
3563 e1000_clean(struct net_device *poll_dev, int *budget)
3564 {
3565         struct e1000_adapter *adapter;
3566         int work_to_do = min(*budget, poll_dev->quota);
3567         int tx_cleaned = 0, work_done = 0;
3568
3569         /* Must NOT use netdev_priv macro here. */
3570         adapter = poll_dev->priv;
3571
3572         /* Keep link state information with original netdev */
3573         if (!netif_carrier_ok(poll_dev))
3574                 goto quit_polling;
3575
3576         /* e1000_clean is called per-cpu.  This lock protects
3577          * tx_ring[0] from being cleaned by multiple cpus
3578          * simultaneously.  A failure obtaining the lock means
3579          * tx_ring[0] is currently being cleaned anyway. */
3580         if (spin_trylock(&adapter->tx_queue_lock)) {
3581                 tx_cleaned = e1000_clean_tx_irq(adapter,
3582                                                 &adapter->tx_ring[0]);
3583                 spin_unlock(&adapter->tx_queue_lock);
3584         }
3585
3586         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3587                           &work_done, work_to_do);
3588
3589         *budget -= work_done;
3590         poll_dev->quota -= work_done;
3591
3592         /* If no Tx and not enough Rx work done, exit the polling mode */
3593         if ((!tx_cleaned && (work_done == 0)) ||
3594            !netif_running(poll_dev)) {
3595 quit_polling:
3596                 netif_rx_complete(poll_dev);
3597                 e1000_irq_enable(adapter);
3598                 return 0;
3599         }
3600
3601         return 1;
3602 }
3603
3604 #endif
3605 /**
3606  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3607  * @adapter: board private structure
3608  **/
3609
3610 static boolean_t
3611 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3612                    struct e1000_tx_ring *tx_ring)
3613 {
3614         struct net_device *netdev = adapter->netdev;
3615         struct e1000_tx_desc *tx_desc, *eop_desc;
3616         struct e1000_buffer *buffer_info;
3617         unsigned int i, eop;
3618 #ifdef CONFIG_E1000_NAPI
3619         unsigned int count = 0;
3620 #endif
3621         boolean_t cleaned = FALSE;
3622
3623         i = tx_ring->next_to_clean;
3624         eop = tx_ring->buffer_info[i].next_to_watch;
3625         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3626
3627         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3628                 for (cleaned = FALSE; !cleaned; ) {
3629                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3630                         buffer_info = &tx_ring->buffer_info[i];
3631                         cleaned = (i == eop);
3632
3633                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3634                         tx_desc->upper.data = 0;
3635
3636                         if (unlikely(++i == tx_ring->count)) i = 0;
3637                 }
3638
3639                 eop = tx_ring->buffer_info[i].next_to_watch;
3640                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3641 #ifdef CONFIG_E1000_NAPI
3642 #define E1000_TX_WEIGHT 64
3643                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3644                 if (count++ == E1000_TX_WEIGHT) break;
3645 #endif
3646         }
3647
3648         tx_ring->next_to_clean = i;
3649
3650 #define TX_WAKE_THRESHOLD 32
3651         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3652                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3653                 /* Make sure that anybody stopping the queue after this
3654                  * sees the new next_to_clean.
3655                  */
3656                 smp_mb();
3657                 if (netif_queue_stopped(netdev))
3658                         netif_wake_queue(netdev);
3659         }
3660
3661         if (adapter->detect_tx_hung) {
3662                 /* Detect a transmit hang in hardware, this serializes the
3663                  * check with the clearing of time_stamp and movement of i */
3664                 adapter->detect_tx_hung = FALSE;
3665                 if (tx_ring->buffer_info[eop].dma &&
3666                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3667                                (adapter->tx_timeout_factor * HZ))
3668                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
3669                          E1000_STATUS_TXOFF)) {
3670
3671                         /* detected Tx unit hang */
3672                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3673                                         "  Tx Queue             <%lu>\n"
3674                                         "  TDH                  <%x>\n"
3675                                         "  TDT                  <%x>\n"
3676                                         "  next_to_use          <%x>\n"
3677                                         "  next_to_clean        <%x>\n"
3678                                         "buffer_info[next_to_clean]\n"
3679                                         "  time_stamp           <%lx>\n"
3680                                         "  next_to_watch        <%x>\n"
3681                                         "  jiffies              <%lx>\n"
3682                                         "  next_to_watch.status <%x>\n",
3683                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3684                                         sizeof(struct e1000_tx_ring)),
3685                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
3686                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
3687                                 tx_ring->next_to_use,
3688                                 tx_ring->next_to_clean,
3689                                 tx_ring->buffer_info[eop].time_stamp,
3690                                 eop,
3691                                 jiffies,
3692                                 eop_desc->upper.fields.status);
3693                         netif_stop_queue(netdev);
3694                 }
3695         }
3696         return cleaned;
3697 }
3698
3699 /**
3700  * e1000_rx_checksum - Receive Checksum Offload for 82543
3701  * @adapter:     board private structure
3702  * @status_err:  receive descriptor status and error fields
3703  * @csum:        receive descriptor csum field
3704  * @sk_buff:     socket buffer with received data
3705  **/
3706
3707 static void
3708 e1000_rx_checksum(struct e1000_adapter *adapter,
3709                   uint32_t status_err, uint32_t csum,
3710                   struct sk_buff *skb)
3711 {
3712         uint16_t status = (uint16_t)status_err;
3713         uint8_t errors = (uint8_t)(status_err >> 24);
3714         skb->ip_summed = CHECKSUM_NONE;
3715
3716         /* 82543 or newer only */
3717         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3718         /* Ignore Checksum bit is set */
3719         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3720         /* TCP/UDP checksum error bit is set */
3721         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3722                 /* let the stack verify checksum errors */
3723                 adapter->hw_csum_err++;
3724                 return;
3725         }
3726         /* TCP/UDP Checksum has not been calculated */
3727         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3728                 if (!(status & E1000_RXD_STAT_TCPCS))
3729                         return;
3730         } else {
3731                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3732                         return;
3733         }
3734         /* It must be a TCP or UDP packet with a valid checksum */
3735         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3736                 /* TCP checksum is good */
3737                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3738         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3739                 /* IP fragment with UDP payload */
3740                 /* Hardware complements the payload checksum, so we undo it
3741                  * and then put the value in host order for further stack use.
