e1000: Remove spaces after casts and function names
[safe/jmp/linux-2.6] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32 #include <asm/uaccess.h>
33
34 struct e1000_stats {
35         char stat_string[ETH_GSTRING_LEN];
36         int sizeof_stat;
37         int stat_offset;
38 };
39
40 #define E1000_STAT(m) FIELD_SIZEOF(struct e1000_adapter, m), \
41                       offsetof(struct e1000_adapter, m)
42 static const struct e1000_stats e1000_gstrings_stats[] = {
43         { "rx_packets", E1000_STAT(stats.gprc) },
44         { "tx_packets", E1000_STAT(stats.gptc) },
45         { "rx_bytes", E1000_STAT(stats.gorcl) },
46         { "tx_bytes", E1000_STAT(stats.gotcl) },
47         { "rx_broadcast", E1000_STAT(stats.bprc) },
48         { "tx_broadcast", E1000_STAT(stats.bptc) },
49         { "rx_multicast", E1000_STAT(stats.mprc) },
50         { "tx_multicast", E1000_STAT(stats.mptc) },
51         { "rx_errors", E1000_STAT(stats.rxerrc) },
52         { "tx_errors", E1000_STAT(stats.txerrc) },
53         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
54         { "multicast", E1000_STAT(stats.mprc) },
55         { "collisions", E1000_STAT(stats.colc) },
56         { "rx_length_errors", E1000_STAT(stats.rlerrc) },
57         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
58         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
59         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
60         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
61         { "rx_missed_errors", E1000_STAT(stats.mpc) },
62         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
63         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
64         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
65         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
66         { "tx_window_errors", E1000_STAT(stats.latecol) },
67         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
68         { "tx_deferred_ok", E1000_STAT(stats.dc) },
69         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
70         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
71         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
72         { "tx_restart_queue", E1000_STAT(restart_queue) },
73         { "rx_long_length_errors", E1000_STAT(stats.roc) },
74         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
75         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
76         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
77         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
78         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
79         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
80         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
81         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
82         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
83         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
84         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
85         { "rx_header_split", E1000_STAT(rx_hdr_split) },
86         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
87         { "tx_smbus", E1000_STAT(stats.mgptc) },
88         { "rx_smbus", E1000_STAT(stats.mgprc) },
89         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
90 };
91
92 #define E1000_QUEUE_STATS_LEN 0
93 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
94 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
95 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
96         "Register test  (offline)", "Eeprom test    (offline)",
97         "Interrupt test (offline)", "Loopback test  (offline)",
98         "Link test   (on/offline)"
99 };
100 #define E1000_TEST_LEN  ARRAY_SIZE(e1000_gstrings_test)
101
102 static int e1000_get_settings(struct net_device *netdev,
103                               struct ethtool_cmd *ecmd)
104 {
105         struct e1000_adapter *adapter = netdev_priv(netdev);
106         struct e1000_hw *hw = &adapter->hw;
107
108         if (hw->media_type == e1000_media_type_copper) {
109
110                 ecmd->supported = (SUPPORTED_10baseT_Half |
111                                    SUPPORTED_10baseT_Full |
112                                    SUPPORTED_100baseT_Half |
113                                    SUPPORTED_100baseT_Full |
114                                    SUPPORTED_1000baseT_Full|
115                                    SUPPORTED_Autoneg |
116                                    SUPPORTED_TP);
117                 if (hw->phy_type == e1000_phy_ife)
118                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
119                 ecmd->advertising = ADVERTISED_TP;
120
121                 if (hw->autoneg == 1) {
122                         ecmd->advertising |= ADVERTISED_Autoneg;
123                         /* the e1000 autoneg seems to match ethtool nicely */
124                         ecmd->advertising |= hw->autoneg_advertised;
125                 }
126
127                 ecmd->port = PORT_TP;
128                 ecmd->phy_address = hw->phy_addr;
129
130                 if (hw->mac_type == e1000_82543)
131                         ecmd->transceiver = XCVR_EXTERNAL;
132                 else
133                         ecmd->transceiver = XCVR_INTERNAL;
134
135         } else {
136                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
137                                      SUPPORTED_FIBRE |
138                                      SUPPORTED_Autoneg);
139
140                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
141                                      ADVERTISED_FIBRE |
142                                      ADVERTISED_Autoneg);
143
144                 ecmd->port = PORT_FIBRE;
145
146                 if (hw->mac_type >= e1000_82545)
147                         ecmd->transceiver = XCVR_INTERNAL;
148                 else
149                         ecmd->transceiver = XCVR_EXTERNAL;
150         }
151
152         if (er32(STATUS) & E1000_STATUS_LU) {
153
154                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
155                                                    &adapter->link_duplex);
156                 ecmd->speed = adapter->link_speed;
157
158                 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
159                  *          and HALF_DUPLEX != DUPLEX_HALF */
160
161                 if (adapter->link_duplex == FULL_DUPLEX)
162                         ecmd->duplex = DUPLEX_FULL;
163                 else
164                         ecmd->duplex = DUPLEX_HALF;
165         } else {
166                 ecmd->speed = -1;
167                 ecmd->duplex = -1;
168         }
169
170         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
171                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
172         return 0;
173 }
174
175 static int e1000_set_settings(struct net_device *netdev,
176                               struct ethtool_cmd *ecmd)
177 {
178         struct e1000_adapter *adapter = netdev_priv(netdev);
179         struct e1000_hw *hw = &adapter->hw;
180
181         /* When SoL/IDER sessions are active, autoneg/speed/duplex
182          * cannot be changed */
183         if (e1000_check_phy_reset_block(hw)) {
184                 DPRINTK(DRV, ERR, "Cannot change link characteristics "
185                         "when SoL/IDER is active.\n");
186                 return -EINVAL;
187         }
188
189         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
190                 msleep(1);
191
192         if (ecmd->autoneg == AUTONEG_ENABLE) {
193                 hw->autoneg = 1;
194                 if (hw->media_type == e1000_media_type_fiber)
195                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
196                                      ADVERTISED_FIBRE |
197                                      ADVERTISED_Autoneg;
198                 else
199                         hw->autoneg_advertised = ecmd->advertising |
200                                                  ADVERTISED_TP |
201                                                  ADVERTISED_Autoneg;
202                 ecmd->advertising = hw->autoneg_advertised;
203         } else
204                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
205                         clear_bit(__E1000_RESETTING, &adapter->flags);
206                         return -EINVAL;
207                 }
208
209         /* reset the link */
210
211         if (netif_running(adapter->netdev)) {
212                 e1000_down(adapter);
213                 e1000_up(adapter);
214         } else
215                 e1000_reset(adapter);
216
217         clear_bit(__E1000_RESETTING, &adapter->flags);
218         return 0;
219 }
220
221 static void e1000_get_pauseparam(struct net_device *netdev,
222                                  struct ethtool_pauseparam *pause)
223 {
224         struct e1000_adapter *adapter = netdev_priv(netdev);
225         struct e1000_hw *hw = &adapter->hw;
226
227         pause->autoneg =
228                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
229
230         if (hw->fc == E1000_FC_RX_PAUSE)
231                 pause->rx_pause = 1;
232         else if (hw->fc == E1000_FC_TX_PAUSE)
233                 pause->tx_pause = 1;
234         else if (hw->fc == E1000_FC_FULL) {
235                 pause->rx_pause = 1;
236                 pause->tx_pause = 1;
237         }
238 }
239
240 static int e1000_set_pauseparam(struct net_device *netdev,
241                                 struct ethtool_pauseparam *pause)
242 {
243         struct e1000_adapter *adapter = netdev_priv(netdev);
244         struct e1000_hw *hw = &adapter->hw;
245         int retval = 0;
246
247         adapter->fc_autoneg = pause->autoneg;
248
249         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
250                 msleep(1);
251
252         if (pause->rx_pause && pause->tx_pause)
253                 hw->fc = E1000_FC_FULL;
254         else if (pause->rx_pause && !pause->tx_pause)
255                 hw->fc = E1000_FC_RX_PAUSE;
256         else if (!pause->rx_pause && pause->tx_pause)
257                 hw->fc = E1000_FC_TX_PAUSE;
258         else if (!pause->rx_pause && !pause->tx_pause)
259                 hw->fc = E1000_FC_NONE;
260
261         hw->original_fc = hw->fc;
262
263         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
264                 if (netif_running(adapter->netdev)) {
265                         e1000_down(adapter);
266                         e1000_up(adapter);
267                 } else
268                         e1000_reset(adapter);
269         } else
270                 retval = ((hw->media_type == e1000_media_type_fiber) ?
271                           e1000_setup_link(hw) : e1000_force_mac_fc(hw));
272
273         clear_bit(__E1000_RESETTING, &adapter->flags);
274         return retval;
275 }
276
277 static u32 e1000_get_rx_csum(struct net_device *netdev)
278 {
279         struct e1000_adapter *adapter = netdev_priv(netdev);
280         return adapter->rx_csum;
281 }
282
283 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
284 {
285         struct e1000_adapter *adapter = netdev_priv(netdev);
286         adapter->rx_csum = data;
287
288         if (netif_running(netdev))
289                 e1000_reinit_locked(adapter);
290         else
291                 e1000_reset(adapter);
292         return 0;
293 }
294
295 static u32 e1000_get_tx_csum(struct net_device *netdev)
296 {
297         return (netdev->features & NETIF_F_HW_CSUM) != 0;
298 }
299
300 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
301 {
302         struct e1000_adapter *adapter = netdev_priv(netdev);
303         struct e1000_hw *hw = &adapter->hw;
304
305         if (hw->mac_type < e1000_82543) {
306                 if (!data)
307                         return -EINVAL;
308                 return 0;
309         }
310
311         if (data)
312                 netdev->features |= NETIF_F_HW_CSUM;
313         else
314                 netdev->features &= ~NETIF_F_HW_CSUM;
315
316         return 0;
317 }
318
319 static int e1000_set_tso(struct net_device *netdev, u32 data)
320 {
321         struct e1000_adapter *adapter = netdev_priv(netdev);
322         struct e1000_hw *hw = &adapter->hw;
323
324         if ((hw->mac_type < e1000_82544) ||
325             (hw->mac_type == e1000_82547))
326                 return data ? -EINVAL : 0;
327
328         if (data)
329                 netdev->features |= NETIF_F_TSO;
330         else
331                 netdev->features &= ~NETIF_F_TSO;
332
333         if (data && (adapter->hw.mac_type > e1000_82547_rev_2))
334                 netdev->features |= NETIF_F_TSO6;
335         else
336                 netdev->features &= ~NETIF_F_TSO6;
337
338         DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
339         adapter->tso_force = true;
340         return 0;
341 }
342
343 static u32 e1000_get_msglevel(struct net_device *netdev)
344 {
345         struct e1000_adapter *adapter = netdev_priv(netdev);
346         return adapter->msg_enable;
347 }
348
349 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
350 {
351         struct e1000_adapter *adapter = netdev_priv(netdev);
352         adapter->msg_enable = data;
353 }
354
355 static int e1000_get_regs_len(struct net_device *netdev)
356 {
357 #define E1000_REGS_LEN 32
358         return E1000_REGS_LEN * sizeof(u32);
359 }
360
361 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
362                            void *p)
363 {
364         struct e1000_adapter *adapter = netdev_priv(netdev);
365         struct e1000_hw *hw = &adapter->hw;
366         u32 *regs_buff = p;
367         u16 phy_data;
368
369         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
370
371         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
372
373         regs_buff[0]  = er32(CTRL);
374         regs_buff[1]  = er32(STATUS);
375
376         regs_buff[2]  = er32(RCTL);
377         regs_buff[3]  = er32(RDLEN);
378         regs_buff[4]  = er32(RDH);
379         regs_buff[5]  = er32(RDT);
380         regs_buff[6]  = er32(RDTR);
381
382         regs_buff[7]  = er32(TCTL);
383         regs_buff[8]  = er32(TDLEN);
384         regs_buff[9]  = er32(TDH);
385         regs_buff[10] = er32(TDT);
386         regs_buff[11] = er32(TIDV);
387
388         regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
389         if (hw->phy_type == e1000_phy_igp) {
390                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
391                                     IGP01E1000_PHY_AGC_A);
392                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
393                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
394                 regs_buff[13] = (u32)phy_data; /* cable length */
395                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
396                                     IGP01E1000_PHY_AGC_B);
397                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
398                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
399                 regs_buff[14] = (u32)phy_data; /* cable length */
400                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
401                                     IGP01E1000_PHY_AGC_C);
402                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
403                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
404                 regs_buff[15] = (u32)phy_data; /* cable length */
405                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
406                                     IGP01E1000_PHY_AGC_D);
407                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
408                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
409                 regs_buff[16] = (u32)phy_data; /* cable length */
410                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
411                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
412                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
413                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
414                 regs_buff[18] = (u32)phy_data; /* cable polarity */
415                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
416                                     IGP01E1000_PHY_PCS_INIT_REG);
417                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
418                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
419                 regs_buff[19] = (u32)phy_data; /* cable polarity */
420                 regs_buff[20] = 0; /* polarity correction enabled (always) */
421                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
422                 regs_buff[23] = regs_buff[18]; /* mdix mode */
423                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
424         } else {
425                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
426                 regs_buff[13] = (u32)phy_data; /* cable length */
427                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
428                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
429                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
430                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
431                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
432                 regs_buff[18] = regs_buff[13]; /* cable polarity */
433                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
434                 regs_buff[20] = regs_buff[17]; /* polarity correction */
435                 /* phy receive errors */
436                 regs_buff[22] = adapter->phy_stats.receive_errors;
437                 regs_buff[23] = regs_buff[13]; /* mdix mode */
438         }
439         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
440         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
441         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
442         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
443         if (hw->mac_type >= e1000_82540 &&
444             hw->mac_type < e1000_82571 &&
445             hw->media_type == e1000_media_type_copper) {
446                 regs_buff[26] = er32(MANC);
447         }
448 }
449
450 static int e1000_get_eeprom_len(struct net_device *netdev)
451 {
452         struct e1000_adapter *adapter = netdev_priv(netdev);
453         struct e1000_hw *hw = &adapter->hw;
454
455         return hw->eeprom.word_size * 2;
456 }
457
458 static int e1000_get_eeprom(struct net_device *netdev,
459                             struct ethtool_eeprom *eeprom, u8 *bytes)
460 {
461         struct e1000_adapter *adapter = netdev_priv(netdev);
462         struct e1000_hw *hw = &adapter->hw;
463         u16 *eeprom_buff;
464         int first_word, last_word;
465         int ret_val = 0;
466         u16 i;
467
468         if (eeprom->len == 0)
469                 return -EINVAL;
470
471         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
472
473         first_word = eeprom->offset >> 1;
474         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
475
476         eeprom_buff = kmalloc(sizeof(u16) *
477                         (last_word - first_word + 1), GFP_KERNEL);
478         if (!eeprom_buff)
479                 return -ENOMEM;
480
481         if (hw->eeprom.type == e1000_eeprom_spi)
482                 ret_val = e1000_read_eeprom(hw, first_word,
483                                             last_word - first_word + 1,
484                                             eeprom_buff);
485         else {
486                 for (i = 0; i < last_word - first_word + 1; i++)
487                         if ((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
488                                                         &eeprom_buff[i])))
489                                 break;
490         }
491
492         /* Device's eeprom is always little-endian, word addressable */
493         for (i = 0; i < last_word - first_word + 1; i++)
494                 le16_to_cpus(&eeprom_buff[i]);
495
496         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
497                         eeprom->len);
498         kfree(eeprom_buff);
499
500         return ret_val;
501 }
502
503 static int e1000_set_eeprom(struct net_device *netdev,
504                             struct ethtool_eeprom *eeprom, u8 *bytes)
505 {
506         struct e1000_adapter *adapter = netdev_priv(netdev);
507         struct e1000_hw *hw = &adapter->hw;
508         u16 *eeprom_buff;
509         void *ptr;
510         int max_len, first_word, last_word, ret_val = 0;
511         u16 i;
512
513         if (eeprom->len == 0)
514                 return -EOPNOTSUPP;
515
516         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
517                 return -EFAULT;
518
519         max_len = hw->eeprom.word_size * 2;
520
521         first_word = eeprom->offset >> 1;
522         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
523         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
524         if (!eeprom_buff)