3742                  */
3743                 csum = ntohl(csum ^ 0xFFFF);
3744                 skb->csum = csum;
3745                 skb->ip_summed = CHECKSUM_COMPLETE;
3746         }
3747         adapter->hw_csum_good++;
3748 }
3749
3750 /**
3751  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3752  * @adapter: board private structure
3753  **/
3754
3755 static boolean_t
3756 #ifdef CONFIG_E1000_NAPI
3757 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3758                    struct e1000_rx_ring *rx_ring,
3759                    int *work_done, int work_to_do)
3760 #else
3761 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3762                    struct e1000_rx_ring *rx_ring)
3763 #endif
3764 {
3765         struct net_device *netdev = adapter->netdev;
3766         struct pci_dev *pdev = adapter->pdev;
3767         struct e1000_rx_desc *rx_desc, *next_rxd;
3768         struct e1000_buffer *buffer_info, *next_buffer;
3769         unsigned long flags;
3770         uint32_t length;
3771         uint8_t last_byte;
3772         unsigned int i;
3773         int cleaned_count = 0;
3774         boolean_t cleaned = FALSE;
3775
3776         i = rx_ring->next_to_clean;
3777         rx_desc = E1000_RX_DESC(*rx_ring, i);
3778         buffer_info = &rx_ring->buffer_info[i];
3779
3780         while (rx_desc->status & E1000_RXD_STAT_DD) {
3781                 struct sk_buff *skb;
3782                 u8 status;
3783
3784 #ifdef CONFIG_E1000_NAPI
3785                 if (*work_done >= work_to_do)
3786                         break;
3787                 (*work_done)++;
3788 #endif
3789                 status = rx_desc->status;
3790                 skb = buffer_info->skb;
3791                 buffer_info->skb = NULL;
3792
3793                 prefetch(skb->data - NET_IP_ALIGN);
3794
3795                 if (++i == rx_ring->count) i = 0;
3796                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3797                 prefetch(next_rxd);
3798
3799                 next_buffer = &rx_ring->buffer_info[i];
3800
3801                 cleaned = TRUE;
3802                 cleaned_count++;
3803                 pci_unmap_single(pdev,
3804                                  buffer_info->dma,
3805                                  buffer_info->length,
3806                                  PCI_DMA_FROMDEVICE);
3807
3808                 length = le16_to_cpu(rx_desc->length);
3809
3810                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3811                         /* All receives must fit into a single buffer */
3812                         E1000_DBG("%s: Receive packet consumed multiple"
3813                                   " buffers\n", netdev->name);
3814                         /* recycle */
3815                         buffer_info->skb = skb;
3816                         goto next_desc;
3817                 }
3818
3819                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3820                         last_byte = *(skb->data + length - 1);
3821                         if (TBI_ACCEPT(&adapter->hw, status,
3822                                       rx_desc->errors, length, last_byte)) {
3823                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3824                                 e1000_tbi_adjust_stats(&adapter->hw,
3825                                                        &adapter->stats,
3826                                                        length, skb->data);
3827                                 spin_unlock_irqrestore(&adapter->stats_lock,
3828                                                        flags);
3829                                 length--;
3830                         } else {
3831                                 /* recycle */
3832                                 buffer_info->skb = skb;
3833                                 goto next_desc;
3834                         }
3835                 }
3836
3837                 /* adjust length to remove Ethernet CRC, this must be
3838                  * done after the TBI_ACCEPT workaround above */
3839                 length -= 4;
3840
3841                 /* code added for copybreak, this should improve
3842                  * performance for small packets with large amounts
3843                  * of reassembly being done in the stack */
3844 #define E1000_CB_LENGTH 256
3845                 if (length < E1000_CB_LENGTH) {
3846                         struct sk_buff *new_skb =
3847                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
3848                         if (new_skb) {
3849                                 skb_reserve(new_skb, NET_IP_ALIGN);
3850                                 memcpy(new_skb->data - NET_IP_ALIGN,
3851                                        skb->data - NET_IP_ALIGN,
3852                                        length + NET_IP_ALIGN);
3853                                 /* save the skb in buffer_info as good */
3854                                 buffer_info->skb = skb;
3855                                 skb = new_skb;
3856                         }
3857                         /* else just continue with the old one */
3858                 }
3859                 /* end copybreak code */
3860                 skb_put(skb, length);
3861
3862                 /* Receive Checksum Offload */
3863                 e1000_rx_checksum(adapter,
3864                                   (uint32_t)(status) |
3865                                   ((uint32_t)(rx_desc->errors) << 24),
3866                                   le16_to_cpu(rx_desc->csum), skb);
3867
3868                 skb->protocol = eth_type_trans(skb, netdev);
3869 #ifdef CONFIG_E1000_NAPI
3870                 if (unlikely(adapter->vlgrp &&
3871                             (status & E1000_RXD_STAT_VP))) {
3872                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3873                                                  le16_to_cpu(rx_desc->special) &
3874                                                  E1000_RXD_SPC_VLAN_MASK);
3875                 } else {
3876                         netif_receive_skb(skb);
3877                 }
3878 #else /* CONFIG_E1000_NAPI */
3879                 if (unlikely(adapter->vlgrp &&
3880                             (status & E1000_RXD_STAT_VP))) {
3881                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3882                                         le16_to_cpu(rx_desc->special) &
3883                                         E1000_RXD_SPC_VLAN_MASK);
3884                 } else {
3885                         netif_rx(skb);
3886                 }
3887 #endif /* CONFIG_E1000_NAPI */
3888                 netdev->last_rx = jiffies;
3889
3890 next_desc:
3891                 rx_desc->status = 0;
3892
3893                 /* return some buffers to hardware, one at a time is too slow */
3894                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3895                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3896                         cleaned_count = 0;
3897                 }
3898
3899                 /* use prefetched values */
3900                 rx_desc = next_rxd;
3901                 buffer_info = next_buffer;
3902         }
3903         rx_ring->next_to_clean = i;
3904
3905         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3906         if (cleaned_count)
3907                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3908
3909         return cleaned;
3910 }
3911
3912 /**
3913  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3914  * @adapter: board private structure
3915  **/
3916
3917 static boolean_t
3918 #ifdef CONFIG_E1000_NAPI
3919 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3920                       struct e1000_rx_ring *rx_ring,
3921                       int *work_done, int work_to_do)
3922 #else
3923 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3924                       struct e1000_rx_ring *rx_ring)
3925 #endif
3926 {
3927         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3928         struct net_device *netdev = adapter->netdev;
3929         struct pci_dev *pdev = adapter->pdev;
3930         struct e1000_buffer *buffer_info, *next_buffer;
3931         struct e1000_ps_page *ps_page;
3932         struct e1000_ps_page_dma *ps_page_dma;
3933         struct sk_buff *skb;
3934         unsigned int i, j;
3935         uint32_t length, staterr;
3936         int cleaned_count = 0;
3937         boolean_t cleaned = FALSE;
3938
3939         i = rx_ring->next_to_clean;
3940         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3941         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3942         buffer_info = &rx_ring->buffer_info[i];
3943
3944         while (staterr & E1000_RXD_STAT_DD) {
3945                 ps_page = &rx_ring->ps_page[i];
3946                 ps_page_dma = &rx_ring->ps_page_dma[i];
3947 #ifdef CONFIG_E1000_NAPI
3948                 if (unlikely(*work_done >= work_to_do))
3949                         break;
3950                 (*work_done)++;
3951 #endif
3952                 skb = buffer_info->skb;
3953
3954                 /* in the packet split case this is header only */
3955                 prefetch(skb->data - NET_IP_ALIGN);
3956
3957                 if (++i == rx_ring->count) i = 0;
3958                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3959                 prefetch(next_rxd);
3960
3961                 next_buffer = &rx_ring->buffer_info[i];
3962
3963                 cleaned = TRUE;
3964                 cleaned_count++;
3965                 pci_unmap_single(pdev, buffer_info->dma,
3966                                  buffer_info->length,
3967                                  PCI_DMA_FROMDEVICE);
3968
3969                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3970                         E1000_DBG("%s: Packet Split buffers didn't pick up"
3971                                   " the full packet\n", netdev->name);
3972                         dev_kfree_skb_irq(skb);
3973                         goto next_desc;
3974                 }
3975
3976                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3977                         dev_kfree_skb_irq(skb);
3978                         goto next_desc;
3979                 }
3980
3981                 length = le16_to_cpu(rx_desc->wb.middle.length0);
3982
3983                 if (unlikely(!length)) {
3984                         E1000_DBG("%s: Last part of the packet spanning"
3985                                   " multiple descriptors\n", netdev->name);
3986                         dev_kfree_skb_irq(skb);
3987                         goto next_desc;
3988                 }
3989
3990                 /* Good Receive */
3991                 skb_put(skb, length);
3992
3993                 {
3994                 /* this looks ugly, but it seems compiler issues make it
3995                    more efficient than reusing j */
3996                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
3997
3998                 /* page alloc/put takes too long and effects small packet
3999                  * throughput, so unsplit small packets and save the alloc/put*/
4000                 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
4001                         u8 *vaddr;
4002                         /* there is no documentation about how to call
4003                          * kmap_atomic, so we can't hold the mapping
4004                          * very long */
4005                         pci_dma_sync_single_for_cpu(pdev,
4006                                 ps_page_dma->ps_page_dma[0],
4007                                 PAGE_SIZE,
4008                                 PCI_DMA_FROMDEVICE);
4009                         vaddr = kmap_atomic(ps_page->ps_page[0],
4010                                             KM_SKB_DATA_SOFTIRQ);
4011                         memcpy(skb->tail, vaddr, l1);
4012                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
4013                         pci_dma_sync_single_for_device(pdev,
4014                                 ps_page_dma->ps_page_dma[0],
4015                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4016                         /* remove the CRC */
4017                         l1 -= 4;
4018                         skb_put(skb, l1);
4019                         goto copydone;
4020                 } /* if */
4021                 }
4022
4023                 for (j = 0; j < adapter->rx_ps_pages; j++) {
4024                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
4025                                 break;
4026                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
4027                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
4028                         ps_page_dma->ps_page_dma[j] = 0;
4029                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4030                                            length);
4031                         ps_page->ps_page[j] = NULL;
4032                         skb->len += length;
4033                         skb->data_len += length;
4034                         skb->truesize += length;
4035                 }
4036
4037                 /* strip the ethernet crc, problem is we're using pages now so
4038                  * this whole operation can get a little cpu intensive */
4039                 pskb_trim(skb, skb->len - 4);
4040
4041 copydone:
4042                 e1000_rx_checksum(adapter, staterr,
4043                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4044                 skb->protocol = eth_type_trans(skb, netdev);
4045
4046                 if (likely(rx_desc->wb.upper.header_status &
4047                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4048                         adapter->rx_hdr_split++;
4049 #ifdef CONFIG_E1000_NAPI
4050                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4051                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4052                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4053                                 E1000_RXD_SPC_VLAN_MASK);
4054                 } else {
4055                         netif_receive_skb(skb);
4056                 }
4057 #else /* CONFIG_E1000_NAPI */
4058                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4059                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4060                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4061                                 E1000_RXD_SPC_VLAN_MASK);
4062                 } else {
4063                         netif_rx(skb);
4064                 }
4065 #endif /* CONFIG_E1000_NAPI */
4066                 netdev->last_rx = jiffies;
4067
4068 next_desc:
4069                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4070                 buffer_info->skb = NULL;
4071
4072                 /* return some buffers to hardware, one at a time is too slow */
4073                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4074                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4075                         cleaned_count = 0;
4076                 }
4077
4078                 /* use prefetched values */
4079                 rx_desc = next_rxd;
4080                 buffer_info = next_buffer;
4081