525                 return -ENOMEM;
526
527         ptr = (void *)eeprom_buff;
528
529         if (eeprom->offset & 1) {
530                 /* need read/modify/write of first changed EEPROM word */
531                 /* only the second byte of the word is being modified */
532                 ret_val = e1000_read_eeprom(hw, first_word, 1,
533                                             &eeprom_buff[0]);
534                 ptr++;
535         }
536         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
537                 /* need read/modify/write of last changed EEPROM word */
538                 /* only the first byte of the word is being modified */
539                 ret_val = e1000_read_eeprom(hw, last_word, 1,
540                                   &eeprom_buff[last_word - first_word]);
541         }
542
543         /* Device's eeprom is always little-endian, word addressable */
544         for (i = 0; i < last_word - first_word + 1; i++)
545                 le16_to_cpus(&eeprom_buff[i]);
546
547         memcpy(ptr, bytes, eeprom->len);
548
549         for (i = 0; i < last_word - first_word + 1; i++)
550                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
551
552         ret_val = e1000_write_eeprom(hw, first_word,
553                                      last_word - first_word + 1, eeprom_buff);
554
555         /* Update the checksum over the first part of the EEPROM if needed
556          * and flush shadow RAM for 82573 conrollers */
557         if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
558                                 (hw->mac_type == e1000_82573)))
559                 e1000_update_eeprom_checksum(hw);
560
561         kfree(eeprom_buff);
562         return ret_val;
563 }
564
565 static void e1000_get_drvinfo(struct net_device *netdev,
566                               struct ethtool_drvinfo *drvinfo)
567 {
568         struct e1000_adapter *adapter = netdev_priv(netdev);
569         struct e1000_hw *hw = &adapter->hw;
570         char firmware_version[32];
571         u16 eeprom_data;
572
573         strncpy(drvinfo->driver,  e1000_driver_name, 32);
574         strncpy(drvinfo->version, e1000_driver_version, 32);
575
576         /* EEPROM image version # is reported as firmware version # for
577          * 8257{1|2|3} controllers */
578         e1000_read_eeprom(hw, 5, 1, &eeprom_data);
579         switch (hw->mac_type) {
580         case e1000_82571:
581         case e1000_82572:
582         case e1000_82573:
583         case e1000_80003es2lan:
584         case e1000_ich8lan:
585                 sprintf(firmware_version, "%d.%d-%d",
586                         (eeprom_data & 0xF000) >> 12,
587                         (eeprom_data & 0x0FF0) >> 4,
588                         eeprom_data & 0x000F);
589                 break;
590         default:
591                 sprintf(firmware_version, "N/A");
592         }
593
594         strncpy(drvinfo->fw_version, firmware_version, 32);
595         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
596         drvinfo->regdump_len = e1000_get_regs_len(netdev);
597         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
598 }
599
600 static void e1000_get_ringparam(struct net_device *netdev,
601                                 struct ethtool_ringparam *ring)
602 {
603         struct e1000_adapter *adapter = netdev_priv(netdev);
604         struct e1000_hw *hw = &adapter->hw;
605         e1000_mac_type mac_type = hw->mac_type;
606         struct e1000_tx_ring *txdr = adapter->tx_ring;
607         struct e1000_rx_ring *rxdr = adapter->rx_ring;
608
609         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
610                 E1000_MAX_82544_RXD;
611         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
612                 E1000_MAX_82544_TXD;
613         ring->rx_mini_max_pending = 0;
614         ring->rx_jumbo_max_pending = 0;
615         ring->rx_pending = rxdr->count;
616         ring->tx_pending = txdr->count;
617         ring->rx_mini_pending = 0;
618         ring->rx_jumbo_pending = 0;
619 }
620
621 static int e1000_set_ringparam(struct net_device *netdev,
622                                struct ethtool_ringparam *ring)
623 {
624         struct e1000_adapter *adapter = netdev_priv(netdev);
625         struct e1000_hw *hw = &adapter->hw;
626         e1000_mac_type mac_type = hw->mac_type;
627         struct e1000_tx_ring *txdr, *tx_old;
628         struct e1000_rx_ring *rxdr, *rx_old;
629         int i, err;
630
631         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
632                 return -EINVAL;
633
634         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
635                 msleep(1);
636
637         if (netif_running(adapter->netdev))
638                 e1000_down(adapter);
639
640         tx_old = adapter->tx_ring;
641         rx_old = adapter->rx_ring;
642
643         err = -ENOMEM;
644         txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
645         if (!txdr)
646                 goto err_alloc_tx;
647
648         rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
649         if (!rxdr)
650                 goto err_alloc_rx;
651
652         adapter->tx_ring = txdr;
653         adapter->rx_ring = rxdr;
654
655         rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
656         rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
657                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
658         rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
659
660         txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
661         txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
662                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
663         txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
664
665         for (i = 0; i < adapter->num_tx_queues; i++)
666                 txdr[i].count = txdr->count;
667         for (i = 0; i < adapter->num_rx_queues; i++)
668                 rxdr[i].count = rxdr->count;
669
670         if (netif_running(adapter->netdev)) {
671                 /* Try to get new resources before deleting old */
672                 if ((err = e1000_setup_all_rx_resources(adapter)))
673                         goto err_setup_rx;
674                 if ((err = e1000_setup_all_tx_resources(adapter)))
675                         goto err_setup_tx;
676
677                 /* save the new, restore the old in order to free it,
678                  * then restore the new back again */
679
680                 adapter->rx_ring = rx_old;
681                 adapter->tx_ring = tx_old;
682                 e1000_free_all_rx_resources(adapter);
683                 e1000_free_all_tx_resources(adapter);
684                 kfree(tx_old);
685                 kfree(rx_old);
686                 adapter->rx_ring = rxdr;
687                 adapter->tx_ring = txdr;
688                 if ((err = e1000_up(adapter)))
689                         goto err_setup;
690         }
691
692         clear_bit(__E1000_RESETTING, &adapter->flags);
693         return 0;
694 err_setup_tx:
695         e1000_free_all_rx_resources(adapter);
696 err_setup_rx:
697         adapter->rx_ring = rx_old;
698         adapter->tx_ring = tx_old;
699         kfree(rxdr);
700 err_alloc_rx:
701         kfree(txdr);
702 err_alloc_tx:
703         e1000_up(adapter);
704 err_setup:
705         clear_bit(__E1000_RESETTING, &adapter->flags);
706         return err;
707 }
708
709 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
710                              u32 mask, u32 write)
711 {
712         struct e1000_hw *hw = &adapter->hw;
713         static const u32 test[] =
714                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
715         u8 __iomem *address = hw->hw_addr + reg;
716         u32 read;
717         int i;
718
719         for (i = 0; i < ARRAY_SIZE(test); i++) {
720                 writel(write & test[i], address);
721                 read = readl(address);
722                 if (read != (write & test[i] & mask)) {
723                         DPRINTK(DRV, ERR, "pattern test reg %04X failed: "
724                                 "got 0x%08X expected 0x%08X\n",
725                                 reg, read, (write & test[i] & mask));
726                         *data = reg;
727                         return true;
728                 }
729         }
730         return false;
731 }
732
733 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
734                               u32 mask, u32 write)
735 {
736         struct e1000_hw *hw = &adapter->hw;
737         u8 __iomem *address = hw->hw_addr + reg;
738         u32 read;
739
740         writel(write & mask, address);
741         read = readl(address);
742         if ((read & mask) != (write & mask)) {
743                 DPRINTK(DRV, ERR, "set/check reg %04X test failed: "
744                         "got 0x%08X expected 0x%08X\n",
745                         reg, (read & mask), (write & mask));
746                 *data = reg;
747                 return true;
748         }
749         return false;
750 }
751
752 #define REG_PATTERN_TEST(reg, mask, write)                           \
753         do {                                                         \
754                 if (reg_pattern_test(adapter, data,                  \
755                              (hw->mac_type >= e1000_82543)   \
756                              ? E1000_##reg : E1000_82542_##reg,      \
757                              mask, write))                           \
758                         return 1;                                    \
759         } while (0)
760
761 #define REG_SET_AND_CHECK(reg, mask, write)                          \
762         do {                                                         \
763                 if (reg_set_and_check(adapter, data,                 \
764                               (hw->mac_type >= e1000_82543)  \
765                               ? E1000_##reg : E1000_82542_##reg,     \
766                               mask, write))                          \
767                         return 1;                                    \
768         } while (0)
769
770 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
771 {
772         u32 value, before, after;
773         u32 i, toggle;
774         struct e1000_hw *hw = &adapter->hw;
775
776         /* The status register is Read Only, so a write should fail.