4082                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4083         }
4084         rx_ring->next_to_clean = i;
4085
4086         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4087         if (cleaned_count)
4088                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4089
4090         return cleaned;
4091 }
4092
4093 /**
4094  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4095  * @adapter: address of board private structure
4096  **/
4097
4098 static void
4099 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4100                        struct e1000_rx_ring *rx_ring,
4101                        int cleaned_count)
4102 {
4103         struct net_device *netdev = adapter->netdev;
4104         struct pci_dev *pdev = adapter->pdev;
4105         struct e1000_rx_desc *rx_desc;
4106         struct e1000_buffer *buffer_info;
4107         struct sk_buff *skb;
4108         unsigned int i;
4109         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4110
4111         i = rx_ring->next_to_use;
4112         buffer_info = &rx_ring->buffer_info[i];
4113
4114         while (cleaned_count--) {
4115                 skb = buffer_info->skb;
4116                 if (skb) {
4117                         skb_trim(skb, 0);
4118                         goto map_skb;
4119                 }
4120
4121                 skb = netdev_alloc_skb(netdev, bufsz);
4122                 if (unlikely(!skb)) {
4123                         /* Better luck next round */
4124                         adapter->alloc_rx_buff_failed++;
4125                         break;
4126                 }
4127
4128                 /* Fix for errata 23, can't cross 64kB boundary */
4129                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4130                         struct sk_buff *oldskb = skb;
4131                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4132                                              "at %p\n", bufsz, skb->data);
4133                         /* Try again, without freeing the previous */
4134                         skb = netdev_alloc_skb(netdev, bufsz);
4135                         /* Failed allocation, critical failure */
4136                         if (!skb) {
4137                                 dev_kfree_skb(oldskb);
4138                                 break;
4139                         }
4140
4141                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4142                                 /* give up */
4143                                 dev_kfree_skb(skb);
4144                                 dev_kfree_skb(oldskb);
4145                                 break; /* while !buffer_info->skb */
4146                         }
4147
4148                         /* Use new allocation */
4149                         dev_kfree_skb(oldskb);
4150                 }
4151                 /* Make buffer alignment 2 beyond a 16 byte boundary
4152                  * this will result in a 16 byte aligned IP header after
4153                  * the 14 byte MAC header is removed
4154                  */
4155                 skb_reserve(skb, NET_IP_ALIGN);
4156
4157                 buffer_info->skb = skb;
4158                 buffer_info->length = adapter->rx_buffer_len;
4159 map_skb:
4160                 buffer_info->dma = pci_map_single(pdev,
4161                                                   skb->data,
4162                                                   adapter->rx_buffer_len,
4163                                                   PCI_DMA_FROMDEVICE);
4164
4165                 /* Fix for errata 23, can't cross 64kB boundary */
4166                 if (!e1000_check_64k_bound(adapter,
4167                                         (void *)(unsigned long)buffer_info->dma,
4168                                         adapter->rx_buffer_len)) {
4169                         DPRINTK(RX_ERR, ERR,
4170                                 "dma align check failed: %u bytes at %p\n",
4171                                 adapter->rx_buffer_len,
4172                                 (void *)(unsigned long)buffer_info->dma);
4173                         dev_kfree_skb(skb);
4174                         buffer_info->skb = NULL;
4175
4176                         pci_unmap_single(pdev, buffer_info->dma,
4177                                          adapter->rx_buffer_len,
4178                                          PCI_DMA_FROMDEVICE);
4179
4180                         break; /* while !buffer_info->skb */
4181                 }
4182                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4183                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4184
4185                 if (unlikely(++i == rx_ring->count))
4186                         i = 0;
4187                 buffer_info = &rx_ring->buffer_info[i];
4188         }
4189
4190         if (likely(rx_ring->next_to_use != i)) {
4191                 rx_ring->next_to_use = i;
4192                 if (unlikely(i-- == 0))
4193                         i = (rx_ring->count - 1);
4194
4195                 /* Force memory writes to complete before letting h/w
4196                  * know there are new descriptors to fetch.  (Only
4197                  * applicable for weak-ordered memory model archs,
4198                  * such as IA-64). */
4199                 wmb();
4200                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4201         }
4202 }
4203
4204 /**
4205  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4206  * @adapter: address of board private structure
4207  **/
4208
4209 static void
4210 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4211                           struct e1000_rx_ring *rx_ring,
4212                           int cleaned_count)
4213 {
4214         struct net_device *netdev = adapter->netdev;
4215         struct pci_dev *pdev = adapter->pdev;
4216         union e1000_rx_desc_packet_split *rx_desc;
4217         struct e1000_buffer *buffer_info;
4218         struct e1000_ps_page *ps_page;
4219         struct e1000_ps_page_dma *ps_page_dma;
4220         struct sk_buff *skb;
4221         unsigned int i, j;
4222
4223         i = rx_ring->next_to_use;
4224         buffer_info = &rx_ring->buffer_info[i];
4225         ps_page = &rx_ring->ps_page[i];
4226         ps_page_dma = &rx_ring->ps_page_dma[i];
4227
4228         while (cleaned_count--) {
4229                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4230
4231                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4232                         if (j < adapter->rx_ps_pages) {
4233                                 if (likely(!ps_page->ps_page[j])) {
4234                                         ps_page->ps_page[j] =
4235                                                 alloc_page(GFP_ATOMIC);
4236                                         if (unlikely(!ps_page->ps_page[j])) {
4237                                                 adapter->alloc_rx_buff_failed++;
4238                                                 goto no_buffers;
4239                                         }
4240                                         ps_page_dma->ps_page_dma[j] =
4241                                                 pci_map_page(pdev,
4242                                                             ps_page->ps_page[j],
4243                                                             0, PAGE_SIZE,
4244                                                             PCI_DMA_FROMDEVICE);
4245                                 }
4246                                 /* Refresh the desc even if buffer_addrs didn't
4247                                  * change because each write-back erases
4248                                  * this info.