777          * Some bits that get toggled are ignored.
778          */
779         switch (hw->mac_type) {
780         /* there are several bits on newer hardware that are r/w */
781         case e1000_82571:
782         case e1000_82572:
783         case e1000_80003es2lan:
784                 toggle = 0x7FFFF3FF;
785                 break;
786         case e1000_82573:
787         case e1000_ich8lan:
788                 toggle = 0x7FFFF033;
789                 break;
790         default:
791                 toggle = 0xFFFFF833;
792                 break;
793         }
794
795         before = er32(STATUS);
796         value = (er32(STATUS) & toggle);
797         ew32(STATUS, toggle);
798         after = er32(STATUS) & toggle;
799         if (value != after) {
800                 DPRINTK(DRV, ERR, "failed STATUS register test got: "
801                         "0x%08X expected: 0x%08X\n", after, value);
802                 *data = 1;
803                 return 1;
804         }
805         /* restore previous status */
806         ew32(STATUS, before);
807
808         if (hw->mac_type != e1000_ich8lan) {
809                 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
810                 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
811                 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
812                 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
813         }
814
815         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
816         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
817         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
818         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
819         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
820         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
821         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
822         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
823         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
824         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
825
826         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
827
828         before = (hw->mac_type == e1000_ich8lan ?
829                   0x06C3B33E : 0x06DFB3FE);
830         REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
831         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
832
833         if (hw->mac_type >= e1000_82543) {
834
835                 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
836                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
837                 if (hw->mac_type != e1000_ich8lan)
838                         REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
839                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
840                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
841                 value = (hw->mac_type == e1000_ich8lan ?
842                          E1000_RAR_ENTRIES_ICH8LAN : E1000_RAR_ENTRIES);
843                 for (i = 0; i < value; i++) {
844                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
845                                          0xFFFFFFFF);
846                 }
847
848         } else {
849
850                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
851                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
852                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
853                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
854
855         }
856
857         value = (hw->mac_type == e1000_ich8lan ?
858                         E1000_MC_TBL_SIZE_ICH8LAN : E1000_MC_TBL_SIZE);
859         for (i = 0; i < value; i++)
860                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
861
862         *data = 0;
863         return 0;
864 }
865
866 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
867 {
868         struct e1000_hw *hw = &adapter->hw;
869         u16 temp;
870         u16 checksum = 0;
871         u16 i;
872
873         *data = 0;
874         /* Read and add up the contents of the EEPROM */
875         for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
876                 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
877                         *data = 1;
878                         break;
879                 }
880                 checksum += temp;
881         }
882
883         /* If Checksum is not Correct return error else test passed */
884         if ((checksum != (u16)EEPROM_SUM) && !(*data))
885                 *data = 2;
886
887         return *data;
888 }
889
890 static irqreturn_t e1000_test_intr(int irq, void *data)
891 {
892         struct net_device *netdev = (struct net_device *)data;
893         struct e1000_adapter *adapter = netdev_priv(netdev);
894         struct e1000_hw *hw = &adapter->hw;
895
896         adapter->test_icr |= er32(ICR);
897
898         return IRQ_HANDLED;
899 }
900
901 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
902 {
903         struct net_device *netdev = adapter->netdev;
904         u32 mask, i = 0;
905         bool shared_int = true;
906         u32 irq = adapter->pdev->irq;
907         struct e1000_hw *hw = &adapter->hw;
908
909         *data = 0;
910
911         /* NOTE: we don't test MSI interrupts here, yet */
912         /* Hook up test interrupt handler just for this test */
913         if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
914                          netdev))
915                 shared_int = false;
916         else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
917                  netdev->name, netdev)) {
918                 *data = 1;
919                 return -1;
920         }
921         DPRINTK(HW, INFO, "testing %s interrupt\n",
922                 (shared_int ? "shared" : "unshared"));
923
924         /* Disable all the interrupts */
925         ew32(IMC, 0xFFFFFFFF);
926         msleep(10);
927
928         /* Test each interrupt */
929         for (; i < 10; i++) {
930
931                 if (hw->mac_type == e1000_ich8lan && i == 8)
932                         continue;
933
934                 /* Interrupt to test */
935                 mask = 1 << i;
936
937                 if (!shared_int) {
938                         /* Disable the interrupt to be reported in
939                          * the cause register and then force the same
940                          * interrupt and see if one gets posted.  If
941                          * an interrupt was posted to the bus, the
942                          * test failed.
943                          */
944                         adapter->test_icr = 0;
945                         ew32(IMC, mask);
946                         ew32(ICS, mask);
947                         msleep(10);
948
949                         if (adapter->test_icr & mask) {
950                                 *data = 3;
951                                 break;
952                         }
953                 }
954
955                 /* Enable the interrupt to be reported in
956                  * the cause register and then force the same
957                  * interrupt and see if one gets posted.  If
958                  * an interrupt was not posted to the bus, the
959                  * test failed.
960                  */
961                 adapter->test_icr = 0;
962                 ew32(IMS, mask);
963                 ew32(ICS, mask);
964                 msleep(10);
965
966                 if (!(adapter->test_icr & mask)) {
967                         *data = 4;
968                         break;
969                 }
970
971                 if (!shared_int) {
972                         /* Disable the other interrupts to be reported in
973                          * the cause register and then force the other
974                          * interrupts and see if any get posted.  If
975                          * an interrupt was posted to the bus, the
976                          * test failed.