4249                                  */
4250                                 rx_desc->read.buffer_addr[j+1] =
4251                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4252                         } else
4253                                 rx_desc->read.buffer_addr[j+1] = ~0;
4254                 }
4255
4256                 skb = netdev_alloc_skb(netdev,
4257                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4258
4259                 if (unlikely(!skb)) {
4260                         adapter->alloc_rx_buff_failed++;
4261                         break;
4262                 }
4263
4264                 /* Make buffer alignment 2 beyond a 16 byte boundary
4265                  * this will result in a 16 byte aligned IP header after
4266                  * the 14 byte MAC header is removed
4267                  */
4268                 skb_reserve(skb, NET_IP_ALIGN);
4269
4270                 buffer_info->skb = skb;
4271                 buffer_info->length = adapter->rx_ps_bsize0;
4272                 buffer_info->dma = pci_map_single(pdev, skb->data,
4273                                                   adapter->rx_ps_bsize0,
4274                                                   PCI_DMA_FROMDEVICE);
4275
4276                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4277
4278                 if (unlikely(++i == rx_ring->count)) i = 0;
4279                 buffer_info = &rx_ring->buffer_info[i];
4280                 ps_page = &rx_ring->ps_page[i];
4281                 ps_page_dma = &rx_ring->ps_page_dma[i];
4282         }
4283
4284 no_buffers:
4285         if (likely(rx_ring->next_to_use != i)) {
4286                 rx_ring->next_to_use = i;
4287                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4288
4289                 /* Force memory writes to complete before letting h/w
4290                  * know there are new descriptors to fetch.  (Only
4291                  * applicable for weak-ordered memory model archs,
4292                  * such as IA-64). */
4293                 wmb();
4294                 /* Hardware increments by 16 bytes, but packet split
4295                  * descriptors are 32 bytes...so we increment tail
4296                  * twice as much.
4297                  */
4298                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4299         }
4300 }
4301
4302 /**
4303  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4304  * @adapter:
4305  **/
4306
4307 static void
4308 e1000_smartspeed(struct e1000_adapter *adapter)
4309 {
4310         uint16_t phy_status;
4311         uint16_t phy_ctrl;
4312
4313         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4314            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4315                 return;
4316
4317         if (adapter->smartspeed == 0) {
4318                 /* If Master/Slave config fault is asserted twice,
4319                  * we assume back-to-back */
4320                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4321                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4322                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4323                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4324                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4325                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4326                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4327                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4328                                             phy_ctrl);
4329                         adapter->smartspeed++;
4330                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4331                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4332                                                &phy_ctrl)) {
4333                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4334                                              MII_CR_RESTART_AUTO_NEG);
4335                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4336                                                     phy_ctrl);
4337                         }
4338                 }
4339                 return;
4340         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4341                 /* If still no link, perhaps using 2/3 pair cable */
4342                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4343                 phy_ctrl |= CR_1000T_MS_ENABLE;
4344                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4345                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4346                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4347                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4348                                      MII_CR_RESTART_AUTO_NEG);
4349                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4350                 }
4351         }
4352         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4353         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4354                 adapter->smartspeed = 0;
4355 }
4356
4357 /**
4358  * e1000_ioctl -
4359  * @netdev:
4360  * @ifreq:
4361  * @cmd:
4362  **/
4363
4364 static int
4365 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4366 {
4367         switch (cmd) {
4368         case SIOCGMIIPHY:
4369         case SIOCGMIIREG:
4370         case SIOCSMIIREG:
4371                 return e1000_mii_ioctl(netdev, ifr, cmd);
4372         default:
4373                 return -EOPNOTSUPP;
4374         }
4375 }
4376
4377 /**
4378  * e1000_mii_ioctl -
4379  * @netdev:
4380  * @ifreq:
4381  * @cmd:
4382  **/
4383
4384 static int
4385 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4386 {
4387         struct e1000_adapter *adapter = netdev_priv(netdev);
4388         struct mii_ioctl_data *data = if_mii(ifr);
4389         int retval;
4390         uint16_t mii_reg;
4391         uint16_t spddplx;
4392         unsigned long flags;
4393
4394         if (adapter->hw.media_type != e1000_media_type_copper)
4395                 return -EOPNOTSUPP;
4396
4397         switch (cmd) {
4398         case SIOCGMIIPHY:
4399                 data->phy_id = adapter->hw.phy_addr;
4400                 break;
4401         case SIOCGMIIREG:
4402                 if (!capable(CAP_NET_ADMIN))
4403                         return -EPERM;
4404                 spin_lock_irqsave(&adapter->stats_lock, flags);
4405                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4406                                    &data->val_out)) {
4407                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4408                         return -EIO;
4409                 }
4410                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4411                 break;
4412         case SIOCSMIIREG:
4413                 if (!capable(CAP_NET_ADMIN))
4414                         return -EPERM;
4415                 if (data->reg_num & ~(0x1F))
4416                         return -EFAULT;
4417                 mii_reg = data->val_in;
4418                 spin_lock_irqsave(&adapter->stats_lock, flags);
4419                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4420                                         mii_reg)) {
4421                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4422                         return -EIO;
4423                 }
4424                 if (adapter->hw.media_type == e1000_media_type_copper) {
4425                         switch (data->reg_num) {
4426                         case PHY_CTRL:
4427                                 if (mii_reg & MII_CR_POWER_DOWN)
4428                                         break;
4429                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4430                                         adapter->hw.autoneg = 1;
4431                                         adapter->hw.autoneg_advertised = 0x2F;
4432                                 } else {
4433                                         if (mii_reg & 0x40)
4434                                                 spddplx = SPEED_1000;
4435                                         else if (mii_reg & 0x2000)
4436                                                 spddplx = SPEED_100;
4437                                         else
4438                                                 spddplx = SPEED_10;
4439                                         spddplx += (mii_reg & 0x100)
4440                                                    ? DUPLEX_FULL :
4441                                                    DUPLEX_HALF;
4442                                         retval = e1000_set_spd_dplx(adapter,
4443                                                                     spddplx);
4444                                         if (retval) {
4445                                                 spin_unlock_irqrestore(
4446                                                         &adapter->stats_lock,
4447                                                         flags);
4448                                                 return retval;
4449                                         }
4450                                 }
4451                                 if (netif_running(adapter->netdev))
4452                                         e1000_reinit_locked(adapter);
4453                                 else
4454                                         e1000_reset(adapter);
4455                                 break;
4456                         case M88E1000_PHY_SPEC_CTRL:
4457                         case M88E1000_EXT_PHY_SPEC_CTRL:
4458                                 if (e1000_phy_reset(&adapter->hw)) {
4459                                         spin_unlock_irqrestore(
4460                                                 &adapter->stats_lock, flags);
4461                                         return -EIO;
4462                                 }
4463                                 break;
4464                         }
4465                 } else {
4466                         switch (data->reg_num) {
4467                         case PHY_CTRL:
4468                                 if (mii_reg & MII_CR_POWER_DOWN)
4469                                         break;
4470                                 if (netif_running(adapter->netdev))
4471                                         e1000_reinit_locked(adapter);
4472                                 else
4473                                         e1000_reset(adapter);
4474                                 break;
4475                         }
4476                 }
4477                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4478                 break;
4479         default:
4480                 return -EOPNOTSUPP;
4481         }
4482         return E1000_SUCCESS;
4483 }
4484
4485 void
4486 e1000_pci_set_mwi(struct e1000_hw *hw)
4487 {
4488         struct e1000_adapter *adapter = hw->back;
4489         int ret_val = pci_set_mwi(adapter->pdev);
4490
4491         if (ret_val)
4492                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4493 }
4494
4495 void
4496 e1000_pci_clear_mwi(struct e1000_hw *hw)
4497 {
4498         struct e1000_adapter *adapter = hw->back;
4499
4500         pci_clear_mwi(adapter->pdev);
4501 }
4502
4503 void
4504 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4505 {
4506         struct e1000_adapter *adapter = hw->back;
4507
4508         pci_read_config_word(adapter->pdev, reg, value);
4509 }
4510
4511 void
4512 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4513 {
4514         struct e1000_adapter *adapter = hw->back;
4515
4516         pci_write_config_word(adapter->pdev, reg, *value);
4517 }
4518
4519 int32_t
4520 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4521 {
4522     struct e1000_adapter *adapter = hw->back;
4523     uint16_t cap_offset;
4524
4525     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4526     if (!cap_offset)
4527         return -E1000_ERR_CONFIG;
4528
4529     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4530
4531     return E1000_SUCCESS;
4532 }
4533
4534 void
4535 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4536 {
4537         outl(value, port);
4538 }
4539
4540 static void
4541 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4542 {
4543         struct e1000_adapter *adapter = netdev_priv(netdev);
4544         uint32_t ctrl, rctl;
4545
4546         e1000_irq_disable(adapter);
4547         adapter->vlgrp = grp;
4548
4549         if (grp) {
4550                 /* enable VLAN tag insert/strip */
4551                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4552                 ctrl |= E1000_CTRL_VME;
4553                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4554
4555                 if (adapter->hw.mac_type != e1000_ich8lan) {
4556                         /* enable VLAN receive filtering */
4557                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4558                         rctl |= E1000_RCTL_VFE;
4559                         rctl &= ~E1000_RCTL_CFIEN;
4560                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4561                         e1000_update_mng_vlan(adapter);
4562                 }
4563         } else {
4564                 /* disable VLAN tag insert/strip */
4565                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4566                 ctrl &= ~E1000_CTRL_VME;
4567                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4568
4569                 if (adapter->hw.mac_type != e1000_ich8lan) {
4570                         /* disable VLAN filtering */
4571                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4572                         rctl &= ~E1000_RCTL_VFE;
4573                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4574                         if (adapter->mng_vlan_id !=
4575                             (uint16_t)E1000_MNG_VLAN_NONE) {
4576                                 e1000_vlan_rx_kill_vid(netdev,
4577                                                        adapter->mng_vlan_id);
4578                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4579                         }
4580                 }
4581         }
4582
4583         e1000_irq_enable(adapter);
4584 }
4585
4586 static void
4587 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4588 {
4589         struct e1000_adapter *adapter = netdev_priv(netdev);
4590         uint32_t vfta, index;
4591
4592         if ((adapter->hw.mng_cookie.status &
4593              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4594             (vid == adapter->mng_vlan_id))
4595                 return;
4596         /* add VID to filter table */
4597         index = (vid >> 5) & 0x7F;
4598         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4599         vfta |= (1 << (vid & 0x1F));
4600         e1000_write_vfta(&adapter->hw, index, vfta);
4601 }
4602
4603 static void
4604 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4605 {
4606         struct e1000_adapter *adapter = netdev_priv(netdev);
4607         uint32_t vfta, index;