977                          */
978                         adapter->test_icr = 0;
979                         ew32(IMC, ~mask & 0x00007FFF);
980                         ew32(ICS, ~mask & 0x00007FFF);
981                         msleep(10);
982
983                         if (adapter->test_icr) {
984                                 *data = 5;
985                                 break;
986                         }
987                 }
988         }
989
990         /* Disable all the interrupts */
991         ew32(IMC, 0xFFFFFFFF);
992         msleep(10);
993
994         /* Unhook test interrupt handler */
995         free_irq(irq, netdev);
996
997         return *data;
998 }
999
1000 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1001 {
1002         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1003         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1004         struct pci_dev *pdev = adapter->pdev;
1005         int i;
1006
1007         if (txdr->desc && txdr->buffer_info) {
1008                 for (i = 0; i < txdr->count; i++) {
1009                         if (txdr->buffer_info[i].dma)
1010                                 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
1011                                                  txdr->buffer_info[i].length,
1012                                                  PCI_DMA_TODEVICE);
1013                         if (txdr->buffer_info[i].skb)
1014                                 dev_kfree_skb(txdr->buffer_info[i].skb);
1015                 }
1016         }
1017
1018         if (rxdr->desc && rxdr->buffer_info) {
1019                 for (i = 0; i < rxdr->count; i++) {
1020                         if (rxdr->buffer_info[i].dma)
1021                                 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
1022                                                  rxdr->buffer_info[i].length,
1023                                                  PCI_DMA_FROMDEVICE);
1024                         if (rxdr->buffer_info[i].skb)
1025                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
1026                 }
1027         }
1028
1029         if (txdr->desc) {
1030                 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
1031                 txdr->desc = NULL;
1032         }
1033         if (rxdr->desc) {
1034                 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
1035                 rxdr->desc = NULL;
1036         }
1037
1038         kfree(txdr->buffer_info);
1039         txdr->buffer_info = NULL;
1040         kfree(rxdr->buffer_info);
1041         rxdr->buffer_info = NULL;
1042
1043         return;
1044 }
1045
1046 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1047 {
1048         struct e1000_hw *hw = &adapter->hw;
1049         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1050         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1051         struct pci_dev *pdev = adapter->pdev;
1052         u32 rctl;
1053         int i, ret_val;
1054
1055         /* Setup Tx descriptor ring and Tx buffers */
1056
1057         if (!txdr->count)
1058                 txdr->count = E1000_DEFAULT_TXD;
1059
1060         if (!(txdr->buffer_info = kcalloc(txdr->count,
1061                                           sizeof(struct e1000_buffer),
1062                                           GFP_KERNEL))) {
1063                 ret_val = 1;
1064                 goto err_nomem;
1065         }
1066
1067         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1068         txdr->size = ALIGN(txdr->size, 4096);
1069         if (!(txdr->desc = pci_alloc_consistent(pdev, txdr->size,
1070                                                 &txdr->dma))) {
1071                 ret_val = 2;
1072                 goto err_nomem;
1073         }
1074         memset(txdr->desc, 0, txdr->size);
1075         txdr->next_to_use = txdr->next_to_clean = 0;
1076
1077         ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1078         ew32(TDBAH, ((u64)txdr->dma >> 32));
1079         ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1080         ew32(TDH, 0);
1081         ew32(TDT, 0);
1082         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1083              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1084              E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1085
1086         for (i = 0; i < txdr->count; i++) {
1087                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1088                 struct sk_buff *skb;
1089                 unsigned int size = 1024;
1090
1091                 if (!(skb = alloc_skb(size, GFP_KERNEL))) {
1092                         ret_val = 3;
1093                         goto err_nomem;
1094                 }
1095                 skb_put(skb, size);
1096                 txdr->buffer_info[i].skb = skb;
1097                 txdr->buffer_info[i].length = skb->len;
1098                 txdr->buffer_info[i].dma =
1099                         pci_map_single(pdev, skb->data, skb->len,
1100                                        PCI_DMA_TODEVICE);
1101                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1102                 tx_desc->lower.data = cpu_to_le32(skb->len);
1103                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1104                                                    E1000_TXD_CMD_IFCS |
1105                                                    E1000_TXD_CMD_RPS);
1106                 tx_desc->upper.data = 0;
1107         }
1108
1109         /* Setup Rx descriptor ring and Rx buffers */
1110
1111         if (!rxdr->count)
1112                 rxdr->count = E1000_DEFAULT_RXD;
1113
1114         if (!(rxdr->buffer_info = kcalloc(rxdr->count,
1115                                           sizeof(struct e1000_buffer),
1116                                           GFP_KERNEL))) {
1117                 ret_val = 4;
1118                 goto err_nomem;
1119         }
1120
1121         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1122         if (!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1123                 ret_val = 5;
1124                 goto err_nomem;
1125         }
1126         memset(rxdr->desc, 0, rxdr->size);
1127         rxdr->next_to_use = rxdr->next_to_clean = 0;
1128
1129         rctl = er32(RCTL);
1130         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1131         ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1132         ew32(RDBAH, ((u64)rxdr->dma >> 32));
1133         ew32(RDLEN, rxdr->size);
1134         ew32(RDH, 0);
1135         ew32(RDT, 0);
1136         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1137                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1138                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1139         ew32(RCTL, rctl);
1140
1141         for (i = 0; i < rxdr->count; i++) {
1142                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1143                 struct sk_buff *skb;
1144
1145                 if (!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1146                                 GFP_KERNEL))) {
1147                         ret_val = 6;
1148                         goto err_nomem;
1149                 }
1150                 skb_reserve(skb, NET_IP_ALIGN);
1151                 rxdr->buffer_info[i].skb = skb;
1152                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1153                 rxdr->buffer_info[i].dma =
1154                         pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1155                                        PCI_DMA_FROMDEVICE);
1156                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1157                 memset(skb->data, 0x00, skb->len);
1158         }
1159
1160         return 0;
1161
1162 err_nomem:
1163         e1000_free_desc_rings(adapter);
1164         return ret_val;
1165 }
1166
1167 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1168 {
1169         struct e1000_hw *hw = &adapter->hw;
1170
1171         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1172         e1000_write_phy_reg(hw, 29, 0x001F);
1173         e1000_write_phy_reg(hw, 30, 0x8FFC);
1174         e1000_write_phy_reg(hw, 29, 0x001A);
1175         e1000_write_phy_reg(hw, 30, 0x8FF0);
1176 }
1177
1178 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1179 {
1180         struct e1000_hw *hw = &adapter->hw;
1181         u16 phy_reg;
1182
1183         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1184          * Extended PHY Specific Control Register to 25MHz clock.  This
1185          * value defaults back to a 2.5MHz clock when the PHY is reset.
1186          */
1187         e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1188         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1189         e1000_write_phy_reg(hw,
1190                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1191
1192         /* In addition, because of the s/w reset above, we need to enable
1193          * CRS on TX.  This must be set for both full and half duplex
1194          * operation.
1195          */
1196         e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1197         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1198         e1000_write_phy_reg(hw,
1199                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1200 }
1201
1202 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1203 {
1204         struct e1000_hw *hw = &adapter->hw;
1205         u32 ctrl_reg;
1206         u16 phy_reg;
1207
1208         /* Setup the Device Control Register for PHY loopback test. */
1209
1210         ctrl_reg = er32(CTRL);
1211         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1212                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1213                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1214                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1215                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1216
1217         ew32(CTRL, ctrl_reg);
1218
1219         /* Read the PHY Specific Control Register (0x10) */
1220         e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1221
1222         /* Clear Auto-Crossover bits in PHY Specific Control Register
1223          * (bits 6:5).
1224          */
1225         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1226         e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1227
1228         /* Perform software reset on the PHY */
1229         e1000_phy_reset(hw);
1230
1231         /* Have to setup TX_CLK and TX_CRS after software reset */
1232         e1000_phy_reset_clk_and_crs(adapter);
1233
1234         e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1235
1236         /* Wait for reset to complete. */
1237         udelay(500);
1238
1239         /* Have to setup TX_CLK and TX_CRS after software reset */
1240         e1000_phy_reset_clk_and_crs(adapter);
1241
1242         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1243         e1000_phy_disable_receiver(adapter);
1244
1245         /* Set the loopback bit in the PHY control register. */
1246         e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1247         phy_reg |= MII_CR_LOOPBACK;
1248         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1249
1250         /* Setup TX_CLK and TX_CRS one more time. */
1251         e1000_phy_reset_clk_and_crs(adapter);
1252
1253         /* Check Phy Configuration */
1254         e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1255         if (phy_reg != 0x4100)
1256                  return 9;
1257
1258         e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1259         if (phy_reg != 0x0070)
1260                 return 10;
1261
1262         e1000_read_phy_reg(hw, 29, &phy_reg);
1263         if (phy_reg != 0x001A)
1264                 return 11;
1265
1266         return 0;
1267 }
1268
1269 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1270 {
1271         struct e1000_hw *hw = &adapter->hw;
1272         u32 ctrl_reg = 0;
1273         u32 stat_reg = 0;
1274
1275         hw->autoneg = false;
1276
1277         if (hw->phy_type == e1000_phy_m88) {
1278                 /* Auto-MDI/MDIX Off */
1279                 e1000_write_phy_reg(hw,
1280                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1281                 /* reset to update Auto-MDI/MDIX */
1282                 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1283                 /* autoneg off */
1284                 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1285         } else if (hw->phy_type == e1000_phy_gg82563)
1286                 e1000_write_phy_reg(hw,
1287                                     GG82563_PHY_KMRN_MODE_CTRL,
1288                                     0x1CC);
1289
1290         ctrl_reg = er32(CTRL);
1291
1292         if (hw->phy_type == e1000_phy_ife) {
1293                 /* force 100, set loopback */
1294                 e1000_write_phy_reg(hw, PHY_CTRL, 0x6100);
1295
1296                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1297                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1298                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1299                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1300                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1301                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1302         } else {
1303                 /* force 1000, set loopback */
1304                 e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1305
1306                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1307                 ctrl_reg = er32(CTRL);
1308                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1309                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1310                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1311                              E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1312                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1313         }
1314
1315         if (hw->media_type == e1000_media_type_copper &&
1316            hw->phy_type == e1000_phy_m88)
1317                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1318         else {
1319                 /* Set the ILOS bit on the fiber Nic is half
1320                  * duplex link is detected. */
1321                 stat_reg = er32(STATUS);
1322                 if ((stat_reg & E1000_STATUS_FD) == 0)
1323                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1324         }
1325
1326         ew32(CTRL, ctrl_reg);
1327
1328         /* Disable the receiver on the PHY so when a cable is plugged in, the
1329          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1330          */
1331         if (hw->phy_type == e1000_phy_m88)
1332                 e1000_phy_disable_receiver(adapter);
1333
1334         udelay(500);
1335
1336         return 0;
1337 }
1338
1339 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1340 {
1341         struct e1000_hw *hw = &adapter->hw;
1342         u16 phy_reg = 0;
1343         u16 count = 0;
1344
1345         switch (hw->mac_type) {
1346         case e1000_82543:
1347                 if (hw->media_type == e1000_media_type_copper) {
1348                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1349                          * Some PHY registers get corrupted at random, so
1350                          * attempt this 10 times.