4608
4609         e1000_irq_disable(adapter);
4610
4611         if (adapter->vlgrp)
4612                 adapter->vlgrp->vlan_devices[vid] = NULL;
4613
4614         e1000_irq_enable(adapter);
4615
4616         if ((adapter->hw.mng_cookie.status &
4617              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4618             (vid == adapter->mng_vlan_id)) {
4619                 /* release control to f/w */
4620                 e1000_release_hw_control(adapter);
4621                 return;
4622         }
4623
4624         /* remove VID from filter table */
4625         index = (vid >> 5) & 0x7F;
4626         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4627         vfta &= ~(1 << (vid & 0x1F));
4628         e1000_write_vfta(&adapter->hw, index, vfta);
4629 }
4630
4631 static void
4632 e1000_restore_vlan(struct e1000_adapter *adapter)
4633 {
4634         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4635
4636         if (adapter->vlgrp) {
4637                 uint16_t vid;
4638                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4639                         if (!adapter->vlgrp->vlan_devices[vid])
4640                                 continue;
4641                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4642                 }
4643         }
4644 }
4645
4646 int
4647 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4648 {
4649         adapter->hw.autoneg = 0;
4650
4651         /* Fiber NICs only allow 1000 gbps Full duplex */
4652         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4653                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4654                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4655                 return -EINVAL;
4656         }
4657
4658         switch (spddplx) {
4659         case SPEED_10 + DUPLEX_HALF:
4660                 adapter->hw.forced_speed_duplex = e1000_10_half;
4661                 break;
4662         case SPEED_10 + DUPLEX_FULL:
4663                 adapter->hw.forced_speed_duplex = e1000_10_full;
4664                 break;
4665         case SPEED_100 + DUPLEX_HALF:
4666                 adapter->hw.forced_speed_duplex = e1000_100_half;
4667                 break;
4668         case SPEED_100 + DUPLEX_FULL:
4669                 adapter->hw.forced_speed_duplex = e1000_100_full;
4670                 break;
4671         case SPEED_1000 + DUPLEX_FULL:
4672                 adapter->hw.autoneg = 1;
4673                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4674                 break;
4675         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4676         default:
4677                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4678                 return -EINVAL;
4679         }
4680         return 0;
4681 }
4682
4683 #ifdef CONFIG_PM
4684 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4685  * bus we're on (PCI(X) vs. PCI-E)
4686  */
4687 #define PCIE_CONFIG_SPACE_LEN 256
4688 #define PCI_CONFIG_SPACE_LEN 64
4689 static int
4690 e1000_pci_save_state(struct e1000_adapter *adapter)
4691 {
4692         struct pci_dev *dev = adapter->pdev;
4693         int size;
4694         int i;
4695
4696         if (adapter->hw.mac_type >= e1000_82571)
4697                 size = PCIE_CONFIG_SPACE_LEN;
4698         else
4699                 size = PCI_CONFIG_SPACE_LEN;
4700
4701         WARN_ON(adapter->config_space != NULL);
4702
4703         adapter->config_space = kmalloc(size, GFP_KERNEL);
4704         if (!adapter->config_space) {
4705                 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4706                 return -ENOMEM;
4707         }
4708         for (i = 0; i < (size / 4); i++)
4709                 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4710         return 0;
4711 }
4712
4713 static void
4714 e1000_pci_restore_state(struct e1000_adapter *adapter)
4715 {
4716         struct pci_dev *dev = adapter->pdev;
4717         int size;
4718         int i;
4719
4720         if (adapter->config_space == NULL)
4721                 return;
4722
4723         if (adapter->hw.mac_type >= e1000_82571)
4724                 size = PCIE_CONFIG_SPACE_LEN;
4725         else
4726                 size = PCI_CONFIG_SPACE_LEN;
4727         for (i = 0; i < (size / 4); i++)
4728                 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4729         kfree(adapter->config_space);
4730         adapter->config_space = NULL;
4731         return;
4732 }
4733 #endif /* CONFIG_PM */
4734
4735 static int
4736 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4737 {
4738         struct net_device *netdev = pci_get_drvdata(pdev);
4739         struct e1000_adapter *adapter = netdev_priv(netdev);
4740         uint32_t ctrl, ctrl_ext, rctl, manc, status;
4741         uint32_t wufc = adapter->wol;
4742 #ifdef CONFIG_PM
4743         int retval = 0;
4744 #endif
4745
4746         netif_device_detach(netdev);
4747
4748         if (netif_running(netdev)) {
4749                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4750                 e1000_down(adapter);
4751         }
4752
4753 #ifdef CONFIG_PM
4754         /* Implement our own version of pci_save_state(pdev) because pci-
4755          * express adapters have 256-byte config spaces. */
4756         retval = e1000_pci_save_state(adapter);
4757         if (retval)
4758                 return retval;
4759 #endif
4760
4761         status = E1000_READ_REG(&adapter->hw, STATUS);
4762         if (status & E1000_STATUS_LU)
4763                 wufc &= ~E1000_WUFC_LNKC;
4764
4765         if (wufc) {
4766                 e1000_setup_rctl(adapter);
4767                 e1000_set_multi(netdev);
4768
4769                 /* turn on all-multi mode if wake on multicast is enabled */
4770                 if (wufc & E1000_WUFC_MC) {
4771                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4772                         rctl |= E1000_RCTL_MPE;
4773                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4774                 }
4775
4776                 if (adapter->hw.mac_type >= e1000_82540) {
4777                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4778                         /* advertise wake from D3Cold */
4779                         #define E1000_CTRL_ADVD3WUC 0x00100000
4780                         /* phy power management enable */
4781                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4782                         ctrl |= E1000_CTRL_ADVD3WUC |
4783                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4784                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4785                 }
4786
4787                 if (adapter->hw.media_type == e1000_media_type_fiber ||
4788                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
4789                         /* keep the laser running in D3 */
4790                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4791                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4792                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4793                 }
4794
4795                 /* Allow time for pending master requests to run */
4796                 e1000_disable_pciex_master(&adapter->hw);
4797
4798                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4799                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4800                 pci_enable_wake(pdev, PCI_D3hot, 1);
4801                 pci_enable_wake(pdev, PCI_D3cold, 1);
4802         } else {