1351                          */
1352                         while (e1000_nonintegrated_phy_loopback(adapter) &&
1353                               count++ < 10);
1354                         if (count < 11)
1355                                 return 0;
1356                 }
1357                 break;
1358
1359         case e1000_82544:
1360         case e1000_82540:
1361         case e1000_82545:
1362         case e1000_82545_rev_3:
1363         case e1000_82546:
1364         case e1000_82546_rev_3:
1365         case e1000_82541:
1366         case e1000_82541_rev_2:
1367         case e1000_82547:
1368         case e1000_82547_rev_2:
1369         case e1000_82571:
1370         case e1000_82572:
1371         case e1000_82573:
1372         case e1000_80003es2lan:
1373         case e1000_ich8lan:
1374                 return e1000_integrated_phy_loopback(adapter);
1375                 break;
1376
1377         default:
1378                 /* Default PHY loopback work is to read the MII
1379                  * control register and assert bit 14 (loopback mode).
1380                  */
1381                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1382                 phy_reg |= MII_CR_LOOPBACK;
1383                 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1384                 return 0;
1385                 break;
1386         }
1387
1388         return 8;
1389 }
1390
1391 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1392 {
1393         struct e1000_hw *hw = &adapter->hw;
1394         u32 rctl;
1395
1396         if (hw->media_type == e1000_media_type_fiber ||
1397             hw->media_type == e1000_media_type_internal_serdes) {
1398                 switch (hw->mac_type) {
1399                 case e1000_82545:
1400                 case e1000_82546:
1401                 case e1000_82545_rev_3:
1402                 case e1000_82546_rev_3:
1403                         return e1000_set_phy_loopback(adapter);
1404                         break;
1405                 case e1000_82571:
1406                 case e1000_82572:
1407 #define E1000_SERDES_LB_ON 0x410
1408                         e1000_set_phy_loopback(adapter);
1409                         ew32(SCTL, E1000_SERDES_LB_ON);
1410                         msleep(10);
1411                         return 0;
1412                         break;
1413                 default:
1414                         rctl = er32(RCTL);
1415                         rctl |= E1000_RCTL_LBM_TCVR;
1416                         ew32(RCTL, rctl);
1417                         return 0;
1418                 }
1419         } else if (hw->media_type == e1000_media_type_copper)
1420                 return e1000_set_phy_loopback(adapter);
1421
1422         return 7;
1423 }
1424
1425 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1426 {
1427         struct e1000_hw *hw = &adapter->hw;
1428         u32 rctl;
1429         u16 phy_reg;
1430
1431         rctl = er32(RCTL);
1432         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1433         ew32(RCTL, rctl);
1434
1435         switch (hw->mac_type) {
1436         case e1000_82571:
1437         case e1000_82572:
1438                 if (hw->media_type == e1000_media_type_fiber ||
1439                     hw->media_type == e1000_media_type_internal_serdes) {
1440 #define E1000_SERDES_LB_OFF 0x400
1441                         ew32(SCTL, E1000_SERDES_LB_OFF);
1442                         msleep(10);
1443                         break;
1444                 }
1445                 /* Fall Through */
1446         case e1000_82545:
1447         case e1000_82546:
1448         case e1000_82545_rev_3:
1449         case e1000_82546_rev_3:
1450         default:
1451                 hw->autoneg = true;
1452                 if (hw->phy_type == e1000_phy_gg82563)
1453                         e1000_write_phy_reg(hw,
1454                                             GG82563_PHY_KMRN_MODE_CTRL,
1455                                             0x180);
1456                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1457                 if (phy_reg & MII_CR_LOOPBACK) {
1458                         phy_reg &= ~MII_CR_LOOPBACK;
1459                         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1460                         e1000_phy_reset(hw);
1461                 }
1462                 break;
1463         }
1464 }
1465
1466 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1467                                       unsigned int frame_size)
1468 {
1469         memset(skb->data, 0xFF, frame_size);
1470         frame_size &= ~1;
1471         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1472         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1473         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1474 }
1475
1476 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1477                                     unsigned int frame_size)
1478 {
1479         frame_size &= ~1;
1480         if (*(skb->data + 3) == 0xFF) {
1481                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1482                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1483                         return 0;
1484                 }
1485         }
1486         return 13;
1487 }
1488
1489 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1490 {
1491         struct e1000_hw *hw = &adapter->hw;
1492         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1493         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1494         struct pci_dev *pdev = adapter->pdev;
1495         int i, j, k, l, lc, good_cnt, ret_val=0;
1496         unsigned long time;
1497
1498         ew32(RDT, rxdr->count - 1);
1499
1500         /* Calculate the loop count based on the largest descriptor ring
1501          * The idea is to wrap the largest ring a number of times using 64
1502          * send/receive pairs during each loop
1503          */
1504
1505         if (rxdr->count <= txdr->count)
1506                 lc = ((txdr->count / 64) * 2) + 1;
1507         else
1508                 lc = ((rxdr->count / 64) * 2) + 1;
1509
1510         k = l = 0;
1511         for (j = 0; j <= lc; j++) { /* loop count loop */
1512                 for (i = 0; i < 64; i++) { /* send the packets */
1513                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1514                                         1024);
1515                         pci_dma_sync_single_for_device(pdev,
1516                                         txdr->buffer_info[k].dma,
1517                                         txdr->buffer_info[k].length,
1518                                         PCI_DMA_TODEVICE);
1519                         if (unlikely(++k == txdr->count)) k = 0;
1520                 }
1521                 ew32(TDT, k);
1522                 msleep(200);
1523                 time = jiffies; /* set the start time for the receive */
1524                 good_cnt = 0;
1525                 do { /* receive the sent packets */
1526                         pci_dma_sync_single_for_cpu(pdev,
1527                                         rxdr->buffer_info[l].dma,
1528                                         rxdr->buffer_info[l].length,
1529                                         PCI_DMA_FROMDEVICE);
1530
1531                         ret_val = e1000_check_lbtest_frame(
1532                                         rxdr->buffer_info[l].skb,
1533                                         1024);
1534                         if (!ret_val)
1535                                 good_cnt++;
1536                         if (unlikely(++l == rxdr->count)) l = 0;
1537                         /* time + 20 msecs (200 msecs on 2.4) is more than
1538                          * enough time to complete the receives, if it's
1539                          * exceeded, break and error off
1540                          */
1541                 } while (good_cnt < 64 && jiffies < (time + 20));
1542                 if (good_cnt != 64) {
1543                         ret_val = 13; /* ret_val is the same as mis-compare */
1544                         break;
1545                 }
1546                 if (jiffies >= (time + 2)) {
1547                         ret_val = 14; /* error code for time out error */
1548                         break;
1549                 }
1550         } /* end loop count loop */
1551         return ret_val;
1552 }
1553
1554 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1555 {
1556         struct e1000_hw *hw = &adapter->hw;
1557
1558         /* PHY loopback cannot be performed if SoL/IDER
1559          * sessions are active */
1560         if (e1000_check_phy_reset_block(hw)) {
1561                 DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
1562                         "when SoL/IDER is active.\n");
1563                 *data = 0;
1564                 goto out;
1565         }
1566
1567         if ((*data = e1000_setup_desc_rings(adapter)))
1568                 goto out;
1569         if ((*data = e1000_setup_loopback_test(adapter)))
1570                 goto err_loopback;
1571         *data = e1000_run_loopback_test(adapter);
1572         e1000_loopback_cleanup(adapter);
1573
1574 err_loopback:
1575         e1000_free_desc_rings(adapter);
1576 out:
1577         return *data;
1578 }
1579
1580 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1581 {
1582         struct e1000_hw *hw = &adapter->hw;
1583         *data = 0;
1584         if (hw->media_type == e1000_media_type_internal_serdes) {
1585                 int i = 0;
1586                 hw->serdes_link_down = true;
1587
1588                 /* On some blade server designs, link establishment
1589                  * could take as long as 2-3 minutes */
1590                 do {
1591                         e1000_check_for_link(hw);
1592                         if (!hw->serdes_link_down)
1593                                 return *data;
1594                         msleep(20);
1595                 } while (i++ < 3750);
1596
1597                 *data = 1;
1598         } else {
1599                 e1000_check_for_link(hw);
1600                 if (hw->autoneg)  /* if auto_neg is set wait for it */
1601                         msleep(4000);
1602
1603                 if (!(er32(STATUS) & E1000_STATUS_LU)) {
1604                         *data = 1;
1605                 }
1606         }
1607         return *data;
1608 }
1609
1610 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1611 {
1612         switch (sset) {
1613         case ETH_SS_TEST:
1614                 return E1000_TEST_LEN;
1615         case ETH_SS_STATS:
1616                 return E1000_STATS_LEN;
1617         default:
1618                 return -EOPNOTSUPP;
1619         }
1620 }
1621
1622 static void e1000_diag_test(struct net_device *netdev,
1623                             struct ethtool_test *eth_test, u64 *data)
1624 {
1625         struct e1000_adapter *adapter = netdev_priv(netdev);
1626         struct e1000_hw *hw = &adapter->hw;
1627         bool if_running = netif_running(netdev);
1628
1629         set_bit(__E1000_TESTING, &adapter->flags);
1630         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1631                 /* Offline tests */
1632
1633                 /* save speed, duplex, autoneg settings */
1634                 u16 autoneg_advertised = hw->autoneg_advertised;
1635                 u8 forced_speed_duplex = hw->forced_speed_duplex;
1636                 u8 autoneg = hw->autoneg;
1637
1638                 DPRINTK(HW, INFO, "offline testing starting\n");
1639
1640                 /* Link test performed before hardware reset so autoneg doesn't
1641                  * interfere with test result */
1642                 if (e1000_link_test(adapter, &data[4]))
1643                         eth_test->flags |= ETH_TEST_FL_FAILED;
1644
1645                 if (if_running)
1646                         /* indicate we're in test mode */
1647                         dev_close(netdev);
1648                 else
1649                         e1000_reset(adapter);
1650
1651                 if (e1000_reg_test(adapter, &data[0]))
1652                         eth_test->flags |= ETH_TEST_FL_FAILED;
1653
1654                 e1000_reset(adapter);
1655                 if (e1000_eeprom_test(adapter, &data[1]))
1656                         eth_test->flags |= ETH_TEST_FL_FAILED;
1657
1658                 e1000_reset(adapter);
1659                 if (e1000_intr_test(adapter, &data[2]))
1660                         eth_test->flags |= ETH_TEST_FL_FAILED;
1661
1662                 e1000_reset(adapter);
1663                 /* make sure the phy is powered up */
1664                 e1000_power_up_phy(adapter);
1665                 if (e1000_loopback_test(adapter, &data[3]))
1666                         eth_test->flags |= ETH_TEST_FL_FAILED;
1667
1668                 /* restore speed, duplex, autoneg settings */
1669                 hw->autoneg_advertised = autoneg_advertised;
1670                 hw->forced_speed_duplex = forced_speed_duplex;
1671                 hw->autoneg = autoneg;
1672
1673                 e1000_reset(adapter);
1674                 clear_bit(__E1000_TESTING, &adapter->flags);
1675                 if (if_running)
1676                         dev_open(netdev);
1677         } else {
1678                 DPRINTK(HW, INFO, "online testing starting\n");
1679                 /* Online tests */
1680                 if (e1000_link_test(adapter, &data[4]))
1681                         eth_test->flags |= ETH_TEST_FL_FAILED;
1682
1683                 /* Online tests aren't run; pass by default */
1684                 data[0] = 0;
1685                 data[1] = 0;
1686                 data[2] = 0;
1687                 data[3] = 0;
1688
1689                 clear_bit(__E1000_TESTING, &adapter->flags);
1690         }
1691         msleep_interruptible(4 * 1000);
1692 }
1693
1694 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1695                                struct ethtool_wolinfo *wol)
1696 {
1697         struct e1000_hw *hw = &adapter->hw;
1698         int retval = 1; /* fail by default */
1699
1700         switch (hw->device_id) {
1701         case E1000_DEV_ID_82542:
1702         case E1000_DEV_ID_82543GC_FIBER:
1703         case E1000_DEV_ID_82543GC_COPPER:
1704         case E1000_DEV_ID_82544EI_FIBER:
1705         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1706         case E1000_DEV_ID_82545EM_FIBER:
1707         case E1000_DEV_ID_82545EM_COPPER:
1708         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1709         case E1000_DEV_ID_82546GB_PCIE:
1710         case E1000_DEV_ID_82571EB_SERDES_QUAD:
1711                 /* these don't support WoL at all */
1712                 wol->supported = 0;
1713                 break;
1714         case E1000_DEV_ID_82546EB_FIBER:
1715         case E1000_DEV_ID_82546GB_FIBER:
1716         case E1000_DEV_ID_82571EB_FIBER:
1717         case E1000_DEV_ID_82571EB_SERDES:
1718         case E1000_DEV_ID_82571EB_COPPER:
1719                 /* Wake events not supported on port B */
1720                 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1721                         wol->supported = 0;
1722                         break;
1723                 }
1724                 /* return success for non excluded adapter ports */
1725                 retval = 0;
1726                 break;
1727         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1728         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1729         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1730         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1731         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1732                 /* quad port adapters only support WoL on port A */
1733                 if (!adapter->quad_port_a) {
1734                         wol->supported = 0;
1735                         break;
1736                 }
1737                 /* return success for non excluded adapter ports */
1738                 retval = 0;
1739                 break;
1740         default:
1741                 /* dual port cards only support WoL on port A from now on
1742                  * unless it was enabled in the eeprom for port B
1743                  * so exclude FUNC_1 ports from having WoL enabled */
1744                 if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1745                     !adapter->eeprom_wol) {
1746                         wol->supported = 0;
1747                         break;
1748                 }
1749
1750                 retval = 0;
1751         }
1752
1753         return retval;
1754 }
1755
1756 static void e1000_get_wol(struct net_device *netdev,
1757                           struct ethtool_wolinfo *wol)
1758 {
1759         struct e1000_adapter *adapter = netdev_priv(netdev);
1760         struct e1000_hw *hw = &adapter->hw;
1761
1762         wol->supported = WAKE_UCAST | WAKE_MCAST |
1763                          WAKE_BCAST | WAKE_MAGIC;
1764         wol->wolopts = 0;
1765
1766         /* this function will set ->supported = 0 and return 1 if wol is not