4803                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4804                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4805                 pci_enable_wake(pdev, PCI_D3hot, 0);
4806                 pci_enable_wake(pdev, PCI_D3cold, 0);
4807         }
4808
4809         if (adapter->hw.mac_type >= e1000_82540 &&
4810             adapter->hw.mac_type < e1000_82571 &&
4811             adapter->hw.media_type == e1000_media_type_copper) {
4812                 manc = E1000_READ_REG(&adapter->hw, MANC);
4813                 if (manc & E1000_MANC_SMBUS_EN) {
4814                         manc |= E1000_MANC_ARP_EN;
4815                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
4816                         pci_enable_wake(pdev, PCI_D3hot, 1);
4817                         pci_enable_wake(pdev, PCI_D3cold, 1);
4818                 }
4819         }
4820
4821         if (adapter->hw.phy_type == e1000_phy_igp_3)
4822                 e1000_phy_powerdown_workaround(&adapter->hw);
4823
4824         if (netif_running(netdev))
4825                 e1000_free_irq(adapter);
4826
4827         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4828          * would have already happened in close and is redundant. */
4829         e1000_release_hw_control(adapter);
4830
4831         pci_disable_device(pdev);
4832
4833         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4834
4835         return 0;
4836 }
4837
4838 #ifdef CONFIG_PM
4839 static int
4840 e1000_resume(struct pci_dev *pdev)
4841 {
4842         struct net_device *netdev = pci_get_drvdata(pdev);
4843         struct e1000_adapter *adapter = netdev_priv(netdev);
4844         uint32_t manc, err;
4845
4846         pci_set_power_state(pdev, PCI_D0);
4847         e1000_pci_restore_state(adapter);
4848         if ((err = pci_enable_device(pdev))) {
4849                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4850                 return err;
4851         }
4852         pci_set_master(pdev);
4853
4854         pci_enable_wake(pdev, PCI_D3hot, 0);
4855         pci_enable_wake(pdev, PCI_D3cold, 0);
4856
4857         if (netif_running(netdev) && (err = e1000_request_irq(adapter)))
4858                 return err;
4859
4860         e1000_power_up_phy(adapter);
4861         e1000_reset(adapter);
4862         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4863
4864         if (netif_running(netdev))
4865                 e1000_up(adapter);
4866
4867         netif_device_attach(netdev);
4868
4869         if (adapter->hw.mac_type >= e1000_82540 &&
4870             adapter->hw.mac_type < e1000_82571 &&
4871             adapter->hw.media_type == e1000_media_type_copper) {
4872                 manc = E1000_READ_REG(&adapter->hw, MANC);
4873                 manc &= ~(E1000_MANC_ARP_EN);
4874                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4875         }
4876
4877         /* If the controller is 82573 and f/w is AMT, do not set
4878          * DRV_LOAD until the interface is up.  For all other cases,
4879          * let the f/w know that the h/w is now under the control
4880          * of the driver. */
4881         if (adapter->hw.mac_type != e1000_82573 ||
4882             !e1000_check_mng_mode(&adapter->hw))
4883                 e1000_get_hw_control(adapter);
4884
4885         return 0;
4886 }
4887 #endif
4888
4889 static void e1000_shutdown(struct pci_dev *pdev)
4890 {
4891         e1000_suspend(pdev, PMSG_SUSPEND);
4892 }
4893
4894 #ifdef CONFIG_NET_POLL_CONTROLLER
4895 /*
4896  * Polling 'interrupt' - used by things like netconsole to send skbs
4897  * without having to re-enable interrupts. It's not called while
4898  * the interrupt routine is executing.
4899  */
4900 static void
4901 e1000_netpoll(struct net_device *netdev)
4902 {
4903         struct e1000_adapter *adapter = netdev_priv(netdev);
4904
4905         disable_irq(adapter->pdev->irq);
4906         e1000_intr(adapter->pdev->irq, netdev);
4907         e1000_clean_tx_irq(adapter, adapter->tx_ring);
4908 #ifndef CONFIG_E1000_NAPI
4909         adapter->clean_rx(adapter, adapter->rx_ring);
4910 #endif
4911         enable_irq(adapter->pdev->irq);
4912 }
4913 #endif
4914
4915 /**
4916  * e1000_io_error_detected - called when PCI error is detected
4917  * @pdev: Pointer to PCI device
4918  * @state: The current pci conneection state
4919  *
4920  * This function is called after a PCI bus error affecting
4921  * this device has been detected.
4922  */
4923 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
4924 {
4925         struct net_device *netdev = pci_get_drvdata(pdev);
4926         struct e1000_adapter *adapter = netdev->priv;
4927
4928         netif_device_detach(netdev);
4929
4930         if (netif_running(netdev))
4931                 e1000_down(adapter);
4932         pci_disable_device(pdev);
4933
4934         /* Request a slot slot reset. */
4935         return PCI_ERS_RESULT_NEED_RESET;
4936 }
4937
4938 /**
4939  * e1000_io_slot_reset - called after the pci bus has been reset.
4940  * @pdev: Pointer to PCI device
4941  *
4942  * Restart the card from scratch, as if from a cold-boot. Implementation
4943  * resembles the first-half of the e1000_resume routine.
4944  */
4945 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4946 {
4947         struct net_device *netdev = pci_get_drvdata(pdev);
4948         struct e1000_adapter *adapter = netdev->priv;
4949
4950         if (pci_enable_device(pdev)) {
4951                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4952                 return PCI_ERS_RESULT_DISCONNECT;
4953         }
4954         pci_set_master(pdev);
4955
4956         pci_enable_wake(pdev, PCI_D3hot, 0);
4957         pci_enable_wake(pdev, PCI_D3cold, 0);
4958
4959         e1000_reset(adapter);
4960         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4961
4962         return PCI_ERS_RESULT_RECOVERED;
4963 }
4964
4965 /**
4966  * e1000_io_resume - called when traffic can start flowing again.
4967  * @pdev: Pointer to PCI device
4968  *
4969  * This callback is called when the error recovery driver tells us that
4970  * its OK to resume normal operation. Implementation resembles the
4971  * second-half of the e1000_resume routine.
4972  */
4973 static void e1000_io_resume(struct pci_dev *pdev)
4974 {
4975         struct net_device *netdev = pci_get_drvdata(pdev);
4976         struct e1000_adapter *adapter = netdev->priv;
4977         uint32_t manc, swsm;
4978
4979         if (netif_running(netdev)) {
4980                 if (e1000_up(adapter)) {
4981                         printk("e1000: can't bring device back up after reset\n");
4982                         return;
4983                 }
4984         }
4985
4986         netif_device_attach(netdev);
4987
4988         if (adapter->hw.mac_type >= e1000_82540 &&
4989             adapter->hw.mac_type < e1000_82571 &&
4990             adapter->hw.media_type == e1000_media_type_copper) {
4991                 manc = E1000_READ_REG(&adapter->hw, MANC);
4992                 manc &= ~(E1000_MANC_ARP_EN);
4993                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4994         }
4995
4996         switch (adapter->hw.mac_type) {
4997         case e1000_82573:
4998                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4999                 E1000_WRITE_REG(&adapter->hw, SWSM,
5000                                 swsm | E1000_SWSM_DRV_LOAD);
5001                 break;
5002         default:
5003                 break;
5004         }
5005
5006         if (netif_running(netdev))
5007                 mod_timer(&adapter->watchdog_timer, jiffies);
5008 }
5009
5010 /* e1000_main.c */