1767          * supported by this hardware */
1768         if (e1000_wol_exclusion(adapter, wol))
1769                 return;
1770
1771         /* apply any specific unsupported masks here */
1772         switch (hw->device_id) {
1773         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1774                 /* KSP3 does not suppport UCAST wake-ups */
1775                 wol->supported &= ~WAKE_UCAST;
1776
1777                 if (adapter->wol & E1000_WUFC_EX)
1778                         DPRINTK(DRV, ERR, "Interface does not support "
1779                         "directed (unicast) frame wake-up packets\n");
1780                 break;
1781         default:
1782                 break;
1783         }
1784
1785         if (adapter->wol & E1000_WUFC_EX)
1786                 wol->wolopts |= WAKE_UCAST;
1787         if (adapter->wol & E1000_WUFC_MC)
1788                 wol->wolopts |= WAKE_MCAST;
1789         if (adapter->wol & E1000_WUFC_BC)
1790                 wol->wolopts |= WAKE_BCAST;
1791         if (adapter->wol & E1000_WUFC_MAG)
1792                 wol->wolopts |= WAKE_MAGIC;
1793
1794         return;
1795 }
1796
1797 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1798 {
1799         struct e1000_adapter *adapter = netdev_priv(netdev);
1800         struct e1000_hw *hw = &adapter->hw;
1801
1802         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1803                 return -EOPNOTSUPP;
1804
1805         if (e1000_wol_exclusion(adapter, wol))
1806                 return wol->wolopts ? -EOPNOTSUPP : 0;
1807
1808         switch (hw->device_id) {
1809         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1810                 if (wol->wolopts & WAKE_UCAST) {
1811                         DPRINTK(DRV, ERR, "Interface does not support "
1812                         "directed (unicast) frame wake-up packets\n");
1813                         return -EOPNOTSUPP;
1814                 }
1815                 break;
1816         default:
1817                 break;
1818         }
1819
1820         /* these settings will always override what we currently have */
1821         adapter->wol = 0;
1822
1823         if (wol->wolopts & WAKE_UCAST)
1824                 adapter->wol |= E1000_WUFC_EX;
1825         if (wol->wolopts & WAKE_MCAST)
1826                 adapter->wol |= E1000_WUFC_MC;
1827         if (wol->wolopts & WAKE_BCAST)
1828                 adapter->wol |= E1000_WUFC_BC;
1829         if (wol->wolopts & WAKE_MAGIC)
1830                 adapter->wol |= E1000_WUFC_MAG;
1831
1832         return 0;
1833 }
1834
1835 /* toggle LED 4 times per second = 2 "blinks" per second */
1836 #define E1000_ID_INTERVAL       (HZ/4)
1837
1838 /* bit defines for adapter->led_status */
1839 #define E1000_LED_ON            0
1840
1841 static void e1000_led_blink_callback(unsigned long data)
1842 {
1843         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1844         struct e1000_hw *hw = &adapter->hw;
1845
1846         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1847                 e1000_led_off(hw);
1848         else
1849                 e1000_led_on(hw);
1850
1851         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1852 }
1853
1854 static int e1000_phys_id(struct net_device *netdev, u32 data)
1855 {
1856         struct e1000_adapter *adapter = netdev_priv(netdev);
1857         struct e1000_hw *hw = &adapter->hw;
1858
1859         if (!data)
1860                 data = INT_MAX;
1861
1862         if (hw->mac_type < e1000_82571) {
1863                 if (!adapter->blink_timer.function) {
1864                         init_timer(&adapter->blink_timer);
1865                         adapter->blink_timer.function = e1000_led_blink_callback;
1866                         adapter->blink_timer.data = (unsigned long)adapter;
1867                 }
1868                 e1000_setup_led(hw);
1869                 mod_timer(&adapter->blink_timer, jiffies);
1870                 msleep_interruptible(data * 1000);
1871                 del_timer_sync(&adapter->blink_timer);
1872         } else if (hw->phy_type == e1000_phy_ife) {
1873                 if (!adapter->blink_timer.function) {
1874                         init_timer(&adapter->blink_timer);
1875                         adapter->blink_timer.function = e1000_led_blink_callback;
1876                         adapter->blink_timer.data = (unsigned long)adapter;
1877                 }
1878                 mod_timer(&adapter->blink_timer, jiffies);
1879                 msleep_interruptible(data * 1000);
1880                 del_timer_sync(&adapter->blink_timer);
1881                 e1000_write_phy_reg(&(adapter->hw), IFE_PHY_SPECIAL_CONTROL_LED, 0);
1882         } else {
1883                 e1000_blink_led_start(hw);
1884                 msleep_interruptible(data * 1000);
1885         }
1886
1887         e1000_led_off(hw);
1888         clear_bit(E1000_LED_ON, &adapter->led_status);
1889         e1000_cleanup_led(hw);
1890
1891         return 0;
1892 }
1893
1894 static int e1000_nway_reset(struct net_device *netdev)
1895 {
1896         struct e1000_adapter *adapter = netdev_priv(netdev);
1897         if (netif_running(netdev))
1898                 e1000_reinit_locked(adapter);
1899         return 0;
1900 }
1901
1902 static void e1000_get_ethtool_stats(struct net_device *netdev,
1903                                     struct ethtool_stats *stats, u64 *data)
1904 {
1905         struct e1000_adapter *adapter = netdev_priv(netdev);
1906         int i;
1907
1908         e1000_update_stats(adapter);
1909         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1910                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1911                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1912                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1913         }
1914 /*      BUG_ON(i != E1000_STATS_LEN); */
1915 }
1916
1917 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1918                               u8 *data)
1919 {
1920         u8 *p = data;
1921         int i;
1922
1923         switch (stringset) {
1924         case ETH_SS_TEST:
1925                 memcpy(data, *e1000_gstrings_test,
1926                         sizeof(e1000_gstrings_test));
1927                 break;
1928         case ETH_SS_STATS:
1929                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1930                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1931                                ETH_GSTRING_LEN);
1932                         p += ETH_GSTRING_LEN;
1933                 }
1934 /*              BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1935                 break;
1936         }
1937 }
1938
1939 static const struct ethtool_ops e1000_ethtool_ops = {
1940         .get_settings           = e1000_get_settings,
1941         .set_settings           = e1000_set_settings,
1942         .get_drvinfo            = e1000_get_drvinfo,
1943         .get_regs_len           = e1000_get_regs_len,
1944         .get_regs               = e1000_get_regs,
1945         .get_wol                = e1000_get_wol,
1946         .set_wol                = e1000_set_wol,
1947         .get_msglevel           = e1000_get_msglevel,
1948         .set_msglevel           = e1000_set_msglevel,
1949         .nway_reset             = e1000_nway_reset,
1950         .get_link               = ethtool_op_get_link,
1951         .get_eeprom_len         = e1000_get_eeprom_len,
1952         .get_eeprom             = e1000_get_eeprom,
1953         .set_eeprom             = e1000_set_eeprom,
1954         .get_ringparam          = e1000_get_ringparam,
1955         .set_ringparam          = e1000_set_ringparam,
1956         .get_pauseparam         = e1000_get_pauseparam,
1957         .set_pauseparam         = e1000_set_pauseparam,
1958         .get_rx_csum            = e1000_get_rx_csum,
1959         .set_rx_csum            = e1000_set_rx_csum,
1960         .get_tx_csum            = e1000_get_tx_csum,
1961         .set_tx_csum            = e1000_set_tx_csum,
1962         .set_sg                 = ethtool_op_set_sg,
1963         .set_tso                = e1000_set_tso,
1964         .self_test              = e1000_diag_test,
1965         .get_strings            = e1000_get_strings,
1966         .phys_id                = e1000_phys_id,
1967         .get_ethtool_stats      = e1000_get_ethtool_stats,
1968         .get_sset_count         = e1000_get_sset_count,
1969 };
1970
1971 void e1000_set_ethtool_ops(struct net_device *netdev)
1972 {
1973         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1974 }